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Abstract— We consider the problem of designing interval ob-
servers for partially unknown nonlinear systems with bounded
noise signals that simultaneously estimate the system states and
learn a model of the unknown dynamics. Leveraging affine
abstraction methods and nonlinear decomposition functions, as
well as a data-driven function over-approximation/abstraction
approach to over-estimate the unknown dynamic model, our
proposed observer recursively computes the maximal and
minimal elements of the interval estimates that are proven
to frame the true augmented states. Then, using observed
output/measurement signals, the observer iteratively shrinks the
intervals by eliminating estimates that are not compatible with
the measurements. Moreover, given new interval estimates, the
observer updates the over-approximation model of the unknown
dynamics. Finally, we provide sufficient conditions for uniform
boundedness of the sequence of interval estimate widths, i.e.,
for the stability of the designed observer.

I. INTRODUCTION

Motivated by the need to ensure safe and smooth operation
under various forms of uncertainties in many safety-critical
engineering applications such as fault detection, urban trans-
portation, attack (unknown input) detection and mitigation in
cyber-physical systems and aircraft tracking [1]–[3], many
robust set-valued algorithms have been recently developed
for state and input estimation of these systems. On the other
hand, dynamic models of many practical systems are often
only partially known. Thus, the development of algorithms
that can combine model learning and set membership esti-
mation approaches is an interesting and important problem.

Literature review. Various approaches have been proposed
in the literature to design model-based set-based or interval
observers for several classes of systems [3]–[13], includ-
ing linear time-invariant (LTI) [7], linear parameter-varying
(LPV) [11], Metzler and/or partial linearizable [6], [8],
cooperative [6], Lipschitz nonlinear [9], monotone nonlinear
[5] and uncertain nonlinear [10] systems. However, these
approaches often do not consider the presence of unknown
inputs (e.g., other agent’s input, disturbance, attack or simply
unobserved signals) nor unknown dynamics. Some more
recent works considered the set-valued observer design prob-
lem for simultaneously estimating states and unknown inputs
for LTI [3], LPV [12], switched linear [13] and nonlinear [14]
systems with bounded-norm noise.
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On the other hand, when the system model is not exactly
known, set-valued data-driven approaches that use input-
output data to abstract or over-approximate unknown dynam-
ics or functions have gained increased popularity over the last
few years [15]–[18], where the objective is to find a set of
dynamics that frame/bracket the unknown system dynamics
[15], under the assumption that the unknown dynamics is
univariate Lipschitz continuous [16], multivariate Lipschitz
continuous [17] or Hölder continuous [18]. Nonetheless, to
our knowledge, set-valued or interval observers for such data-
driven models have not been considered in the literature.

Contributions. The goal of this paper is to bridge the
gap between model-based set membership observer design
approaches, e.g., [3]–[13], and data-driven function approx-
imation methods (i.e., model learning methods), e.g., [15]–
[18], to design interval observers for partially known nonlin-
ear dynamical systems with bounded noise, where the state
and observation vector fields belong to a fairly general class
of nonlinear functions and the vector field of the unknown
(input) dynamics is an unknown function. Our approach
builds upon and extends the observer design approach in [14]
by including a crucial update step, where starting from the
intervals from the propagation step, the framers are iteratively
updated by computing their intersection with the augmented
state intervals that are compatible with the observations,
resulting in tighter intervals (i.e., with decreased interval
width) for the updated framers.

In addition, our design incorporates a data-driven function
approximation/abstraction approach based on [19] to re-
cursively over-approximate the unknown dynamics function
from noisy observation data and interval estimates from the
update step. Furthermore, by leveraging the combination of
nonlinear decomposition/bounding functions [14], [20], [21]
and affine abstractions [22], we prove that our observer is
correct, i.e., the framer property [8] holds and our estima-
tion/abstraction of the unknown dynamics model becomes
more precise and tighter over time. More importantly, we
provide sufficient conditions, in the form of a finite number
of constraint satisfaction checks, for the stability of our
observer (i.e., for the uniform boundedness of the sequence
of interval estimate widths), and compute the upper bounds
for the interval widths of the sequence of estimates and derive
their steady-state values.

II. PRELIMINARIES

Notation. Rn denotes the n-dimensional Euclidean space
and R++ positive real numbers. For vectors v, w ∈ Rn and
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a matrix M ∈ Rp×q , ‖v‖ ,
√
v>v and ‖M‖ denote their

(induced) 2-norm, and v ≤ w is an element-wise inequal-
ity. The transpose, Moore-Penrose pseudoinverse, (i, j)-th
element and rank of M are given by M>, M†, Mi,j and
rk(M), while M(r:s) is a sub-matrix of M , consisting of
its r-th through s-th rows, and its row support is r =
rowsupp(M) ∈ Rp, where ri = 0 if the i-th row of M
is zero and ri = 1 otherwise, ∀i ∈ {1 . . . p}. Also, M+ ,
max(M, 0p×q),M

++ ,M+−M and |M | ,M+ +M++.
M is a non-negative matrix, if Mi,j ≥ 0,∀(i, j) ∈ {1 . . . p}×
{1 . . . q}.

