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A B S T R A C T

Despite extensive empirical evidence of the environmental benefits of green buildings and the increasing
urgency to reduce carbon emissions in cities, there has been limited widespread adoption of energy retrofit
investments in existing buildings. In this paper, we empirically model financial returns to energy retrofit in-
vestments for more than 3600 multifamily and commercial buildings in New York City, using a comprehensive
database of energy audits and renovation work extracted from city records using a natural language processing
algorithm. Based on auditor cost and savings estimates, the median internal rate of return for adopted energy
conservation measures is 21% for multifamily buildings and 25% for office properties. Logistic regression
modeling demonstrates adoption rates are higher for office buildings than multifamily, and in both cases
adopter buildings tend to be larger, higher value, and less energy efficient prior to retrofit implementation.
The economically significant magnitudes of returns to adopted energy conservation measures raise important
questions about why many property owners choose not to adopt. As such, we discuss incentive and regulatory
mechanisms that can overcome financial and informational barriers to the adoption of energy efficiency
measures.
1. Introduction

Retrofitting existing buildings has the potential to significantly re-
duce global energy use and carbon emissions, particularly in dense
urban areas [1,2]. A broad range of international cities, including
Tokyo, Singapore, Melbourne, London, and Toronto, have implemented
policies designed to encourage or mandate more energy-efficient build-
ings [3]. Despite the positive impacts of reduced emissions and energy
consumption, the pace of adoption of energy efficient practices and
technologies has been slow, and substantial barriers – perceived and
actual – persist [4–6]. These barriers, often considered to contribute
to an energy efficiency gap [7], include both market failures and
ehavioral factors, such as information asymmetries between stake-
olders, uncertainty over future savings, lack of knowledge about en-
rgy technologies, first-cost capital constraints, economic dis-incentives
ncluding the ‘‘split-incentive’’ problem, and fluctuating fuel pricing
ignals [8–10]. Mandatory energy disclosure and audit policies can
vercome some of these challenges, and their recent proliferation across

∗ Correspondence to: Marron Institute of Urban Management and Center for Urban Science & Progress, USA.
E-mail address: ckontokosta@nyu.edu (C.E. Kontokosta).

metropolitan areas has generated significant data on energy use and
retrofit opportunities in buildings, led by New York City’s (NYC) Local
Laws 84 (LL84) and 87 (LL87) [11,12].

New energy disclosure, audit, and retro-commissioning require-
ments create detailed inventories of energy use profiles, building sys-
tems, and potential energy conservation measures (ECMs) [13]. NYC
LL87 is the first city-wide building energy audit mandate for large
office and multifamily buildings in the U.S. [14]. While several studies
find that energy disclosure results in energy use reductions [15,16],
mandatory audit policies have been found to have only a modest
negative effect on building energy use over time [17]. Understanding
the financial implications of the decision to adopt energy conservation
technologies is a critical component of the broader push to increase
energy efficiency in buildings. As such, NYC’s mandatory audit policy
provides a unique policy context to study the return on investment,
or hurdle rate, that must be exceeded before retrofit investment is
306-2619/© 2021 Published by Elsevier Ltd.
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deemed profitable in the private sector. This knowledge could help to
close the gap between perceived and actual financial risk associated
with energy retrofits and subsequently guide education, regulations, or
subsidy policies designed to promote energy use and carbon reductions.
To address broader concerns about climate change, cities are begin-
ning to introduce mandatory carbon reduction and energy efficiency
targets for buildings [14,18]. Given regulatory and market pressures
to improve energy efficiency, including new carbon emissions and
efficiency targets,1 building owners, investors, and policymakers need
o understand the financial returns of the various pathways to energy
se reductions through building retrofits in order to ensure incentives
nd penalties are sufficient to overcome existing barriers to large-scale
etrofit adoption.
This paper examines a critical question about the link between

uilding energy retrofit adoption and financial performance of energy
fficiency investments using a unique, large-scale database of over
600 office and multifamily buildings in New York City. We present
computational analysis of the potential investment return profiles for
uilding retrofits across a range of building types and characteristics,
nd the associated likelihood of retrofit adoption using a logistic regres-
ion model. Data are collected and integrated from multiple sources,
nd include detailed information on energy use, building systems,
inancial metrics, construction permit records, and actual energy audit
eports. We then calculate internal rates of return (IRRs) and develop
et present value (NPV) curves for energy retrofit investments using
eported audit data and permitted renovation work extracted using a
atural language processing algorithm. The objectives of this study are
o: (1) create a large-scale data repository of energy audit recommenda-
ions, building energy performance, building attributes, and renovation
ork using a natural language processing algorithm and data inte-
ration methods, (2) model and analyze the return on investment
or various energy retrofit scenarios, including energy conservation
easures adopted and those not adopted, (3) evaluate the financial
rivers of the retrofit adoption decision, controlling for other factors
hat may influence the implementation of energy efficiency improve-
ents, and (4) discuss applications of our analysis to advance energy
fficiency and carbon reductions in global cities. Modeling the IRR
nd NPV for energy retrofit investments across heterogeneous property
ypes and building characteristics provides the foundation for a data-
riven understanding of the frictions hindering retrofit adoption and a
ore informed discussion of incentive and regulatory mechanisms to
vercome financial and informational barriers.

