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Integrated Passive-Active Model Identification
With Tunable Model Discrimination for Affine

Discrete-Time Systems
Changrui Liu , Qiang Shen , Member, IEEE , Ruochen Niu , and Sze Zheng Yong , Member, IEEE

Abstract—This letter proposes a passive-active model
identification algorithm for affine discrete-time systems
that integrates active model discrimination (AMD) and
model invalidation (MI). A look-up tree consisting of control
inputs is constructed offline for this integrated model iden-
tification (IMI) technique to discriminate among models in
a time-varying model set, which is only known at run time
when repeatedly applying MI online. Furthermore, a novel
tunable AMD (TAMD), with its mixed-integer linear program-
ming (MILP) formulation, is proposed and combined with
the IMI algorithm, which can improve model discrimina-
tion performance. The effectiveness of the proposed IMI
algorithm is demonstrated through simulations for identi-
fying intention models of human-driven vehicles in a lane
changing scenario.

Index Terms—Model validation, fault diagnosis,
estimation.

I. INTRODUCTION

MODEL identification of system internal states (i.e., inten-
tion, fault or mode of operation) is an essential task for

cyber-physical systems and is widely applicable to many engi-
neering problems, e.g., achieving better collaboration among
agents in networked control [1], detecting unknown malfunc-
tions for safety critical systems [2], distinguishing the mode
of operation for autonomous systems [3]. Thus, it is of great
importance to develop model identification tools.

Literature Review: Model identification approaches have
been well developed in the area of autonomous driving [3],
smart building [4] and biochemical networks [5], and can
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be broadly categorized as passive and active methods. For
traditional passive methods [4], [6], including MI, identi-
fication is achieved by passively utilizing the input-output
sequence to falsify the unmatched models. Other exten-
sions such as probabilistic MI [7] and MI using set-valued
observer [8] have also been proposed. Unlike passive meth-
ods where inputs are not controlled, active methods design
control inputs to actively influence the system behavior,
which further assists the identification. One typical active
method is AMD [3], [9], and its various variations, e.g., out-
put feedback AMD [10], AMD with affine abstraction [11],
multi-parametric AMD [12] and state-partitioned AMD [13].
Moreover, in [14], a closed-loop approach using a set-
valued observer in a moving horizon framework is introduced.
However, all these methods only ensure the separation between
models at an unknown instance within the horizon, while when
and how the models are separated fails to be well controlled.
Another crucial issue is that, in practice, some models can be
invalidated before the end of the time horizon if MI is applied
at intermediate time steps, which reveals that current AMD
techniques may generate inputs that are unnecessarily conser-
vative for real applications since they implicitly assume that
all models are possible candidates within the entire horizon.

Contributions: In contrast to passive methods that may fail
to uniquely determine the true model and active methods that
may apply overly conservative control inputs, we propose a
more intelligent passive-active MI algorithm which solves the
model identification task by probing the system with sepa-
rating control inputs designed by AMD while continuously
monitoring the valid models by MI at each time step. Since
this integrated model identification (IMI) algorithm requires
the AMD problem to discriminate among models in a time-
varying model set which depends on the results of MI at run
time, we propose an integrated algorithm that computes an
IMI tree consisting of control inputs computed by AMD. This
approach resembles the closed-loop AMD in [14] but involves
MI instead of a conservative zonotope observer.

Moreover, to enable control of the separation index for each
time segment of the time horizon, we propose a tunable AMD
(TAMD) technique that allows weighting parameters in the
optimization formulation of TAMD. TAMD improves on AMD
by providing more design flexibility in terms of tunable sepa-
ration indices to incorporate desired separation performance
such as a preference for an early separation. In addition,
TAMD is empirically found to result in significantly reduced
computational time when compared to traditional AMD. Thus,
this novel approach can benefit various applications such as
active fault diagnosis and intent identification.
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II. PRELIMINARIES

A. Notation and Definitions
Let x ∈ R

n denote a vector with x[k] and ‖x‖i(i ∈ {1, 2,∞})
being its k-th element and vector norm. M ∈ R

n×m is a matrix
with M�, M[:, k] and M[k, :] being its transpose, k-th column
and k-th row, respectively. M ≥ 0 (x ≥ 0) denote element-
wise non-negativity. 0, 1 and I are zero vector, one vector
and identity matrix, respectively. The set of positive integers
up to n is Z

+
n , and Z

i
j denotes non-negative integers from i to

j (0 ≤ i ≤ j). Further, we define operators diag and vec for
matrices (vectors) as:

diag
N
{Mi} = IN ⊗Mi, vec

N
{Mi} = 1N ⊗Mi,

diag
i,j
{Mk} =

[
Mi 0
0 Mj

]
, vec

i,j
{Mk} =

[
Mi
Mj

]
,

j
diag
k=i
{Mk} =

⎡
⎣

Mi
. . .

