
Amortizing Rate-1 OT and Applications to PIR
and PSI

Melissa Chase1, Sanjam Garg2?, Mohammad Hajiabadi3??, Jialin Li4, and
Peihan Miao5? ? ?

1 Microsoft Research, melissac@microsoft.com
2 University of California, Berkeley and NTT Research, sanjamg@berkeley.edu

3 University of Waterloo, mdhajiabadi@uwaterloo.ca
4 University of California, Berkeley, j.li98@berkeley.edu

5 University of Illinois at Chicago, peihan@uic.edu

Abstract. Recent new constructions of rate-1 OT [Döttling, Garg, Ishai,
Malavolta, Mour, and Ostrovsky, CRYPTO 2019] have brought this
primitive under the spotlight and the techniques have led to new fea-
sibility results for private-information retrieval, and homomorphic en-
cryption for branching programs. The receiver communication of this
construction consists of a quadratic (in the sender’s input size) number
of group elements for a single instance of rate-1 OT. Recently [Garg, Ha-
jiabadi, Ostrovsky, TCC 2020] improved the receiver communication to
a linear number of group elements for a single string-OT. However, most
applications of rate-1 OT require executing it multiple times, resulting
in large communication costs for the receiver.
In this work, we introduce a new technique for amortizing the cost of
multiple rate-1 OTs. Specifically, based on standard pairing assumptions,
we obtain a two-message rate-1 OT protocol for which the amortized cost
per string-OT is asymptotically reduced to only four group elements. Our
results lead to significant communication improvements in PSI and PIR,
special cases of SFE for branching programs.
1. PIR: We obtain a rate-1 PIR scheme with client communication cost

of O(λ · logN) group elements for security parameter λ and database
size N . Notably, after a one-time setup (or one PIR instance), any
following PIR instance only requires communication cost O(logN)
number of group elements.

2. PSI with unbalanced inputs : We apply our techniques to private
set intersection with unbalanced set sizes (where the receiver has a
smaller set) and achieve receiver communication of O((m+λ) logN)
group elements where m,N are the sizes of the receiver and sender
sets, respectively. Similarly, after a one-time setup (or one PSI in-
stance), any following PSI instance only requires communication

? Supported in part by DARPA under Agreement No. HR00112020026, AFOSR Award
FA9550-19-1-0200, NSF CNS Award 1936826, and research grants by the Sloan Foun-
dation and Visa Inc.

?? Supported in part by NSF CNS Award 2055564.
? ? ? Supported in part by NSF CNS Award 2055358 and a 2020 DPI Science Team Seed

Grant.

cost O(m · logN) number of group elements. All previous sublinear-
communication non-FHE based PSI protocols for the above unbal-
anced setting were also based on rate-1 OT, but incurred at least
O(λ2m logN) group elements.

1 Introduction

Oblivious transfer (OT) [Rab05] is a foundational primitive in cryptography. In
this work, we are interested in two-message OT protocols between: (i) a receiver
with an input bit b who sends the first message otr of the protocol, and (ii) a
sender with input two (equal length) strings m0,m1 who sends the second mes-
sage ots. Correctness requires that at the end of execution, the receiver should
learn mb, while security requires that the receiver does not learn m1−b and that
the sender does not learn the bit b. Over the years, significant progress has been
made in constructing two-message OT protocols, either from general assump-
tions [EGL82,GMW87], or from specific assumptions but with enhanced securi-
ty/functionality/efficiency, such as OT based on DDH [NP01, AIR01, PVW08],
CDH [DGH+20], factoring related [HK12] and LWE [PVW08].

Rate-1 OT. In this work, we are interested in constructing rate-1 two-message

OT protocols. We say that an OT protocol is rate-1 if the ratio |m0|
|ots| approaches

1, as n grows. As shown by Ishai and Paskin [IP07], rate-1 OT enables powerful
applications such as (i) semi-compact homomorphic encryption for branching
programs (where the ciphertext grows only with the depth but not the size of
the program) as well as (ii) communication-efficient private-information retrieval
(PIR) protocols.

The rate-1 property is crucial in realizing these applications, allowing a sender
to compress a large database for a receiver who is interested only in a small por-
tion of it. To give some intuition, suppose we want to use a rate-1 OT to imple-
ment a 1-out-of-4 OT for a sender with four elements m := (m00,m01,m10,m11).
Thinking about the corresponding binary tree, the receiver on an input uw ∈
{0, 1}2 will send two messages otr and otr′, the first one for choice bit u and
the second one for w. The sender will use otr′ once against (m00,m01) and once
against (m10,m11) to get two outgoing messages ots0 and ots1. The receiver is
only interested in otsu, but the sender does not know which one it is. So, the
sender compresses (ots0, ots1) using otr, allowing the receiver to learn otsu, and
consequently muw.

The above construction employs a self-eating process, where a pair of ots
messages is used as the sender input for the next OT, and so on. Employing a
low rate 1-out-of-2 OT to build 1-out-of-n OT will blow up the communication,
falling short for PIR. To see this, suppose |ots| ≥ 2|m0|, as is the case with
most 1-out-of-2 OT protocols. Then, if n = 2k, as the sender packs up the tree
from bottom-up, in each OT invocation the size of the resulting ots message
(which either packs two previous ots messages, or two leaf messages) doubles,
resulting in a final message of size at least O(2ku), where u is the size of each

2

initial individual message of the sender. While the protocol is a 1-out-of-n OT,
it is not a sublinear PIR, because the size of the sender’s protocol message is
not sublinear in its total input size, nu. Moreover, as we will see later, in some
applications involving branching programs, such as Private Set Intersection (PSI)
with unbalanced set sizes, the sender will need to pack a tree of depth polynomial
in the security parameter (as opposed to logarithmic size as in PIR), so using
low rate 1-out-of-2 OT will result in an exponential size blow-up.

Building rate-1 OT. Recent work of Döttling, Garg, Ishai, Malavolta, Mour,
and Ostrovsky [DGI+19] provides a framework for constructing rate-1 OT based
on a variety of assumptions such as DDH, QR, and LWE. This in turn led to
PIR protocols with sender messages of only a logarithmic size dependence on
the server size, and, more generally, branching-program protocols with sender
messages whose size only grows with the depth of the program. In addition
to these applications, the underlying techniques have been used in building
collision-intractable hash functions and non-interactive zero-knowledge (NIZK)
proofs [BKM20]. This has made the notion of rate-1 OT fundamental both from
a theory and applications point of view.

How about the receiver communication? An overlooked aspect of rate-1
OT is the receiver communication cost. This is an important metric because, as
stated above, the self eating process involve producing many otr messages (pro-
portional to the depth of the tree/program), and hence sending a fresh otr for
each depth results in large first-round messages. Concretely, in the DDH-based
rate-1 OT construction of [DGI+19], for a sender with (m0 ∈ {0, 1}n,m1 ∈
{0, 1}n), the receiver should send a linear (O(n)) number of group elements for
each bit of the sender, resulting in overall O(n2) group elements. This incurs
high receiver communication in the respective applications. Addressing this is-
sue, Garg, Hajiabadi and Ostrovsky [GHO20] obtained rate-1 OT for which otr
consists of only a linear O(n) number of group elements in total, as opposed to
O(n2).

One limitation of [GHO20] is that it only improves the communication effi-
ciency of the base rate-1 OT, but still requires the receiver to send a fresh otr
message for each new OT execution. This constitutes a prohibitive overhead for
the receiver in applications in which the depth of the branching program is large,
and the receiver needs to engage with a sender holding a branching program BP
on many different inputs x1, . . . , xn (e.g., PSI). Addressing this communication
bottleneck is the goal of our paper. We achieve this by introducing and realizing
a new primitive that we call receiver-amortized (or amortized, for short) rate-1
OT.

1.1 Our Results

We put forth a cryptographic primitive that we call amortized rate-1 OT, and
show how to realize it using standard assumptions on bilinear groups. As appli-
cations we obtain significant efficiency improvements, shaving a factor of poly(λ)

3

off the receiver communication in various protocols involving secure branching
program computation (e.g., unbalanced PSI).

An amortized rate-1 OT breaks up the computation of a receiver into an
offline and online phase. The offline phase is performed by the receiver once
and for all, prior to receiving any choice bits. Specifically, we have an algorithm
PreP(1λ), run by the receiver, which outputs a private state str for the receiver,
and a reusable parameter prm. Next, we have an algorithm OT1 run by the

receiver on a choice bit b to obtain otr
$←− OT1(str, b). A sender with messages

m := (m0 ∈ {0, 1}n,m1 ∈ {0, 1}n) runs OT2((prm, otr),m) to obtain ots. Finally,
the receiver can recover mb by running OT3(str, ots). One notable aspect is that
the state str used by OT1 and OT3 is the same as the initial state outputted by
PreP — the state is not updated as a result of OT1 executions. This property
is in fact exploited in some of our applications, such as PSI cardinality. Also,
the message prm is reused across all communications, so the receiver may send
it only once. We require the following properties:

1. Sender rate-1 communication: |ots| = n + poly(λ), where poly is a fixed
polynomial (e.g., the size of a group element) independent of how large n is.

2. Receiver non-reusable compactness: |otr| = poly′(λ), where poly′(λ) is inde-
pendent of n.

3. Receiver privacy: We require indistinguishability security for the receiver

against adaptive adversaries. If (str, prm)
$←− PreP(1λ), an adaptive adversary

who is given prm and who sends many pairs of choice bits in an adaptive
fashion cannot determine whether his received otr messages (all made relative
to str) were built using the first choice bits or the second choice bits of his
submitted pairs. Notice that since otr messages are all produced based on
the same private state str, we should give the adversary the ability to submit
many pairs.

4. Sender privacy: Standard indistinguishability security against honest re-
ceivers.6

Assuming an SXDH-hard bilinear map e : G1 × G2 7→ GT on prime-order
groups, we give a construction of amortized rate-1 OT in which prm consists of
O(n2) group elements in G1 and otr consists of 4 group elements in G2. Recall
that the SXDH assumption [BGdMM05] (Symmetric External Diffie-Hellman)
states that both G1 and G2 are DDH hard. Our construction is based on a new
re-randomization trick that allows us to obtain a structured matrix, as required
for rate-1 OT, from a reusable initial matrix and and a re-randomizing term
involving four group elements.

The above reusable parameter prm is still quite large, even though it can
be amortized among many OT executions. We show by relying on a stronger
assumption on G1, called 2n-power-DDH, we can make prm consist only of O(n)

6 For applications involving non-oblivious branching programs we need to strengthen
sender privacy, along the lines of [IP07]. For oblivious branching programs, from
which all our applications are obtained, the stated requirement suffices.

4

group elements in G1. We achieve this by relying on a sliding window technique,
introduced in [GHO20], that implicitly builds a Toeplitz matrix in the exponent
using a linear number of group elements. The t-power DDH assumption says the
distribution (g, ga, . . . , ga

t

) is pseudorandom.

Efficiency gained. For performing t rate-1 OTs where the size of each message
of the sender is n, our receiver communication consists of O(n2) reusable group
elements in G1 and 4t group elements in G2, relying on SXDH. Assuming power
DDH on G1 the receiver communication becomes O(n) group elements in G1

and 4t group elements in G2. In comparison, the most receiver compact bilinear
SXDH-based rate-1 OT, due to [DGI+19], involves sending O(tn

√
n) both in

G1 and G2. As we will see in Section 1.2 in many applications of rate-1 OT,
we have t >>

√
n, allowing us to cut off large multiplicative polynomial factors

from the receiver communication. We compare our receiver communication with
prior rate-1 OT protocols in Table 1. We only include receiver communication,
since the sender communication in all these protocols is the same (rate-1 for each
instance of the OT).

