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Abstract—This paper proposes novel set-theoretic ap-
proaches for recursive state estimation in bounded-error
discrete-time nonlinear systems subject to nonlinear obser-
vations/constraints. By transforming the polytopes that are
characterized as zonotope bundles (ZB) and/or constrained
zonotopes (CZ), from the state space to the space of the
generators of ZB/CZ, we leverage a recent result on remainder-
form mixed-monotone decomposition functions to compute the
propagated set, i.e., a ZB/CZ that is guaranteed to enclose the
set of the state trajectories of the considered system. Further,
by applying the remainder-form decomposition functions to the
nonlinear observation function, we derive the updated set, i.e.,
an enclosing ZB/CZ of the intersection of the propagated set
and the set of states that are compatible/consistent with the
observations/constraints. In addition, we show that the mean
value extension result in [1] for computing propagated sets
can also be extended to compute the updated set when the
observation function is nonlinear.

I. INTRODUCTION

State estimation is crucial in several research fields such
as fault detection and isolation [2], localization [3] and
state-feedback control [4]. Bayesian/stochastic estimation ap-
proaches such as particle or Kalman filtering can be applied
if distributions/stochastic descriptions of uncertainties are
known. On the other hand, in bounded-error settings where
distribution-free set-valued uncertainties are considered, sets
that are guaranteed to contain the true state trajectories and
are compatible/consistent with constraints/observations are
estimated. Obtaining the exact characterization of such sets
that contain the evolution of the system states is often very
complicated and computationally intractable [5], hence set-
theoretic approaches that can tractably derive enclosures to
such sets that are as tight as possible are of great interest.

Literature review. In the context of bounded-error settings,
where dynamical systems are subject to distribution-free
and bounded uncertainties, several seminal set-membership
state estimation approaches for discrete-time constrained
systems have been proposed to compute enclosing sets to all
possible system trajectories, e.g., [1], [6], [7]. These methods
commonly consider this problem in two steps, i.e., by finding
an enclosing set of the image set of the dynamics vector field
(propagation/prediction step), and then refining the obtained
propagated set by finding an enclosure of its intersection
with the set of states that are compatible/consistent with the
observation/measurements (update step).
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In the case of linear systems with polytopic initial sets,
it is theoretically shown that tight (exact) enclosures can be
obtained [8]. However, even for linear systems, the computa-
tional complexity of polytopic propagation is extensive and
grows drastically with time [9]. Hence, simpler sets such as
parallelotopes [6], [10], ellipsoids [11]-[13], intervals [14]—
[17] or zonotopes [7], [18] have been used to characterize
the enclosures. However, structural limitations of these sets
sometimes lead to conservative enclosures. To address this,
[19] introduced constrained zonotopes to ease some of the
limitations imposed by zonotopes, while zonotope bundles
were proposed in [20] to describe the intersection of zono-
topes without explicit computations, both of which were
shown to be equivalent representations of polytopes.

In contrast to linear systems, obtaining efficient set-valued
estimates for nonlinear systems is still very challenging.
A classical approach to tackle this problem has been to
use interval arithmetic-based inclusion functions [21] to
propagate the current enclosing sets through the nonlinear
dynamics and then to apply interval-based set inversion
techniques (e.g., SIVIA) to find upper approximations for the
set of compatibles states with the current measurements [3],
[22]. These approaches are computationally very efficient,
but unfortunately, due to the nature of interval arithmetic,
the resulting bounds are often conservative.

Further, for systems with linear observation functions,
zonotopic propagation methods have been developed in [23]—
[25], based on first-order Taylor expansion, mean value
extension or DC programming. However, significant errors
are caused in the update step due to the symmetry of
zonotopes, even in the case with linear observation functions
[19]. More recently, an interesting approach was proposed
in [1] using constrained zonotopic propagation and update
algorithms for discrete-time nonlinear systems with linear
observation functions, based on mean value and first-order
Taylor extensions.

Contributions. This paper proposes novel methods for
recursive state estimation (consisting of propagation and
update steps) using indirect representations of polytopes
(specifically, constrained zonotopes or zonotope bundles)
for nonlinear bounded-error discrete-time systems with non-
linear observation functions by leveraging remainder-form
mixed-monotone decomposition functions [26] and the stan-
dard propagation and update approach. In particular, for
the propagation step, we transform the prior ZBs/CZs into
the space of CZ/ZB generators, which are interval-valued,
and further transform the vector field into two components,
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one that is proven to attain tight image sets, as well as a
linear remainder function, for which a family of remainder-
form mixed-monotone decomposition functions [26] can be
obtained. Each of the decomposition functions produces
enclosures of the state trajectories; thus, we can intersect
them to obtain the propagated ZB/CZ enclosures.
Moreover, we show that a similar idea, i.e., transformation
from the state and uncertainty space to the space of gener-
ators of CZs/ZBs, can be used for the update step to find a
family of enclosures of the generalized nonlinear intersection
between the propagated set and the set of states that is
compatible with observations, where the final enclosures are
in the ZB/CZ representation of polytopes. Furthermore, we
prove that the mean value extension approach used in [1]
for the propagation step can also be leveraged for the update
step when the observation function is nonlinear. Finally,
we compare our proposed approaches with the mean value
extension-based approach in [1] on two examples with a
linear and a nonlinear observation function, respectively.

II. PRELIMINARIES

In this section, we briefly introduce some of the main
concepts that we use throughout the paper, as well as some
important existing results that will be used for deriving our
main results and for comparison.

