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Monge-Ampère equations
Degree theory

1. Introduction

The seminal work [66] by Minkowski in 1903 can be viewed as the starting point of the 
now vibrant Brunn-Minkowski theory in convex geometry. Minkowski’s work relied on a 
remarkable result by Steiner in 1840 that combines the power of the usual operations in 
the Euclidean space with the usual Lebesgue measure in the space. The so-called Steiner 
formula states that in Rn, the Lebesgue measure of K + t · B = {x + ty : x ∈ K, y ∈ B}
where K is a convex body (compact convex set), B is the Euclidean unit ball and t > 0
is a polynomial of degree n in t with coefficients carrying essential geometric information 
regarding K. These coefficients are known as quermassintegrals and include volume, 
surface area, mean width and many more geometric invariants. Inequalities and their 
equality conditions involving these invariants can then be used to identify geometric 
shapes—perhaps the most well-known one is the isoperimetric inequality that identifies 
balls. These invariants, when being “differentiated”, generate geometric measures that 
arguably carry more geometric information and at times all information as they can 
be used to uniquely recover the geometric shape. The celebrated Minkowski problem 
is one such example (perhaps the most well-known one). Minkowski asked if a given 
Borel measure μ on Sn−1 can be used to reconstruct a convex body whose surface area 
measure is precisely the given measure μ and if the reconstruction is unique. Here, the 
surface area measure of K, denoted by SK , is uniquely determined by the Aleksandrov’s 
variational formula

lim
t→0

Hn(K + tL) − Hn(K)
t

=
∫

Sn−1

hL(v)dSK(v) (1.1)

where hL : Sn−1 → R is the support function of L (see (2.1)). The influence of the 
Minkowski problem is widespread. In differential geometry, this is the problem of the 
prescription of Gauss curvature; in nonlinear PDE, it has the appearance of Monge-
Ampère equation. For the last three decades, there have been many Minkowski-type 
problems, each involving a certain geometric measures generated by “differentiating” an 
invariant in Steiner’s formula in a way such as in (1.1). These Minkowski problems can be 
understood as the problems of reconstructing convex bodies in manners specified by the 
geometric measures in question and each of them, when asked in the smooth category, 
reduces to a certain fully nonlinear elliptic PDE of varying natures. Some of the most 
prominent Minkowski-type problems include the Lp Minkowski problem (see [20,41,62]), 
the logarithmic Minkowski problem (see [13]), and the dual Minkowski problem (see 
[40]). We shall provide a short review of these problems shortly.

Perhaps of equal significance as the Lebesgue measure in Rn is the Gaussian proba-
bility measure γn given by
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γn(E) = 1
(
√

2π)n

∫
E

e− |x|2
2 dx.

Unlike Lebesgue measure, Gaussian probability measure is neither translation invariant 
nor homogeneous. Moreover, the density decays exponentially fast as |x| → ∞. The 
“surface area measure” in the Gaussian probability space is known as the Gaussian 
surface area measure, which was studied in, for example, Ball [3] and Nazarov [68]. In 
this paper, we will retrace the steps of Minkowski, Aleksandrov among many others and 
study the corresponding Minkowski problem in Gaussian probability space. As we will 
see shortly, the missing features such as translation invariance and homogeneity, along 
with exponential decay, causes the behavior of the Gaussian Minkowski problem to be 
quite mysterious and differs significantly from that of the Minkowski problem.

The following variational formula allows us to “differentiate” the Gaussian volume 
γn(·) on the set of convex bodies:

lim
t→0

γn(K + tL) − γn(K)
t

=
∫

Sn−1

hLdSγn,K ,

for any convex bodies K and L containing the origin in their interiors. The proof will be 
given in Theorem 3.3. The uniquely determined Borel measure Sγn,K is defined, in an 
equivalent way, in (3.1) and will be referred to as the Gaussian surface area measure of 
K for its corresponding role in Gauss probability space when compared to surface area 
measure in the Lebesgue measure space. When K is sufficiently smooth, its Gaussian 
surface area measure is absolutely continuous with respect to spherical Lebesgue measure:

dSγn,K(v) = 1
(
√

2π)n
e− |∇hK |2+h2

K
2 det(∇2hK + hI), (1.2)

where hK : Sn−1 → R is the support function of K and ∇, ∇2 are gradient and Hessian 
operators on Sn−1 with respect to the standard metric.

It is therefore natural to wonder what measures can be used to reconstruct convex 
bodies in Gaussian probability space based on their Gaussian surface area measure and 
whether Gaussian surface area measure uniquely identifies the body.

The Gaussian Minkowski problem. Given a finite Borel measure μ, what are the 
necessary and sufficient conditions on μ so that there exists a convex body K with 
o ∈ int K such that

μ = Sγn,K? (1.3)

If K exists, to what extent is it unique?
Because of (1.2), when the given measure μ has a density dμ = fdv, the Gaussian 

Minkowski problem reduces to solving the following Monge-Ampère type equation on 
Sn−1,
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1
(
√

2π)n
e− |∇h|2+h2

2 det(∇2h + hI) = f.

By the works of Ball [3] and Nazarov [68], it is simple to notice that the allowable μ in 
the Gaussian Minkowski problem cannot have an arbitrarily big total mass. In fact, the 
Gaussian surface area of any convex set in Rn is up to a constant bounded from above 
by n

1
4 .

We will briefly discuss several other features that distinguish the Gaussian Minkowski 
problem from the Minkowski problem in Lebesgue measure space, which are what makes 
the problem more interesting and simultaneously more challenging.

To start, notice that when K is a centered ball of radius r, according to (1.2), the 
density of its Gaussian surface area measure is given by fr ≡ 1

(
√

2π)n e−r2/2rn−1. Notice 

that e−r2/2rn−1 → 0 both when r approaches 0 and ∞. Thus, in full generality, even 
when μ = cdv for some constant c > 0, the solutions to the Gaussian Minkowski problem 
are not unique. This is a result of the fact that the Gaussian probability space “thins” out 
exponentially as you travel away from the origin and therefore both larger and smaller 
convex bodies in Rn can have relatively small Gaussian surface area. However, as we 
will show in Section 4, when restricted to convex bodies with larger than 1/2 Gaussian 
volume, uniqueness part of the Gaussian Minkowski problem can be established.

Theorem 1.1. Suppose K, L are two convex bodies in Rn that contain the origin in their 
interiors and K, L both solve the Gaussian Minkowski problem; i.e.,

Sγn,K = Sγn,L = μ.

If γn(K), γn(L) ≥ 1/2, then K = L.

Our uniqueness result utilizes the Ehrhard’s inequality with its equality condition, 
along with several of its consequences. Ehrhard’s inequality is an isoperimetric inequal-
ity in the Gaussian probability space and implies that half-spaces, among all other sets of 
the same Gaussian volume, attain the least Gaussian surface area. As mentioned before, 
the Gaussian probability measure does not enjoy any homogeneity. As a result, there are 
many isoperimetric inequalities in the Gaussian probability space. Of particular interest 
is the dimensional Brunn-Minkowski inequality (for o-symmetric convex bodies) con-
jectured by Gardner-Zvavitch [27], with important contribution by Kolesnikov-Livshyts 
[47] followed by a recent confirmation by Eskenazis-Moschidis [23]. Gardner-Zvavitch [27]
observed that this inequality neither implies nor is implied by Ehrhard’s inequality. The 
dimensional Brunn-Minkowski inequality is also linked with the conjectured log-Brunn-
Minkowski inequality (planar case established in [12])—an inequality in the Lebesgue 
measure space but with different addition—following a result by Livshyts-Marsiglietti-
Nayar-Zvavitch [56], which was very recently extended in [39]. We also would like to 
mention the work of Borell [5].
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Since Gaussian probability measure is not translation-invariant, the position of a 
convex body with respect to the origin is of critical importance. In terms of the existence 
part of the Gaussian Minkowski problem, we will restrict ourselves to the o-symmetric 
case; that is, when the given measure μ is an even measure and the solution set is the set of 
all o-symmetric convex bodies. As Example 7.1 in Appendix shows, even in this restricted 
case, the characterization of permissible measures μ is quite complicated. The situation is 
made worse by the lack of homogeneity in the Gaussian probability space (and therefore 
the Gaussian volume and surface area measure). Minkowski-type problems in which one 
deals with non-homogeneous geometric measures are typically known as of Orlicz type, 
which has their origin in the work [33] by Haberl-Lutwak-Yang-Zhang for the Orlicz 
Minkowski problem that generalizes both the classical Minkowski problem and the Lp

Minkowski problem. See also [24,38,42,51,75,82] for additional results and contributions 
in the Orlicz extension of the classical Brunn-Minkowski theory. Very recently, Gardner-
Hug-Weil-Xing-Ye extended the recently posed dual Minkowski problem to its Orlicz 
counterpart [25,26]. Inspired by their work, particularly the work [33] by Haberl-Lutwak-
Yang-Zhang, we obtain the following normalized solution to the even Gaussian Minkowski 
problem.