Work Receiver Reusable Comm Receiver Non-Reusable Comm Receiver Total Comm Assumption

[DGI+19] N/A O(tn2) G O(tn2) G DDH

[DGI+19] N/A O(tn
√
n) G1 + O(tn

√
n) G2 O(tn

√
n) G1 + O(tn

√
n) G2 Bilinear SXDH

[GHO20] N/A O(tn) G O(tn) G Power-DDH

Ours O(n2) G1 O(t) G2 O(n2) G1 + O(t) G2 Bilinear SXDH

Ours O(n) G1 O(t) G2 O(n) G1 + O(t) G2 Bilinear Power DDH

Table 1: Receiver communication complexity for t executions of a rate-1 OT.
Here n denotes the bit size of each message of the sender in the OT executions.

1.2 Applications

Our results allow us to realize SFE for branching programs with significantly
lower receiver communication. To illustrate our improvements, we first review the
concept of branching programs. A deterministic κ-bit input branching program
BP is a directed acyclic graph, where every leaf node has a label 0 or 1 (reject
or accept), and every non-leaf node v has a label lb(v) ∈ {1, . . . , κ}. The root
node is labeled with 1. Every non-leaf node has two outgoing edges labeled 0
and 1. An input x ∈ {0, 1}κ induces a unique computation path from the root
to a leaf node, where the computation from a node v will branch out to one of
its two children depending on the value of xi, where i = lb(v). We say BP(x) = b
if the underlying computation path ends in a b-labeled leaf node. The size of a
branching program is the number of nodes, and the depth, `, is the length of the

5

longest path. A branching program is oblivious if κ = ` and if all nodes at level
i (where the root is considered level 1) are labeled i.7

As an example, consider a client who wants to know whether her input x ∈
{0, 1}λ is in the set D ⊂ {0, 1}λ of a server. This reduces to evaluating an
oblivious branching program PSI on x where PSI is constructed as follows: for
every string a ∈ {ε} ∪ {0, 1} ∪ · · · {0, 1}λ such that a is a prefix of a string in
D, we put a node va in the graph. We designate vε as the root node, and all va
such that a ∈ {0, 1}λ as accept leaf nodes. The label of a node va for |a| < λ
is lb(va) = |a| + 1. For a node va, for |a| < λ, and for b ∈ {0, 1}, if a node vab
exists, we put a b-labeled edge from va to vab; otherwise, we create a new reject
leaf node and put a b-labeled edge from va to this node. The depth of PSI is λ
and its size is O(λ|D|).

Now if a client wants to learn the intersection of her set S = {x1, . . . , xm}
with D, she needs to learn the values of all PSI(xi) for i ∈ [m], leading to m
evaluations of PSI.

Shorter client communication for PSI. Ishai and Paskin [IP07] give a con-
struction of SFE for branching programs from rate-1 OT, where, for an oblivious
branching program BP of depth d, the receiver sends d otr messages, each pre-
pared for a sender whose input messages are of size O(dλ). Returning to the PSI
problem for a client with set S = {x1, . . . , xm} and a server with set D, we need
to evaluate the oblivious branching program PSI m times. Recall that the depth
of PSI is λ. Hence, setting t = mλ and n = λ2 in Table 1, our PSI-client commu-
nication consists of O(mλ) non-reusable group elements in G2 (in either SXDH
or power-DDH cases) and O(λ4) reusable group elements in G1 (in the case of
SXDH), and O(λ2) reusable group elements in G1 (in the case of bilinear power
DDH). In contrast, [DGI+19] results in O(mλ4) group elements in both G1 and
G2. Thus, we drop a multiplicative factor of m by relying on the same SXDH
assumption, and a factor of mλ2 by relying on bilinear power DDH. The results
of [GHO20] give O(mλ3) group elements for the receiver using (pairing-free)
power DDH. This is again significantly larger than what we achieve.

In Section 7.3 we describe some PSI optimization techniques that further
reduce the client communication, replacing a multiplicative factor of λ with
logN , where N = |D|. These techniques may be of independent interest. We
also give more applications, involving PSI/PIR, in Section 7.

SFE for non-oblivious branching programs. Ishai and Paskin [IP07] show
how to realize SFE for non-oblivious branching programs (in which at any given
level the program might branch over several variables, not known to the receiver)
by relying on a stronger sender privacy notion for the underlying rate-1 OT. In-
formally, the stronger property requires that a sender’s response message should
hide the previous protocol message of the receiver, even for the receiver herself.

7 The standard definition of oblivious branching programs is more general than what
we give here, but we stick to our own definition since it captures our application
needs.

6

In Section 8 we show that simple variants of our amortized rate-1 OT satisfy
the stronger sender security requirement, without affecting the efficiency param-
eters. All our applications are obtained based on oblivious branching programs,
however.

We summarize our efficiency parameters for branching programs in Table 2.
See Table 3 (Page 27) for a more detailed comparison.

Work Assumption Primitive Recv Reuse Comm Recv Non-Reuse Comm

Ours Bilinear SXDH Oblivious BP λ(h+ λ`)2 mλ`

Ours Bilinear Power DDH Oblivious BP λ(h+ λ`) mλ`

[GHO20] Power DDH Oblivious BP N/A mλ`(h+ λ`)

[DGI+19] Bilinear SXDH Oblivious BP N/A O(mλ`(h+ λ`)3/2)

[DGI+19] DDH Oblivious BP N/A O(mλ`(h+ λ`)2)

Ours Bilinear SXDH BP λ(h+ λ`)2 mκλ`

Ours Bilinear Power DDH BP λ(h+ λ`) mκλ`

[GHO20] Power DDH BP N/A mκλ`(h+ λ`)

[DGI+19] Bilinear SXDH BP N/A O(mλ`κ(h+ λ`)3/2)

[DGI+19] DDH BP N/A O(mλ`κ(h+ λ`)2)

Table 2: Bit-complexity for receiver communication, omitting O(·) notation. We
assume O(λ) is the bit size of a group element (in the case of pairings, for
both source and target group elements). m denotes the number of branching
programs executions. For (oblivious) branching programs (BP), h is the bit size
of the output, κ is the bit size of receiver message and ` is the depth of the BP
program.

1.3 Comparison with Prior Work

The rate-1 OT constructions of [DGI+19] built upon ideas developed in the
context of trapdoor functions (TDFs) [GH18, GGH19], identity-based encryp-
tion [CDG+17, DG17, BLSV18] and homomorphic secret sharing [BGI16]. The
TDF techniques in turn led to notions such as hinting PRGs [KW19], which
found extensive applications, e.g., [LQR+19,KMT19,HKW20,GVW20].

OT extension. One might wonder about the difference between amortized rate-
1 OT and OT extension [Bea96, IKNP03]. The primary goal of OT extension is
to minimize the number of public-key operations: Performing n := n(λ) OTs at
the cost of doing a fewer, λ, number of OTs and some private key operations.
On the other hand, we are concerned with amortizing receiver communication
for rate-1 OT; doing t rate-1 OTs, but in a way that the receiver total commu-
nication is less than the sum of t individual rate-1 OT executions. OT extension
techniques do not provide this feature. Moreover, OT extension techniques de-
stroy the rate-1 property of the sender. For example, Beaver’s protocol, which

7

is round preserving, results in sender’s OT protocol messages which are larger
than |m0| + |m1|, where (m0,m1) is the sender’s initial input pair. We leave
it as open problem whether one can achieve some form of OT extension and
amortized rate-1 OT at the same time.

PSI Private set intersection (PSI) enables two parties, each holding a pri-
vate set of elements, to compute the intersection of the two sets while re-
vealing nothing. PSI and its variants have found many real-world applications
including online advertising [IKN+20], password breach alert [TPY+19, APP,
MIC], mobile private contact discovery [KRS+19], privacy-preserving contact
tracing [TSS+20, CCF+20]. In the recent years, there has been tremendous
progress made towards realizing PSI efficiently in various settings, including
Diffie-Hellman-based [HFH99,IKN+20], RSA-based [ADT11], OT-extension-based [KKRT16,
PRTY19,PRTY20,CM20], FHE-based [CLR17], circuit-based [HEK12,PSSZ15,
PSWW18,PSTY19], Vector-OLE-based [RS21] approaches.

Most of the existing approaches require the communication complexity to
grow with the size of the larger set, the only exception being the FHE-based
protocol [CLR17] (where communication grows linearly in the receiver set and
logistically in the sender set) and RSA-based protocol [ADT11] (where the re-
ceiver has the bigger set and the communication grows linearly in the smaller,
sender set). We consider the dual setting of [ADT11], meaning that in our
case the receiver has the smaller set. In many real-world applications such as
password breach alert [TPY+19, APP, MIC] and mobile private contact discov-
ery [KRS+19], we need to perform unbalanced PSI between a constrained device
(e.g. cellphone) holding a small set and a service provider holding a large set,
thus having communication grow the larger set (especially the sender set) is a
big concern. Our work presents unbalanced PSI with communication complexity
linear in the size of the receiver set and logarithmic in the sender set. Further-
more, our approach is easily adapted to PSI with advanced functionalities such
as PSI-Cardinality, PSI-Sum, PSI-Test, etc., which could only be achieved from
Diffie-Hellman-based or circuit-based approaches. See Section 7 for more details.

2 Technical Overview

One tool used in our constructions (and in all recent rate-1 OT constructions)
is a compressed version of n-bit packed ElGamal encryption. We review these
compression features, formalized in [BBD+20], building on [BGI16]. A secret
key is an n-bit tuple of exponents sk := (ρ1, . . . , ρn) and the public key is
pk := (g, gρ1 , . . . , gρn). Given pk := (g, g1, . . . , gn) we can encrypt an n-bit mes-
sage Enc(m1, . . . ,mn) as ct : (gr, gr+m1

1 , . . . , gr+mn
n). We have two additional

algorithms Shrink and ShrinkDec, where Shrink(ct) shrinks ct ∈ Gn+1 to obtain
Shrink(ct)→ (g′,K, b1, . . . , bn) ∈ G× {0, 1}λ+n. We have shrinking correctness:
Pr [ShrinkDec(sk, Shrink(ct)) = (m1, . . . ,mn)] = 1.

8

Approach of [DGI+19]. Let G be a group of prime order p with a generator g.
We let ei ∈ G2n denote a vector which has g in its ith position, and the identity
element 1 everywhere else.

The receiver on a choice bit b samples hk
$←− G2n and for every i ∈ [n]

samples ρi
$←− Zp and sets eki := hkρi · ei+nb, where hkρi denotes entry-wise

exponentiation, and (·) denotes entry-wise group multiplication. She sends otr :=
(hk, {eki}) to the sender.

Let m = (m0,m1) ∈ {0, 1}2n be a vector concatenating the two strings
of the sender. Let g′ := m · hk, and for i ∈ [n] let g′i := m · eki, where we
overload the (·) notation to define (b1, . . . , b2n) · (g1, . . . , g2n) =

∏
gbii . Letting

pk := (g, gρ1 , . . . , gρn), we have (g′, g′1, . . . , g
′
n) ∈ Enc(pk,mb), where Enc denotes

n-bit packed ElGamal. With this in mind, the sender sends ots = Shrink(ct)
to the receiver, and the receiver, who has sk := (ρ1, . . . , ρn) can recover mb as
ShrinkDec(sk, ots). We have ots ∈ G× {0, 1}λ+n, so the OT is sender rate-1.

