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ABSTRACT 

In this article, a recently developed nonlocal poromechanics model for geomaterials is 

applied to analyze the dynamic response of the Lower San Fernando Dam during the 1971 San 

Fernando earthquake. During the earthquake, the dam experienced a major flow failure in the 

upstream slope. Field investigations in the immediate aftermath indicated that the horizontal 

movement in the upper slope of the San Fernando Dam was caused by the liquefaction and 

weakening of the hydraulic fill materials in certain zones in the dam. Large blocks of mostly 

intact soil from the upstream section of the dam moved into the reservoir, riding over on the 

liquefied soil. Field analysis suggested that a significant pressure buildup occurred in the central 

region of the dam due to cyclic loading that later migrated to the upstream “toe” where it 

triggered failure and subsequently a sliding flow. To demonstrate that the proposed nonlocal 

poromechanics is realistic and relevant to the solution of large-scale, nonlinear, and coupled 

analysis, we conduct a two-stage seismic analysis of the Lower San Fernando Dam. First, an 

elastic analysis under quasi-static condition was carried out to determine initial effective stress 

and water pressure distributions. Second, a fully nonlinear dynamic analysis was performed with 

the earthquake load modeled as a base excitation following recorded acceleration profiles. The 

results have demonstrated that the proposed nonlocal poromechanics model is robust in modeling 

the localized failure of geomaterials under seismic loading by capturing the location and mode of 

failure observed in the field. 

INTRODUCTION 

The dynamic behavior of geomaterials is strongly influenced by the coupled interactions 

between the solid skeleton and pore fluid, as seen in the process of liquefaction and strain 

localization. A soil deposit subject to cyclic shear loading, most observed during earthquakes, 

develops excess pore pressures that dissipate towards the surface causing uneven settlement, 

foundation collapse, and extensive structural damage as seen in Niigata, 1964 (7.6 Mw) (Seed & 

Idriss 1967). The development of excess pore pressure in soils can cause a drop in structural 

strength associated with loss of matric suction leading to rapid and catastrophic localization of 

plastic strains in a narrow zone, in a process that is termed strain localization (Malvick et al. 

2008). Strain localization of geomaterials under the quasi-static condition has been the subject of 

intense research activity under variably saturated conditions but dynamic strain localization 

remains a fledgling field of study. Numerical analysis of strain localization in geomaterials 

presents certain technical challenges. It is well-known that modeling strain-softening using 

classical continuum formulations, without an internal length scale, leads to spurious mesh 
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sensitivity of the localized zone and vanishing plastic dissipation. Non-local continuum theories 

have emerged as powerful tools to regularize the boundary value problem in the strain-softening 

regime by restricting the width of the localized zone using an explicitly defined characteristic 

length scale parameter. Experimental testing has revealed that the thickness of shear bands in 

geomaterials can vary between the order of the size of several grains or meters in the field scale 

(e.g., Mühlhaus and Vardoulakis 1987). In this study, we apply a recently developed non-local 

unsaturated poromechanics framework (Menon & Song 2020) to run a case study of the 

liquefaction in the Lower San Fernando Dam. The effective force vector state and fluid flow 

scalar state (Silling et al. 2007, Song & Silling 2020) are used to cast the force balance equation 

and mass balance equation for modeling the coupled mechanical and hydraulic behavior of soils. 

The multiphase constitutive correspondence principle (Song & Silling 2020) is used to determine 

the peridynamic force and fluid flow states from classical elastoplastic models (e.g., Song and 

Khalili 2019) and the generalized Darcy’s law. The case study of the failure of the Lower San 

Fernando dam (see Seed et al. 1975 a & b) showcases the robustness of this nonlocal 

poromechanics framework for modeling dynamic localized failure of geomaterials on the field 

scale under earthquake loads. 

