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Real-time simulation of light-driven spin chains on quantum computers
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In this work, we study the real-time evolution of periodically driven (Floquet) systems on a quantum computer
using IBM quantum devices. We consider a driven Landau-Zener model and compute the transition probability
between the Floquet steady states as a function of time. We find that for this simple one-qubit model, Floquet
states can develop in real time, as indicated by the transition probability between Floquet states. Next, we
model light-driven spin chains and compute the time-dependent antiferromagnetic order parameter. We consider
models arising from light coupling to the underlying electrons as well as those arising from light coupling
to phonons. For the two-spin chains, the quantum devices yield time evolutions that match the effective
Floquet Hamiltonian evolution for both models once readout error mitigation is included. For three-spin chains,
zero-noise extrapolation yields a time dependence that follows the effective Floquet time evolution. Therefore,
the current IBM quantum devices can provide information on the dynamics of small Floquet systems arising
from light drives once error mitigation procedures are implemented.
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I. INTRODUCTION

The recent development of technology to carry out ultrafast
laser experiments on materials has allowed the control of
topological and ordered states of matter in out-of-equilibrium
settings. For example, light pulses at suitable frequencies
and intensities can induce transient superconductivity [1,2],
anomalous Hall states in graphene [3], magnetic order switch-
ing in YIG [4], and metastable ferroelectric states in SrTiO3

[5]. Different theoretical tools have been employed to predict
light-induced effects in quantum materials, mainly based on
traditional theoretical and computational approaches [6–8].

The recent development of quantum computers and their
open availability in platforms such as IBM quantum [9] pro-
vides a new pathway to study quantum materials [10,11].
Already some results have been reported [12–18]. For exam-
ple, Smith et al. studied quantum quench dynamics in several
spin models, and showed the presence of signatures of local-
ization and many-body effects [15]. Bassman et al. employed
quantum devices to simulate ultrafast control of magnetism by
terahertz radiation in doped monolayer MoSe2 [16]. Fauseweh
and Zhu consider nonequilibrium dynamics of few spin and
fermionic systems [18], and Francis et al. implemented the
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computation of magnon spectra from correlation functions in
spin chains [17]. Several recent articles review the state-of-
the-art capabilities of near-term noisy quantum devices [19],
progress towards quantum simulation of quantum materials
[20], and quantum algorithms [21].

For the case of periodically driven (Floquet) systems, Malz
and Smith realized an effective two-dimensional Floquet lat-
tice by driving quasiperiodically a single-qubit device and
obtained topological frequency conversion [22]. More re-
cently, Mi et al. observed an eigenstate-ordered discrete time
crystal on an array of superconducting qubits [23]. These
works provide compelling evidence that the current quan-
tum devices already yield information regarding dynamical
aspects of quantum materials.

We consider two classes of periodically driven models
in this work: a driven Landau-Zener model and light-driven
spin chains. The former model serves as a one-qubit system
example. The later models arise as effective representations of
laser-irradiated Hubbard models at half-filling and are directly
relevant to describing quantum materials. Furthermore, we
examine both the cases of light coupling with the electrons
and phonon degrees of freedom. Thus, in contrast to previous
works approaching Floquet systems, we discuss the solution
of periodically driven models with direct applications to quan-
tum materials out of equilibrium.

We implement the driven Landau-Zener model in a single-
qubit IBM device and find that upon applying a simple
error-correction procedure, the Floquet states are well repro-
duced. For the light-driven spin chain, we consider systems
with two and three spins and obtained effective Floquet time
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evolution from the quantum devices upon the implementation
of zero-noise extrapolation. We notice that the error correction
procedures considered in this work are not quantum error
correction in conventional sense, but rather special tools that
correct for systematic errors in the quantum processor and
thus make more precise quantum gates. Therefore, our work
shows that current quantum devices can realize Floquet states
in systems with few spins.

The rest of the paper is organized as follows. In Sec. II,
we provide a brief review of Floquet theory. In Sec. III,
we study the driven Landau-Zener model implemented in a
single-qubit device. In Sec. IV, we look at light-driven spin
chains, assuming that light couple to the electrons. In Sec. V,
we consider spin chains with time dependence arising from
driven phonons. Finally, in Sec. VI we present our conclusions
and outlook.

II. REVIEW OF FLOQUET THEORY

First, we briefly review the general aspects of Floquet
theory. For a complete review with applications to quantum
materials, see Refs. [6–8]. Experimentally, Floquet states have
been observed in the topological insulator Bi2Se3 [24], Fermi
gases [25], photonic platforms [26], and ultracold atoms [27].

The starting point of study in Floquet systems is a time-
dependent Hamiltonian satisfying the periodicity condition
H(t + 2π/�) = H(t ), where � is the drive frequency. For
example, in quantum materials such a time dependence can
originate from laser excitation (the electrical field of the
light oscillates with the frequency of the light and therefore
causes the material Hamiltonian to oscillate with the same
frequency).

The Floquet theorem [28] indicates that the wave functions
of such time-periodic Hamiltonians can be written as |ψ (t )〉 =
eiεt |φ(t )〉, where |φ(t + 2π/�)〉 = |φ(t )〉 share the periodic-
ity with the Hamiltonian and ε is the quasienergy, defined
modulo integer multiples of h̄�. The Floquet-Schrödinger
equation takes the form

[H(t ) − i∂t ]|φ(t )〉 = ε|φ(t )〉, (1)

which can be solved in the time domain by diagonalizing the
Floquet time-evolution operator U (T ), where

U (t ) = T exp

{
− i

∫ t

H(s)ds

}
, (2)

T = 2π/�, and T exp is a time-ordered exponential. The
full dynamics of the wave function can be obtained as
|ψ (t )〉 = U (t )|ψ (0)〉. Alternatively, the Floquet-Schrödinger
equation can be solved in the extended space by exploiting
the periodicity of the Floquet states [29,30]. This frequency-
domain picture is suitable for analytical approximation
schemes and numerical implementation in classical devices.
However, the time-domain approach is naturally suited for
implementation in quantum devices.

In the following sections, we implement time-dependent
periodic Hamiltonians in state-of-the-art IBM quantum de-
vices and study the development of Floquet states.

III. DRIVEN LANDAU-ZENER MODEL

In this section, we consider the case of single spin- 1
2 model.

The authors of Ref. [18] considered a model for a spin 1
2 in

a time-dependent magnetic field. In this work, we consider
the Hamiltonian for a model that we will call driven Landau-
Zener model, given by

H (τ ) = a f (τ )σx + bσy, (3)

where τ = �t , � is the drive frequency, a, b > 0, σi are the
Pauli matrices, and f (τ ) is a time-dependent function with the
property f (0) = − f (π ). We consider f (τ ) = cos(τ ). In the
case b = 0, the system admits an exact solution for the time-
evolution operator which is given by U (τ ) = e−ia sin(τ )σx/�.
However, this is not the case for arbitrary b (which is the
case we consider in this work) and we need to introduce
approximations for the time-evolution operator U (τ ) as dis-
cussed below. For an extensive discussion on the driven
Landau-Zener model in the context of low-frequency Floquet
perturbation theory, see Ref. [31] and the references therein.