In the above, each vector eki is a ρi exponentiation of hk but with a bump
on its (n+ ib)’s location: namely, we multiply its (n + b)’s location by g.

Our techniques: SXDH. We now give a new technique based on pairings
that allows us to produce many bumpy vectors eki’s in the target group, using
only 4 group elements and a reusable initial parameter in the source groups. The

receiver samples 2n vectors ri
$←− Z2

p, and let M contain all these vectors in the
exponent in G1, namely

M := ([r1]1, . . . , [rn]1 | [rn+1]1, . . . , [r2n]1),

where [r]1 := gr. We similarly define [r]2 := hr and [r]T := e(g, h)r.
Also, let

ν1 := ([p1r1 + u]1, [p1r2]1, · · · , [p1rn]1 | [p1rn+1 + u]1, [p1rn+2]1, · · · , [p1r2n]1)

...

νn := ([pnr1]1, [pnr2]1, · · · , [pnrn + u]1 | [pnrn+1]1, [pnrn+2]1, · · · , [pnr2n + u]1) ,

The receiver sets prm := (M,ν1, . . . ,νn) and her private state as str :=
(u, p1, . . . , pn).

Receiver’s non-reusable messages. To send a short otr message for a choice
bit b, the receiver samples two random vectors (v,w) s.t. 〈v,u〉 = 0 and 〈w,u〉 =
1. The receiver sends otr := ([f]2, [h]2), where (f ,h) = (w,v) if b = 0, and
(f ,h) = (v,w) if b = 1.

Sender’s protocol messages. Given prm := (M,ν1, . . . ,νn) and otr := ([f]2, [h]2),
the sender uses the pairing to computes the inner product of f with all the vec-
tors in the left-hand side of M,ν1, . . . ,νn, and the inner product of h with all
the vectors in the right-hand side of the M,ν1, . . . ,νn. That is, using the nota-
tion above, letting αj := 〈rj ,f〉 if j ∈ [n], and αj := 〈rj ,h〉 if j ∈ {n+1, . . . , 2n}
the sender will compute

9

hk := ([α1]T · · · , [αn]T | [αn+1]T · · · , [α2n]T)

EK :=

 [p1α1 + 1]T . . . [p1αn]T [p1αn+1]T . . . [p1α2n]T
...

. . .
...

...
. . .

...
([pnα1]T . . . [pnαn + 1]T [pnαn+1]T . . . [pnα2n]T

 if b = 0

EK :=

 [p1α1]T . . . [p1αn]T [p1αn+1 + 1]T . . . [p1α2n]T
...

. . .
...

...
. . .

...
([pnα1]T . . . [pnαn]T [pnαn+1]T . . . [pnα2n + 1]T

 if b = 1

The sender has now built (hk, IK) that satisfies the bump structure ex-
plained in the first paragraph. Namely, think of the ith row of EK as eki in
that paragraph. Moreover, the receiver knows all the underlying exponent val-
ues sk := (p1, . . . , pn). Now the sender can perform the step explained in the
first paragraph to send a rate-1 message ots, and the receiver will be able to use
sk to decrypt it to obtain mb.

Notice that the protocol has rate-1 sender communication, and that otr con-
sist of only 4 group elements in G2.

To argue about receiver privacy, let us, for simplicity, argue that an adversary
A cannot distinguish between a world in which otr always encrypts the bit 0 from
a world in which otr encrypts 1; the proof for the case where the adversary can
submits adaptively-chosen pairs of choice bits will be similar. We should show
thatA for a random pair ([f]2, [h]2) of vectors cannot tell which one is orthogonal
to u and which one has inner product one. This should be argued in the presence
of prm, known to A. We will first remove the presence of u from prm, relying
on DDH for G1. Let prm′ be the same as prm but with u removed. By DDH,

(u, prm)
c≡ (u, prm′). If we want to replace prm with prm′ for A, we should be

able to reply to A’s subsequent OT1 queries. The reason this can be done is
because OT1 responses are produced based on only u and the underlying choice
bit, and u is included in both distributions. Thus, we can remove u from the prm
view of A. Once this is done, we will then show that the entire otr view of A can
be simulated by knowing a pair of vectors (v,w) where v is orthogonal to u and
w has inner product one with u. In particular, to sample from OT1(str, b), we
return (k1v+ (1− b)w, k2v+ bw), where k1 and k2 are random exponents. Next
we show that the distribution of (v,w) is identical to uniformly random vectors.
This can be argued because information about u has been already removed from
prm. Finally, we rely on DDH for G2 to show that by using a random (v,w) in
the above simulation, the entire otr view of A will be pseudorandom, masking
the value of the choice bit b.

Our techniques: Bilinear Power DDH. We sketch how to adapt our can-
cellation technique to a sliding window setting, developed in [GHO20], to reduce

10

the size of prm into a linear number of group elements. The receiver samples a

random exponent a and a vector r
$←− Z2

p and sets

M :=
(
[ar]1, [a

2r]1, · · · , [a2nr]1
)

w :=([kar]1, · · · , [kan−1r]1, [ka
nr + u]1, [ka

n+1r]1, · · · , [ka2n−1r]1,

[ka2nr + u]1, [ka
2n+1r]1, · · · , [ka3n−1r]1),

where k is a random exponent. The receiver sets prm := (M,w).
The receiver samples a non-reusable message otr = ([f]2, [h]2) for a choice

bit b exactly as in the SXDH case — by sampling it based on u and b.
A sender given (prm, otr) builds n vectors ν1, . . . ,νn as follows. For i ∈ [n]

let νi = w[n + 1 − i, 3n − i], where w[i, j] denotes the elements in positions
i all the way up to j. Once the vectors ν1, . . . ,νn are formed, the sender will
proceed exactly like the SXDH case. Correctness will then follow. The proof of
receiver privacy follow similarly to the SXDH case, but we should replace DDH
with power DDH in the appropriate places. We omit the details.

3 Preliminaries and Definitions

We use λ for the security parameter. We use
c≡ and

s≡ for computational and sta-
tistical indistinguishability, respectively. We let ≡ denote that two distributions

are identical. For a distribution S we use x
$←− S to mean x is sampled according

to S and use y ∈ S to mean y ∈ sup(S), where sup denotes the support of a dis-

tribution. For a set S we overload the notation to use x
$←− S to indicate that x is

chosen uniformly at random from S. If A(x1, . . . , xn) is a randomized algorithm,
then A(a1, . . . , an), for deterministic inputs a1, . . . , an, denotes the random vari-
able obtained by sampling random coins r uniformly at random and returning
A(a1, . . . , an; r). We use [n] := {1, . . . , n} and [i, i+ s] := {i, i+ 1, . . . , i+ s}. For
a vector v = (v1, . . . , vn) we define v[i, i+ s] := (vi, vi+1, . . . , vi+s).

Definition 1 (Pairings and SXDH hardness). A bilinear map is given by

(e,G1,G2,GT , p, g, h)
$←− G(1λ), where p is a prime number and is the order of

G1, G2 and GT , and g and h are random generators of G1 and G2, respectively.
The function e is a non-degenerate map, satisfying e(ga, hb) = e(g, h)ab for all
exponents a and b. The Symmetric External Diffie-Hellman (SXDH) assump-
tion [BGdMM05] says G1 and G2, sampled as above, are DDH-hard.

Computing inner product in the exponent. Given g := (g1, . . . , gk) ∈ Gk1
and h := (h1, . . . , hk) ∈ Gk2 we define e(g,h) :=

∏
i∈[k] e(gi, hi).

Inner product with integer vectors. Given b := (b1, . . . , bk) ∈ Zkp and

g := (g1, . . . , gk) ∈ Gk1 , we define b · g :=
∏
i∈[k] g

bi
i .

11

3.1 Amortized Rate-1 OT: Definition

We define our new notion of amortized rate-1 OT, which allows a receiver to
reuse part of her protocol message across many independent OT executions. In
the definition below, think of n as the maximum size of each input message of a
sender. The receiver will generate a reusable parameter prm, based on n, which
will allow her later to send a short protocol message otr whenever she wants to
perform a new OT. The sender will use (prm, otr) to complete an OT transfer
for any pair of messages (m0 ∈ {0, 1}n1 ,m1 ∈ {0, 1}n1), as long as n1 ≤ n.

Definition 2 (Amortized Rate-1 OT). Let n := n(λ) be a polynomial. An
amortized rate-1 OT OT := (PreP,OT1,OT2,OT3) is defined as follows.

– PreP(1λ, n) → (str, prm): Takes as input a security parameter 1λ and n,
denoting the maximum length of each of the sender’s messages, and outputs
a private state str and a reusable message prm.

– OT1(str, b) → otr: Takes as input a security parameter 1λ and a choice bit
b ∈ {0, 1}, and outputs a a protocol message otr. We refer to otr as a fresh
receiver’s message, to distinguish it from the reusable message prm.

– OT2((prm, otr), (m0,m1)) → ots: Takes as input a reusable message prm, a
fresh message otr and a pair of messages (m0,m1) ∈ {0, 1}n1 × {0, 1}n1 , for
some n1 ≤ n, and outputs ots.

– OT3(str, ots) → m: Takes as input a private state str and ots and outputs
m ∈ {0, 1}n.

We require

– Correctness: For any polynomial n := n(λ), b ∈ {0, 1}, n1 ≤ n and

(m0,m1) ∈ {0, 1}n1×{0, 1}n1 , Pr[OT3(str, ots) = mb] = 1, where (str, prm)
$←−

PreP(1λ, n), otr
$←− OT1(str, b) and ots

$←− OT2((prm, otr), (m0,m1)).
– Rate-1 sender communication: There exists a fixed polynomial poly such

that for all n and n1 ≤ n, |ots| = n1 +poly(λ), where ots is formed as above.
– Receiver amortized compactness: The length of otr is independent of n.

There exists a fixed polynomial poly′ such that for all polynomials n := n(λ),
|otr| = poly′(λ), where otr is formed as above.

– Receiver privacy: An adaptive sender cannot determine the choice bits
of a receiver. Any PPT adversary A has at most 1/2 + negl(λ) advantage

in the following game. The challenger samples b
$←− {0, 1} and (str, prm)

$←−
PreP(1n, λ) and gives prm to A. Then, A adaptively submits queries (s0, s1) ∈
{0, 1}2, and receives OT1(str, sb). A has to guess the value of b.

Sender privacy? Notice that Definition 2 does not impose any sender security
requirements. The reason for this is that sender security can be generically re-
alized for rate-1 OT using known techniques [BGI+17], as sketched below. Let
poly be the polynomial defined in the rate-1 sender property of Definition 2. The
new sender on a pair of messages (m0,m1) ∈ {0, 1}n×{0, 1}n samples two seeds
(r0, r1) whose length is sufficiently larger than poly(λ) but independent of n. The

12

sender sends (ots′1, ots
′
2) to the receiver, where ots′1

$←− OT2((r0, r1), (prm, otr))

and ots′2
$←− OT2((ct0, ct1), (prm, otr)), where ct0 := PRG(Ext(r0)) ⊕ m0 and

ct1 := PRG(Ext(r1)) ⊕m1, and Ext is a randomness extractor. The protocol is
still sender rate-1. It now provides computational sender privacy against honest
receivers: This is because given ots′1 the value of Ext(r1−b) is statistically close
to uniform, where b is the receiver’s choice bit.

