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Abstract— We address the problem of designing simultaneous
input and state interval observers for Lipschitz continuous
nonlinear systems with rank-deficient feedthrough, unknown
inputs and bounded noise signals. Benefiting from the existence
of nonlinear decomposition functions and affine abstractions,
our proposed observer recursively computes the maximal and
minimal elements of the estimate intervals that are proven
to contain the true states and unknown inputs. Moreover, we
provide necessary and sufficient conditions for the existence and
sufficient conditions for the stability (i.e., uniform boundedness
of the sequence of estimate interval widths) of the designed
observer, and show that the input interval estimates are tight,
given the state intervals and decomposition functions.

I. INTRODUCTION

Motivation. In several engineering applications such as
aircraft tracking, attack (unknown input)/fault detection and
mitigation in cyber-physical systems and urban transportation
[1]–[3], algorithms for unknown input reconstruction and
state estimation have become increasingly indispensable and
crucial to ensure their smooth and safe operation. Specif-
ically, in safety-critical bounded-error systems, set/interval
membership methods have been applied to guarantee hard
accuracy bounds. Further, in adversarial settings with poten-
tially strategic unknown inputs, it is critical and desirable
to simultaneously derive compatible estimates of states and
unknown inputs, without assuming any a priori known
bounds/intervals for the input signals.

Literature review. Interval observer design has been exten-
sively studied in the literature [4]–[10]. However, relatively
restrictive assumptions about the existence of certain system
properties were imposed to guarantee the applicability of
the proposed approaches, such as cooperativeness [5], linear
time-invariant (LTI) dynamics [6], linear parameter-varying
(LPV) dynamics that admits a diagonal Lyapunov function
[8], monotone dynamics [4], and Metzler and/or Hurwitz
partial linearization of nonlinearities [7], [11]. An L2/L∞
unknown input interval observer design for continuous-time
LPV systems is studied in [11]. However, this approach is not
applicable for general discrete-time nonlinear dynamics and,
moreover, the considered system do not include unknown
inputs that affect the output equation.

Leveraging bounding functions, the design of interval
observers for a class of continuous-time nonlinear systems
without unknown inputs has been addressed in [9]. However,
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no necessary and/or sufficient conditions for the existence of
bounding functions or how to compute them have been dis-
cussed. Moreover, to conclude stability, somewhat restrictive
assumptions on the nonlinear dynamics have been imposed.
On the other hand, the authors in [10] studied interval
state estimation by extracting a known nominal observable
subsystem and designing the observer for the transformed
system, but without guaranteeing that the derived functional
bounds are bounded sequences.

The problem of simultaneously designing state and un-
known input set-valued observers (with sets represented by
`2-norm hyperballs) has been studied in our prior works
for LTI [3], LPV [12], switched linear [13] and nonlinear
[14] systems with bounded-norm noise. Further, our recent
work [15] considered the design of state and unknown
input interval observers for nonlinear systems but with the
assumption of a full-rank direct feedthrough matrix.

Contributions. By leveraging a combination of nonlinear
decomposition mappings [16], [17] and affine abstraction
(bounding) functions [18], we design an observer that si-
multaneously returns interval-valued estimates of states and
unknown inputs for a broad range of nonlinear systems [16],
in contrast to existing interval observers in the literature that,
to the best of our knowledge, only return either state [4]–
[10] or input [11] estimates. Moreover, we consider arbitrary
unknown input signals with no assumptions of a priori
known bounds/intervals, being stochastic with zero mean (as
is often assumed for noise) or bounded. Further, we relax
the assumption of a full-rank feedthrough matrix in [15],
and extend the observer design to systems with (possibly)
rank-deficient feedthrough matrices.

In addition, we derive necessary and sufficient rank condi-
tions for the existence of our observer that can be viewed as
structural properties of the nonlinear systems, as an extension
of the rank condition that is typically assumed in linear state
and input estimation, e.g., [1]–[3]. We also provide several
sufficient conditions in the form of Linear Matrix Inequalities
(LMI) for the stability of our designed observer (i.e., the
uniform boundedness of the sequence of estimate interval
widths). Moreover, we show that given the state intervals and
specific decomposition functions, our input interval estimates
are tight and further provide upper bound sequences for
the interval widths and derive sufficient conditions for their
convergence and their corresponding steady-state values.