We consider the parameters b/� = 1 and a/b = 25, and
study the transition probability between the energy levels as a
function of time

P±(τ ) = |〈ψ∓(τ )|U (τ )|ψ±(0)〉|2, (4)

where |ψ (τ )±〉 = U (τ )|ψ (0)±〉, U (τ ) is the time-evolution
operator, and |ψ (0)±〉 is an arbitrary initial state.

To evaluate the transition probability P±(τ ) in a quan-
tum device, we initialize the qubit in the state |ψ (0)±〉 =
1/

√
2(1,±1) by applying a single-qubit rotation gate about

the y axis, Ry(θ ), to the default qubit state. A general prop-
agator U (τ ) can be constructed as follows. First, we define
a grid in time domain with step size �t , during which the
Hamiltonian H (�t ) is assumed to be constant. Then, the time-
evolution operator can be approximated as

U (N�t ) =
N−1∏
n=0

∏
X

e−iHX (n�t )�t + O(�t ), (5)

where the set {X } is given by noncommuting Hamiltonian
terms which can be expressed in terms of gates [15,16,18].
N is the number of time steps considered. For the driven
Landau-Zener, we can compute the Hamiltonian exponential
analytically and write the approximate time-evolution opera-
tor as U (N�t ) = ∏N−1

n=0 e−iH (n�t )�t , with

e−i�tH (s) =
(

cos[η(s)�t] − sin[η(s)�t]ν(s)
sin[η(s)�t]ν∗(s) cos[η(s)�t]

)
, (6)

η(s) =
√

b2 + a2 cos2(s), and ν(s) = [b + ia cos(s)]/η with
|ν(s)| = 1. Thus, the matrix structure of each time step
e−i�tH (s) corresponds to a universal U3(θ, φ, λ) gate
with time-dependent Euler angles θ (s)/2 = η(s)�t , φ(s) =
−a/b cos(s), and λ(s) = a/b cos(s). The circuit for a given
time-evolution time interval is then given by a set of
U3(θ, φ, λ) gates. The standard QISKIT function “transpile”
can optimize the circuit and write it as a single U3 gate.

Finally, we apply a rotation Ry(−θ ) to measure the prob-
ability to find the qubit in the states |ψ (0)±〉. From these
measurements, we construct the transition probability P±(τ ).
We show the quantum circuit in Fig. 1(a).
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FIG. 1. (a) Quantum circuit used to solve the driven Landau-
Zener model, created with the QUANTIKZ package [32]. U3 represents
a general one-qubit rotation gate with three Euler angles obtained
with QISKIT. Ry(θ ) represents a single-qubit rotation about the y axis.
(b) Transition probability obtained from the single-qubit IBMQ-
Armonk device (red dots) compared with the exact solution (black
solid line). τ = t� is the rescaled time, plotted over one period.
There is an overall shift between the exact result and the quantum
computer result. (c) Shows the same data as in (b), but including
readout error mitigation (R.E.M.), implemented as described in the
text. This simple error mitigation procedure improves the quality of
the solutions obtained from the IBMQ-Armonk device. In (d) and
(e) we show analogous calculations to (b) and (c), but obtained with
the IBM-Bogota device. For sampling, in all our experiments we
consider 1024 repetitions of each circuit.

In Fig. 1(b), we show the exact solution obtained numer-
ically compared with the results from the single-qubit IBM
quantum computer IBMQ-Armonk. For sampling, in all our
experiments we consider 1024 repetitions of each circuit. At
the time this device was accessed, the average readout error
was 2.689 × 10−2, T1 = 176.97 μs (decay time from the ex-
cited state down to the ground state), and T2 = 229.80 μs
(coherence time). The results from IBMQ-Armonk follow
the trends of the exact solution for the transition probability
P±(τ ), apart from an overall shift. One source of error in the
IBM quantum computer stems from the final readout proce-
dure [33], wherein some states “1” are read as “0” and vice
versa for the single-qubit case. If we arrange the possible out-
puts in the basis {1, 0}, we can express the results as a vector
Cnoisy. For N qubits, this vector has length 2N . The ideal result
can be written as Cnoisy = MCideal, where M is a calibration
matrix that is obtained by performing measurements of all
possible outcomes. In a perfect device, M is an identity matrix.
For IBMQ-Armonk, we find the calibration matrix

M =
[

0.94141 0.08105
0.05859 0.91895

]
. (7)

By applying this transformation to the noisy outcome, we
obtain the results in Fig. 1(c), which are in good agreement
with the exact solution. We obtain similar results in other
IBM devices, such as the five-qubit ibmq-bogota device, as

frequency Ω,
intensity A

th

laser

U

FIG. 2. Sketch of a periodically driven Hubbard model at half-
filling. Here th is the hopping amplitude, and U the Coulomb
interaction. The laser is described by its frequency � and intensity
A.

shown in Figs. 1(d) and 1(e). Figure 1(d) shows the results
obtained directly from the ibmq-bogota, while Fig. 1(e) shows
the results including readout error mitigation, as described
above. At the time this five-qubit device was accessed, the
average readout error was 2.090 × 10−2, T1 = 68.65 μs, and
T2 = 96 μs. These results indicate that Floquet states are
accessible for single-spin Hamiltonians, in both quantum de-
vices considered.

IV. LIGHT-DRIVEN SPIN CHAINS

In this section, we consider a light-driven Hubbard model
at half-filling defined on a one-dimensional chain. A sketch of
the system is shown in Fig. 2. The Hamiltonian is given by
[34–37]

H (t ) = −
∑

iσ

(
theiA sin �t c†

iσ ci+1σ + H.c.
) + U

∑
i

n̂i↑n̂i↓,

(8)
where th is the hopping amplitude between nearest-neighbor
sites, c†

iσ creates an electron at lattice site i with spin σ , U is
the onsite Coulomb interaction, and � is the frequency of the
light. We consider the limit U 	 th. Here, A = eE0a0/(h̄�),
where E0 is the peak laser electric field, � is the laser fre-
quency, and a0 is the nearest-neighbor distance.