Next, we introduce some definitions and results that will
be useful throughout the paper.

Definition 1 (Interval, Maximal and Minimal Elements,
Interval Width). An (multi-dimensional) interval I ⊂ Rn
is the set of all real vectors x ∈ Rn that satisfies s ≤ x ≤ s,
where s, s and ‖s− s‖ are called minimal vector, maximal
vector and width of I, respectively.

Definition 2 (Mixed-Monotone Mappings and Decomposi-
tion Functions). [20, Definition 4] A mapping f : X ⊆
Rn → T ⊆ Rm is mixed-monotone if there exists a
decomposition function fd : X × X → T satisfying: i)
fd(x, x) = f(x), ii) x1 ≥ x2 ⇒ fd(x1, y) ≥ fd(x2, y)
and iii) y1 ≥ y2 ⇒ fd(x, y1) ≤ fd(x, y2).

Proposition 1. [21, Theorem 1] Let f : X ⊆ Rn →
T ⊆ Rm be a mixed-monotone mapping with decomposition
function fd : X×X → T and x ≤ x ≤ x, where x, x, x ∈ X .
Then fd(x, x) ≤ f(x) ≤ fd(x, x).

Note that the decomposition function of a vector field
is not unique and a specific one is given in [20, Theorem
2]: If a vector field q =

[
q>1 . . . q>n

]>
: X ⊆ Rn →

Rm is differentiable and its partial derivatives are bounded
with known bounds, i.e., ∂qi

∂xj
∈ (aqi,j , b

q
i,j),∀x ∈ X ∈

Rn, where aqi,j , b
q
i,j ∈ R, then q is mixed-monotone with

a decomposition function qd =
[
q>d1 . . . q>di . . . q

>
dn

]>
,

where qdi(x, y) = qi(z) + (αqi − βqi )>(x − y),∀i ∈
{1, . . . , n}, and z, αqi , β

q
i ∈ Rn can be computed in terms of

x, y, aqi,j , b
q
i,j as given in [20, (10)–(13)]. Consequently, for

x = [x1 . . . xj . . . xn]>, y = [y1 . . . yj . . . yn]>, we have

qd(x, y) = q(z) + Cq(x− y), (1)

where Cq ,
[
[αq1 − β

q
1 ]. . .[αqi − β

q
i ] . . . [αqm − βqm]

]> ∈
Rm×n, with αqi , β

q
i given in [20, (10)–(13)], z =

[z1 . . . zj . . . zm]> and zj = xj or yj (dependent on the case,
cf. [20, Theorem 1 and (10)–(13)] for details). On the other
hand, when the precise lower and upper bounds, ai,j , bi,j , of
the partial derivatives are not known or are hard to compute,
we can obtain upper and lower approximations of the bounds
by using Proposition 2 with the slopes set to zero, or by
leveraging interval arithmetics [4].

III. PROBLEM FORMULATION

System Assumptions. Consider a partially unknown nonlin-
ear discrete-time system with bounded noise

xk+1 = f(xk, dk, uk, wk),
yk = g(xk, dk, uk, vk),

(2)

where xk ∈ X ⊂ Rn is the state vector at time k ∈ N,
uk ∈ U ⊂ Rm is a known input vector, yk ∈ Rl is the
measurement vector and dk ∈ D ⊂ Rp is an unknown
(dynamic) input vector whose dynamics is governed by an
unknowna vector field h(·):

dk+1 = h(xk, dk, uk, wk). (3)

Moreover, we refer to zk ,
[
x>k d>k

]>
as the augmented

state. The process noise wk ∈ Rnw and the measurement
noise vk ∈ Rl are assumed to be bounded, with w ≤ wk ≤
w and v ≤ vk ≤ v, where w, w and v, v are the known
lower and upper bounds of the process and measurement
noise signals, respectively. We also assume that lower and
upper bounds, z0 and z0, for the initial augmented state z0 ,[
x>0 d>0

]>
are available, i.e., z0 ≤ z0 ≤ z0.

The vector fields f(·) : Rn ×Rp ×Rm ×Rnw → Rn and
g(·) : Rn×Rp×Rm×Rl → Rl are known, while the vector
field h(·) =

[
h>1 (·) . . . h>p (·)

]>
: Rn×Rp×Rm×Rnw → Rp

is unknown, but each of its arguments hj(·) : Rn × Rp ×
Rm × Rnw → R, ∀j ∈ {1 . . . p} is known to be Lipschitz
continuous. For simplicity and without loss of generality, we
assume that the Lipschitz constant Lhj is known; otherwise,
we can estimate the Lipschitz constants with any desired
precision using the approach in [19, Equation (12) and
Proposition 3]. Moreover, we assume the following:

Assumption 1. The vector field f(·) is mixed-monotone.

Assumption 2. The entire space X , Z × U is bounded,
where Z , X × D and U are the spaces of the augmented
states zk ,

[
x>k d>k

]>
and the known inputs uk, ∀k ∈

{0 . . .∞}, respectively.