Theorem 1.2. Suppose μ is an finite even Borel measure not concentrated in any closed 
hemisphere. Then for each 0 < α < 1

n , there exists an o-symmetric convex body K such 
that

μ = cSγn,K ,

where

c = 1
γn(K)1−α

.

The proof of Theorem 1.2 is contained in Section 3.1, which is of variational nature. 
If the Gaussian surface area measure Sγn,K was homogeneous in K, one would then be 
able to get rid of the constant c. This, however, is far from a simple procedure and as a 
matter of fact, to the best knowledge of the authors’, solutions to Orlicz-Minkowski-type 
problem in the works mentioned above are all normalized solutions (meaning that there 
exists a constant c in the solutions). It is unclear whether the reconstruction process 
is unique by allowing such a constant c in the solution. Therefore, it is much desired 
to obtain a solution to the non-normalized version of the Gaussian Minkowski problem 
as stated in (1.3) where uniqueness to a certain extent is guaranteed by one of our 
results (Theorem 1.1). One of our main results in the current paper is a progress in 
this direction by obtaining an existence result of the Gaussian Minkowski problem (non-
normalized, restricted to o-symmetric case) via a degree theory approach. In particular, 
we will show
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Theorem 1.3 (Existence of smooth solutions). Let 0 < α < 1 and f ∈ C2,α(Sn−1) be a 
positive even function with |f |L1 < 1√

2π
. Then there exists a unique C4,α o-symmetric 

K with γn(K) > 1/2 such that

1
(
√

2π)n
e− |∇hK |2+h2

K
2 det(∇2hK + hKI) = f. (1.4)

An approximation argument is then used to obtain an existence result (weak solution) 
for the Gaussian Minkowski problem.

Theorem 1.4. Let μ be an even measure on Sn−1 that is not concentrated in any subspace 
and |μ| < 1√

2π
. Then there exists a unique origin-symmetric K with γn(K) > 1/2 such 

that

Sγn,K = μ.

Notice that Theorem 1.4 trivially implies that if μ is an even measure on Sn−1 that is 
not concentrated in any subspace, there are infinitely many pairs of c and K such that 
μ = cSγn,K .

The constant 1√
2π

in both Theorems 1.3 and 1.4 comes from the fact that convex 
bodies with their Gaussian volume equal to 1/2 must have their Gaussian surface area 
larger than or equal to 1√

2π
. See Corollary 4.6 for detail. It is also worth mentioning that 

the supremum of the Gaussian surface area of any convex body in Rn is asymptotically 
on the order of n 1

4 . This fact is due to Ball [3] and Nazarov [68]. See Livshyts [54] for 
further generalizations.

The author would like to point out that a differently normalized version of the Gaus-
sian Minkowski problem is a special case of the general dual Orlicz-Minkowski problem 
considered in [25,26]. However, it is important to note that none of the main theorems 
in the current paper overlap with those presented there. One should also note that the 
Minkowski problem in measurable spaces whose densities possess certain homogeneity 
and concavity has been previously considered in Livshyts [55].

Before ending this section, a short review of the aforementioned Minkowski-type prob-
lems in Rn with Lebesgue measure will be provided given their relevance to the current 
work and their importance in convex geometry. However, the more eager readers should 
feel free to skip it and jump to Section 2.

Nine decades after Minkowski’s seminal work [66], in the early 1990s, Lutwak [62,63]
laid the foundation to the now fruitful Lp Brunn-Minkowski theory. Due to limit of 
space, we mention only a selection of beautiful results in this area, [10,12,35,36,58,60,
64,65,67,69,73,74,76] and refer the interested readers to Schneider’s book [70] for more 
details. In [62], Lutwak introduced the Lp surface area measure which is the counterpart 
of the classical surface area measure in the Lp theory and posed the corresponding Lp

Minkowski problem. When p = 1, the Lp Minkowski problem is precisely the classical 
Minkowski problem Lutwak himself solved the problem when p > 1 in the o-symmetric 



Y. Huang et al. / Advances in Mathematics 385 (2021) 107769 7
case whereas the more general case (non-symmetric) was settled by [20,41]. The Lp

Minkowski problem when p < 1 is much more complicated and contains challenging
problems such as the logarithmic Minkowski problem (p = 0) and the centro-affine 
Minkowski problem (p = −n).

The logarithmic Minkowski problem characterizes cone volume measure which has 
been the central topic in a number of recent works. When the given data is even, 
the existence of solutions to the logarithmic Minkowski problem was completely solved 
in Böröczky-Lutwak-Yang-Zhang [13]. In the general case (non-even case), important 
contributions were made by Zhu [80], and later by Böröczky-Hegedűs-Zhu [9] and Chen-
Li-Zhu [18]. The logarithmic Minkowski problem has strong connections with isotropic 
measures (Böröczky-Lutwak-Yang-Zhang [14]) and curvature flows (Andrews [1,2]).

The centro-affine Minkowski problem characterizes the centro-affine surface area mea-
sure whose density in the smooth case is the centro-affine Gauss curvature. The character-
ization problem, in this case, is the centro-affine Minkowski problem posed in Chou-Wang 
[20]. See also Jian-Lu-Zhu [43], Lu-Wang [57], Zhu [81], etc., on this problem.

The readers are also referred to [4,17] for some recent development of the Lp Minkowski 
problem when p < 1.

Recently, there has been some crucial progress towards the uniqueness part of the 
Lp Minkowski problem when 0 < p < 1 within the class of smooth o-symmetric convex 
bodies. In particular, a local uniqueness result was given in [48]. Using PDE methods, 
this was later extended to a global uniqueness result in [15].

The Minkowski problem and the Lp Minkowski problem are within the framework 
introduced by Brunn and Minkowski. A parallel theory, which is known as the dual 
Brunn-Minkowski theory, was introduced by Lutwak (see Schneider [70]) in the 1970s. 
The dual Brunn-Minkowski theory has been most effective in answering questions related 
to intersections. One major triumph of the dual Brunn-Minkowski theory is tackling the 
famous Busemann-Petty problem, see Gardner [28], Gardner-Koldobsky-Schlumprecht 
[29], Koldobsky [44–46], Lutwak [61], and Zhang [77]. The dual theory makes extensive 
use of techniques from harmonic analysis. Recently, the dual Brunn-Minkowski theory 
took a huge step forward when Huang-Lutwak-Yang-Zhang [40] discovered the family of 
fundamental geometric measures—called dual curvature measures—in the dual theory. 
The dual Minkowski problem is the problem of prescribing dual curvature measures. 
The dual Minkowski problem introduces intrinsic PDEs—something long missing—to 
the dual Brunn-Minkowski theory. The dual Minkowski problem, while still largely open, 
has been solved in the o-symmetric case when the associated index q satisfies q ∈ [0, n], 
see, for example [8,11,16,37,40,52,78,79].

The current work is along the lines of the classical problem raised by Minkowski, but 
now considered in the Gaussian probability space rather than the Lebesgue measure 
space. The lack of translation-invariance and homogeneity in the Gaussian probability 
space creates many challenges not encountered in the classical Minkowski problem.
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2. Preliminaries

Some basics, as well as notations, regarding convex bodies will be provided in this 
section. For a general reference on the theory of convex bodies, the readers are referred 
to the book [70] by Schneider.

Let Rn be the n-dimensional Euclidean space. The unit sphere in Rn is denoted by 
Sn−1. We will write C(Sn−1) for the space of continuous functions on Sn−1. We will use 
the subscript e for even functions and the superscript + for positive function so that 
C+

e (Sn−1) is used to denote the set of all even positive functions on Sn−1. For a Borel 
measure μ in a measure space, we will use |μ| for its total measure.

