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ABSTRACT 

 

We present a computational nonlocal poromechanics framework for modeling unguided 

cracking in unsaturated soils. In this mathematical model, the initiation and propagation of 

cracks in unsaturated soils is autonomous and modeled through a novel fracture criterion 

considering solid-fluid coupling effects. The nonlocal coupled poromechanics model is 

implemented numerically using an implicit fractional step algorithm in which the coupled 

problem is transformed into two sub-problems (i.e., mechanical and fluid flow). First, the 

mechanical sub-problem is solved using Newton’s method with an explicit predictor of water 

pressure. Second, the sub-problem of fluid flow is solved using Newton’s method in the updated 

solid configuration. Two numerical examples are presented to demonstrate the robustness of this 

proposed computational nonlocal poromechanics framework for modeling arbitrary cracking in 

unsaturated soils. 

 

INTRODUCTION 

 

Desiccation cracking is a commonly occurring phenomenon in the drying process of 

unsaturated soil (Fredlund and Rahardjo 1993). Decreasing moisture content causes an increase 

in matric suction and shrinkage of soil volume which, when prevented, leads to tensile cracking 

in the soil. As such, desiccation cracking is a coupled flow-deformation process that leads to 

evolving discontinuities in the domain. Consequently, desiccation cracking has a significant 

effect on the engineering properties of soils by effectively increasing permeability of the medium 

and decreasing the mechanical strength of the soil (Lu and Likos 2004). Thus, it represents a 

significant danger to the integrity of earthen retaining elements like dikes and embankments, the 

viability of liner material for landfills, irrigation potential of soils and more (Lu and Likos 2004). 

Due to the significance of the phenomenon to broad spectrum of scientific disciplines, 

desiccation cracking has attracted significant research interest. Numerical modeling of 

desiccation cracking has provided deep insight into the physics of crack initiation and 

propagation (see Menon and Song 2019 for an in-depth review). For example, the initial water 

saturation level, subsequent change during evaporation and the resulting volume change 

(characterized by the water-retention curve) are the mechanism behind cracking. However, due 

to difficulties associated with measuring and tracking soil shrinkage, crack growth and joining 

and fluid flow in a fractured medium it is advantageous to develop a fully coupled computational 

framework capable of modeling of unguided, three-dimensional crack propagation and joining. 

Classical poromechanics, based on local interactions, uses partial differential equations to 

describe the coupled solid deformation and fluid flow system, which leads to singularities at 
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discontinuities in the problem domain. An alternative theory of continuum mechanics, 

peridynamics was developed to unify the modeling of solid mechanics, fracture, and long-range 

forces. The global balance laws are formulated in terms of spatially integral equations with the 

domain of integration defined by an explicit length scale. Since no spatial derivatives are 

required, the formulation admits discontinuities in the field variables without additional remedial 

techniques and the governing equations remain valid on and off cracks in the domain (Song and 

Khalili 2019, Song and Silling 2020). This capability of peridynamics has made it an attractive 

option in modeling discontinuous processes in a variety of materials. Though initially developed 

for metals, recently, peridynamics has been extended to the multiphysics analysis of failure 

(Song and Menon 2019, Menon and Song 2020, 2021a, 2021b) and fracture in unsaturated 

porous media (Menon and Song 2019) via periporomechanics. In this study, the recently 

proposed periporomechanics (e.g., Menon and Song 2021a, 2021b) is extended for modeling 

unguided cracking in unsaturated porous media. We conduct numerical simulations of crack 

propagation in the two-dimensional and three-dimensional cases to demonstrate the robustness of 

the proposed computational nonlocal poromechanics model. 

 

FORMULATION & IMPLEMENTATION 

 

A summary of the proposed nonlocal poromechanics framework is provided in this section. 

