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An understanding of the modern relationship between diatom species and elevation is a prerequisite for using
fossil diatoms to reconstruct relative sea level (RSL). We described modern diatom distributions from seven
transects covering unvegetated subtidal environments to forested uplands from four tidal wetland sites (Smith
Creek, Bone River, Niawiakum River, and Naselle River) of Willapa Bay, Washington, USA. We compared our
diatom dataset (320 species from 104 samples) to a series of environmental variables (elevation, grain-size, total
organic carbon (TOCsom), and porewater salinity) using hierarchical clustering and ordination. While no single
variable consistently explains variations in diatom assemblages at every site, elevation, salinity, and substrate
(mud fraction and TOCspp) are variables affecting diatom distribution along our transects. Elevation was the
major environmental control of diatom variability (explained 27-39% variance) at four transects (Bone River
Transect 1, Niawiakum River Transect 2, Naselle River Transect 1 and 2). Salinity and substrate were the major
environmental controls (explained 12-32% variance) of diatom variability at three transects (Niawiakum River
Transect 1: salinity; Smith Creek Transect and Bone River Transect 2: TOCgopm). Analyses of a combined regional
dataset of all transects suggest that elevation is the driver of regional diatom variability in Willapa Bay, with
salinity and substrate co-varying along an elevation gradient. We identify species with narrow elevation toler-
ances that can serve as indicator species of specific environments. Despite the site-specific variability of our
modern diatom distribution, the regional dataset provides an important dataset that can be used to reconstruct
RSL in Willapa Bay.

1. Introduction diatoms allows for the rapid colonization of new species in response to

sudden environmental change (Oemke and Burton, 1986; Denys, 1991;

Diatoms are photosynthetic algae that are widely applied in paleo-
environmental reconstructions (e.g., Birks et al., 1990; Fritz et al., 1991;
Battarbee et al., 2002) because they are abundant in marine, brackish,
and freshwater environments (e.g., Conger, 1951; Admiraal, 1984;
Palmer and Abbott, 1986). Diatom species preferences for distinct en-
vironments has led to multiple paleoenvironmental classification sys-
tems based on salinity, substrate, and elevation with respect to tide
levels (e.g., Hustedt, 1937, 1939, 1953, 1957; Denys, 1991; Vos and de
Wolf, 1993; Zong and Horton, 1998). Furthermore, the short life cycle of

Vos and de Wolf, 1993; Hirst et al., 2004; Horton et al., 2017).
Diatoms have been applied to estimate relative sea-level (RSL)
change during prehistoric megathrust earthquakes at the Cascadia
subduction zone (e.g., Darienzo and Peterson, 1990; Shennan et al.,
1994; Nelson and Kashima, 1993; Hemphill-Haley, 1995a, 1995b;
Atwater and Hemphill-Haley, 1997; Sawai et al., 2016). The elevation
with respect to tide levels of modern diatom assemblages serve as an
analog from which fossil diatom assemblages are used to reconstruct
RSL (e.g., Haggart, 1986; Shennan et al., 1996; Zong and Horton, 1999;
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Sawai et al., 2004a; Watcham et al., 2013; Shennan and Hamilton,
2006). Across the intertidal zone, changes in diatom assemblages
display a vertical zonation corresponding to changes in environmental
variables (e.g., salinity and substrate) that are related to tidal exposure
(e.g., Vos and de Wolf, 1993; Hemphill-Haley, 1995b; Sherrod, 1999;
Horton et al., 2006, 2007; Sawai et al., 2016). However, diatom-based
estimates of RSL change have been hampered by the site-specific di-
versity of diatom assemblages that can result in matching analog issues
with fossil diatoms in sediment cores (e.g., Nelson and Kashima, 1993;
Nelson et al., 2008; Garrett et al., 2013; Nelson et al., 2020; Brader et al.,
2020). Therefore, it is important to compile modern datasets from a
wide range of elevations and a diversity of environments (i.e., marine to
freshwater environments; varied site geomorphologies and settings) to
better improve our understanding of species distributions across the
intertidal zone (Watcham et al., 2013; Sawai et al., 2016).

Here, we describe and quantify variability in diatom distributions
from tidal wetlands of Willapa Bay, Washington that has produced a
3500-year record of multiple Cascadia megathrust earthquakes pre-
served in intertidal stratigraphic sequences as mud-over-peat contacts
(Atwater, 1987; Hemphill-Haley, 1995a, 1995b; Atwater and Hemphill-
Haley, 1997). We analyzed the diatom assemblages in 104 samples and
the environmental variables (elevation, grain-size, total organic carbon
(TOCsom), and porewater salinity) that control their distribution from
seven transects in eastern Willapa Bay (Fig. 1): Smith Creek (1 transect);
Bone River (2 transects); Niawiakum River (2 transects); and Naselle
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River (2 transects). Hierarchical clustering and ordination show site
variability in diatom zonation due to differing responses to environ-
mental variables. We conclude with considerations for diatom-based
RSL reconstructions.

2. Study area

Willapa Bay (Fig. 1) is a drowned-river valley estuary formed during
flooding of the valley because of gradual RSL rise during the early to
mid-Holocene (e.g., Emmett et al., 2000; Engelhart et al., 2015; Dura
et al., 2016a). Sediment supplied by the Columbia River produced a 26-
km long barrier spit ~5000 years ago (Smith et al., 1999) that protects
Willapa Bay from the Pacific Ocean (Emmett et al., 2000), resulting in
low-energy wetland environments conducive for the reconstruction of
former sea levels. Furthermore, Willapa Bay provides a relatively un-
modified natural environment in which to study the modern distribution
of diatoms because human and industrial disturbance has been minimal,
as much of its wetland is nationally or state-protected (Emmett et al.,
2000).

The climate at Willapa Bay is temperate. We sampled in May 2015
and August 2019 during which the average daily temperatures (May
2015: High 16.8 °C Low 8.2 °C; August 2019: High 23.2 °C Low 10.6 °C)
were similar to historical average temperatures in May 2015 (High
17.1 °C, Low 5.4 °C) and August 2019 (High 22.8 °C, Low 9.4 °C; NCDC,
2019). Mean daily precipitation (May 2015: 298 mm; August 2019: 30.5
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Fig. 1. (A) Map of the Cascadia subduction zone and its major features. (B) Bathymetry of Willapa Bay, WA (50 m resolution; NOAA, 2016) with sampling sites
marked by circles. (C) Smith Creek with sampled transect marked with a solid black line. (D) Bone River with sampled transects marked with solid black lines. (E)
Niawiakum River with sampled transects marked with solid black lines. (F) Naselle River with sampled transects marked with solid black lines.
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mm) was also similar to the historical mean in May 2015 (323 mm) and
August 2019 (35.3 mm; NCDC, 2019).

Tides at Willapa Bay are mixed semidiurnal (NOAA, 2019). At Smith
Creek, Bone River, and Niawiakum River, the Great Diurnal range
(difference of mean higher high water and mean lower low water) is 2.8
m (NOAA, 2019). At the Naselle River in southern Willapa Bay, the Great
Diurnal range is 3.3 m (NOAA, 2019). The bathymetry of Willapa Bay
shows an extensive tidal flat incised with three main channels that range
in depth from 9 to 24 m (Fig. 1b; Olabarrieta et al., 2011).