. Literature review

.1. Energy retrofit decision-making and modeling

The decision to adopt an energy retrofit or energy efficiency tech-
ologies is driven by multiple factors [19,20]. These include behavioral
ttributes of key decision-makers in the organization (e.g. building
wner, building management, shareholders) [21] and physical charac-
eristics of the building itself, such as existing systems and technologies,
uilding age, and building morphology [22]. Of particular significance
re the economic and financial implications of an energy retrofit in-
estment, which typically represent a primary constraint to energy
etrofit adoption. These constraints include first, or upfront, capital
osts of the ECM, the return on investment for individual or packages
f ECMs, and the opportunity cost associated with retrofit investments
s opposed to alternative investments. Of course, such considerations

1 To address broader concerns about climate change, cities are beginning
o introduce mandatory carbon reduction and energy efficiency targets for
uildings. In NYC, the Climate Mobilization Act requires buildings over 2323
quare meters (25,000 square feet) to reduce carbon emissions by 40% from
005 levels by 2030 and 80% by 2050.
2

vary based on the time-dependent competitiveness of the local real
estate market, the type and scale of the building, and the nature of the
ownership entity [20,23]. Therefore, retrofit decision factors for single-
family and low-density residential housing [24], for example, can differ
significantly from those for large office or multifamily buildings in
major urban cores. The incentives and barriers to retrofit adoption need
to be understood in the context of building and ownership typologies
and market segmentation [25]. Energy efficiency labeling – such as
the U.S. Environmental Protection Agency’s Energy Star certification
and the U.S. Green Building Council’s LEED rating – can potentially
overcome some of these obstacles and has been shown to be associated
with reduced energy consumption [19,26]. However, the effectiveness
of such voluntary measures is limited as they only cover a subset of
buildings, and selection bias tends to result in labeled buildings having
above-average energy efficiency performance at the outset [27].

Researchers have developed a range of building energy retrofit
decision support models to inform and optimize retrofit adoption. These
can be grouped into simulation-based engineering models [28], data-
driven and machine learning models [29], and hybrid approaches [30].
For instance, Chidiac et al. develop a screening approach that combines
regression modeling of energy consumption with energy simulation
to evaluate appropriate ECMs for Canadian office buildings [31]. Re-
flecting a more data-driven approach, Ali et al. use building per-
formance data to estimate retrofit potentials across the residential
building stock of Dublin [32]. Applying nine different machine learning
algorithms, the authors identify key building characteristics, such as U-
values of the envelope, influencing retrofit opportunities at scale. The
role of financial constraints in retrofit decision-making are becoming
an increasingly important consideration in model development. He
et al. [33] develop an optimization algorithm to evaluate retrofit invest-
ment opportunities based present value and payback period financial
metrics. The authors validate their model on a small sample of 27
buildings in the state of Delaware. Data limitations in previous energy
audit decision studies can significantly limit the generalizability of the
results and constrain opportunities to examine the potential financial
implications for retrofits that were not adopted.

2.2. Financial returns to energy retrofits

Evidence has shown that energy efficient buildings are associated
with higher rents and sales prices [34–36], occupancy rates [37], re-
duced operating costs, and, potentially, lower mortgage default risk [38,
39]. These benefits contrast with the perceived under-allocation of
resources for energy efficiency investments, resulting in what has been
referred to as the energy efficiency gap [5,40]. Recent work on financial
returns to building retrofits has primarily focused on macro-models of
resource allocation for energy efficiency [41] or relied on small-sample
cases studies [33] with limited diversity in building typology [42].
Similarly, theoretical optimization models are constrained by the lack
of available data on actual ECMs adopted and the resultant return on
those investments. Furthermore, data on specific retrofit opportunities
not implemented are rarely available given the absence of widely-
available audit databases [13]. Previous research has shown that the
most significant barriers to retrofit adoption are information and mar-
ket failures resulting in perceived or expected long payback periods on
ECM investments and a lack of access to capital to fund implementation
costs [11,20,40]. However, despite these theoretical and case study
findings, there is little large-scale empirical understanding of the real-
world potential return on investment of retrofit measures, how returns
vary with individual ECMs and packages of ECMs across different
building typologies, and the hurdle rate required by commercial build-
ing owners to invest in retrofits. This knowledge gap has nontrivial
implications for the design, implementation, and evaluation of urban
energy efficiency and climate policies.
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3. Data and methods

Fig. 1 summarizes our data integration and computational method-
ology. Using four years of energy audit reports provided by the NYC
Mayor’s Office of Sustainability and five years of construction permit
records extracted from the NYC Department of Buildings (DOB), we
first analyze a total of 22,230 ECM recommendations and their asso-
ciated energy and cost savings estimates for 3632 individual office and
multifamily buildings in New York City. We then conduct text mining
to generate a dictionary of audit-recommended upgrades for each
individual ECM category derived from the full audit report sample. To
identify ECM adoption based on actual renovation activity subsequent
to an audit, we match audit ECM recommendations with DOB building
permit scope of work data for each of the 3632 buildings. Then, for each
building, we estimate NPV and IRR for three scenarios representing
return-maximizing, energy savings-maximizing, and balanced packages
of ECMs. For buildings where audit recommendations were adopted, we
calculate the IRR based on the bundle of adopted ECMs, and compare
these values to the three potential adoption scenarios described above.