A point on the notation used in this study: boldface represents a vector quantity; bold italics 

represent a tensor quantity and underscores are used to differentiate peridynamic state quantities 

from classical point associated quantities. Periporomechanics conceptualizes multi-phase 

geomaterials as a homogenized collection of mixed material points of finite volume that can 

interact with each other over a finite distance, termed the horizon δ. The horizon is an explicitly 

defined length scale parameter, embedded in the global balance laws, that demarcates the 

neighborhood, 𝐻x, of a material point x. The interactions between material points are termed 

bonds and all material field variables are tracked by mathematical quantities termed ‘states’ 

which act along said bonds. Each material point has two types of degree of freedom, i.e., 

displacement and fluid pressure. As such, the formulation is the nonlocal equivalent of the 

classical u-p formulation (Zienkiewicz et al. 1999). Deformation and fluid flow are imposed 

along ‘bonds’ between two material points 𝐱 and 𝐱′, 
 

X = ξ = x′ − x 

 

where 𝐗 = 𝛏 is the bond between a point and its neighbor and is the relative position vector from 

𝐱 to 𝐱′. For the solid skeleton, the fundamental kinematic quantity is the deformation vector state 

𝐘⟨𝛏⟩ associated with individual interactions between material points, 

 
Y⟨ξ⟩ = y′(x′) − y(x) ,  y(x) = x + u ,  y′(x′) = x′ + u′  

 

where 𝐲 and 𝐲’ are the positions of 𝐱 and 𝐱′ in the deformed configuration, 𝐮 and 𝐮’ are the 

displacements at material points 𝐱 and 𝐱′ and the ⟨∙⟩ is the bond with which the deformation state 

is associated with. Similarly, for the fluid phase, the primary variable is the pressure potential 

scalar state which reads, 

 

Φ⟨𝛏⟩ = 𝑝′(𝑥′) − 𝑝(𝑥) 
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and is evidently the relative difference in water pressure along the bond. The deformation and 

pressure potential states represent a more general picture of the deformation and flow potential 

than the corresponding gradient operator of classical mechanics. That said, through the reduction 

operation (Song and Silling 2020) over the horizon, the deformation and pressure potential states 

can be used to determine a nonlocal approximation of the gradient operator. For the solid 

skeleton, the derived variable is the effective force vector state 𝐓̃⟨𝛏⟩ which is obtained from the 

skeleton resistance to deformation and can be decomposed as (Song and Silling 2020) 

 

𝐓̃[𝐱]⟨𝛏⟩ = 𝐓[𝐱]⟨𝛏⟩ + 𝑆𝑟𝐓𝑤[𝐱]⟨𝛏⟩ 
 

where, 𝐓 is the total force state, 𝑆𝑟 is the degree saturation of water and 𝐓𝑤 is the apparent 

capillary force state related to the matric suction. The degree saturation is a function of 𝑝 ≤ 0 

via the van Genuchten soil water retention curve (Fredlund and Rahardjo 1993). It is worth 

noting that we assume tension is positive for deformation and pore pressure is positive in 

compression following continuum mechanics convention. Using the effective force principle, the 

balance of momentum in a three-phase periporomechanics mixture can be expressed as, 

 

∫ (𝐓̃
𝐻𝑥

− 𝑆𝑟𝐓𝐰) − (𝐓̃′ − 𝑆𝑟′𝐓′
𝐰

) d𝑉′ + (ρ𝑠(1 − ϕ) + 𝑆𝑟ϕρ𝑤)(𝐠 − 𝐮̈ ) =  0 (1) 

 

where we have dropped the explicit dependence on the location and bond for brevity and, 𝜙 is 

the skeleton porosity, 𝜌𝑠 is the intrinsic solid density, 𝜌𝑤 is the intrinsic liquid density, 𝒈 is the 

vector of gravity and 𝐮̈  is the skeleton acceleration. For the liquid phase, the derived variable is 

the fluid flow state Q[𝐱]⟨𝛏⟩. Under the standard poromechanics assumptions of an 

incompressible solid phase, a passive gas phase and a barotropic liquid phase , we can express 

the balance of mass of a periporomechanics mixture using a single equation as follows, 

 

 

 

(2) 

 

where  and  are the states representing rate of volume change at 𝒙 and 𝒙′,  and are the 

fluid flow states at 𝒙 and 𝒙′ respectively, and  is the sink term. The first integrand represents 

the coupling term, the volume change of the solid skeleton, and the second integrand the mass 

transport of the liquid in the pore space.  