Notation. N,N,, R™ and R"*" denote the set of positive
integers, the first a € N positive integers, the n-dimensional
Euclidean space and the space of m by m real matrices,
respectively. For Z, W C R" R € R™*" Y C R™, and
p:R* = R™ RZE2{Rz|2€ Z},ZOW 2 {z+w |
z€ZweWhL ZeWa {z—w|ze€ Zwe W,
wWZ) 2 {uz)lz € Zyand Z2U, Y £ {z € Z | u(z) €
Y} denote the linear mapping, Minkowski sum, Pontrya-
gin difference, general (nonlinear) mapping and generalized
(nonlinear) intersection, respectively. Further, the transpose,
Moore-Penrose pseudoinverse and (i,j)-th element of R
are given by R', R and R;;, while its row support is
r = rowsupp(R) € R™, where r; = 0 if the i-th row of R is
zero and r; = 1 otherwise, Vi € N,,,. Moreover, B2, £ {z €
R™|||z|lco < 1} and 0,, denote an oco-norm hyperball and a
zero vector in R™, respectively. For z,z € R™, diag(z) is a
diagonal matrix in R”*™ with z being its diagonal elements
and x < z means that z; < x;, Vi = 1,...,n. Finally, (-,-)
denotes the inner product operator.

Definition 1 (Intervals, H-Polytopes, Constrained Zonotopes
(CZ) and Zonotope Bundles (ZB)). A set Z C R” is
(i) an interval, (ii) a polytope in hyperplane representa-
tion (H-polytope), (iii) a polytope in constrained zonotope
representation (CZ), or (iv) a polytope in zonotope bundle
representation (ZB), if
(i) 32,Z € R such that Z = [2,Z] 2 {z € R" | 2 < 2 <
Z}. An interval matrix can be defined similarly, in an
element-wise manner;
(i) 3A, € R™*" b, € R™ such that Z = {A,,by}p =
{ZER"\A z<bp}
(iii) HG e R"*™s ¢ € R™, A € R*ns b € R" such that
= {G’chab}CZ = {G§+C | 5 € B >A§ = b}'

ng and n. are called the number of generators and
constraints of the CZ, respectively;

(iv) Z can be represented as an intersection of S € N
zonotopes ie, H{G; € R"Xﬁs cs € R™}YS_| such that
Z = ﬂ{Gé,cé}Z < ﬂ{G&C—Fcé | ¢ € B}, with

s=1

fis, s =1,..., 8, being called the number of generators
for each zonotope.
It is worth mentioning that a polytope Z can be equivalently
given in the H-polytope, CZ or ZB representations and can be
exactly transformed among these representations using off-
the-shelf tools, e.g., CORA 2020 [27]. This is represented
throughout this paper as:

S
Z={A,,b,}p ={G.& A btz = N{Gs. 5}z
s=1

Proposition 1. Consider an interval vector 17 = [2,Z] C
IR" and an interval matrix J € IR™*"™. Then, 1Z and J can
be equivalently represented as

1Z £ [2,7] = mid(IZ) ® 3diag(diam(IZ))B%, (1)
J2[J, 7] =mid(J) @ Ja, 2

where for ¢ € {1Z,J}, mid(q) £ (7 + g), diam(q) =
(@—q), and Ja € IR™ ™ is an interval matrix that is defined
as [Jali; £ 2[—diam(J);; diam(J);;], Vi € N,,,Vj € N,y,.

Proof. To prove (1), consider z € [Z & 2 < 2<Z & z —
mid(I1Z) < z — mid(I1Z) < z — mid(I1Z) & —3diam(1Z) <

z—mid(IZ) < diam(IZ) < mid(IZ) — 1diam(IZ) < z <
Lldiam(1Z) + mid(1Z) < 3¢ € B, s.t. z = mid(IZ) +
%dlag(dlam(HZ))g & z € mid(IZ) & 1 diag(diam(IZ))B2 .
The result in (2) is a straightforward extension of (1). [ |

Proposition 2. [I, Theorem 1] Let X = {G,c, A,b}cz C
R™ be a constrained zonotope with ng generators and n.
constraints, and J € IR™ ™ be an interval matrix. Consider
the set S = JX £ {Jz|J € J,x € X} C R". Let X =
{G, ¢}z be a zonotope satisfying X C X and ¢ € R". Let
m € R" be an interval vector such that m O (J—mid(J))c
and mid(m) = 0,. Let P € R"*™ be a diagonal matrix
defined as follows. Vi=1,...,n

1., Ty
idlam(mi) + % ijl
Then, S C mid(J)X & PB7,
= {[mid(J)G P},mid(a]])c7 [A On_qxn} ,btoz. (4)
Proposition 3 (RRSR Propagation Approach). [I, Theorem
2] Let f : R™ x R"™ — R"™ be continuously differentiable
and V. f denote the gradient of f with respect to its first
argument. Let X = {G,., ¢y, Az,bz}oz C R" and W C
R™ be constrained zonotopes (CZs). Choose any h € X.

If Z is a CZ such that f(h,W) C Z and J € IR"™" is an
interval matrix satisfying VI f(X,W) C J, then

f(X, W) C ZeomidJ)(X o {h})® PBL,  (5)

P, = vy diam(J;x)|Grjl. (3)

where P can be computed using (3) with J and an enclosing
zonotope X = {G,¢}z of X ©{h} C X.
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Definition 2 (Mixed-Monotone (One-Sided) Decomposition
Functions For Discrete-Time Systems). [26, Definitions 3—
4] A mapping fq: Z x Z C R®™ — R™ is a discrete-time
mixed-monotone decomposition function with respect to f :
Z C R™ — R™, over the set Z, if it satisfies the following:
(i) falw,a) = f(@), (i) & > 2’ = fa@,y) > fala',y),
and (iii) Yy = y/ = fd(xvy) < fd(.’E,y/),VfE,y,l’/,y/ €
Z. Further, if there exists two mixed-monotone mappings
?d’id : Z x Z — R™, such that for any 2,2,z € Z, the
Jollowing holds: z < z <z = [ (2,%) < f(2) < fa(Z, 2),
then f,; and f are called upper and lower decomposition
functions for f over Z, respectively.