3.1. Energy retrofit investment net present value curves

Using the implementation (first) cost, energy savings, and annual
cost savings data for individual ECM recommendations provided in
each building’s audit report, we compute the NPV for each ECM as
follows:

NPV =
𝑛
∑

𝑡=0

𝑅𝑡
(1 + 𝑖)𝑡

(1)

where 𝑛 is the number of time periods of the investment, 𝑅𝑡 is the
net cash flow at period 𝑡, and 𝑖 is the discount rate. For the purpose
of this study, we assume 𝑛 = 15 years and 𝑖 = 0.1. The selection
of the 15-year investment period is based on the average estimated
useful lifespan of common ECM categories provided in the Advanced
Energy Retrofit Guide by the Pacific Northwest National Laboratory
and the U.S. Department of Energy [43]. The selection of discount rate
is derived from PwC’s Real Estate Investor Survey, 2nd Quarter 2018
data, which shows that rates ranged from 5.5% to 11.0% for 2015
(the median year of the data in our sample) for office buildings and
from 5.0% to 10.0% for multifamily residential buildings. The average
discount rate was 7.34% for office buildings and 7.24% for multifamily
buildings. We select a 10% discount rate to reflect the higher risk
premium associated with energy retrofit investments, while remaining
within the survey range presented above. However, the selection of
investment time horizon (𝑛) and discount rate (𝑖) can have significant
implications for estimates of financial returns; therefore, we conduct
a sensitivity analysis using 10-years, 15-years, and 20-years for 𝑛 and
5.0%, 7.5% and 10.0% for 𝑖.

After calculating the NPV for individual ECMs, we are able to
compute the cumulative NPV for all ECM recommendations for each
building and plot the calculated values by cumulative energy savings.
Fig. 2 shows the NPV/energy savings curve for a sample building, with
each point indicated on the curve associated with a specific ECM. Note
that we normalize both NPV and energy savings by building floor area
to allow for comparison across building size. The order of the ECMs
along the curve (from left to right) is based on the individual ECM’s
NPV, with the highest NPV first, then second highest, and so on. The
curve presented in Fig. 2 is one of three commonly-identified retrofit
investment NPV profiles, with the other two being a linear positive
slope and a linear negative slope.

In this particular example, we see that the cumulative NPV curve
peaks after two ECMs (specifically, HVAC controls and occupancy sen-
sors for the lighting system), and the remaining ECMs are NPV negative.
However, only the last recommendation (for conveying systems) causes
3

the building’s cumulative energy retrofit NPV to drop below zero. t
Calculating cumulative NPV/energy savings curves for each building
in the dataset allows us to study inflection points in the curves, draw
a more nuanced picture of the proposed ECMs’ economic feasibility,
focus on certain subsets of ECMs, and compute additional financial
metrics. Based on these curves, we define three retrofit scenarios rep-
resenting packages of recommended ECMs: NPV𝑚𝑎𝑥: the set of ECMs
that maximize NPV, NPV𝑛𝑒𝑢𝑡𝑟𝑎𝑙: the set of ECMs yielding cumulative
NPV close to or at zero,1 and EnergySavings𝑚𝑎𝑥: all ECMs that would
result in the greatest possible energy savings. For each scenario, we
calculate the IRR for the identified bundle of ECMs. Moreover, based on
the building’s physical and energy use characteristics (age, gross floor
area, energy use intensity, etc.), we further subset the data and study
the aforementioned metrics by building sub-categories.

3.2. Text mining and audit-to-permit matching

Natural Language Processing (NLP) is a machine learning method
for analyzing large collections of human-interpretable text data [44].
Computationally, NLP generates statistical measures by parsing, search-
ing, counting, and summarizing frequency distributions of words, and
further gains semantic insights such as frequently-mentioned words or
topics. In this study, we analyze building permit descriptions submit-
ted to the NYC Department of Buildings using the Natural Language
Toolkit (NLTK), a widely-adopted NLP package in the Python coding
environment [45].

Fig. 6 illustrates our computational workflow using NLP to detect
and classify ECM implementation through audit and building permit
matching. In the LL87 audit data, each ECM recommendation has a
category-suggestion data structure. Each suggestion’s description con-
tains one or more human-readable sentences (‘‘natural language’’). We
first group all ECM descriptions by ECM category to process relevant
text. In step 1, we use part-of-speech (POS) tagging to clean the raw
ECM descriptions by dropping conjunctions, determiners, pronouns,
and punctuation. For each word, we calculate its frequency based on
its total appearance as a function of all words in the description. Using
these outputs, step 2 then generates ECM category-specific dictionaries
by extracting text from auditors’ recommendations (e.g., upgrade light-
ing to LED). Therefore, the final dictionary contains all unique words
and their frequency associated with individual ECM recommendations.