A defining feature of periporomechanics, is that unlike classical mechanics, the governing 

equations are valid both on and off discontinuities. Therefore, all that is required to model crack 

propagation in periporomechanics is a suitable criterion. In general, crack propagation is 

modeled through the feature of bond-breakage: interactions between a point and its neighbor are 

eliminated when some kinematic (stretch/rotations) or energy (strain/J-integral) based criteria is 

satisfied. The simplest and most popular criteria is the critical stretch criterion, where stretch is 

defined as 

𝑠 =
e

|𝛏|
=

|𝐘| − |𝛏|

|𝛏|
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and bond breakage is implemented through the influence function such that, 

 

ω = 0,         𝑠 ≥ 𝑠𝑐𝑟 

 

The influence function is a scalar state function that modulates the strength of the interaction 

between two points. In this study a uniform value of ω = 1 was chosen for all bonds. By setting 

the influence function to zero for a broken bond the effective force state of the bond is neglected 

when calculating the skeleton force at a point (but fluid force is still considered). This naturally 

leads to force redistribution to the remaining bonds in the horizon. This in turn may cause more 

bonds to exceed their critical stretch and cause them to fail as well, allowing a crack to grow 

autonomously and leading to progressive failure. Cracks in the domain are tracked through the 

scalar damage variable ζ(𝐱) which is defined as 

 

ζ(𝐱) = 1 −
∫ ω

𝐻𝑥
d𝑉𝑥′

∫  
𝐻𝑥

d𝑉𝑥′
 

 

such that a value of ‘0’ corresponds to a point with no bonds broken and ‘1’ to a point with all 

bonds broken. 

To close the system of equations in Eq. 1 and Eq. 2 constitutive models are required to relate 

the effective force state and fluid flow states to the deformation and pressure potential states, 

respectively. Constitutive models in the proposed framework can relate the force state in a bond 

to its own deformation only (the simplest formulation) or, more generally, to a weighted average 

of deformation in all bonds in the horizon. The former is termed a bond-based model and is a 

special case of the latter, which is termed state-based. State-based models have been applied to 

the modeling of localized failure in multiphase geomaterials, via a correspondence model 

(Menon and Song 2021a), and crack propagation via an ordinary model (Menon and Song 2019). 

For details on the specific models used and their implementation the reader is referred to the 

cited publications. When bond breakage occurs, the bond cannot carry mechanical loads but can 

still transmit the fluid force and facilitate mass transport. Now, to accurately model the physics 

of fracture propagation and its influence on the fluid motion in the fractured configuration, the 

physical models (effective force principle and Darcy’s Law) need to be modified to account for 

the discontinuity in the deformed configuration. Once ζ(𝐱) ≥ ζfr the material point is designated 

a fracture point. To compute the fracture flow at a fracture point, we relate the fracture 

permeability 𝐾𝑓 to fracture width using the cubic law for one-dimensional flow (Lewis and 

Schrefler 1998), 

 

𝐾𝑓 =
𝑎𝑓

2

12
 

 

where the fracture width is then calculated as follows, 

 

𝑎𝑓 =
1

𝒩𝑓,𝒾
∑ ω

𝒩𝑓,𝒾

𝑗=1

⟨𝛏𝐢𝐣⟩[|𝐘𝑖𝑗| cos ψ𝑖𝑗 − |𝐗𝑖𝑗|] 
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where i denotes the material point, 𝒩𝑓,𝒾 is the number of neighbors whose bonds with point 𝑖 

have been broken, and ψ𝑖𝑗 is the angle subtended by the deformation and reference vector states 

of bond 𝛏𝑖𝑗. 

The formulated periporomechanics is solved via a Eulerian-Lagrangian meshfree spatial 

discretization scheme and a fractional-step implicit time integration scheme. Broadly, two 

classes of implicit time integration schemes can be considered to solve coupled fluid flow and 

solid deformation problems: the monolithic approach and the staggered approach (Lewis and 

Schrefler 1998). The monolithic or fully coupled solution scheme involves the solution of the 

coupled system at each Newton iteration of each time step. This can become time and resource 

intensive particularly, in scenarios involving greatly differing time scales (for example in 

reservoir geomechanics). Alternatively, the coupled problem can be solved in a staggered 

manner via a suitable operator split that decomposes the coupled system into independent sub-

problems to be solved sequentially. Such so-called fractional step algorithms employ some 

explicit relationship (a predictor) to separate the mechanical problem from the fluid flow 

problem. The solution to the first sub-problem is then used as an input to solve the subsequent 

sub-problem, resulting in an efficient solution procedure. However, staggered solution schemes 

are not always unconditionally stable even when the individual sub-problems are unconditionally 

stable. Therefore, care must be taken in the choice of operator split procedure used such that the 

component operators exhibit appropriate group characteristics (Lewis and Schrefler 1998). This 

ensures that the algorithm is unconditionally stable. In this study, we implement a fractional step 

algorithm (Zienkiewicz et al. 1999) wherein the mechanical sub-problem is solved first using an 

explicit predictor of water pressure. Subsequently, the converged displacement is used to solve 

the mass balance in the current, updated configuration. The explicit predictor for the pressure 

increment reads, 

Δ𝑝𝑛+1
∗ = −Δ𝑡 (

1

χ
)