It is trivial to see that Vz € [z,7], f (2,7) < f(z) <
Ja(®,x), where [, f, are lower and upper decomposition
functions of f.

Proposition 4 (Tight and Tractable Remainder-Form Upper
and Lower Decomposition Functions). [26, Theorems I—
3] Consider a locally Lipschitz vector field f; : =
2,7] CIR™ — R Let N, 2 {1,...,n.} and T}, J! €
R"™= denote the upper and lower bounds for the Jacobian
matrix (vector) of f; over 1Z. Suppose that Assumption 2
in Section III holds. Then, f;(-) admits a family of mixed-
monotone remainder-form decomposition functions denoted
as {fai(z,2;m, h(-)) fmeM, h(-)etpe that is parametrized
by a set of supporting vectors m € Mf

m € M¢ = { mGR"ﬂm»—min(J{j, 0) v ©)
i 0),vj € Ny, },
and a locally Lipschitz remainder function h(-) € Hpre,
where

fai(z,2,m,h(:)) = hi(Gm (2, 2)) + fi(Cm(2, 2)))

m; = max(J.

and Cm(Z; 2) = [Cm 1(Z, ?:')7 s Cmon. (Z’ 2)}1—’ Vi € Nn.:
2, lfmj_max(Jic ,0),
Gm (2 2)= {Zjv lfmJ*mm(l{,jj’ 0), v

and Hyg, 2 {h : 1Z — R|[J"(2), Tes(2)] € M, Vz € IZ}.
Moreover, the search for the tightest mixed-monotone upper
and lower remainder-form decomposition functions in the
form of (7) can be equivalently restricted to the set of
“linear remainders,” parametrized by m € M5, i.e., linear

remainders {h(-)}meme = {(m’, ) }meme.

Corollary 1. Consider a locally Lipschitz mapping f () :
=4 [£,€&] CIR™ — R" that satisfies the assumptions in
Proposition 4. Let us define: N,,, = {1,...,n,} and

H; £ {H e R™"™|H] e M{,VieN,,}, (9

where MY is defined in (6). Then, V¢ € I=,VH €
Hf,gH(ﬁ) 2 f(&) — HE is proven to be a Jacobian sign-
stable (JSS) function, i.e., Vi € N, ,¥j € N,,_, JH(¢) &

’ nzy Y
8L(6) 2 0, € IZ or JH(¢) £ %L (¢) < 0,%¢ € IZ.
Consequently, G* (-) can be tightly bounded in each dimen-

sion © € N, by remainder-form decomposition functions

Gd,i(- ,H <HT -)), constructed using (7)—(8), as follows:
94,06 & HL (HL ) < 3:(8) < aa(€ & HLL (HL ),
where, by [26, Lemma 3] and defining m = HzT, we
obtain_gai(& &m, (m,-)) = filGh) + mT(Gn — Gh),
gai(&.&m"T (m, ) = fi(Gn) +mT(Gh = ¢ G =

C7n(§,§), Cm = Cm(g §), with (m (-, +) given in (8).

Proof. The proof follows the lines of the proof of [26,
Lemma 1, Proposition 10 and Corollary 2]. [ ]

III. PROBLEM FORMULATION

System Assumptions. Consider the following bounded-error
nonlinear constrained discrete-time system:

Thi1r = f(@r, we, uk) = f(21),
ke, ux) = p(wr) € Vi, To € Xo, Wi € Wh,
where z; £ [z]wl]T, 2, € R" is the state vector,
wr € Wi C R™ is the augmentation of all exogenous
uncertain inputs, e.g., bounded process disturbance/noise
and system uncertainties such as uncertain parameters and
up € U, C R™ is the known input signal. Furthermore,
f:R™ — R" (with n, £ ng, +n,) and g : R% — R™
are nonlinear state vector field and observation/constraint
mappings, respectively, which are well-defined, given f ()
and [i(-, ), as well as the fact that uy, is known. Note that the
mapping (-) along with the set )}, characterize all existing
and known or even manufactured/redundant constraints over
the states, observations and measurement noise signals or
uncertain parameters at time step k.
The unknown initial state xg is assumed to be in a given
set 230 and moreover, we assume the following:

(10)

Assumption 1. The initial state set Xo, as well as
Wi, Vi, Yk > 0 are known polytopes, or equivalently con-
strained zonotopes or zonotope bundles (cf. Definition 1).

Assumption 2. The nonlinear vector fields f(-) and u(-) are
locally Lipschitz on their domains. Consequently, they are
differentiable and have bounded Jacobian matrix elements,
almost everywhere. We further assume that given any Z C
R™ and X C R"=, some upper and lower bounds for
all elements of Jacobian matrices for f(-) and p(-) over
Z and X are available or can be computed. In other
words, Ellf,jf e R”EX”Z,J“,jH € R™wX"= sych that:
JE< Iz < T 0" < Jr(e) < T Ve € 2V € X,
where Jf(z) and J*(z) denote the Jacobian matrices of the
mappings f(-) and p(-) at the points z and x, respectively.