A convex body in Rn is a compact convex set with nonempty interior. The boundary 
of K is written as ∂K. Denote by Kn

0 the class of convex bodies that contain the origin 
in their interiors in Rn and by Kn

e the class of origin-symmetric convex bodies in Rn.
Let K be a compact convex subset of Rn. The support function hK of K is defined 

by

hK(y) = max{x · y : x ∈ K}, y ∈ Rn. (2.1)

The support function hK is a continuous function homogeneous of degree 1. Suppose K
contains the origin in its interior. The radial function ρK is defined by

ρK(x) = max{λ : λx ∈ K}, x ∈ Rn \ {0}.

The radial function ρK is a continuous function homogeneous of degree −1. It is not 
hard to see that ρK(u)u ∈ ∂K for all u ∈ Sn−1.

For each f ∈ C+(Sn−1), the Wulff shape [f ] generated by f is the convex body defined 
by

[f ] = {x ∈ Rn : x · v ≤ f(v), for all v ∈ Sn−1}.

It is apparent that h[f ] ≤ f and [hK ] = K for each K ∈ Kn
0 .

Suppose Ki is a sequence of convex bodies in Rn. We say Ki converges to a compact 
convex subset K ⊂ Rn in Hausdorff metric if

max{|hKi
(v) − hK(v)| : v ∈ Sn−1} → 0, (2.2)

as i → ∞. If K contains the origin in its interior, equation (2.2) implies

max{|ρKi
(u) − ρK(u)| : u ∈ Sn−1} → 0,

as i → ∞.
For a compact convex subset K in Rn and v ∈ Sn−1, the supporting hyperplane 

H(K, v) of K at v is given by
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H(K, v) = {x ∈ K : x · v = hK(v)}.

By its definition, the supporting hyperplane H(K, v) is non-empty and contains only 
boundary points of K. For x ∈ H(K, v), we say v is an outer unit normal of K at 
x ∈ ∂K.

Since K is convex, for Hn−1 almost all x ∈ ∂K, the outer unit normal of K at x is 
unique. In this case, we use νK to denote the Gauss map that takes x ∈ ∂K to its unique 
outer unit normal. Therefore, the map νK is almost everywhere defined on ∂K. We use 
ν−1

K to denote the inverse Gauss map. Since K is not assumed to be strictly convex, the 
map ν−1

K is set-valued map and for each set η ⊂ Sn−1, we have

ν−1
K (η) = {x ∈ ∂K : there exists v ∈ η such that v is an outer unit normal at x}.

Occasionally, for simplicity, we will sometimes use the following renormalization of 
the Gauss and inverse Gauss map.

For those u ∈ Sn−1 such that νK is well-defined at ρK(u)u ∈ ∂K, we write αK(u) for 
νK(ρK(u)u).

Let η ⊂ Sn−1 be a Borel set. The reverse radial Gauss image of K, denoted by α∗
K(η), 

is defined to be the set of all radial directions such that the corresponding boundary 
points have at least one outer unit normal in η, i.e.,

α∗
K(η) = {u ∈ Sn−1 : v · uρK(u) = hK(v) for some v ∈ η}.

When η = {v} is a singleton, we usually write α∗
K(v) instead of the more cumbersome 

notation α∗
K({v}). It follows from Theorem 2.2.11 in [70] that for Hn−1 almost all v ∈

Sn−1, the set α∗
K(η) contains only a singleton. Thus, we will sometimes treat α∗

K as an 
almost everywhere defined map on Sn−1 when no confusion arises.

We recall that by Lemma 2.2 in [40] that if Ki converges to K0 ∈ Kn
o in Hausdorff 

metric, then αKi
converges to αK0 almost everywhere on Sn−1 with respect spherical 

Lebesgue measure.

3. Gaussian surface area measure and the Gaussian Minkowski problem

The purpose of this section is to introduce Gaussian surface area measure and the 
Gaussian Minkowski problem, and prove some basic properties as well as basic statements 
made in the Introduction but were not proved there. The authors would like to point 
out that these definitions and properties have already appeared in previous literatures 
(for example, [25,26]) and are only included in this paper for the sake of completeness. 
With the exception of Theorem 3.5, we take no credit for the other results presented in 
this section.

We define the following Borel measure on Sn−1 and refer to it as Gaussian surface 
area measure.
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Definition 3.1. Let K ∈ Kn
o . The Gaussian surface area measure of K, denoted by Sγn,K , 

is a Borel measure on Sn−1 given by

Sγn,K(η) = 1
(
√

2π)n

∫
ν−1

K (η)

e− |x|2
2 dHn−1(x), (3.1)

for each Borel measurable η ⊂ Sn−1.

We will need the following lemma.

Lemma 3.2. Let K ∈ Kn
o and f ∈ C(Sn−1). Suppose δ > 0 is sufficiently small so that 

for each t ∈ (−δ, δ), we have

ht = hK + tf > 0.

Then,

lim
t→0

ρ[ht](u) − ρK(u)
t

= f(αK(u))
hK(αK(u))ρK(u)

for almost all u ∈ Sn−1 with respect to spherical Lebesgue measure. Moreover, there 
exists M > 0, such that

|ρ[ht](u) − ρK(u)| < M |t|,

for all u ∈ Sn−1 and t ∈ (−δ, δ).

Proof. The desired result follows immediately from Lemmas 2.8 and 4.1 in [40] and also 
the fact that

log ht = log hK + t
f

hK
+ o(t). �

The following variational formula gives rise to the corresponding surface area measure 
in the Gaussian probability space and therefore justifies the name Gaussian surface area 
measure. The proof is an adaptation of the variational formula obtained in [40].

Theorem 3.3. Let K ∈ Kn
o and f ∈ C(Sn−1). Then,

lim
t→0

γn([hK + tf ]) − γn(K)
t

=
∫

fdSγn,K . (3.2)

Sn−1
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Proof. Write ht = hK + tf . Using polar coordinates, we have

γn([ht]) = 1
(
√

2π)n

∫
Sn−1

ρ[ht](u)∫
0

e− r2
2 rn−1drdu.

Since K ∈ Kn
o and f ∈ C(Sn−1), for t close to 0, there exists M1 > 0 such that 

[ht] ⊂ M1B. Denote F (s) =
∫ s

0 e− r2
2 rn−1dr. By mean value theorem,

|F (ρ[ht](u)) − F (ρK(u))| ≤ |F ′(θ)||ρ[ht](u) − ρK(u)| < M |F ′(θ)||t|,

where M comes from Lemma 3.2 and θ is between ρ[ht](u) and ρK(u). Since [ht] ⊂ M1B, 
we have θ ∈ (0, M1]. Therefore, by definition of F , we have |F ′(θ)| is bounded from above 
by some constant that depends on M1. Therefore, there exists M2 > 0 such that

|F (ρ[ht](u)) − F (ρK(u))| ≤ M2|t|.

Using dominated convergence theorem, together with Lemma 3.2, we have

lim
t→0

γn([hK + tf ]) − γn(K)
t

= 1
(
√

2π)n

∫
Sn−1

f(αK(u))e− ρK (u)2
2

ρK(u)n

hK(αK(u))du

= 1
(
√

2π)n

∫
∂K

f(νK(x))e− |x|2
2 dHn−1(x)

= 1
(
√

2π)n

∫
Sn−1

fdSγn,K . �

The Gaussian surface area measure is weakly convergent with respect to Hausdorff 
metric.

Theorem 3.4. Let Ki ∈ Kn
o such that Ki converges to K0 ∈ Kn

o in Hausdorff metric. 
Then Sγn,Ki

converges to Sγn,K0 weakly.

