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Abstract - Research at sentinel research sites focuses on long-term ecological monitoring
related to global environmental changes. Despite the value of sentinel research sites dur-
ing the Anthropocene, the factors that drive their development, success, and sustainability
are not clear. Here we study the history of Whiteface Mountain, NY—a sentinel research
site in global environmental change research. We review the origins of Whiteface Moun-
tain as a research site, its contributions to forest ecosystem science, and the factors that
contributed to the location’s development, success, and sustainability. We identified 6 key
characteristics that contributed to the success of Whiteface Mountain as a sentinel research
site: (a) accumulation of high-quality long-term data, (b) features representative of a broad
area, (c) availability of appropriate infrastructure and staffing, (d) sustained governmental
and community support, (e) active communication and outreach programs, and (f) dedicated
leadership. These characteristics provide a roadmap for the successful development and
sustainable operation of sentinel research sites in global environmental change research.

Introduction

Detecting and responding to large-scale environmental change has often been
triggered by findings from sentinel research sites. Sentinel research sites are fo-
cused on tracking biophysical indicators over time that inform the nature of these
environmental changes and their effects on a broader regional ecosystem. Key
findings from sentinel research sites include the long-term increase in atmospher-
ic CO, concentration at Mauna Loa (Harris 2010) and the detection of acid rain in
the northeastern United States (Likens and Bormann 1974). The contributions are
often the result of routine, standard, and repeated measurements over decades that
offer new insights into trends of environmental change. Indeed, the value of these
sites is long recognized and incorporated into the design of new research net-
works including the National Science Foundations (NSF) Long-Term Ecological
Research (LTER) Network (Callahan 1984) and National Ecological Observatory
Network (NEON; Kao et al. 2012), the United States Forest Service Forest In-
ventory and Analysis (USFS FIA) network (Bechtold and Patterson 2005), and,
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importantly, many other long-term research sites that incorporate continuous en-
vironmental monitoring.

Early research on global environmental change impacts on ecosystems include
the effects of land-use change, resource extraction, and pollution (Vitousek et al.
1997). In addition to these stressors, climate change has emerged as a major threat
to ecosystems globally. Mountain ecosystems, and the associated socio-ecological
services that they provide, are particularly threatened by climate change and its
interactions with other environmental changes (Dobrowski and Parks 2016, Gratzer
and Keeton 2017, Parobekova et al. 2018). Importantly, mountains are ideal sys-
tems to study the effects of climate change on ecosystems because they contain
compressed climate gradients (Jump et al. 2009), species range limits (Kelly and
Goulden 2008), and potentially, cool, high-elevation, climate-change refugia (Mo-
relli et al. 2016). Sentinel research sites in mountains therefore play a foundational
role in improving our understanding of ecosystem responses to climate change
(e.g., Grabherr et al. 2000).

Valuable sentinel research sites should have a set of common characteristics
that make them well-suited to provide key scientific contributions to environmental
change research. The primary scientific value of the site is the high-quality and
long-term data that, although it comes from only 1 location, is representative of a
broader region or system (Fahey et al. 2015). However, collecting those data is only
possible with extensive and continuous support networks including governmental,
community, and research-entity partnerships that are coordinated and cultivated by
dedicated leadership (Plotkin and Foster 2006). Public support is an important pillar
for maintaining and growing these partnerships (Moorman 2006), and public out-
reach and education are increasingly recognized as equally important to generating
new scientific information (e.g., NSF broader impacts criterion). Communicating
the value of sentinel research sites to these various stakeholders is key for their
long-term success. However, the factors that drive the development, success,
and long-term sustainability of sentinel research sites are not clear.

