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Intrinsic magnon Nernst effect in pyrochlore iridate thin films
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We theoretically study the magnon spin thermal transport using a strong-coupling approach in pyrochlore
iridate trilayer thin films grown along the [111] direction. As a result of the Dzyaloshinskii-Moriya interaction,
the spin configuration of the ground state is an all-in/all-out ordering on neighboring tetrahedra of the pyrochlore
lattice. In such a state, the system has an inversion symmetry and a Nernst-type thermal spin current response
is well defined. We calculate the temperature dependence of the magnon Nernst response with respect to the
magnon band topology controlled by the spin-orbit coupling parameters and observe topologically protected
chiral edge modes over a range of parameters. Our study complements prior work on the magnon thermal
Hall effect in thin-film pyrochlore iridates and suggests that the [111] grown thin-film pyrochlore iridates are
a promising candidate for thermal spin transport and spin caloritronic devices.
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I. INTRODUCTION

In recent years, the entwining of heat and spin transport in
the field of spin caloritronics has aroused great interest. Many
spin analogies of thermoelectric effects, such as spin Seebeck
effects [1,2], thermal spin-transfer torques [3], and spin Nernst
effects [4] have been discovered, leading to the new field of
spin caloritronics [5,6]. A collective excitation carrying both
energy and spin angular momentum in a magnetically ordered
material, magnons often exhibit low dissipation [7]. The uti-
lization of magnons as spin carriers in magnetic insulators
has attracted particular attention [8]. Moreover, the spin-orbit
coupling (SOC) in magnetic systems leads to an asymmet-
ric Dzyaloshinskii-Moriya interaction (DMI) which promotes
noncollinear magnetic textures [9,10]. The DMI also enriches
the properties of magnon bands, and these systems may ex-
hibit Hall-like effects, such as the magnon thermal Hall effect
[11,12] and the magnon Nernst effect (MNE) [13–15].

Among insulating magnetic materials with strong DMI, the
pyrochlore family of iridate compounds has garnered signifi-
cant attention [16,17]. In the limit of strong electron-electron
interaction, pyrochlore iridates possess a noncollinear anti-
ferromagnetic insulating state in the presence of the DMI
[18]. These magnetic ground states can provide arbitrarily
polarized spin currents and may be switched to other ordered
ground states with different magnetic point-group symmetries
as well as localized spin textures with nontrivial topology,
e.g., skyrmions [19]. Moreover, with spin-orbit coupling and
strong electronic correlations, these materials may exhibit
novel phases, such as axion insulators [20–22], topologi-
cal Mott insulators [23,24], and Dirac or Weyl semimetals
[25,26]. The metal-to-insulator transition induced by in-
creasing the electron-electron interaction brings additional
interesting physics to the fore [27,28]. These features make
the pyrochlore iridates a promising platform for studying the

interplay between spin currents, heat flow, and band topology
for both electrons and magnons.

In this paper we study the intrinsic magnon Nernst effect
in a trilayer all-in/all-out (AIAO) pyrochlore iridate with
formula A2Ir2O7 in the strong-coupling limit with different
values of the DMI. Here A is typically a rare-earth element,
which we will assume has no moment in this paper (true
for certain choices of A), Ir is iridium, and O is oxygen.
In Sec. II, we introduce the spin model and calculate the
topological magnon band evolution with the DMI using a
generalized Bogoliubov transformation. We also investigate
the spin current chirality of the topologically protected edge
modes in a strip geometry. In Sec. III, we calculate the spin
Berry curvature of a thin film trilayer to study the effects
of the DMI on the magnon Nernst response coefficients. We
find sign changes in the coefficients by modifying the DMI or
raising the temperature of the system. In Sec. IV, we provide
a discussion on experimental realizations and summarize the
main conclusions of our paper.