II. PRELIMINARIES

Notation. Rn denotes the n-dimensional Euclidean space
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and R+ positive real numbers. For v, w ∈ Rn and M ∈
Rp×q , ‖v‖ ,

√
v>v and ‖M‖ denote their (induced) 2-norm,

and v ≤ w is an element-wise inequality. Moreover, the
transpose, Moore-Penrose pseudoinverse, (i, j)-th element,
the largest eigenvalue and rank of M are given by M>,
M†, Mi,j , λmax(M) and rk(M), respectively. Mr:s is a
sub-matrix of M , consisting of its r-th through s-th rows.
We call M a non-negative matrix, i.e., M ≥ 0, if Mi,j ≥
0,∀i ∈ {1 . . . p},∀j ∈ {1 . . . q}. We also define M+ ,
max(M, 0p×q),M

− ,M+−M and |M | ,M++M−. For
a symmetric matrix S, S � 0 and S ≺ 0 (S � 0 and S � 0)
are positive and negative (semi-)definite, respectively.

Next, we introduce some useful definitions and results.

Definition 1 (Interval, Maximal and Minimal Elements,
Interval Width). An (multi-dimensional) interval I ⊂ Rn
is the set of all real vectors x ∈ Rn that satisfies s ≤ x ≤ s,
where s, s and ‖s− s‖ are called minimal vector, maximal
vector and width of I, respectively.

Next, we will briefly restate our previous result in [18],
tailoring it specifically for intervals to help with computing
affine bounding functions for our vector fields.

Proposition 1. [18, Affine Abstraction] Consider the vector
field f(.) : B ⊂ Rn → Rm, where B is an interval with
x, x,VB being its maximal vector, minimal vector and set
of vertices, respectively. Suppose AB, AB, eB, eB, θB is a
solution of the following linear program (LP):

min
θ,A,A,e,e

θ (1)

s.t Axs + e+ σ ≤ f(xs) ≤ Axs + e− σ,
(A−A)xs + e− e− 2σ ≤ θ1m, ∀xs ∈ VB,

where 1m ∈ Rm is a vector of ones and σ can be computed
via [18, Proposition 1] for different function classes. Then,
Ax+ e ≤ f(x) ≤ Ax+ e, ∀x ∈ B. We call A,A upper and
lower affine abstraction slopes of function f(.) on B.

Proposition 2. [9, Lemma 1] Let A ∈ Rm×n and x ≤ x ≤
x ∈ Rn. Then, A+x − A−x ≤ Ax ≤ A+x − A−x. As a
corollary, if A is non-negative, Ax ≤ Ax ≤ Ax.

Lemma 1. Suppose the assumptions in Proposition 2 hold.
Then, the returned bounds for Ax is tight, in the sense that
sup

x≤x≤x
Ax = A+x − A−x and inf

x≤x≤x
Ax = A+x − A−x,

where sup and inf are considered element-wise.

Proof. For j ∈ {1 . . .m}, consider the problem of sj =
max
x≤x≤x

[Ax]j , where [Ax]j =
∑n
i=1Aj,ixi is the j-th ar-

gument of the vector Ax. Obviously, the solutions of this
program are x∗i = xi if Aj,i ≥ 0, and x∗i = −xi if
Aj,i < 0,∀i ∈ {1 . . . n}. Hence sj = [A]+j x− [A]−j x, where
[A]j is the j-th row of A. Similarly, sj = minx≤x≤x[Ax]j =
[A]+j x−[A]−j x. The proof is complete, since supx≤x≤xAx =

[s1 . . . sm]> (similar for inf). �

Definition 2 (Mixed-Monotone Mappings and Decomposi-
tion Functions). [16, Definition 4] A mapping f : X ⊆

Rn → T ⊆ Rm is mixed-monotone if there exists a decom-
position function fd : X × X → T that is monotonically
increasing and decreasing in its first and second arguments,
respectively, and satisfies fd(x, x) = f(x),∀x ∈ X .

Proposition 3. [17, Theorem 1] Let f : X ⊆ Rn →
T ⊆ Rm be a mixed-monotone mapping with decomposition
function fd : X×X → T and x ≤ x ≤ x, where x, x, x ∈ X .
Then fd(x, x) ≤ f(x) ≤ fd(x, x).

Note that decomposition functions for nonlinear functions
are not unique, and several different ones have been pro-
posed in the literature, e.g., [16], [17], [19]. Although any
decomposition function can be used in conjunction with
our proposed interval observer, we will adopt the specific
decomposition function given in [16, Theorem 2], since it
allows us to derive a Lipschitz-like property (in Lemma 2)
that further enables us to derive sufficient conditions for the
stability of the proposed observer in (4)–(7).