The goal of this paper is to clarify the factors that influence the development
of new sentinel research sites, the reasons for their success, and considerations
for their long-term sustainability. We aim to achieve this goal by studying the his-
tory of and contributions from Whiteface Mountain (hereafter Whiteface), NY,
to forest ecosystem research in the northeastern US. Whiteface has emerged as a
sentinel research site in global change research that has made key contributions to
atmospheric sciences research, the discovery and impacts of acid rain, and climate-
change effects on forest ecosystems. Herein we describe (i) the origins of Whiteface
as a sentinel research site in eastern North America, (ii) the key contributions from
Whiteface to forest ecosystem science, and (iii) the factors that are critical to the
development, success, and sustainability of Whiteface as a valuable sentinel site.

Whiteface Mountain Environmental Context

Whiteface Mountain (44°21057"N, 73°54010"W; summit elevation 1483 m
above sea level, a.s.1.) is located in the northeastern US (Fig. 1). Soils on Whiteface
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are acidic and sensitive to acid rain (Johnson et al. 1994a). Soils transition from Spo-
dosols at low elevations to Histosols at higher elevations (Holway et al. 1969, Witty
1968). The region generally has warm summers with cold, snowy winters. Mean an-
nual temperature (2001-2011) on Whiteface has varied from 5.1 t0 0.27 °C at 610 and
1483 m elevation, respectively (Wason et al. 2017b). Precipitation is relatively evenly
distributed throughout the year, and average values from 1986 to 1990 varied from 97
to 152 cm year ™ between 610 and 1483 m elevation (Miller et al. 1993a).

The vegetation on Whiteface changes dramatically with elevation, much like
elsewhere in the northeastern United States (Cogbill and White 1991, Wason and
Dovciak 2017). At elevations below 800 m, forests are dominated by northern
hardwood species including Acer saccharum Marshall (Sugar Maple), Fagus gran-
difolia Ehrh. (American Beech), and Betula alleghaniensis Britton (Yellow Birch)
(Fig. 2). Above 800 m elevation, tree species composition transitions to montane
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Figure 1. Location of Whiteface Mountain demonstrating that the elevational zonation is
representative of the broader region. Areas with elevations suitable for supporting mountain
spruce—fir forest are represented in green with the low-elevation transition to northern hard-
wood forest depicted in brown (Wason et al. 2017a). Continuous meteorological monitoring
is conducted both at the Summit Observatory (triangle) and The Atmospheric Science Re-
search Center field station at Marble Lodge (square). Bold lines depict roads. Inset shows
the location of Whiteface Mountain within the broader region.
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spruce—fir forests composed primarily of Picea rubens Sarg. (Red Spruce) and 4b-
ies balsamea (L.) Mill. (Balsam Fir) with a minor component of Betula papyrifera
Marshall var. cordifolia (Regel) Fernald (Mountain Paper Birch) (Fig. 2). Above
~1100 m elevation, the forest is composed primarily of Balsam Fir. The summit is
primarily composed of stunted krumholz forms of Balsam Fir and Picea mariana
(Mill.) Britton, Sterns, & Poggenb. (Black Spruce) and alpine habitat. Although it
varies predictably with latitude (Cogbill and White 1991), the elevational zonation
of spruce—fir and northern hardwood forests is representative of the region (Figs.
1, 2), and this community distribution has remained mostly stable for the last 3000
years (Jackson and Whitehead 1991).

Early History: Whiteface Emerges As a Key Destination for Recreation and
Science

The rugged nature of the High Peaks mountain region of the Adirondacks and
the high cost of transporting lumber left the high-elevation forests of Whiteface
largely untouched until pulping operations began in the 1890s. Logging and sub-
sequent fires in the late 1800s and early 1900s impacted much of the mountain’s
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Figure 2. Elevational distribution of the dominant forest tree species on Whiteface Moun-
tain, NY (WF Mtn.; orange solid symbols and lines), is representative of other mountains in
the northeastern United States (grey open symbols and dashed lines). Each grey dashed line
represents one mountain of 11 studied in Wason and Dovciak (2017). The orange points and
model fit are produced from a 2012 survey from 23 Atmospheric Sciences Research Center
vegetation plots on Whiteface Mountain following Wason et al. (2017b). Data include all
live trees >10 cm diameter at breast height.
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forests, although a few small pockets of relic old-growth forest remain (Battles and
Fahey 2000, Holway et al. 1969, Scott et al. 1993). Between 1921 and the early
1930s, most of Whiteface was acquired by New York State to be integrated into
the Adirondack Forest Preserve and deemed “forever wild”. The “forever wild”
designation limits timber management on state lands and has resulted in relatively
stable regional land-use, thereby making Whiteface an ideal location for long-term
scientific research in a natural environment (Falconer and Barry 1963).