For DOB building permit descriptions (step 3), we clean input text
for the scope of work description using a similar process as step 1.
Step 4 retrieves ECM recommendations extracted from audit reports
performed prior to the permit application. We identify buildings in
the sample with permitted alteration work subsequent to the date the
audit was performed, based on the filing dates of the audit report and
any construction permits in the DOB database. If a building has no
post-audit permit record, we assume no renovation activity occurred
in the building and thus no audit recommendations were adopted. It is
possible, however, that the implementation of a particular ECM would
not require the filing of a building permit; we discuss this scenario in
more detail below. Step 5 uses the ECM dictionaries generated (output
of step 2) from the audit reports to estimate the adoption likelihood
for each ECM recommendation, according to its identified post-audit
building permit description. Specifically, it compares the content be-
tween a permit description and a specific ECM recommendation using
a word-matching algorithm that proceeds as follows: First, according to

1 The NPV𝑛𝑒𝑢𝑡𝑟𝑎𝑙 scenario includes all ECMs that yield a cumulative NPV
close to zero, such that the next recommended ECM (ranked by NPV) would
make the cumulative NPV less than zero. Given this stepwise approach to
including ECMs, the NPV𝑛𝑒𝑢𝑡𝑟𝑎𝑙 scenario often has a cumulative NPV greater
han zero, resulting in IRRs higher than the discount rate.
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Fig. 1. Data processing and methodology.
Fig. 2. Sample building NPV curve. ECM order is based on each ECM’s NPV, ranked from highest to lowest (from left to right).
the ECM category, it associates the scope of work description with the
ECM dictionary. Then, based on this dictionary, it identifies relevant
words that appear in the permit description. Finally, it returns two
new variables: (1) the total number of matched words and (2) a list
of matched words. This approach quantifies the relationship between
post-audit building permit descriptions and each ECM recommendation
category from the audit report as an estimate of the likelihood of ECM
adoption.2

3.3. Logistic regression model of retrofit adoption

We investigate the effects of relevant building and financial char-
acteristics on the likelihood of adopting recommended ECMs using
a multivariate logistic regression model. The dependent variable is a
binary classification of retrofit adoption for each building in the sample
(𝑌 ), equal to 1 for adoption and 0 for non-adoption. The independent
variables include building typology (office vs. multifamily), building
age, built area, building site EUI, first-cost of recommended ECMs,
property value, estimated IRR (NPV max scenario), and potential en-
ergy savings (NPV max scenario). The mathematical expression of the

2 For additional details on this methodology, please see Lai and Kontokosta
46].
4

logistic regression is:

𝐿𝑜𝑔𝑖𝑡(𝑃 ) = 𝑙𝑛[𝑃∕(1 − 𝑃 )] = 𝛽1𝑥1 + 𝛽2𝑥2 +⋯ + 𝛽𝑛𝑥𝑛 (2)

where 𝑃 is the probability of 𝑌 = 1 based on the set of independent
variables 𝑋. Thus, the odds of the binary output 𝑌 = 1 based on the
set of attributes 𝑋 can be expressed as P/(1-P) and the 𝑙𝑛(𝑃 ) is the
natural log of the odds ratio (OR).

4. Results

Across the 3632 audit reports in our sample, we find the top five
most commonly recommended ECM categories to be lighting (28%),
domestic hot water (17%), envelope (13%), HVAC controls and sensors
(10%), and distribution systems (8%) (Table 4). Fig. 3 presents a box-
plot of the calculated simple payback period by ECM category based
on auditors’ estimates. The distribution of payback periods within each
category are a result, in part, of the range of specific recommendations
contained within each of the higher-order ECM categories (e.g., cooling
system, conveying system) and the variance in auditor estimates.

4.1. Drivers of retrofit adoption

After matching LL87 audit data and DOB building permits by build-
ing (using the ‘‘BBL’’ building unique identifier), we find 1385 buildings
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Table 1
Comparison of audits, ECM recommendations, and building characteristics for non-adopters and adopters.
Building Type Office Multifamily

Total Audits 405 3209
Total ECM Suggestions 1988 17786

Non-Adopters Adopters Non-Adopters Adopters

Number of Audits 277 (68%) 128 (32%) 2588 (81%) 621 (19%)
Condo = 314, Co-op = 2274 Condo = 95, Co-op = 526

Number of ECMs 1281 (64%) 707 (36%) 14248 (80%) 3538 (20%)
Median Built Year 1927 1928 1941 1942
Median Building Area (m2)* 14602 16843 7515 9626
Median Site EUI (kWh/m2)* 249 268 256 256
Median Value ($/m2)* 1184 1292 355 506
Median Energy Savings 11 13 21 17NPV max (kWh/m2)*

NOTE: This table report results based on ‘75th perc +’ scenario.
*Two-sample T-test significant at 95% level (𝑝 ≤ 0.05).
Fig. 3. Box-plot of estimated payback period distributions by ECM category sorted by average payback period.
ith an audit and at least one building permit filed after the date the
udit was conducted. We define this as a post-audit alteration. There are
total of 6,111 post-audit alterations since one building may file mul-
iple alteration applications. For buildings with post-audit alterations,
total of 6,545 ECMs are matched between the audit reports and
OB permit descriptions, including lighting (n=2,028), domestic hot
ater (n=934), envelope (n=856), HVAC controls and sensors (n=634),
istribution system (n=537), heating system (n=427), motors (n=234),
uel switching (n=175), cooling system (n=168), ventilation(n=160),
n-site generation (n=147), conveying systems (n=77), process and
lug loads (n=40), and sub-metering (n=33). For each ECM suggestion,
ur NLP algorithm retrieves associated building permit descriptions
nd identifies matched words based on the generated ECM-category
ictionary. Using the distribution of total matched words, we define
hree different matching criteria. We use a 90th percentile threshold
matched words >= 6) as a conservative matching scenario (labeled
s 90th perc) and 75th percentile (matched words >= 3) as our base
atching scenario (labeled as 75th perc). Furthermore, most building
ermit descriptions do not report lighting improvements (e.g., upgrade
5

