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ABSTRACT

In this article, a recently developed nonlocal poromechanics model for geomaterials is
applied to analyze the dynamic response of the Lower San Fernando Dam during the 1971 San
Fernando earthquake. During the earthquake, the dam experienced a major flow failure in the
upstream slope. Field investigations in the immediate aftermath indicated that the horizontal
movement in the upper slope of the San Fernando Dam was caused by the liquefaction and
weakening of the hydraulic fill materials in certain zones in the dam. Large blocks of mostly
intact soil from the upstream section of the dam moved into the reservoir, riding over on the
liquefied soil. Field analysis suggested that a significant pressure buildup occurred in the central
region of the dam due to cyclic loading that later migrated to the upstream “toe” where it
triggered failure and subsequently a sliding flow. To demonstrate that the proposed nonlocal
poromechanics is realistic and relevant to the solution of large-scale, nonlinear, and coupled
analysis, we conduct a two-stage seismic analysis of the Lower San Fernando Dam. First, an
elastic analysis under quasi-static condition was carried out to determine initial effective stress
and water pressure distributions. Second, a fully nonlinear dynamic analysis was performed with
the earthquake load modeled as a base excitation following recorded acceleration profiles. The
results have demonstrated that the proposed nonlocal poromechanics model is robust in modeling
the localized failure of geomaterials under seismic loading by capturing the location and mode of
failure observed in the field.

INTRODUCTION

The dynamic behavior of geomaterials is strongly influenced by the coupled interactions
between the solid skeleton and pore fluid, as seen in the process of liquefaction and strain
localization. A soil deposit subject to cyclic shear loading, most observed during earthquakes,
develops excess pore pressures that dissipate towards the surface causing uneven settlement,
foundation collapse, and extensive structural damage as seen in Niigata, 1964 (7.6 My) (Seed &
Idriss 1967). The development of excess pore pressure in soils can cause a drop in structural
strength associated with loss of matric suction leading to rapid and catastrophic localization of
plastic strains in a narrow zone, in a process that is termed strain localization (Malvick et al.
2008). Strain localization of geomaterials under the quasi-static condition has been the subject of
intense research activity under variably saturated conditions but dynamic strain localization
remains a fledgling field of study. Numerical analysis of strain localization in geomaterials
presents certain technical challenges. It is well-known that modeling strain-softening using
classical continuum formulations, without an internal length scale, leads to spurious mesh
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sensitivity of the localized zone and vanishing plastic dissipation. Non-local continuum theories
have emerged as powerful tools to regularize the boundary value problem in the strain-softening
regime by restricting the width of the localized zone using an explicitly defined characteristic
length scale parameter. Experimental testing has revealed that the thickness of shear bands in
geomaterials can vary between the order of the size of several grains or meters in the field scale
(e.g., Miihlhaus and Vardoulakis 1987). In this study, we apply a recently developed non-local
unsaturated poromechanics framework (Menon & Song 2020) to run a case study of the
liquefaction in the Lower San Fernando Dam. The effective force vector state and fluid flow
scalar state (Silling et al. 2007, Song & Silling 2020) are used to cast the force balance equation
and mass balance equation for modeling the coupled mechanical and hydraulic behavior of soils.
The multiphase constitutive correspondence principle (Song & Silling 2020) is used to determine
the peridynamic force and fluid flow states from classical elastoplastic models (e.g., Song and
Khalili 2019) and the generalized Darcy’s law. The case study of the failure of the Lower San
Fernando dam (see Seed et al. 1975 a & b) showcases the robustness of this nonlocal
poromechanics framework for modeling dynamic localized failure of geomaterials on the field
scale under earthquake loads.