The vascular plant communities of Willapa Bay's wetlands can be
grouped into four zones: tidal flat, low marsh, high marsh, and forested
upland (Hemphill-Haley, 1995a, 1995b; Atwater and Hemphill-Haley,
1997; Cooke, 1997). The subtidal environment (below mean lower
low water) is largely defined by deep tidal channels that lack vascular
plant cover (e.g., Gingras et al., 1999; Banas and Hickey, 2005). Tidal
flats (below mean low water) contain only sparse amounts of Zostera sp.
The low marsh (commonly below mean high water) is characterized by
tidal flat colonizers Glaux maritima, Jaumea carnosa, Salicornia virginica,
Spartina alterniflora (a non-native introduced species), and Triglochin
maritima. The high marsh is commonly characterized by Carex lyngbyei,
Deschampsia caespitosa, Distichlis spicata, Juncus balticus, and Potentilla
pacifica. Forested swamps and uplands include trees, commonly Picea
sitchensis and Pyrus fusca.

We selected four tidal wetland sites spread across the length Willapa
Bay with the aim of capturing the wide ecological tolerance of modern
diatom assemblages (Fig. 1b). The northernmost site, Smith Creek
(Transect 1 spans the tidal flat to high marsh), is the fourth largest river
(23-km-long) in Willapa Bay, draining to join the two largest rivers
(North River and Willapa River) in forming the eastward arm of the bay
(Fig. 1b). Moving south, Bone River (Transect 1 spans the tidal flat to
upland and Transect 2 spans the high marsh) and Niawiakum River
(Transect 1 spans the subtidal to tidal flat and Transect 2 spans the tidal
flat to high marsh) are two of the smallest rivers in Willapa Bay (9- and
11-km-long, respectively) and are designated Natural Area Preserves
that contain broad, undisturbed salt marshes (Emmett et al., 2000). The
Naselle River (Transect 1 spans the tidal flat to upland and Transect 2
spans the low marsh to high marsh) marks our southernmost location
and is the third largest river in Willapa Bay, producing up to 18% of
freshwater input into the bay (Banas and Hickey, 2005).

3. Methods
3.1. Field sampling and elevation measurement

We sampled 104 stations along seven elevation transects (Smith
Creek Transect, Bone River Transect 1 and 2, Niawiakum River Transect
1 and 2, Naselle River Transect 1 and 2) from the subtidal to forested
uplands of eastern Willapa Bay (Fig. 1). Two transects were collected at
Bone River, Niawiakum River, and Naselle River to incorporate a wider
range of environments that could not be captured in a single transect.
Samples were collected at approximately 10- to 20- cm vertical in-
crements except where adjacent stations crossed a steep slope resulting
in a sudden transition in elevation. Subtidal samples were collected
using an Ekman grab sampler deployed from a canoe. Intertidal and
forested upland samples were collected using a knife. The upper 2 mm of
surface sediment was subsampled for diatom, grain-size, TOCgopy;, and
porewater salinity analyses. We estimated the percent cover of the
dominant vascular plant species at our sampling stations using Cooke
(1997) as a reference. Sediment samples were refrigerated after collec-
tion and prior to laboratory analyses.

We measured the elevation of intertidal and upland sampling sta-
tions using a Leica GS-15 Real Time Kinematic-Global Positioning Sys-
tem (RTK-GPS) and total station. Error estimates on these measurements
are <4 cm. To establish elevations of subtidal sampling stations with
respect to the tidal datum, we used a handheld water sounder and depth
meter and conducted regular measurements (every 6 min) of tide levels

Marine Micropaleontology 167 (2021) 102033

using the RTK-GPS. Elevations of all stations were referenced to the
North American Vertical Datum (NAVD88) and tied to mean tide level
(MTL) using the VDatum transformation software (NOAA, Accessed
2019). We converted our measured elevations to a standardized water
level index (SWLI) to allow comparison among sites with differing tidal
ranges where MTL is 100 SWLI and MHHW is 200 SWLI (Horton et al.,
1999).

3.2. Diatom and environmental analyses

Diatom analysis followed Palmer and Abbott (1986). In the labora-
tory, 1 cm® of sediment was placed in a 25-mL plastic Falcon tube with
30% concentration H20, until no organic material remained. We drip-
ped (5-40 pL concentration), dried, and mounted the diatoms onto a
glass slide using Naphrax. For each sample, 400 valves were counted
using light microscopy under oil immersion at 1000x magnification
with abundance calculated as a percentage of total diatom valves
counted. We denote rare species as having a maximum abundance of
<5% in a single sample and abundant species as having a maximum
abundance of >10% in a single sample. Diatoms were identified to
species level using Krammer and Lange-Bertalot (1986, 1988, 1991a,
1991b), and Witkowski (2000) and classified by salinity based on local
(Hemphill-Haley, 1995a, 1995b, 1996; Sawai et al., 2016) and global
observations (Krammer and Lange-Bertalot, 1986, 1988, 1991a, 1991b;
Denys, 1991; Witkowski, 2000) into marine, brackish and freshwater
(includes fresh-brackish and freshwater) species.

To characterize the relationship between diatom assemblages and
environmental variables, we analyzed three variables from surface
sediment at each sampling station: grain-size, TOCsop, and porewater
salinity concentrations. We prepared each sample for grain-size analysis
by placing sediment from each station in a 25 mL plastic Falcon tube and
removing organic matter using 30% concentration HoO3 (Donato et al.,
2009). We measured grain-size using a Malvern Mastersizer 3000 laser
particle-size analyzer (Sperazza et al., 2004) and use mud fraction to
characterize grain-size (e.g., Sawai et al., 2016). Bulk sedimentary
organic matter (SOM) for TOCgoy composition was analyzed at the
University of North Carolina-Wilmington (O'Donnell III, 2017). The
samples were dried at 50 °C for 24 h prior to being ground with a mortar
and pestle. Bulk values are reported relative to the Vienna Pee Dee
Belemnite scale using L-glutamic acid (USGS40, USGS41, and
USGS41a). We calculated the percent TOCsoy by using the known
weight of each sample, quantity of C in the L-glutamic acid standards,
and the relative production of CO; after combustion. We centrifuged the
samples to extract porewater salinity prior to measurement with a
calibrated refractometer (Sherrod, 1999; Sawai et al., 2016). When no
porewater was present, 5 mL of deionized water was added to samples
before centrifuging and measurement (e.g., Sawai et al., 2016; Desianti
et al., 2019).

3.3. Statistical analysis

We employed hierarchical clustering to identify groups of diatom
assemblages within each transect and from all transects combined (e.g.,
van Togeren, 1987; Theriot, 1992; Zong and Horton, 1998). We classi-
fied the modern samples using Ward's minimum unconstrained cluster
analysis based on unweighted Euclidean distance using PAST software
(Hammer et al., 2001). The number of clusters was determined using the
broken-stick method (MacArthur, 1957) using the software R version
4.0.3 (R Core Development Team, 2020) and the cluster package
(Maechler et al., 2019).

