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ABSTRACT

We present a computational nonlocal poromechanics framework for modeling unguided
cracking in unsaturated soils. In this mathematical model, the initiation and propagation of
cracks in unsaturated soils is autonomous and modeled through a novel fracture criterion
considering solid-fluid coupling effects. The nonlocal coupled poromechanics model is
implemented numerically using an implicit fractional step algorithm in which the coupled
problem is transformed into two sub-problems (i.e., mechanical and fluid flow). First, the
mechanical sub-problem is solved using Newton’s method with an explicit predictor of water
pressure. Second, the sub-problem of fluid flow is solved using Newton’s method in the updated
solid configuration. Two numerical examples are presented to demonstrate the robustness of this
proposed computational nonlocal poromechanics framework for modeling arbitrary cracking in
unsaturated soils.

INTRODUCTION

Desiccation cracking is a commonly occurring phenomenon in the drying process of
unsaturated soil (Fredlund and Rahardjo 1993). Decreasing moisture content causes an increase
in matric suction and shrinkage of soil volume which, when prevented, leads to tensile cracking
in the soil. As such, desiccation cracking is a coupled flow-deformation process that leads to
evolving discontinuities in the domain. Consequently, desiccation cracking has a significant
effect on the engineering properties of soils by effectively increasing permeability of the medium
and decreasing the mechanical strength of the soil (Lu and Likos 2004). Thus, it represents a
significant danger to the integrity of earthen retaining elements like dikes and embankments, the
viability of liner material for landfills, irrigation potential of soils and more (Lu and Likos 2004).
Due to the significance of the phenomenon to broad spectrum of scientific disciplines,
desiccation cracking has attracted significant research interest. Numerical modeling of
desiccation cracking has provided deep insight into the physics of crack initiation and
propagation (see Menon and Song 2019 for an in-depth review). For example, the initial water
saturation level, subsequent change during evaporation and the resulting volume change
(characterized by the water-retention curve) are the mechanism behind cracking. However, due
to difficulties associated with measuring and tracking soil shrinkage, crack growth and joining
and fluid flow in a fractured medium it is advantageous to develop a fully coupled computational
framework capable of modeling of unguided, three-dimensional crack propagation and joining.

Classical poromechanics, based on local interactions, uses partial differential equations to
describe the coupled solid deformation and fluid flow system, which leads to singularities at

© ASCE

Geo-Congress 2022



Downloaded from ascelibrary.org by University Of Florida on 04/29/22. Copyright ASCE. For personal use only; all rights reserved.

Geo-Congress 2022 GSP 335 306

discontinuities in the problem domain. An alternative theory of continuum mechanics,
peridynamics was developed to unify the modeling of solid mechanics, fracture, and long-range
forces. The global balance laws are formulated in terms of spatially integral equations with the
domain of integration defined by an explicit length scale. Since no spatial derivatives are
required, the formulation admits discontinuities in the field variables without additional remedial
techniques and the governing equations remain valid on and off cracks in the domain (Song and
Khalili 2019, Song and Silling 2020). This capability of peridynamics has made it an attractive
option in modeling discontinuous processes in a variety of materials. Though initially developed
for metals, recently, peridynamics has been extended to the multiphysics analysis of failure
(Song and Menon 2019, Menon and Song 2020, 2021a, 2021b) and fracture in unsaturated
porous media (Menon and Song 2019) via periporomechanics. In this study, the recently
proposed periporomechanics (e.g., Menon and Song 2021a, 2021b) is extended for modeling
unguided cracking in unsaturated porous media. We conduct numerical simulations of crack
propagation in the two-dimensional and three-dimensional cases to demonstrate the robustness of
the proposed computational nonlocal poromechanics model.

FORMULATION & IMPLEMENTATION

A summary of the proposed nonlocal poromechanics framework is provided in this section.
A point on the notation used in this study: boldface represents a vector quantity; bold italics
represent a tensor quantity and underscores are used to differentiate peridynamic state quantities
from classical point associated quantities. Periporomechanics conceptualizes multi-phase
geomaterials as a homogenized collection of mixed material points of finite volume that can
interact with each other over a finite distance, termed the horizon ¢. The horizon is an explicitly
defined length scale parameter, embedded in the global balance laws, that demarcates the
neighborhood, Hy, of a material point x. The interactions between material points are termed
bonds and all material field variables are tracked by mathematical quantities termed ‘states’
which act along said bonds. Each material point has two types of degree of freedom, i.e.,
displacement and fluid pressure. As such, the formulation is the nonlocal equivalent of the
classical u-p formulation (Zienkiewicz et al. 1999). Deformation and fluid flow are imposed
along ‘bonds’ between two material points X and X',