Finally, we mention that we may modify our constructions so that they
achieve sender privacy for free, without using the above generic randomness
extraction method.

4 Amortized Rate-1 OT from SXDH

Our amortized rate-1 OT protocol makes use of a shrinking algorithm, that
allows one to shrink ciphertexts of ElGamal encryption, as long as the under-
lying plaintexts are coming from a small space, say, {0, 1}. An n-bit packed
ElGamal encryption has a secret key sk := (x1, . . . , xn) and a public key pk :=
(g, gx1 , . . . , gxn). Given pk := (g, g1, . . . , gn) we can encrypt an n-bit message
Enc(m1, . . . ,mn) as ct : (gr, gr+m1

1 , . . . , gr+mn
n). We have a shrinking procedure

for n-bit ElGamal encryption that will shrink a ciphertext into one group ele-
ment plus n bits, while allowing for efficient decryption. The procedure below,
presented in [BBD+20], enables perfect decryption correctness, improving upon
the previous procedures [BGI16, DGI+19] that had a decryption error.

Lemma 1 ([BBD+20]). There exists a pair of (expected) PPT algorithms

(Shrink, ShrinkDec) such that if (pk, sk) is as above and ct
$←− Enc(pk,m) is a

packed ElGamal ciphertext encrypting a message m ∈ {0, 1}n,

(1) Shrink(ct)→ (g′,K, b1, . . . , bn) ∈ G× {0, 1}λ+n.
(2) Pr [ShrinkDec(sk, Shrink(ct)) = m] = 1.

Our amortized rate-1 OT makes us of the following procedure OrthSam that
given a vector u ∈ Z2

p and a bit b ∈ {0, 1}, samples two random vectors v and
w such that 〈u,v〉 = 0 and 〈u,w〉 = 1, and it outputs these two vectors in a
shuffled order based on the value of b.

Definition 3. The algorithm OrthSam(u ∈ Z2
p, b ∈ {0, 1}) works as follows. It

Samples random vectors w,v such that 〈w,u〉 = 1 and 〈v,u〉 = 0, and returns
(f ,h) ∈ Z4

p, where

(f ,h) =

{
(w,v) b = 0

(v,w) b = 1

4.1 Our Construction

We now present our construction. For notational clarity, we assume the size of
each message of the sender is exactly n, as opposed to an arbitrary value n1 ≤ n.

13

Adapting the construction to work with respect to varying lengths for the sender
messages will be immediate.

Construction 1 (Amortized rate-1 OT: SXDH) Build OT := (PreP,OT1,OT2,OT3)
as follows.

– PreP(1λ, n): Sample pp := (e,G1,G2,GT , p, g, h)
$←− G(1λ). Then

1. For i ∈ [2n], sample ri
$←− Z2

p. Let

M := [gr1 , gr2 , · · · , grn | grn+1 , grn+2 , · · · , gr2n].

2. Sample u
$←− Z2

p and for i ∈ [n] sample a random exponent pi
$←− [p]. Let

D := (ν1, . . . ,νn), where

ν1 := [gp1r1+u, gp1r2 , · · · , gp1rn | gp1rn+1+u, gp1rn+2 , · · · , gp1r2n]

...

νn := [gpnr1 , gpnr2 , · · · , gpnrn+u | gpnrn+1 , gpnrn+2 , · · · , gpnr2n+u],

(1)

3. Return private state str := (u, p1, . . . , pn) and reusable message prm :=
(pp,M,ν1, . . . ,νn).

– OT1(str, b ∈ {0, 1}): Parse str and all its inside variables as above. Sample

(f ,h)
$←− OrthSam(u, b) (Definition 3). Return return otr := (hf , hh) ∈ G4

2.
– OT2((prm, otr), (m0,m1) ∈ {0, 1}n×{0, 1}n): Parse prm := (pp,M,ν1, . . . ,νn),

otr := (χ1,χ2) ∈ G4
2, M := (m1, . . . ,m2n) and νi := (νi,1, . . . ,νi,2n) for

i ∈ [n]. Let

hk :=(e(χ1,m1), . . . e(χ1,mn) | e(χ2,mn+1), . . . e(χ2,m2n))

IK :=

 e(χ1,ν1,1) . . . e(χ1,ν1,n) e(χ2,ν1,n+1) . . . e(χ2,ν1,2n)
...

. . .
...

...
. . .

...
e(χ1,νn,1) . . . e(χ1,νn,n) e(χ2,νn,n+1) . . . e(χ2,νn,2n)

 .
Let m := (m0,m1) ∈ {0, 1}2n. Let yj ∈ G2n

T be the jth row of IK. The
sender then sends

ots := Shrink(m · hk,m · y1, . . . ,m · yn) ∈ GT × {0, 1}n+λ.

– OT3(str, ots): Parse str := (u, p1, . . . , pn) and set sk := (p1, . . . , pn). Return
m′ := ShrinkDec(sk, ots).

Correctness. We prove m′ = mb, where, following the notation of Construc-
tion 1, m′ is the string output by OT3, and (m0,m1) are the input strings to
OT2 and b is the choice bit for OT1.

Let f , h and r1, . . . , r2n be as in Construction 1. Let αj := 〈rj ,f〉 if j ∈
[n], and αj := 〈rj ,h〉 if j ∈ {n + 1, . . . , 2n}. Letting hk and IK be as in
Construction 1, we have

14

hk := [e(g, h)α1 · · · , e(g, h)αn | e(g, h)αn+1 · · · , e(g, h)α2n] ∈ G2n
T

IK :=

 e(g, h)p1α1 · e(g, h) . . . e(g, h)p1αn e(g, h)p1αn+1 . . . e(g, h)p1α2n

...
. . .

...
...

. . .
...

e(g, h)pnα1 . . . e(g, h)pnαn · e(g, h) e(g, h)pnαn+1 . . . e(g, h)pnα2n

 ∈ Gn×2nT if b = 0

IK :=

 e(g, h)p1α1 . . . e(g, h)p1αn e(g, h)p1αn+1 · e(g, h) . . . e(g, h)p1α2n

...
. . .

...
...

. . .
...

e(g, h)pnα1 . . . e(g, h)pnαn e(g, h)pnαn+1 . . . e(g, h)pnα2n · e(g, h)

 ∈ Gn×2nT if b = 1.

Thus, (m ·hk,m · y1, . . . ,m · yn) ∈ Enc(pk, (mb[1], . . . ,mb[n])), where m =
(m0,m1), yj is the jth row of IK, pk := (e(g, h), e(g, h)p1 , . . . , e(g, h)

pn) and
Enc is the packed ElGamal encryption algorithm as in Lemma 1. By Lemma 1,
m′ = mb, as desired.

Rate-1 sender communication and receiver amortized compactness.
We have |ots| = n+ λ+ |g| = n+ poly(λ) and |otr| = 4|h|.

4.2 Receiver Privacy

In the following we say a vector f is non-orthogonal to u if 〈f ,u〉 = 1. This is
an abuse of terminology (because non-orthogonality refers to any non-zero inner
product), but we stick to it below.

To prove receiver OT security, we should argue that a fresh receiver proto-
col message otr does not reveal the receiver’s underlying choice bit. The main
difficulty is that all otr values depend on the vector u.

The core of our argument is in showing that the vector u remains hidden in
the following sense. Given a sequence of (gf i , ghi), an adversary cannot deter-
mine the order of orthogonality/non-orthogonality in any given pair, with respect
to gu. To this end, we will first remove u from all vectors D := (ν1, . . . ,νn),
given in Equation 1. Once u is removed from the reusable message prm, we
will then show any receiver’s future fresh message otr may be simulated by the
underlying choice bit b and a pair of vectors (v,w) which are orthogonal/non-
orthogonal to u, in a way that if the joint distribution of (v,w) is pseudorandom,
then the entire simulated view will be pseudorandom as well, masking the choice
bits. We will then show that the distribution of a random (v,w) subject to them
being orthogonal/non-orthogonal to a random u is uniformly random. Taken all
together, receiver security will follow.

Definition 4 (Distribution Dual). For u ∈ Z2
p the distribution Dual(u) re-

turns (v,w), where v and w are sampled uniformly subject to 〈v,u〉 = 0 and
〈w,u〉 = 1.

15

We now describe a way of simulating messages otr, for a given choice bit b,
without knowing u, but by knowing a pair (v,w) sampled according to Dual(u).

Definition 5 (Simulator Sim). The algorithm Sim(v,w, b) samples k, k′
$←−

Zp, and returns (hkv+(1−b)w, hk
′v+bw).

Hybrid Hyb1: Real game. Sample (str, prm)
$←− PreP(1λ, 1n), a challenge bit

b
$←− {0, 1}, and give prm to the adversary. Parse str := (u, p1, . . . , pn). Reply

to an adversary’s query (s0, s1) ∈ {0, 1}2 with OT1(str, sb). The view of the
adversary for otr messages can be produced just by knowing u, as opposed
to str := (u, p1, . . . , pn). In particular, the values p1, . . . , pn do not participate
in producing the output of OT1(str, sb), and are only used in OT3, which is
immaterial to the adversary’s view.

Hybrid Hyb2: Replace D = (ν1, . . . ,νn), Equation 1, with uniformly random
vectors of group elements. Thus, information about u will be removed from D,
and hence from prm.

Hybrid Hyb3: Same as Hybrid Hyb2, except we sample (v,w)
$←− Dual(u),

and reply to any adversary’s query (s0, s1) as Sim(v,w, sb). The whole view is
produced by knowing only (v,w).

Hybrid Hyb4: Same as Hyb3, except we sample (v,w)
$←− Z4

p.

Hybrid Hyb5: Same as Hyb4, except we reply to any adversary’s query (s0, s1)
with a uniformly random vector sampled from G4

2. This hybrid perfectly hides
the value of the challenge bit b.

We will now show that any two adjacent hybrids produce computationally
indistinguishable views.

Lemma 2 (Hyb1
c≡ Hyb2). Assuming DDH hardness of G1, (u,D)

c≡ (u,D′),
where u and D are as in Equation 1, and D′ is a uniformly random matrix of
group elements.

Proof. By DDH hardness of G1, (u,D)
c≡ (u,D′). The views in Hybrid Hyb1

and Hyb2 can be produced just by knowing (u,D) and (u,D′), respectively.
(See the explanation given in Hybrid Hyb1 on why the view can be simulated

just by knowing (u,D).) Thus, Hyb1
c≡ Hyb2.

Lemma 3. Hyb2
s≡ Hyb3.

Proof. Let v and w be as in Hyb3, namely (v,w)
$←− Dual(u). We show that

for any choice bit z ∈ {0, 1}, the output of Sim(v,w, z) is statistically close to

(hf , hh), where (f ,h)
$←− OrthSam(u, z).

16

Let S0 be the set of all vectors whose inner product with u is one, and
S1 be the set of all vectors orthogonal to u. The vectors f and h are uni-
formly distributed over Sz and S1−z, respectively. Also, recall that the output

of Sim(v,w, z) is as (hkv+(1−z)w, hk
′v+zw), where k, k′

$←− Zp. In what follows,
we show (rv, r′v + w) for random r and r′ is statistically close the uniform
distribution over (S0, S1), and this will complete the proof.