We analyzed the relationship between modern diatom assemblages
and environmental variables of samples along each transect as well as
among all transects combined using the ordination method of principal
component analysis (PCA; ter Braak, 1986). PCA relates community
composition to environmental variables by reducing the dimensions to
principal components (axes) that represent the maximum variance
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between species assemblages and environmental variables (e.g., Abdi
and Williams, 2010). The gradient lengths of the environmental vectors
on the PCA sample-environment biplot approximate their relative
importance in explaining the variance in the diatom data, whereas their
orientation demonstrates the approximate correlation to the ordination
axes as well as to other environmental variables (ter Braak, 1986).
Redundancy analysis (RDA) identified the total variance in diatom as-
semblages that can be explained by the environmental variables. RDA
was chosen because the gradient length of individual transects ranged
from 1.5 to 2.9 SD with only two transects (Niawiakum River Transect 2
and Naselle River Transect 2) exceeding a gradient length of 2 SD (ter
Braak, 1986; Birks, 1995). We determined the contribution of each
variable to diatom assemblage variance using constrained analysis and
interactive-forward-selection, using a p value <0.01 as the threshold for
a variable to be considered a major control. To test the influence of site
variability on diatom zonation, we include each site as a factor (cate-
gorical) variable in our RDA of our regional dataset following the
methods of Leps and Smilauer (2003) whereby each sample is given a
numeric value based on its presence (1) or absence (0) at a site. Deter-
mination of gradient length as well as PCA and RDA analyses were
performed using the software CANOCO version 4.5 (ter Braak and
Smilauer, 1998, 2002). Descriptive statistics of the elevation

Smith Creek Transect (A - A’)
A
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distribution of the regional dataset was performed using the software R
(R base; R Core Development Team, 2020).

We used weighted averaging (e.g., ter Braak, 1985; ter Braak and
Barendregt, 1986; Birks, 1995) to quantify the abundance and distri-
bution of taxa across elevation as a function of tidal exposure (e.g., Zong
and Horton, 1999) because the calculated gradient length (2.9 SD) of the
combined regional dataset indicates a unimodal response (ter Braak,
1986; Birks, 1995; ter Braak and Smilauer, 2002). For weighted aver-
aging, rare species were excluded from analysis. We calculated the op-
tima (weighted averages) and tolerance (weighted average standard
deviations) range of diatom species to elevation (SWLI) from the com-
bined regional dataset using the software C2 version 1.7.7 (Juggins,
2012).

For all statistical analyses, we used the relative percent (calculated as
a percentage of total diatom valves counted) of all species counted in
each sample.

4. Results
4.1. Smith Creek

Smith Creek Transect is comprised of 10 sampling stations ranging in
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Fig. 2. Smith Creek Transect. (A) The distribution of abundant diatoms (> 5% relative abundance in at least one sample) along the sampled transect. Diatoms are
separated based on their salinity preferences (blue: marine; yellow: brackish; red: freshwater). (B) Sampled transect showing the location of the sampling stations and
major vascular vegetation separated by zones relative to distance and elevation. The mud fraction, salinity (ppt), and TOCsoy of each sampling station is plotted
relative to distance. (C) Results of hierarchical cluster analysis with (D) PCA sample-environment biplot results shown below. Station symbols indicate their sampling
location (square: tidal flat; circle: low marsh; cross: high marsh). (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.) (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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elevation from —0.18 to 1.64 m above MTL (86 to 226 SWLI) that spans
the tidal flat to high marsh vascular vegetation environments (Fig. 2).
Vegetation across the transect consists of sparse Zostera sp. on the tidal
flat (Stations 1-3), D. spicata and T. maritima on the low marsh (Stations
4-6), and dominantly C. lyngbyei, J. balticus, and P. pacifica on the high
marsh (Stations 7-10). Grain-size analysis shows the relative percent of
mud remains relatively constant (89 to 100%) across the transect except
for Station 1 (68%). Salinity ranges from 5 to 30 ppt and generally de-
creases with increasing elevation across the transect. TOCsoy increases
from 2 to 20% with elevation.

We identified 152 species from 49 genera along the Smith Creek
Transect. Marine species (Seminavis strigosa: < 21%) and brackish spe-
cies (Mastogloia exigua: < 16%, Navicula salinicola: < 12%, and Nitzschia
clausii: < 11%) are abundant in the tidal flat. Brackish species (Denticula
subtilis: < 11%), Gyrosigma eximium: < 12%, and Rhopalodia pacifica: <
12%) are abundant throughout the low marsh. Freshwater species
(Achnanthes lutheri: < 14%, Craticula halophila: < 14%, and Luticola
mutica: < 12%) are abundant in high marsh samples.

Hierarchical clustering identified two diatom groups along the Smith
Creek Transect (Fig. 2). Cluster A consists of tidal flat and low marsh
Stations 1-6 with an elevation range of —0.18 to 1.01 m above MTL (86
to 178 SWLI). We observe marine and brackish species in Cluster A.
Cluster B consists of high marsh samples from Stations 7-10 with an
elevation range of 1.36 to 1.60 m above MTL (206 to 227 SWLI). In
contrast to Cluster A, we observe freshwater and brackish species in
Cluster B.

PCA produced Axis 1 with an eigenvalue of 0.35 and Axis 2 with an
eigenvalue of 0.22 that explains 57% of the total variance in the diatom
assemblages (Table 1) with 70% explained by the environmental vari-
ables (Table 2). Intra-set correlations of environmental variables with
axes 1 and 2 show that TOCgoy is correlated with Axis 1 and that
salinity, elevation, and mud fraction are correlated with both axes 1 and
2 (Fig. 2). Constrained and interactive-forward-selection analyses
identify TOCgom (explains 32% variance) and elevation (explains 19%
variance) as major explanatory variables with salinity (explains 11%
variance) and mud fraction (explains 9% variance) as minor explanatory
variables (Table 2).

Table 1
Summary PCA results with eigenvalues and explained cumulative variation of
local and regional dataset.

Transect Statistic Axis Axis Axis Axis
1 2 3 4

Eigenvalue 0.35 0.22 0.10 0.09

Explained cumulative
Smith Creek variation 35% 57% 67% 76%
Eigenvalue 0.38 0.18 0.09 0.06

Explained cumulative
Bone River 1 variation 38% 56% 65% 71%
Eigenvalue 0.22 0.20 0.12 0.08

Explained cumulative
Bone River 2 variation 22% 41% 54% 62%
Eigenvalue 0.37 0.16 0.10 0.08

Niawiakum Explained cumulative
River 1 variation 37% 53% 63% 72%
Eigenvalue 0.34 0.15 0.10 0.06

Niawiakum Explained cumulative
River 2 variation 34% 49% 59% 65%
Eigenvalue 0.36 0.15 0.09 0.05

Explained cumulative
Naselle River 1 variation 36% 51% 60% 64%
Eigenvalue 0.42 0.20 0.13 0.11

Explained cumulative
Naselle River 2 variation 42% 62% 76% 86%
Eigenvalue 0.21 0.09 0.08 0.06

Explained cumulative
Regional Dataset  variation 21% 31% 39% 45%
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Table 2
Summary RDA results of local and regional dataset showing total variance in
diatom assemblages explained by the environmental variables.

