
Computation-Aware Data-Driven Model Discrimination with Application to
Driver Intent Identification

Mohit Bhagwat, Zeyuan Jin, Sze Zheng Yong

Abstract— In this paper, we consider the problem of de-
signing a model discrimination algorithm for partially known
systems, where only sampled data of the unknown dynamics
are available. Leveraging data-driven abstraction methods to
over-approximate the unknown dynamics and an incremental
abstraction approach, we propose a method to find a pair
of piecewise affine functions that “includes” all possible tra-
jectories of the original unknown dynamics, which further
simplify the data-driven abstraction and would scale better
for high dimensional systems. Then, using the models from the
abstraction method, we analyze the detectability of these models
from noisy, finite data as well as design a model discrimination
algorithm to rule out models that are inconsistent with a
newly observed output trajectory, by checking the feasibility
of mixed-integer linear programs. Moreover, we investigate
the trade-off among the accuracy of abstraction models, the
computational cost for obtaining reduced models and the
guaranteed detection time T for distinguishing the models.
Finally, we evaluate the effectiveness of our approach on a
vehicle intent estimation example using the highD data set of
naturalistic vehicle trajectories recorded on German highways.

I. INTRODUCTION

In most driving scenarios, model detection/identification
plays an important role in safety validation and assurance
such that potential changes in other vehicles’ system be-
haviors can be quickly detected and dealt with. Since the
precise model of other vehicles is often unknown, data-driven
methods are widely used for analyzing such systems. For
instance, Gaussian process regression was used to estimate
driver actions and vehicle states in virtual car games [1],
neural network was trained to fit the dynamical model of a
scaled-down rally car [2] and a recurrent neural network was
applied to deal with potential delays within vehicle models in
an Apollo simulation system [3]. However, the performance
of these methods in real vehicles has not been rigorously
tested and most learning-based algorithms often do not
analyze the modeling errors, which might lead to failure to
satisfy safety requirements, e.g., collision avoidance. Further,
the balance between model accuracy and computation cost
should also be considered in real-time applications.

Literature Review. The model discrimination problem
seeks to determine/identify which model in a known admis-
sible model set can generate a finite sequence of measured
input-output data [4], [5]. This can be reformulated as
multiple model invalidation problems, which aim to check
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whether newly observed input-output data is compatible with
one member in the model set [6]. When their mathematical
models are given, several model invalidation algorithms
are designed for linear parameter varying systems [7], [8],
nonlinear systems [9], uncertain systems [10], switched auto-
regressive models [11] and switched affine systems [5], [12],
[13]. Moreover, the concept of T -distinguishability (or T -
detectability) is introduced for analyzing the detectability of
the models in [5], [13] to find a finite time horizon T within
which a pair of models is guaranteed to be distinguished,
if such a T exists. The notion of T -distinguishability is
closely related to the concept of state/mode distinguishability
of switched linear systems [14], [15], finite-state systems [16]
and switched nonlinear systems [17].

However, exact mathematical models (for the admissible
model set) are not always available in real-world applica-
tions. Thus, data-driven methods have been applied to iden-
tify or learn the unknown dynamics from data. The Gaussian
process regression method, clustering based method and neu-
ral networks have been developed to predict future trajecto-
ries for the vehicle [18], [19] while fully-convolutional neural
networks have been used to output both vehicle intent and
corresponding intended trajectory [20], [21]. Moreover, when
the unknown system dynamics are assumed to be Lipschitz
or Hölder continuous, algorithms for approximating upper
and lower bounding functions for the dynamics have been
proposed in [22], [23]. These approaches belong to the
class of non-parametric machine learning methods whose
computation costs grow with the size of the data set.

Contribution. In this paper, we design a model discrimina-
tion algorithm for Lipschitz continuous systems whose exact
models are not known. We first make use of a data-driven
abstraction approach in [24] to obtain system models that
over-approximate the unknown system dynamics. However,
this model retains all the original data and thus, the use of this
model will be computationally very expensive (when the data
set is large). Hence, we propose a model reduction approach
that obtains a piecewise affine abstraction with the number
of pieces as a “tuning” parameter, which is a much more
compact representation of the unknown dynamics and as
such, algorithms based on this reduced model can scale better
for high dimensional systems, while still framing/bracketing
the original unknown dynamics.