Thus, we now briefly describe the decomposition function
given in [16, Theorem 2] that we will adopt in this paper:

If a vector field q =
[
q>1 . . . q>n

]>
: X ⊆ Rn → Rm

is differentiable and its partial derivatives are bounded with
known bounds, i.e., ∂qi

∂xj
∈ (aqi,j , b

q
i,j),∀x ∈ X ∈ Rn,

where aqi,j , b
q
i,j ∈ R, then q(·) is mixed-monotone with

a decomposition function qd =
[
q>d1 . . . q>di . . . q

>
dn

]>
,

where qdi(x, y) = qi(z) + (αqi − βqi )>(x − y),∀i ∈
{1, . . . , n}, and z, αqi , β

q
i ∈ Rn can be computed in terms of

x, y, aqi,j , b
q
i,j as given in [16, (10)–(13)]. Consequently, for

x = [x1 . . . xj . . . xn]>, y = [y1 . . . yj . . . yn]>, we have

qd(x, y) = q(z) + Cq(x− y), (2)

where Cq ,
[
[αq1 − β

q
1 ]. . .[αqi − β

q
i ] . . . [αqm − βqm]

]> ∈
Rm×n, with αqi , β

q
i given in [16, (10)–(13)], z =

[z1 . . . zj . . . zm]> and zj = xj or yj (dependent on the case,
cf. [16, Theorem 1 and (10)–(13)] for details). Moreover, if
exact values of ai,j , bi,j are unknown, their approximations
can be obtained using Proposition 1 with A = A = 0.

Corollary 1. As a direct implication of Propositions 1–3, for
any Lipschitz mixed-monotone vector-field q(.) : Rn → Rm,
with a decomposition function qd(., .), we can find upper and
lower vectors q, q such that q ≤ q(x) ≤ q,∀x ∈ [x, x], and

q = max(qd(x, x), q̂), q = min(qd(x, x), q̂),

q̂ = (Aq)+x− (Aq)−x+ eq, q̂ = (A
q
)+x−(A

q
)−x+eq,

where (A
q
, Aq, eq, eq) is a solution of (1) for the function q.

Finally, we restate a Lipschitz-like property for the bound-
ing functions in Corollary 1, which we derived in [15] and
will be used later for determining observer stability.

Lemma 2. [15, Lemma 1] Let q(.) : [x, x] ⊂ Rn → Rm
be the Lipschitz mixed-monotone vector-field in Corollary 1,
with its decomposition function qd(., .) constructed using (2).
Then, ‖q− q‖ ≤ ‖qd(x, x)− qd(x,x)‖ ≤ Lqd‖x−x‖, where
Lqd , Lq + 2‖Cq‖, with Cq given in (2).
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III. PROBLEM FORMULATION

System Assumptions. Consider the nonlinear discrete-time
system with unknown inputs and bounded noise

xk+1 = f(xk) +Buk +Gdk + wk,
yk = g(xk) +Duk +Hdk + vk,

(3)

where at time k ∈ N, xk ∈ Rn, uk ∈ Rm, dk ∈ Rp and
yk ∈ Rl are the state, a known input, an unknown input
and the measurement vectors, correspondingly. The process
and measurement noise signals wk ∈ Rn and vk ∈ Rl are
assumed to be bounded and satisfy w ≤ wk ≤ w, v ≤
vk ≤ v, with the known lower and upper bounds, w, w and
v, v, respectively. We also assume x0 ≤ x0 ≤ x0, where
x0 and x0, are available lower and upper bounds for the
initial state x0. The vector fields f(·) : Rn → Rn, g(·) :
Rn → Rl and matrices B, D, G and H are known and
of appropriate dimensions, where G and H encoding the
locations through which the unknown input (or attack) signal
can affect the system dynamics and measurements. Note that
no assumption is made on H to be either the zero matrix or
to have full column rank when there is direct feedthrough (in
contrast to [15]). Without loss of generality, we assume that[
G> H>

]>
is full-rank. Moreover, the following, which is

satisfied for a broad range of nonlinearities [16], is assumed.

Assumption 1. Vector fields f and g are mixed-monotone
with decomposition functions fd and gd and Lipschitz con-
tinuous with Lipschitz constants Lf and Lg , respectively.

Unknown Input (or Attack) Signal Assumptions. The un-
known inputs dk are not constrained to follow any model nor
to be a signal of any type (random or strategic), hence no
prior ‘useful’ knowledge of the dynamics of dk is available
(independent of {d`} ∀k 6= `, {w`} and {v`} ∀`). We also
do not assume that dk is bounded or has known bounds and
thus, dk is suitable for representing adversarial attack signals.