Smith Creek Transect Bone River Transect 1

Variable Contribution (%) Variable Contribution (%)
TOC 32 Elevation 35

Elevation 19 TOC 14

Salinity 11 % Mud 7

% Mud 9 Salinity 6

Total 70 Total 63

Bone River Transect 2 Niawiakum River Transect 1

Variable Contribution (%) Variable Contribution (%)
TOC 20 Salinity 31

Salinity 10 % Mud 12

Elevation 8 TOC 11

% Mud 6 Elevation 7

Total 44 Total 61

Niawiakum River Transect 2 Naselle River Transect 1

Variable Contribution (%) Variable Contribution (%)
Elevation 28 Elevation 27

Salinity 14 Salinity 8

TOC 6 TOC 5

% Mud 4 % Mud 4

Total 52 Total 44

Naselle River Transect 2 Regional Dataset

Variable Contribution (%) Variable Contribution (%)
Elevation 39 % Mud 12
TOC 21 TOC 11
% Mud 10 Salinity 10
Salinity 9 Elevation 9
Total 79 Site 5
Total 47

4.2. Bone River

4.2.1. Transect 1

Bone River Transect 1 is comprised of 16 sampling stations ranging
in elevation from 0.50 to 1.99 m above MTL (139 to 256 SWLI) that
spans the tidal flat to upland (Fig. 3). Vegetation across the transect
consists of sparse Zostera sp. on the tidal flat (Stations 1-6), S. virginica
and T. maritima on the low marsh (Stations 7-11), and D. spicata and
P. pacifica in the high marsh (Stations 12-15). Sitka spruce (P. sitchensis)
and Western crabapple (P. fusca) are the dominant tree species on the
upland (Station 16). Grain-size analysis shows a shift from mostly sand
on the tidal flat (60 to 77% sand) to mud dominating the salt marsh and
upland; the maximum mud content was at Station 11 (98% mud).
Salinity ranges from 4 to 35 ppt and decreases with increasing elevation
with a sharp change from Station 9 to 10 (33 to 16 ppt) at the transition
from low to high marsh. TOCgpy increases with elevation, with a
notable increase of >20% organic carbon from Station 13 to 14 where
there is a transition from high marsh to upland.

We identified 173 species from 53 genera along the transect. Pla-
nothidium delicatulum was dominant (> 15% abundance) in the tidal flat.
Marine species (Cocconeis scutellum var parva: < 18% Opephora min-
uta: < 19%, and Pravifusus hyalinus: < 10%) are abundant in tidal flat
samples. Brackish species (Navicula gregaria: < 6%, Navicula perminuta:
< 6%, and R. pacifica: < 7%) only exceed rare abundance in low marsh
samples. The freshwater species Melosira varians, Nitzschia frustulum,
and Pinnularia lagerstedtii are only present at <10% abundance in the
high marsh and upland. Cocconeis scutellum, an epiphytic (attachment to
aquatic plants) species commonly found across the intertidal due to its
allochthonous (transported) component, was dominant (19-41%
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abundance) at the higher elevation stations.

Hierarchical clustering identified three diatom groups along Bone
River Transect 1 (Fig. 3). Cluster A consists of tidal flat samples from
Stations 1-6 with an elevation range of 0.50 to 0.78 m above MTL (139
to 162 SWLI). In contrast to the other two groups, brackish and fresh-
water species are very rare (< 2% abundance) in Cluster A. Cluster B
consists of low marsh samples and brackish species from Stations 7-11
with an elevation range of 1.10 to 1.57 m above MTL (186 to 223 SWLI).
Cluster C consists of high marsh and upland samples from Stations
12-16 with an elevation range of 1.65 to 1.99 m above MTL (230 to 256
SWLI). Freshwater species only exceed rare abundance in Cluster C.
High abundances of C. scutellum also occur in Cluster C.

PCA produced an Axis 1 with an eigenvalue of 0.38 and an Axis 2
with an eigenvalue of 0.18 that explains 56% of the total variance in the
diatom assemblages (Table 1) with 62% explained by the environmental
variables (Table 2). Intra-set correlations of variables with axes 1 and 2
show that elevation and mud fraction are correlated with Axis 1 and that
TOCsom and salinity are correlated with both axes 1 and 2 (Fig. 3).
Constrained and interactive-forward-selection analyses identify eleva-
tion (explains 35% variance) and TOCgoy (explains 14% variance) as

major explanatory variables with mud fraction (explains 7% variance)
and salinity (explains 6% variance) as minor explanatory variables
(Table 2).

4.2.2. Transect 2

Bone River Transect 2 is comprised of 13 sampling stations in the
high marsh with a relatively narrow elevational range from 1.25 to 1.64
m above MTL (199 to 229 SWLI; Fig. 4). Vegetation across the transects
consists of C. lyngbyei, D. caespitosa, D. spicata, J. balticus, and P. pacifica
on the high marsh. Grain-size analysis shows the relative percent of mud
remains relatively constant (92 to 97%) across the transect with the
exception of Station 1 (79%). Salinity also displays a relatively constant
(16 to 14 ppt) concentration across the transect. TOCgoy shows an in-
crease of >15% organic carbon at Stations 10-13.

We identified 175 species from 55 genera along the transect. The
freshwater species L. mutica was present at >6% abundance at all
sampling stations. The brackish species Navicula cincta (< 12%) and the
freshwater species P. lagerstedtii (< 15%) are abundant in more than half
of the sampling stations.

Hierarchical clustering identified one diatom group at Bone River
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Transect 2 (Fig. 4). PCA produced an Axis 1 with an eigenvalue of 0.22
and an Axis 2 with an eigenvalue of 0.20 that explains 41% of the total
variance in the diatom assemblages (Table 1) with 44% explained by the
environmental variables (Table 2). Intra-set correlations of environ-
mental variables with axes 1 and 2 show that TOCgoy and elevation are
correlated with Axis 1 and that salinity and mud fraction are correlated
with both axes 1 and 2 (Fig. 4). Constrained and interactive-forward-
selection analyses identified TOCgoy (explains 20% variance) as the
major explanatory variable with salinity (explains 10% variance),
elevation (explains 8% variance), and mud fraction (explains 6% vari-
ance) as minor explanatory variables (Table 2).

4.3. Niawiakum River

4.3.1. Transect 1

Niawiakum River Transect 1 is comprised of 10 sampling stations
ranging in elevation from —5.03 to 0.48 m above MTL (—291 to 137
SWLI) across the subtidal (Stations 1-4) to tidal flat (Stations 5-10;
Fig. 5). Samples along the transect lacked vascular plants. Grain-size
analysis shows that the relative percent of mud ranges from 10 to 65%

and is variable along the transect. Salinity also varies along the transect
and ranges from 18 to 35 ppt. TOCgom remains low along the transect,
ranging from 0.10 to 0.65%.

We identified 146 species from 55 genera along the transect. In the
subtidal we observe marine species (C. scutellum: < 16%, P. delicatulum:
< 23%, and Tabularia fasciculata: <10%). The tidal flat showed an in-
crease in brackish species (Nitzschia filiformis: < 12%, Rhopalodia gib-
berula: < 10% and Rhopalodia musculus: 12%). The freshwater species
N. frustulum is present in all samples, showing a maximum abundance of
6% in Station 7.

Hierarchical clustering identified two diatom groups along the Nia-
wiakum River Transect 1 (Fig. 5). Cluster A consists of Stations 1-8 in
which we observe marine species with brackish species in rare abun-
dance. Cluster B consists of Stations 9 and 10 in which we observe
brackish species.

PCA produced an Axis 1 with an eigenvalue of 0.37 and an Axis 2
with an eigenvalue of 0.16 that explains 53% of the total variance in the
diatom assemblages (Table 1) with 61% explained by the environmental
variables (Table 2). Intra-set correlations of environmental variables
with axes 1 and 2 show that salinity is correlated with Axis 1 and mud
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fraction is correlated with Axis 2 (Fig. 5). TOCsom and elevation are
correlated with both axes 1 and 2. Constrained and interactive-forward-
selection analyses identified salinity (explains 31% variance) as the
major explanatory variable with mud fraction (explains 12% variance),
TOCsom (explains 11% variance), and elevation (explains 7% variance)
as minor explanatory variables (Table 2).