Notice that S1 is a subspace and has dimension one; i.e., any basis of it has
only one vector. Letting v := (v1, v2) assume v1 6= 0 and v2 6= 0. (The probability
that either is zero is negligible, so we may ignore it.) Since v1 6= 0 and v2 6= 0, if

r
$←− Zp, then rv is uniformly random in S1.
Next, note that S0 = w + S1; i.e., for any m′ ∈ S0, there exists m ∈ S1

s.t. m′ = w +m. Since v spans S1, the vector r′v +w for a random r′
$←− Zp

is uniformly distributed over S0. The above was conditioned on v1 6= 0 and
v2 6= 0, which is true with all but negligible probability. Thus, we have statistical
indistinguishability.

Lemma 4 (Hyb3
s≡ Hyb4). Assuming u

$←− Z2
p, the output of Dual(u) is sta-

tistically close to the uniform distribution over Z4
p. Thus, the two hybrids are

statistically indistinguishable.

Proof. The only difference between these two hybrids lies in (v,w), sampled as

(v,w)
$←− Dual(u) in Hyb3 and as completely random in Hyb4. We show that

the marginal distribution of (v,w) sampled as (v,w)
$←− Dual(u) is statistically

close to the uniform distribution over Z4
p, assuming u is uniformly random. This

will complete the proof, because the view in either hybrid can be sampled by
knowing (v,w), and by knowing prm, from which we have already removed u,
so prm is information-theoretically independent of u.

Parse u := (a, b) ∈ Z2
p. First, we know that u = 0 with negligible probability.

In case u 6= 0, without loss of generality assume b 6= 0, then we have v =

(x,−abx) and w = (z,−ab z + 1
b), where x, z

$←− Zp. Let (t, t′) := (−ab ,
1
b), and

note that (t, t′) is uniform over Z2
p with t′ 6= 0, since u is uniformly random

except that b 6= 0. We may then rewrite v = (x, tx) and w = (z, tz + t′), where
x, z, t, t′ are all independent and uniformly random over Zp with the constraint
that t′ 6= 0. Thus, (v,w) is statistically close to the uniform distribution over
Z4
p.

Lemma 5 (Hyb4
c≡ Hyb5). Assuming DDH hardness of G2, Hyb4

c≡ Hyb5.

Proof. In Hyb4 the receiver forms an otr message for an adversary’s query (s0, s1) ∈
{0, 1}2 as (hkv+(1−sb)w, hk

′v+sbw). Since v andw are independent and uniformly

random, and since k, k′
$←− Zp, by DDH (gkv, gk

′v) is pseudorandom, and hence

(hkv+(1−bi)w, hk
′v+biw) is pseudorandom. The proof is now complete.

Thus, we have the following theorem.

Theorem 2. Assuming DDH hardness for G1 and G2, the amortized rate-1 OT
protocol of Construction 1 provides receiver privacy.

17

5 Amortized Rate-1 OT from Bilinear Power DDH

We show how to shorten the reusable parameter using the circulant structure im-
posed by power-DDH assumptions, following ideas from [GHO20]. We assume G2

is DDH-hard, and G1 is m-power-DDH hard, meaning that (g, gα, gα
2

,, gα
m

)
is pseudorandom. We will need to set m = O(n), where n is the bit length of
each of the sender’s messages. Concretely, m = 3n− 1 suffices.

Construction 3 (Amortized rate-1 OT: Bilinear Power DDH) Build OT :=
(PreP,OT1,OT2,OT3) as follows.

– PreP(1λ, n): Sample pp := (e,G1,G2,GT , p, g, h)
$←− G(1λ). Then

1. Sample M := [gar, ga
2r, · · · , ga2nr], where a

$←− Zp and r
$←− Z2

p.

2. Sample k
$←− Zp and let

w :=[gkar, gka
2r, · · · , gka

n−1r, gka
nr+u, gka

n+1r, · · · , gka
2n−1r,

gka
2nr+u, gka

2n+1r, · · · , gka
3n−1r]

(2)

3. Return private state str := (u, k, a) and reusable message prm := (pp,M,w).

– OT1(str, b ∈ {0, 1}): Parse str as above. Sample (f ,h)
$←− OrthSam(u, b)

(Definition 3). Return return otr := (hf , hh) ∈ G4
2.

– OT2((prm, otr), (m0,m1) ∈ {0, 1}n × {0, 1}n): Parse otr := (χ1,χ2) ∈ G4
2,

prm := (pp,M,w), M := (m1, . . . ,m2n) and w := (w1, . . . ,w3n−1). For
j ∈ [n] let wj := w[j, j + 2n − 1]; namely, the elements of w in the range
[j, j + 2n− 1]. Parse wj := (wj,1, . . . ,wj,2n). Let

hk :=(e(χ1,m1), . . . e(χ1,mn) | e(χ2,mn+1), . . . e(χ2,m2n))

IK :=

 e(χ1,wn,1) . . . e(χ1,wn,n) e(χ2,wn,n+1) . . . e(χ2,wn,2n)
...

. . .
...

...
. . .

...
e(χ1,w1,1) . . . e(χ1,w1,n) e(χ2,w1,n+1) . . . e(χ2,w1,2n)

 .
Let m := (m0,m1) ∈ {0, 1}2n. Let yj ∈ G2n

T be the jth row of IK. The
sender then sends

ots := Shrink(m · hk,m · y1, . . . ,m · yn) ∈ GT × {0, 1}n+λ.

– OT3(str, ots): Parse str := (u, k, a) and set sk := (kan−1, . . . , ka, k). Return
m′ := ShrinkDec(sk, ots).

Correctness. We prove m′ = mb, where, following the notation of Construc-
tion 3, m′ is the string output by OT3, and (m0,m1) are the input strings to
OT2 and b is the choice bit for OT1.

Let f , h, r and wj for j ∈ [n] be as in Construction 3. Let β = 〈r,f〉 and
µ = 〈r,h〉. Letting hk and IK be as in Construction 3, we have

18

hk := [e(g, h)βa · · · , e(g, h)βa
n

| e(g, h)µa
n+1

· · · , e(g, h)µa
2n

]

IK :=

 e(g, h)kβa
n · e(g, h) . . . e(g, h)kβa

2n−1

e(g, h)kµa
2n

. . . e(g, h)kµa
3n−1

...
. . .

...
...

. . .
...

e(g, h)kβa . . . e(g, h)kβa
n · e(g, h) e(g, h)kµa

n+1

. . . e(g, h)kµa
2n

 if bi = 0

IK :=

 e(g, h)kβa
n

. . . e(g, h)kβa
2n−1

e(g, h)kµa
2n · e(g, h) . . . e(g, h)kµa

3n−1

...
. . .

...
...

. . .
...

e(g, h)kβa . . . e(g, h)kβa
n

e(g, h)kµa
n+1

. . . e(g, h)kµa
2n · e(g, h)

 if bi = 1

Thus, (m ·hk,m · y1, . . . ,m · yn) ∈ Enc(pk, (mb[1], . . . ,mb[n])), where m =

(m0,m1), yj is the jth row of IK, pk := (e(g, h), e(g, h)ka
n−1

, . . . , e(g, h)
k
) and

Enc is the packed ElGamal encryption algorithm as in Lemma 1. By Lemma 1,
m′ = mb, as desired.

5.1 Receiver Privacy

The proof of security follows the same sequence of hybrids as in Section 4.2, so
we only sketch the hybrids and the proofs.

Hybrid Hyb1: Real game. Sample (str, prm)
$←− PreP(1λ, 1n), a challenge bit

b
$←− {0, 1}, and give prm to the adversary. Parse str := (u, ∗). Reply to an

adversary’s query (s0, s1) ∈ {0, 1}2 with OT1(str, sb). The view of the adversary
for OT1 outputs can be produced just by knowing u.

Hybrid Hyb2: Replace w, Equation 2, with uniformly random vectors of group
elements. Thus, information about u will be removed from D, and hence from
prm.

Hybrid Hyb3: Same as Hybrid Hyb2, except we sample (v,w)
$←− Dual(u) (Def-

inition 4), and reply to any adversary’s query (s0, s1) ∈ {0, 1}2 as Sim(v,w, sb)
(Definition 5). The whole view is produced by knowing only (v,w).

Hybrid Hyb4: Same as Hyb3, except we sample (v,w)
$←− Z4

p.

Hybrid Hyb5: Same as Hyb4, except we reply to any adversary’s query (s0, s1)
with a uniformly random vector sampled from G4

2. This hybrid perfectly hides
the value of the challenge bit b.

Hyb1
c≡ Hyb2 is established exactly like Lemma 2, except we use the power-

DDH assumption instead of DDH. We have Hyb2
s≡ Hyb3, Hyb3 ≡ Hyb4 and

Hyb4 ≡ Hyb5, and the proofs are exactly the same as those of Lemma 3, Lemma 4
and Lemma 5, respectively. Thus, we have the following theorem.

19

Theorem 4. Assuming (3n− 1)-power DDH hardness for G1, and DDH hard-
ness for G2, the amortized rate-1 OT protocol of Construction 3 provides receiver
privacy.

6 Optimization

In this section, we discuss some techniques to improve the concrete compu-
tational efficiency and lower the communication cost in amortized rate-1 OT.
These optimizations work for both the basic amortized rate-1 OT from bilinear
SXDH and the sliding-window construction from bilinear power DDH. In Sec-
tion 7 when we describe the applications of amortized rate-1 OT, we will discuss
further optimizations specific to these applications.

6.1 Delayed Pairing

Recall that when the sender computes her response message, she needs to com-
pute the hash-key vector hk, which requires 4n pairing operations. In addition,
she needs to compute the matrix IK, which requires 4n2 pairing operations in
the basic construction and 6n pairing operations in the sliding-window construc-
tion. Since paring operations are orders of magnitude more expensive than the
other group operations, we introduce a technique to minimize it.

On Basic Construction. The high-level idea is that we can leverage the bi-
linear property to delay the pairing operations. Instead of first performing the
pairing operations and then computing inner products in the target group, we
can first compute the inner products in G1 and then perform the pairings.

In more detail, in the basic construction, let

M0 := [gr1 , gr2 , · · · , grn],

M1 := [grn+1 , grn+2 , · · · , gr2n].

Let m = (m0,m1) ∈ {0, 1}2n be the sender messages. With receiver message
otr = (χ1,χ2) ∈ G4

2, the inner product of m · hk can be computed as

e(m0 ·M0,χ1) · e(m1 ·M1,χ2).

Here m0 ·M0 computes inner products for each vector component of M0 and
results in a vector of two group elements in G1, and e(M0 ·m0,χ1) takes the
inner product on the exponent of the two vectors. e(m1 ·M1,χ2) is computed in
the same way. The same approach can be applied to compute m ·y1, . . . ,m ·yn.

The computational cost ofm·hk in the basic construction includes 4n pairing
operations and 4n multiplications in GT . By using the above technique, this
cost can be reduced to 4 pairing operations, 4n multiplications in G1, and 3
multiplications in GT . The same improvement applies to each inner product
m·y1, . . . ,m·yn. Therefore, the total computational cost of the sender is reduced
to 4n pairing operations, 4n2 multiplications in G1, and 3n multiplications in
GT .

20

On Sliding-Window Construction. The same technique can be applied on
the sliding-window construction and the improvements on m · hk is the same
as above. The total cost of computing m · y1, . . . ,m · yn in the sliding-window
construction includes 6n pairing operations and (2n2 + 3n) multiplications in
GT . This can be improved to 4n pairing operations, 4n2 multiplications in G1,
and 3n multiplications in GT .