In this paper, we aim to propose novel set-membership
approaches for obtaining polytopic-valued state estimates for
bounded-error nonlinear systems (10) using indirect polytope
representations, namely using zonotope bundles (ZBs) and
constrained zonotopes (CZs). More formally, given the initial
state set estimate )20, where x¢ € 2\?0, we consider a two-
step approach for recursive state estimation by solving the
following problems for the propagation and update steps,
respectively, at each time step k£ € N:
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Problem 1 (Propagation). Given the ‘updated set’ X} ;
from the previous time step and Wy,_, (with Zj,_1 = AP x
Whi—1), find the ‘propagated set’ X,f that satisfies

F(Z )2 f(z,w,up1) | T X, weWp ) CAP. (11)

Problem 2 (Update). Given the ‘propagated set’ X} and the
uncertain observation/constraint set Yy, at time step k, find
the ‘updated set’ X} that satisfies

XN, Ve 2{z e X | px) eV} C AL (12)

IV. INDIRECT POLYTOPIC SET COMPUTATION

We consider a recursive two-step state estimation approach
consisting of state propagation (prediction) and measure-
ment update (refinement) steps, by solving Problems 1 and
2 in Sections IV-A and IV-B, respectively. Our recursive
algorithm can be either initialized at time step 0 with the
initial polytopic state estimate Xy as X = Xy or if ) is
available/measured, with X} = 2’?0 and the application of the
update step by solving Problem 2 at time O to obtain Aj'.

A. Decomposition-Based ZB/CZ Propagation Step

In this section, we address Problem 1, assuming that the
state estimate set from the previous time step is a zonotope
bundle (Lemma 1) or a constrained zonotope (Lemma 2).
The main idea is to “transform” the ZBs/CZs from the z-
space, i.e., the space of augmented state x and process
uncertainty w, to intervals in the £-space, i.e., the space
of ZB/CZ generators. Then, based on our recent results in
[26], we decompose the transformed vector fields in the -
space into two components, a Jacobian sign-stable (JSS)
and a linear remainder mapping (cf. Corollary 1). Finally,
we apply our recently developed approach to find a family
of mixed-monotone remainder-form decomposition functions
and to compute enclosures to the JSS components, which
are proven to be tight by Corollary 1 for interval domains.
Using these tight bounds and thanks to the linearity of the
remainders, we show that by augmenting and intersecting
all the obtained enclosures, the resulting set is a ZB/CZ.
We formally summarize our proposed decomposition-based
ZB/CZ approaches in the following Lemmas 1 and 2.

Lemma 1 (Decomposition-Based ZB Propagation). Suppose
f: 2 CR"? — R" satisfies Assumption 2. Let Z be a ZB

S
inR", ie, Z= ({Gs,cs}z, and¥s € Ng 2 {1,...,5},

=1
ns be the number of generators of the corresponding zono-
tope. Then, the following set inclusion holds:

s
fczBr 2 () {6 ey,

s=1 HSEHf“S

where G+ £ [H, 1diag(gl- gfs)}, e & L(ghs 4 gl

—H, : )
9s,i 2 g;,d(lnw_lns’H;r(i,:)’ <H5T(i,;),'>
gl £ gf,d(_lﬂwlns;H;(i,:) <H5T(i,;)>'>

ZLsi
while  g; (-, ~;H;r(i’:), <HST(Z-7:)7 YY) is the tight mixed-
monotone decomposition function (cf. Proposition 4) for the

(13)

JSS mapping g1 (€) £ foi() — (H](;.),8) : Bl —
R™, H 7. is defined in Corollary 1 (with the corresponding

function being fs) and fi(€) £ f(cs + GLE).

Proof. To show (13), Vs € Ng, consider the zonotope Z, =
{Gs,estz & {z = G & +¢5l€ € B} and let us define
fs(€) : B — R™ £ f(G4€ + ¢,), which implies that
f(Z5) € fo(BZ),Vs € Ns. (16)
On the other hand, note that by Corollary 1, VH, € H.ﬂ’
fs(-) can be decomposed as
Fo(©) =gl (&)+H.E, Vs € Ng, V¢ € B, VH, € Hj
a7

where gHs(¢) is a JSS function in B": and H; can be
computed from (9), with the corresponding functlon being
fs. Now (16) and (17) together imply:

f(Z,) C g (BY) @ HBY:,Vs € Ng,VH, € Hj .

(18)

Again, it follows from Corollary 1 and the fact that gZ%s (&)
is a JSS function that in each dimension i € N, g7 (£)
can be tightly bounded as gH< < gf; € < gfg,V& €
BLs,VH, € Hf , with g”,g % given in (14) and (15),
respectively. Augmenting all these N, one-dimensional
inequalities yields the following set inclusion for all s € Ng
and all H, € Hy: g (B) C [gfs,ﬁfs} = %((Qf +
i) @diag(gl's — g™+ )Bls ), where the last equality follows
from Proposition 17Combining this, (18) and the fact that the
inclusion in (18) holds for all s € Ng and all H € H

hence for the intersection of all of them, we obtain (13) I

Lemma 2 (Decomposition-Based CZ Propagation). Suppose
f 2 CR* — R" satisfies Assumption 2 and let Z be a
CZinR", je, Z = {G’,&, A, B}cz, and ng be the number
of generators of Z. Then, the following set inclusion holds:

fizycezy & () {G", & Ablez, (19
I‘IEHf~

where G £ [H %diag@H —QH)],A £ [[l Ongxnm],
S gal _
9 = Giall, Ly s His (Hi ), e 2507 + ™). 20)
97 £ G, Loy H (HL, ), @1
Inq min(1,, ,ATb+ Ky, ),lngémax(flng,fl@f/ﬂ‘ng),