Moreover, we propose an optimization method for ana-
lyzing the detectability of the reduced models via finding
a finite time T within which the trajectories of any pair of
models must differ at at least one time instance. Furthermore,
with computation awareness in mind, we investigate the
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connection among the accuracy of the reduced abstraction
models, the computation cost for synthesizing the reduced
models and the number of time steps T required for T -
distinguishablility by adjusting the number of pieces of
the piecewise affine functions. Finally, we demonstrate the
applicability of our approach for identifying vehicle intent
by learning reduced models from the very large highD data
set of naturalistic vehicle trajectories [25].

II. PRELIMINARIES

A. Notation

For a vector v ∈ Rn, ‖v‖i denotes their i-norm with i =
{1, 2,∞}. For a set D, the size of the set is defined as |D|
while j-th element of the set is denoted as Dj .

B. Abstraction/Over-Approximation

The goal of an abstraction procedure is to over-
approximate the original (possibly unknown) function p =
f(q) : Q ⊂ Rn → R by a pair of functions f and f (i.e., to
find an abstraction model H , {f, f}) such that the function
f(·) is bounded/sandwiched by the pair of functions, i.e., f
and f satisfy the following:

f(q) ≤ f(q) ≤ f(q), ∀q ∈ Q. (1)

1) Data Driven Abstraction: If only a noisy sampled data
set D = {(q̃j , p̃j)}j=1,...,N is available, where p̃j is the noisy
measurement of f(q̃j), and the function f(·) is assumed to
be Lipschitz continuous (i.e., there exists a positive finite-
valued Lp, called the Lipschitz constant, such that ∀q1, q2
in domain of f , |f(q2) − f(q1)| ≤ Lp‖q2 − q1‖i), a data
abstraction can be found as follows.

Proposition 1. [24] Consider a unknown Lipschitz function
f(·) and its corresponding data set D = {(q̃j , p̃j)}j=1,...,N .
For all q ∈ Q, fD(·) and fD(·) are lower and upper
abstraction functions for unknown function f(·), i.e., ∀q ∈ Q,
fD(q) ≤ f(q) ≤ fD(q),

fD(q) = min
j∈{1,...,N}

(p̃j + Lp‖q − q̃j‖i) + εt, (2a)

fD(q) = max
j∈{1,...,N}

(p̃j − Lp‖q − q̃j‖i)− εt, (2b)

with selected norm i ∈ {1, 2,∞} and εt , εp + (Lp + 1)εq ,
where εp and εq are noise bounds for p̃j and q̃j , respec-
tively. Moreover, fD and fD are also Lipschitz continuous
functions with Lipschitz constant Lp.

Moreover, if the Lipschitz constant is unknown, the Lip-
schitz constant can be estimated from the data set D [24]:

L̂p = max
j 6=k

|p̃j − p̃k| − 2εp
‖q̃j − q̃k‖i + 2εq

. (3)

2) Incremental Affine Abstraction: Further, to re-
duce/simplify a function/system, we will modify/extend the
incremental affine abstraction approach in [26] to data-driven
abstraction models (2) in Section IV-B, which relies on the
following result to obtain an abstraction/over-approximation:

Proposition 2 ([27, Theorem 4.1 & Lemma 4.3]). Let Q
be an n-dimensional mesh element such that Q ⊆ Rn with

diameter δ (see definitions in [26]). Let f : Q → R be
a Lipschitz continuous function with Lipschitz constant Lp
and let fl be the linear interpolation of f(.) evaluated at
the vertices of the mesh element S. Then, the approximation
error σ defined as the maximum error between f and fl on
Q, i.e., σ = maxq∈Q(|f(q)− fl(q)|), is upper-bounded by

σ ≤
√

n
2(n+1)Lpδ.