MATHEMATICAL FORMULATION 

The proposed nonlocal poromechanics framework is briefly summarized in this section. A 

point on the notation used in this study: boldface represents a vector quantity; bold italics 

represent a tensor quantity and underscores are used to differentiate peridynamic state 

quantities from classical point associated quantities. In this model, it is assumed that 

geomaterials can be conceptualized as a body consisting of finite material points interacting 

with each other over a finite distance called the horizon. The horizon is an explicitly defined 

length scale parameter that demarcates the neighborhood, Hx, of a material point x. All 

material field variables are tracked by mathematical quantities termed ‘states’. Each material 

point has two types of degree of freedom, i.e., displacement and fluid pressure. As such, the 

formulation in the article is a u-p formulation as in the classical computational poromechanics 

(see, Zienkiewicz et al., 1999). Deformation and fluid flow are imposed along a ‘bond’ 

between two material points 𝐱 and 𝐱′, 

𝐗 = 𝛏 = 𝐱′ − 𝐱, 

where 𝐗 = 𝛏 is the bond between a point and its neighbor and is the relative position vector from 

𝐱 to 𝐱′. For the skeleton, the primary variable is the deformation vector state 𝐘⟨𝛏⟩ associated with 

individual interactions between material points, 

𝐘⟨𝛏⟩ = 𝐲′(𝐱′) − 𝐲(𝐱) ,  𝐲(𝐱) = 𝐱 + 𝐮 ,  𝐲′(𝐱′) = 𝐱′ + 𝐮′, 

where 𝐮 and 𝐮’ are the displacements at material points 𝐱 and 𝐱′ and the ⟨∙⟩ is the bond with 

which the deformation state is associated. The derived variable is the effective force vector 

state 𝐓̃⟨𝛏⟩ which is obtained from the skeleton resistance to deformation and can be 

decomposed as, 

𝐓̃[𝐱]⟨𝛏⟩ = 𝐓[𝐱]⟨𝛏⟩ + 𝐓𝑤[𝐱]⟨𝛏⟩, 
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where 𝐓 is the total force state and 𝐓𝑤 is the pressure force state related to the pore fluid 

pressure. In this article the sign convention in continuum mechanics is followed, e.g., 

deformation in tension is positive and compressive pore pressure is positive. The momentum 

balance is expressed as, 

∫ (𝐓̃[𝐱]⟨𝛏⟩ − 𝐓w[𝐱]⟨𝛏⟩)
Hx

− (𝐓̃′[𝐱′]⟨−𝛏⟩ − 𝐓′w[𝐱′]⟨−𝛏⟩) dV′ + ρs(1 − ϕ) ⋅ 𝐠 + ϕρw ⋅ 𝐠

= (ρs(1 − ϕ) + ϕρw)𝐚,                                                                                                   

where ρs is the density of soil, ϕ is the porosity of soil, 𝐠 is the gravity acceleration vector, ρw is 

the density of water, 𝐚 is the acceleration vector associated with deformation, and the integral 

term implies a spatial summation over all material points in the horizon of x. The effective force 

state and pressure force state in a bond are related to the effective stress tensor 𝝈 and pore 

pressure pw as follows, 

𝐓̃⟨𝛏⟩ = ω⟨𝛏⟩J𝝈𝑭̅−𝑇𝑲−1𝛏, 𝐓𝒘⟨𝛏⟩ = ω⟨𝛏⟩Jpw𝑭̅−𝑇𝑲−1𝛏 

where 𝑭̅ is the nonlocal deformation gradient that is assembled over all deformation vector states 

in the horizon through the notion of a nonlocal spatial gradient, 

𝑭̅ = [∫ 𝜔𝐘
𝐻𝑥

⟨𝛏⟩ ⊗ 𝐗⟨𝛏⟩ dV′] 𝐊−1 ,  𝑲 = ∫ ω 𝐗
𝐻𝑥

⟨𝛏⟩ ⊗ 𝐗 ⟨𝛏⟩ dV′,  

where K is the shape tensor, J is the determinant of the deformation gradient, ⊗ stands for a 

tensor product between two vectors and 𝜔 is a weighting function (Silling et al 2007). The 

effective stress tensor is determined using a previously developed nonlocal elastoplastic model 

(see Song & Menon 2018) of the Cam-Clay type. In this model, the effective stress is determined 

by an isotropic elastic stress-strain relationship. The yielding function is 

f(𝝈, pc) =
q2

M2
+ p′(p′ − pc), 

where 𝑞 is the deviator stress, 𝑝′ is the mean effective stress, M is the slope of critical state line, 

and pc is the pre-consolidation pressure which serves as a hardening parameter as follows, 

ṗc =
−pc

λ̃ − κ̃
tr(𝛆̇𝒑), 

where λ̃ is the compression index and κ̃ is the swelling index, and 𝛆̇𝒑 is the rate plastic strain. 