Proof. Note that since K0 ∈ Kn
o , there exists C > 0 such that 1

C B ⊂ Ki ⊂ CB for 
sufficiently large i. Therefore, we have

e−
ρKi

(u)2

2 ρn−1
Ki

(u) → e−
ρK0 (u)2

2 ρn−1
K0

(u) uniformly on Sn−1. (3.3)

Let g ∈ C(Sn−1). Since αKi
→ αK0 almost everywhere on Sn−1 with respect to spherical 

Lebesgue measure, we also have

g(αKi
(u)) → g(αK0(u)) almost everywhere on Sn−1. (3.4)
u · αKi
(u) u · αK0(u)
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By definition of Sγn,K , we have
∫

Sn−1

gdSγn,Ki
= 1

(
√

2π)n

∫
∂Ki

g(νKi
(x))e− |x|2

2 dHn−1(x)

= 1
(
√

2π)n

∫
Sn−1

g(αKi
(u))e−

ρKi
(u)2

2
ρKi

(u)n

hKi
(αKi

(u))du

= 1
(
√

2π)n

∫
Sn−1

g(αKi
(u))

u · αKi
(u)e−

ρKi
(u)2

2 ρKi
(u)n−1du

→ 1
(
√

2π)n

∫
Sn−1

g(αK0(u))
u · αK0(u)e−

ρK0 (u)2

2 ρK0(u)n−1du

=
∫

Sn−1

gdSγn,K0 ,

where the limit is due to (3.3) and (3.4). �
By a simple calculation, it follows from the definition of Gaussian surface area measure 

that if K ∈ Kn
o is convex, then Sγn,K is absolutely continuous with respect to surface 

area measure and

dSγn,K = 1
(
√

2π)n
e− |∇hK |2+h2

K
2 dSK .

If, in addition, the body K is C2, then Sγn,K is absolutely continuous with respect to 
spherical Lebesgue measure and

dSγn,K(v) = 1
(
√

2π)n
e− |∇hK |2+h2

K
2 det(∇2hK + hKI)dv. (3.5)

When P ∈ Kn
o is a polytope with unit normal vectors vi with the corresponding faces 

Fi, the Gaussian surface area measure Sγn,P is a discrete measure given by

Sγn,P (·) =
N∑

i=1
ciδvi

(·),

where ci is given by

ci = 1
(
√

2π)n

∫
Fi

e− |x|2
2 dHn−1(x).

The classical Minkowski problem asks for the existence, uniqueness and regularity of 
a convex body K whose surface area measure is prescribed. It has played a fundamental 
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role, not only in convex geometric analysis, but also in PDE, differential geometry, func-
tional analysis. Given this, it is natural to study the corresponding problem for Gaussian 
surface area measure, which we refer to as the Gaussian Minkowski problem.

The Gaussian Minkowski problem. Given a finite Borel measure μ, what are the 
necessary and sufficient conditions on μ so that there exists a convex body K with 
o ∈ int K such that

μ = Sλn,K?

If K exists, to what extent is it unique?
It follows from (3.5) that if μ = fdv, then the Gaussian Minkowski problem is equiv-

alent to the study of the following Monge-Ampère type equation on Sn−1:

1
(
√

2π)n
e− |∇h|2+h2

2 det(∇2h + hI) = f.

It is well-known that the classical surface area measure SK when viewed as a map 
from the set of convex bodies to the set of Borel measures on Sn−1 is a valuation. In 
fact, Haberl-Parapatits [34] gave a valuation characterization of surface area measure. 
Valuation theory plays an important role in convex geometry, see, e.g., [32,59,60,71]. 
Similar to the proof for that of surface area measure, it is not hard to see that Gaussian 
surface area measure is also a valuation; that is, if K and L are two convex bodies such 
that K ∪ L is also a convex body, then

Sγn,K∪L + Sγn,K∩L = Sγn,K + Sγn,L.

It is of great interest to see if there is a valuation characterization of Gaussian surface 
area measure.

3.1. The normalized problem and its solution

Motivated by the work of Haberl-Lutwak-Yang-Zhang [33], we derive the solution to 
the following normalized version of the even Gaussian Minkowski problem.

Theorem 3.5. Suppose μ is an finite even Borel measure not concentrated in any closed 
hemisphere. Then, for each 0 < α < 1

n , there exists an o-symmetric convex body K such 
that

μ = Sγn,K

γn(K)1−α
. (3.6)

Our approach to the normalized problem is variational and involves the following 
optimization problem:
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sup{Γ(f) : f ∈ C+
e (Sn−1)}, (3.7)

where Γ : C+(Sn−1) → R is given by

Γ(f) = 1
α

γn([f ])α −
∫

Sn−1

fdμ.

Lemma 3.6. Let 0 < α < 1
n . If an even function f0 is a maximizer to the optimization 

problem (3.7), then f0 must be the support function of an o-symmetric convex body; 
that is, there exists an o-symmetric convex body K0 such that f0 = hK0 . Moreover, K0

satisfies (3.6).

Proof. Note that for each f ∈ C+
e (Sn−1), by the definition of Wulff shape, we have

Γ(f) ≥ Γ(h[f ]).

Therefore, the maximizer f0 must be the support function of some o-symmetric convex 
body K0.

We now use the variational formula (3.2) to establish that K0 satisfies (3.6).
Towards this end, for each g ∈ C+

e (Sn−1), consider the one-parameter family

Kt = [hK0 + tg].

Since f0 = hK0 is a maximizer, we have

0 = d

dt

∣∣∣∣
t=0

Γ(hKt
) = γn(K0)α−1

∫
Sn−1

gdSγn,K0 −
∫

Sn−1

gdμ,

where in the second equality, we used the variational formula (3.2). Note that the 
above equation holds for every g ∈ C+

e (Sn−1). Therefore, we conclude that K0 satis-
fies (3.6). �

For simplicity, when no confusion arises, we will write Γ(K) in place of Γ(hK).

Lemma 3.7. Let 0 < α < 1 . For sufficiently small r > 0, we have Γ(rB) > 0.
n
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Proof. By definition of Γ, we have

Γ(rB) = 1
α

⎛
⎝ 1

(2π) n
2

∫
rB

e− |x|2
2 dx

⎞
⎠

α

−
∫

Sn−1

rdμ

= 1
α

⎛
⎝ nωn

(2π) n
2

r∫
0

e− t2
2 tn−1dt

⎞
⎠

α

− r|μ|

= r

⎡
⎣ 1

α

(
nωn

(2π) n
2

)α
(∫ r

0 e− t2
2 tn−1dt

r
1
α

)α

− |μ|

⎤
⎦ .

It follows from simple computation that when 0 < α < 1
n , we have

lim
r→0+

∫ r

0 e− t2
2 tn−1dt

r
1
α

= lim
r→0+

αe− r2
2 rn−1

r
1
α −1 = α lim

r→0+
rn− 1

α = ∞.

The desired result is therefore established. �
We are now ready to give a proof to Theorem 3.5.

Proof of Theorem 3.5. By Lemma 3.6, it suffices to show that a maximizer to the opti-
mization problem (3.7) exists. We assume that Ki is a sequence of o-symmetric convex 
bodies and

lim
i→∞

Γ(Ki) = sup{Γ(f) : f ∈ C+
e (Sn−1)} > 0, (3.8)

where the last inequality follows from Lemma 3.7.
Choose ri > 0 and ui ∈ Sn−1 such that riui ∈ Ki and

ri = max
u∈Sn−1

ρKi
(u).

It is simple to notice that Ki ⊂ riB. We claim that ri is a bounded sequence. Otherwise, 
by taking a subsequence, we may assume that limi→∞ ri = ∞. Since Ki ⊂ riB, we have

Γ(Ki) ≤ 1
α

γn(riB)α −
∫

Sn−1

hKi
dμ.

Since riui ∈ Ki, we have by the definition of support function that

hKi
(v) ≥ ri|v · ui|.

Therefore, we have
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Γ(Ki) ≤ 1
α

γn(riB)α − ri

∫
Sn−1

|v · ui|dμ.

By the fact that μ is not concentrated in any closed hemisphere, we may find c0 > 0
such that ∫

Sn−1

|v · ui|dμ ≥ c0.

Therefore,

Γ(Ki) ≤ 1
α

γn(riB)α − ric0

= 1
α

⎛
⎝ nωn

(2π) n
2

ri∫
0

e− t2
2 tn−1dt

⎞
⎠

α

− ric0

→ −∞,

as i → ∞, since the integral 
∫ ∞

0 e− t2
2 tn−1dt is convergent. But this is a contradiction 

to Ki being a maximizing sequence and (3.8). Therefore, the sequence of convex bodies 
Ki is uniformly bounded. We may therefore use Blaschke selection theorem and assume 
(by taking a subsequence) that Ki converges in Hausdorff metric to a compact convex 
o-symmetric set K0. Note that by the continuity of the Gaussian volume with respect to 
the Hausdorff metric, definition of Γ, and (3.8), we have

1
α

γn(K0)α ≥ Γ(K0) = lim
i→∞

Γ(Ki) > 0.