II. MODEL

A. Spin Hamiltonian

To study the magnon thermal transport, we focus on
quasi-two-dimensional pyrochlore iridate thin films with non-
magnetic A site ions grown in the [111] direction [29–32] as
shown in Fig. 1. The alternating triangular and kagome layers
along the [111] axis preserves the spatial inversion symmetry
of the lattice. Because of the absence of a mirror symmetry
along the [111] direction, the number of atoms in the unit
cell of this TKT thin film is different from the bulk system.
To minimize the magnetic anisotropies and to stabilize the
spin configuration in this thin-film system, we consider a
A2Hf2O7/A2Ir2O7/A2Hf2O7 “sandwich structure” as shown
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FIG. 1. The triangular-kagome-triangular (TKT) lattice structure
with an AIAO spin ordering for a [111]-oriented growth. Red spheres
and blue arrows are Ir atoms and the effective spin-1/2 degrees of
freedom, respectively. The number of atoms in the unit cell is five
(three from the central kagome plane and one each from the tip of an
“up” and “down” pointing tetrahedron), in contrast to the bulk case
which has four atoms in the unit cell: Labeled sites 4 (5) consist of a
triangular plane above (below) the kagome plane. The lattice vectors
are a1 = a(1, 0, 0) and a2 = a( 1

2 ,
√

3
2 , 0) with a lattice constant a.

The sandwich structure, the Brillouin zone, and the path along high-
symmetry points used in Fig. 2 are shown in the right corner.

in Fig. 1. Then the AIAO spin configuration can be realized
both in weak-coupling (ab initio) limit calculation [29] with
no assumption on the form of the magnetic Hamiltonian and
in strong-coupling (local moment) limit calculation [32] as the
ground state. Therefore, we believe that the uniaxial/easy-
plane anisotropies must be subdominant in the system we
consider and we can assume that the spin Hamiltonian, which
consists of only nearest-neighbor interactions, takes the same
form as in the bulk case [21,33,34],

H =
∑
〈i j〉

[
JSi · S j + Di j · Si × S j + Sa

i �
ab
i j Sb

j

]
, (1)

where Si(Sa
i ) is the spin moment (component) on site i, J

represents the antiferromagnetic Heisenberg coupling, Di j is
the DM interaction on bond i j, and �ab

i j is the symmetric
anisotropic exchange coupling tensor. With a large cubic crys-
tal field from the oxygen octahedra surrounding each Ir4+ ion
along with a strong SOC, we take the magnetic moment of
Ir4+ as an effective spin 1/2 because of the splitting of the
t2g orbitals into total angular momentum 1/2 (partially filled)
and 3/2 (completely filled) manifolds in the strong SOC limit
[35,36].

Based on symmetry alone, the direction of the DM vectors
in the TKT thin film cannot be completely determined from
Moriya’s rule [10,37]. However, if we only include the DMI
arising from nearest neighbors, the DM vector of each bond is
parallel to the opposite bond allowed by the mirror symmetry
of the Ir4+ tetrahedron [38]. In our study of the magnon Nernst
effects from topological magnon bands, we choose the sign of
the DM vectors to obtain a stable AIAO spin ordering [33]
as shown in Fig. 1. In principle, there are two degenerated
AIAO spin configurations which are physically equivalent by
rotating the whole system upside down. By applying an in-
finitesimally small magnetic-field Bn where |Bn| → 0+ with

a direction along n, one could select between the two degen-
erated configurations [39]. In the state shown in Fig. 1, the
couplings can be parametrized as [32]

J = 4t2

U

[
cos2

(
θt

2
− θ

)
− 1

3
sin2

(
θt

2
− θ

)]
, (2)

Di j = 8t2

U
cos

(
θt

2
− θ

)
sin

(
θt

2
− θ

)
v̂i j, (3)

�ab
i j = 8t2

U
sin2

(
θt

2
− θ

)(
v̂a

i j v̂
b
i j − δab

3

)
, (4)

where θt = 2 arctan
√

2 is the tetrahedral angle, t is the
nearest-neighbor hopping energy, U is the on-site Hubbard
interaction, and θ is a parameter that controls the ratio among
the couplings. The parameter θ depends on the material details
[34] and is not easy to freely control by static external param-
eters. However, out-of-equilibrium with Floquet engineering,
it is possible to control the interactions by using circularly
polarized light. In such a periodically driven system, the Hub-
bard interaction U can be renormalized into an effective term
U (ω) that depends on the frequency ω and polarization of
the light [40,41]. In addition, laser illumination can modify
the hopping terms and Hubbard terms indirectly with lattice
vibrations and distortions [42,43]. With these two methods,
the coupling strengths can be experimentally tuned, in prin-
ciple, in addition to the application of static substrate strain
and hydrostatic pressure which provide a more limited control
route.