The authors of Refs. [35–37] derived an effective Floquet
(time-independent) spin Hamiltonian from H (t ) [Eq. (8)] via
Brillouin-Wigner perturbation theory or a Schrieffer-Wolff
transformation. On the other hand, the authors of Ref. [34]
used time-dependent second-order perturbation theory, and
derived an effective model in the time domain. We follow their
prescription and find the effective model

Hs(t ) =
∑
〈i j〉

J (t )Si · S j, (9)

with lattice-site-independent, time-dependent exchange inter-
action

J (t ) = Re

[ ∞∑
α,β=−∞

ei(α−β )�t [Jα (A)J−β (−A)

+ Jα (−A)J−β (A)]

(
2t2

h

U − β�

)]
(10)
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FIG. 3. (a) Quantum circuit defining the AFM initial state, cre-
ated with the QUANTIKZ package [32]. The X gate corresponds to
X = |0〉〈1| + |1〉〈0|. (b) AFM order parameter �(t ) [Eq. (12)] as a
function of time for a two-spin chain with a time evolution governed
by J = 4t2

h /U for U = 10. The results obtained in the IBM-Manila
quantum device are shown in red, with error mitigated results in blue.
To set the timescale, we use the frequency � = 6.0. (c) [(d)] �(t )
for a light-driven spin chain with � = 6.0 and A = 2.8 obtained in
the quantum device IBM-Santiago (IBM-Bogota). The shown exact
solution corresponds to the effective time evolution governed by JF ,
which the quantum device captures for the 10 periods considered.

valid when the condition |U − β�| 	 th is satisfied, where
α, β label the Fourier modes. Jα (A) corresponds to the αth
Bessel function of the first kind. Taking a time average,
one finds the effective Floquet exchange interaction JF =∑

β Jβ (A)24t2
h /(U − β�), valid for laser frequencies larger

than the exchange energy and extensively discussed in the
literature [34–37].

Next, we implement Hs(t ) in quantum devices. For com-
parison, we also consider the case without light, described by
the time-independent Hamiltonian Hs = ∑

〈i j〉 JSi · S j , with
J = 4t2

h /U . The procedure follows the same steps as for the
single-spin case. First, we define an initial state given by the
ground-state antiferromagnetic configuration. We show the
case for two qubits in Fig. 3(a). Then, we apply gates to the
qubits to simulate the time-evolution operator as described
below, and finally we perform a measurement.

For the spin-chain case, we are required to introduce ap-
proximations to write the time-evolution operator U (t ) as
a sequence of two-qubit gates, including controlled NOT
(CNOT) gates. CNOT gates, typically have larger errors com-
pared with single-qubit gates in current quantum devices.
The theory for the quantum simulation of time-dependent
Hamiltonians is introduced in Ref. [38], and Refs. [15,16,18]
discussed implementations in detail. The procedure to com-
pute the time-evolution operator was outlined in Sec. III. For
completeness, we repeat here the discussion. First, we define
a grid in time domain with step size �t , during which the
Hamiltonian Hs(�t ) is assumed to be constant. Then, the
time-evolution operator can be approximated as

U (N�t ) =
N−1∏
n=0

∏
X

e−iHX (n�t )�t + O(�t ), (11)

where the set {X } is given by noncommuting Hamiltonian
terms which can be expressed in terms of gates [15,16,18].

We start with a minimal chain with N = 2 spins. First, we
consider the time evolution of the antiferromagnetic ground
state |ψ (0)〉 = | ↑↓〉 under the time-independent Hamiltonian
Hs = ∑

〈i j〉 JSi · S j , with J = 4t2
h /U . We use the parameter

U = 10 in units of the hopping amplitude th. In Fig. 3(b), we
plot the result from the IBM quantum device IBM-Manila for
the time-dependent antiferromagnetic order parameter

�(t ) ≡ 1/N
∑

i

(−1)iσ z
i (t ), (12)

where N is the number of spins in the chain. We select a
noise-adaptive layout to associate the physical qubits with
the circuit virtual qubits [39]. For comparison, we display the
exact solution obtained numerically. As in the case for the sin-
gle qubit, implementing readout error mitigation improves the
solution and we obtain a good description of the dynamics for
the times considered. In this case, calibration measurements
of the states 00,10,01,11 are needed to implement the readout
error mitigation protocol. We show the calibration data for the
day the device was accessed in Appendix B. For each point in
time, we collect data from 1024 experiments.

Next, we review the time evolution under the effect of light,
as described by Eq. (9). We use the drive parameters � = 6 (in
units of the hopping amplitude th) and A = 2.8. In Fig. 3(c)
[3(d)], we plot the time-dependent antiferromagnetic order
parameter as a function of time, for 10 drive cycles. The solid
curve corresponds to the effective Floquet time evolution,
governed by the effective Floquet exchange interaction JF ,
closely matching the solution from the quantum simulation
performed in the IBM device IBM-Santiago (IBM-Bogota).
Therefore, for the two spin chains, the effective Floquet dy-
namics is obtained in the quantum device. The user-designed
circuit is shown in Appendix A for a given time step, along
with the circuit obtained after QISKIT optimization. We note
that the standard QISKIT circuit optimization routines lead to a
constant-depth circuit with three CNOT gates for all the times
considered for the two-spin case.

Now we consider chains with N = 3 spins. As the number
of spins in the chain increases, more CNOT gates are re-
quired to simulate the dynamics of the light-driven spin chain.
Since CNOT gates present more significant errors compared
with single-qubit gates, accurate quantum simulations become
more challenging. We employ a symmetric Trotter decom-
position [15] (the circuit for the first time step is shown in
Appendix C) with noise-adaptive layout mapping from virtual
to physical qubits [39]. We set the number of symmetric
Trotter steps to N = 8, enough for convergence, in the interval
considered for a simulator without simulated noise. We show
the results for N = 4, 8 steps in Appendix C. Aside from read-
out error mitigation, we consider a zero-noise extrapolation
scheme, as implemented in the MITIQ package [40]. We use
random gate folding and a linear extrapolation method with
two noise scaling factors. For each point in time, we collect
data from 6144 experiments.

Figure 4(a) shows the AFM initial qubit state, which we
then propagate in time by applying the time-evolution op-
erator. First, we use a simulator including an approximation
to the errors of the actual quantum device ibm-santiago. The
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FIG. 4. (a) Quantum circuit defining the three-site AFM initial
state, created with the QUANTIKZ package [32]. (b) AFM order
parameter �(t ) [Eq. (12)] as a function of time for a light-driven
three-spin chain with U = 10, A = 2.8, and � = 6. The results were
obtained in a noisy simulator. The black line is the effective Flo-
quet exact solution, the red circles are the direct results from the
noisy simulator. The blue squares include readout error mitigation
(R.E.M), and the green diamonds incorporate zero-noise extrapola-
tion (ZNE). (c), (d) Show the corresponding results obtained in the
actual quantum devices IBM-Belem and IBM-Quito.

average device properties of the simulator are T1 = 124.04 μs,
T2 = 107.11 μs, CNOT error 6.02 × 10−3, and averaged read-
out error 0.014. We show the results in Fig. 4(b). The solid
line corresponds to the exact results for the effective Floquet
exchange interaction obtained numerically via exact diagonal-
ization. The red dots are the results obtained directly from the
noisy simulator. The blue squares take readout error mitiga-
tion into account, and the green diamonds include zero-noise
extrapolation combined with readout error mitigation. The
results including both error-correction procedures follow the
Floquet exact solution well. Next, we show results from actual
quantum devices. In Figs. 4(c) and 4(d), we summarize our
results from two experiments conducted in the IBM quantum
devices IBM-Quito and IBM-Bogota. The results, including
zero-noise extrapolation, show an improvement compared
with the results obtained directly from the quantum devices
and follow the trend well in the time interval considered. The
calibration data are shown in Tables V and VI.