The observer design problem can be stated as follows:

Problem 1. Given a nonlinear discrete-time system with
unknown inputs and bounded noise (3), design a stable
observer that simultaneously finds bounded intervals of com-
patible states and unknown inputs.

IV. GENERAL SIMULTANEOUS INPUT AND STATE
INTERVAL OBSERVERS (GSISIO)

A. Interval Observer Design

We consider a recursive two-step interval-valued observer
design, composed of a state propagation step, which prop-
agates the previous time state estimates through the state
equation to find propagated intervals, and an unknown in-
put estimation step, which computes the input intervals by
using the state intervals and observations. Note that we are
constrained to obtaining a one-step delayed estimate of the
unknown input signal, because in contrast with [15], the
matrix H is not necessarily full-rank, and hence dk cannot
be estimated from the current measurement, yk. However, in
Lemma 4, we will discuss a way of obtaining the current
estimate of a component of the input signal.

Algorithm 1 GSISIO
1: function GSISIO(f, g, fd, gd,B,G,D,H,w,w, v, v, x0, x0)
2: Initialize: maximal(Ix0 ) = x0; minimal(Ix0 ) = x0;

ComputeMs,Nij ,∀s∈{f, g, u, v, w}, i, j∈{1, 2}via Theorem 1;
3: for k = 1 to K do
. Estimation of xk (to compute Ixk= [x, xk]):

Compute xk, xk via (4); Compute δxk through Lemma 5;
. Estimation of dk−1 (to compute Idk−1= [dk−1, dk−1]):

Compute dk−1, dk−1 and δdk−1 via (5)–(7) and Lemma 5;
return Ixk , Idk−1, δ

x
k , δ

d
k−1;

4: end for
5: end function

Since optimal observers are often computationally in-
tractable [20], while interval sets have nice properties [11],
we consider set estimates of the form:

Ixk={x∈Rn : xk≤x ≤xk}, Idk−1={d∈Rp : dk−1≤d≤dk−1},
i.e., we restrict the estimation errors to be closed intervals. In
this case, the observer design problem boils down to finding
xk, xk, dk−1 and dk−1. Our interval observer can be defined
at each time step k ≥ 1 as follows (with known x0 and x0

such that x0 ≤ x0 ≤ x0):

State Propagation:[
x>k x>k

]>
=Mf

[
f
>
k f>

k

]>
+Mg

[
g>k g>

k

]>
+

Mv

[
v> v>

]>
+Mw

[
w> w>

]>
+Myyk−1+Muuk−1;

(4)

Unknown Input Estimation:
dk−1 = N11hk +N12hk, dk−1 = N21hk +N22hk, (5)

where ∀q ∈ {f, g}, qk and q
k

are upper and lower vector val-
ues for the function q(.) on the interval [xk−1, xk−1], which
can be recursively computed using Corollary 1. Moreover,

hk=
[
x>k y>k−1

]>−[f>
k
g>
k

]
>−
[
B> D>

]>uk−1−
[
w> v>

]>, (6)

hk=
[
x>k y>k−1

]>−[f>k g>k

]
>−
[
B> D>

]>uk−1−
[
w> v>

]>. (7)

Finally, Ms, Nnm, ∀s ∈ {f, g, u, w, v, y}, n,m ∈ {1, 2},
are to-be-designed observer gains in order to achieve desir-
able observer properties. Algorithm 1 summarizes GSISIO.
B. Observer Design

The objective of this section is to design observer gains
such that the GSISIO returns correct and tight intervals. We
first define these properties through the following definitions.

Definition 3 (Correctness (Framer Property [7])). Given an
initial interval x0 ∈ [x0, x0], the GSISIO observer returns
correct interval estimates, if the true states and unknown
inputs of the system (3) are within the estimated intervals
(4)–(5) for all times. If the observer is correct, we call
{xk, xk, dk−1, dk−1}∞k=1 (the state and input) framers.

Definition 4 (Tightness of Input Estimates). The input in-
terval estimates are tight, if at each time step k, given the
state estimate, the input framers dk−1, dk−1, coincide with
supremum and infimum values of the set of compatible inputs.

First, the tightness of the input framers is addressed.

Lemma 3 (Correctness and Tightness of Input Estimates).
Consider the system (3) along with the GSISIO in (4)–(5).
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Suppose that Assumption 1 holds. Let J , (
[
G> H>

]>
)†,

N11 = N22 = J+ and N12 = N21 = −J−. Then, given
any pair of state framer sequences {xk, xk}∞i=0, the input
interval estimates given in (5) are correct and tight.