bulbs to LED, install timers) since these actions may not involve work
defined by the DOB as requiring a permit. Therefore, using the 75th
percentile matching results, we define a third scenario by assuming the
building also implemented recommended lighting ECMs that would not
require a permit (labeled as 75th perc+). According to the audit records,
the ‘‘envelope’’ ECM category includes specific recommendations such
as increasing roof insulation (23.0%), sealing doors (19.0%), replacing
windows (15.6%), increasing wall insulation (13.4%), adding window
films (8.3%) and sealing room AC (5.6%). Across all scenarios, we find
over-matching for the ‘‘envelope’’ ECM category given the wide range
of generic terms used to describe this category in the DOB permit scope
of work descriptions (e.g., vocabularies include ‘‘floor’’, ‘‘wall’’, ‘‘door’’,
and ‘‘window’’). Therefore, given the limitations created by the lack of
detail in work descriptions provided in the DOB database, we exclude
this category from the IRR and NPV calculations.

We consider a building to be an energy retrofit ‘‘adopter’’ if there
is at least one ECM match between the audit recommendations and
post-audit DOB permit scope of work description. We compare the
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Table 2
Logistic regression model results showing the likelihood of energy retrofit adoption
based on building characteristics and audit recommendations.

OR Coef. Std. Err. z P> |z| [0.025 0.975]

Office 1.011 0.011 0.196 0.057 0.954 −0.373 0.396
Building Age 1.009 0.009 0.002 5.585 0.000 0.006 0.012
Building Area 1.000 0.000 0.000 0.537 0.591 −0.000 0.000
Site EUI 0.081 0.000 0.000 0.703 0.482 −0.000 0.000
Cost 1.002 −2.508 0.266 −9.433 0.000 −3.029 −1.987
Value 1.000 0.002 0.001 2.372 0.018 0.000 0.004
IRRa 1.127 0.119 0.244 0.489 0.625 −0.359 0.598
Energy Savingsa 0.999 −0.000 0.000 −0.148 0.883 −0.000 0.000
Dependent Variable: adopted (1/0) LLR p-value: 4.0118e−42
Pseudo R-squared: 0.134 Classifier Accuracy: 0.58

aEstimations are based on NPV max scenario.

number of audits and total number of ECMs recommended for of-
fice and multifamily buildings grouped by non-adopters and adopters
based on the 75th perc+ matching criteria (Table 1). We also com-
are building characteristics, including built year, residential property
wnership (condominium vs. co-operative), built area, and assessed
alue (in US$ per square meter) by merging with NYC Primary Land
se Tax Lot Output (PLUTO) data. Overall, office buildings have a
igher adoption rate (32%) than multifamily buildings (19%). For
ultifamily buildings, results show the adoption rate in co-operatives
18%) is lower than condominiums (23%), possibly due to additional
oard approval requirement for building improvements in co-operative
roperties and the underlying financing structure of this ownership
ype. Two-sample t -tests indicate statistically significant differences in
uilding area, initial energy use intensity (EUI), and median assessed
alue per square meter. For both office and multifamily, buildings that
dopt ECM recommendations are found to be larger, higher value, and
ave higher potential energy savings (for office buildings only) than the
CMs identified in the NPV𝑚𝑎𝑥 scenario. Although buildings that adopt
end to be newer, there is no statistically significant difference in built
ear.
According to our analysis of the LL84 energy performance database,

nergy use, measured as site EUI, is higher initially for adopter build-
ngs than non-adopters in 2013, but decreases in the adopter buildings
ver the study period, as shown in Fig. 4. Between 2013 and 2017,
UI for adopter buildings decreased by approximately 3.5% for office
nd 1% for multifamily buildings. Non-adopter buildings, on the other
and, reported an increasing EUI, up by as much as 5.7% over the
ive-year time period (for additional analysis, please see Papadopoulos
t al. [16]).
Results of the logistic regression model, shown in Table 3, indicate

uilding age (𝑝-value < 0.001, coefficient=0.009), ECM cost per square
eter (𝑝-value < 0.001, coefficient=−2.508), and property value per
quare meter (𝑝-value < 0.05, coefficient=0.002) have statistically
ignificant associations with the likelihood to adopt. Older buildings
ith higher property value are more likely to adopt ECM recommenda-
ions, holding other attributes constant. Furthermore, less-costly ECM
ecommendations are more likely to be adopted. Notably, estimated
RR and energy savings based on the audit recommendations are not
tatistically significant factors in the decision to adopt. This reinforces
indings from the descriptive analysis of adopters and non-adopters,
hich indicates similar mean IRR values across the two groups. (See
able 4.)