4.3.2. Transect 2

Niawiakum River Transect 2 is comprised of 20 sampling stations
ranging in elevation from —0.80 to 1.79 m above MTL (38 to 239 SWLI)
that spans the tidal flat to high marsh (Fig. 6). Vegetation across the
transect consists of no vascular plants on the tidal flat (Stations 1-3),
G. maritima, S. virginica, S. alterniflora, and T. maritima on the low marsh
(Stations 4-7), and C. lyngbyei, D. spicata, J. balticus, and P. pacifica on
the high marsh (Stations 8-20). Grain-size analysis shows that the
relative percent of mud remains >70% at all sampling stations except
Station 5 (59% mud). Salinity steadily decreases with increasing
elevation from 24 to 12 ppt. TOCgoy increases with elevation from 2 to
32% with the most notable change between Stations 17 and 18.

We identified 206 species from 65 genera along the transect. Marine
species (Paralia sulcata: < 7%, P. delicatulum: < 6%, and Thalassiosira
pacifica: < 7%) are present in the tidal flat samples. Marine species

(Grammatophora oceanica: < 5% and T. pacifica: < 7%) as well as
freshwater species L. mutica: < 7% are present in the low marsh samples.
High marsh assemblages are comprised of brackish (N. cincta: < 12%)
and freshwater species (e.g., C. halophila: < 16%, L. mutica: < 23%, and
P. lagerstedtii: < 14%).

Hierarchical clustering identified three diatom groups along the
Niawiakum River Transect 2 (Fig. 6). Cluster A consists of tidal flat and
low marsh samples from Stations 1-8 with an elevation range of —0.80
to 1.46 m above MTL (38 to 213 SWLI). We observe marine species in
Cluster A. Cluster B consists of high marsh samples from Stations 9-18
with an elevation range of 1.55 to 1.71 m above MTL (220 to 233 SWLI).
Brackish species dominate in Cluster B. Cluster C consists of high marsh
samples from Stations 19-20 with an elevation range of 1.75 to 1.79 m
above MTL (236 to 239 SWLI). In contrast to other groups, marine
species are rare in Cluster C where we observe freshwater species.

PCA produced an Axis 1 with an eigenvalue of 0.34 and an Axis 2
with an eigenvalue of 0.15 that explains 49% of the total variance in the
diatom assemblages (Table 1) with 52% explained by the environmental
variables (Table 2). Intra-set correlations of environmental variables
with axes 1 and 2 show that elevation is correlated with Axis 1 and that
all other environmental variables (salinity, TOCgop, mud fraction) are
correlated with both axes 1 and 2 (Fig. 6). Constrained and interactive-
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forward-selection analyses identified elevation (explains 28% variance)
and salinity (explains 14% variance) as major explanatory variables
with TOCgoy (explains 6% variance) and mud fraction (explains 4%
variance) as minor explanatory variables (Table 2).

4.4. Naselle River

4.4.1. Transect 1

Sampling of Naselle River Transect 1 is comprised of 28 sampling
stations ranging in elevation from —0.93 to 2.57 m above MTL (39 to
269 SWLI) that spans the tidal flat to upland (Fig. 7). Vegetation across
the transect consists of sparse Zostera sp. on the tidal flat (Stations 1-15),
S. virginica and T. maritima on the low marsh (Stations 16-19), and
C. lyngbyei, D. caespitosa, D. spicata, J. balticus, and P. pacifica on the high
marsh (Stations 20-27). is comprised of. Sitka spruce (P. sitchensis) and
Western Crabapple (P. fusca) are dominant tree species on the forested
upland (Station 28). Grain-size analysis shows the relative percent of
mud generally increases with increasing elevation (36 to 99%)
throughout the transect with the exception of Station 21 (35%). Salinity
generally decreases with increasing elevation from 25 to 8 ppt. TOCsom
increases with elevation from 2 to 36%. We note a drop from 34 to 23%

organic content at Station 27 in the high marsh.

We identified 249 species from 67 genera along the transect. The
tidal flat samples contain a mixture of assemblages, likely due to the
higher freshwater discharge from the Naselle River, ranging from ma-
rine (e.g., C. scutellum: < 34%) to brackish (e.g., Staurosirella pinnata: <
10%) as well as freshwater (e.g., M. varians: < 10%) species. The low
marsh includes marine species (Frustulia linkei: < 14% and P. sulcata: <
14%). Brackish species D. subtilis (< 19%) and freshwater species L.
mutica (< 22%) are found in the high marsh. The upland has a mixture of
marine (e.g, Opephora guenter-grassi: < 5%), brackish (e.g., Tryblionella
debilis: < 5%), and freshwater (e.g., L. mutica: < 12%) species.

Hierarchical clustering identified two diatom groups along the
Naselle River Transect 1 (Fig. 7). Cluster A consists of tidal flat, and low
marsh samples (Stations 1-17) that range in elevation from —0.93 to
1.84 m above MTL (39 to 221 SWLI). We observe marine and brackish
species in Cluster A. Cluster B contains low marsh, high marsh, and
upland samples (Stations 18-28) that range in elevation from 1.96 to
2.57 m above MTL (229 to 269 SWLI). In contrast to Cluster A, we
observe freshwater species in Cluster B.

PCA produced an Axis 1 with an eigenvalue of 0.36 and an Axis 2
with an eigenvalue of 0.15 that explains 51% of the total variance in the
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diatom assemblages (Table 1) with 44% explained by the environmental
variables (Table 2). Intra-set correlations of environmental variables
with axes 1 and 2 show that elevation is correlated with Axis 1 and
salinity, mud fraction, and TOCsoy are correlated with both axes 1 and 2
(Fig. 7). Constrained and interactive-forward-selection analyses identi-
fied elevation (explains 27% variance) and salinity (explains 8% vari-
ance) as the major explanatory variables with TOCgoy (explains 5%
variance) and mud fraction (explains 4% variance) as minor explanatory
variables (Table 2).

4.4.2. Transect 2

Sampling of Naselle River Transect 2 is comprised of 7 sampling
stations ranging in elevation from 1.67 to 2.65 m above MTL (209 to 273
SWLI) that spans the low and high marsh (Fig. 8). Vegetation across the
transect consists of S. virginica and T. maritima on the low marsh (Sta-
tions 1-3) and C. lyngbyei, D. spicata, and P. pacifica on the high marsh
(Stations 4-7). Grain-size analysis shows the relative percent of mud
remains steady (87 to 93%) throughout the transect. Salinity decreases
with increasing elevation from 25 to 2 ppt. TOCsoy increases with
elevation from 3 to 22%.

We identified 131 species from 47 genera along the transect. A
mixture of marine (e.g., O. guenter-grassi: < 6%), brackish (e.g., Navicula

10

phyllepta: < 12%), and freshwater (e.g., N. frustulum: < 14%) assem-
blages are present in the low marsh. The high marsh samples contain (<
18%) of freshwater species such as Cosmioneis pusilla, L. mutica, Navicula
sieminskiae, and Nitzschia terrestris.

Hierarchical clustering identified two diatom groups along Naselle
River Transect 2 (Fig. 8). Cluster A consists of low marsh samples
(Stations 1-3) that range in elevation from 1.67 to 1.89 m above MTL
(209 to 224 SWLI). We observe a mixture of marine, brackish, and
freshwater assemblages in Cluster A. Cluster B contains high marsh
samples (Stations 4-7) that range in elevation from 2.58 to 2.65 m above
MTL (269 to 273 SWLI). We observe freshwater species in Cluster B.