B. Spin-wave analysis

To study the magnon Nernst effect, a spin-wave analysis
is necessary to obtain magnon dispersions. Because of the
noncollinearity of the system, there is no global Sz direction,
so one must orient the Cartesian coordinate system for each
sublattice such that the ẑ axis locally lies along the classical
ground-state orientation of the on-site macrospins [44–46]. In
other words, the spin Si(θi, φi ) is related to the one in the local
frame of reference S′

i as S′
i = RiSi with

Ri = Ry(−θi )Rz(−φi )

=
⎡
⎣cos θi 0 − sin θi

0 1 0
sin θi 0 cos θi

⎤
⎦

⎡
⎣ cos φi sin φi 0

− sin φi cos φi 0
0 0 1

⎤
⎦,

(5)

where the matrix Rz(y)(θ ) is a right-handed rotational matrix
of angle θ about the ẑ(ŷ) axis and θi(φi ) is the polar (az-
imuthal) angle of the classical ground-state orientation of Si.

In the local reference frame of each sublattice, a local ẑ
direction is well defined, and the sublattice spin can then be
expressed with a Holstein-Primakoff representation [47],

S′+
i =

√
2S − ai

†aiai,

S′z
i = (S − ai

†ai ), (6)

where S = 1
2 is the magnitude of the local spin.

If we ignore the higher-order terms leading to magnon-
magnon interactions, the spin Hamiltonian can be truncated
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FIG. 2. Spin-wave spectra for different θ values. The high-symmetry path is shown in Fig. 1. Energies are given in units of JS. The Chern
numbers change when band gaps close and reopen at θ ≈ 1.04 and θ ≈ 1.26 as shown in (b) and (d) with red circles denoting the gap closings.
The Chern numbers counting from the bottom are (a) (+1, +2, −3, +1, −1), (c) (+1,−1, −1, +2, −1), and (e) (−1,+1, +3, −1, −2).

to quadratic order as

H = 1
2 Xk

†HkXk, (7)

where Xk = [a1(k), . . . , a5(k), a†
1(−k), . . . , a†

5(−k)]T ex-
pands the Hilbert space into a particle-hole space and Hk
stands for a bosonic Bogoliubov–de Gennes (BdG) Hamilto-
nian [48] also in a particle-hole symmetric form as

Hk =
[

A(k) B(k)
B∗(−k) A∗(−k)

]
. (8)

To diagonalize this BdG Hamiltonian, one needs to use a
paraunitary matrix Qk which satisfies

Q†
kσ3Qk = σ3, Q†

kHkQk =
[

Ek
E−k

]
, (9)

where σ3 = Diag(1,−1) ⊗ I5 denotes the bosonic commuta-
tor in particle-hole space, and Ek are the eigenenergies. Here,
Qk can be regarded as a general Bogoliubov transformation
[48,49] similar to the case in collinear antiferromagnets [50].
(More details can be found in Appendix A.)

With Eqs. (5)–(9), we obtain the magnon band evolution
by varying the ratio control parameter θ . We observe several
gap closings and reopenings among the five bands (see Ap-
pendix B for more details), which changes the band topology
(shown in Fig. 2). As the Chern numbers are different below
and above the band gap, we expect magnon edge currents to
carry spin angular momenta producing a magnon Nernst spin
current in the presence of a temperature gradient [51,52].

C. Edge states

In contrast to previously studied systems with magnon
Nernst effects [13,14,53] in our TKT thin films there is a direct
gap above the lowest band. Since the sum of Chern numbers
below a gap defines a winding number that is in direct corre-
spondence with the number of edge modes [51,54], we further
study the spin current at the edges in a strip geometry. In
Fig. 3, there are two opposite edge modes (i.e., one on each

edge but one being a continuation of the other in a finite area
strip/system) within the gap as the lowest band has Chern
number +1(−1) for θ < (>)1.26. The k dependence of the
spin of these two edges is plotted in Fig. 4 which shows that
the chiral edge modes propagating along the two edges have
the same y and z spin components due to the inversion sym-
metry between the pairs and, thus, contribute opposite spin
currents, whereas there is no x component, which vanished
due to the MyzT symmetry of the system.