For larger spin chains with N = 4 and 5 spins, we found
that we can obtain good approximations to the exact solution
in some noisy simulators upon implementation of zero-noise
extrapolation. However, running the quantum circuits in the
actual quantum devices yields results that no longer follow
the effective Floquet solution consistently across quantum
devices with the methods considered in this work. We discuss
in detail the N = 4 spin-chain results in Appendix E, and
the N = 5 spin-chain results in Appendix F. Current research
efforts in the community look for more efficient quantum
algorithms. For example, Ref. [41] shows that there are some
time-dependent Heisenberg Hamiltonians with N spins (not
including the light-driven models here discussed) that admit
constant-depth circuits. This, in principle, would allow long-
time simulations for longer spin chains.

In the next section we investigate time-dependent spin
Hamiltonians arising from a time-dependent bond distance,
modeled as a time-dependent hopping amplitude. This class
of time dependence could occur, for example, from driven
phonons in the harmonic regime.

V. PHONON-DRIVEN SPIN CHAIN

In this section, we consider a Hubbard model at half-filling
with time-dependent hopping amplitude,

H (t ) = −
∑

iσ

[th + δth cos(�t + φ)](c†
iσ ci+1σ + H.c.)

+ U
∑

i

n̂i↑n̂i↓, (13)

where δth corresponds to the change in the hopping am-
plitude arising from variation in the bond length due to a
driven harmonic phonon with frequency �. Employing time-
dependent second-order perturbation theory, we arrive at the
time-dependent effective spin model

Hs(t ) =
∑
〈i j〉

J (t )Si · S j, (14)

with time-dependent exchange interaction

J (t ) = 4[th + δth cos(�t )]

×
[

th
U

+ δth
2

ei�t

(U + �)
+ δth

2

e−i�t

(U − �)

]
, (15)

valid also for |U − �| 	 th. In this case, when the frequency
is larger than the static exchange interaction J = 4t2

h /U , the

effective Floquet exchange interactions is given by JF = 4t2
h

U +
(δth)2 1

U−ω
+ (δth)2 1

U+ω
.

For this model, we consider a two-spin chain driven with
the frequency � = 4, and two representative values for δth.
We show our results in Fig. 5. The black lines correspond
to the full exact time-dependent solution obtained by exact
diagonalization. The blue and red dots are the results obtained
from the quantum device IBM-Lima, including readout error
mitigation. The calibration data are shown in Appendix G. As

FIG. 5. Antiferromagnetic order parameter �(t ) [Eq. (12)] as a
function of time for a phonon-driven two-spin chain for � = 4.0 and
two values for δth. The black line corresponds to the exact solution,
while the dots correspond to quantum simulations performed in the
ibm-lima device, including readout error mitigation (R.E.M.).
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FIG. 6. User-designed quantum circuit used to simulate a light-driven two-spin chain for time step n = 10. No QISKIT optimization was
used. The drive parameters are the same as in Fig. 3.

for light-driven spin chains, the phonon-driven two-spin chain
is well modeled in quantum devices.

VI. CONCLUSIONS

This work studied the implementation of periodically
driven Hamiltonians in IBM quantum devices, currently ac-

FIG. 7. Quantum circuit used to simulate a light-driven two-
spin chain for time step n = 10, obtained from the standard QISKIT

optimization routines, and the noise-adaptive layout method. The
user-designed circuit is shown in Fig. 6. The drive parameters are
the same as in Fig. 3.

cessible to the public. We considered a driven Landau-Zener
model and showed that the Floquet states are obtained, as
shown by the transition probability as a function time within
one period upon implementing readout error mitigation. We
also studied time-dependent Hamiltonians describing light-
and phonon-driven spin chains with two, three, four, and five
spins. We found that accurate results can be obtained for 10

FIG. 8. Quantum circuit to simulate a light-driven two-spin chain
for time step n = 40, obtained from the standard QISKIT optimization
routines, and the noise-adaptive layout method. The drive parameters
are the same as in Fig. 3.
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TABLE I. Calibration data for Fig. 3(b), IBM-Manila. In the CNOT error column, i_ j indicates the physical qubit pairs involved in the
CNOT operation, with i, j = 0, 1, 2, 3, 4.

Qubit T1 (μs) T2 (μs) Freq. (GHz) Anharm. (GHz) Readout error ID error
√

x (sx) error Pauli-X error CNOT error

Q0 91.79 93.83 4.963 −0.34335 3.080 × 10−2 2.260 × 10−4 2.260 × 10−4 2.260 × 10−4 0_1 : 1.442 × 10−2

Q1 101.22 43.76 4.838 −0.34621 1.205 × 10−1 5.350 × 10−4 5.350 × 10−4 5.350 × 10−4 1_2 : 1.483 × 10−2;
1_0 : 1.442 × 10−2

Q2 162.27 23.27 5.037 −0.34366 3.710 × 10−2 3.389 × 10−4 3.389 × 10−4 3.389 × 10−4 2_3 : 7.611 × 10−3;
2_1 : 1.483 × 10−2

Q3 136.86 56.73 4.951 −0.34355 1.740 × 10−2 1.804 × 10−4 1.804 × 10−4 1.804 × 10−4 3_4 : 7.120 × 10−3;
3_2 : 7.611 × 10−3

Q4 123.49 36.07 5.066 −0.34211 4.250 × 10−2 6.500 × 10−4 6.500 × 10−4 6.500 × 10−4 4_3 : 7.120 × 10−3

TABLE II. Calibration data for Fig. 3(c), IBM-Santiago. In the CNOT error column, i_ j indicates the physical qubit pairs involved in the
CNOT operation, with i, j = 0, 1, 2, 3, 4.