The associative flow rule is assumed as 

𝛆̇p = λ̇
∂f

∂𝛔
 

where λ̇ is the non-negative plastic multiplier. The objective of this study is to model failure 

inception in a field-scale problem and conduct a preliminary validation of the formulation for 
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analysis of real engineering problems. We note that to better model the response of soil under 

cyclic loading a more sophisticated constitutive model (e.g., bounding surface model) will be 

needed, which is beyond the scope of this present article. For the fluid transport, the fundamental 

variable is the pressure potential state Φ𝑤⟨𝛏⟩ which takes the form, 

Φ𝑤 = pw
′ (𝐱′) − pw(𝐱), 

where pw is the pore water pressure. Then, the classical flux vector qw at any mixed material 

point can be determined by applying Darcy’s law as described below, 

𝐪w = −𝑘𝑤(𝛁̃Φ𝑤 − ρ𝑤𝐚) ,  𝛁̃Φw = ∫ 𝜔⟨𝛏⟩ Φ𝑤⟨𝛏⟩ 𝐗⟨𝛏⟩𝑑𝑉′

𝐻𝑥

, 

where, 𝛁̃Φw is the nonlocal fluid pressure gradient determined by integrating all pressure 

potential states over the horizon and 𝑘𝑤 is the hydraulic conductivity of pore water. The 

peridynamic fluid flow state, Q𝑤 is the volumetric rate of flow through a bond and is related to 

classical flux through Darcy’s law as follows, 

Q𝑤 = ω(𝐪w − kwρ𝑤a)𝑲−1𝛏. 

The coupling term in the mass balance, the divergence of velocity in classical 

poromechanics, can be determined as follows, 

𝑉̇ = [∫ 𝜔(𝐮̇′ − 𝐮̇)
𝐻𝑥

𝐗⟨𝛏⟩ dV′] 𝑲−1 

using a nonlocal divergence operator. The mass balance equation for saturated geomaterials is 

written as 

ϕ

Kw

d

dt
(pw) + [∫ 𝜔(𝐮̇′ − 𝐮̇)

𝐻𝑥

𝐗⟨𝛏⟩ dV′] 𝑲−1 +
1

ρ𝑤
∫ (Q𝑤[𝐱]⟨𝛏⟩ − Q′𝑤[𝐱′]⟨−𝛏⟩) dV′

Hx

= 0                                                                                                                                         

where Kw is the bulk modulus of water, and Q𝑤 and Q′𝑤 are the fluid flow states at 𝐱 and 𝐱′. The 

mathematical model has been implemented numerically through an explicit two-phase meshfree 

method. We note that the inclusion of the length scale in the governing equations of the coupled 

system serve to regularize the localization problem and maintain mesh insensitivity in the post-

strain localization regime. 

PROBLEM DESCRIPTION 

On the 9th of February 1971 thrust faulting on the Sierra Madre fault-line triggered the San-

Fernando earthquake (Richter Magnitude 6.6) (Sykora 2019). This earthquake caused an 

estimated $550 million in damage, largely to buildings and a major hospital, killed 50 people, 

and left hundreds trapped in the rubble. The duration of strong ground shaking was 

approximately 15 seconds. High-frequency peak accelerations of 1.25 g were recorded in two 
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horizontal directions, at AR-240 at Pacoima Dam, located near the very center of the seismic 

event, these being the highest ground accelerations recorded for earthquakes at that point 

(Trifunac & Hudson 1971). As a result, the Lower San Fernando Dam developed a major slide in 

the upstream slope and crest. The field investigation (Seed et al. 1975b) showed that the slide 

occurred due to the liquefaction of a zone of hydraulic sand fill in the upstream slope. The 

hydraulic fill consisted of fine to coarse sands, silty sands and layered sands, silts, and clays. The 

zone that liquefied and developed flow-type deformations was roughly triangular, and 

investigations conducted in the aftermath suggested that practically all the soil within this zone 

participated in the flow-type deformations. 