MATHEMATICAL FORMULATION

The proposed nonlocal poromechanics framework is briefly summarized in this section. A
point on the notation used in this study: boldface represents a vector quantity; bold italics
represent a tensor quantity and underscores are used to differentiate peridynamic state
quantities from classical point associated quantities. In this model, it is assumed that
geomaterials can be conceptualized as a body consisting of finite material points interacting
with each other over a finite distance called the horizon. The horizon is an explicitly defined
length scale parameter that demarcates the neighborhood, Hy, of a material point x. All
material field variables are tracked by mathematical quantities termed ‘states’. Each material
point has two types of degree of freedom, i.e., displacement and fluid pressure. As such, the
formulation in the article is a u-p formulation as in the classical computational poromechanics
(see, Zienkiewicz et al., 1999). Deformation and fluid flow are imposed along a ‘bond’
between two material points X and X/,

X=E=x'—x,

where X = & is the bond between a point and its neighbor and is the relative position vector from
x to x'. For the skeleton, the primary variable is the deformation vector state Y(&) associated with
individual interactions between material points,

YO =yE)-y® , y®=x+u , yE)=x"+u,
where uand u’ are the displacements at material points x and x' and the () is the bond with
which the deformation state is associated. The derived variable is the effective force vector

state i(‘g') which is obtained from the skeleton resistance to deformation and can be
decomposed as,

T[x](¢) = T[x](8) + T,, [x](8),
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where T is the total force state and T,, is the pressure force state related to the pore fluid
pressure. In this article the sign convention in continuum mechanics is followed, e.g.,
deformation in tension is positive and compressive pore pressure is positive. The momentum
balance is expressed as,

f (FIXIE) — T [X18) — (T'[X1(~8) — T/ [XH=8) AV’ + po(1 — b) - & + bpur - &
= (ps(l - d)) + ¢pw)a;

where pg is the density of soil, ¢ is the porosity of soil, g is the gravity acceleration vector, p,, is
the density of water, a is the acceleration vector associated with deformation, and the integral
term implies a spatial summation over all material points in the horizon of x. The effective force
state and pressure force state in a bond are related to the effective stress tensor @ and pore
pressure py, as follows,

T(®) = o(®)JoF "K7'E, T,,(§) = o(&)pw F K™%

where F is the nonlocal deformation gradient that is assembled over all deformation vector states
in the horizon through the notion of a nonlocal spatial gradient,

=U wX(E)@K(E)dV’lK"l , K=] oX({E) X dV',
Hy

Hy

where K is the shape tensor, J is the determinant of the deformation gradient, @ stands for a
tensor product between two vectors and w is a weighting function (Silling et al 2007). The
effective stress tensor is determined using a previously developed nonlocal elastoplastic model
(see Song & Menon 2018) of the Cam-Clay type. In this model, the effective stress is determined
by an isotropic elastic stress-strain relationship. The yielding function is

2

f(o,pc) = q —+p'(p' —po)

where q is the deviator stress, p’ is the mean effective stress, M is the slope of critical state line,
and p. is the pre-consolidation pressure which serves as a hardening parameter as follows,

_pc
—K

pc = =——tr(&P),

where A is the compression index and ® is the swelling index, and &P is the rate plastic strain.
The associative flow rule is assumed as

P —j—
€ )\ao

where A is the non-negative plastic multiplier. The objective of this study is to model failure
inception in a field-scale problem and conduct a preliminary validation of the formulation for
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analysis of real engineering problems. We note that to better model the response of soil under
cyclic loading a more sophisticated constitutive model (e.g., bounding surface model) will be
needed, which is beyond the scope of this present article. For the fluid transport, the fundamental
variable is the pressure potential state ®,, () which takes the form,

@, = pwE) — pw(X),

where p,, is the pore water pressure. Then, the classical flux vector qw at any mixed material
point can be determined by applying Darcy’s law as described below,

Qw =~k (T, —pya) , Vb, = f () B,y (8) X(BYIV,
Hy

where, V®,, is the nonlocal fluid pressure gradient determined by integrating all pressure
potential states over the horizon and k,, is the hydraulic conductivity of pore water. The
peridynamic fluid flow state, Q,, is the volumetric rate of flow through a bond and is related to

classical flux through Darcy’s law as follows,
gw = w(qy — kwpwa)K_lz'

The coupling term in the mass balance, the divergence of velocity in classical
poromechanics, can be determined as follows,

V= U (i’ — ) X(€) dV’l K1
Hy

using a nonlocal divergence operator. The mass balance equation for saturated geomaterials is
written as

d 1
i () + Uﬂxw(u' - ) X(®) d"'l Kt QK@ - Q1) av

wJH,

=0

where Ky, is the bulk modulus of water, and Q,, and g’ w are the fluid flow states at x and x’. The

mathematical model has been implemented numerically through an explicit two-phase meshfree
method. We note that the inclusion of the length scale in the governing equations of the coupled
system serve to regularize the localization problem and maintain mesh insensitivity in the post-
strain localization regime.