The “forever wild" designation is key to the long-term value of Whiteface as a
sentinel research site. However, several other key developments established White-
face as a cultural site that added to its regional economic value and bolstered it as
a scientific research site (Fig. 3). Following the 1932 Olympics in nearby Lake
Placid, the state opened the Veterans Memorial Highway in 1935—a road to the
summit of Whiteface for tourism. Whiteface gained more local recognition in 1948
when a small ski area on the northeast slope (Marble Mountain) was opened to the
public. This facility was replaced by the larger Whiteface Mountian Ski Area on
the southeast slope in 1958 that became a regional tourism destination. By the 1980
Winter Olympics held in nearby Lake Placid, NY, Whiteface had emerged as a key
cultural and recreational destination in the region.

The cultural and recreational assets at Whiteface provided access and spurred
investment in research. For example, summit temperature measurements started in
1937 as a collaborative effort of research universities, state programs, and federal
agencies. Later, the installation of an olympic-quality ski area provided both the
need and the resources to develop detailed, site-specific weather forecasts. Thus,
by the time the State University of New York (SUNY) launched the Atmospheric
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Figure 3. Key eras in the recent history of Whiteface Mountain, NY, demonstrated by the
usage of common terms in English publications. Usage is derived from Google Ngrams and
each term is scaled to its maximum value and then smoothed with a 10-year moving window
to facilitate comparison. ASRC = Atmospheric Sciences Research Center.
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Sciences Research Center (ASRC) hosted by the Albany campus in 1961, White-
face with its investments in meteorological monitoring and instrumentation, was its
preeminent field site (Fig. 3). To support the field site, ASRC built a headquarters
in the retired Marble Mountain ski-lodge on the east slope of the massif (Schwab
et al. 2016b). This collaboration with SUNY-Albany was a critical turning point for
scientific research on the mountain. Whiteface now had many of the key elements
of a sentinel research site: infrastructure, community support, and the beginnings
of a new long-term scientific research partnership.

Research on Whiteface Mountain

Atmospheric sciences

The geography of Whiteface makes it ideal for atmospheric sciences research.
Whiteface is a relatively isolated massif with frequent cloud cover at the sum-
mit facilitating studies on atmospheric transport, dispersion, and deposition of air
pollutants as well as the study of cloud-water chemistry. For example, Whiteface
has one of the longest records of tropospheric ozone measurements in the world
(Gaudel et al. 2018), and Pye et al. (2020) noted that Whiteface was one of the few
locations with a record of long-term investigations of cloud and fog composition.
The history and accomplishments of the atmospheric science research program at
Whiteface has been recently and thoroughly reviewed (Brandt et al. 2015; Schwab
et al. 2016a, b). In particular, Schwab et al. (2016b) summarize the continuous
meteorological data available at both the summit (as early as 1937) and lower el-
evation Marble Lodge (as early as 1976) (Fig. 1). Below we note the value of these
contributions to understanding the dynamics of the mountain forest ecosystem.

Vegetation-environment relations

The middle of the 20" century produced seminal research on plant ecology and
vegetation—environment interactions along climate gradients in North America
(Curtis 1959, Whittaker 1956). During this period, the ASRC initiated a study to
characterize the vegetation communities on Whiteface and their relationship to the
local environment (Holway et al. 1969). In total, 182 research plots were sampled
for forest over- and understory structure and composition including 40 research
quadrats in the alpine zone. The original forest stands have been re-measured (Scott
et al. 1984), and subsequent research efforts (e.g., Wason et al. 2017b) have contin-
ued to monitor these plots. The value of these initial baseline studies of vegetation
is further amplified by a detailed soil survey of the entire mountain (Witty 1968), a
comprehensive assessment of soil biogeochemistry (Johnson et al. 1994b), and the
long-term meteorological and atmospheric chemistry data at the summit and the
base of the mountain (Schwab et al. 2016b).