Proof. Augmenting the state and output equations in (3) and
from Corollary 1, we obtain hk ≤

[
G> H>

]>
dk−1 ≤ hk,

with hk, hk defined in (6),(7). Then, the input framers in (5)
can be obtained by using Propositions 1–3 and considering
the fact that

[
G> H>

]>
is full rank. Finally, tightness is

implied by Lemma 1 (where the A matrix equals J). �

Next, we address the existence of correct framers.

Theorem 1 (Existence of Correct Framers). Consider the
system (3) and the GSISIO introduced in (4)-(5). Suppose
all the assumptions in Lemma 3 hold and the observer gains
are chosen as follows: ∀s ∈ {f, g, u, w, v, y} :

Au ,
[
F> F>

]>
, Aw= Af , Ag ,

[
L2 −K2

−K2 L2

]
,

Ax ,

[
I −K1 L1

L1 I −K1

]
, Af ,

[
I + L1 −K1

−K1 I + L1

]
,

L , G−J++G+J−,K , G−J− +G+J+, Av = Ag

K1 , K1:n,K2 , Kn+1:n+l, L1 , L1:n, L2 , Ln+1:n+l,

F , (I + L1 −K1)B + (L2 −K2)D,Ms = A†xAs.

Then, at each time step, the GSISIO returns finite and correct
framers if and only if

rk(I −K1 − L1) = rk(I −K2 + L2) = n. (8)

Proof. From (3), Corollary 1 and Proposition 1, we have
xk ≤ xk ≤ xk, where, xk = f

k
+Buk−1 +w+G+dk−1 −

G−dk−1, xk = fk+Buk−1+w+G+dk−1−G−dk−1, which
in addition to (5)–(7) and Lemma 3, results in the following
system of linear equations:

Ax
[
x>k x>k

]>
=Af

[
f
>
k f>

k

]>
+Ag

[
g>k g>

k

]>
+Auuk−1

+Aw
[
w> w>

]>
+Av

[
v> v>

]>
+Ayyk−1, pk,

(9)

with qk, qk,∀q ∈ {f, g} obtained from Corollary 1 with the
corresponding interval [xk−1, xk−1].

Further, by [21], all solutions of (9) satisfy:

xfk − µr ≤ xk ≤ xk ≤ x
f
k + µr, (10)

with µ being a very large positive number, xfk ,
(A†xpk)1:n, x

f
k , (A†xpk)n+1:2n, and ri = 0 if the i-th row

of A is zero and ri = 1 otherwise. Finally, the finiteness
of xk, xk reduces to r = 0 and equivalently, to the rank
conditions in (8) by [22, Corollary 4.7], given that Ax is a
block real centro-Hermitian matrix by its definition. �

Although we can only obtain a one-step delayed estimate
of dk in (5), finding an estimate for a subcomponent of dk
at current time k, can be formalized as follows.

Lemma 4. Suppose all the assumptions in Theorem 1 hold.
Then, at time step k, the unknown input dk can always be
decomposed into two components d1,k and d2,k, where there
exists matrices T1 and Φ such that the framers for d1,k can

be found as: d1,k ≤ d1,k ≤ d1,k, where

d1,k = Φ(z1,k − T1Duk) + `k, d1,k=Φ(z1,k−T1Duk) + `k

`k , (ΦT1)−(gd(xk, xk) + v)− (ΦT1)+(gd(xk, xk) + v),

`k , (ΦT1)−(gd(xk, xk) + v)− (ΦT1)+(gd(xk, xk) + v).

Moreover, d2,k cannot be estimated at the current time k.

Proof. Let pH , rk(H). Similar to [3], by applying singular

value decomposition, we have H =
[
U1 U2

] [Σ 0
0 0

] [
V >1
V >2

]
with V1∈Rp×pH , V2∈Rp×(p−pH), Σ∈RpH×pH (a diagonal
matrix of full rank), U1 ∈ Rl×pH and U2 ∈ Rl×(l−pH). Then,
since V , [V1 V2] is unitary, dk = V1d1,k + V2d2,k, d1,k =
V >1 dk, d2,k = V >2 dk. Moreover, by defining T1 , U>1 , T2 ,
U>2 , the output equation can be decoupled as: z1,k =
g1(xk) +D1uk + v1,k + Σd1,k and z2,k = g2(xk) +D2uk +
v2,k, where g1(xk) , T1g(xk), g2(xk) , T2g(xk). The
bounds for d1,k can be obtained by applying Propositions
2 and 3 to the first equation and setting Φ = Σ−1. Finally,
since d2,k does not appear in any of the equations, it cannot
be estimated at the current time. �

Remark 1. The result in Lemma 4 is particularly helpful in
the special case when the feedthrough matrix has full rank,
so dk = d1,k and hence, dk can be estimated at current time
k, which is an alternative approach to the one in [15].