X=f=x—x

where X = § is the bond between a point and its neighbor and is the relative position vector from
x to X'. For the solid skeleton, the fundamental kinematic quantity is the deformation vector state
Y(&) associated with individual interactions between material points,

YO =y'E)-y® , y®=x+u , y'E)=x"+u
where yand y’ are the positions of X and x’ in the deformed configuration, uand u’ are the
displacements at material points X and x’ and the () is the bond with which the deformation state

is associated with. Similarly, for the fluid phase, the primary variable is the pressure potential
scalar state which reads,

D(8) =p'(x") —p(x)
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and is evidently the relative difference in water pressure along the bond. The deformation and
pressure potential states represent a more general picture of the deformation and flow potential
than the corresponding gradient operator of classical mechanics. That said, through the reduction
operation (Song and Silling 2020) over the horizon, the deformation and pressure potential states
can be used to determine a nonlocal approximation of the gradient operator. For the solid
skeleton, the derived variable is the effective force vector state T(E) which is obtained from the
skeleton resistance to deformation and can be decomposed as (Song and Silling 2020)

T[x](8) = T[x](§) + S, T,, [x](8)

where, T is the total force state, S, is the degree saturation of water and T,, is the apparent
capillary force state related to the matric suction. The degree saturation is a function of p <0
via the van Genuchten soil water retention curve (Fredlund and Rahardjo 1993). It is worth
noting that we assume tension is positive for deformation and pore pressure is positive in
compression following continuum mechanics convention. Using the effective force principle, the
balance of momentum in a three-phase periporomechanics mixture can be expressed as,

T -5,T) = (T =S'T ) dV' + (ps(1 — §) + S, dpu)(g — 1) = 0 (1)
Hy

where we have dropped the explicit dependence on the location and bond for brevity and, ¢ is
the skeleton porosity, ps is the intrinsic solid density, p,, is the intrinsic liquid density, g is the
vector of gravity and i is the skeleton acceleration. For the liquid phase, the derived variable is
the fluid flow state Q[x](§). Under the standard poromechanics assumptions of an

incompressible solid phase, a passive gas phase and a barotropic liquid phase , we can express
the balance of mass of a periporomechanics mixture using a single equation as follows,

dS _ .
----- i+..<;_]__/- (V.- V' }dv 4 --_-E—/‘ (Q-QldV+ Q. =0 (

tht e
i, i,

fluid flow states at x and x’ respectively, and ¢ is the sink term. The first integrand represents
the coupling term, the volume change of the solid skeleton, and the second integrand the mass
transport of the liquid in the pore space.

A defining feature of periporomechanics, is that unlike classical mechanics, the governing
equations are valid both on and off discontinuities. Therefore, all that is required to model crack
propagation in periporomechanics is a suitable criterion. In general, crack propagation is
modeled through the feature of bond-breakage: interactions between a point and its neighbor are
eliminated when some kinematic (stretch/rotations) or energy (strain/J-integral) based criteria is
satisfied. The simplest and most popular criteria is the critical stretch criterion, where stretch is
defined as

_e _l-n©
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and bond breakage is implemented through the influence function such that,
w = 0, S 2 Scr

The influence function is a scalar state function that modulates the strength of the interaction
between two points. In this study a uniform value of w = 1 was chosen for all bonds. By setting
the influence function to zero for a broken bond the effective force state of the bond is neglected
when calculating the skeleton force at a point (but fluid force is still considered). This naturally
leads to force redistribution to the remaining bonds in the horizon. This in turn may cause more
bonds to exceed their critical stretch and cause them to fail as well, allowing a crack to grow
autonomously and leading to progressive failure. Cracks in the domain are tracked through the
scalar damage variable {(x) which is defined as

ngde’

C(X) =1- J'Hx del

such that a value of ‘0’ corresponds to a point with no bonds broken and ‘1’ to a point with all
bonds broken.