This, when combined with the fact that K0 is o-symmetric, implies that K0 contains the 
origin as its interior point. Therefore, the convex body K0 (or, its support function hK0) 
is a maximizer to the optimization (3.7). �

It is of great interest to ask whether the convex body satisfying (3.6) is uniquely 
determined.

4. Isoperimetric inequalities in Gaussian probability space

In this section, we recall the Ehrhard inequality and several of its consequences.
The Ehrhard inequality was shown by Ehrhard [21] when both Borel sets involved 

are convex, by Latała [49] when only one of the sets is assumed to be convex, and more 
recently by Borell [7] when neither set is required to be convex. However, for the purpose 
of this paper, only Ehrhard’s original version is required.



Y. Huang et al. / Advances in Mathematics 385 (2021) 107769 17
Theorem 4.1 (Ehrhard inequality). Let K, L be two convex bodies in Rn. For 0 < t < 1, 
we have

Φ−1(γn((1 − t)K + tL)) ≥ (1 − t)Φ−1(γn(K)) + tΦ−1(γn(L)).

Here,

Φ(x) = 1√
2π

x∫
−∞

e− t2
2 dt. (4.1)

Moreover, equality holds if and only if K = L.

The equality condition in the above lemma was shown by Ehrhard [22]. More recently, 
for more general versions of Ehrhard inequality, the equality condition has been settled 
by Shenfeld and van Handel [72].

The following lemma is a direct consequence of Ehrhard inequality. See also Borell [6]
for a characterization of log-concave measures.

Lemma 4.2. Let K and L be two convex bodies in Rn. For 0 < t < 1, we have

γn((1 − t)K + tL) ≥ γn(K)1−tγn(L)t, (4.2)

with equality if and only if K = L.

Using the variational formula (3.2), we obtain the following Minkowski-type inequality.

Lemma 4.3. Let K and L be two convex bodies in Rn. We have
∫

Sn−1

hL − hKdSγn,K ≥ γn(K) log γn(L)
γn(K) ,

with equality if and only if K = L.

Proof. Lemma 4.2 implies that the function g : [0, 1] → R given by

g(t) = log γn((1 − t)K + tL)

is concave. Therefore, the slope of the tangent line at t = 0 is no smaller than the 
slope of the secant line joining (0, g(0)) and (1, g(1)). Using (3.2) to compute g′(0), we 
immediately arrive at the desired inequality.

If equality holds, then g(t) is a linear function. Thus, equality holds in (4.2), which 
then implies that K = L. �
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An immediate consequence is

Lemma 4.4. Let K and L be two convex bodies in Rn. If γn(K) = γn(L), then
∫

Sn−1

hLdSγn,K ≥
∫

Sn−1

hKdSγn,K , (4.3)

with equality if and only if K = L.

The Ehrhard inequality also implies the following isoperimetric inequality in Gaussian 
probability space. See, for example, [50].

Theorem 4.5 (Gaussian isoperimetric inequality). Let K be a convex body in Rn. Then,

|Sγn,K | ≥ ϕ(Φ−1(γn(K))),

where ϕ(t) = (
√

2π)−1 exp(−t2/2) and Φ is as given in (4.1).

The Guassian isoperimetric inequality is a consequence of Ehrhard inequality. A direct 
consequence of the Gaussian isoperimetric inequality is the following.

Corollary 4.6. If K is a convex body in Rn such that γn(K) = 1/2, then |Sγn,K | ≥ 1√
2π

.

5. Uniqueness of solution

In this section, we will show that the solution to the Gaussian Minkowski problem is 
unique if one restricts the solution set to bodies with sufficiently big Gaussian volume.

Lemma 5.1. Suppose K, L ∈ Kn
o and K, L both solve the Gaussian Minkowski problem; 

i.e.,

Sγn,K = Sγn,L = μ. (5.1)

If γn(K), γn(L) ≥ 1/2, then,

γn(K) = γn(L).

Proof. For simplicity, we write Ψ = Φ−1 where Φ is given in (4.1). Then, Ehrhard 
inequality says

Ψ(γn((1 − t)K + tL)) ≥ (1 − t)Ψ(γn(K)) + tΨ(γn(L)), (5.2)

with equality if and only if K = L. Notice that Ψ is C∞ and strictly monotonically 
increasing. Utilizing Theorem 3.3, we take the first derivative of (5.2) at t = 0 and get
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Ψ′(γn(K))
∫

Sn−1

hL − hKdSγn,K ≥ Ψ(γn(L)) − Ψ(γn(K)). (5.3)

Switching the role of K and L, we get

Ψ′(γn(L))
∫

Sn−1

hK − hLdSγn,L ≥ Ψ(γn(K)) − Ψ(γn(L)). (5.4)

By (5.1), we have

Ψ′(γn(L))
∫

Sn−1

hL − hKdSγn,K ≤ Ψ(γn(L)) − Ψ(γn(K)), (5.5)

from (5.4). Since Ψ′ > 0, (5.3) and (5.5) imply that

Ψ(γn(L)) − Ψ(γn(K))
Ψ′(γn(L)) ≥ Ψ(γn(L)) − Ψ(γn(K))

Ψ′(γn(K)) ,

or, equivalently,

(Ψ′(γn(K)) − Ψ′(γn(L))) (Ψ(γn(K)) − Ψ(γn(L))) ≤ 0. (5.6)

By the definition of Ψ and chain rule, we can compute

Ψ′(x) =
√

2πe
Ψ(x)2

2 .

Since Ψ is strictly increasing on [1/2, 1], this implies that Ψ′ is also strictly increasing. 
This, when combined with the fact that Ψ is strictly increasing, shows that

(Ψ′(a) − Ψ′(b))(Ψ(a) − Ψ(b)) ≥ 0,

with equality if and only if a = b. Equation (5.6) now gives us the desired result. �
We are now ready to prove the uniqueness part of the Gaussian Minkowski problem 

when we restrict to the set of convex bodies whose Gaussian measure is no smaller than 
1/2.

Theorem 5.2. Suppose K, L ∈ Kn
o and K, L both solve the Gaussian Minkowski problem; 

i.e.,

Sγn,K = Sγn,L = μ.

If γn(K), γn(L) ≥ 1/2, then K = L.
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Proof. By Lemma 5.1, we have γn(K) = γn(L). By Corollary 4.4 and the fact that 
Sγn,K = Sγn,L, we conclude that equality holds in (4.3) and therefore by the equality 
condition, we have K = L. �
6. Existence of o-symmetric solutions

For the rest of the paper, we are going to prove existence results regarding the Gaussian 
Minkowski problem. For this purpose, we shall restrict ourselves to the o-symmetric case; 
that is, when the given data (μ or in the smooth case, its density f) is even and the 
potential solution set is restricted to Kn

e .
In this section, we will first prove the existence result when the given data is sufficiently 

smooth and everywhere positive. To do that, some a-priori estimates are required. At 
the end of the section, an approximation argument will be deployed to get the solution 
when the given data is a measure.

6.1. C0 estimate

Lemma 6.1. There exists a constant c > 0 (that depends only on n) such that if K ∈ Kn
e

and γn(K) ≥ 1
2 , then its support function hK is bounded from below by c on Sn−1.

Proof. We argue by contradiction and assume that there exists Ki ∈ Kn
e with γn(Ki) ≥ 1

2
and vi ∈ Sn−1 such that hi := hKi

(vi) → 0. Then, by definition of support function, we 
have

Ki ⊂ {x ∈ Rn : |x · vi| ≤ hi}.

Therefore,

γn(Ki) ≤ γn({x ∈ Rn : |x · vi| ≤ hi}) → 0,

which contradicts with the given condition that γn(Ki) ≥ 1
2 . �

Lemma 6.2. Let Ki be a sequence of convex bodies in Kn
e and ri = ||hKi

||∞. If 
limi→∞ ri = ∞, then for each 0 < c ≤ 1 and v ∈ Sn−1, we have

lim
i→∞

∫
ωi

e− |x|2
2 dHn−1(x) = 0,

where

ωi = {x ∈ ∂Ki : x · v > cri}.
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Proof. We first recall that based on Cauchy’s surface area formula, if K ⊂ L, then 
Hn−1(∂K) ≤ Hn−1(∂L).