Qubit T1 (μs) T2 (μs) Freq. (GHz) Anharm. (GHz) Readout error ID error
√

x (sx) error Pauli-X error CNOT error

Q0 81.79 143.66 4.833 −0.34189 3.090 × 10−2 3.181 × 10−4 3.181 × 10−4 3.181 × 10−4 0_1 : 9.503 × 10−3

Q1 66.18 61.53 4.624 −0.32823 2.290 × 10−2 3.156 × 10−4 3.156 × 10−4 3.156 × 10−4 1_2 : 6.880 × 10−3;
1_0 : 9.503 × 10−3

Q2 89.36 91.59 4.821 −0.34107 1.240 × 10−2 1.931 × 10−4 1.931 × 10−4 1.931 × 10−4 2_3 : 7.757 × 10−3;
2_1 : 6.880 × 10−3

Q3 39.28 68.41 4.742 −0.34013 6.200 × 10−3 1.852 × 10−4 1.852 × 10−4 1.852 × 10−4 3_4 : 5.778 × 10−3;
3_2 : 7.757 × 10−3

Q4 138 161.41 4.816 −0.34291 2.070 × 10−2 2.294 × 10−4 2.294 × 10−4 2.294 × 10−4 4_3 : 5.778 × 10−3

TABLE III. Calibration data for Fig. 3(d), IBM-Bogota. In the CNOT error column, i_ j indicates the physical qubit pairs involved in the
CNOT operation, with i, j = 0, 1, 2, 3, 4.

Qubit T1 (μs) T2 (μs) Freq. (GHz) Anharm. (GHz) Readout error ID error
√

x (sx) error Pauli-X error CNOT error

Q0 64.96 108.36 5 −0.33689 2.780 × 10−2 1.969 × 10−4 1.969 × 10−4 1.969 × 10−4 0_1 : 9.118 × 10−3

Q1 77.63 69.33 4.85 −0.32571 2.290 × 10−2 2.813 × 10−4 2.813 × 10−4 2.813 × 10−4 1_2 : 8.288 × 10−3;
1_0 : 9.118 × 10−3

Q2 102.91 157.17 4.783 −0.34287 3.230 × 10−2 1.405 × 10−4 1.405 × 10−4 1.405 × 10−4 2_3 : 8.477 × 10−3;
2_1 : 8.288 × 10−3

Q3 112.07 164.82 4.858 −0.32528 1.480 × 10−2 6.275 × 10−4 6.275 × 10−4 6.275 × 10−4 3_4 : 9.054 × 10−3;
3_2 : 8.477 × 10−3

Q4 100.48 161.15 4.978 −0.33796 1.410 × 10−2 1.547 × 10−4 1.547 × 10−4 1.547 × 10−4 4_3 : 9.054 × 10−3
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FIG. 9. User-designed quantum circuit used to simulate a light-driven three-spin chain for time step n = 1. No QISKIT optimization was
implemented at this stage. The parameters are the same as in Fig. 4 in the main text.

drive cycles using readout error mitigation for two spin chains.
For three spin chains, we implemented zero-noise extrapola-
tion to improve the performance of the quantum devices, and
similarly for four- and five-spin chains in noisy quantum simu-
lators. The results for four- and five-spin chains from quantum
devices are less accurate. Therefore, current quantum devices
can describe the dynamics of small spin chain models driven
by light and phonons. For future work, it would be interesting
to consider the effect of spin-orbit coupling in spin models.
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(blue squares) showing the convergence of the symmetric Trotter
decomposition. The parameters are the same as in Fig. 4 in the main
text.
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APPENDIX A: EXAMPLE CIRCUIT FOR TWO-SPIN
CHAINS.

In this Appendix, we show the user-designed quantum cir-
cuit used to simulate a light-driven spin chain, for the time step
n = 10 (Fig. 6), compared with the circuit optimized using the
standard QISKIT optimization routines (Fig. 7). The number
of CNOT gates obtained for this model after optimization is
reduced to only three, independent of the time step. As an
example, in Fig. 8, we show time step n = 40. This simplifica-
tion is only obtained via the QISKIT optimization for two-spin
chain case. However, Ref. [41] shows that constant-depth
circuits can be obtained for some time-dependent Heisenberg
Hamiltonians. The light-driven spin chain models here consid-
ered do not belong to such classes, but further research could
lead to such extensions.

FIG. 11. AFM order parameter �(t ) [Eq. (12)] as a function of
time for a light-driven three-spin chain with U = 10, A = 2.8, and
� = 6. The results were obtained in the IBM-Belem noisy simulator.
The black line is the effective Floquet exact solution, the red circles
are the direct results from the noisy simulator. The blue squares
include readout error mitigation (R.E.M), and the green diamonds
incorporate zero-noise extrapolation (ZNE).
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TABLE IV. Average calibration data for the noisy simulators used in Fig. 11.

T1 (μs) T2 (μs) Readout error X -gate error CNOT error

Fake Santiago 124.04 107.11 0.014 0.0002 0.00602

APPENDIX B: QUANTUM DEVICE CALIBRATION DATA
FOR TWO-SPIN CHAINS

The calibration data for the quantum devices used for the
two-spin chain case, at the time they were accessed, are shown
in Tables I, II and III.

TABLE V. Calibration data for Fig. 4(c), IBM-Belem. In the CNOT error column, i_ j indicates the physical qubit pairs involved in the
CNOT operation, with i, j = 0, 1, 2, 3, 4.

Qubit T1 (μs) T2 (μs) Freq. (GHz) Anharm. (GHz) Readout error ID error
√

x (sx) error Pauli-X error CNOT error

Q0 82.44 141.97 5.09 −0.33612 1.800 × 10−2 2.025 × 10−4 2.025 × 10−4 2.025 × 10−4 0_1 : 2.056 × 10−2

1_3 : 6.573 × 10−3;
Q1 109.77 121.18 5.245 −0.31657 2.700 × 10−2 3.053 × 10−4 3.053 × 10−4 3.053 × 10−4 1_2 : 7.801 × 10−3;

1_0 : 2.056 × 10−2

Q2 103.16 55.85 5.361 −0.33063 1.890 × 10−2 2.774 × 10−4 2.774 × 10−4 2.774 × 10−4 2_1 : 7.801 × 10−3

Q3 101.35 225.39 5.17 −0.33374 1.440 × 10−2 2.411 × 10−4 2.411 × 10−4 2.411 × 10−4 3_4 : 7.526 × 10−3;
3_1 : 6.573 × 10−3

Q4 89.59 142.45 5.258 −0.33135 1.780 × 10−2 1.997 × 10−4 1.997 × 10−4 1.997 × 10−4 4_3 : 7.526 × 10−3

TABLE VI. Calibration data for Fig. 4(d) IBM-Quito. In the CNOT error column, i_ j indicates the physical qubit pairs involved in the
CNOT operation, with i, j = 0, 1, 2, 3, 4.