C. Uniform Boundedness of Estimates (Observer Stability)
In this section, we investigate the stability of GSISIO.

Theorem 2 (Observer Stability). Consider the system (3)
and the GSISIO (4)–(5). Suppose all the assumptions in
Theorem 1 hold and the decomposition functions fd, gd are
constructed using (2), with their corresponding Lfd , Lgd
given in Lemma 2. Then, the observer is stable, in the
sense that interval width sequences {‖∆d

k−1‖ , ‖dk−1 −
dk−1‖, ‖∆x

k‖ , ‖xk − xk‖}∞k=1 and estimation errors
{‖d̃k−1‖ , max(‖dk−1 − dk−1‖, ‖dk−1 − dk−1‖), ‖x̃k‖ ,
max(‖xk − xk‖, ‖xk − xk‖)}∞k=1 are uniformly bounded, if
either one of the following conditions hold:

(i) L , Lfd‖Tf‖+ Lgd‖Tg‖ ≤ 1,

(ii) T ,


Q 0 0 0 0
∗ T>g Tg T>g Tf T>g Tf T>g Tg
∗ ∗ T>f Tf T>f Tf T>f Tg
∗ ∗ ∗ 0 T>f Tg
∗ ∗ ∗ ∗ 0

 � 0,

(iii) There exists P � 0 and Γ � 0 in Rn×n such that

P ,

P + Γ− I 0 P
0 L2I − P 0
P 0 P

 � 0,

with Tf , (I −K1 − L1)†(I −K1 + L1),

Tg , (I −K1 − L1)†(K2 + L2),

Q , λmax(T>f Tf )L2
fd

+ λmax(T>g Tg)L
2
gd
− 1,

and K1,K2, L1, L2 are given in Theorem 1.

Proof. Let ∆x
k , xk − xk and ∆xf

k , xfk − x
f
k . Then, by

(10), ∆x
k ≤ ∆xf

k +2µr and since (8) holds, then ∆x
k ≤ ∆xf

k .
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Using the above as well as (9) and (10), we obtain

∆xk ≤ ∆xf

k ≤ ∆f̃xk−1 + ∆z, (11)

where ∆f̃xk , Tf∆fxk + Tg∆g
x
k , ∆fxk ,

fd(xk, xk) − fd(xk, xk), ∆gxk , gd(xk, xk) − gd(xk, xk),
∆z , Tf∆w + Tg∆v, ∆w , w − w, ∆v , v − v, Tf ,
(I−K1−L1)†(I−K1+L1) and Tg , (I−K1−L1)†(K2+L2).
Condition (i): By Assumption 1, triangle inequality
and (11): ‖∆x

k‖ ≤ L‖∆x
k−1‖ + ‖∆z‖, with

L , Lfd‖Tf‖ + Lgd‖Tg‖ and Lfd , Lgd obtained from
Lemma 2. Since L ≤ 1 (by Condition (i)), the sequence
{‖∆x

k‖}∞k=0 is uniformly bounded. Therefore, the interval
width dynamics is stable.
Condition (ii): By the Comparison Lemma [23, Lemma
3.4] and non-negativity of ∆x

k , to show the stability of the
system in (11), it suffices to show the uniform boundedness
of {∆s

k}∞k=0, where ∆s
k = ∆f̃sk−1 + ∆z, ∆s

0 = ∆x
0 . To do

so, consider a candidate Lyapunov function Vk = ∆s>
k ∆s

k

that can be shown to satisfy ∆Vk , Vk+1 − Vk ≤ Ψ>k T Ψk,
with Ψk ,

[
∆s>
k ∆v> ∆w> ∆fs>k ∆gs>k

]>
and T

defined in the statement of the theorem, as follows:
∆Vk ≤ (λmax(T>f Tf )L2

fd
+λmax(T>g Tg)L

2
gd
−1)∆s>

k ∆s
k +

∆v>T>g Tg∆v + ∆w>T>f Tf∆w + 2(∆fs>k T>f Tg∆g
s
k +

∆fs>k T>f Tg∆v + ∆fs>k T>f Tf∆w + ∆gs>k T>g Tg∆v +

∆gs>k T>g Tf∆w + ∆v>T>g Tf∆w) = Ψ>k T Ψk, where
the inequality holds because ∆fs>k ∆fsk = ‖∆fsk‖2 ≤
L2
fd
‖∆s