PCA produced an Axis 1 with an eigenvalue of 0.42 and an Axis 2
with an eigenvalue of 0.20 that explains 62% of the total variance in the
diatom assemblages (Table 1) with 79% explained by the environmental
variables (Table 2). Intra-set correlations of environmental variables
with axes 1 and 2 show that mud fraction is correlated with Axis 1 and
TOCgowm, elevation, and salinity are correlated with both axes 1 and 2
(Fig. 8). Constrained and interactive-forward-selection analyses identi-
fied elevation (explains 39% variance) as the major explanatory variable
with TOCgop, mud fraction, and salinity as minor explanatory variables
(explains 21, 10, and 8% variance, respectively; Table 2).
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Fig. 8. Naselle River Transect 2. (A) The distribution of abundant diatoms (> 5% relative abundance in at least one sample) along the sampled transect. Diatoms are
separated based on their salinity preferences (blue: marine; yellow: brackish; red: freshwater). (B) Sampled transect showing the location of the sampling stations and
major vascular vegetation separated by zones relative to distance and elevation. The mud fraction, salinity (ppt), and TOCsom of each sampling station is plotted
relative to distance. (C) Results of hierarchical cluster analysis with (D) PCA sample-environment biplot results shown below. Station symbols indicate their sampling
location (circle: low marsh; cross: high marsh). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.) (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

4.5. Regional dataset

Our combined regional modern diatom dataset is comprised of 104
sampling stations from seven transects that range in elevation from
—291 to 273 SWLI. We identified 320 species across 85 genera. Multi-
variate analysis using hierarchical clustering identified three diatom
groups from the regional dataset (Fig. 9):

Cluster A includes the lowest elevation samples of the dataset from
Bone River Transect 1, Niawiakum River Transect 1, and Naselle River
Transect 1 whose stations range in elevation from —291 to 256 SWLI.
Grain-size distributions show a range of 10 to 91% mud. Salinity ranges
from 4 to 35 ppt. TOCgom ranges from 0.38 to 27%. The diatoms of
Cluster A are predominantly marine species with a relatively high
abundance (5-19%) of the marine species C. scutellum var. parva,
O. minuta, and P. hyalinus compared to the other clusters.

Cluster B includes (1) high marsh samples from Bone River Transect
2, Niawiakum River Transect 2, Naselle River Transect 1; (2) one of the
high marsh samples from Naselle River Transect 2 (Station 4); and one
upland sample from Naselle River Transect 1 (Station 28). The elevation
range for this group of samples is from 186 to 271 SWLI. Grain-size
distributions show a range of 35 to 99% mud with a salinity range of
8 to 20 ppt. TOCgopm ranges from 4 to 36%. The diatoms of Cluster B are a
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mix of dominantly brackish and freshwater species with a relatively high
abundance of the freshwater species C. pusilla and N. terrestris compared
to the other clusters.

Cluster C consists of samples from all 7 transects whose stations
range in elevation from 38 to 273 SWLI and includes the highest
elevation samples. Grain-size distributions have a large range from 31 to
100% mud with a salinity range from 2 to 35 ppt. TOCgowm ranges from 1
to 30%. The diatoms of Cluster C are a mix of marine (e.g., G. oceanica
and T. pacifica), brackish (e.g., S. pinnata and N. gregaria), and fresh-
water (e.g., C. halophila) species.

PCA produced an Axis 1 with an eigenvalue of 0.21 and an Axis 2
with an eigenvalue of 0.09 that explains 31% of the total variance in the
diatom assemblages (Table 1) with 28% explained by the environmental
variables (Table 2). The intra-set correlations of environmental variables
with axes 1 and 2 show that mud fraction, TOCgop;, salinity, and
elevation are correlated with Axis 1 and site is correlated with Axis 2
(Fig. 9). Constrained and interactive-forward-selection analysis identi-
fied mud fraction (explains 12% variance), TOCsom (explains 6% vari-
ance), salinity (explains 10% variance), elevation (explains 9%
variance), and site (explains 5% variance) as major explanatory vari-
ables (Table 2). A boxplot showing the distribution of elevation (SWLI)
for the clustered sampling stations show the median of each cluster
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Fig. 9. (A) Results of hierarchical cluster analysis of the combined regional dataset. (B) PCA sample-environment biplot results of the regional dataset. (C) Boxplot

showing the distribution of elevation (SWLI) for clustered sampling stations.

plotted separately despite overlapping elevation ranges (Fig. 9). Cluster
A displays the lowest elevation median and widest range of outliers
compared to Cluster B and C. In contrast, Cluster B displays the highest
elevation median and narrowest range with no outliers. Cluster C shows
outliers at lower elevations and a median value between that of Cluster
A and B.

Weighted averaging results from 65 species show that the elevation
optima of our regional dataset span multiple environments across
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elevation (88 to 251 SWLI) and that species displayed varying elevation
tolerances (Fig. 10). Marine and brackish species dominate elevations
lower than MHHW (elevation optima <200 SWLI), whereas freshwater
species dominate above MHHW (elevation optima >200 SWLI). Marine
and brackish species display a wider elevation tolerance across the
intertidal compared to freshwater species. Of the 24 species with an
elevation tolerance of less than 50 SWLI, 14 are freshwater species.
Above MHHW, the freshwater species N. cryptocephala (optima 238
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Fig. 10. Results of weighted averaging with optimal elevation (circles) and elevation tolerance (brackets) of abundant diatom species (> 5% relative abundance in
one sample). Diatom labels are colour coded based on salinity preferences (blue: marine; yellow: brackish; red: freshwater). (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.) (For interpretation of the references to colour in this figure legend, the reader is

referred to the web version of this article.)

SWLI), N. terrestris (optima 243 SWLI), and P. lagerstedtii (optima 231
SWLI) displayed the narrowest elevation tolerances of all species
ranging from 15 to 19 SWLI. Between MHWW and MTL the brackish
species G. eximium (optima 185 SWLI) and Surirella ovalis (optima 174
SWLI) showed elevation tolerances of 34 and 38 SWLI, respectively. Of
the 9 species with an elevation tolerance greater than 100 SWLI, 8 are
marine and 1 is brackish. Below MTL, the marine species P. hyalinus
(optima 93 SWLI) and C. scutellum var. parva (87 SWLI) showed a wide
elevation tolerance (113 and 121 SWLI, respectively).

5. Discussion
5.1. Vertical zonation of diatom distributions in Willapa Bay

Consistent with studies in Cascadia (e.g., Nelson and Kashima, 1993;
Hemphill-Haley, 1995a, 1995b; Sherrod, 1999) and elsewhere (e.g.,
Admiraal, 1977; Zong and Horton, 1998; Sawai, 2001; Zong et al., 2003;
Shennan and Hamilton, 2006; Garrett et al., 2013; Watcham et al.,
2013), five sites (Smith Creek Transect, Bone River Transect 1, Nia-
wiakum River Transect 2, Naselle River Transect 1, and Naselle River
Transect 2) displayed a vertical zonation of diatom assemblages. Verti-
cal zonation of diatom assemblages in Willapa Bay were also observed
by Hemphill-Haley (1995b) who used factor analysis to identify three
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distinct clusters of diatom assemblages that separated across elevation at
the Niawiakum River. Two sites (Bone River Transect 2, and Niawiakum
River Transect 1) do not display a vertical zonation, however, their
diatom assemblages do distinguish the subtidal/tidal flat and/or high
marsh/upland environments.