Qubit T1 (μs) T2 (μs) Freq. (GHz) Anharm. (GHz) Readout error ID error
√

x (sx) error Pauli-X error CNOT error

Q0 67.38 134.22 5.301 −0.33148 3.660 × 10−2 2.696 × 10−4 2.696 × 10−4 2.696 × 10−4 0_1 : 5.790 × 10−3

Q1 100.12 138.77 5.081 −0.31925 1.570 × 10−2 2.628 × 10−4 2.628 × 10−4 2.628 × 10−4 1_3 : 9.519 × 10−3;
1_2 : 8.301 × 10−3;
1_0 : 5.790 × 10−3

Q2 113.12 160.77 5.322 −0.33232 2.480 × 10−2 4.777 × 10−4 4.777 × 10−4 4.777 × 10−4 2_1 : 8.301 × 10−3

Q3 90.46 22.67 5.164 −0.33508 5.080 × 10−2 7.763 × 10−4 7.763 × 10−4 7.763 × 10−4 3_4 : 1.665 × 10−2;
3_1 : 9.519 × 10−3

Q4 101.25 143.36 5.052 −0.31926 2.610 × 10−2 6.458 × 10−4 6.458 × 10−4 6.458 × 10−4 4_3 : 1.665 × 10−2

TABLE VII. Average calibration data for the noisy simulators used in Fig. 12(b).

T1 (μs) T2 (μs) Readout error X -gate error CNOT error

Fake Santiago 124.04 107.11 0.014 0.0002 0.00602

APPENDIX C: SYMMETRIC TROTTER DECOMPOSITION
FOR A THREE-SPIN CHAIN, ITS CONVERGENCE, AND
ADDITIONAL NOISY QUANTUM SIMULATOR RESULTS

In this appendix, we show Additional details for the light-
driven three-spin chain. Figure 9 shows the user-designed
quantum circuit for time step n = 1. Figure 10 shows the
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FIG. 12. (a) Quantum circuit defining the four-site AFM initial
state, created with the QUANTIKZ package [32]. (b) AFM order
parameter �(t ) [Eq. (12)] as a function of time for a light-driven
four-spin chain with U = 10, A = 2.8, and � = 6. The results were
obtained in a noisy simulator. The black line is the effective Flo-
quet exact solution, the red circles are the direct results from the
noisy simulator. The blue squares include readout error mitigation
(R.E.M), and the green diamonds incorporate zero-noise extrapola-
tion (ZNE). (c), (d) Show the corresponding results obtained in the
actual quantum devices IBM-Belem and IBM-Quito.

antiferromagnetic order parameter as a function of time for
N = 4, 8 Trotter steps, which shows the convergence of the
symmetric Trotter decomposition. Figure 11 shows results for
the antiferromagnetic order parameter, obtained in the Belem
noisy simulator. The calibration data of the simulator is shown
in Table IV.

APPENDIX D: QUANTUM DEVICE CALIBRATION DATA
FOR THREE-SPIN CHAINS

The calibration data for the quantum devices used for the
three-spin chain case, at the time they were accessed, are
shown in Tables V and VI.

APPENDIX E: FOUR-SPIN CHAIN RESULTS

Figure 12(a) shows the results for a light-driven spin chains
with four spins obtain in an IBM noisy simulator. The bare
results (red circles) follow the trend of the exact Floquet
solution well, and the zero-noise extrapolation procedure

FIG. 13. Antiferromagnetic order parameter �(t ) [Eq. (12)] as a
function of time, obtained for the two numbers of Trotter steps N = 4
(red circles) and N = 8 (blue squares) showing the convergence of
the symmetric Trotter decomposition in a clean quantum simulator.

improves the results (green diamonds). The results we ob-
tain in the IBM-Belem and IBM-Quito devices are shown
in Figs. 12(b) and 12(c), respectively. The quality of the
solutions decreases compared with the three-spin chain
counterparts. However, the IBM-Quito shows results that ap-
proximately follow the trend of the exact solution. We should
notice that the zero-noise extrapolation implementation on
the quantum devices does not improve the solution as in the
three-spin chain case. This could be due to the the large num-
ber of CNOT operations required to simulate the additional
noise in the extrapolation procedure. The calibration data for
the noisy simulator, and quantum devices at the time they were
accessed, are shown in Tables VII, VIII, and IX.

APPENDIX F: FIVE-SPIN CHAIN RESULTS

In this Appendix, we show results for light-driven spin
chains with five spins. In Fig. 13, we show the convergence
of the symmetric Trotter decomposition. In Fig. 14 we show
the results we obtained in IBM noisy simulators and quantum
devices. The solutions including readout error mitigation and
zero-noise extrapolation follow the trend of the exact results
for the effective Floquet exchange interactions obtained via
exact diagonalization in the device simulators considered.
The averaged errors for the device simulators considered are
shown in Table X. As expected, the device with the smallest
CNOT error leads to the most accurate results.

We should note that once the same quantum circuits are
implemented in quantum devices, the quality of the results

TABLE VIII. Calibration data for Fig. 12(c), IBM-Belem.

Qubit T1 (μs) T2 (μs) Freq. (GHz) Anharm. (GHz) Readout error ID error
√

x (sx) error Pauli-X error CNOT error

Q0 121.16 92.24 5.09 −0.33612 1.840 × 10−2 2.697 × 10−4 2.697 × 10−4 2.697 × 10−4 0_1 : 1.418 × 10−2

1_3 : 8.012 × 10−3;
Q1 97.63 76.2 5.246 −0.31657 2.650 × 10−2 3.030 × 10−4 3.030 × 10−4 3.030 × 10−4 1_2 : 6.480 × 10−3;

1_0 : 1.418 × 10−2

Q2 107.32 50.3 5.361 −0.33063 2.310 × 10−2 2.363 × 10−4 2.363 × 10−4 2.363 × 10−4 2_1 : 6.480 × 10−3

Q3 127.28 160 5.17 −0.33374 2.410 × 10−2 2.467 × 10−4 2.467 × 10−4 2.467 × 10−4 3_4 : 8.481 × 10−3;
3_1 : 8.012 × 10−3

Q4 104.92 183.28 5.258 −0.33135 1.850 × 10−2 2.034 × 10−4 2.034 × 10−4 2.034 × 10−4 4_3 : 8.481 × 10−3
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TABLE IX. Calibration data for Fig. 12(d), IBM-Quito.