6.2 Increasing Vector Dimension

Reducing Hash Value Size. The hash value m · hk currently contains a
single group element in GT . Since the bit representation of group elements in
GT is much longer than group elements in G1, we can reduce that by sending 4
group elements in G1, namely m0 ·M0 and m1 ·M1, and then let the receiver
perform the remaining pairing operations. In applications such as PIR and PSI,
the sender message grows with the tree depth and this saving in communication
gets accumulated throughout all the levels of the tree. Another benefit of this
optimization is that it pushes the pairing operations in computing hashes to the
receiver side, which significantly reduces the computational cost in computing
hashes because the sender had to compute hashes in every node of the tree while
the receiver only needs to compute hashes along a single path of the tree.

Next we discuss another technique to further reduce the cost to 3 group
elements in G1.

On Basic Construction. At a high-level, we will unify f and h to a single
vector by increasing the vector dimension from 2 to 3. In more detail, the base

hash key M is the same as before except that each ri
$←− Z3

p is of dimension 3.
The receiver’s reusable message is redefined by

ν1 := [gp1r1+u, gp1r2 , · · · , gp1rn | gp1rn+1+v, gp1rn+2 , · · · , gp1r2n]

...

νn := [gpnr1 , gpnr2 , · · · , gpnrn+u | gpnrn+1 , gpnrn+2 , · · · , gpnr2n+v],

where all pi’s are random exponents and u,v
$←− Z3

p. For a choice bit b, the
receiver samples a single random vector f s.t. 〈u,f〉 = 1− b and 〈v,f〉 = b, and
sends a single vector χ = hf ∈ G3

2.
Next the sender computes hk by taking the inner product in the exponent

of M and χ. The matrix IK can be computed by taking the inner product in
the exponent of νj ’s and χ. We can use delayed pairing to compute m · hk by

e(m ·M,χ).

Again, we can reduce the hash value size by sending 3 group elements in the
vector m ·M and postpone the pairing operations to the receiver side. It also
reduces the receiver’s non-reusable message from 4 group elements in G2 to 3.

21

To summarize, the receiver’s reusable message is increased from (4n2 + 4n)
to (6n2 + 6n) group elements in G1, but the non-reusable message is reduced
from 4 to 3 group elements in G2. The hash value in the sender’s message is
reduced from 1 group element in GT to 3 group elements in G1.

On Sliding-Window Construction. The same technique can be applied on
the sliding-window construction and the improvements on the communication
is the same as above. In particular, the receiver’s reusable message is increased
from 10n to 15n group elements in G1, but the non-reusable message is reduced
from 4 to 3 group elements in G2. The hash value in the sender’s message is
reduced from 1 group element in GT to 3 group elements in G1.

7 Applications

In this section, we discuss several applications of our amortized rate-1 OT and
focus on the communication improvements over prior work. For certain appli-
cations, we will discuss optimizations that further improve the communication
and/or computational complexity. The communication improvements are sum-
marized in Table 3 at the end of the section.

7.1 Secure Function Evaluation on Branching Programs

The work of Ishai and Paskin [IP07] presents an approach to two-round secure
function evaluation (SFE) on (oblivious) branching program (BP) from rate-
1 OT where the communication complexity only grows with the depth of the
branching program instead of its size. In particular, consider a sender holding
a private branching program P and a receiver holding a private input x. They
can jointly compute P (x) in two rounds of communication, that is, the receiver
first sends an encryption c of the input x to the sender, and the the sender
can compute a succinct ciphertext c′ which allows the receiver to decrypt P (x)
without revealing any further information about P except its depth. The size
of c′ depends polynomially on the size of x and the depth of P , but does not
further depend on the size of P .

In terms of concrete communication complexity, let ` be the depth of the
oblivious BP and h be the bit length of the output. The recent work of Garg et
al. [GHO20] achieves receiver’s communication complexity of O(` · (h + λ · `))
group elements and sender’s communication complexity of O(h + λ · `) bits,
where the group elements are from a pairing-free group where the power DDH
assumption holds. This improves upon prior work of Döttling et al. [DGI+19]
based on DDH with receiver’s communication complexity of O(` · (h + λ · `)2)
group elements and sender’s communication complexity of O(h+ λ · `) bits.

In this work, we consider the problem in the reusable setting where the
receiver first sends a one-time reusable message to the sender consisting of O(h+
λ · `) group elements in G1. Afterwards, for any oblivious BP with depth ` and
output length h and any input x, the receiver’s communication complexity is O(`)

22

group elements in G2 and the sender’s communication complexity is O(h+λ · `)
bits. Note that the one-time messages can be reused for arbitrary polynomially
many times.

Example: Secure Inference of Decision Trees. As an example, we consider
a server holding a machine learning model of a decision tree, which takes as
input a data point with multiple features. Starting from the root, each node of
the tree is a function on some feature (e.g. testing if x < 10, t = true) that
determines whether to go to the left or right child. The client has a single data
point and would like to perform a secure inference with the server on the decision
tree. The decision tree can be formalized as a branching program and two-round
secure inference can be achieved by two-round SFE described above, where the
communication only grows with the depth of the tree.

7.2 PSI and PIR

In this section, we illustrate several useful applications that can be viewed as
special cases of SFE on oblivious BP, hence they achieve the same improvements
over prior work.

Unbalanced Private Set Intersection (PSI) Consider the PSI problem be-
tween a server holding a private set X = {x1, . . . , xN} and a client holding a
private set Y = {y1, . . . , ym}. They want to jointly compute the set intersection
X∩Y without revealing any other information. Without loss of generality we as-
sume all the set elements xi, yj ∈ {0, 1}λ.8 We focus on the case with unbalanced
set sizes, namely N � m, and present a solution for two-round PSI.

To learn the intersection X∩{y} for any y ∈ Y , we can construct an oblivious
BP with depth λ and size λ ·N . To construct the oblivious BP, we can first think
of it as a full binary tree of depth λ where each leaf node indicates whether
the root-to-leaf path is an element in X. However, this branching program has
exponential size. We can prune the full binary tree by replacing each subtree
consisting of only 0’s with a “dummy node” of the same depth. A dummy node
of depth d is connected to two dummy nodes with depth d− 1.

Following this approach, the client only needs to performs m instances of
SFE on the oblivious BP to learn the intersection X ∩ {y} for every y ∈ Y . The
oblivious BP has depth ` = λ, size λ ·N , and single-bit output.

Private Set Intersection (PIR) Consider a server (sender) holding a large
database D ∈ {0, 1}N and a client (receiver) who wants to retrieve D[i] for
i ∈ [N] without revealing i to the server. As pointed out in [IP07], single-server
two-round PIR can be viewed as two-round SFE on an oblivious BP with depth
` = logN and single-bit output.

8 The set elements can be of arbitrary length, but the parties can first apply a collision-
resistant hash function on the elements to make them all have length λ.

23

PIR-with-Default Consider a PIR variant where the server holds N binary
strings s1, . . . , sN ∈ {0, 1}t along with N values v1, . . . , vN ∈ {0, 1}k. The server
additionally holds a default value vdflt ∈ {0, 1}k. The client holds a binary string
w ∈ {0, 1}t and wants to learn a value v such that if w = sj for some j ∈ [N], then
v = vj ; otherwise v = vdflt, without revealing any information about w to the
server. This problem is formalized by Lepoint et al. [LPR+20]. Two-round PIR-
with-Default can be viewed as two-round SFE on a k-bit output oblivious BP
with depth t and polynomial size. Hence the receiver and sender communication
follow generically from oblivious BP with many-bit outputs. We mention this
PIR variant because it will be used to construct PSI-Cardinality.

PSI-Cardinality Consider a PSI variant where a server holding a private set
X = {x1, . . . , xN} and a client holding a private set Y = {y1, . . . , ym} want to
learn the cardinality of the intersection |X ∩Y | instead of the intersection itself.

We can achieve PSI-Cardinality by the client querying PIR-with-Default on
every element in the her set, where in each PIR-with-Default instance, the default
value vidflt is sampled at random such that all the default values sum up to 0,
namely

∑m
i=1 v

i
dflt = 0. All the non-default values in a single instance are set to

vidflt + 1. At the end, the client sums up all the values retrieved from the PIR-
with-Default instances. Similar to PSI, we should prune the full binary tree to
obtain an oblivious BP with depth λ and polynomial size.

7.3 Optimization for PSI and PSI-Cardinality

We design optimizations for unbalanced PSI and PSI-Cardinality so as to achieve
better communication than the above generic approaches.

Optimized PSI Note that the aforementioned oblivious BP for PSI has depth
` = λ. To further improve the communication complexity, we replace small
subtrees by small instances of two-round PSI (e.g. DDH-based PSI [HFH99]),
which we denote by ΠPSI.

In particular, to compute X∩{y}, the server first hashes his N elements into
N random bins. We know that each bin has at most O(logN) elements. The
client computes the same hash on y to identify the bin b that could possibly
contain an element y. Now the client queries the server with PIR-with-Default
on a string b. The client additionally sends the round-1 message of the two-
round PSI protocol ΠPSI on a single element y. The server then computes a
round-2 message of ΠPSI for each bin with elements in that bin. The server
views his database for PIR-with-Default as all the N indices of the bins along
with the associated values being the round-2 messages of ΠPSI, and generates
the response for PIR-with-Default. Finally, the client first recovers the round-2
message of ΠPSI from PIR-with-Default, and then recovers the output of ΠPSI,
namely X ∩ {y}.

The receiver’s reusable communication is reduced from O(λ2) to O(λ · logN)
group elements in G1. Then for each X ∩ {y} query, her online communication
is reduced from O(λ) to O(logN) group elements in G2. The sender’s commu-
nication is reduced from O(λ2) to O(λ · logN).

24

– Server has a set X of size N , client has a single element y. All the elements are
λ-bit strings.

– Let h : {0, 1}λ → [N] be a hash function.
– Let ΠPSI and ΠPIR-Default be two-round PSI and PIR-with-Default protocols, respec-

tively.

Round 1: Client does the following:

1. Compute b := H(y).
2. Compute round-1 message of ΠPSI with a single element y, and round-1 message

of ΠPIR-Default with query b, and send them to the server.

Round 2: Server does the following:

1. Let B[i] := ∅ for each bin i ∈ [N].
2. For each j ∈ [N], compute bj := H(xj) and let B[bj] := B[bj] ∪ {xj}.
3. For each bin i ∈ [N]:

(a) Pad B[i] with dummy elements to be a total of logN elements.
(b) Based on the round-1 message of ΠPSI, compute round-2 message of ΠPSI with

set B[i]. Let the round-2 message be Mi.
4. Based on the round-1 message of ΠPIR-Default, compute round-2 message of ΠPIR-Default

with N values M1, . . . ,MN , and send it to the client.

Output: Client does the following:

1. Compute the output of the ΠPIR-Default, which gives a round-2 message of ΠPSI,
namely Mb.

2. Use the round-2 message Mb of ΠPSI to compute the PSI output.

Fig. 1: Optimized two-round PSI protocol with a single element on the client
side.

PSI-Cardinality We can optimize the PSI-Cardinality protocol by replacing
small subtrees by small instances of two-round PSI-Cardinality (e.g. DDH-based
PSI-Cardinality [IKN+20]), similarly as in the above PSI protocol. However, this
would reveal which elements are in the intersection and which are not.