C. Modeling Framework

Consider a constrained discrete-time nonlinear model G:
xt+1 = f(xt,wt), yt = Cxt + vt,

xt,i = f ci (zt,i), i = 1, . . . , n,
(4)

where xt ∈ X ⊂ Rn is the state vector at time t ∈
N, ut ∈ U ⊂ Rm is a input vector, yt ∈ Rn is the
measurement vector, wt ∈ W ⊂ Rn is the bounded process
noise, vt ∈ V ⊂ Rm is the bounded measurement noise,
zt,i ,

[
xt,1, . . . , xt,i−1, xt,i+1, . . . , xt,n

]>
and f ci is a state-

dependent function for state constraints.
To put this model in context, we consider the example of

a vehicle model with the state vector defined as

xt ,
[
px,t vx,t py,t vy,t

]>
, (5)

where px and py are vehicle positions, while vx and vy
are vehicle velocities along x- and y-axes, respectively. The
vehicle dynamics is given by

xt+1 = xt + [vx,t ax,t vy,t vy,t]
>∆t+ wt, (6)

ax,t = fx(px,t, py,t, vx,t, vy,t), (7)
ay,t = fy(px,t, py,t, vx,t, vy,t), (8)
py,t = f c(px,t, vx,t, vy,t), (9)

with bounded process noise wt, unknown input function
fx(·), fy(·) and state-dependent function f c(·). We assume
that the state of vehicle is fully observed with bounded
measurement noise vt:

yt = xt + vt. (10)

D. Model Discrimination

Finally, in preparation for solving the model discrimination
problem, we adopt the definition in [5] of the length-T
behavior of the original unknown model G and the abstracted
model H based on the prior sampled data D:

Definition 1 (Length-T Behavior of G). The length-T be-
havior of the original (unknown) model G is the set of all
length-T output trajectories that are compatible with G, i.e.,

BTt0(G) := {{xt,yt}t0+T−1t=t0 | ∃xt ∈ X ,yt,wt ∈ W,
vt ∈ V, for t ∈ Zt0t0+T−1, s.t. (4) hold}.

Definition 2 (Length-T Behavior of H). The length-T
behavior of the abstraction modelH is the set of all length-T
output trajectories that are compatible with H, i.e.,

BTt0(H) := {{xt,yt}t0+T−1t=t0 | ∃yt ∈ Y,wt ∈ W,
vt ∈ V, for t ∈ Zt0t0+T−1, s.t. (1), (4) hold}.

Using the above definitions of system behaviors as well
as the fact that H is an abstraction of G (by construction),
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we can conclude that BTt0(G) ⊆ BTt0(H).

III. PROBLEM STATEMENT

We now state the data-driven model discrimination prob-
lem that we consider in this paper. In particular, we want to
determine how long it takes for models in a model set to be
distinguished from each other given finite data:

Problem 1 (Detectability Analysis for a Set of Models
{Gl}Nm

l=1). Given a set of constrained nonlinear models,
{Gl}Nm

l=l , and a time horizon T , determine whether the set
of models are T -distinguishable/detectable, i.e., whether ∃t0
such that: ⋂Nm

l=1 BTt0(Gl) = ∅. (11)

Problem 2 (Model Discrimination for {Gl}Nm

l=1). Given an
output trajectory {yt}t0+T−1t=t0 , a set of constrained nonlinear
models {Gl}Nm

l=l and a finite horizon T , determine which
model the trajectory belongs to, i.e., find an i that for some
t0 satisfies
BTt0(Gi) 6= ∅ ∧ (BTt0(Gj) = ∅,∀j ∈ ZNm

1 , j 6= i). (12)

Since only a prior data set DG from the original model G
with unknown dynamics is available, we propose to instead
solve auxiliary problems with abstraction models, i.e., over-
approximations of the models, which, if solved, also provide
solutions to the above problems, i.e., in lieu of solving
Problems 1 and 2, we will solve the following:

Problem 1. 1 (Detectability Analysis for a Set of Abstrac-
tion Models {Hl}Nm

l=1). Given a set of abstraction models,
{Hl}Nm

l=1 and a time horizon T , determine whether the set of
models are T -distinguishable, i.e., whether ∃t0 such that:⋂Nm

l=1 BTt0(Hl) = ∅. (13)

Problem 2.1 (Model Discrimination for {Hl}Nm

l=1). Given an
output trajectory {yt}t0+T−1t=t0 , a set of abstraction models
{Hl}Nm

l=1 , and a finite horizon T , determine which model the
trajectory belongs to, i.e., find an i that for some t0 satisfies

BTt0(Hi) 6= ∅ ∧ (BTt0(Hj) = ∅,∀j ∈ ZNm
1 , j 6= i). (14)