Qubit T1 (μs) T2 (μs) Freq. (GHz) Anharm. (GHz) Readout error ID error
√

x (sx) error Pauli-X error CNOT error

Q0 83.39 121.06 5.301 −0.33148 3.780 × 10−2 2.770 × 10−4 2.770 × 10−4 2.770 × 10−4 0_1 : 8.412 × 10−3

Q1 105.55 140.44 5.081 −0.31925 2.080 × 10−2 4.862 × 10−4 4.862 × 10−4 4.862 × 10−4 1_3 : 1.182 × 10−2;
1_2 : 1.025 × 10−2;
1_0 : 8.412 × 10−3

Q2 96.61 125.88 5.322 −0.33232 2.110 × 10−2 2.598 × 10−4 2.598 × 10−4 2.598 × 10−4 2_1 : 1.025 × 10−2

Q3 157.25 21.74 5.164 −0.33508 2.650 × 10−2 3.022 × 10−4 3.022 × 10−4 3.022 × 10−4 3_4 : 1.537 × 10−2;
3_1 : 1.182 × 10−2

Q4 60.08 80.61 5.052 −0.31926 3.230 × 10−2 4.543 × 10−4 4.543 × 10−4 4.543 × 10−4 4_3 : 1.537 × 10−2

TABLE X. Average calibration data for the noisy simulators used in Fig. 14.

T1 (μs) T2 (μs) Readout error X -gate error CNOT error

Fake Santiago 124.04 107.11 0.014 0.0002 0.00602
Fake Bogota 107.56 107.025 0.0375 0.00039 0.0284
Fake Belem 80.02 79.46 0.0304 0.00038 0.0139

TABLE XI. Calibration data for Fig. 15(a), IBM-Lima. In the CNOT error column, i_ j indicates the physical qubit pairs involved in the
CNOT operation, with i, j = 0, 1, 2, 3, 4.

Qubit T1 (μs) T2 (μs) Freq. (GHz) Anharm. (GHz) Readout error ID error
√

x (sx) error Pauli-X error CNOT error

Q0 99.83 146.44 5.03 −0.33574 1.970 × 10−2 1.786 × 10−4 1.786 × 10−4 1.786 × 10−4 0_1 : 5.796 × 10−3

Q1 60.74 53.79 5.128 −0.31835 1.160 × 10−2 5.109 × 10−4 5.109 × 10−4 5.109 × 10−4 1_0 : 5.796 × 10−3;
1_3 : 1.568 × 10−2;
1_2 : 5.893 × 10−3

Q2 109.16 131.69 5.247 −0.3336 2.360 × 10−2 2.546 × 10−4 2.546 × 10−4 2.546 × 10−4 2_1 : 5.893 × 10−3

Q3 100.13 92.88 5.302 −0.33124 3.010 × 10−2 4.472 × 10−4 4.472 × 10−4 4.472 × 10−4 3_4 : 1.903 × 10−2;
3_1 : 1.568 × 10−2

Q4 24.62 20.65 5.092 −0.33447 5.010 × 10−2 7.022 × 10−4 7.022 × 10−4 7.022 × 10−4 4_3 : 1.903 × 10−2

TABLE XII. Calibration data for Fig. 15(b), IBM-Belem. In the CNOT error column, i_ j indicates the physical qubit pairs involved in the
CNOT operation, with i, j = 0, 1, 2, 3, 4.

Qubit T1 (μs) T2 (μs) Freq. (GHz) Anharm. (GHz) Readout error ID error
√

x (sx) error Pauli-X error CNOT error

Q0 92.62 98.19 5.09 −0.33612 2.080 × 10−2 2.941 × 10−4 2.941 × 10−4 2.941 × 10−4 0_1 : 1.518 × 10−2

Q1 106.84 134.98 5.246 −0.31657 1.800 × 10−2 3.154 × 10−4 3.154 × 10−4 3.154 × 10−4 1_3 : 8.362 × 10−3;
1_2 : 6.504 × 10−3;
1_0 : 1.518 × 10−2

Q2 85.63 45.61 5.362 −0.33063 2.170 × 10−2 2.685 × 10−4 2.685 × 10−4 2.685 × 10−4 2_1 : 6.504 × 10−3

Q3 96.04 120.96 5.17 −0.33374 2.160 × 10−2 2.616 × 10−4 2.616 × 10−4 2.616 × 10−4 3_4 : 8.295 × 10−3;
3_1 : 8.362 × 10−3

Q4 122.87 192.35 5.258 −0.33135 2.400 × 10−2 2.544 × 10−4 2.544 × 10−4 2.544 × 10−4 4_3 : 8.295 × 10−3

TABLE XIII. Calibration data for Fig. 15(c), IBM-Bogota. In the CNOT error column, i_ j indicates the physical qubit pairs involved in
the CNOT operation, with i, j = 0, 1, 2, 3, 4.

Qubit T1 (μs) T2 (μs) Freq. (GHz) Anharm. (GHz) Readout error ID error
√

x (sx) error Pauli-X error CNOT error

Q0 4.72 8.08 5 −0.33689 4.200 × 10−2 2.425 × 10−3 2.425 × 10−3 2.425 × 10−3 0_1 : 7.008 × 10−2

Q1 93.45 46.16 4.85 −0.32571 4.910 × 10−2 2.065 × 10−4 2.065 × 10−4 2.065 × 10−4 1_2 : 8.387 × 10−3;
1_0 : 7.008 × 10−2

Q2 110.39 176.92 4.783 −0.34287 2.910 × 10−2 1.299 × 10−4 1.299 × 10−4 1.299 × 10−4 2_3 : 3.339 × 10−2;
2_1 : 8.387 × 10−3

Q3 113.4 182.15 4.858 −0.32528 3.220 × 10−2 1.391 × 10−3 1.391 × 10−3 1.391 × 10−3 3_4 : 1.871 × 10−2;
3_2 : 3.339 × 10−2

Q4 95.29 104.64 4.978 −0.33796 1.800 × 10−2 1.819 × 10−4 1.819 × 10−4 1.819 × 10−4 4_3 : 1.871 × 10−2
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TABLE XIV. Calibration data for Fig. 15(d), IBM-Quito. In the CNOT error column, i_ j indicates the physical qubit pairs involved in the
CNOT operation, with i, j = 0, 1, 2, 3, 4.

Qubit T1 (μs) T2 (μs) Freq. (GHz) Anharm. (GHz) Readout error ID error
√

x (sx) error Pauli-X error CNOT error

Q0 79.46 93.63 5.301 −0.33148 5.270 × 10−2 3.088 × 10−4 3.088 × 10−4 3.088 × 10−4 0_1 : 8.347 × 10−3

Q1 99.77 104.96 5.081 −0.31925 1.720 × 10−2 4.558 × 10−4 4.558 × 10−4 4.558 × 10−4 1_3 : 9.875 × 10−3;
1_2 : 8.696 × 10−3;
1_0 : 8.347 × 10−3

Q2 85.39 136.81 5.322 −0.33232 2.170 × 10−2 2.292 × 10−4 2.292 × 10−4 2.292 × 10−4 2_1 : 8.696 × 10−3

Q3 112.37 21.74 5.164 −0.33508 2.120 × 10−2 2.532 × 10−4 2.532 × 10−4 2.532 × 10−4 3_4 : 1.434 × 10−2;
3_1 : 9.875 × 10−3

Q4 52.9 89.24 5.052 −0.31926 2.850 × 10−2 5.019 × 10−4 5.019 × 10−4 5.019 × 10−4 4_3 : 1.434 × 10−2

typically decreases. In Fig. 15 we show our results from the
quantum devices IBM-Lima, IBM-Belem, IBM-Bogota, and
IBM-Quito. The corresponding calibration data are shown
in Tables XI, XII, XIII, and XIV. In this case, the results
typically do not follow the trend of the exact solution when

considering readout error mitigation. However, in some cases,
zero-noise extrapolation can improve the quality of the results,
as shown in Fig. 16. The corresponding calibration data are
shown in Tables XV and XVI.