For simplicity, we write Bi for the centered ball of radius ri. For each j = 1, 2, . . . , 
write

Li,j = Bi ∩ {x ∈ Rn : j ≤ x · v ≤ j + 1}.

Note that Li,j can be contained in a cylinder with the base of an (n − 1)-dimensional 
ball of radius ri and unit height. Thus,

Hn−1(∂Li,j) ≤ Hn−1(∂(Bi ∩ Rn−1) × [0, 1]) ≤ c(n)rn−1
i . (6.1)

Here and in the rest of the proof, we frequently use symbols such as c(n) to denote 
nonessential constants that only depend on the dimension.

Let Γi,j = Ki ∩ {x ∈ Rn : j ≤ x · v ≤ j + 1}. Note that

ωi ⊂
∞⋃

j=
cri�
∂Γi,j . (6.2)

For each individual ∂Γi,j , we have

∫
∂Γi,j

e− |x|2
2 dHn−1(x) ≤ e− j2

2 Hn−1(∂Γi,j) ≤ e− j2
2 Hn−1(∂Li,j),

where in the last inequality, we used the fact that Γi,j ⊂ Li,j . Combining with (6.1) and 
(6.2), we have

∫
ωi

e− |x|2
2 dHn−1(x) ≤

∞∑
j=
cri�

∫
∂Γi,j

e− |x|2
2 dHn−1(x)

≤ c(n)rn−1
i

∞∑
j=
cri�

e− j2
2

≤ c(n)rn−1
i

∞∑
j=
cri�

e−j

≤ c(n)rn−1
i e−
cri�

∞∑
j=0

e−j

→ 0,

as i → ∞, since ri → ∞. �
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Lemma 6.3. Suppose Ki is a sequence of convex bodies in Kn
e . For simplicity, write 

μi = Sγn,Ki
. If ||hKi

||∞ → ∞ and |μi| > 1
C for some C > 0, then for every δ > 0, there 

exists v ∈ Sn−1 and N > 0 such that

|μi| < μi(ξv,δ) + δ,

for each i > N . Here ξv,δ is given by

ξv,δ = {u ∈ Sn−1 : |u · v| < δ}.

Proof. By John’s theorem, there exists o-symmetric ellipsoid Ei:

Ei =
{

x ∈ Rn : |x · ei,1|2
r2

i,1
+ · · · + |x · ei,n|2

r2
i,n

≤ 1
}

with ri,1 ≥ ri,2 ≥ · · · ≥ ri,n such that Ei ⊂ Ki ⊂ √
nEi. Since ||hi||∞ → ∞, we have 

ri,1 → ∞.
By taking a subsequence, we may assume

0 ≤ lim
i→∞

ri,j

ri,j−1
= aj ≤ 1, for j = 2, . . . n.

Define a1 = 1. We argue that there exists j ∈ {1, . . . , n} such that aj = 0. If not, 
then there exists 0 < c ≤ 1 such that cri,1 < ri,n ≤ ri,1. Choose an orthonormal basis 
v1, . . . , vn. By definition of ri,n, we see that

(
√

2π)n|Sγn,Ki
| =

∫
∂Ki

e− |x|2
2 dHn−1(x) ≤

n∑
j=1

∫
ωi,j

e− |x|2
2 dHn−1(x), (6.3)

where

ωi,j = {x ∈ ∂Ki : |x · vj | > cri,1}.

Lemma 6.2 and (6.3) now implies that limi→∞ |Sγn,Ki
| = 0, which is a contradiction to 

the uniform lower bound of |μi|.
Now, let s = min{i − 1 : ai = 0}. Then there exists 0 < c ≤ 1 such that

ri,1 ≥ ri,2 ≥ · · · ≥ ri,s ≥ cri,1, (6.4)

and

lim
i→∞

ri,j

ri,s
= 0, for each j > s. (6.5)

By possibly taking another subsequence, we may assume
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lim
i→∞

ei,j = ej , for j = 1, 2, . . . , n. (6.6)

Here ej is an orthonormal basis in Rn.
Choose τn, ε1 ∈ (0, 1) such that

n

c2 (2τn +
√

nε1)2 ≤ 1,

where c > 0 is from (6.4).
Let

Ωi = {x ∈ ∂Ki : |x · ej | ≤ τnri,s, j = 1, 2, . . . , s}
ηi,j = {x ∈ ∂Ki : |x · ej | > τnri,s}.

Then, it is simple to see that

∂Ki = Ωi ∪
(
∪s

j=1ηi,j

)
.

Recall that

(
√

2π)n|SKi,γn
| =

∫
∂Ki

e− |x|2
2 dHn−1(x) =

∫
Ωi

e− |x|2
2 dHn−1(x) +

s∑
j=1

∫
ηi,j

e− |x|2
2 dHn−1(x).

(6.7)
By Lemma 6.2 and (6.4),

lim
i→∞

s∑
j=1

∫
ηi,j

e− |x|2
2 dHn−1(x) = 0. (6.8)

It remains to estimate ∫
Ωi

e− |x|2
2 dHn−1(x).

Take x ∈ Ωi. Set z = (x ·ei,1 . . . , x ·ei,s−1, x ·ei,s +τnri,s, 0, . . . , 0), where the coordinates 
are under ei,1, . . . ei,n. By (6.6), there exists N1 > 0 such that for each i > N1, we have

|ei,j − ej | < ε1, for each j = 1, . . . , n. (6.9)

We claim that for i > N1, we have z ∈ Ei. Indeed, by the triangle inequality, the 
definition of Ωi, (6.9), the fact that Ki ⊂ √

nEi, (6.4), and the choice of τn and ε1,

n∑ |z · ei,j |2
r2

i,j

=
s−1∑ |x · ei,j |2

r2
i,j

+ |x · ei,s + τnri,s|2
r2

i,s
j=1 j=1
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≤
s−1∑
j=1

(|x · ej | + |x · (ei,j − ej)|)2

r2
i,j

+ (|x · es + τnri,s| + |x · (ei,s − es)|)2

r2
i,s

≤
s−1∑
j=1

(τnri,s +
√

nri,1ε1)2

r2
i,j

+ (2τnri,s +
√

nri,1ε1)2

r2
i,s

≤
s−1∑
j=1

(τn +
√

nε1)2 r2
i,1

r2
i,j

+ (2τn +
√

nε1)2 r2
i,1

r2
i,s

≤ 1
c2 n(2τn + ε1)2 ≤ 1.

Therefore, z ∈ Ei ⊂ Ki.
Note that by definition of z and the fact that Ki ⊂ √

nEi,

d(x + τnri,sei,s, z) ≤

⎛
⎝ n∑

j=s+1
|x · ei,j |2

⎞
⎠

1
2

≤

⎛
⎝ n∑

j=s+1
nr2

i,j

⎞
⎠

1
2

.

According to (6.5), we have

lim
i→∞

d(x + τnri,sei,s, z)
ri,s

= 0. (6.10)

Notice also that by definition of the Gauss map νKi
(x), we have

νKi
(x) · (x − z) ≥ 0,

which is equivalent to

νKi
(x) ·

(
x − z + τnri,sei,s

τnri,s
− ei,s

)
≥ 0.

By (6.10), for each δ > 0, there exists N2 > N1 such that for every i > N2, we have

νKi
(x) · ei,s < δ.

By symmetry, we yield

|νKi
(x) · ei,s| < δ.

Since ei,s → es, there exists N3 > N2 such that for every i > N3, we have

|νKi
(x) · es| < 2δ.

This, implies that
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1
(
√

2π)n

∫
Ωi

e− |x|2
2 dHn−1(x) ≤ μi(ξes,2δ),

This, (6.7) and (6.8) imply that for each δ > 0, there exists N > 0 such that for each 
i > N , we have

|μi| ≤ μi(ξes,δ) + δ. �
The following lemma contains the desired C0 estimate.

Lemma 6.4. Suppose the support function of K ∈ Kn
e is C2 and satisfies

1
(
√

2π)n
e− |∇h|2+h2

2 det(∇2h + hδij) = f,

and γn(K) > 1/2. If there exists C > 0 such that 1
C < f < C, then there exists C ′ > 0

such that 1/C ′ < hK < C ′.