Gia(y H <H;'— ) is the tight mixed-monotone decom-
position fuhction, (cf. Proposition 4) for the JSS mapping
3:(&) & fi¢) —(H], §> Bo! — R"=, H j is defined in
Corollary 1 and f(£) £ f(¢ + GE), r,, £ rowsupp(Iy,
ATA) and k is a very large positive real number ( mﬁnzty)

Proof. To prove the inclusion in (19), consider the con-

strained zonotope representation of the set Z, i.e., Z £

{G,e,Abloz 2 {2 =GE+c| € € B, A = b}. Using
sjmilar notation as in thg proof of Lemma 1, let us define
f(€) : B — R" = f(GE + ¢) that consequently returns
F(2) C{f(&) | ¢ e B2, AC = b}. (22)
Note that by [28, Theorem 2], A =b = ¢ € IZ 2 [Afh —
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KTy, ,Af b— Kry,], where r,, = rowsupp(I - flel) and
K is a very large posmve real number. Comblmng this with
the fact that & € B (cf. (22)), we find that £ € [E21=N
B = [1ng,1ng], where lng,ing are defined below (21). On
the other hand, similar to the proof of Lemma 1, we conclude
by Corollary 1 that VH € Hp, f(-) can be decomposed as

F©) =3"(&) + HE, VH € Hy Ve € IE,
= f(IE) € §"(IE) ® HIZ,VH € Hy,

where G () is a JSS function in IZ and Hj{ is given in (9).

By Corollary 1, in each dimension i € N,,_, QJH (€) can be

tlghtly bounded as g < gl <gh,v¢ el=E,VH € Hy,

with g 91 , g given in (20) and (21), respectively. Augmenting

all these NW one-dimensional inequalities and applying

Proposition 1 yield the following set inclusion: VH € H 7
2((g" +7") ® diag("

" (1=)clg". 5=
Combining this, (22), (23) and the fact that the inclusion in
(23) holds for all H € H 7 and hence for the intersection of
all of them, we obtain f(Z) C {H¢ + diag(g” — g™)0 +
L(g"+g") | € € B, 0 € Bie, A = b},VH € H 7, where
the set on the right hand side of the inclusion is equivalent to
the intersection of the CZs on the right hand side of (19). W

(23)

—g")BL).

Finally, for further improvement, we can take the inter-
section of the resulting propagated sets in Lemmas 1 and 2.
This is formally summarized in the following Theorem 1.

Theorem 1 (Decomposition-Based ZB/CZ Propagation).
Suppose all the assumptions in Lemmas 1 and 2 hold. Then,
f(Z) € ZBf NCZy, where ZBy,CZy are computed in
Lemmas 1 and 2, respectively.

Proof. Tt follows from Lemmas 1 and 2 that f(Z) C ZB;
and f(Z) CCZy, and so f(Z) C ZByNCZy. |

B. Decomposition-Based CZ/ZB Update Step

In this section, we address Problem 2 for a given locally
Lipschitz nonlinear vector field u(-) and assuming that the
propagated and the observation/constraint sets at each time
step k are zonotope bundles (Lemma 3) or constrained
zonotopes (Lemma 4). Using a similar idea as in Section
IV-A, i.e, considering the space of generators, decomposing
the transformed observation function into a JSS and a linear
component, applying the tight remainder-form decomposi-
tion functions [26] to bound the JSS component, augmenting
and intersecting, as well as taking the advantage of linear
remainder functions, we obtain ZB/CZ enclosures to the
nonlinear generalized intersection in (12). The results of this
section are summarized in Lemmas 3 and 4 and Theorem 2.

Lemma 3 (Decomposition-Based ZB Update). Suppose p :
R" — R"™ satisfies Assumption 2. Let Z; C R"* and

R
Zy CR™ be two ZB sets, i.e., Z; = ZBy = (1 {G},c}}z
r=1

and 2, = ZB, = ﬂ{GM, Yz, and ¥r € Np =
1

{1,...,R},Vt e Np £ {I ., T}, let n,.,n; be the number

of generators of the corresponding zonotopes, respectively.
Then, the following set inclusion holds:

R T
ZBf My ZB;LQZBuém ﬂ n {éfwéraA?tath }CZ’

r=1t=1Q,€Qs,

(24)
where G £ (G 0'],¢, 2 ¢, 0 £ ¢}, = (07 +p2"),
AZp 2 1Q0 ~G, diag(PPr — pPr)],
p?; épg,d(ln, V;QT 7<Q1T(i’;)a'>)7 (25)
Bg; ép:,d( Ny ,7Q 7<Q7T(i’;)a'>)7 (26)

pia(s s Qr, (Q;r(i,:), -)) is the tight mixed-monotone decom-
position function (cf. Proposition 4) for the JSS mapping
pr(a) 2 firi(@) = Q.. 0) Bl — R™, Qg is
defined similar to Hy in Corollary 1 (with the corresponding
function being fi,(a) = pu(cs+G'%a)) and 0" is a zero matrix
in R X (0410),

Proof. Suppose z € ZB; N, ZB,,. Then, by the definition
of the operator N, (cf. (12)), z € ZBy and pu(z) € ZB,.
The former implies that Vr € Ng,3a € BZr such that
z=Gha+ cf, while it follows from the latter that p(z) =
M(Gfa + cf) £ () € ZB, = Vt € Np, 3¢ € B, such
that fi,(a) = ¢l, + G},C. Puttlng these two results in a set
representation form we obtain:

ze([ {Ghatc|fin(a)=c,+Gl,¢, acBL, (B2 }.(27)
r=1t=1
On the other hand, using Corollary 1, fi,.(-) can be de-
composed into a JSS and a linear mapping as follows:
Vr € Ng,VQ, € Qi,.,Va € B::

fir() = pPr (@) + Qra. (28)