The subtidal environments of Niawiakum River Transect 1 and the
tidal flats of Smith Creek Transect, Bone River Transect 1, Niawiakum
River Transect 2, and Naselle River Transect 1 are characterized by
coarser (lower mud fraction) grain-size, lower organic content, and
higher salinity. In these environments, we observe epiphytic (attach-
ment to aquatic plants) and epipsammic (attachment to sand) marine-
brackish species such as G. oceanica, O. guenter-grassi, and
T. fasciculata. Sawai et al. (2016) noted similar species (e.g., epiphytic
species T. fasciculata) on tidal flats and low marsh environments along
the Oregon coast. Hemphill-Haley (1995b) also found a vertical zona-
tion of diatom assemblages along two transects at the Niawiakum River,
observing similar species (e.g., T. fasciculata and G. oceanica) as indic-
ative of tidal flats, but also noted their wide distribution along the
subtidal and tidal flat. Species in our subtidal samples from Niawiakum
River Transect 1 also displayed a lack of distinct zonation, showing
similar distribution and relative abundance with species in tidal flat
samples (Fig. 5).

Low marshes are characterized by finer (higher mud fraction) grain-
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size, slightly increased TOCgoy, and slightly decreased salinity relative
to tidal flats. The changing environmental conditions from the tidal flat
to low marsh coincide with a decrease in marine species (e.g., Nelson
and Kashima, 1993; Hemphill-Haley, 1995b; Sherrod, 1999) and the
appearance of brackish species such as G. eximium and N. gregaria (e.g.,
Sawai et al., 2016). We also observe marine (e.g., O. pacifica) and
freshwater (e.g., N. frustulum) diatom species, which tolerate a wide
range of intertidal environments and can be found in high abundances in
low marshes at Cascadia (e.g., Hemphill-Haley, 1995b; Sherrod, 1999)
and the U.K. (Zong and Horton, 1998). Hemphill-Haley (1995b) iden-
tified species such as F. linkei, G. eximium, and M. exigua as indicative of
the low marsh. Although we do find F. linkei at the Naselle River Tran-
sect 1 and M. exigua at Smith Creek Transect and Niawiakum River
Transect 1, they are not found in other transects.

The high marsh and upland are characterized by muddy substrates,
high TOCsoym, and low salinity (with higher elevations comes lower
flooding frequency). We observe aerophilous (tolerant of temporarily
dry conditions) and freshwater tolerant species such as C. pusilla,
L. mutica, N. cincta, N. terrestris, and P. lagerstedtii. These species are
indicative of the high marsh environment in estuaries along the coasts of
Oregon and Washington, and in Puget Sound (Sherrod, 1999; Hemphill-
Haley, 1995b; Sawai et al., 2016). Hemphill-Haley (1995b) found
similar freshwater species (e.g., N. terrestris) in the high marsh to upland
transition of her Lower Niawiakum River transect. A regional diatom
distribution study by Sawai et al. (2016) included 12 high marsh sam-
ples at the Niawiakum River with a dominance of the freshwater species
C. pusilla, L. mutica, and Nitzschia brevissima.

5.2. Environmental variables and diatom zonation

Our study shows that no single variable consistently explains varia-
tions in diatom assemblages at every site because diatoms exhibit a
complex relationship with environmental variables (Desianti et al.,
2019). In a regional diatom distribution study of 11 wetland sites of the
Oregon (10 sites) and Washington (Niawiakum River) coastline (Sawai
et al., 2016), dominant environmental controls varied by site and were
attributed to differences in the physiographic features of the individual
estuaries.

We show that elevation, salinity, and substrate (mud fraction and
TOCgsom) are variables affecting diatom variability along our transects
(Table 2). Similar studies at Cascadia show a strong relationship with
elevation and other environmental variables correlated with tidal
exposure (e.g., Hemphill-Haley, 1995b; Nelson and Kashima, 1993)
such as salinity (e.g., Mclntire, 1978; Sherrod, 1999) and substrate
(grain-size and organic content; e.g., Amspoker and Meclntire, 1978;
Sawai et al., 2016). Elevation is the dominant environmental variable at
Bone River Transect 1 (35% of variation), Niawiakum River Transect 2
(28% of variation), Naselle Transect 1 (27% of variation), and Naselle
Transect 2 (39% of variation) where the diatoms display a distinct
vertical zonation (Table 2). The importance of elevation as an envi-
ronmental control on modern diatom distributions is due to the co-
varying relationship between elevation and other environmental vari-
ables, such as the frequency and duration of tidal flooding/exposure,
that influence diatom distributions (e.g., Nelson and Kashima, 1993;
Zong and Horton, 1999; Sawai et al., 2004a, 2004b).

Salinity is shown to be the dominant environmental variable at the
Niawiakum River Transect 1 (31% of variance), which is consistent with
other studies that show salinity to be a major driver of diatom variability
(e.g., Hendy, 1964; Amspoker and Mclntire, 1978; Zong, 1997a; Hassan
et al., 2009). Sherrod (1999), observing an inverse relationship between
salinity and elevation, used canonical correspondence analysis to show
that changes in the modern diatom assemblage distribution in a Puget
Sound (Washington, USA) salt marsh was primarily driven by salinity
with elevation as the secondary control. The importance of salinity as a
major variable is further highlighted by a study of modern diatom dis-
tributions from Yaquina Estuary, Oregon (USA) that found large
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differences in diatom assemblages between adjacent sampling stations
as a result of changes in salinity along the sampled gradient (MclIntire,
1978).

Substrate is shown to be the dominant environmental variable at
Smith Creek Transect (32% of variance) and Bone River Transect 2 (20%
of variance). Substrate can influence the abundance and distribution of
intertidal diatoms (e.g., Kosugi, 1987; Vos and de Wolf, 1993) because in
tidal marsh settings substrate will often co-vary with elevation as grain-
size shifts from coarser sediments in the tidal flat to finer grained, silt-
dominated sediments with increasing elevation (e.g., Zong and Hor-
ton, 1999; Sawai et al., 2004a; Yang et al., 2008). Similarly, organic
content has been shown to rise with increasing elevation (e.g., Shennan
et al., 1994; Zong and Horton, 1999; Sawai et al., 2004a). Sawai et al.
(2016) found loss-on-ignition (% organic matter) explained the most
variance at 6 out of 10 estuaries of the Oregon coastline as well as at the
Niawiakum River. Diatom sensitivity to organic content, which is an
indicator of trophic conditions, is well established and forms the basis of
the saprobic diatom classification system (Sladecek, 1986).

Our regional analysis of the combined diatom dataset suggests that
the environmental variables co-vary along an elevation gradient. A
regional study of intertidal diatom distributions and their environmental
variables from six sites of the British coastline also observed that the
environmental variables (clay-silt-sand fraction, organic content, vege-
tation cover, and elevation) varied along an elevation gradient (Zong
and Horton, 1998). The regional analysis show that 28% of the diatom
variance can be explained by the measured environmental variables
(elevation, mud fraction, TOCgopy, salinity, and site) although higher
rates of explanation are found at individual transects (Table 2). The
percentage of explained variation in our study is consistent with other
diatom studies due to the large sample size and many zero values
inherent in biological datasets (Gasse et al., 1995; Jones and Juggins,
1995; Zong and Horton, 1998; Sawai et al., 2016). The unexplained
variance may be due to environmental variables that were not analyzed
in this study. For example, diatom assemblages and their growth rate (e.
g., Hutchins and Bruland, 1998; Sarthou et al., 2005) are influenced by
light intensity (e.g., Castenholz, 1961; MclIntire, 1978; Admiraal and
Peletier, 1980), temperature (e.g., Amspoker and Mclntire, 1978;
Mclntire, 1978), and nutrient concentrations (e.g., Peletier, 1996; Lange
et al., 2011).