Mj

⎤
⎦,

j
vec
k=i
{Mk} =

⎡
⎣

Mi
...

Mj

⎤
⎦,

where i, j ∈ Z
+
n and ⊗ is the Kronecker product.

Definition 1 (Linear Partition): A linear partition of integer
set Zi

j is a collection of � disjoint integer subsets Zτ

τ (τ ∈ Z
+
� )

for any τ , τ that satisfy i := 1 ≤ 1, 1+1 =: 2 ≤ 2, . . . , l− 1+
1 =: l ≤ l := j. The linear partition is complete if � = j− i+1.

Definition 2 (Reduced Power Set (RPS)): Given a set
S with its power set 2S , its RPS is defined as
2Sre := {Si ∈ 2S : |Si| ≥ 2}. The RPS of Z+n is denoted as 2n

re.

B. Modeling Framework
Consider systems with N distinct models, each model Gi is

a discrete-time affine time-invariant process as:
x̄i(k + 1) = Aix̄i(k)+ [Bu,i, Bd,i]ūi(k)+ Bw,iwi(k)+ fi, (1)

zi(k) = Cix̄i(k)+ Dv,ivi(k)+ gi, (2)
where x̄i ∈ R

n is the states, ūi ∈ R
m is the inputs, zi ∈ R

nz is
the outputs, wi ∈ R

mw and vi ∈ R
mv are the process noise and

the measurement noise, respectively.
The initial condition of model i, denoted by x̄0

i = x̄i(0), is
constrained to a polyhedral set with c0 inequalities:

x̄0
i ∈ X0 = {x̄ ∈ R

n : P0x̄ ≤ p0}, ∀i ∈ Z
+
N . (3)

The inputs consists of controllable inputs u ∈ R
mu and

model-dependent uncontrolled disturbances di ∈ R
md . At

any time instant k, the controls and disturbances are also
constrained to polyhedral sets with cu and cd inequalities:

u(k) ∈ U = {u ∈ R
mu : Quu ≤ qu}, (4)

di(k) ∈ Di = {d ∈ R
md : Qd,id ≤ qd,i}. (5)

Subsequently, the states are also divided as x̄i =
[x�i , y�i ]�, where xi ∈ R

nx denotes the controlled states
that are associated with u and yi ∈ R

ny denotes uncon-
trolled states that are only perturbed by di. Both the con-
trolled and uncontrolled states need to satisfy, respectively,
their corresponding polyhedral constraints with cx and cy
inequalities:

xi(k) ∈ Xx,i = {x ∈ R
nx : Px,ix ≤ px,i}, (6)

yi(k) ∈ Xy,i = {y ∈ R
ny : Py,iy ≤ py,i}. (7)

The process and measurement noise wi, vi are also polyhe-
drally constrained with cw and cv inequalities, respectively:

wi(k) ∈W i = {w ∈ R
mw : Qw,iw ≤ qw,i}, (8)

vi(k) ∈ V i = {v ∈ R
mv : Qv,iv ≤ qv,i}. (9)

C. Time & Pair Concatenation
Given time horizon T , we first introduce time-concatenated

notation for variables of model i as follows:

•+i,t =
t

vec
k=1
{•i(k)}, •i,t = t

vec
k=0
{•i(k)},

where • ∈ {x̄, x, y, d, w, v, z} and t ∈ Z
+
T . Next, with N models,

there are I = (N
2

)
model pairs in total and let ν ∈ Z

+
I denote

the pair index for model pair (i, j). Then, we construct pair-
concatenated notations as follows:

•+ν,t = vec
i,j
{•+k,t}, •ν,t = vec

i,j
{•k,t},

as well as pair-concatenated initial states x̄0
ν = veci,j{x̄0

k} and
time-concatenated controls ut = vect

k=0{u(k)}.
Likewise, all the matrices and vectors in from (5) to (9) are

first time-concatenated as follows:
P̄t�,i = diag

t
{P�,i}, Q̄t

�,i = diag
t
{Q�,i},

p̄t�,i = vec
t
{p�,i}, q̄t

�,i = vec
t
{q�,i},

where � ∈ {x, y} and � ∈ {d, w, v}.
Then, pair-concatenation follows directly as follows:

P̄t�,ν = diag
i,j
{P̄t
�,k}, Q̄t

�,ν = diag
i,j
{Q̄t

�,k},
p̄t�,ν = vec

i,j
{p̄t
�,k}, q̄t

�,ν = vec
i,j
{q̄t

�,k}.
For the constraints in (4), we consider time-concatenation

Q̄t
u = diagt{Qu} and q̄t

u = vect{qu}, while for constraints
on the initial states in (3), only trivial concatenation P̄0 =
diag2{P0} and p̄0 = vec2{p0} are required.

Based on the model dynamics (1) and (2), we can obtain
the time-concatenated dynamics for t ∈ Z

+
T as follows:

x̄+i,t = Mt
i x̄

0
i +�t

uiut−1 + �t
didi,t−1 + �t

wiwi,t−1 + f̄ t
i , (10)

x+i,t = Mx,t
i x̄0

i +�
x,t
ui ut−1 + �

x,t
di di,t−1 + �

x,t
wi wi,t−1 + f̄ x,t

i , (11)

y+i,t = My,t
i x̄0

i +�
y,t
ui ut−1 + �

y,t
di di,t−1 + �

y,t
wi wi,t−1 + f̄ y,t

i , (12)

z+i,t = C̄t
i x̄

0
i + Ē

t
uiut−1 + D̄t

didi,t−1 + D̄t
wiwi,t−1 + D̄t

viv
+
i,t + θ̄ t

i . (13)
The matrices of pair-concatenated dynamics can simply be
built upon the matrices and vectors in from (10) to (13) given
in the Appendix. For pair ν = (i, j), the following holds:

§(�),t
(�)ν = diag{§(�),t

(�)i , §(�),t
(�)j }, ‡(�),t

(u)ν = vec{‡(�),t
(u)i , ‡(�),t

(u)j },
where § ∈ {M, �, C̄, D̄} and ‡ ∈ {�, Ē, f̄ , θ̄}.

Moreover, the uncertain variable for model i is defined
as x̄i,t = vec{x̄0

i , di,t−1, wi,t−1, v+i,t}. Similarly, for model
pair ν, we have x̄ν,t = vec{x̄0

ν, dν,t−1, wν,t−1, v+ν,t}.
Correspondingly, we form Ht

x̄,i = diag{P0, Q̄t
d,i, Q̄t

w,i, Q̄t
v,i},

ht
x̄,i = vec{p0, q̄t

d,i, q̄t
w,i, q̄t

v,i} for x̄i,t such that Ht
x̄,ix̄i,t ≤ ht

x̄,i
follows as combined model uncertainty constraints. Also, for
x̄ν,t, we build Ht

x̄,ν = diag{P̄0, Q̄t
d,ν , Q̄t

w,ν , Q̄t
v,ν} and ht

x̄,ν =
vec{p̄0, q̄t

d,ν , q̄t
w,ν , q̄t

v,ν} such that pair uncertainty constraints
Ht

x̄,ν x̄ν,t ≤ ht
x̄,ν is established.

Finally, we can rewrite time-concatenated dynamics in terms
of the uncertain variable as follows:

x̄+i,t = 	t
ix̄i,t +�t

uiut−1 + f̄ t
i , (14a)

x+i,t = 	
x,t
i x̄i,t +�

x,t
ui ut−1 + f̄ x,t

i , (14b)

y+i,t = 	
y,t
i x̄i,t +�

y,t
ui ut−1 + f̄ y,t

i , (14c)

z+i,t = 
 t
i x̄i,t + Ē

t
uiut−1 + θ̄ t

i , (14d)
and pair-concatenated dynamics similarly as follows:

y+ν,t = 	y,t
ν x̄ν,t +�y,t

uνut−1 + f̄ y,t
ν , (15a)
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z+ν,t = 
 t
ν x̄ν,t + Ē

t
uνut−1 + θ̄ t

ν , (15b)

where in (14), 	
(�),t
i = [M(�),t

i , �
(�),t
di , �

(�),t
wi , 0], 
 t

i =
[C̄t

i, D̄t
di, D̄t

wi, D̄t
vi], and in (15), 	

y,t
ν = [My,t

ν , �
y,t
dν , �

y,t
wν, 0],


 t
ν = [C̄t

ν, D̄t
dν, D̄t

wν, D̄t
vν].