A good candidate for an abstraction model in the above
auxiliary problems is the data-driven abstraction model HD
obtained by applying Proposition 1. However, the computa-
tional time associated with this model will grow drastically
with increasing size of the data set and state dimension.
Therefore, we also propose to reduce its model complexity
by addressing the following model reduction problem to
obtain a reduced abstraction H for Problems 1.1 and 2.1:

Problem 3 (Model Reduction of Data-Driven Abstraction).
For a set of N sampling data points DG and its corresponding
data-driven abstraction HD , {fD, fD}, find a pair of
upper and lower piecewise affine functions f and f (i.e.,
H , {f, f}) such that:

f(q) ≤ fD(q) ≤ f(q) ≤ fD(q) ≤ f(q), ∀q ∈ Q, (15)

where f(·) : Q ⊂ Rn → R is the original unknown dynamics
of the system, and fD, fD are defined in Proposition 1.

Algorithm 1: Data Pre-Processing
Data: D = {(q̃`, p̃`)|` = 1, . . . , N}, δq

1 function dataProcess(D, δq)
2 Dp = {};
3 while D 6= ∅ do
4 DN = {D1}; i = 2;
5 while i ≤ |D| do
6 if ||s̃i − µDN || ≤ δx then
7 DN ← Di;
8 Remove Di from D;
9 else

10 i← i+ 1
11 end
12 end
13 Calculate a new point (µq, µp, εp, εq) using (16);
14 Dp ← (µq, µp, εq, εp);
15 end
16 return Dp

Since the accuracy of this simplified modelH is dependent
on the number of pieces/subregions in the piecewise affine
functions, we will further investigate the impact of varying
the number of pieces on the computation time to find model
H and the detection time T to distinguish all models.

IV. MAIN APPROACH

In this section, we first present a data pre-processing
algorithm for naturalistic data and modify the incremental
abstraction method to address Problem 3. Next, we adopt an
optimization-based approach to solve Problem 1.1 (and, in
turn, Problem 1) and Problem 2.1 (and, in turn, Problem 2).

A. Data Pre-Processing

Trajectories obtained from naturalistic data sets may have
the same input q̃i = q̃j with different outputs p̃i 6= p̃j . When
directly applying Proposition 1 to these points, the procedure
in (2) will choose the smaller p̃ for the upper function f(·)
and the larger p̃ for the lower function f(·) so that f(·) will
be above the f(·) when s = q̃i or q̃j . However, this leads to
a violation of the desired abstraction properties. To address
this concern, we propose a data pre-processing method in
Algorithm 1 such that the data-driven abstraction satisfies
the desired abstraction properties in (2). We first select a
constant δq and build a set DN consisting of adjacent data
points. Instead of treating these data points separately, we
replace these points with a single data point (µq, µp) with
adjusted noise levels εq and εp using the following equations:

µq =
∑|DN |

j=1 q̃j

|DN | , εq = max
j∈Z|DN |

1

‖q̃j − µq‖i,

µp =
∑|DN |

j=1 p̃j

|DN | , εp = max
j∈Z|DN |

1

|p̃j − µp|.
(16)

B. Model Reduction

1) Incremental Affine Abstraction: To reduce the com-
plexity of the data-driven abstraction model and overcome
the limitations on space complexity for high dimensional
systems, we now extend/modify the result in [26] to incre-
mentally find a new abstraction modelH to simplify the data-
driven abstraction model HD using Algorithm 2 (see also
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Algorithm 2: Procedures of Incremental Abstraction
1) Initialize k = 1, R0 = ∅ =⇒ V0 = ∅.
2) At increment k, consider a new sample set
S ′k = (Rk \ Rk−1) ∪ Vk−1 of size c, where the set
(Rk \ Rk−1) 6= ∅ denotes the newly added grid points
such that Rk is expanding with k.

3) For the sample set C′k, use Lemma 1 to obtain
hyperplanes Fk = {fk, fk} that over-approximate the
data driven abstraction over S ′k.

4) Go to step 2 with k = k + 1 if k < κ.
5) After obtaining the final hyperplanes
Fκ = {f

κ
(q), fκ(q)}, the affine abstraction over the

domain Q for the system (4) is:

f(q) = Eκq + Fκ + σ1n,

f(q) = Eκq + Fκ − σ1n,
where σ is the approximation error in Proposition 2.

the relevant definitions in [26]), to incrementally solve the
abstraction problem, where a sequence of linear problems are
solved with expanding operating regions with a subroutine
given in the following lemma.