TABLE XV. Calibration data for Fig. 16(a), IBM-Bogota. In the CNOT error column, i_ j indicates the physical qubit pairs involved in the
CNOT operation, with i, j = 0, 1, 2, 3, 4.

Qubit T1 (μs) T2 (μs) Freq. (GHz) Anharm. (GHz) Readout error ID error
√

x (sx) error Pauli-X error CNOT error

Q0 3.45 7.76 5 −0.33689 3.050 × 10−2 2.370 × 10−3 2.370 × 10−3 2.370 × 10−3 0_1 : 5.180 × 10−2

Q1 103.57 42.41 4.85 −0.32571 5.460 × 10−2 5.549 × 10−4 5.549 × 10−4 5.549 × 10−4 1_2 : 1.080 × 10−2;
1_0 : 5.180 × 10−2

Q2 108.98 192.1 4.783 −0.34287 2.330 × 10−2 1.541 × 10−4 1.541 × 10−4 1.541 × 10−4 2_3 : 2.504 × 10−2;
2_1 : 1.080 × 10−2

Q3 110.86 96.48 4.858 −0.32528 2.890 × 10−2 3.493 × 10−4 3.493 × 10−4 3.493 × 10−4 3_4 : 7.986 × 10−3;
3_2 : 2.504 × 10−2

Q4 59.28 105.97 4.978 −0.33796 2.010 × 10−2 1.677 × 10−4 1.677 × 10−4 1.677 × 10−4 4_3 : 7.986 × 10−3

APPENDIX G: QUANTUM DEVICE CALIBRATION DATA FOR PHONON-DRIVEN 2 SPIN CHAINS

The calibration data for the quantum devices used for the phonon driven two-spin chain case, at the time they were accessed,
are shown in Tables XVII.

FIG. 14. Antiferromagnetic order parameter �(t ) [Eq. (12)] as a function of time, obtained in three different noisy quantum simulators,
employing readout error mitigation and zero-noise extrapolation in all the cases, as described in the main text. We use N = 8 symmetric
Trotter steps. The calibration data are shown in Table X.
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TABLE XVI. Calibration data for Fig. 16(b), IBM-Belem. In the CNOT error column, i_ j indicates the physical qubit pairs involved in
the CNOT operation, with i, j = 0, 1, 2, 3, 4.

Qubit T1 (μs) T2 (μs) Freq. (GHz) Anharm. (GHz) Readout error ID error
√

x (sx) error Pauli-X error CNOT error

Q0 115.11 103.17 5.09 −0.33612 2.010 × 10−2 2.208 × 10−4 2.208 × 10−4 2.208 × 10−4 0_1 : 1.146 × 10−2

Q1 100.05 108.58 5.246 −0.31657 2.860 × 10−2 2.857 × 10−4 2.857 × 10−4 2.857 × 10−4 1_3 : 8.459 × 10−3;
1_2 : 7.371 × 10−3;
1_0 : 1.146 × 10−2

Q2 72.74 49.29 5.361 −0.33063 2.180 × 10−2 2.748 × 10−4 2.748 × 10−4 2.748 × 10−4 2_1 : 7.371 × 10−3

Q3 131.65 130.95 5.17 −0.33374 1.970 × 10−2 2.721 × 10−4 2.721 × 10−4 2.721 × 10−4 3_4 : 8.978 × 10−3;
3_1 : 8.459 × 10−3

Q4 120.77 172.49 5.258 −0.33135 2.660 × 10−2 2.312 × 10−4 2.312 × 10−4 2.312 × 10−4 4_3 : 8.978 × 10−3

TABLE XVII. Calibration data for Fig. 5, IBM-Lima. In the CNOT error column, i_ j indicates the physical qubit pairs involved in the
CNOT operation, with i, j = 0, 1, 2, 3, 4.

Qubit T1 (μs) T2 (μs) Freq. (GHz) Anharm. (GHz) Readout error ID error
√

x (sx) error Pauli-X error CNOT error

Q0 124.54 143.73 5.03 −0.33574 2.290 × 10−2 1.907 × 10−4 1.907 × 10−4 1.907 × 10−4 0_1 : 5.074 × 10−3

Q1 109.3 99.63 5.128 −0.31835 1.540 × 10−2 2.539 × 10−4 2.539 × 10−4 2.539 × 10−4 1_0 : 5.074 × 10−3;
1_3 : 1.253 × 10−2;
1_2 : 6.728 × 10−3

Q2 77.29 144.87 5.247 −0.3336 4.330 × 10−2 5.272 × 10−4 5.272 × 10−4 5.272 × 10−4 2_1 : 6.728 × 10−3

Q3 99.16 98.2 5.303 −0.33124 2.610 × 10−2 2.693 × 10−4 2.693 × 10−4 2.693 × 10−4 3_4 : 1.647 × 10−2;
3_1 : 1.253 × 10−2

Q4 23.81 22.12 5.092 −0.33447 4.580 × 10−2 6.226 × 10−4 6.226 × 10−4 6.226 × 10−4 4_3 : 1.647 × 10−2

FIG. 15. (a) AFM order parameter �(t ) [Eq. (12)] as a function of time for a light-driven five-spin chain with U = 10, A = 2.8, and � = 6.
The results were obtained in the IBM-Lima quantum device. The black line is the effective Floquet exact solution, the red circles are the direct
results from the quantum device. The blue squares include readout error mitigation (R.E.M). (b)–(d) Show the corresponding results obtained
in the quantum devices IBM-Belem, IBM-Bogota, and IBM-Quito.

FIG. 16. AFM order parameter �(t ) [Eq. (12)] as a function of time for a light-driven five-spin chain with U = 10, A = 2.8, and � = 6.
The results were obtained in the (a) IBM-Bogota and (b) IBM-Belem quantum devices. The black line is the effective Floquet exact solution,
the red circles are the direct results from the quantum device. The blue squares include readout error mitigation (R.E.M), and the green triangles
correspond to results including zero-noise extrapolation. These experiments are independent from Fig. 14 above, obtained in different days.
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