III. MAGNON NERNST EFFECT

In this section, we study a magnon Nernst effect, which can
generate a transverse magnon spin current Js in the TKT thin
film from a longitudinal temperature gradient ∇T . Here we

FIG. 3. Magnon spectra of a 40-atom-wide TKT thin-film strip.
The strip is oriented along the x direction with finite width in the y
direction. It is periodic along the x (a1) direction, following the con-
vention in Fig. 1. Blue and orange dispersions are the topologically
protected magnon edge states spatially separated by the bulk (i.e.,
they are localized on different edges). Orange states are localized on
the right, and blue states are localized on the left of the strip. Note
the change in edge state direction in (c) relative to (a) and (b).
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FIG. 4. Spin components of the edge modes using a strip of 40-
atoms width and θ = 1.07. Solid (dashed) lines are for left (right)
movers as shown in Fig. 3. Only the y and z components are nonzero.

only focus on the intrinsic effect of magnon Berry curvature,
which induces an anomalous velocity and a transverse motion
of magnons [55]. Generally, the spin angular momentum in a
noncollinear system with SOC is not conserved [56,57]. In
this case, one cannot denote a good spin quantum number
for each magnon band, and the definition of a conserved
spin current needs to include a torque term [58]. In our case,
the noncollinearity arises from the DMI, which breaks the
conservation of a spin angular momentum. However, with
spatial inversion symmetry, the average torque response is
zero and a total s-polarized spin current contribution from the
MNEJs

i = αs
i j∇ jT is well defined [53] and the magnon Nernst

coefficient (MNC) αs
i j can be obtained as

αs
i j = 2kB

V

5∑
n=1

∑
k

(
	s

n,k

)
i jc1[g(Enk )], (10)

where c1(x) = (1 + x) ln(1 + x) − x ln x, g(x) = (ex/kBT −
1)−1 is the Bose-Einstein distribution, and a spin Berry

curvature is defined as [14,53]

(
	s

n,k

)
i j =

∑
m �=n

(σ3)nn
2 Im

[(
js
ik

)
nm(σ3)mm(v jk )mn

]
[(σ3)nnEnk − (σ3)mmEmk]2 , (11)

where vβk = ∇βHk, js
ik = 1

4 (vikσ3Ŝs + Ŝsσ3vik ) is the s-
polarized spin current operator and (· · · )nm stands for
Q†

nk(· · · )Qmk as matrix elements in the Bogoliubov represen-
tation.

Our TKT thin films are inversion symmetric so we can
use Eq. (11) for calculating the spin current. More precisely,
the thin film has a spatial point-group D3d with generators
{I, Myz,C3z} and a magnetic point-group 3̄m′ with the AIAO
spin ordering. From a symmetry point of view, this magnetic
point group is compatible with ferromagnetism, and, thus, a
thermal Hall current is expected [59,60]. Similarly, by consid-
ering the magnetic point group acting on the MNE tensor, one
finds that there are only four individual response coefficients
appearing in the tensors [61],

αx =
⎡
⎣−α1 0 0

0 α1 −α4

0 −α3 0

⎤
⎦, αy =

⎡
⎣ 0 α1 α4

α1 0 0
α3 0 0

⎤
⎦,

αz =
⎡
⎣ 0 α2 0

−α2 0 0
0 0 0

⎤
⎦. (12)

The structure of these tensors is consistent with our results
for the edge states (Fig. 4) as αx has no transverse coefficients
whereas y- and z-polarized spin components can transport
along edges transversely for a temperature gradient along the
y direction. From a more simple picture, since the total net
moment within one unit cell is only along the out-of-plane di-
rection, i.e., z direction, αx and αy with in-plane polarizations
should have similar independent coefficients αi for i = 1, 3, 4,
whereas αz is different from them (containing only α2).