III. PROBLEM FORMULATION

In this section, detailed formulations of the TAMD, online
MI and IMI tree construction will be given.

A. Tunable Active Model Discrimination (TAMD)
The function of TAMD is twofold. First, it designs a sep-

arating input which, if being applied, makes the reachable
output set of any pair of models have no intersection (i.e.,
completely separated) for at least one time instant within time
horizon T , taking all possible realizations of uncertainty into
account. Second, the extent to which the models are separated
and when the complete separation is enforced are controlled
by tuning the weights in the TAMD formulation.

Consider a linear partition of Z0
T that results in Z

τ

τ (τ ∈ Z
+
� )

segments. For each segment τ , the output trajectories of any
pair of models have to differ by a threshold ετ −sτ for at least
one instant, where ετ is the preset desired separation and sτ

denotes the soft variable describing the violation of the desired
separation. Also, we introduce binary variables aτ such that
aτ = 1 implies sτ ≤ 0, which leads to

sτ ≤ M(1− aτ ), ∀τ ∈ Z
+
� , (16)

where M is a big constant. To achieve desired separation for
at least one segment starting from segment κ , we have

�∑
τ=κ

aτ ≥ 1, (17)

Subsequently, the problem of TAMD is formally defined as:
Problem 1 (Tunable Active Model Discrimination): Given

a system consisting of N well-posed [3] affine models Gi, a
linear partition of Z

+
T with preset desired separation ετ (τ ∈

Z
+
� ), the set of indices of remaining possible valid models

Vt ∈ 2N
re at time instant t ∈ Z

0
T−1 with t belonging to the κth

segment of the partition, and fixed control inputs from 0 to
t− 1 denoted as u∗t−1, design an optimal control inputs uT−1,
such that for all possible initial states x̄0

i , uncontrolled inputs
di,T−1, process noise wi,T−1, measurement noise v+i,T , and for
all κ ≤ τ ≤ �, the output trajectories starting from t+1 of any
pair of models in Vt have to differ by a threshold ετ − sτ in at
least one time instance within time segment τ . This problem
is mathematically stated as follows:

u∗T−1 = arg min
uT−1,sτ

J(uT−1)+
�∑

τ=κ

λτ sτ

s.t. ∀k ∈ Z
t
T−1 : (4) holds, (18a)

∀k ∈ Z
0
t−1 : uT−1(k) = u∗t−1(k), (18b)

∀τ ∈ Z
κ
� : (16), (17) hold, (18c)

∀i ∈ Vt,

∀x̄0
i ∈ X0, ∀k ∈ Z

0
T−1,

∀yi(k + 1), di(k),

∀wi(k), vi(k + 1):

(1)-(3), (5), (7)-(9) hold

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

:

{∀k ∈ Z
+
T : (6) holds}∧

{∀i, j ∈ Vt, i �= j,

∀τ ∈ Z
κ
� ,

∃k∗τ ∈ Z
τ

τ , k∗τ ≥ t + 1:

|zi(k∗τ )− zj(k∗τ )| ≥
(ετ − sτ )1},

(18d)

where J(·) is the objective for the control inputs and λτ are
constant weights for penalizing the soft variables sτ .

Algorithm 1: Construction of IMI Tree
Data: Gi, (3)-(9), T 0

T−1(Z+N )

Result: T R(Z+N )

1 for Each trace ωT−1(V0 = Z
+
N ) in T 0

T−1(Z+N ) do

2 Obtain ωT−1(Z+N ) = ⊕̄F
π=1ω∗tπ (Vtπ );

3 Initialization: π ← 1; t← t1; u∗0 = ∅;
4 while i ≤ q do
5 ω = ER(

⊕̄π
k=1ω∗tk (Vtk ), T − 1− tk);

6 Design control uT−1 for ω by TAMD;
7 π ← π + 1;
8 t← t← tπ ;
9 u∗t−1 = uT−1[0:t − 1];

10 end
11 end

Remark 1: Tuning the weights λτ enables control over the
desired separation at the design stage. Choosing a large value
for λτ enforces a larger separation for segment τ .

Remark 2: The fixed control u∗t−1 satisfies (4) by assump-
tion or by the design of the IMI tree in Algorithm 1. Besides,
when t = 0, u∗−1 does not exist and (18b) can be ignored.