.2. Return on investment under multiple retrofit scenarios

Fig. 5 compares the calculated IRR distributions based on ECMs (1)
ncluded in the NPV𝑚𝑎𝑥 scenario, (2) included in the NPV𝑛𝑒𝑢𝑡𝑟𝑎𝑙 scenario,
nd (3) those actually adopted using the 75th perc+ matching criterion.
6

edian IRRs for the bundle of adopted ECMs are found to be 21% e
or multifamily and 25% for office. For both building types, the IRR
f adopted ECMs has a lower mean and is negatively skewed relative
o the NPV𝑛𝑒𝑢𝑡𝑟𝑎𝑙 scenario. In the discussion section, we elaborate on
hy this may be the case. From Table 2, we find that the median cost
or adopted ECMs is $11.95 and $6.70 per square meter for office and
ultifamily, respectively, situating the first cost between the ECMs for
he NPV𝑚𝑎𝑥 and NPV𝑛𝑒𝑢𝑡𝑟𝑎𝑙 scenarios for multifamily and between the
PV𝑛𝑒𝑢𝑡𝑟𝑎𝑙 and maximum energy savings scenarios for office. For office
uildings, the expected energy savings of adopted ECMs is 20.3 kWh
er square meter, less than the expected savings from the NPV𝑛𝑒𝑢𝑡𝑟𝑎𝑙
cenario. (See Table 4.)
Multifamily buildings exhibit a similar pattern, with an estimated

RR for adopted ECMs of 21%, slightly below the IRR of the NPV𝑛𝑒𝑢𝑡𝑟𝑎𝑙
cenario of 22%. First costs of adopted ECMs are approximately $2.39
er square meter higher than the NPV𝑚𝑎𝑥 scenario, but less than the
PV𝑛𝑒𝑢𝑡𝑟𝑎𝑙 ECM package. Expected energy savings are lower than those
n the NPV𝑚𝑎𝑥 and NPV𝑛𝑒𝑢𝑡𝑟𝑎𝑙 alternatives, indicating the adoption
f improvements that may have higher first costs and lower energy
avings over time, such as conveying (e.g. elevator) systems. For both
uilding types, there is not a clear relationship between the variability
n estimated payback period for a given ECM category (as a proxy for
ncertainty in projected cost and savings) and its adoption. 3
We also examine the extent to which additional ECMs, beyond those

dopted, would have improved the expected return, referred to here as
he ‘‘next-best’’ ECM. The next-best ECM is defined as the ECM with the
ighest NPV that was not implemented as part of the bundle of ECMs
atched to the building’s renovation permit scope of work. If the next-
est ECM had been adopted, we find that the IRR would increase by 2%
or multifamily properties, but would decline by 1% for office buildings.
he most commonly identified next-best ECM for office buildings is
uel switching, a relatively high-cost investment that is dependent on
nfrastructure access to alternate fuel sources (e.g. natural gas) and
n the price variability of different fuels. For multifamily buildings,
istribution system improvements and fuel switching are found to be
he among the next-best ECM alternatives based on NPV.

. Discussion

Our results demonstrate a 21% median IRR for adopted retrofit
nvestments for multifamily buildings and 25% for office buildings.
dopter buildings tend to be larger, higher value properties with higher
nitial EUI. Furthermore, we find that adopted ECM investments are
ssociated with energy savings of approximately 7.6% and 5.9% for
ffice and multifamily buildings, respectively. The adoption decision
s driven by many factors, including capital constraints, behavioral
nfluences, and uncertainty associated with energy and cost savings
ver time. The magnitude of the financial returns found here could
otentially reflect a risk premium tied to the perceived uncertainty in
he savings estimates provided in the audit reports and the opportunity
ost of investing in retrofits over other, more traditional alternatives.
onetheless, we find that returns to adopted ECMs are lower than what
ould be achievable for retrofit scenarios yielding the highest NPV.
his is consistent with both market failure and behavioral explanations
or the energy efficiency gap. First, it is possible that some adopter
uilding owners emphasize energy savings, while sacrificing positive
PV investment options. For these owners, the ECM selection process
ay weight energy savings more heavily, even if the ECM does not
ncrease the cumulative NPV of the investment because of higher first
implementation) cost. This is supported by the results of the relative
nergy savings associated with adopted ECMs when compared to the

3 Fig. 7 presents the adoption rate for ECM categories plotted against the
ange in projected payback period, measured by the difference (in years)
etween the 5th percentile and 95th percentile payback period estimate for
ach ECM.
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Fig. 4. Median energy performance (site EUI) over time (2013–2017) for office (left) and multifamily (right) buildings.
Fig. 5. Internal rate of return (IRR) for office and multifamily building energy retrofits, based on NPVmax, NPVneutral, and adopted scenarios.
Table 3
Comparative analysis of IRR, expected energy savings, and cost of ECM implementation, adopters and non-adopters.
IRR

NPV max scenario NPV neutral scenario Adopted ECMs

median mean std median mean std median mean std

Office Non-adopter 0.31 0.38 0.20 0.24 0.29 0.18 – – –
Adopter 0.31 0.38 0.19 0.24 0.30 0.18 0.25 0.28 0.22

Multifamily Non-adopter 0.32 0.42 0.26 0.19 0.27 0.22 – – –
Adopter 0.32 0.41 0.25 0.22 0.28 0.21 0.21 0.25 0.27

Energy Savings (kWh/m2)