Following the initial wave of vegetation research, Whiteface continued to be
a key research location for vegetation and forest dynamics in parallel with other
work in the neighboring Green (Siccama 1974) and White Mountains (Leak 1975,
Reiners and Lang 1979). For example, fir-waves were first identified and described
on Whiteface (Sprugel 1976, Sprugel and Bormann 1981). Fir-waves are a global
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phenomenon (Bekker and Malanson 2008) describing a migrating pattern of tree
mortality and regeneration common in mountain forests dominated by Abies spp.
As small canopy gaps open in the forest, exposed trees become more susceptible to
mortality from the prevailing wind direction (Holroyd 1970) leading to a migrat-
ing front of mortality followed by a wave of regeneration (Fig. 4). Fir-waves have
been reported to move 1-3 m per year and are an example of the dynamic nature of
natural forest communities (Sprugel 1976), and recent research on Whiteface has
elaborated on the importance of the moss layer in fir-wave regeneration in these
high-elevation forests (Berdugo and Dovciak 2020).

Success story: From research on spruce decline to ecosystem recovery

In 1974, researchers from Hubbard Brook Experimental Forest, NH, published
the discovery of widespread acid rain across the northeastern United States (Likens
and Bormann 1974). The scientific community rapidly began assessing the ecologi-
cal implications of acid rain (Fig. 3) including the direct impacts on organisms in
streams and lakes (Cronan and Schofield 1979). However, a less obvious impact
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Figure 4. Fir-waves
are migrating zones
of mortality and re-
generation that were
first described on
Whiteface Moun-
tain and are found in (b)
mountain Abies spp.
forests across the
world. (a) Chang-
es in canopy cover
from hemispherical
photos illustrate (b)
the wave of regen-
eration following
mortality of mature
forest. (c¢) These
patterns of wave- (c)
regenerated forests
are clearly visible on
the slopes of White-
face Mountain as
bands of dead trees.
Panel (b) redrawn
from Sprugel and
Bormann (1981).
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was also starting to emerge: the decline of Red Spruce observed on Whiteface
(Scott et al. 1984) and other sites across the northeastern US (Johnson and Siccama
1983). Over years of study, scientists discovered that acidic precipitation deposited
by clouds reduced the cold-tolerance of Red Spruce needles that would then often
succumb to increased freezing damage in subsequent winters (DeHayes et al. 1999).
Whiteface became a focal point for research on the decline of spruce. Not only did
the mountain highway provide access to extensive spruce forests located in rugged
terrain but also ASRC’s emphasis on atmospheric chemistry provided extremely
relevant local expertise. For example, ASRC scientists working at Whiteface were
among the first to note that cloudwater was considerably more acidic than rainwater
(Falconer and Falconer 1980). Research over the following 2 decades on White-
face focused heavily on the decline of Red Spruce including the effects of acidic
deposition (Miller et al. 1993b, Mohnen and Kadlecek 1989), causal mechanisms
(Hamburg and Cogbill 1988, Johnson et al. 1988, McLaughlin et al. 1987), physiol-
ogy and tree growth (Boyce 1995; LeBlanc 1990, 1992; LeBlanc and Raynal 1990),
impacts on forest structure and competition (Battles and Fahey 2000; Battles et al.
1992, 2003), and ecosystem-level effects (Johnson et al. 1994a, b; Joshi et al. 2003).
However, as the acidity of rainfall and cloudwater declined towards pre-industrial
levels (Likens and Buso 2012), the intense interest in research on Whiteface and the
funding for acid rain research began to decline (Fig. 3).