 

Figure 1 Schematic of the Lower San Fernando Dam for the numerical simulation in which 

the clay core is outlined in black and the hydraulic fill is in red. 

 

Figure 2 The initial distribution (in kPa) of the (a) vertical effective stress and (b) fluid 

pressure in the dam. 

Figure 1 shows an idealization of the San Fernando dam utilized in this study and boundary 

conditions applied to the domain. The base of the domain is constrained against vertical motion 

while the horizontal ends are both constrained against lateral deformation. Outside the dam, the 

solid blue line marks the level of water on the upstream slope in the reservoir, while inside the 

dam the dashed blue line separates the saturated zone from the unsaturated zone. The problem 

domain is discretized into 24,000 mixed material points with a center-to-center distance 0.6 m. A 

Geo-Extreme 2021 GSP 330 14

© ASCE

 Geo-Extreme 2021 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

U
ni

ve
rs

ity
 O

f 
Fl

or
id

a 
on

 0
4/

29
/2

2.
 C

op
yr

ig
ht

 A
SC

E
. F

or
 p

er
so

na
l u

se
 o

nl
y;

 a
ll 

ri
gh

ts
 r

es
er

ve
d.



length scale (i.e., horizon) of 1.3 m is chosen. The rollers in Figure 1 represent sliding boundary 

conditions: the base is constrained to lateral motion only while the two extreme ends of the dam 

can only move vertically. The bulk of the dam is made of fines of various types (Seed et al. 

1975a) which we have simplified in our analysis to a single slightly overconsolidated clay 

(shaded in brown in Figure 1). The remainder of the dam is composed of looser and weaker 

hydraulic filler material (shaded in red in Figure 1). 

The elastic skeleton material properties are chosen following (Zienkiewicz et al. 1999): 

Young’s modulus K = 30 × 103 kPa and Poisson’s ratio 𝜈 = 0.2857. For the remaining input 

parameters, κ̃ = 0.01, 𝜆̃ = 0.16, the over-consolidation ratio is 1.5, the slope of critical state line 

is 1.0, and the stabilization parameter G = 0.1. The fluid stiffness is 2.2 × 106 kPa. The clayey 

core has a hydraulic conductivity of 10-3 m/s, while the hydraulic filler has a larger conductivity 

of 10-2 m/s 

 

Figure 3 The acceleration profile of the San Fernando Valley Earthquake taken from the 

Pacoima Dam accelerogram located 7 miles NE of the Lower San Fernando Valley Dam 

(available at https://strongmotioncenter.org/) 

An elastic quasi-static step is used to generate geostatic stress and initial pressure 

distribution, shown in Figure 2 (a) and (b) respectively. With the crest of the dam taken as the 

datum, effective skeleton stress is calculated using the gravitational load acting on the soil in the 

dam. Pore pressure directly beneath the reservoir is assigned using the relationship, p0 = ρwgh, 

with h denoting the height of the water above the point. Pore pressure distribution in the bulk of 

the domain, away from the reservoir, is assigned based on the distance from the phreatic line 

with pore pressure developing beneath the phreatic line (the blue dashed line in Figure 1) and 

matric suction developing above it. In the second stage, a fully coupled plastic dynamic analysis 

of the earthquake motion is performed. The earthquake acceleration profile used in this analysis 

is depicted in Figure 3. Note that the strong ground motion only lasts for 12 seconds. This 

acceleration profile is applied to the base of the dam. The region outlined in red marks the 

portion of the profile used. 

RESULTS 

Figure 4 draws the contours of the (a) plastic shear and (b) displacement vectors in the 

domain in the aftermath of the shaking. From the field data analysis, the maximum 

deformation occurred at the toe of the dam on the upstream slope. The contours of 

displacement in Figure 4(b), show the probable failure mode: a slide at the upstream slope. 