NPV max scenario NPV neutral scenario Adopted ECMs

median mean std median mean std median mean std

Office Non-adopter 13.4 16.7 14.3 16.7 21.1 18.2 – – –
Adopter 12 16.7 15.3 15.5 20.5 18.8 9.3 20.3 32.2

Multifamily Non-adopter 23.3 27.1 20.9 31.1 37.2 28.9 – – –
Adopter 15.6 22.2 20.3 22.4 30.2 28.9 10.0 15.1 20.0

Median First Cost ($/m2)

NPV max scenario NPV neutral scenario Adopted ECMs Max savings scenario

Office Non-adopter 6.46 8.50 – 16.47
Adopter 5.81 8.18 11.95 13.67

Multifamily Non-adopter 5.70 13.67 – 23.14
Adopter 4.31 8.50 6.70 16.04
7
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NPV𝑚𝑎𝑥 scenarios. Second, if adopters’ cost of capital is typically lower
than 10%, then they will take up projects that appear to be negative
NPV when discounted at 10%, thus biasing the adopter curve down.4
inally, behavioral factors, such as present bias or limited attention,
ertainly play a role in the energy retrofit adoption decision [47–
9]. Many of these influences can be operationalized as economic
onsiderations by, for instance, shifting discount rates to account for
ncertainty in future savings. The analysis presented here provides the
oundation for a deeper exploration into the relative significance of
arket failures and financial considerations as compared to behavioral
arriers.
We also find that the ‘‘next-best’’ ECM would decrease the IRR of

he aggregate retrofit investment by 1% for office, but increase the
eturn by 2%, on average, for multifamily buildings. The next-best
CM for office buildings is determined to be fuel switching, which
as high implementation costs and variable energy savings based on
nergy price fluctuations and the availability of alternate fuel source
nfrastructure. For multifamily properties, the next-best ECM is the
istribution systems category, which can present challenges given con-
traints on access to individual apartments to do recommended work.
he technical challenges and financial implications of the next-best
CM suggest that owners are balancing return and energy savings in
he decision process.
To assess the accuracy of the algorithmic matching for ECM adop-

ions based on permit descriptions, we randomly select 30 samples five
imes (n = 150) to manually interpret the permit descriptions and then
valuate the accuracy for each matching result. The accuracy for each
ound is 0.90, 0.87, 0.90, 0.80, 0.83, resulting a mean accuracy of 0.86.
ecall is estimated to be 0.92 and precision is 0.58. From the review
f the full permit text description, we find a significant number of the
bserved false positives resulting from buildings that have filed many
ermits accumulating long text descriptions. This highlights a potential
imitation in frequency-based matching techniques with varying text
escription lengths. Furthermore, approximately 20% of false positives
ere associated with the ‘‘envelope’’ ECM category, providing support
or the exclusion of this category as described above.
We acknowledge that our approach has several limitations, primar-

ly due to data sparsity and audit quality. A number of assumptions are
ade to estimate NPV of the various ECM scenarios, including discount
ate and useful lifespan of the installed system or improvement. To
dd robustness to the analysis, we consider uncertainties based on
istributions of input parameters using sensitivity analysis for discount
ate and ECM lifespan. Different reporting systems (audit vs. permit)
nd data entry standards (auditor vs. contractor/architect/engineer)
reate uncertainties in text matching, which can lead to a mis-allocation
f adopted ECMs. Building permit work descriptions are often vague
nd may not capture all ECM categories since several ECMs may not
onstitute work requiring a building permit. For example, a building
wner often does not need to file a permit application for lighting
mprovements that involve bulb replacement/switching or minor repair
ork. This missing information may cause an underestimation of light-
ng ECM adoptions, although we account for this in our model through
ur matching thresholds. Data quality is also a significant concern for
oth energy audit reports and permit scope of work descriptions. We
ind inconsistent input formats, naming conventions, and misreported
r erroneous savings and cost projections. A data standardization effort
or energy audit reports is underway in NYC; however, this does not
ddress the underlying issue of the reference data and metrics used by
uditors to estimate future savings.

4 Multifamily properties are typically underwritten using a lower discount
ate than office properties. Correspondingly, it is worth noting that the
isparity between the adopter and NPV𝑚𝑎𝑥 or NPV𝑛𝑒𝑢𝑡𝑟𝑎𝑙 curves is greater for
ultifamily properties.
8

Although multiple agencies and organizations collect data related
o building energy performance, energy audits, and renovation work,
hese efforts are largely siloed and constrained by sparse datasets rep-
esenting single building types, regions, or portfolios. Our methodology
an be used to better integrate audit data, building characteristics, and
ermit scope of work information into a unified energy performance
atabase. To improve data reliability, consistency, and geographic
overage, we propose to develop a National Retrofit Investment and
erformance (NRIP) database. This database would track building-level
nergy audits, implemented energy conservation measures and retrofit
nvestments and their financial and energy performance metrics, and
re/post energy use profiles. The NRIP would integrate directly with
he U.S. Department of Energy’s Building Performance Database and
ther federal resources (such as EPA’s Portfolio Manager), and provide
detailed repository for actual building audits and retrofit measures.