To close the system of equations in Eq. 1 and Eq. 2 constitutive models are required to relate
the effective force state and fluid flow states to the deformation and pressure potential states,
respectively. Constitutive models in the proposed framework can relate the force state in a bond
to its own deformation only (the simplest formulation) or, more generally, to a weighted average
of deformation in all bonds in the horizon. The former is termed a bond-based model and is a
special case of the latter, which is termed state-based. State-based models have been applied to
the modeling of localized failure in multiphase geomaterials, via a correspondence model
(Menon and Song 2021a), and crack propagation via an ordinary model (Menon and Song 2019).
For details on the specific models used and their implementation the reader is referred to the
cited publications. When bond breakage occurs, the bond cannot carry mechanical loads but can
still transmit the fluid force and facilitate mass transport. Now, to accurately model the physics
of fracture propagation and its influence on the fluid motion in the fractured configuration, the
physical models (effective force principle and Darcy’s Law) need to be modified to account for
the discontinuity in the deformed configuration. Once {(X) > (g the material point is designated
a fracture point. To compute the fracture flow at a fracture point, we relate the fracture
permeability Ky to fracture width using the cubic law for one-dimensional flow (Lewis and
Schrefler 1998),

where the fracture width is then calculated as follows,

Nfi

1
ar = —z (&[5 cos wij = [X]
‘N}“/L j=1
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where i denotes the material point, Vy ; is the number of neighbors whose bonds with point i
have been broken, and y;; is the angle subtended by the deformation and reference vector states
of bond Ei je

The formulated periporomechanics is solved via a Eulerian-Lagrangian meshfree spatial
discretization scheme and a fractional-step implicit time integration scheme. Broadly, two
classes of implicit time integration schemes can be considered to solve coupled fluid flow and
solid deformation problems: the monolithic approach and the staggered approach (Lewis and
Schrefler 1998). The monolithic or fully coupled solution scheme involves the solution of the
coupled system at each Newton iteration of each time step. This can become time and resource
intensive particularly, in scenarios involving greatly differing time scales (for example in
reservoir geomechanics). Alternatively, the coupled problem can be solved in a staggered
manner via a suitable operator split that decomposes the coupled system into independent sub-
problems to be solved sequentially. Such so-called fractional step algorithms employ some
explicit relationship (a predictor) to separate the mechanical problem from the fluid flow
problem. The solution to the first sub-problem is then used as an input to solve the subsequent
sub-problem, resulting in an efficient solution procedure. However, staggered solution schemes
are not always unconditionally stable even when the individual sub-problems are unconditionally
stable. Therefore, care must be taken in the choice of operator split procedure used such that the
component operators exhibit appropriate group characteristics (Lewis and Schrefler 1998). This
ensures that the algorithm is unconditionally stable. In this study, we implement a fractional step
algorithm (Zienkiewicz et al. 1999) wherein the mechanical sub-problem is solved first using an
explicit predictor of water pressure. Subsequently, the converged displacement is used to solve
the mass balance in the current, updated configuration. The explicit predictor for the pressure
increment reads,

1 . .
Ap:1+1 = —At (;) {Sr,n (Vs,n+1 - Vs,,n+1) dv’ + J (gn - gln) dV,}
n H

Hy

aSrn] - . . :
where y, = q>[ a;”] is the storage coefficient, all fluid-related terms are calculated using the

converged values of the previous load step (denoted by subscript ‘n’) and the volume coupling
term is computed using current values (denoted by subscript ‘n+1°). Using this predictor, the
capillary force state can be approximated as follows,

u —_ * * _ 1% I* 12
P n+1 _j [Sn+1_w,n+1 n+1_w,n+1] dav
H

X

where both Sy, and T, ;. are calculated using the predicted pressure. Then the balance of
linear momentum can then be expressed as,

0= pn+1(ﬁn+1 - g) - In+1 - i,n+1dvl - fpun+1
Hy

where we note that the pressure force density acts as an external load on the skeleton through
Pr.1. Once the above equation has been solved for the displacement, we recalculate the
volumetric deformation coupling term,
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*‘Pi+1 = f (Vs,n+1 - Vs,,n+1) dv’
Hy
which is used as an input to solve the balance of mass as follows,

0 = Xn+1Pn+1 t f (gn+1 - 9;1+1) dv’ + Sr,n+1?f1+1

Hy
OBLIQUE CRACK PROPAGATION

In this example, we model the propagation of wing cracks due to tensile loading of a two-
dimensional specimen. Wing cracks grow at an angle from the edges of the shear fracture
allowing the shear fracture to propagate by the coalescing of these tensile fractures. The
specimen geometry and details of the pre-crack are provided in Figure 1. The zero-thickness pre-
crack is inserted by selectively preventing bonds that intersect it from being formed.
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Figure 1. Schematic depicting the problem dimensions, crack geometry and location.

The problem domain is discretized using 20,000 mixed material points with A = 1 X 10™3m.
The material parameters are chosen as follows: solid density ps= 2000 kg/m?, bulk modulus K =
70% 10* kPa, shear modulus p = 15 X 10* kPa, initial porosity ¢ = 0.33 p,,= 1000 kg/m?,
saturated conductivity ky = 1 X 1078 m/s, porosity index n = 1.785 and air-entry value s, = 500
kPa. The horizon is set to 3.05A. The soil specimen has an initial matric suction s = 50 kPa, (S, =
0.99) and an initial isotropic stress state p'o = -50 kPa.