PROBLEM DESCRIPTION

On the 9th of February 1971 thrust faulting on the Sierra Madre fault-line triggered the San-
Fernando earthquake (Richter Magnitude 6.6) (Sykora 2019). This earthquake caused an
estimated $550 million in damage, largely to buildings and a major hospital, killed 50 people,
and left hundreds trapped in the rubble. The duration of strong ground shaking was
approximately 15 seconds. High-frequency peak accelerations of 1.25 g were recorded in two
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horizontal directions, at AR-240 at Pacoima Dam, located near the very center of the seismic
event, these being the highest ground accelerations recorded for earthquakes at that point
(Trifunac & Hudson 1971). As a result, the Lower San Fernando Dam developed a major slide in
the upstream slope and crest. The field investigation (Seed et al. 1975b) showed that the slide
occurred due to the liquefaction of a zone of hydraulic sand fill in the upstream slope. The
hydraulic fill consisted of fine to coarse sands, silty sands and layered sands, silts, and clays. The
zone that liquefied and developed flow-type deformations was roughly triangular, and
investigations conducted in the aftermath suggested that practically all the soil within this zone
participated in the flow-type deformations.

320m

—3 o
- F ]

Figure 1 Schematic of the Lower San Fernando Dam for the numerical simulation in which
the clay core is outlined in black and the hydraulic fill is in red.

(b)

Figure 2 The initial distribution (in kPa) of the (a) vertical effective stress and (b) fluid
pressure in the dam.

Figure 1 shows an idealization of the San Fernando dam utilized in this study and boundary
conditions applied to the domain. The base of the domain is constrained against vertical motion
while the horizontal ends are both constrained against lateral deformation. Outside the dam, the
solid blue line marks the level of water on the upstream slope in the reservoir, while inside the
dam the dashed blue line separates the saturated zone from the unsaturated zone. The problem
domain is discretized into 24,000 mixed material points with a center-to-center distance 0.6 m. A
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length scale (i.e., horizon) of 1.3 m is chosen. The rollers in Figure 1 represent sliding boundary
conditions: the base is constrained to lateral motion only while the two extreme ends of the dam
can only move vertically. The bulk of the dam is made of fines of various types (Seed et al.
1975a) which we have simplified in our analysis to a single slightly overconsolidated clay
(shaded in brown in Figure 1). The remainder of the dam is composed of looser and weaker
hydraulic filler material (shaded in red in Figure 1).

The elastic skeleton material properties are chosen following (Zienkiewicz et al. 1999):
Young’s modulus K = 30 X 10° kPa and Poisson’s ratio v = 0.2857. For the remaining input
parameters, K = 0.01, 1 = 0.16, the over-consolidation ratio is 1.5, the slope of critical state line
is 1.0, and the stabilization parameter G = 0.1. The fluid stiffness is 2.2 x 10° kPa. The clayey
core has a hydraulic conductivity of 10~ m/s, while the hydraulic filler has a larger conductivity
of 102 m/s
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Figure 3 The acceleration profile of the San Fernando Valley Earthquake taken from the
Pacoima Dam accelerogram located 7 miles NE of the Lower San Fernando Valley Dam
(available at https://strongmotioncenter.org/)

An elastic quasi-static step is used to generate geostatic stress and initial pressure
distribution, shown in Figure 2 (a) and (b) respectively. With the crest of the dam taken as the
datum, effective skeleton stress is calculated using the gravitational load acting on the soil in the
dam. Pore pressure directly beneath the reservoir is assigned using the relationship, p, = pwgh,
with h denoting the height of the water above the point. Pore pressure distribution in the bulk of
the domain, away from the reservoir, is assigned based on the distance from the phreatic line
with pore pressure developing beneath the phreatic line (the blue dashed line in Figure 1) and
matric suction developing above it. In the second stage, a fully coupled plastic dynamic analysis
of the earthquake motion is performed. The earthquake acceleration profile used in this analysis
is depicted in Figure 3. Note that the strong ground motion only lasts for 12 seconds. This
acceleration profile is applied to the base of the dam. The region outlined in red marks the
portion of the profile used.