Lemma 1. Given the affine abstraction model Fk−1 =
{f

k−1(q), fk−1(q)} for the the data driven abstraction
(f
D

(q), fD(q)) over an operating regionRk−1, at increment
k, solving the following problem over the sample set C′k =
(Rk \ Rk−1) ∪ Vk−1, where Vk−1 , V er(Conv(Rk−1)),
obtains an affine abstraction1 of f(q) over Rk:

minθk,Ek,Ek,Fk,Fk
θk (4)

subject to:
∀q ∈ Rk \ Rk−1 :

Ek q + F k ≥ fD(q),
Ek q + F k ≤ fD(q),

(17a)

∀(q) ∈ Vk−1 :

Ek q + F k ≥ Ek−1 q + F k−1,
Ek q + F k ≤ Ek−1 q + F k−1,

(17b)

∀q ∈ Vk = V er(Conv(C′k)) :

(Ek − Ek) q + F k − F k ≤ θk1n, (17c)

where the definitions of V er and Conv and further details
can be found in [26].

Proof. The construction follows similar steps as in [26].
2) Partitions: Moreover, to further reduce the conser-

vatism of the abstraction models, we extend our abstraction
methods to consider multiple subregions/partitions, and the
mesh-based abstraction is provided in Algorithm 3, with the
abstraction method of a single subregion (see Algorithm
2) as the abstraction function. We first partition the
given initial region (bound) into multiple subregions, where
each subregion is hyperrectangular. For simplicity, in this

1For brevity, we only provide the linear program for when the abstraction
error is defined with p = ∞. Corresponding formulations for p = {1, 2}
can be obtained with slight modifications, where we have a linear program
when p = 1, and a quadratically constrained linear program when p = 2.

Algorithm 3: Abstraction for Multiple Subregions

Data: fD , f
D

, bound = S, resolution r
1 function Partition(fD, fD

, bound, r, εf)
2 I ← divBounds(bound)
3 for i = 1 : 2n do
4 cell{i} = abstraction(fD, fD

, Ii, r)
5 end
6 return (cell, I)
1 function divBounds(bound)
2 Refer to Section IV-B.1 for its description
3 return (subBounds)
1 function abstraction(fD, fD

, bound, r)
2 Refer to Algorithm 2 for its description
3 return (f, f)

paper, we present the function divBound to divide the state
domain into a region set I = {I1, . . . , Imn} by uniformly
partitioning each interval [q

j
, qj ], ∀j ∈ Zn1 into m subinter-

vals of width
qj−qj
m . Now, we have mn subregions denoted

by subBounds and the i-th subregion can be represented by
Siq ≤ βi. Then, the abstraction function can be carried
out to obtain f j and f

j
for each subregion Ij .

3) Complexity Analysis: If the data set size is Nn and the
computation cost for the norm ‖q−qj‖i is d, the computation
cost to predict f(q) and f(q) for data-driven abstraction
will be O(dNn) as shown in [23], while the computation
cost of our reduced model will be O(nM) if the number
of subregions is M . Further, the space complexity will be
reduced from O(nNn) to O(nM). Since M � Nn and
n ≤ d, both computation and space cost can be greatly saved.

C. Model Discrimination and T-Detectability

1) Abstraction Model: Armed with the abstraction tools
described in Proposition 1 and Section IV-B, a “simpler”
piecewise affine model H can be obtained from the data
set DG of an unknown original model G. Considering the
vehicle model in (6) as an illustrative example, we can find
the piecewise affine abstractions for fx(·), fy(·) and f c(·):

Ef
x

i x + F f
x

i ≤ f
x(x) ≤ Ef

x

i x + F
fx

i ,∀Six ≤ βi, (18a)

Ef
y

i x + F f
y

i ≤ f
y(x) ≤ Ef

y

i x + F
fy

i ,∀Six ≤ βi, (18b)

Ef
c

j z + F f
c

j ≤ f
c(z) ≤ Ef

c

j z + F
fc

j ,∀Qjz ≤ αj , (18c)

where i ∈ Zqx1 , j ∈ Zqz1 and z = T zxx while T zx =1 0 0 0
0 1 0 0
0 0 0 1

. Note that the partitions of fx(·) and fy(·)

can be different to achieve more accurate models but we
assume them to be the same for simplicity in this paper.