𝑛

{𝑆𝑟,𝑛 ∫ (𝑉̇𝑠,𝑛+1 − 𝑉̇𝑠,𝑛+1
′ )

𝐻𝑥

d𝑉′ + ∫ (Qn − Qn
′ ) d

𝐻

𝑉′} 

 

where 𝜒𝑛  = ϕ [
∂𝑆𝑟,𝑛

∂p
] is the storage coefficient, all fluid-related terms are calculated using the 

converged values of the previous load step (denoted by subscript ‘n’) and the volume coupling 

term is computed using current values (denoted by subscript ‘n+1’). Using this predictor, the 

capillary force state can be approximated as follows, 

 

𝓟 
𝑢

𝑛+1
= ∫ [𝑆𝑛+1

∗ 𝐓𝑤,𝑛+1
∗ − 𝑆𝑛+1

′∗ 𝐓𝑤,𝑛+1
′∗ ]

𝐻𝑥

d𝑉′ 

 

where both 𝑆𝑛+1
∗  and 𝐓𝑤,𝑛+1

∗ are calculated using the predicted pressure. Then the balance of 

linear momentum can then be expressed as, 

 

0 = ρ𝑛+1(𝐮̈𝑛+1 − 𝐠) − ∫ 𝐓̃𝑛+1
𝐻𝑥

− 𝐓̃′n+1d𝑉′ − 𝓟 
𝑢

𝑛+1
 

where we note that the pressure force density acts as an external load on the skeleton through 

𝓟𝑛+1
𝑢 . Once the above equation has been solved for the displacement, we recalculate the 

volumetric deformation coupling term, 
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𝓟𝓃+1
𝓅

= ∫ (𝑉̇𝑠,𝑛+1 − 𝑉̇𝑠,𝑛+1
′ )

𝐻𝑥

d𝑉′ 

 

which is used as an input to solve the balance of mass as follows, 

 

0 = χn+1𝑝𝑛+1 + ∫ (Q𝑛+1 − Q𝑛+1
′ )

𝐻𝑥

 d𝑉′ + 𝑆𝑟,𝑛+1𝓟𝑛+1 
𝑝

 

 

OBLIQUE CRACK PROPAGATION 

 

In this example, we model the propagation of wing cracks due to tensile loading of a two-

dimensional specimen. Wing cracks grow at an angle from the edges of the shear fracture 

allowing the shear fracture to propagate by the coalescing of these tensile fractures. The 

specimen geometry and details of the pre-crack are provided in Figure 1. The zero-thickness pre-

crack is inserted by selectively preventing bonds that intersect it from being formed. 

 

 
 

Figure 1. Schematic depicting the problem dimensions, crack geometry and location. 

 

The problem domain is discretized using 20,000 mixed material points with Δ =  1 × 10−3m. 

The material parameters are chosen as follows: solid density ρ𝑠= 2000 kg/m3, bulk modulus K = 

70× 104 kPa, shear modulus μ = 15 × 104 kPa, initial porosity ϕ = 0.33 ρ𝑤= 1000 kg/m3, 

saturated conductivity kw = 1 × 10−8 m/s, porosity index n = 1.785 and air-entry value sa = 500 

kPa. The horizon is set to 3.05Δ. The soil specimen has an initial matric suction s = 50 kPa, (𝑆𝑟 = 

0.99) and an initial isotropic stress state p'0 = -50 kPa. 

The regions marked in red in Figure 1 represent the loading location. The displacement load 

is 𝑢̇𝑥 = 𝑢̇𝑦= 10 nm/s. No other skeleton boundary conditions are applied. For the fluid phase all 

boundaries are treated as impermeable. The simulation duration is t = 3000 s and time increment 

Δ𝑡 = 0.5 s. 