Moreover, by the same corollary, the JSS component p&~ (-)
is tightly bounded as follows: Vi € N,, ,VQ, € Q,;T,Q?; <
pQT(a) < pQT Ya € BYr, with pQT,pQT given in (25)
and (26), respectlvely Combining thlS as well as (28) and
Proposmon 1 results in: Vr € Ng, VQ, € Qz,., Va € BY,
360 € Ba such that fi,.(a) = (pQT +pQT) ldlag(pr ;

B?ZT)H + Q. Further, putting this together with (27) returns

R T
e NN N AGja+chl5p% +7%) + sdiag(dry
r=1t= theQut '
pQ’)9+QTOé =c, +Gi¢aeBy,(eBY OB}
Where the set on the right hand side is equlvalent to the one
on the right hand side of (24). [ ]

Lemma 4 (Decomposition-Based CZ Update). Suppose
po: R — R™ satisfies Assumption 2. Let Z; C R"s
and Z, C R" be two CZ sets, ie, Zy = CZy =
{vacfaAfabf}CZ and 2, = CZ, = {Gu, &y, Ay, by} ez,
and let n.,n, be the number of generators of Zy, Z,,

respectively. Then, the following set inclusion holds:

CZ;n,CZ,CCZ, ﬂ (G, &7, Aq,ba}oz,
Qe

(29)
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where G £ [G 0 0], bg & [bT bl (ér — 3@+,
Ay 0 0
Ap= |0 A, ,
Q -G, 1diag(* V)
v £ Vi, Lo Q.5 (O o s (30)
E? £ Vi7d(ln Ne Q(z 1) < (4,:)° >)7 (31)
Inc = min( nL,A Bf + lﬂ‘nc), 1nc £ max(—]_nc’/i}[;f_

Krp), Vid(:- Q(TZ 3 <QE7:), -)) is the tight mixed-monotone
decomposition function (cf. Proposition 4) for the JSS map-
ping v3(B8) £ \(B) — (QE';’:), B) : Ble — R™, Q) is
defined similar to Hf in Corollary I (with the corresponding
functlon being \(8) 2 (é;+G¢p)), vp, 2 rowsupp(I,, —
A A #) and K is a very large positive real number (infinity).

Proof. Suppose z € CZ; N, CZ,. Then, by the definition
of the operator N, (cf. (12)), z € CZ; and u(z) € CZ,,.
The former implies that 35 € B2 such that A8 =
and z = GyB + &y, while it follows from the latter that
w(z) = w(GB+¢) 2 N(B) € CZ, = Iy € B such that
Ay = b and A\(B) = &, + G,,7. Putting these two results
into a set representation form, we obtain:

z € {éf/B + &f | )L(B) :~&u + éu'}/aﬁfﬂ = va
Ayy=1b,,0 Bk, yeB}.
On the other hand, using Corollary 1, A(-) can be decom-
posed into a JSS and a linear mapping as follows:

VQ € Q) VB e B A(B) = (B)+ Q8. (33)

Further, note that by [28, Theorem 2], A B = b ;=
B eclIB = [Abe - /irnC,A by — kry,], where r,, 2
— A A r) and k is a very large positive real
number. Then, smce B € B, we have 8 € IBNBY =
1,.,1,.]. Putting this and Corollary 1 together results in
the JSS component v ( ) being tightly bounded, i.e., Vi €
N, ,VQ € Qv < v(B) < v,VB € Ble, with UZQ, 7
given in (30), (31), respectively. Combining this, (33) and
Proposition 1 leads to: VQ € 0,,V5 € B, 3p € B
such that A\(8) = 3 (v + 7) + Ldiag(?" — Q)p + Qa
which along with (32) returns z € Noeq,
2(u —|—PQ) 1dlag( )p—l—Qﬁ—cM—i—Gu'y,Afﬁ—
by, Ayy = b,“ﬁ € Ble v E B, p € Bot'}, where the set
on the right is equivalent to the right hand side of (24). W

We conclude this subsection by combining the results in
Lemmas 3 and 4 via the following theorem.

(32)

rowsupp(/y,

Theorem 2 (Decomposition-Based ZB/CZ Update). Suppose
all the assumptions in Lemmas 3 and 4 hold. Then

Zy Ny ZM C ZB,NCZ,,
where ZB,,,CZ,, are given in Lemmas 3 and 4, respectively.

Proof. By Lemmas 3 and 4: Z; N, Z, C ZB, and Z; N,
2, CCZ,, and hence, Zy N, Z,, C ZB, NCZ,,. |
C. Modifications to the Approach in [1]

The purpose of this subsection is twofold: i) We propose
a potential refinement/improvement to the propagation ap-

proach in [1, Theorem 2] (recapped in Proposition 3) through
the following Proposition 5, by applying our previously de-
veloped remainder-form decomposition functions to compute
potentially tighter enclosing intervals to Jacobian matrix of
f(+); i) We propose an update method via Lemma 5, that is
based on the “CZ-inclusion” introduced in [1, Theorem 1]
(recapped in Proposition 2). The proposed update method is
applicable to general nonlinear observation functions (similar
to the proposed methods in Lemmas 3 and 4), as opposed
to the update (i.e, linear intersection) approach in [1] that is
only applicable when the observation function is linear.