Note that Assumption 1 is satisfied for a broad range of
nonlinear functions [20], while Assumption 2 is reasonable
for most practical systems.

The observer design problem can be stated as follows:

Problem 1. Given a partially known nonlinear discrete-
time system (2) with bounded noise signals and unknown
dynamics (3), design a stable observer that simultaneously
finds bounded intervals of compatible augmented states and
learns an unknown dynamics model for (3).

IV. STATE AND MODEL INTERVAL OBSERVERS (SMIO)
A. Recursive Interval Observer

In this section, we introduce a three-step recursive interval
observer that combines model-based estimation and data-
driven model learning approaches. The observer structure

aNote that if the vector field h(·) is partially known (i.e., consists of the
sum of a known component ĥ(·) and an unknown component h̃(·)), we
can simply consider dk+1− ĥ(·) as the output data for the model learning
procedure to learn a model of the (completely) unknown function h̃(·).
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is composed of a State Propagation (SP), a Measurement
Update (MU) step and a Model Learning (ML) step. In
the state propagation step, the interval estimate for the
augmented states (consisting of the state and the unknown
input) is propagated for one time step through the nonlinear
state equation and the estimated model of the unknown
dynamics function obtained in previous time step. In the
update step, compatible intervals of the augmented states are
iteratively updated given new measurements and the nonlin-
ear observation function, and finally, the model learning step
estimates the upper and lower framer functions (abstractions)
for the unknown dynamics function. More formally, the three
observer steps have the following form (with zk , [x>k d

>
k ]>,

zpk , [xp>k dp>k ]>):

SP: Iz
p

k = Fp(Izk−1, yk−1, uk−1, hk−1(.), hk−1(.)),

MU: Izk = Fu(Iz
p

k , yk, uk),

ML: [h>k (.) h
>
k (.)]> = F l({Izk−t, uk−t}kt=0),

with Fp and Fu being to-be-designed interval-valued
mappings and F l a to-be-constructed function over-
approximation procedure (abstraction model), while Izpk and
Izk are the intervals of compatible propagated and esti-
mated augmented states, respectively, and {hk(·), hk(·)} is
a data-driven abstraction/over-approximation model for the
unknown function h(·), at time step k, i.e.,

∀ζk ∈ Dh : hk(ζk) ≤ h(ζk) ≤ hk(ζk),

where Dh is the domain of h(·) and ζk , [z>k u>k w>k ]>.

To leverage the properties of intervals [11] while avoiding
the computational complexity of optimal observers [23], we
consider the following form of interval estimates in the
propagation and update steps:

Iz
p

k = {z ∈ Rn+p : zpk ≤ z ≤ z
p
k},

Izk = {z ∈ Rn+p : zk ≤ z ≤ zk},
where the estimation boils down to finding the maximal and
minimal values of Izpk and Izk , i.e., zpk, z

p
k, zk, zk. Further,

at the model learning step, given the sequence of interval
estimates up to the current time, we plan to leverage the data-
driven function abstraction/over-approximation approach de-
veloped in our previous work [19] to update and refine the
learned/estimated model of the unknown dynamics function
h(·) at the current time step.

Specifically, our interval observer at each time step k ≥
1 is given as follows (with the augmented state zk ,[
x>k d>k

]>
, ζk ,

[
z>k u>k w>k

]>
and known x0 and x0

such that x0 ≤ x0 ≤ x0):

State Propagation (SP):[
xpk
xpk

]
=

[
min(fd(zk−1, uk−1, w, zk−1, uk−1, w), xa,pk )
max(fd(zk−1, uk−1, w, zk−1, uk−1, w), xa,pk )

]
, (4a)[

d
p

k

dpk

]
=Ahk

[
zpk−1
zpk−1

]
+Bhkuk−1 + Wh

k

[
w
w

]
+ ẽhk , (4b)

zpk=
[
xp

>

k d
p>

k

]>
, zpk =

[
xp

>

k dp
>

k

]>
; (4c)

Measurement Update (MU):[
zk zk

]
= lim
i→∞

[
zui,k zui,k

]
, (5a)[

xk xk
dk dk

]
=

[
zk,(1:n) zk,(1:n)

zk,(n+1:n+p) zk,(n+1:n+p)

]
; (5b)

Model Learning (ML):
hk,j(ζk)= min

t∈{0,...,T−1}
(dk−t,j+L

h
j ‖ζk−ζ̃k−t‖)+ε

j
k−t, (6a)

hk,j(ζk)= max
t∈{0,...,T−1}

(dk−t,j−Lhj ‖ζk−ζ̃k−t‖)+ε
j
k−t, (6b)

where j ∈ {1 . . . p}, {ζ̃k−t = 1
2 (ζk−t + ζ

k−t)}
k
t=0 and

{dk−t, dk−t}kt=0 are the augmented input-output data set. At
each time step k, the augmented data set constructed from
the estimated framers gathered from the initial to the current
time step, is used in the model learning step to recursively
derive over-approximations of the unknown function h(·),
i.e., {hk(.), hk(.)} by applying [19, Theorem 1]. In addition,[

xa,pk
xa,pk

]
= Afk

[
zpk−1
zpk−1

]
+Bfkuk−1 + Wf

k

[
w
w

]
+ ẽfk , (7)

with Jqk =

[
Jq+k −Jq++

k

−Jq++
k Jq+k

]
,Bqk =

[
Bq>k Bq>k

]>
, ẽqk =[

eq>k eq>k
]>
, εjk−t=2Lhj ‖ζk−t − ζk−t‖, ∀J ∈ {A,W}, q ∈

{f, h}, J ∈ {A,W}. Moreover, the sequences of updated
framers {zui,k, zui,k}∞i=1 are iteratively computed as follows:[

zu0,k zu0,k
]