k‖2 (and similarly for ∆gs>k ∆gsk) by Lemma
2 and ∆gs>k T>g Tg∆g

s
k ≤ λmax(T>g Tg)∆g

s>
k ∆gsk =

λmax(T>g Tg)‖∆gsk‖2 ≤ L2
gd
λmax(T>g Tg)‖∆s

k‖2 by using
the Rayleigh Quotient and Lemma 2. Now, by the Lyapunov
Theorem, stability is satisfied if T � 0.
Condition (iii): Similarly, we consider a candidate Lyapunov
function Vk = ∆s>

k P∆s
k, where P � 0, which can be

shown to satisfy ∆Vk , Vk+1 − Vk ≤ 0, as follows. Let
∆̂ηk ,

[
∆f̃s>k ∆s>

k ∆z>
]>

and note that ∆f̃s>k Λ∆f̃sk ≤
∆f̃s>k ∆f̃sk ≤ L2∆s>

k ∆s
k, where the inequalities hold by

choosing Γ such that Γ , I − Λ � 0 and Lemma 2,
respectively. Hence, L2∆s>

k ∆s
k − ∆f̃s>k Λ∆f̃sk ≥ 0. Then,

inspired by a trick used in [24, Proof of Theorem 1], to
satisfy ∆Vk ≤ 0, it suffices to guarantee that Ṽk , ∆Vk +
L2∆s>

k ∆s
k−∆f̃s>k Λ∆f̃sk = ∆Vk +L2∆s>

k ∆s
k−∆f̃s>k (I −

Γ)∆f̃sk ≤ 0, where Ṽk = ∆f̃s>k P∆f̃sk +∆z>P∆z +
2∆z>P∆f̃sk−∆s>

k P∆s
k +L2∆s>

k ∆s
k−∆f̃s>k (I−Γ)∆f̃sk =

∆f̃s>k (P + Γ− I)∆f̃sk + ∆s>
k (L2I − P )∆s

k + ∆z>P∆z +
2∆z>P∆f̃sk = ∆η>k P∆ηk ≤ 0. �

Note that the stability conditions in Theorem 2 are only
sufficient (not necessary and sufficient), due to the repeated
use of triangle inequality, affine abstractions and decompo-
sition functions in deriving them, which all contributed as
sources of conservatism in the computed intervals.

Finally, we provide upper bounds for the interval widths
and their steady-state values.

Lemma 5 (Interval Upper Bounds and Convergence). Con-
sider the system (3) and the GSISIO observer (4)–(5).
Suppose all assumptions in Theorem 1 hold. Then, there exist

uniformly bounded upper sequences {δxk , δdk−1}∞k=1 for the
interval width sequences {‖∆x

k‖, ‖∆d
k−1‖}∞k=1, which can

be computed as follows:

‖∆x
k‖≤δxk=Lkδx0+‖∆z‖

(
1− Lk

1− L

)
, ‖∆d

k−1‖≤δdk−1=G(δx(k)),

where G(x) , ((1 + Lfd)‖Ĵ1‖ + Lgd‖Ĵ2‖)x + ‖Ĵ1∆w +
Ĵ2∆v‖, ∆z = Tf∆w + Tg∆v, ∆w , w − w, ∆v , v − v,
Ĵ ,

[
Ĵ1 Ĵ2

]
, J+ +J− and Lfd , Lgd , Tf , Tg are given in

Lemma 2 and Theorem 2. Furthermore, if Condition (i) in
Theorem 2 holds with strict inequality, then the upper bound
sequences converge to steady-state values as follows:

δ
x
, lim
k→∞

δxk = ‖∆z‖ L
1− L

, δ
d
, lim
k→∞

δdk = G(δ
x
).

On the other hand, if Condition (ii) or (iii) in Theorem 2
hold, then the interval widths ‖∆x

k‖ and ‖∆d
k‖ are uniformly

bounded by min{‖∆x
0‖,∆P

0 } and min{G(‖∆x
0‖),G((∆P

0 )},
respectively, with ∆P

0 , min
P∈P

√
(∆x

0 )>P∆x
0

λmin(P ) , where P is the
set of all P that solve the LMI in Condition (iii).

Proof. Applying ‖∆x
k‖≤L‖∆x

k−1‖+‖∆z‖ repeatedly, yields

‖∆x
k‖≤Lk‖∆x

0‖+
∑k−1
i=0 Lk−i‖∆z‖=Lkδx0 +‖∆z‖ 1−Lk

1−L .