Nonetheless, we notice that in our reusable rate-1 OT protocol, any OT re-
sponse from the sender can be decrypted by the receiver using the same secret
state str, and the receiver cannot distinguish between different responses. There-
fore, the server can randomly shuffle the responses for all the PIR-with-Default
instances so that the client can only learn the cardinality of the intersection.
This achieves the same improvement as in the above PSI protocol.

7.4 Other Variants of PSI and PIR

In this section, we discuss a few more useful variants of PSI and PIR problems.

PIR-by-Keywords Consider a PIR variant where the server holds N binary
strings s1, . . . , sN ∈ {0, 1}t. The client holds a binary string w ∈ {0, 1}t, who
wants to learn whether w = sj for some j ∈ [N] without revealing any informa-
tion about w to the server. This problem was introduced by Chor et al. [CGN98].

25

As pointed out in [IP07], two-round PIR-by-Keywords can be viewed as two-
round SFE on a branching program with depth ` = t and single-bit-output.

PSI-Sum Consider a server holding a set with weights (X,W) = {(x1, w1), . . . ,
(xN , wN)} and a client holding a set Y = {y1, . . . , ym}. They want to jointly
compute the PSI-Cardinality along with the sum of the weights associated with
the elements in the intersection, namely

∑
i:xi∈Y wi. This functionality, intro-

duced by Ion et al. [IKN+20], is a generalization of PSI-Cardinality.
We can achieve PSI-Sum from PIR-with-Default similarly as in the PSI-

Cardinality protocol except that all the non-default values vj in a single instance
are set to vidflt+wj where wj is the corresponding weight. Note that this approach
additionally hides the PSI-Cardinality and only reveals the PSI-Sum.

PSI-Test Consider a PSI variant where a server holding a private set X =
{x1, . . . , xN} and a client holding a private set Y = {y1, . . . , ym} want to learn
whether the two sets intersect or not, namely whether |X ∩ Y | = ∅.

We can achieve this from PIR-with-Default similarly as in PSI-Cardinality
but all the non-default values in a single instance are all set to vidflt + ri for some
random ri. At the end, the client checks if all the values obtained from the PIR-
with-Default instances sum up to 0. The sum equals 0 if and only if |X ∩Y | = ∅
except with negligible probability.

Extended-PIR-with-Default An extension to PIR-with-Default, also formal-
ized in [LPR+20], enables two parties to learn random shares of the PIR-with-
Default answer multiplied with a weight w supplied from the client. By using
the techniques from [LPR+20], we can achieve the same complexity as PIR-
with-Default with additively homomorphic encryption. In particular, we make
the following changes to the PIR-with-Default protocol. The client additionally
sends Enc(w) to the server (in the online phase) where Enc is an additively ho-
momorphic encryption scheme. The server picks a random value α as his output
of Extended-PIR-with-Default and replaces each value v in a leaf node of the
PIR-with-Default tree by Enc(v ·w− α). Finally the client needs to decrypt her
output from PIR-with-Default to recover her output for Extended-PIR-with-
Default. We mention this PIR variant because it will be useful in the following
application.

Private Join and Compute (PJC) for Inner Product Consider a server
holding a set with weights (X,W) = {(x1, w1), . . . , (xN , wN)} and a client also
holding a set with weights Y = {(y1, v1), . . . , (ym, vm)}. They want to jointly
compute the

∑
i,j:xi=yj

wi · vj . This functionality, introduced by Lepoint et al.

[LPR+20], is a generalization of PSI-Sum.
We can achieve this by the client querying Extended-PIR-with-Default on

every element in her set, where in each Extended-PIR-with-Default instance,
the default values are set to 0 and the two parties learn a secret share of wi · vj
if X ∩ {yj} 6= ∅. From this the two parties can sum up their own shares to
obtain a secret sharing of the the inner product result. The server only needs

26

to additionally send the sum of his shares to the client, from which the client
can recover the output. Note that this approach additionally hides the PSI-
Cardinality and only reveals the result of the inner product.

Application
Receiver Comm Receiver Comm Receiver Comm Sender Comm

[GHO20] Ours (reusable) Ours (online) (same)

SFE on oblivious BP O(` · (h+ λ · `)) G O(h+ λ · `) G1 O(`) G2 O(h+ λ · `)
PSI/PSI-Cardinality/

O(λ3 ·m) G O(λ2) G1 O(λ ·m) G2 O(λ2 ·m)
PSI-Sum/PJC/PSI-Test

Optimized PSI/
O(λ2 · logN ·m) G O(λ · logN) G1 O(logN ·m) G2 O(λ · logN ·m)

Optimized PSI-Cardinality

PIR O(λ · log2N) G O(λ · logN) G1 O(logN) G2 O(λ · logN)

PIR-by-Keywords O(λ · t2) G O(λ · t) G1 O(t) G2 O(λ · t)
(Extended-)PIR-with-Default O(t · (k + λ · t)) G O(k + λ · t) G1 O(t) G2 O(k + λ · t)

Table 3: Summary of communication complexity in various applications of rate-1
OT. We compare our work based on bilinear power DDH with the state-of-the-
art rate-1 OT based on power DDH [GHO20], and show improvements in terms
of the receiver’s communication while the sender’s communication remain the
same. Recall that ` is the depth of the oblivious BP and h is the output length
in bits, m is the client’s set size in PSI, N is the server’s set size in PSI and the
size of database in PIR, t is the length of the keywords in PIR-by-Keywords, k
is the output length in PIR-with-Default. In all the applications, the one-time
reusable message sent by the receiver can be reused for arbitrary polynomially
many times.

8 Amortized Rate-1 OT with Strong Sender Privacy

We will now show that variants of our amortized rate-1 OT constructions satisfy
a stronger sender privacy requirement, essential for secure computation on non-
oblivious branching programs, as required in [IP07].

Definition 6 (Strong sender privacy [IP07]). Let OT := (PreP,OT1,OT2,OT3)
be as in Definition 2. We say OT provides strong sender privacy if there exists a
PPT algorithm OTSim such that for any bit b and any pair of messages (m0,m1),

sampling (str, prm)
$←− PreP(1λ) and otr

$←− OT1(str, b), the two distributions
OT2((prm, otr), (m0,m1)) and OTSim(prm,mb) are statistically close.

Our amortized rate-1 OT constructions, as presented in Sections 4,5, do not
provide strong sender privacy, because OT2 is deterministic. Thus, we will con-
sider a randomized OT2 version of these constructions, obtained by using random
extractors and PRGs, as explained in Section 3.1. Under these new OT2 algo-
rithms of our constructions, the following holds: for any choice b and any two

27

pairs (m0,m1) and (m′0,m
′
1) such that mb = m′b, any otr ∈ OT1(str, b), otr′ ∈

OT1(str, b′), the two distributions OT2((prm, otr), (m0,m1)) and OT2((prm, otr′),
(m′0,m

′
1)) are statistically close. The simulation algorithm OTSim, which is only

given mb, should somehow sample from OT2((prm, otr), (m0,m1)). By what just
mentioned, OTSim may, instead, sample from OT2((prm, otr), (mb,mb)). The
main challenge in doing so is that OTSim is only given (prm,mb), and not
otr, which in turn is sampled based on str, not known to OTSim. Luckily, in
our proofs we showed an oblivious way of sampling from OT1 without know-
ing str := (u, . . .). In particular, assuming OTSim is given (v,w) sampled as

(v,w)
$←− Dual(u) (Definition 4), then Sim(v,w, b) (Definition 5) samples an

output statistically close to the output of OT1(str, b) (Lemma 3). We may in-
clude (v,w) in prm without harming security, as argued in the security of the
constructions.

Once (v,w) is included as part of prm, the output of OTSim(prm,mb) is

formed as follows: sample otr
$←− Sim(v,w, 0) and return OT2((prm, otr), (mb,mb)).

In terms of efficiency, the size of otr remains the same, and the size of prm is
increased by four group elements in G1.

References

ADT11. G. Ateniese, E. De Cristofaro, and G. Tsudik. (If) size matters: Size-
hiding private set intersection. In PKC 2011, LNCS 6571, pages 156–173,
Taormina, Italy, March 6–9, 2011. Springer, Heidelberg, Germany. 8

AIR01. W. Aiello, Y. Ishai, and O. Reingold. Priced oblivious transfer: How to
sell digital goods. In EUROCRYPT 2001, LNCS 2045, pages 119–135,
Innsbruck, Austria, May 6–10, 2001. Springer, Heidelberg, Germany. 2

APP. Password Monitoring – Apple Platform Security. https://support.

apple.com/en-al/guide/security/sec78e79fc3b/web. 8
BBD+20. Z. Brakerski, P. Branco, N. Döttling, S. Garg, and G. Malavolta. Constant

ciphertext-rate non-committing encryption from standard assumptions.
In TCC 2020, Part I, LNCS 12550, pages 58–87, Durham, NC, USA,
November 16–19, 2020. Springer, Heidelberg, Germany. 8, 13

Bea96. D. Beaver. Correlated pseudorandomness and the complexity of private
computations. In 28th ACM STOC, pages 479–488, Philadephia, PA,
USA, May 22–24, 1996. ACM Press. 7

BGdMM05. L. Ballard, M. Green, B. de Medeiros, and F. Monrose. Correlation-
resistant storage via keyword-searchable encryption. Cryptology ePrint
Archive, Report 2005/417, 2005. https://eprint.iacr.org/2005/417.
4, 11

BGI16. E. Boyle, N. Gilboa, and Y. Ishai. Breaking the circuit size barrier for
secure computation under DDH. In CRYPTO 2016, Part I, LNCS 9814,
pages 509–539, Santa Barbara, CA, USA, August 14–18, 2016. Springer,
Heidelberg, Germany. 7, 8, 13

BGI+17. S. Badrinarayanan, S. Garg, Y. Ishai, A. Sahai, and A. Wadia. Two-
message witness indistinguishability and secure computation in the plain
model from new assumptions. In ASIACRYPT 2017, Part III, LNCS
10626, pages 275–303, Hong Kong, China, December 3–7, 2017. Springer,
Heidelberg, Germany. 12

28

https://support.apple.com/en-al/guide/security/sec78e79fc3b/web
https://support.apple.com/en-al/guide/security/sec78e79fc3b/web
https://eprint.iacr.org/2005/417

BKM20. Z. Brakerski, V. Koppula, and T. Mour. NIZK from LPN and trap-
door hash via correlation intractability for approximable relations. In
CRYPTO 2020, Part III, LNCS 12172, pages 738–767, Santa Barbara,
CA, USA, August 17–21, 2020. Springer, Heidelberg, Germany. 3

BLSV18. Z. Brakerski, A. Lombardi, G. Segev, and V. Vaikuntanathan. Anonymous
IBE, leakage resilience and circular security from new assumptions. In
EUROCRYPT 2018, Part I, LNCS 10820, pages 535–564, Tel Aviv, Israel,
April 29 – May 3, 2018. Springer, Heidelberg, Germany. 7

CCF+20. J. Chan, L. P. Cox, D. P. Foster, S. Gollakota, E. Horvitz, J. Jaeger, S. M.
Kakade, T. Kohno, J. Langford, J. Larson, P. Sharma, S. Singanamalla,
J. E. Sunshine, and S. Tessaro. PACT: privacy-sensitive protocols and
mechanisms for mobile contact tracing. IEEE Data Eng. Bull., 2020. 8