=
[
zpk zpk

]
, ∀i ∈ {1 . . .∞} : (8)[

zui,k
zui,k

]
=

[
min(Ag†+i,k αi,k−A

g†++
i,k αi,k+ωi,k, z

u
i−1,k)

max(Ag†+i,k αi,k−A
g†++
i,k αi,k−ωi,k, zui−1,k)

]
, (9)

where[
ti,k
ti,k

]
=

[
yk −Bgi,kuk
yk −Bgi,kuk

]
+

[
W g++
i,k −W g+

i,k

−W g+
i,k W g++

i,k

][
v
v

]
−
[
egi,k
egi,k

]
, (10)

[
αi,k
αi,k

]
=

[
min(ti,k, A

g+
i,kz

u
i−1,k −A

g++
i,k zui−1,k)

max(ti,k, A
g+
i,kz

u
i−1,k −A

g++
i,k zui−1,k)

]
, (11)

and ωi,k = κrowsupp(I − Ag†i,kA
g
i,k), ∀i ∈ {1 . . .∞}.

In addition, (Aqk, B
q
k,W

q
k , e

q
k, e

q
k) for q ∈ {f, h} and

(Agi,k, B
g
i,k,W

g
i,k, e

g
i,k, e

g
i,k) are solutions to the problem

(12a) for the corresponding functions {g(·) = g(·) =

g(·)}, {f(·) = f(·) = f(·)} and {hk(·), hk(·)}, on the

intervals [
[
zu>i−1,k u>k−1 v>

]>
,
[
zu>i−1,k u>k−1 v>

]>
] for g

and [
[
z>k−1 u>k−1 w>

]
,
[
z>k−1 u>k−1 w>

]>
] for f , hk, hk,

respectively, at time k and iteration i, while κ is a very
large positive real number (infinity), while fd is the bounding
function based on (1).

Note that since the tightness of the upper and lower
bounding functions for the observation function g (cf. Propo-
sitions 1 and 2) depends on the a priori interval B, the
measurement update step is done iteratively (see proof of
Theorem 2 for more explanation). Hence, if tighter updated
intervals are obtained starting from the compatible intervals
from the propagation step, we can use them as the new
B to obtain better abstraction/bounding functions for g,
which in turn may lead to even tighter updated intervals.
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Repeating this process results in a sequence of monotonically
tighter updated intervals, that is convergent by the monotone
convergence theorem, and its limit is chosen as the final
interval estimate at time k. Note that when implementing the
observer, a desired user-specified stopping criterion/threshold
can be used so that the observer can be implemented in
finite time. The choice of the stopping criterion may have an
impact on the observer performance but does not affect the
correctness and stability guarantees provided in this paper.

Further, building upon our previous result in [19, Theorem
1], in the model learning step with the history of obtained
compatible intervals up to the current time, {[zs, zs]}ks=0 as
the noisy input data and the compatible interval of unknown
inputs, [dk, dk], as the noisy output data, we recursively con-
struct a sequence of abstraction/over-approximation models
{hk(·), hk(·)}∞k=1 for the unknown input function h(·), that
by construction satisfy (16), i.e., our model estimation is
correct (i.e., is guaranteed to frame/bracket the true function)
and becomes more precise with time (cf. Lemma 1).

B. Correctness of the Observer

The objective of this section is to design the SMIO
observer gains such that the framer property [8] holds, i.e.,
we desire to guarantee that the observer returns correct
interval estimates, in the sense that starting from the initial
interval z0 ≤ z0 ≤ z0, the true augmented states of the
dynamic system (2) are guaranteed to be within the estimated
intervals, given by (4a)-(6b). If the observer is correct,
{zk, zk}∞k=0 is a framer sequence for system (2).

Before deriving our main first result on correctness of the
observer, we state a modified version of our previous result
in [22, Theorem 1], in a unified manner that enables us to
derive parallel global and local affine bounding functions
for our known f(·), g(·) and unknown h(·) vector fields. For
brevity, some of the more straightforward proofs of lemmas
and propositions are omitted. Interested readers are referred
to an extended version of this paper [24] for more details.