The numerical results show that the maximum plastic deformation has concentrated in a 

banded zone extending from beneath the reservoir into the core of the dam. It is noted that the 
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maximum magnitude of plastic strain occurred in the region with the looser hydraulic fill 

which corresponds to the zone of liquefaction noted by (Seed et al 1975a). While there is 

noticeable settlement at the crest of the dam, the downstream slope remains largely unchanged 

from the initial configuration. This also matches the observations made by the field analysis. 

Given the lack of any suction-hardening model in the constitutive relationship, it appears that 

the cohesion developed in the unsaturated zone alone is physically significant. Indeed, in an 

analysis conducted by Zienkiewicz et al. (1999) the authors found that ignoring the suction 

cohesion triggers an almost instant collapse in the downstream slope, contradicting the actual 

failure observed in the dam. 

 

Figure 4 Contours of the deformed configuration of the dam depicting (a) plastic shear 

strain and (b) direction vectors of the displacement. 

Figure 5 plots the evolution of vertical displacements at selected points A, B, C and D 

depicted in Figure 2(b). 

There is a noticeable increase in vertical displacement (settlement) in the aftermath of the 

shaking. The continuing settlement is caused by plastic deformation that occurs after the shaking 

has ceased. This is likely caused by the generation of excess pore pressure. Figure 6 plots the 

evolution of excess pore pressure (in hundreds of KPa) at the selected points in the dam 

structure. The magnitude of excess pressure developed in the duration of shaking are largest at 

the center of the dam (tracked at points A and B). Points C and D, which are nearer to the 

upstream toe of the dam develop lower values of excess pressure during the shaking. However, 

the pressure developed in the central bulk of the dam appears to dissipate rapidly once shaking 

ceases at approximately 12 s. The excess pressure at the toe remains relatively consistent towards 

the end of the simulation. These trends in the data lend credence to the failure mechanism 

proposed by Seed et al. 1975a: excess pressure developed largely in the core and migrated 

towards the toe triggering failure in the looser filler material. 
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Figure 5 Plots of the evolution of vertical displacement over time at select points in the dam 

shown in Figure 4. 

 
Figure 6 Plots of the evolution of pressure at selected points in the dam (shown in Figure 

2(b)). 
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As a final step, the uniqueness of the solution is validated by rerunning the simulation with a 

finer discretization of 51,000 mixed material points while all other simulation parameters remain 

the same. Figure 7 plots the contours of equivalent plastic shear strain in the domain for both 

discretizations t = 12 s. It is apparent that for both discretizations used, the width of the localized 

zone, as well as the intensity of plastic deformation, are in good agreement. Furthermore, as 

shown in Figure 8 the plot comparing the evolution of equivalent plastic shear strain at identical 

locations in the two discretizations are well-matched. 

 

Figure 7 Contours of equivalent plastic shear strain in a discretization with (a) 24,000 

mixed material points and (b) 51,000 mixed material points. 

 

Figure 8 Equivalent plastic shear strain at the same point by simulations with two 

discretization schemes. 
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CONCLUSION 

A nonlocal dynamic poromechanics model was applied to simulate the failure of the Lower 

San Fernando Dam during the 1971 earthquake. The numerical results demonstrated that the 

proposed numerical method can predict the mode and location of the failure that occurred in the 

dam. The base excitation caused plastic deformation which in turn generated excess pore water 

pressures. The increased water pressure may further weaken the soil in the upstream slope of the 

dam that eventually caused the dam failure. On the other hand, the downstream slope remained 

relatively unchanged from its initial configuration due to the denser clay berm and its location 

above the phreatic line, e.g., the large suction developed downstream may contribute to its 

stability. It is found that proposed nonlocal numerical method is insensitive to the spatial 

discretization as typically found in the numerial method based on classical poromecahnics. It can 

be concluded that the proposed nonlocal poromechanics model is robust in modeling dynamic 

localized failure at the field scale. 
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