RESULTS

Figure 4 draws the contours of the (a) plastic shear and (b) displacement vectors in the
domain in the aftermath of the shaking. From the field data analysis, the maximum
deformation occurred at the toe of the dam on the upstream slope. The contours of
displacement in Figure 4(b), show the probable failure mode: a slide at the upstream slope.
The numerical results show that the maximum plastic deformation has concentrated in a
banded zone extending from beneath the reservoir into the core of the dam. It is noted that the
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maximum magnitude of plastic strain occurred in the region with the looser hydraulic fill
which corresponds to the zone of liquefaction noted by (Seed et al 1975a). While there is
noticeable settlement at the crest of the dam, the downstream slope remains largely unchanged
from the initial configuration. This also matches the observations made by the field analysis.
Given the lack of any suction-hardening model in the constitutive relationship, it appears that
the cohesion developed in the unsaturated zone alone is physically significant. Indeed, in an
analysis conducted by Zienkiewicz et al. (1999) the authors found that ignoring the suction
cohesion triggers an almost instant collapse in the downstream slope, contradicting the actual
failure observed in the dam.

0.0 0.08 0.16 0.24 0.32;

- —

Figure 4 Contours of the deformed configuration of the dam depicting (a) plastic shear
strain and (b) direction vectors of the displacement.

Figure 5 plots the evolution of vertical displacements at selected points A, B, C and D
depicted in Figure 2(b).

There is a noticeable increase in vertical displacement (settlement) in the aftermath of the
shaking. The continuing settlement is caused by plastic deformation that occurs after the shaking
has ceased. This is likely caused by the generation of excess pore pressure. Figure 6 plots the
evolution of excess pore pressure (in hundreds of KPa) at the selected points in the dam
structure. The magnitude of excess pressure developed in the duration of shaking are largest at
the center of the dam (tracked at points A and B). Points C and D, which are nearer to the
upstream toe of the dam develop lower values of excess pressure during the shaking. However,
the pressure developed in the central bulk of the dam appears to dissipate rapidly once shaking
ceases at approximately 12 s. The excess pressure at the toe remains relatively consistent towards
the end of the simulation. These trends in the data lend credence to the failure mechanism
proposed by Seed et al. 1975a: excess pressure developed largely in the core and migrated
towards the toe triggering failure in the looser filler material.
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Figure S Plots of the evolution of vertical displacement over time at select points in the dam
shown in Figure 4.
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Figure 6 Plots of the evolution of pressure at selected points in the dam (shown in Figure
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As a final step, the uniqueness of the solution is validated by rerunning the simulation with a
finer discretization of 51,000 mixed material points while all other simulation parameters remain
the same. Figure 7 plots the contours of equivalent plastic shear strain in the domain for both
discretizations t = 12 s. It is apparent that for both discretizations used, the width of the localized
zone, as well as the intensity of plastic deformation, are in good agreement. Furthermore, as
shown in Figure 8 the plot comparing the evolution of equivalent plastic shear strain at identical
locations in the two discretizations are well-matched.
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Figure 7 Contours of equivalent plastic shear strain in a discretization with (a) 24,000
mixed material points and (b) 51,000 mixed material points.
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Figure 8 Equivalent plastic shear strain at the same point by simulations with two
discretization schemes.
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CONCLUSION

A nonlocal dynamic poromechanics model was applied to simulate the failure of the Lower
San Fernando Dam during the 1971 earthquake. The numerical results demonstrated that the
proposed numerical method can predict the mode and location of the failure that occurred in the
dam. The base excitation caused plastic deformation which in turn generated excess pore water
pressures. The increased water pressure may further weaken the soil in the upstream slope of the
dam that eventually caused the dam failure. On the other hand, the downstream slope remained
relatively unchanged from its initial configuration due to the denser clay berm and its location
above the phreatic line, e.g., the large suction developed downstream may contribute to its
stability. It is found that proposed nonlocal numerical method is insensitive to the spatial
discretization as typically found in the numerial method based on classical poromecahnics. It can
be concluded that the proposed nonlocal poromechanics model is robust in modeling dynamic
localized failure at the field scale.
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