Proposition 2 (Parallel Affine Abstractions). Let the entire
space be defined as X and suppose that Assumption 2 holds.
Consider the vector fields q(.), q(.) : X ⊂ Rn′ → Rm′

satisfying q(ζ) ≤ q(ζ),∀ζ ∈ X and the following Linear
Program (LP):

min
θqB,A

q
B,e

q
B,e

q
B

θqB (12a)

s.t AqBζs + eqB + σq ≤ q(ζs) ≤ q(ζs) ≤ AqBζs + eqB − σ
q,

eqB − e
q
B − 2σq ≤ θq1m′ ,

eq − eqB ≤ (AqB − Aq)ζs ≤ eq − eqB,∀ζs ∈ VB, (12b)

where B is an interval with ζ, ζ and VB being its maximal,
minimal and set of vertices, respectively, 1m ∈ Rm is a
vector of ones, σq is given in [22, Proposition 1 and (8)]
for different classes of vector fields and (Aq, eq, eq) are the
global parallel affine abstraction matrices for the pair of
functions q(.), q(.) on the entire space X, i.e.,

Aqζ + eq ≤ q(ζ) ≤ q(ζ) ≤ Aqζ + eq,∀ζ ∈ X. (13)

Using the above proposition, we first solve (12a) on the
entire space X, i.e., with B = X (where the constraint (12b) is
trivially satisfied and is thus redundant) and obtain a tuple of
(θq,Aq, eq, eq) that satisfies (13), i.e., we construct a global
affine abstraction model for the pair of functions q(.), q(.)
on the entire space X.

Next, given the (global) tuple (Aq, eq, eq) computed as
described above, we solve (12a) on B subject to (12b) to
obtain a tuple of local parallel affine abstraction matrices for
the pair of functions {q(·), q(·)} on the interval B, satisfying
the following: ∀ζ ∈ B,

Aqζ+eq≤AqBζ+e
q
B≤ q(ζ)≤ q(ζ)≤AqBζ+e

q
B≤A

qζ+eq. (14)

Now, equipped with all the required tools, we state our first
main result on the framer property of the SMIO observer.

Theorem 1 (Correctness of the Observer). Consider the sys-
tem (2) with its augmented state defined as z ,

[
x> d>

]>
,

along with the SMIO observer in (4a)–(6b). Suppose that
Assumptions 1–2 hold and fd(·) is a decomposition function
of f(·). Then, the SMIO observer estimates are correct,
i.e., the sequences of intervals {zk, zk}∞k=0 are framers of
the augmented state sequence of system (2) that satisfy
zk ≤ zk ≤ zk for all k.

Proof. We will prove this by induction. For the base case, by
assumption, z0 ≤ z0 ≤ z0 holds. Now, for the induction step,
suppose that zk−1 ≤ zk−1 ≤ zk−1. Then, by [9, Lemma 1],
Propositions 1–2, (2),(7)–(4c) and [19, Theorem 1], we have
zpk ≤ zk ≤ z

p
k. Given this, by iteratively obtaining upper and

lower abstraction matrices for the observation function g(.)
based on Proposition 2 and applying [9, Lemma 1]:

αi,k ≤ A
g
i,kzk ≤ αi,k, (15)

where αi,k, αi,k are given in (11) and Agi,k is a solution of the
LP in (12a), i.e., the parallel abstraction slope for function
g(.) at iteration i in the corresponding compatible interval
[zui−1,k, z

u
i−1,k]. Then, multiplying (15) by Ag†i,k and using

the fact that zui−1,k, z
u
i−1,k are framers for the augmented

state zk at time k, [9, Lemma 1] and [25], we obtain
zui,k ≤ zk ≤ zui,k, with zui,k, z

u
i,k given in (9). Now, note

that by construction, the sequences of updated upper and
lower framers, {zui,k}∞i=0 and {zui,k}∞i=0 with zu0,k = zpk and
zu0,k = zpk, are monotonically decreasing and increasing,
respectively, and hence are convergent by the monotone
convergence theorem. Consequently, their limits zk, zk are
the tightest possible framers, i.e., ∀i ∈ {1 . . .∞}:

zu0,k ≤ · · · ≤ zui,k ≤ · · · ≤ limi→∞ zui,k , zk,
zk , limi→∞ zui,k ≤ · · · ≤ zui,k ≤ · · · ≤ zu0,k,

where zk, zk are the returned updated augmented state
framers by the observer. This completes the proof. �

Next, we show that given correct interval estimates, the ab-
straction model of the unknown dynamics function becomes
tighter (i.e., more precise) over time, so our model estimate
of the unknown dynamics becomes more accurate over time.

Lemma 1. Consider the system (2) and the SMIO observer
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in (4a)–(6b) and suppose that all the assumptions in Theorem
1 hold. Then, the following holds:

h0(ζ0)≤. . .≤hk(ζk)≤. . .≤ limk→∞ hk(ζk)≤h(ζk)

h(ζk)≤ limk→∞ hk(ζk)≤. . .≤hk(ζk) ≤. . .≤h0(ζ0),
(16)

i.e, the unknown input model estimations/abstractions are
correct and become more precise or tighter with time.