The typical lattice constant between iridium ions of bulk
pyrochlore iridates is on the order of 10 Å [62], and, thus,

FIG. 5. (a) and (b) The temperature dependence and (c) and (d) DMI dependence of the magnon Nernst coefficients. The inset in (b) is a
zoom in to show the sign change in α2 for θ > 1.26. (c) and (d) are plotted along the red dashed line in (a) and (b), respectively.
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FIG. 6. Density plots of the spin Berry curvatures in logarithm scale L(	s) = sgn(	s ) ln(1 + |	s|) for the lowest two bands (band 1 is the
lowest band). (a)–(c) are y-polarized spin Berry curvatures for different θ values before and after a gap closing. (d)–(f) are for z-polarized spin
Berry curvatures. Both spin Berry curvatures concentrate mostly around the K and K′ points with opposite signs. Detailed plots of the spin
Berry curvature in the vicinity of the gray and black regions, corresponding to the values outside of the range of the scale bar, can be found in
Appendix C, Fig. 8.

in our thin-film case, we focus on the response induced by a
temperature gradient within the plane, e.g., coefficients α1 and
α2 corresponding to the magnon Nernst response α

y
xy and αz

xy.
The temperature dependence of these coefficients is shown in
Fig. 5.

From Figs. 5(c) and 5(d), we can see that the DMI, in
general, suppresses the response coefficients. On one hand,
from Fig. 2, we have a higher excitation energy of the system
with a larger DMI. Then the magnon bands can be accessed
only with higher temperatures as c1[g(Enk )] decreases expo-
nentially with increasing energy. On the other hand, most
contributions to the MNE are from the lowest two bands,
and as shown in Fig. 6 the spin Berry curvature of these
two bands concentrates at the K and K′ points with oppo-
site signs because of the DMI. When the DMI increases,
the two bands move towards one another, and, thus, αs ∝
	s

1(K)(E1K − E2K ) is getting smaller. After the two bands
touch each other, the MNC increases again as the gap reopens
when θ > 1.26.

In the high-temperature limit, the MNC changes sign when
θ � 1.26 due to the sign change in Chern numbers in the
bottom two bands after a topological phase transition. How-
ever, since the net moment is along the z direction, α2(αz

xy)
results from the spin angular momentum carried by a total
thermal Hall magnon current, whereas α1(αy

xy) comes from
the imbalance among magnon modes similar to the magnon
Nernst effect in collinear antiferromagnets [13]. Because of
this, α1 is more sensitive to the band topology and change in
the DMI.

For θ = 0.98, the DMI is small compared to the exchange
coupling, and the system approaches the Heisenberg limit.
The low-energy scale of this limit supports the contributions to
the MNE from higher bands when the temperature increases.

Thus, instead of a monotonic change with respect to the
temperature, α1 changes sign at kBT ≈ 0.27JS and kBT ≈
0.74JS reflecting the Chern numbers with alternative sign
from the bottom to top as (+1, +2, −3, +1, −1).

For θ > 1.26, although the Chern number of the lowest
band changes sign to +1, the spin Berry curvature around
the M point with lower-energy dominates at low temperatures
[see Fig. 6(c)] and, thus, gives rise to a response with a nega-
tive sign. When temperature increases, the sign of response
coefficient will change to positive as the change in Chern
number during the phase transition, which is determined by
the (spin) Berry curvature at two concentrated points K and
K ′.

IV. DISCUSSION AND CONCLUSION

We have calculated the magnon Nernst response coef-
ficients in the TKT pyrochlore iridates thin film with an
all-in/all-out spin ordering. In contrast with the magnon
Nernst effect in collinear systems, we found transverse spin
currents with both y and z polarizations (for a thermal gradient
applied along the x direction). As an experimental estimate, if
we assume a thickness of 20 Å (for a trilayer, taken from the
lattice constant of a material [62,63], such as Y2Ir2O7) with
a 20-K/mm temperature gradient, we expect a y-polarized
(z-polarized) spin current on the order of 10−11(10−10) J/m2,
which makes pyrochlore iridates a promising experimental
candidate for observing the magnon Nernst effect in non-
collinear systems.

In addition, we found the TKT trilayer film has a direct
gap which supports two topological nontrivial edge modes.
These edge modes have not been discussed in the context of
the magnon Nernst effect before. They provide a spin current
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channel at each edge with opposite signs and may be detected
separately at the edge by local measurements [64]. Since
these edge modes are topologically protected, it is possible
to realize a spin current only weakly affected by the disorder
in the bulk [65].