Further, from (5)–(7): ∆d
k−1 ≤ Ĵ1(∆x

k + ∆fxk ) + Ĵ2∆gxk +

Ĵ1∆w + Ĵ2∆v, where Ĵ ,
[
Ĵ1 Ĵ2

]
, |J |. The rest of the

proof is similar to the one for [15, Lemma 2]. �

V. ILLUSTRATIVE EXAMPLE

We consider a slightly modified version of a nonlinear sys-
tem in [25], without the uncertain matrices, with the inclusion
of unknown inputs, and with the following parameters (cf.
(3)): n = l = p = 2, m = 1, f(xk) =

[
f1(xk) f2(xk)

]>
,

g(xk) =
[
g1(xk) g2(xk)

]>
, B = D = 02×1, G =[

0 −0.1
0.2 −0.2

]
, H =

[
−0.1 0.3
0.25 −0.75

]
, v = −v = w = −w =[

0.2 0.2
]>

, x0 =
[
2 1.1

]>
, x0 =

[
−1.1 −2

]>
with

f1(xk) = 0.6x1,k − 0.12x2,k + 1.1 sin(0.3x2,k − .2x1,k),
f2(xk) = −0.2x1,k − 0.14x2,k, g2(xk) = sin(x1,k),
g1(xk) = 0.2x1,k + 0.65x2,k + 0.8 sin(0.3x1,k + 0.2x2,k),

while the unknown input signals are depicted in Figure 1.
Note that rk(H) = 1< 2 = p, thus the feedthrough matrix

is not full rank and hence, the approach in [15] is not
applicable. Moreover, applying [18, Theorem 1], upper and
lower bounds for partial derivatives of f(·) and g(·) are
obtained as: (af11, a

f
12, a

f
21, a

f
22) = (0.38,−0.52,−0.2 −

ε,−0.14 − ε), (bf11, b
f
12, b

f
21, b

f
22) = (0.82, 0.21,−0.2 +

ε,−0.14 + ε), (ag11, a
g
12, a

g
21, a

g
22) = (−0.04, 0.49,−1,−ε)

and (bg11, b
g
12, b

g
21, b

g
22) = (0.44, 0.81, 1, ε), where ε is a very

small positive value, ensuring that the partial derivatives are
in open intervals (cf. [16, Theorem 1]). Moreover, Lf =
0.35 and Lg = 0.74 and Assumption 1 holds by [16,
Theorem 1]). Furthermore, computing K =

[
K1 K2

]
=[

0.0267 0 0.0666 0.1061
0.4177 2.1203 1.0817 2.0209

]
and L =

[
L1 L2

]
=[

0 0.1017 0 0
0.5194 1.1814 1.2787 1.9302

]
, we obtain rk(I − K1 −
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Fig. 1: Actual states and inputs, x1,k, x2,k, d1,k, d2,k, as well
as their estimated maximal and minimal vectors, x1,k, x1,k,
x2,k, x1,k, d1,k, d1,k, d2,k, d2,k.

Fig. 2: Estimation errors, estimate interval widths and their
upper bounds for the interval-valued estimates of states,
‖x̃k|k‖, ‖∆x

k‖, δxk , and unknown inputs, ‖d̃k‖, ‖∆d
k‖, δdk .

L1) = rk(I −K1 + L1) = 2. Therefore, by Theorem 1, the
existence of correct framers is guaranteed, i.e., the true states
and unknown inputs are within the estimate intervals. This,
can be verified from Figure 1 that depicts interval estimates
as well as the true states and unknown inputs. In addition,

from [16, (10)–(13)]), we obtain Cf =

[
0.251 0
0.0029 0.201

]
,

Cg =

[
0 0.225

−.374 −.045

]
, which implies that Lfd = 0.852

and Lgd = 1.19 by Lemma 2. Consequently, L = 0.643
satisfies Condition (i) in Theorem 2. So, we expect to obtain
uniformly bounded estimate errors with convergent upper
bounds. Figure 2 illustrates this, where at each step, the
actual error is less than or equal to the interval width, which
in turn is less than or equal to the predicted upper bound for
the interval width and the upper bounds converge to some
steady-state values. Note that, despite our best efforts, we
were unable to find interval-valued observers for nonlinear
systems in the literature that simultaneously return state and
unknown input estimates for comparison with our results.

VI. CONCLUSION

In this paper, a simultaneous input and state interval-
valued observer was proposed for bounded-error mixed-
monotone Lipschitz nonlinear systems with unknown inputs
and rank-deficient feedthrough. We derived necessary and
sufficient conditions for the existence and correctness of our
observer and the tightness of the input interval estimates.
Further, several conditions for the uniform boundedness of

the interval widths were provided. Future work will seek
tighter decomposition functions and necessary conditions for
the interval estimator stability.
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