C. Observer Stability

In this section, we investigate the stability of the designed
observer in the following sense:

Definition 3 (Stability). The observer SMIO (4a)–(6b) is
stable, if the sequence of interval widths {‖∆z

k−1‖ ,
‖zk−1−zk−1‖}∞k=1 is uniformly bounded, and consequently,
the sequence of estimation errors {‖z̃k−1‖ , max(‖zk−1 −
zk−1‖, ‖zk−1 − zk−1‖) is also uniformly bounded.

Next, we derive a property for the decomposition function
given in (1), which will be helpful in deriving sufficient
conditions for the observer stability.

Lemma 2. Let q(ζ) : X ⊂ Rn → Rm be a mixed-monotone
vector-field with a corresponding decomposition function
qd(., .) constructed using (1). Suppose that Assumption 2
holds and let (Aq, eq, eq) be the parallel affine abstraction
matrices for function q(·) on its entire domain X (can be
computed via Proposition 2). Consider any ordered pair
ζ ≤ ζ ∈ X. Then, ∆qζ ≤ (|Aq| + 2Cq)∆ζ + ∆eq , with
∆qζ , qd(ζ, ζ)− qd(ζ, ζ), ∆ζ , ζ − ζ and Cq given in (1).

We are now ready to state our next main result on the
SMIO observer stability in the following theorem.

Theorem 2 (Observer Stability). Consider the system (2)
along with the SMIO observer in (4a)–(6b). Let Dm be the
set of all diagonal matrices in Rm×m with their diagonal
arguments being 0 or 1. Suppose that all the assumptions
in Theorem 1 hold and the decomposition function fd is
constructed using (1). Then, the observer is stable if there
exist D1 ∈ Dn+p, D2 ∈ Dl, D3 ∈ Dn that satisfy D1,i,i = 0
if r(i) = 1, i.e., if there exist (D1, D2, D3) ∈ D∗ ,
{(D1, D2, D3) ∈ Dn+p ×Dl ×Dn D1,iir(i) = 0} such that

L∗(D1, D2, D3) , ‖Ag(D1, D2)Af,h(D3)‖ ≤ 1, (17)

with Ag(D1, D2) , (I − D1) + D1|Ag†|(I − D2)|Ag|,
Af,h(D3) ,

[
(|Af |+ 2(I −D3)Cfz )> |Ah|>

]>
, {Aq ,

Aq(1:n+p)}q∈{f,g,h}, Aq given in Proposition 1, r ,

rowsupp(I −Ag†Ag), and Cf ,
[
Cfz Cfu Cfw

]
from (1).

Proof. Note that our goal is to obtain sufficient stability
conditions that can be checked a priori instead of for each
time step k. On the other hand, for the implementation
of the update step, we iteratively find new local parallel
abstraction slopes Agi,k by iteratively solving the LP (12a)
for g on the intervals obtained in the previous iteration,
Bui,k = [zui−1,k, z

u
i−1,k], to find local framers zui,k, z

u
i,k (cf.

(8)–(11)), with additional constraints given in (12b) in the
optimization problems, which guarantees that the iteratively
updated local intervals obtained using the local abstraction

slopes are inside the global interval, i.e.,

zuk ≤ zu0,k ≤ · · · ≤ zui,k ≤ · · · ≤ limi→∞ zui,k , zk,
zk , limi→∞ zui,k ≤ · · · ≤ zui,k ≤ · · · ≤ zu0,k ≤ zuk ,

where we apply (9) for just one iteration (dropping index i)
with zuk,0 = zpk, z

u
k,0 = zpk to obtain:[

zuk
zuk

]
=

[
min(Ag†+αk−Ag†++αk+ω, z

p
k)

max(Ag†+αk−Ag†++αk−ω, zpk)

]
. (18)

This allows us to use the global parallel affine abstraction
slope Ag for the stability analysis as follows. Dropping index
i in (10)–(11) and defining ∆z

k , zk − zk (and similarly for
∆zp

k ,∆
g
e ,∆

f
e ,∆

h
e ,∆

α
k ,∆

t
k), (9) implies that ∀D1 ∈ Dn+p

∆z
k ≤ min(|Ag†|∆α

k + 2κr,∆zp

k )

≤ D1(|Ag†|∆α
k + 2κr) + (I −D1)∆zp

k , (19)

where the second inequality follows from generalization of
the fact that min(a, b) ≤ λa + (1 − λ)b,∀a, b ∈ R, λ ∈
[0, 1]. Moreover, from (10)–(11) and a similar reasoning, we
observe that ∀D2 ∈ Dl:

∆α
k ≤ min(|W g|∆v + ∆g

e , |Ag|∆zp

k )

≤ D2(|W g|∆v + ∆g
e) + (I −D2)|Ag|∆zp

k . (20)

On the other hand, by similar arguments, it follows from
(4a)–(4c) that ∀D3 ∈ Dn,