Proposition 5 (Refinement to the Propagation Approach in
[1]). Suppose all the assumptions in Proposition 4 (i.e, [,
Theorem 2]) hold. Then, the set inclusion in (5) also holds
when replacing J with I (or the best ( tlghtest) of them), where
I is an enclosing interval to g(z) 2 V] f(X, W) that can
be computed by applying Proposition 4 to the function g(-).

Proof. This directly follows from Proposition 4. |

Lemma 5 (Update based on “CZ-Inclusion” in [1]). Suppose
all the assumptions in Lemma 4 hold. Let ©o € CZy
and J*,JR € R™X" be interval matrices satisfying
JUMCZg) C I and ¥i € N,,,Vj € Ny, [Jhly; =
1 [~diam(J*);; diam(J*);;], where J* denotes the Jaco-
bian of pu(-). Let Z; = {@f,ﬁf}z be a zonotope satisfying
CZroxy C Zy with ¢l e R™, let m* € R™ be an interval
vector such that m* O JA¢/ and mid(m*) = 0, and
let P* € R™*"™ be a diagonal matrix defined as follows:
Vi=1,...,n

Pli=Sdiam(m*)+4 Y7, Y0, diam(J4)u Gyl (34)

Then, the following set inclusion holds:

CZyMuCZ, CCZL 2 {Gy cu, Aubutoz,  (39)
where G, = [G’f 0 0],
; e a Eu—p(zo)—cr
mid(J*)Gs ~Gy Gr Hmid(J*) (2o — &)
Al A 00 s by
U 0 A 0 s Oy e s
1% b#
0 0 Ag by
Gr=1[0 P*, cr 20, Ap 2 [A; 0], bp £bs.  (36)

Proof. Let z € CZy N, CZ,. Then, by the definition of the
operator N, (cf. (12)), z € CZ and pu(z) € CZ,,. Further, by
Proposition 1 and the mean value theorem, z € CZ; implies
that pu(z) € p(CZy) C p(xo) @ I*(CZ; © x), where
(o) & JH(CZ o)
= p(zo) ® (mid(J*) + JA)(CZ5 © o) 37)
— (o) —mid(J*)zo) & mid(J*)CZs & I (CZs © o).
On the other hand, by Proposition 2,

INCZfom) CCZr 2 {GR,cRr, AR, br}Ycz, (38)
with GRg,cr, Ar,bg given in (34) and (36) (note that
mid(J’A) = 0 by its definition) and where CZp has ng
generators. Then, the facts that z € CZ; £ {GyS + ¢5 |
AfB = by, B € B} and pu(z) € CZ, £ {Guy + ¢, |
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/L;y = l;u,’y € B7r}, along with (37) and (38), imply that
2 € {GB + ¢l + Guy = p(wo) + mid(J#) (5 — @0) +
mid(J“)B + Cr + Gng,Afﬁ = bf,AH'y = b/uARfR =
br,B € B,y € B, {r € BR}, which is equivalent to

o0

the CZ on the right hand side of (35). |

V. SIMULATIONS

In this section, we compare the performance of five
approaches to guaranteed state estimation: i) RRSR, i.e.,
the mean value extension-based propagation introduced in
[1] (recapped in Proposition 3) in addition to the update
approach in [1] for the case when the observation function
is linear (for Example I below) and its extension in Lemma
5 to nonlinear measurements (for Example II below), ii)
D-RRSR, i.e, a modification to RRSR where the bounds
for Jacobian matrices are computed using the reminder-
form decomposition functions (cf. Proposition 5), iii) D-ZB,
i.e., decomposition-based propagation and update with ZBs
(cf. Lemmas 1 and 3), iv) D-CZ, i.e., decomposition-based
propagation and update with CZs (cf. Lemmas 2 and 4)
and v) COMB, i.e., a combination of i)-iv) via intersection
(based on a similar idea as Theorems 1, 2). All simulations
are performed on a 1.8 GHz (8 CPUS) i5-8250U, using
MATLAB version 2020a and CORA 2020 [27].

A. Example 1

Consider the following nonlinear discrete-time system
from [1, Example 1]:

2
_ Ty k1 41 k- 1T2,6—1
T1p = 3%y k-1 7 Trorn ., T WLk-1,
T —1T2 k—1
Top = —2xg 1+~ + W k1,

44z k-1

yie| |1 O [z1k U1,k
= + s

Yo,k =1 1] |22 V2, k

with [|wg||, < 0.1, an unknown initial state g € Xy =
0.1 0.2 —0.1 0.5
{{0.1 01 0 } ) {0.5]} and Yy, 2 {yx—vy, | [|vk|lo, <0.4}.

3

k=0 k=2 —i) RRSR
oS e —ii) D-RRSR|
ey ——— —iii) D-ZB
Ve iv) D-CZ
v A —v) COMB
= g S =N
g8 N k=3 Wy |

fL 0 Thk=1
S § | {— e
S

0 5 10 15 20
L1k

T

Fig. 1: Results for Example I from the first five time steps of set-
valued state estimation, using five different approaches. Black dots
are obtained from uniform sampling of the initial state and noise
signals, and propagating through the system dynamics.

As can be seen from Figure 1, D-ZB provides less
conservative enclosures compared to the other individual
approaches, and further, the COMB approach results in a sig-
nificant improvement by taking advantage of all approaches

via intersection. Moreover, a more systematic comparison of
the average computation times and enclosure set volumes of
the five approaches is given in Table I. It can be observed that
D-ZB is the fastest computationally, while the combination
of all approaches, i.e., COMB, took the longest, as expected.
Moreover, RRSR and D-RRSR took approximately the same
time on average. In terms of average set volumes, D-
ZB and D-RRSR generate the least conservative (smallest)
enclosures when compared to the other approaches, while a
further improvement is obtained using the intersection of all
approaches (COMB).