. Conclusion

This study provides new insight into the return on investment for
ctual energy improvements put-in-place and a methodological foun-
ation for a large-scale, nation-wide study of building energy retrofit
doption. In particular, we highlight three primary contributions of
his study: First, individual in-depth case studies typically present as
mix of idiosyncratic characteristics and more general features. This
eans that any lessons derived from in-depth, small-sample or proto-
ype building studies are not readily transferable to other buildings.
ur study addresses this challenge by analyzing a large sample of
pproximately 3600 buildings derived from a mandatory energy audit
olicy. The sample consists of required audit reports and minimizes
elf-selection bias observed in previous studies of the audit-retrofit
doption relationship. Second, linking the energy audit database from
YC LL87 with a full record of construction and renovation activities
rom the NYC DOB provides us with a more complete and accurate
icture of the retrofit process than simply observing the outcomes of
he process post-retrofit. We also use novel computational methods to
xtract relevant data from building permits and match these to energy
udit recommendations to capture those buildings that implemented
udit recommendations, and those that did not. Finally, we estimate
he rates of return for retrofit investments for both adopter and non-
dopter buildings to determine the investment hurdle rates for retrofits.
ith this, we analyze the characteristics that make it more likely
hat a building owner will adopt a particular measure or bundle of
easures. In the aggregate, we develop a better understanding of the
inancial implications of large-scale retrofit adoption. This information
an be used in practice by policymakers for devising new incentives
nd regulatory mechanisms, while building owners can use it to support
vidence-based investment decisions. Ultimately, our exploratory study
s intended to contribute to the knowledge base that can address
inancial and informational barriers to energy efficiency in buildings.
As cities introduce more expansive regulations for building energy

fficiency and carbon emissions reductions, a complete understanding
f the financial implications of retrofit investments is needed to eval-
ate viable pathways toward near- and long-term sustainability goals.
or building owners, our IRR and NPV models provide greater insight
nto the financial returns to individual ECMs and packages of ECMs.
or policymakers, the analysis can be used to assess the economic fea-
ibility of new and existing regulations, and determine where incentives
an help overcome barriers to adoption. By identifying buildings that
dopted energy efficiency investments, and quantifying the return on
hose investments, we are able to fill a critical gap in the understanding
f energy efficiency retrofits in existing buildings.
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Fig. 6. Text data mining and natural language processing framework for ECM adoption classification.
Fig. 7. Payback period range (from 5th and 95th percentiles) plotted against the rate of adoption for each ECM category.
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Table 4
Summary of ECM categories and sub-recommendations.
ECM category Suggestions (%)

On Site Generation Install solar/photovoltaic (69.59%)
(n = 770) Install co-generation plant (27.96%)

Conveying Systems Add elevator regenerative drives (14.2%)
(n = 160) Upgrade motors (31.5%)

Upgrade controls (12.96%), Other (40.7%)

Cooling System Replace package units (12.37%), Other (35.7%)
(n = 279) Upgrade packaged units (10.70%), Upgrade chillers (8.36%)

Add economizer cycle (8.36%)
Add or upgrade cooling tower (6.35%)

Process and Plug Loads Replace washing machines (38.99%), Other (52.83%)
(n = 153) replace clothes dryers (3.14%)

Automatic shutdown/sleep mode for computers (1.89%)

Ventilation Other (32.25%), Install demand control ventilation (19.0%)
(n = 367) Install exhaust fan timers (17.5%), Install CAR dampers (15.8%)

Upgrade fan/ air handlers (7.0%), Upgrade exhaust fans (5.0%)

Heating System Upgrade burner (37.5%), Heating boiler upgrade (25.0%)
(n = 1205) Insulate vacuum pump assembly (12.5%)

BMS/EMS installation (12.5%)
Install indoor temperature sensors (12.5%)

HVAC Controls & Sensors Install or upgrade EMS/BMS (42.0%), Install TRVs (24.2%)
(n = 2004) Change Set Points/Setbacks — Heating (12.3%), Other (5.2%)

Install indoor sensors (5.3%), Heat watch (3.7%)
Install programmable thermostats (1.9%)

Domestic Hot Water Separate DHW from heating (32.8%)
(n = 3332) Install low-flow aerators (26.9%)

Other (8.0%), Install low-flow showerheads (7.8%)
Insulate DHW piping (6.8%), Install DHW controls (6.6%)
Decrease DHW temperature (3.5%), Upgrade DHW boiler (2.2%)
Low flow fixtures (1.3%)

Fuel Switching #6 oil or #4 oil to natural gas (58.5%)
(n = 492) #2 oil to natural gas (27.4%)

#6 to dual fuel (4.8%)
District steam to on-site generation (2.9%)
Utility steam to on-site generation (2.5%)

Motors Install VFDs (55.6%), Upgrade motors (35.9%)
(n = 833) Other (4.7%), Remove motors (2.8%)

Distribution Systems Insulate pipes (80.0%), Other (20.0%)
(n = 1478)

Lighting Upgrade to LED (58.8%), Other (10.7%)
(n = 5602) Upgrade to fluorescent (6.6%)

Install occupancy/vacancy sensors (6.6%)
Upgrade exterior lighting (6.3%), Install bi-level lighting (1.7%)
install photocell control (1.7%)

Submetering LBS smart meters (50.4%)
(n = 79) Install submetering (45.3%)
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