Proof. The lower bound for hK comes from the assumption that γn(K) > 1
2 and 

Lemma 6.1.
For the upper bound, assume for the sake of contradiction that there exists a sequence 

of C2 o-symmetric convex bodies Ki with γn(Ki) > 1/2 and

1/C < fi = 1
(
√

2π)n
e− |∇hi(v)|2+h2

i (v)
2 det(∇2hi(v) + hi(v)I) < C,

but ||hi||∞ → ∞. Here we abbreviated hKi
by hi.

Write μi = fidv.
By Lemma 6.3, for every δ > 0, there exists v ∈ Sn−1 and N > 0 such that for each 

i > N , we have

|μi| < μi(ξv,δ) + δ. (6.11)

Note that there exists c > 0 such that Hn−1(ξv,δ) < cδ, which when combined with 
(6.11) and the uniform upper bound of fi, shows

|μi| < cCδ + δ.

When δ is small enough, this is a contradiction to the uniform lower bound of fi. �
6.2. Higher order a-priori estimate

Lemma 6.5 (a-priori estimate). Let 0 < α < 1. Suppose f ∈ C2,α(Sn−1) and there exists 
C > 0 such that 1

C < f < C and |f |C2,α < C. If the support function of K ∈ Kn
e is C4,α

and satisfies
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1
(
√

2π)n
e− |∇h|2+h2

2 det(∇2h + hI) = f (6.12)

and γn(K) > 1
2 , then there exists C ′ > 0 that only depends on C such that

(1) 1
C′ <

√
|∇hK |2 + h2

K < C ′

(2) 1
C′ I < (∇2hK + hKI) < C ′I

(3) |hK |C4,α < C ′.

Proof. (1) Note that by Lemma 6.4, there exists C ′ > 0 such that 1/C ′ < hK < C, 
or, in another word, 1/C ′B ⊂ K ⊂ C ′B. Recall that by the definition of support 
function, we have for each v ∈ Sn−1,

∇hK(v) + hK(v)v = ν−1
K (v) ∈ ∂K.

Therefore the upper and lower bound on |∇hK|2 + h2
K follows from the bounds on 

K.
(2) Our strategy to prove this statement is to show that

(a) The trace of the matrix (∇2hK + hKI), or the sum of the matrix’s eigenvalues, 
is bounded from above.

(b) The determinant of the matrix (∇2hK + hKI), or the product of the matrix’s 
eigenvalues is bounded both from above and from below (by a positive constant).

Note that (a) and (b), when combined together, immediately imply that all eigen-
values of (∇2hK + hKI) have positive upper and lower bounds—a consequence of 
the fact that (∇2hK + hKI) is positive definite.

Claim (b) permits a quick proof based on equation (6.12). Indeed,

det(∇2hK + hKI) = (
√

2π)nfe
|∇hK |2+h2

K
2 ,

where the right side has positive upper and lower bounds based on the bounds of f
and statement (1).

To prove Claim (a), let us denote

H = trace(∇2hK + hKI) = ΔhK + (n − 1)hK .

Since H is continuous on Sn−1, there exists v0 ∈ Sn−1 such that H(v0) =
maxv∈Sn−1 H. Then, at v0, we have ∇H = 0 and the matrix ∇2H is negative semi-
definite. We choose a local orthonormal frame e1, . . . , en−1, such that the Hessian of 
hK , (hK)ij , is diagonal. Recall the commutator identity [31, p. 1361]:

Hii = Δwii − (n − 1)wii + H. (6.13)
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We use wij to denote the inverse of the matrix wij = ((hK)ij + hKδij). Equation 
(6.13), the fact that (wij) is positive definite and ∇2H is negative semi-definite, and 
that (wij) is diagonal, imply that at v0, we have

0 ≥ wiiHii = wiiΔwii + H
∑

i

wii − (n − 1)2 ≥ wiiΔwii − (n − 1)2. (6.14)

Taking the logarithm of (6.12), we have

log det(∇2hK + hKI) = log f + |∇hK |2 + h2
K

2 .

We take the spherical Laplacian of the above equation and get
∑

α

(wij)α(wij)α + wijΔwij

=Δ log f +
∑
i,j

(hK)2
ij +

∑
i

(hK)i(Δ(hK)i) + |∇hK |2 + hKΔhK

(6.15)

By definition of H, we have
∑
i,j

(hK)2
ij = H2 − 2hKH + (n − 1)h2

K . (6.16)

By definition of H and equation (4.11) in Cheng-Yau [19], we have
∑

i

(hK)i(Δ(hK)i) =
∑

i

(hK)i(ΔhK)i = ∇hK · ∇H − (n − 1)|∇hK |2. (6.17)

We also note that

hKΔhK = hKH − (n − 1)h2
K . (6.18)

Finally, using the fact that (wij) is the inverse matrix of (wij), we get

(wij)α(wjk)α = −wim(wml)αwlj(wjk)α,

which implies its trace is non-positive; that is

(wij)α(wij)α ≤ 0. (6.19)

Combining (6.15), (6.16), (6.17), (6.18), and (6.19), we get

wijΔwij ≥ Δ log f + H2 − hKH + ∇hK · ∇H − (n − 2)|∇hK |2.

When evaluated at v0 where H reaches its maximum, we have
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wiiΔwii ≥ H2 − hKH + (Δ log f − (n − 2)|∇hK |2). (6.20)

Equations (6.14) and (6.20) now imply that

0 ≥ H2 − hKH + (Δ log f − (n − 2)|∇hK |2 − (n − 1)2).

The right side of the above inequality is a quadratic polynomial in H. Note that by 
the bounds on f and |f |C2,α , statements (i) and (ii), the coefficients have bounds 
that only depend on C. Therefore, H is bounded from above by a positive constant 
that only depends on C.

(3) By statement (2), the Monge-Ampère equation (6.12) is uniformly elliptic. Thus, the 
standard Evans-Krylov-Safonov theory [30] implies the higher estimates in statement 
(3). �

6.3. Existence of smooth solutions via degree theory

Theorem 6.6 (Existence of smooth solutions). Let 0 < α < 1 and f ∈ C2,α(Sn−1) be a 
positive even function with |f |L1 < 1√

2π
. Then there exists a unique C4,α o-symmetric 

K with γn(K) > 1/2 such that

1
(
√

2π)n
e− |∇hK |2+h2

K
2 det(∇2hK + hKI) = f. (6.21)

Proof. The uniqueness part follows from Theorem 5.2.
We use the degree theory for second-order nonlinear elliptic operators developed in 

Li [53] for the existence part.
It follows by simple application of intermediate value theorem and Theorem 5.2 that 

(6.21) admits a unique constant solution hK ≡ r0 > 0 such that γn(K) > 1/2 if f ≡
c0 > 0 is small enough. We also require that c0 > 0 is small enough so that |c0|L1 < 1√

2π
. 

Our final requirement for c0 > 0 is that the operator Lφ = ΔSn−1φ + ((n − 1) − r2
0)φ is 

invertible. This is possible since spherical Laplacian has a discrete spectrum.
Let F (·; t) : C4,α(Sn−1) → C2,α(Sn−1) be defined as

F (h; t) = det(∇2h + hI) − (
√

2π)ne
|∇h|2+h2

2 ft,

for t ∈ [0, 1]. Here

ft = (1 − t)c0 + tf.

Since f ∈ C2,α(Sn−1) and f > 0, there exists C > 0 such that 1
C < f, c0 < C and 

|f |C2,α < C. We let C ′ > 0 be the constant extracted from Lemma 6.5. Note that for each 
t ∈ [0, 1], the function ft has the same bound as f ; namely, 1

C < ft < C, |ft|L1 < 1√
2π

, 
and |ft|C2,α < C.
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Define O ⊂ C4,α(Sn−1) by

O =
{

h ∈ C4,α(Sn−1) : 1
C ′ <h<C ′,

1
C ′ I <(∇2h + hI)<C ′I, |h|C4,α <C ′, γn(h)>

1
2

}
.

Here γn(h) = γn([h]) is well-defined and moreover since h is strictly convex, h is precisely 
a support function. We note that it is simple to see that O is an open bounded set under 
the norm | · |C4,α .

We also note that since every h ∈ O has uniform upper and lower bounds for the 
eigenvalues of its Hessian, the operator F (·; t) is uniformly elliptic on O for any t ∈ [0, 1].

We claim that for each t ∈ [0, 1], if h ∈ ∂O, then

F (h; t) 
= 0.