Then, the state equation can be written as follows:

Aixt+hi+w ≤ xt+1 ≤ Aixt+hi+w,∀Sixt ≤ βi, (19)

with Ai =


[
1 ∆t 0 0

][
0 1 0 0

]
+ Ef

x

i ∆t[
0 1 0 ∆t

][
0 1 0 0

]
+ Ef

y

i ∆t

 and hi =


0

F f
x

i ∆t
0

F f
y

i ∆t

,

and Ai and hi can be similarly defined with E
fx

i , E
fy

i , F
fx

i
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and F
fy

i . Furthermore, the state-dependent constraint (9) can
be equivalently written as:

Ef
c

j zt + F f
c

j ≤ T
zx ≤ Ef

c

j zt + F
fc

j ,∀Qjzt ≤ αj , (20)

where zt = T zxxt and T z =
[
0 0 1 0

]
. This equation

can be further simplified to

Bjxt ≤ bj , ∀QjT zxxt ≤ αj , (21)

where Bj =

[
T z − Ef

c

j T
z
x

Ef
c

j T
z
x − T z

]
and bj =

[
F
fc

j

−F f
c

j

]
.

2) Detectability Analysis: Next, we present a T -
distinguishability algorithm to find the guaranteed detection
time T (i.e., to solve Problem 1.1) by solving the optimiza-
tion problem below with increasing T :

Theorem 1 (T -Distinguishability/T -Detectability). A pair
of constrained abstracted piecewise affine inclusion models
Hi and Hj , i 6= j is T -distinguishable if the following is
infeasible for any t0 (with a search over t0):

Find x?t ,w
?
t ,v

?
t ,yt, a

?
σ,t, s

?
σ,t, ã

?
σ̃,t, s̃

?
σ̃,t

s.t. ∀t ∈ Zt0t0+T−1, σ ∈ Zqs1 , σ̃ ∈ Zqy1 , ? ∈ {i, j} :

x?t+1 ≤ A
?

σx
?
t + h

?

σ + w?
t + s?σ,t1m, (22a)

x?t+1 ≥ A
?
σx

?
t + h?σ + w?

t − s?σ,t1m, (22b)
S?σx

?
t ≤ β?σ + s?σ,t1n, (22c)

B?σ̃x
?
t ≤ b?σ̃ + s̃?σ̃,t1(2n−2), (22d)

Q?σ̃T
z
xxt ≤ α?σ̃ + s̃?σ̃,t1(n−1), (22e)

yt = Cxt + v?t , (22f)
a?σ,t ∈ {0, 1}, ã?σ̃,t ∈ {0, 1}, (22g)
SOS-1 : (a?σ,t, s

?
σ,t), SOS-1 : (ã?σ̃,t, s̃

?
σ̃,t), (22h)∑qs

σ=1 a
?
σ,t = 1,

∑qy
σ̃=1 ã

?
σ̃,t = 1, (22i)

where s?σ,t and s̃?σ̃,t are slack variables, s?σ,t or s̃?σ̃,t is free
when a?σ,t or ã?σ̃,t is zero and zero otherwise (by virtue of
the special ordered set of degree 1 (SOS-1) constraint).

Proof. a?σ,t = 1 imply that (22a)–(22c) hold, since the SOS-
1 constraints in (22h) ensure that s?σ,t = 0. On the contrary,
if a?σ,t = 0, then s?σ,t is free and (22a)–(22c) hold trivially.
Similarly, ã?σ̃,t = 1, or ã?σ̃,t = 0 implies that (22d)–(22e)
hold. In addition, (22i) ensures that, at each time step t,
only one partition is valid for each of the state and output
equations. Therefore, if the above problem is infeasible, it
means that there exists no common behavior that is satisfied
by both models, i.e., BTt0(Hi)

⋂
BTt0(Hj) = ∅; hence, the

pair of models is distinguishable from each other.

3) Model Discrimination: Further, we present a model
invalidation algorithm that enables us to discriminate among
all models, i.e., to solve Problem 2.1, using Algorithm 4, if
all model pairs are T -distinguishable according to Theorem
1. If not all pairs are T -distinguishable, Algorithm 4 will
instead return the set of all models that are consistent with
the given input-output data up to the current time step tc.