5.3. Implications of diatom distributions for sea-level reconstructions at
Cascadia

Over the past 30 years, Willapa Bay has been a focus of RSL studies
seeking to estimate amounts of land-level change during past mega-
thrust earthquakes as a way of inferring earthquake magnitudes (e.g.,
Atwater, 1987; Hemphill-Haley, 1995a; Atwater and Hemphill-Haley,
1997; Sabean, 2004). Microfossil-based sea-level reconstructions have
been used in Cascadia to provide quantitative estimates of RSL rise
during earthquakes with sample-specific errors (e.g., Guilbault et al.,
1996; Sawai et al., 2004a, 2004b; Nelson et al., 2008; Hawkes et al.,
2010; Garrett et al., 2013; Milker et al., 2016; Hocking et al., 2017 Kemp
et al., 2018; Padgett et al., 2021). Microfossil-based sea-level re-
constructions rely on the empirically derived relationship between
present-day species of microorganisms and tidal exposure to infer esti-
mates of RSL change (e.g., Shennan et al., 1996; Sherrod, 1999; Sawai
et al., 2004a, 2004b; Hawkes et al., 2010; Engelhart et al., 2013; Kemp
et al., 2018). Our regional study provides an important dataset that
builds upon previous modern diatom distribution studies in the Nia-
wiakum River, Willapa Bay (Hemphill-Haley, 1995b; Sawai et al., 2016)
by offering additional observations regarding species abundance and
distribution from multiple tidal wetland sites that can be used to inform
RSL reconstructions in Willapa Bay:

Diatom species with narrow (< 50 SWLI), or distinct, elevation tol-
erances can serve as indicator species of specific environments (e.g.,
Hemphill-Haley, 1995b; Tornés et al., 2007; Desianti et al., 2019). We



1. Hong et al.

suggest that freshwater species (e.g., C. pusilla, L. mutica, N. terrestris,
and P. lagerstedtii), which displayed narrow elevation tolerances, are
indicator species for high marsh or upland environments. Similarly,
brackish species (e.g., G. eximium and S. ovalis), which displayed narrow
elevation tolerances, are indicator species for low marsh environments.
Importantly, these species are commonly identified in intertidal strati-
graphic sequences of megathrust earthquakes from Washington (e.g.,
Hemphill-Haley, 1995a; Shennan et al., 1996) and Oregon (e.g., Nelson
et al., 2008; Graehl et al., 2014). Future RSL reconstructions could focus
on identifying species with well-constrained modern distributions that
can be applied to downcore fossil assemblages to distinguish past
intertidal environments. Furthermore, observations of indicator species
can be extended to inform the development of other, proxy-based RSL
reconstruction models, such as the foraminifera-based Bayesian transfer
function, by applying the presence of diatom indicator species as a
secondary proxy (Kemp et al., 2018).

Additional work is needed to examine the potential impact of species
with allochthonous components on RSL reconstructions. We note that
allochthonous (transported) species or species with allochthonous
components such as C. scutellum, M. varians, P. sulcata, and P. delicatulum
were found across multiple environments with an elevation tolerance
ranging from 81 to 117 SWLI (Fig. 10). These species are often found in
intertidal environments beyond their habitat and thus may be less useful
in RSL reconstructions (Hemphill-Haley, 1995a; Sawai, 2001; Dura
et al., 2016b; Sawai et al., 2016). For this reason, Sawai et al. (2004a)
removed P. sulcata and the p-valve (allochthonous component) of
C. scutellum in the development of a diatom transfer function along the
Pacific coast of eastern Hokkaido, Japan. Future RSL reconstructions at
Willapa Bay may benefit from examining the performance of different
transfer function models that include or remove allochthonous species.

The collection of a regional modern diatom dataset is crucial to
developing a robust understanding of diatom variability. The site-
specific variability of our dataset illustrates the importance of collect-
ing a modern dataset with a large sample size that covers a broad range
of modern depositional environments in order to provide modern ana-
logs that reflect the variability of diatoms in fossil cores (e.g., Gehrels
et al., 2001; Barlow et al., 2013; Watcham et al., 2013). Our results
showed species with elevation distributions that vary by site or species
found in relatively high abundance at one site that are not found
regionally throughout Willapa Bay. For example, the brackish species
S. pinnata was found (> 5% abundance) throughout Naselle River
Transect 1 but was not found in other transects. Although local datasets
have been applied to reconstruct RSL change (e.g., Woodroffe and Long,
2010), our results align with studies showing that regional datasets
provide a more comprehensive set of analogous environments from
which RSL reconstructions are possible (e.g., Horton and Edwards,
2005; Watcham et al., 2013; Hocking et al., 2017; Kemp et al., 2018).

6. Conclusion

We assess the intertidal distribution of modern diatoms along seven
transects from Willapa Bay, Washington. Hierarchical clustering and
ordination of individual and regional datasets identified floral zones
with differing environmental variable controls:

1. On the subtidal/tidal flat, which is associated with a higher sand
fraction, low TOCsop, and high salinity, we see epiphytic and epi-
psammic marine species (e.g., G. oceanica, O. pacifica, and
T. fasciculata). Transitioning from the tidal flat to low marsh resulted
in a higher mud fraction, slightly increased TOCsoy, and lower
salinity where species that are tolerant of a wider salinity range (e.g.,
G. eximium and N. gregaria) were found. In the high marsh/upland,
which is associated with a dominance of mud, high TOCgoy;, and low
salinity, we observe aerophilous freshwater species (e.g., N. terrestris,
and P. lagertedtii).
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2. At four of seven of our transects, diatom assemblages showed a
distinct separation of the tidal flat, low marsh, and high marsh: three
diatom groups were identified at Bone River Transect 1, Niawiakum
River Transect 2, Naselle River Transect 1, and Naselle River Tran-
sect 2 which displayed a vertical zonation with elevation (explains
35%, 28%, 27%, and 39% of the variance, respectively) as the major
environmental control.

3. Different environmental controls drove diatom variability at Smith
Creek Transect (TOCsom: 32% variance), Bone River Transect 2
(TOCsom: 20% variance), and Niawiakum River Transect 1 (salinity:
31% variance).

4. PCA sample-environment biplot results of the regional dataset show
the orientation of the environmental vectors elevation, salinity, and
substrate are oriented along Axis 1, suggesting that the environ-
mental variables along Axis 1 co-vary along an elevation gradient
and that elevation is a key driver of regional diatom variability in
Willapa Bay.

5. Weighted averaging of our regional dataset shows elevation optima
and tolerance that cover a broad range of environments across the
intertidal zones (251 to 88 SWLI), indicating its applicability in RSL
reconstructions. Marine and brackish species display a wider eleva-
tion tolerance across the intertidal zone compared to freshwater
species.

Our findings show that despite the site-specific variability of our
modern diatom distribution, the regional dataset provides an important
dataset that can be used to reconstruct RSL in Willapa Bay. Consider-
ations for future RSL reconstructions include exploiting indicator species
with narrow or distinct elevation tolerances and examining the impact
of allochthonous species on RSL reconstructions. Furthermore, the study
highlights the continued importance of collecting a regional dataset to
provide a variety of environments from which to inform RSL
reconstructions.
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