Nevertheless, the research on the decline of Red Spruce set the stage for research
on the recovery of Red Spruce years later. The dominant feature driving recent
growth patterns of Red Spruce is the large-scale reduction in the acidity of rainfall.
Research on Whiteface helped to identify this growth surge in Red Spruce (Fig. 5;
Wason et al. 2017b) and was accompanied by other studies demonstrating that the
recovery of Red Spruce growth in these mountains was a regional phenomenon (En-
gel et al. 2016, Foster and D’Amato 2015, Kosiba et al. 2018, Wason and Dovciak
2017, Wason et al. 2019).

New Research Directions: Climate-change Effects on Sensitive High-elevation
Ecosystems

Montane spruce—fir forests seem to be particularly vulnerable to climate change
(Janowiak et al. 2018, Wason et al. 2017a). Leveraging historical datasets on White-
face, studies have found that indeed, tree growth in these forests is sensitive to
changes in climate (Wason et al. 2017b). However, contrary to some reports (Beck-
age et al. 2008), large-scale changes in forest composition and structure will likely
take many years and lag behind accelerating climate change (Fig. 5; Wason et al.
2017b, Zhu et al. 2012). Instead, the major driver of recent regional forest change is
ecosystem recovery following the decline in acid rain, impacts of pests and patho-
gens, and the localized effects of past forest management (Foster and D’Amato
2015, Verrico et al. 2020, Wason 2017b). However, the impact of climate change on
forests in the region, and high-elevation forests in particular, is expected to increase
over time (Janowiak et al. 2018, Koo et al. 2014). Recent research from Whiteface
has built on the era of the early research on acid deposition by adding new data on
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forest microclimate. This fine-scale microclimate monitoring system is low-cost
and was deployed under the forest canopy (Fig. 6) as part of a regional network of
microclimate data on mountains (Wason et al. 2017a). In addition to links with the
long-term climate data from Whiteface, historical aerosol and cloud data from the
summit can contribute to a major knowledge gap in our understanding of climate
systems (Lance et al. 2020, Pye et al. 2020). As climate-change research expands
(Fig. 3), the value of these climate datasets (Fig. 6) and their implications for other
ecosystem components is likely to increase.

A recent example of the important links between unique datasets at Whiteface is
the combined impact of vegetation, climate, and pollution on montane boreal bird
communities (Able and Noon 1976, Kirchman and Van Keuren 2017, Sauer et al.
2020). Indeed, Whiteface is one of many survey sites for the regional Mountain
Bird Watch project of the Vermont Center for Ecostudies (https://vtecostudies.org/
projects/mountains/mountain-birdwatch/). Importantly, Whiteface continues to
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support other long-term research studies attracted to the mountain by the valuable
infrastructure and long-term data on forests, climate, alpine habitats, and atmo-
spheric chemistry (Berdugo and Dovciak 2020, Blackwell and Driscoll 2015, Boggs
et al. 2007). Much of the historical data from Whiteface have been digitized and are
available from recent publications or by contacting the ASRC Whiteface Mountain
Field Station site manager. Some of the more recently collected atmospheric data
are available from the ASRC’s Air Quality Monitoring Products website (http://
atmoschem.asrc.cestm.albany.edu/), the National Atmospheric Deposition Program

S
(@) —o— Tmax
S8 -0- Tmin
< ® June
‘E T August
Q ® September
£ ° ® October
P ® November
9|- — ® December
| |
0 (b)
— —A— June
AT ok JUIy
ol S AA August
2 o e S ¥ —A— September
X - — ~ 2
e s i A
o =
0
g
400 600 800 1000 1200 1400
Elevation (m a.s.l.)