Theorem 2. Given a piecewise affine abstraction model
H` and a length-T input-output sequence {yt}k=tct=tc−T+1 at
time tc, the model is invalidated if the following problem is

Algorithm 4: Model Discrimination with Length T

Data: Models {Gl}Nm
l=1 ,

Input-Output Sequence = {xt , yt}t0t=t0−T+1

1 function findModel({Gl}Nm
l=1 , {xt , yt}

t0
t=t0−T+1)

2 valid← {Gl}Nm
l=1 ;

3 for l = 1 : Nm do
4 Check Feasibility of Theorem 2;
5 if infeasible then
6 Remove l from valid;
7 end
8 end
9 return valid

infeasible:

Find xt,wt,vt, ai,t, si,t, ãj,t, s̃j,t,

s.t. ∀t ∈ Ztc−T+1
tc , i ∈ Zqs1 , j ∈ Zqy1 :

xt+1 ≤ Aixt + hi + wt + si,t1n, (23a)
xt+1 ≥ Aixt + hi + wt + si,t1m, (23b)
Sixt ≤ βi + si,t1n, (23c)
ai,t ∈ {0, 1}, SOS-1 : (ai,t, si,t)

∑ns

i=1 ai,t = 1, (23d)
Bjxt ≤ bj + s̃j,t1(2n−2), (23e)
QjT

z
xxt ≤ αj + z̃j,t1(n−1), (23f)

ãj,t ∈ {0, 1}, SOS-1 : (ãj,t, s̃j,t)
∑qy
j=1 ãj,t = 1, (23g)

yt = Cxt + vt, (23h)

where si,t and s̃j,t are slack variables and si,t or s̃j,t is free
when ai,t or ãj,t is zero and zero otherwise (by virtue of the
special ordered set of degree 1 (SOS-1) constraint).

Proof. The construction follows similar steps to Theorem 1,
but with only one model and with a given data sequence.

V. CASE STUDY AND DISCUSSION

In this section, we demonstrate an implementation of the
above defined algorithms for data-driven abstraction, model
reduction, T -detectability and model invalidation using the
highD data set consisting of naturalistic vehicle trajectories
on German highways [25]. Specifically, we consider 3 dis-
tinct models, namely a collection of vehicles changing lanes
in the left direction (‘Left Turn’), changing lanes in the
right direction (‘Right Turn’) and moving straight within the
same lane (‘Lane Keeping’). All simulations were done using
MATLAB on a remote computing facility, Agave at Arizona
State University, with the specification of 16 GB of memory.

A. HighD Data Set and Data Pre-Processing

In this section, we describe the highD data set and the
data preparation/pre-processing we employed to simplify the
use of various optimization algorithms defined in Section IV.
The highD data includes detailed information about vehicles
that pass over the designated highway over a certain period.
The total amount of data available to use included trajectories
from around 100, 000 vehicles out of which a subset of it was
chosen to be the training set for obtaining the abstraction
and a few other trajectories were extracted as the test set
for implementing model invalidation. The data consists of
the coordinates, along with the velocities and acceleration
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Fig. 1: Illustration of piecewise affine and data- driven
abstractions of the unknown state-dependent function py =
f c(px).

of the vehicles in the corresponding directions. In the data
set, forward motion is chosen as the positive x direction
and lane change is incorporated as lateral movement and a
change in the y direction. The raw data is also normalized so
that the vehicle trajectories always start from the origin. We
use the vehicle model described in Section II-C and consider
three vehicle intent models: Left Turn (Model I), Right Turn
(Model II) and Lane Keeping (Model III).

B. Simulation Results

1) Abstraction Models: Figure 1 depicts the resulting
abstraction models. Specifically, the ‘kinky’/ragged upper
and lower functions represent the data-driven abstraction via
Proposition 1, while the shaded piecewise region is obtained
by implementing the model reduction algorithm to the data-
driven abstraction using Algorithm 2. The piecewise affine
abstraction obtained is such that it encapsulates the ‘kinky’
data-driven abstraction and further helps in the simplifica-
tion of the optimization problem for T -detectability and
model invalidation. Both abstractions are further observed
to encapsulate/over-approximate (some representative) actual
data points on which these abstractions are based, as desired.