CDG+17. C. Cho, N. Döttling, S. Garg, D. Gupta, P. Miao, and A. Polychroniadou.
Laconic oblivious transfer and its applications. In CRYPTO 2017, Part II,
LNCS 10402, pages 33–65, Santa Barbara, CA, USA, August 20–24, 2017.
Springer, Heidelberg, Germany. 7

CGN98. B. Chor, N. Gilboa, and M. Naor. Private information retrieval by
keywords. Cryptology ePrint Archive, Report 1998/003, 1998. https:

//eprint.iacr.org/1998/003. 25

CLR17. H. Chen, K. Laine, and P. Rindal. Fast private set intersection from
homomorphic encryption. In ACM CCS 2017, pages 1243–1255, Dallas,
TX, USA, October 31 – November 2, 2017. ACM Press. 8

CM20. M. Chase and P. Miao. Private set intersection in the internet setting from
lightweight oblivious PRF. In CRYPTO 2020, Part III, LNCS 12172,
pages 34–63, Santa Barbara, CA, USA, August 17–21, 2020. Springer,
Heidelberg, Germany. 8

DG17. N. Döttling and S. Garg. Identity-based encryption from the Diffie-
Hellman assumption. In CRYPTO 2017, Part I, LNCS 10401, pages 537–
569, Santa Barbara, CA, USA, August 20–24, 2017. Springer, Heidelberg,
Germany. 7

DGH+20. N. Döttling, S. Garg, M. Hajiabadi, D. Masny, and D. Wichs. Two-round
oblivious transfer from CDH or LPN. In EUROCRYPT 2020, Part II,
LNCS 12106, pages 768–797, Zagreb, Croatia, May 10–14, 2020. Springer,
Heidelberg, Germany. 2

DGI+19. N. Döttling, S. Garg, Y. Ishai, G. Malavolta, T. Mour, and R. Ostro-
vsky. Trapdoor hash functions and their applications. In CRYPTO 2019,
Part III, LNCS 11694, pages 3–32, Santa Barbara, CA, USA, August 18–
22, 2019. Springer, Heidelberg, Germany. 3, 5, 6, 7, 8, 13, 22

EGL82. S. Even, O. Goldreich, and A. Lempel. A randomized protocol for signing
contracts. In CRYPTO’82, pages 205–210, Santa Barbara, CA, USA,
1982. Plenum Press, New York, USA. 2

GGH19. S. Garg, R. Gay, and M. Hajiabadi. New techniques for efficient trap-
door functions and applications. In EUROCRYPT 2019, Part III, LNCS
11478, pages 33–63, Darmstadt, Germany, May 19–23, 2019. Springer,
Heidelberg, Germany. 7

GH18. S. Garg and M. Hajiabadi. Trapdoor functions from the computational
Diffie-Hellman assumption. In CRYPTO 2018, Part II, LNCS 10992,
pages 362–391, Santa Barbara, CA, USA, August 19–23, 2018. Springer,
Heidelberg, Germany. 7

29

https://eprint.iacr.org/1998/003
https://eprint.iacr.org/1998/003

GHO20. S. Garg, M. Hajiabadi, and R. Ostrovsky. Efficient range-trapdoor func-
tions and applications: Rate-1 OT and more. In TCC 2020, Part I, LNCS
12550, pages 88–116, Durham, NC, USA, November 16–19, 2020. Springer,
Heidelberg, Germany. 3, 5, 6, 7, 10, 18, 22, 27

GMW87. O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game
or A completeness theorem for protocols with honest majority. In 19th
ACM STOC, pages 218–229, New York City, NY, USA, May 25–27, 1987.
ACM Press. 2

GVW20. R. Goyal, S. Vusirikala, and B. Waters. New constructions of hinting
PRGs, OWFs with encryption, and more. In CRYPTO 2020, Part I,
LNCS 12170, pages 527–558, Santa Barbara, CA, USA, August 17–21,
2020. Springer, Heidelberg, Germany. 7

HEK12. Y. Huang, D. Evans, and J. Katz. Private set intersection: Are garbled
circuits better than custom protocols? In NDSS 2012, San Diego, CA,
USA, February 5–8, 2012. The Internet Society. 8

HFH99. B. A. Huberman, M. K. Franklin, and T. Hogg. Enhancing privacy and
trust in electronic communities. In Proceedings of the First ACM Con-
ference on Electronic Commerce (EC-99), Denver, CO, USA, November
3-5, 1999, pages 78–86. ACM, 1999. 8, 24

HK12. S. Halevi and Y. T. Kalai. Smooth projective hashing and two-message
oblivious transfer. Journal of Cryptology, 25(1):158–193, January 2012. 2

HKW20. S. Hohenberger, V. Koppula, and B. Waters. Chosen ciphertext security
from injective trapdoor functions. In CRYPTO 2020, Part I, LNCS 12170,
pages 836–866, Santa Barbara, CA, USA, August 17–21, 2020. Springer,
Heidelberg, Germany. 7

IKN+20. M. Ion, B. Kreuter, A. E. Nergiz, S. Patel, S. Saxena, K. Seth, M. Raykova,
D. Shanahan, and M. Yung. On deploying secure computing: Private
intersection-sum-with-cardinality. In IEEE European Symposium on Se-
curity and Privacy, EuroS&P 2020, Genoa, Italy, September 7-11, 2020,
pages 370–389. IEEE, 2020. 8, 25, 26

IKNP03. Y. Ishai, J. Kilian, K. Nissim, and E. Petrank. Extending oblivious trans-
fers efficiently. In CRYPTO 2003, LNCS 2729, pages 145–161, Santa
Barbara, CA, USA, August 17–21, 2003. Springer, Heidelberg, Germany.
7

IP07. Y. Ishai and A. Paskin. Evaluating branching programs on encrypted
data. In TCC 2007, LNCS 4392, pages 575–594, Amsterdam, The Nether-
lands, February 21–24, 2007. Springer, Heidelberg, Germany. 2, 4, 6, 22,
23, 26, 27

KKRT16. V. Kolesnikov, R. Kumaresan, M. Rosulek, and N. Trieu. Efficient batched
oblivious PRF with applications to private set intersection. In ACM CCS
2016, pages 818–829, Vienna, Austria, October 24–28, 2016. ACM Press.
8

KMT19. F. Kitagawa, T. Matsuda, and K. Tanaka. CCA security and trap-
door functions via key-dependent-message security. In CRYPTO 2019,
Part III, LNCS 11694, pages 33–64, Santa Barbara, CA, USA, August 18–
22, 2019. Springer, Heidelberg, Germany. 7

KRS+19. D. Kales, C. Rechberger, T. Schneider, M. Senker, and C. Weinert. Mobile
private contact discovery at scale. In USENIX Security, 2019. 8

KW19. V. Koppula and B. Waters. Realizing chosen ciphertext security
generically in attribute-based encryption and predicate encryption. In

30

CRYPTO 2019, Part II, LNCS 11693, pages 671–700, Santa Barbara,
CA, USA, August 18–22, 2019. Springer, Heidelberg, Germany. 7

LPR+20. T. Lepoint, S. Patel, M. Raykova, K. Seth, and N. Trieu. Private join
and compute from PIR with default. Cryptology ePrint Archive, Report
2020/1011, 2020. https://eprint.iacr.org/2020/1011. 24, 26

LQR+19. A. Lombardi, W. Quach, R. D. Rothblum, D. Wichs, and D. J. Wu. New
constructions of reusable designated-verifier NIZKs. In CRYPTO 2019,
Part III, LNCS 11694, pages 670–700, Santa Barbara, CA, USA, Au-
gust 18–22, 2019. Springer, Heidelberg, Germany. 7

MIC. Password Monitor: Safeguarding passwords in Microsoft
Edge. https://www.microsoft.com/en-us/research/blog/

password-monitor-safeguarding-passwords-in-microsoft-edge/.
8

NP01. M. Naor and B. Pinkas. Efficient oblivious transfer protocols. In 12th
SODA, pages 448–457, Washington, DC, USA, January 7–9, 2001. ACM-
SIAM. 2

PRTY19. B. Pinkas, M. Rosulek, N. Trieu, and A. Yanai. SpOT-light: Lightweight
private set intersection from sparse OT extension. In CRYPTO 2019,
Part III, LNCS 11694, pages 401–431, Santa Barbara, CA, USA, Au-
gust 18–22, 2019. Springer, Heidelberg, Germany. 8

PRTY20. B. Pinkas, M. Rosulek, N. Trieu, and A. Yanai. PSI from PaXoS: Fast,
malicious private set intersection. In EUROCRYPT 2020, Part II, LNCS
12106, pages 739–767, Zagreb, Croatia, May 10–14, 2020. Springer, Hei-
delberg, Germany. 8

PSSZ15. B. Pinkas, T. Schneider, G. Segev, and M. Zohner. Phasing: Private set
intersection using permutation-based hashing. In USENIX Security 2015,
pages 515–530, Washington, DC, USA, August 12–14, 2015. USENIX As-
sociation. 8

PSTY19. B. Pinkas, T. Schneider, O. Tkachenko, and A. Yanai. Efficient circuit-
based PSI with linear communication. In EUROCRYPT 2019, Part III,
LNCS 11478, pages 122–153, Darmstadt, Germany, May 19–23, 2019.
Springer, Heidelberg, Germany. 8

PSWW18. B. Pinkas, T. Schneider, C. Weinert, and U. Wieder. Efficient circuit-
based PSI via cuckoo hashing. In EUROCRYPT 2018, Part III, LNCS
10822, pages 125–157, Tel Aviv, Israel, April 29 – May 3, 2018. Springer,
Heidelberg, Germany. 8

PVW08. C. Peikert, V. Vaikuntanathan, and B. Waters. A framework for effi-
cient and composable oblivious transfer. In CRYPTO 2008, LNCS 5157,
pages 554–571, Santa Barbara, CA, USA, August 17–21, 2008. Springer,
Heidelberg, Germany. 2

Rab05. M. O. Rabin. How to exchange secrets with oblivious transfer. Cryptol-
ogy ePrint Archive, Report 2005/187, 2005. https://eprint.iacr.org/

2005/187. 2
RS21. P. Rindal and P. Schoppmann. VOLE-PSI: fast OPRF and circuit-psi from

vector-ole. In Advances in Cryptology - EUROCRYPT 2021, International
Conference on the Theory and Applications of Cryptographic Techniques,
2021. 8

TPY+19. K. Thomas, J. Pullman, K. Yeo, A. Raghunathan, P. G. Kelley, L. Inv-
ernizzi, B. Benko, T. Pietraszek, S. Patel, D. Boneh, and E. Bursztein.
Protecting accounts from credential stuffing with password breach alert-
ing. In USENIX Security, 2019. 8

31

https://eprint.iacr.org/2020/1011
https://www.microsoft.com/en-us/research/blog/password-monitor-safeguarding-passwords-in-microsoft-edge/
https://www.microsoft.com/en-us/research/blog/password-monitor-safeguarding-passwords-in-microsoft-edge/
https://eprint.iacr.org/2005/187
https://eprint.iacr.org/2005/187

TSS+20. N. Trieu, K. Shehata, P. Saxena, R. Shokri, and D. Song. Epione:
Lightweight contact tracing with strong privacy. IEEE Data Eng. Bull.,
2020. 8

32

	Amortizing Rate-1 OT and Applications to PIR and PSI