Figure 2 plots the evolution of the resultant reaction force over applied displacement along 

the diagonal. The corresponding values of the applied displacement are 𝑢𝑥 = 𝑢𝑦 = (a) 2.1 

× 10−2 mm, (b) 2.5 × 10−2 mm and (c) 2.7 × 10−2 mm. Figure 3 and Figure 4 depict the scalar 

damage and water pressure in the problem domain at the aforementioned load steps, respectively. 
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Figure 2. Reaction force over resultant displacement. 

 

 
 

Figure 3. Contours depicting evolution of scalar damage at 𝒖𝒙 = 𝒖𝒚 = (a) 2.1 x 10-2 mm, (b) 

2.5 x 10-2 mm and (c) 2.7 x 10-2 mm. 

 

It is apparent that the crack opens parallel to the diagonal opposite to the loading direction. A 

scalar damage of 0.5 corresponds to interactions from one-half of the neighborhood being 

terminated. As the crack opens and propagates through the domain, a corresponding sharp 

discontinuity is visible in the pressure contour along the crack interface.  

 

 
 

Figure 4. Contours depicting evolution of water pressure (in kPa) at 𝒖𝒙 = 𝒖𝒚 = (a) 2.1 x 10-

2 mm, (b) 2.5 x 10-2 mm and (c) 2.7 x 10-2 mm. 
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The crack changes the fluid flow in its vicinity acting as a preferential path for flow leading 

to the notable increase in matric suction (decrease in water pressure) in its immediate vicinity. 

 

LINEARLY RESTRAINED SOIL BAR 

 

The ability of the proposed nonlocal poromechanics to predict soil cracking is further 

investigated in this section by simulating a linearly restrained, shrinkage induced soil cracking 

experiment. The soil sample was prepared and compacted in a long rectangular mold (300 mm 

long, 30 mm width and 12 mm height) as shown in Figure 5. The problem domain is discretized 

into 22,500 mixed material points with Δ =  2 × 10−3m. The material parameters chosen are 

ρ𝑠 = 2000 kg/m3, K = 2.2× 103 kPa, μ = 1.67 × 103 kPa, ϕ = 0.25, ρ𝑤= 1000 kg/m3, kw = 

1 × 10−7 m/s, n = 1.25 and sa = 100 kPa. The horizon is set to 3.05Δ𝑥. The initial matric suction 

in the sample s = 100 kPa, (i.e., 𝑆𝑟 = 0.73) and the initial isotropic stress state p'0 = -73 kPa. 

 

 
 

Figure 5. The problem setup for the linearly restrained desiccation test for a clay specimen. 

 

The base of the mold is fixed while the sides are free to deform. Desiccation process is 

modeled as evaporation by applying a uniform external flux density on the upper surface of the 

clay specimen. The simulation time 𝑡 = 6 hours (hr) and the time increment Δ𝑡 = 1 s. 

 

 
 

Figure 6. Contours of damage variable superimposed on deformed configuration at (a) t = 

1 hr (b) t = 2 hr (c) t = 3.5 hr and (d) t = 5.5 hr. 
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Figures 6 and 7 plot the evolution of the crack at different stages of the simulation from an 

isometric and top-down view respectively. It is apparent from Figure 6 that the cracks opened at 

the upper surface and then propagated downward with increasing suction. Further, Figure 7 

shows that the cracks occurred at the outer surface first and then propagated inward towards the 

longitudinal axis. This simple example has demonstrated that the proposed framework is robust 

in modeling desiccation cracking in clay. More numerical simulations are necessary to further 

evaluate the efficacy of the proposed nonlocal framework for modeling cracks in geomaterials at 

multiple scales. 

 

 
 

Figure 7. Top view of crack evolution (a) t = 1 hr (b) t = 2 hr (c) t = 3.5 hr and (d) t = 5.5 hr. 

 

SUMMARY 

 

In this article, we have presented a fully coupled, three-dimensional nonlocal theory of 

unsaturated poromechanics for discontinuous flow-deformation analysis capable of modeling 

autonomous and unguided cracking. The formulation is applied to the classical problem of 

opening of an oblique crack and the desiccation test of a linearly restrained clay bar. The 

presented numerical results show that the formulation can reproduce experimentally observed 

trends in crack propagation. The oblique crack propagates perpendicular to the loading direction, 

which has been observed in laboratory experiments. For the desiccation test, the soil bar cracks 

open at the top and outer surface, propagating downward. The preliminary numerical results 

have shown that the proposed computational nonlocal unsaturated poromechanics model is 

robust in modeling arbitrary cracking in unsaturated soils. 
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