The regions marked in red in Figure 1 represent the loading location. The displacement load
is u,, = u,,= 10 nm/s. No other skeleton boundary conditions are applied. For the fluid phase all
boundaries are treated as impermeable. The simulation duration is t = 3000 s and time increment
At=0.5s.

Figure 2 plots the evolution of the resultant reaction force over applied displacement along
the diagonal. The corresponding values of the applied displacement are u, = u, = (a) 2.1
X 1072 mm, (b) 2.5 X 1072 mm and (c) 2.7 X 1072 mm. Figure 3 and Figure 4 depict the scalar
damage and water pressure in the problem domain at the aforementioned load steps, respectively.
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Figure 2. Reaction force over resultant displacement.

(i}

Figure 3. Contours depicting evolution of scalar damage at u, = u, = (a) 2.1x 102 mm, (b)
2.5x 102 mm and (¢) 2.7 x 102 mm.

It is apparent that the crack opens parallel to the diagonal opposite to the loading direction. A
scalar damage of 0.5 corresponds to interactions from one-half of the neighborhood being
terminated. As the crack opens and propagates through the domain, a corresponding sharp
discontinuity is visible in the pressure contour along the crack interface.

{a} (0}

Figure 4. Contours depicting evolution of water pressure (in kPa) at u, = u,, = (a) 2.1 x 10-
2mm, (b) 2.5 x 10> mm and (c) 2.7 x 10> mm.
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The crack changes the fluid flow in its vicinity acting as a preferential path for flow leading
to the notable increase in matric suction (decrease in water pressure) in its immediate vicinity.

LINEARLY RESTRAINED SOIL BAR

The ability of the proposed nonlocal poromechanics to predict soil cracking is further
investigated in this section by simulating a linearly restrained, shrinkage induced soil cracking
experiment. The soil sample was prepared and compacted in a long rectangular mold (300 mm
long, 30 mm width and 12 mm height) as shown in Figure 5. The problem domain is discretized
into 22,500 mixed material points with A = 2 X 1073m. The material parameters chosen are
ps = 2000 kg/m®, K = 2.2x 103 kPa, u = 1.67 x 103 kPa, ¢ = 0.25, p,,= 1000 kg/m?, ky =
1 x 1077 m/s, n = 1.25 and s, = 100 kPa. The horizon is set to 3.05Ax. The initial matric suction
in the sample s = 100 kPa, (i.e., S, = 0.73) and the initial isotropic stress state p'o = -73 kPa.

Mgy

12

Figure 5. The problem setup for the linearly restrained desiccation test for a clay specimen.
The base of the mold is fixed while the sides are free to deform. Desiccation process is

modeled as evaporation by applying a uniform external flux density on the upper surface of the
clay specimen. The simulation time ¢t = 6 hours (hr) and the time increment At = 1 s.
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Figure 6. Contours of damage variable superimposed on deformed configuration at (a) t=
1hr (b)t=2hr (c)t=3.5hr and (d) t=5.5 hr.
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Figures 6 and 7 plot the evolution of the crack at different stages of the simulation from an
isometric and top-down view respectively. It is apparent from Figure 6 that the cracks opened at
the upper surface and then propagated downward with increasing suction. Further, Figure 7
shows that the cracks occurred at the outer surface first and then propagated inward towards the
longitudinal axis. This simple example has demonstrated that the proposed framework is robust
in modeling desiccation cracking in clay. More numerical simulations are necessary to further
evaluate the efficacy of the proposed nonlocal framework for modeling cracks in geomaterials at
multiple scales.

Figure 7. Top view of crack evolution (a) t=1 hr (b) t=2 hr (¢) t=3.5 hr and (d) t=5.5 hr.
SUMMARY

In this article, we have presented a fully coupled, three-dimensional nonlocal theory of
unsaturated poromechanics for discontinuous flow-deformation analysis capable of modeling
autonomous and unguided cracking. The formulation is applied to the classical problem of
opening of an oblique crack and the desiccation test of a linearly restrained clay bar. The
presented numerical results show that the formulation can reproduce experimentally observed
trends in crack propagation. The oblique crack propagates perpendicular to the loading direction,
which has been observed in laboratory experiments. For the desiccation test, the soil bar cracks
open at the top and outer surface, propagating downward. The preliminary numerical results
have shown that the proposed computational nonlocal unsaturated poromechanics model is
robust in modeling arbitrary cracking in unsaturated soils.
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