Figure 6. Forest microclimate data from 41 research sites on Whiteface Mountain demon-
strate the intense level of detail available for both (a) temperature and (b) vapor pressure
deficit (VPD, related to relative humidity). Temperature and humidity data were logged
continuously every 2 hours from June through December 2011. Data were collected using
iButton loggers housed in custom radiation shields and mounted 1 m above the ground
(Wason et al. 2017b). Data are summarized as monthly means of daily maximum tem-
perature (Tmax; solid circles), daily minimum temperature (Tmin; open circles), and daily
maximum VPD.
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(http://nadp.slh.wisc.edu/), the Clean Air Status and Trends Network (https://www.
epa.gov/castnet), and the National Mesonet Program (https://nationalmesonet.us/).
To better coordinate the increasingly diverse range of research occurring on the
mountain and make it more widely available to researchers and the public, a major
investment in data archiving is urgently needed.

The Success of Whiteface Mountain as a Sentinel Research Site

Research on Whiteface has made several key contributions toward our under-
standing of montane forest ecology and dynamics under changing environmental
conditions over the past 60 years. Importantly, this rich history of long-term re-
search into contemporary environmental problems and their effects on ecosystems
provides a set of characteristics that made Whiteface successful and can inform the
development and sustainability of other sentinel research sites in global change
research (Table 1). The quality of the long-term data that are representative of the
broader region is one of the most important characteristics driving the success of
Whiteface. However, equally important to long-term success has been adequate
infrastructure and staffing to support those research activities. ASRC and SUNY-
Albany have been able to provide the continuity of funding and leadership needed
to support baseline local staff and infrastructure. This continuity of funding and
committed leadership has positioned Whiteface well to take advantage of the next
wave of global change research. Indeed, a key pathway for this support was through

Table 1. Characteristics of Whiteface Mountain that contributed to its success as a valuable sentinel
research site in global change research.

Characteristic Details and examples

High-quality, long-term data Continuous monitoring
Integration into a broad research network
Rigorous data management practices
Multiple types of data available (e.g., climate, chemistry,

biota)
Representative of broader areca Environment, biota, land-use history, environmental change
drivers
Infrastructure and staffing Research facilities (laboratories, field instrumentation)
Accessibility

Full-time staff for data management/facility maintenance

Support Governmental support, often financial
Community and public support (clear benefits to society and
vice-versa)
Research partnerships (University, research agencies)
Education partnerships (local and remote institutions)

Communication and outreach Connecting science to society
Outreach and Education programs

Dedicated leadership and continuity Long-term (>10 years) stability of regional land-use
Short, mid, and Long-term planning
Periodic assessments and improvement
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fostering governmental and community support (e.g., The New York State Energy
Research and Development Authority, New York State Department of Environmen-
tal Conservation) and developing research and education partnerships.

Another key to the success of Whiteface has been the summit observatory that
acts as a unique tourist attraction. Communication and public outreach have been
priorities on Whiteface since at least 1957 (Schaefer 1957) with the initial ideas to
construct the “Museum of the Atmosphere” at the summit observatory. The summit
observatory was originally funded by NSF and is now a top regional tourist attrac-
tion. Continually communicating the value of the research through the ASRC’s
Ray Falconer Natural History Lecture series and outreach activities coordinated
with the Regional Office of Sustainable Tourism ensured that the research stayed
relevant and its value to stakeholders was clear. As research on Whiteface continues
to shift, investment in communication and outreach activities that take advantage
of its unique characteristics and visitation will be critical to continued success. Fi-
nally, collaboration with the ASRC provided dedicated and continuous leadership
that has been key for anticipating challenges and opportunities to ensure long-term
sustainability of Whiteface as a sentinel research site.

Investment in the long-term research program at Whiteface and other sentinel
sites in the region provided key environmental insights that would not have been
possible otherwise. Importantly, there was a substantial regional “return-on-invest-
ment” because findings from acid rain research were used to improve environmental
regulations and air quality that had cascading effects on regional forest and human
health, tourism, and recreation opportunities, and fostered a healthier forest indus-
try. By maintaining and investing in the research infrastructure at Whiteface as
one of the key sentinel research sites, we can continue to reap the benefits of the
long-term data available there and leverage those data as we approach the next big
environmental challenges either known or unknown at this time.
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