∆zp

k ≤
[
D3(|Af |∆z

k−1+|W f |∆w+∆f
e )+(I−D3)∆f

k−1
|Ah|∆z

k−1+|Wh|∆w+∆h
e

]
, (21)

where ∆f
k−1 , fd(ζk−1, ζk−1) − fd(ζk−1, ζk−1). Further-

more, by Lemma 2, ∆f
k−1 ≤ (|Af |+ 2Cfz )∆z

k−1 + (|W f |+
2Cfw)∆w+∆f

e , with Cf =
[
Cfz Cfu Cfw

]
given in (1). This,

in addition to (19)–(21), [9, Lemma 1] and non-negativity of
both sides of all the inequalities, lead to: ∀(D1, D2, D3) ∈
Dn+p × Dl × Dn:

∆z
k ≤ Ag(D1, D2)Af,h(D3)∆z

k−1 (22)

+ ∆g(D1, D2) +Ag(D1, D2)∆f,h(D3) + 2κD1r,

where Ag(D1, D2) , D1|Ag†|D2|Ag| + (I − D1),
Af,h(D3) ,

[
(|Af |+ 2(I −D3)Cfz )> |Ah|>

]>
,

∆g(D1, D2) , D1|Ag†|D2(|W g|∆v+∆g
e) and ∆f,h(D3) ,[

((|W f |+2(I −D3)Cfw)∆w+∆f
e )> (|Wh|∆w+∆h

e )>
]>

.
Since κ can be infinitely large, to make the right hand side
of (22) finite in finite time, we choose D1 ∈ Dn+p such that
D1r = 0, i.e., D1,i,i = 0 if r(i) = 1, i = 1, . . . , n+p. Then,
by the Comparison Lemma [26], it suffices for uniform
boundedness of {∆z

k}∞k=0 that the following system:

∆z
k = Ag(D1, D2)Af,h(D3)∆z

k−1 + ∆̃(D1, D2), (23)

be stable, where ∆̃(D1, D2) , ∆g(D1, D2) +
Ag(D1, D2)∆f,h(D3) is a bounded disturbance. This
implies that the system (23) is stable (in the sense of
uniform stability of the interval sequnces) if and only if
the matrix A(D1, D2, D3) , Ag(D1, D2)Af,h(D3) is
(non-strictly) stable for at least one choice of (D1, D2, D3),
equivalently (17) should hold. �

Remark 1. The sufficient condition in Theorem 2 has a
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finitely countable feasible set (|D∗| ≤ 22n+p+l); hence, the
condition can be easily checked by enumerating all possible
cases and checking the satisfaction of (17).

Finally, we conclude this section by providing upper
bounds for the interval widths and their steady-state values.

Proposition 3 (Upper Bounds of the Interval Widths and
their Convergence). Consider the system (2) and the observer
(4a)–(6b) and suppose all the assumptions in Theorem 2
hold. Then, the sequence of {∆z

k , zk−zk}∞k=0 is uniformly
upper bounded by a convergent sequence, as follows:

∆z
k ≤ A

k
∆z

0 +

k−1∑
j=0

Aj∆ k→∞−−−−→ eA∆, (24)

where

A = A(D∗1 , D
∗
2 , D

∗
3) , Ag(D∗1 , D∗2)Af,h(D∗3),

∆ = ∆g(D∗1 , D
∗
2) +Ag(D∗1 , D∗2)∆f,h(D∗3),

Ag(D1, D2) , D1|Ag†|D2|Ag|+ (I −D1),

Af,h(D3) ,
[
(|Af |+ 2(I −D3)Cfz )> |Ah|>

]>
,

∆g(D1, D2) , D1|Ag†|D2(|W g|∆v + ∆eg), ∆f,h(D3),[
((|W f |+2(I−D3)Cfw)∆w+∆f

e )>(|Wh|∆w+∆h
e )>
]>
,

and (D∗1 , D
∗
2 , D

∗
3) is a solution of the following problem:

min
D1,D2,D3

‖eA(D1,D2,D3)(∆g(D1, D2)+Ag(D1, D2)∆f,h(D3))‖

s.t.(D1, D2, D3)∈{(D1, D2, D3)∈D∗ L∗(D1, D2, D3) < 1}.

Consequently, the sequence of interval widths {‖∆z
k‖}∞k=1

is uniformly upper bounded by a convergent sequence, i.e.,

‖∆z
k‖ ≤ δzk , ‖A

k
∆z

0 +

k−1∑
j=0

Aj∆‖ k→∞−−−−→ ‖eA∆‖. (25)

Proof. The proof is straightforward by applying [9, Lemma
1], computing (22) iteratively, using the fact that by Theorem
2, A(D1, D2, D3) is a stable matrix, where (D1, D2, D3) is
a solution of (17), and from triangle inequality. �

V. ILLUSTRATIVE EXAMPLE

We consider a slightly modified version of the continuous-
time predator-prey system in [27]: ẋ1 = −x1x2 − x2 + u+
d+w1, ẋ2 = x1x2 +x1 +w2, ḋ = 0.1(cos(x1)− sin(x2)) +
wd, where the (unknown input) dynamics ḋ is an unknown
function, and the output equations are given by:

y1 = x1 + v1, y2 = x2 + v2, y3 = sin(d) + v3,

We use the forward Euler method to discretize the system
and the system can be described in the form (2)–(3) with
the following parameters: n = 2, l = 3, p = m =

1, f(.) =
[
f1(.) f2(.)