TABLE I: Average total times (seconds) and average total volumes
at each time step for five state estimators in Example 1. Each average
is taken over 50 simulations with uniformly sampled noise and
initial state.

Methods: k=0 k=1 k=2 k=3 k=14
RRSR Time: 0.0869 0.2496 0.1926 0.1960 0.2042
Vol.:  0.2012 0.5002 0.6205 0.4811 0.3340
D-RRSR Time: 0.0866 0.2251 0.1809 0.1977 0.2005
Vol.:  0.2012 0.4758 0.6008 0.4385 0.1472
D-7B Time: 0.0882 0.0949 0.0906 0.0907 0.1226
Vol.: 0.2012 0.4518 0.5729 0.32721 0.3175
D-CZ Time: 0.0869 2.8245 2.9200 2.1183 3.3176
Vol.: 0.2012 0.5673 0.6310 0.5061 0.4169
COMB Time: 0.0872 6.1929 6.8815 6.2782 6.908
Vol.:  0.2012 0.4485 0.5659 0.2841 0.1465

B. Example Il (Unicycle System)

Now consider the following discretized unicycle-like mo-
bile robot system [29]:

Szl = Sak + Tow cos(O) + wi g,

Sy k1 = Syk + Todw sin(br) + wo i,

Opr1 = 0 + Todg + ws i, (39)

Y = [dig d1k dog Pok) + Uk,
where £ (Sok Sy 0T, wi =
[Wek Wy Worl" Pk = 03,00 = 0.15,w,, =
0.2(05p4, , — 0.3),wyx = 0.2(0.3p,,, — 0.2) and
wor = 0.2(0.6py,, — 0.4), with p,,, € [0,1]

(I = 1,2,3) and initial state 7o = [0.1 0.2 1]T. Moreover,
Vi € {1,2}, digy = \/(S2; — S0.k)% + (Sy, — Sy.6)? and

Sy. —8Sy. k . .
ik = O farctan(’“isi';), with s, , s,, being two known

values. Furthermore, Yy, = {y — vy, | vk = 0.02py, k —
0.01,v2,1 = 0.03py, 1 —0.01,v3 1, = 0.03py, 1 —0.02,v4 1, =
0.05p,, k — 0.03, py, 1 € [0,1],Vk = {1,2,3,4}}.
Applying all methods i) through v), one can observe from
Figure 2 that the resulting set estimates appear compara-
ble for all approaches. Upon closer examination, Table II
shows that D-CZ takes the least average computation time
followed by RRSR, D-RRSR, COMB and D-ZB, while in
terms of average set volumes, the COMB approach results
in the smallest volume followed by D-ZB, D-CZ, RRSR
and D-RRSR. Note that the computation time for D-ZB is
exceptionally large, presumably because of the specific im-
plementation in CORA 2020 [27] for converting a polytope
to its ZB representation that could result in a higher number
of zonotopes than the minimal needed to exactly represent
the same polytope. Thus, the reduction of the number of
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—i) RRSR —ii) D-RRSR —iii) D-ZB —iv) D-CZ —v) COMB
k=1 k=4
1.5- > . TS .
: *, 9 _77;;‘1 N e
] k=0 "‘ ~mmm \\\
& R \ Cmm— e =3
:.: z\"“: —— \ -
0-5 T k=2

0 01 02 03 04 05 06 07 08 09
Tk

Fig. 2: Results for Example II from the first five time steps of set-
valued state estimation, using five different approaches. Black dots
are obtained from uniform sampling of the initial state and noise
signals, and propagating through the system dynamics.

TABLE II: Average total times (seconds) and average total volumes
(107°) at each time step for five state estimators in Example II.
Each average is taken over 20 simulations with uniformly sampled
noise and initial state.

Methods: k=0 k=1 k=2 k=3 k=4
RRSR Time: 0.7719 4.2557 4.1883 2.9950 3.6747
Vol.:  4.2924 3.7834 1.6171 4.5738 4.5558
D-RRSR Time: 1.6690 42.905 45.571 28.642 50.539
Vol.:  4.0527 3.2943 1.6600 5.1036 4.8001
D-ZB Time: 1.3967 34.207 163.08 147.75 131.94
Vol.:  4.2551 2.9697 1.3248 4.2917 4.2519
D-C7 Time: 0.6020 2.1824 2.0195 2.2281 2.5908
Vol.:  4.2551 3.0793 1.4337 4.6017 4.4564
COMB Time: 0.2361 34.902 65.501 62.371 57.728
Vol.:  4.0527 2.7726 1.2220 3.9126 3.9914

zonotopes in the bundle could be an interesting future topic,
which could significantly decrease the computation time of
the D-ZB approach.

VI. CONCLUSION

Novel methods were presented in this paper for guaranteed
state estimation in bounded-error discrete-time nonlinear
systems subject to nonlinear observations/constraints using
indirect polytopic representations, i.e., using ZBs/CZs. By
considering polytopes in the space of ZB/CZ’s generators,
our recent results on remainder-form mixed-monotone de-
composition functions can be applied to compute enclosures
that are guaranteed to enclose the set of all possible state
trajectories. Further, the decomposition functions were lever-
aged to bound the nonlinear observation function to derive
the updated set, i.e., to return enclosures to the intersection
of the propagated set and the set of states that are consistent
with noisy measurements. Finally, the mean value extension-
based approach in [1] was also generalized to compute the
updated set when the observation functions are nonlinear.
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