2) T -Detectability: The algorithm for T -detectability/T -
distinguishability is implemented on the piecewise abstrac-
tion of a pair of models, from the 3 vehicle intentions. Vary-
ing numbers of subregions are considered for the piecewise
abstraction and the corresponding detection times T and the
CPU usage times are compared in Table I. From the table,
it is evident that as the number of subregions increases, a
larger number of optimization constraints have to be satisfied
for each region and more binary variables are needed; as a
result, the computation time clearly increases. Nonetheless,
increasing the number of subregions is justified as it increases
the closeness of the piecewise abstraction with the over
approximated ’kinky’ surface. However, the detection time
T for all model pairs eventually plateaus. Consequently,
increasing the number of regions is only justified up to a
certain limit, beyond which the detection time would remain
the same but the computation time is unnecessarily high.

3) Model Discrimination: Using the piecewise abstraction
obtained, we implemented the model discrimination algo-

TABLE I: Comparison of guaranteed detection time T for
all model pairs, implemented for different numbers of sub-
regions in the piecewise affine abstraction models.

No. of regions, N 2 3 4

(i) Model I &
Model II

T 167 165 171
CPU Time (s) 94.55 409.69 1330.2

(ii) Model II &
Model III

T 212 223 206
CPU Time (s) 114.80 587.20 1513

(iii) Model I &
Model III

T 172 179 167
CPU Time (s) 101.54 403.86 1363.5

TABLE II: Comparison of model invalidation results for
three different test trajectories, implemented for different
numbers of subregions in the piecewise affine abstractions.

No. of regions, N 2 3 4

(i) Model I tmax 128 113 114
CPU Time (s) 42.05 132.63 535.38

(ii) Model II tmax 158 169 157
CPU Time (s) 94.11 198.27 551.56

(iii) Model III tmax 98 98 98
CPU Time (s) 40.03 127.153 483.45

rithm, where test trajectories were (in)validated for three
different models that were learned. An illustration of the
model discrimination results is shown in Figure 2, where
three different test trajectories are (in)validated and the corre-
sponding time step t is computed for when the trajectories are
invalidated. The valid and invalid trajectories are represented
by a flag, where 1 represents that the test trajectory belongs
to the candidate model and a flag of 0 corresponds to that
candidate model being invalidated for the trajectory.

The model discrimination problem was then compared
for different numbers of subregions in the model reduction
algorithm. The values are compared in terms of the max-
imum time taken, tmax to invalidate a trajectory and the
computation time taken to solve the optimization problem.
The comparison is shown in Table II. Similar to the con-
clusions obtained from the comparison of T -detectability
for the different number of partitions, it is also clear that
the computation time increases with the increase in the
number of partitions for model invalidation as well. The
more the number of subregions/pieces chosen, the more
accurate is the model, but after a certain number of pieces,
the maximum steps required to invalidate the model plateaus.
Thus, the computation time can be optimized by choosing
the most appropriate number of subregions corresponding to
the plateau value with the minimum CPU time.

VI. CONCLUSIONS

In this paper, we considered a model discrimination prob-
lem for Lipschitz continuous systems whose exact models
are not known. We leveraged tools for incremental affine
abstraction and data-driven abstraction to find simpler in-
clusion models for the unknown dynamics and proposed
detectability analysis and model discrimination algorithms to
estimate the true model using newly observed noisy data by
checking the feasibility of the corresponding mixed-integer
linear programs. Moreover, for the sake of computation
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(a) Model I (b) Model II (c) Model III

Fig. 2: Sampled state trajectories (top row) and the corresponding model discrimination results (bottom row). In the state
trajectory figure, solid lines denote the trajectories of three models and shadowed regions correspond to abstraction models
with 4 regions. In the (bottom) figures depicting the model discrimination results, for i ∈ {I, II, III}, Flag i is 1 when the
corresponding model i is validated and is 0, if invalidated. Model discrimination is achieved when only one Flag is 1.

awareness, we explored the trade-off among the accuracy
of the abstraction models, the detectability time T and the
computational cost in simulations. The effectiveness of our
approach is illustrated on a vehicle intent estimation example
using the highD data set consisting of naturalistic vehicle
trajectories recorded on German highways.
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