Our results also show that the DMI can significantly impact
the response coefficients as it can modify nontrivial geometric
aspects of magnon bands, including topological transitions.
The sign change in the coefficients is due to the distribu-
tion of spin Berry curvature throughout the Brillouin zone
and the thermal population of bands with different Chern
numbers. In order to observe the sign change in α1 for θ =
0.98 (1.30), one must have an experimental resolution on
the order of 10−11 (10−12) J/m2, which can be converted into
and measured by an inverse spin Hall current on the order
of 104 (103) A/m2 [66]. Therefore, the magnon Nernst effect
can also be used as a probe to study the topological properties
of magnons in magnetic insulators. In addition, the magnon
spin transport can be tuned with an external magnetic field
either by a spin ground-state phase transition in the strong-
field limit or a Zeeman energy splitting in the weak-field limit
[67,68].
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APPENDIX A: GENERAL BOGOLIUBOV
TRANSFORMATION

As described in Sec. II A in order to obtain a physical
energy spectra, one needs to use a paraunitary matrix Q to
diagonalize a BdG Hamiltonian. More generally, for a bosonic
BdG Hamiltonian,

H = X†HX, (A1)

with a basis X satisfying a commutator relation,

[X, X†] = g, (A2)

it can be transformed into a bosonic representation Y = Q−1X
which has diagonalized spectra as

H = Y†EY, (A3)

and a standard bosonic commutator in particle-hole space as

[Y, Y†] = σ3, (A4)

where σ3 = Diag(1,−1) ⊗ IN×N and E is a diagonal matrix.
By comparing Eqs. (A1) and (A2) with Eqs. (A3) and (A4), it
can be seen that

g = Q[Y, Y†]Q† = Qσ3Q† ⇒ Q† = σ3Q−1g, (A5)

and

Q†HQ = E ⇒ Q† = Q−1gHQ = σ3E. (A6)

If there is no dispersionless Goldstone mode in the system,
det gH �= 0 and the eigenvectors P of gH can be found easily

FIG. 7. Magnon band touching points at which there occur topological phase transitions. Red circles identify the touching points.
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TABLE I. Chern numbers in the phases between touchings. We calculate the Chern numbers with the Fukui lattice discretization method
[75] for momentum space grids of 501 × 501 sites.

θ <1.003 1.003–1.04 1.04–1.103 1.103–1.108 1.108–1.18 1.18–1.20 1.20–1.26 >1.26
D/J <0.096 0.096–0.17 0.17–0.3 0.3–0.31 0.31–0.47 0.47–0.51 0.51–0.65 >0.65

Bottom band +1 +1 +1 +1 +1 +1 +1 −1
+2 +2 −1 −1 −1 −1 −1 +1
−3 f − 4 −1 −1 −3 +3 +3 +3
+1 +2 +2 −1 +1 −3 −1 −1

Top band −1 −1 −1 +2 +2 0 −2 −2

in any numerical methods, and if there is no degeneracy (or
the degeneracy can be avoided in numerics), the eigenvectors
can be rearranged so that

Q = PT, (A7)

where T = Diag(t1, t2, . . . , t2N ). Taking Eq. (A7) into
Eq. (A5), one finds

P−1g(P†)−1 = T σ3T † = σ3Diag(|t1|2, |t2|2, . . . , |t2N |2)
(A8)

is a diagonal matrix and |ti| can be solved from Eq. (A8).
Therefore, the paraunitary matrix Q can be constructed from
eigenvectors P as

Q = P(P†g−1Pσ3)−(1/2)U, (A9)

where U is a U (1) phase factor that can be chosen as the
identity.

In our magnonic system g = σ3, but, in principle, this gen-
eral Bogoliubov transformation can be applied to any bosonic
system, such as phonons [69] and hybrid bosons [70–74].

APPENDIX B: GAP CLOSING AND CHERN NUMBERS

When θ increases from arctan
√

2 to π − arctan
√

2, the
DMI becomes more dominant in the Hamiltonian, and the
magnon bands touch and reopen several times, which sepa-
rates the system into different topological phases. In Fig. 7, we
show all band touching points, and we list the Chern numbers
in the phases between touchings in Table I.

APPENDIX C: SPIN BERRY CURVATURE AROUND
HIGH VALUE POINTS

One can see in Fig. 8 that in band 1 (2), there are negative
(positive) spin Berry curvatures around M with lower ener-
gies, whereas a larger positive (negative) spin Berry curvature
concentrates at K and K′ points. The sign change in α1 can be
explained as a competition between them.

FIG. 8. Spin Berry curvature in different ranges around K, K′,
and M points.
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