]>
, g(.) =

[
g1(.) g2(.) g3(.)

]>
,

uk = 0, wk = [w1,k w2,k wd,k]>, vk = [v1,k v2,k v3,k]>,
v = −v = w = −w =

[
0.1 0.1 0.1

]>
, x0 =

[
0 0.6

]>
,

Fig. 1: Actual states, x1,k, x2,k, as well as their estimated
maximal and minimal values, x1,k, x1,k, x2,k, x1,k.

Fig. 2: Actual unknown input, dk, as well as its estimated
(learned) maximal and minimal values, dk, dk.

x0 =
[
−0.35 −0.1

]>
, where g3(·) = sin(dk) + v3,k,

f1(·) = x1,k + δt(−x1,kx2,k − x2,k + uk + dk + w1,k),
f2(·) = x2,k + δt(x1,kx2,k + x1,k + w2,k),
h(·) = dk + δt(0.1(cos(x1,k)− sin(x2,k)) + wd,k)
g1(·) = x1,k + v1,k, g2(·) = x2,k + v2,k,

with sampling time δt = 0.01s. Moreover, using Propo-
sition 2 with abstraction slopes set to zero, we can
obtain finite-valued upper and lower bounds (horizon-
tal abstractions) for the partial derivatives of f(·) as:[
af11 af12 af12
af21 af22 af23

]
=

[
0.994 −0.01 1− ε
0.009 0.9965 −ε

]
,
[
bf11 bf12 bf13
bf21 bf22 bf23

]
=[

1.006 −0.0065 1 + ε
0.016 1 ε

]
, where ε is a very small positive

value, ensuring that the partial derivatives are in open
intervals (cf. [20, Theorem 1]). Therefore, Assumption 1
holds by [20, Theorem 1]). Hence, we expect that the true
states and unknown inputs are within the interval estimates
by Theorem 1, i.e., the interval estimates are correct. This
can be observed from Figures 1 and 2, where the true
states and unknown inputs as well as interval estimates are
depicted. Furthermore, solving the optimization problem in
Proposition 2 for the global abstraction matrices, we obtained

Af =

[
0.6975 −0.0083 0.01
0.0125 0.9982 0

]
, Ag =

1 0 0
0 1 0
0 0 0.995

,

Ah =
[
0 −0.0015 .6

]
and from [20, (10)–(13)]), we ob-

tained Cf =

[
0 0 0
0 0 0

]
when using (1). Consequently, (17)

is satisfied and so, the sufficient condition in Theorem 2
holds. Moreover, as can be seen in Figure 3, we obtain
uniformly bounded and convergent interval estimate errors
when applying our observer design procedure, where at
each time step, the actual error sequence is upper bounded
by the interval widths, which converge to steady-state val-
ues. Further, Figure 4 shows the framer intervals of the
learned/estimated unknown dynamics model (depicted by the
“kinky” red and blue meshes) that frame the actual unknown
dynamics function h(·), as well as the global abstraction that
is computed via Proposition 2 at the initial step.

Note that as discussed in the proof of Theorem 2, since
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Fig. 3: Actual estimation errors max(‖xk−xk‖, ‖xk−xk)‖),
interval estimate widths ‖xk − xk‖ and their upper bounds
for the interval estimates of states, ‖x̃k|k‖, ‖∆x

k‖, δxk , and
unknown inputs, ‖d̃k‖, ‖∆d

k‖, δdk .

Fig. 4: Actual unknown dynamics function h(ζ), its upper
and lower framer intervals hk(ζ), hk(ζ) at time step k = 250,
and its global abstraction Ahζ + eh, Ahζ + eh at k = 0.

we need to check an a priori condition (i.e., offline or before
starting to implement the observer) for observer stability, we
use global abstraction slopes for stability analysis. However,
for the implementation, we iteratively update the framers and
consequently, obtain the updated local abstractions, which,
in turn, lead to updated local intervals that by construction
are tighter than the global ones, as shown in the proof of
Theorem 2. Hence, it might be the case that the (relatively
conservative) global abstraction-based sufficient conditions
for the observer stability given in Theorem 2 do not hold,
while the implemented local-abstraction-based intervals are
still uniformly bounded. This is the main benefit of using
iterative local affine abstractions, but at the cost of higher
computational effort.

VI. CONCLUSION

This paper proposed an interval observer for partially
unknown nonlinear systems with bounded noise that si-
multaneously estimates the augmented states and learns the
unknown dynamics. By leveraging a combination of non-
linear bounding/decomposition functions, affine abstractions
and a data-driven function abstraction method, we intro-
duced a recursive interval observer design whose interval
estimates’ maximal and minimal elements are guaranteed to
frame/bracket the true augmented states. Moreover, using ob-
served output/measurement signals at run time, the observer
also iteratively shrinks the intervals by eliminating estimates
that are not compatible with the measurements. Further,
tractable sufficient conditions for uniform boundedness of
the sequence of interval estimate widths, i.e., for stability of
the designed observer were provided.
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