Indeed, if F (h; t) = 0, then h solves

1
(
√

2π)n
e− |Dh|2

2 det(∇2h + hI) = ft. (6.22)

Since h ∈ ∂O, we also have that γn(h) ≥ 1
2 . If γn(h) > 1/2, by Lemma 6.5, we would 

have

1
C ′ < h < C ′,

1
C ′ I < (∇2h + hI) < C ′I, |h|C4,α < C ′.

Thus, by the definition of O, the only way for h ∈ ∂O is that

γn(h) = 1
2 .

By Corollary 4.6, we have

|Sγn,[h]| ≥ 1√
2π

.

But this contradicts with the fact that h solves (6.22) and that |ft|1 < 1√
2π

.
Using Proposition 2.2 in Li [53], we conclude that

deg(F (·; 0), O, 0) = deg(F (·; 1), O, 0).

If we can show that deg(F (·; 0), O, 0) 
= 0, then it follows immediately that

deg(F (·; 1), O, 0) 
= 0,

which then implies the existence of h ∈ O such that F (h; 1) = 0.
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The rest of the proof focuses on showing deg(F (·; 0), O, 0) 
= 0. For simplicity, we will 
simply write F (·) = F (·; 0).

Recall that r0 > 0 is so that hK ≡ r0 is the unique solution in O to (6.21) when 
f ≡ c0. We denote by Lr0 : C4,α(Sn−1) → C2,α(Sn−1) the linearized operator of F at 
the constant function r0. It is simple to compute that

Lr0(φ) = rn−2
0 ΔSn−1φ + ((n − 1)rn−2

0 − rn
0 )φ

= rn−2
0

(
ΔSn−1φ + ((n − 1) − r2

0)φ
)

.

Recall that we have specifically chosen a c0 > 0 so that Lr0 is invertible. By Proposition 
2.3 in Li [53] and the fact that h ≡ r0 is the unique solution for F (h) = 0 in O, we have

deg(F, O, 0) = deg(Lr0 , O, 0) 
= 0,

where the last inequality follows from Proposition 2.41 in Li [53]. �
6.4. Existence of general o-symmetric solutions

In this section, we solve the general measure case by using an approximation argument. 
The key step is to establish uniform C0 estimate.

Theorem 6.7. Let μ be an even measure on Sn−1 that is not concentrated in any subspace 
and |μ| < 1√

2π
. Then there exists a unique origin-symmetric K with γn(K) > 1/2 such 

that

Sγn,K = μ.

Proof. We approximate μ weakly by a sequence of measures μi = fidv where fi ∈ C2,α, 
fi > 0 with 0 < |fi|L1 < 1√

2π
. By Theorem 6.6, there are C4,α o-symmetric Ki with 

γn(Ki) > 1
2 such that

1
(
√

2π)n
e−

|∇hKi
|2+h2

Ki
2 det(∇2hKi

+ hKi
I) = fi.

Since fi converges weakly to μ, by discarding the first finitely many terms, we may 
assume that |fi|L1 > ε0 for some positive absolute constant ε0.

We argue that Ki is uniformly bounded. Otherwise, by taking a subsequence, we may 
assume that ||hKi

||∞ → ∞. Now, Lemma 6.3 tells us that for every δ > 0, there exists 
v ∈ Sn−1 and N > 0 such that

|μi| < μi(ξv,δ) + δ,

1 Proposition 2.4 in Li [53] contain some typos, which were corrected by Li on his personal webpage.
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for each i > N . Let i → ∞. Since μi converges to μ weakly, we have

|μ| ≤ μ(ξv,δ) + δ.

Notice that the above inequality holds for all δ > 0. Therefore,

|μ| ≤ μ(v⊥ ∩ Sn−1),

which is a contradiction to the fact that μ is not concentrated in any great subsphere. �
It is of great interest to characterize Gaussian surface area measures for convex bodies 

that do not necessarily have large Gaussian volume. Example 7.1 in Appendix shows that 
some essential condition must be found and that how complicated this can be even in 
the most simple rectangular case on the plane. However, one should keep in mind that 
the task, even in Example 7.1, is not to find the relation between the weights of the 
measure, but rather to give a characterization of the permissible measures.

7. Appendix

This appendix consists of two examples.
The first one shows that the Gaussian Minkowski problem even when restricted to 

the o-symmetric case contains some complications that were masked by our assumption 
that γn(K) > 1

2 .

Example 7.1. Consider the even discrete measure on S1:

μ = μ1δe1 + μ2δe2 + μ1δ−e1 + μ2δ−e2 .

In order to have an o-symmetric convex body K in R2—in this case, a centered 
rectangle—so that μ = Sγ2,K , the weights μ1 and μ2 cannot be chosen independently of 
each other.

Proof. Note that potential solutions for μ = Sγ2,K consist of o-symmetric rectangles 
with sides parallel to the coordinate axes. Let us assume that K is such a rectangle 
generated by its vertices (±a1, ±a2) where a1, a2 > 0.

It is simple to see that it has to be the case that 0 < μ1, μ2 < 1√
2π

since, for example,

μ1 = 1
2π

a2∫
−a2

e− a2
1+y2

2 dy <
1

2π

∞∫
−∞

e− y2
2 dy = 1√

2π
.

The claimed codependence between μ1 and μ2 is best observed when one of the weights 
is close enough to 1√ . For this purpose, let ε0 > 0 be small enough and μ1 = 1√ − ε0.
2π 2π
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It follows from basic computation that

μ1 = 1
π

e− a2
1

2

a2∫
0

e− t2
2 dt

μ2 = 1
π

e− a2
2

2

a1∫
0

e− t2
2 dt.

(7.1)

According to (7.1) and the value of μ1, we have

1√
2π

− ε0 <
1
π

e− a2
1

2

∞∫
0

e− t2
2 dt = 1√

2π
e− a2

1
2 .

This implies the existence of δ0 =
√

−2 ln(1 −
√

2πε0) > 0 such that 0 < a1 < δ0.
Now, using the second equation in (7.1), we have

μ2 <
1
π

δ0∫
0

e− t2
2 dt.

This crude analysis shows that when one of the weights is close enough to its maxi-
mally allowable value, then the other weight must be correspondingly close enough to 0. 
Moreover, the dependence takes a complicated nonlinear form involving Gaussian distri-
bution function. A similar, but arguably much more complicated computation can show 
that this phenomenon happens to any o-symmetric polygons on the plane.

Note that in the above computation, |μ| > 2( 1√
2π

− ε0), which is excluded by the 
hypotheses in Theorem 6.7. �

It follows from a trivial calculation that the Gaussian surface area measure Sγn,rB of 
a centered ball of radius r is given by

dSγn,rB(v) = 1
(
√

2π)n
e− r2

2 rn−1dv.

Because of the behavior of e− r2
2 rn−1 on (0, ∞), it is simple to conclude that for every 

c > 0 that is small enough, there are exactly two balls r1B and r2B whose Gaussian 
surface area measure is given by cdv. When this is combined with our uniqueness result 
(Theorem 5.2), it is tempting to think that uniqueness also holds when restricted to 
convex bodies whose Gaussian volume is sufficiently small. This turned out to be false, 
as illustrated by the following example.
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Example 7.2. As in Example 7.1, consider an o-symmetric rectangle K in R2 generated 
by its vertices (±a1, ±a2). Suppose its Gaussian surface area measure is given by

dSγn,K = μ1δe1 + μ2δe2 + μ1δ−e1 + μ2δ−e2 .

As has already been discussed in Example 7.1, when ε0 > 0 is sufficiently small, the 
weight μ1 = 1√

2π
− ε0 is an allowable choice. In particular, we just need to choose 

sufficiently small 0 < a1 < δ0 and correspondingly a big enough a2 so that

1√
2π

− ε0 = μ1 = 1
π

e− a2
1

2

a2∫
0

e− t2
2 dt (7.2)

holds.
It is simple to note that by

μ2 = 1
π

e− a2
2

2

a1∫
0

e− t2
2 dt,

when a1 → 0, we have μ2 → 0.
Note also that by (7.2), when a1 → δ0, we have a2 → ∞. Therefore μ2 → 0 as well in 

this scenario.
By intermediate value theorem, we can conclude that when μ1 = 1√

2π
− ε0 and μ2 is 

sufficiently small, there are two rectangles—one whose a1 is close to 0, the other whose 
a1 is close to δ0—such that they have the same Gaussian surface area measure.
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