B. Model Invalidation (MI)
Before formally stating the model invalidation problem, we

give the definition of model behavior similar to [15].
Definition 3 (t-truncated Model Behavior): The t-truncated

model behavior of model Gi is the set of all admissible input-
output trajectories of length t, given by the set

Bt(Gi) :=
{
{u(k), z(k + 1)}t−1

k=0: u(k) ∈ U and

∃x̄i(k + 1) ∈ Xi, x̄0
i ∈ X0, di(k) ∈ Di, wi(k) ∈Wi,

vi(k + 1) ∈ Vi,∀k ∈ Z
0
t−1 s.t. (1), (2) hold

}
Then, we formally define the problem of model invalidation

in terms of the model behavior set Bt(Gi) as follows.
Problem 2 (Model Invalidation): Given model Gi, all con-

straints given in from (3) to (9) and input-output sequence
{ũ(k), z̃(k + 1)}t−1

k=0, determine whether or not this sequence
belongs to the behavior set Bt(Gi). This problem is equivalent
to checking the feasibility of the following problem:

Find x̄i(k + 1), x̄0
i , di(k), wi(k), vi(k + 1),∀k ∈ Z

0
t−1

s.t. (1)–(3), (5)–(9) hold, ∀k ∈ Z
0
t−1. (19)

Having formulated the MI problem, we can further state the
online model selection problem that is built upon MI.

Problem 3 (Online Model Selection): Given the set of index
of possible valid models Vt ∈ 2n

re at time t ∈ Z
0
T−1, models

Gi,∀i ∈ Vt, the input-output sequence {ũ(k), z̃(k + 1)}t−1
k=0 up

to time instant t − 1, and the newly applied control ũ(t) with
output z̃(t + 1), compute valid models Vt+1 at step t + 1.

Remark 3: Solving the online model selection involves
applying MI to each candidate model in parallel to rule out
the invalid models using ũ(t) designed by TAMD offline and
extracted from the look-up tree (cf. Problem 4). Further, at
step 0, we have {ũ(k), z̃(k + 1)}−1

k=0 = ∅ and V0 = Z
+
N .

Remark 4: The final IMI problem involves recursively solv-
ing the online model selection problem starting from t = 0.

C. Integrated Model Identification Tree (IMI Tree)
To formulate the problem of building the IMI tree, it is

essential to express how the set of possible valid models is
updated. Based on Vt, a sequence of Vt forms a trace ω, then
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all traces form a tree T . Formal definitions of these concepts
are given as follows:

Definition 4 (Normal Trace & Identical Trace): Given time
horizon T , time interval [t, t] and Vt at time t, the corresponding
length t − t+ 1 normal trace, denoted as ωt(Vt), is a sequence
of index set {Vk}tk=t(Vk ∈ 2N

re) such that Vk ⊇ Vk+1. A trace
is called an identical trace if Vk = Vk+1,∀k ∈ [t, t], and is
denoted as ω∗t (Vt). The element of any trace at k is denoted
as ωt(Vt)[k] (k ∈ Z

t
t).

Definition 5 (Branch): The branch BRt(ωα(Vt)) is the set
of all traces whose first α − t + 1 entries are the same as
ωα(Vt), formally expressed as

BRt(ωα(Vt)) :=
{
{Vk}tk=t : Vk ∈ 2N

re,Vk ⊇ Vk+1,

∀k ∈ Z
t
α,Vk = ωα(Vt)[k]

}
.

Definition 6 (Tree): The tree T t
t (Vt) is the set of all traces

ωt(Vt), formally expressed as

T t
t (Vt) :=

{
{Vk}tk=t:Vk ∈ 2N

re,Vk ⊇ Vk+1

}
.

Then, the problem of computing inputs for the tree is
formally given as:

Problem 4 (Construction of IMI Tree): Given time horizon
T and N models Gi, for each trace in the tree T 0

T−1(Z
+
N ), design

an optimal separating control input by TAMD.

IV. MAIN APPROACHES

In this section, we first provide an MILP formulation of
TAMD and an IMI tree construction algorithm. Then, we
provide an LP formulation for MI, followed by the final IMI.

A. Tunable Active Model Discrimination
TAMD can be posed as an bilevel optimization problem,

which then is reformulated as a single level MILP by applying
KKT conditions to the inner problems. The bilevel formulation
is given by the following lemma:

Lemma 1 (Bilevel Formulation of TAMD): Given linear par-
tition Z

τ

τ of Z+T , the index set Vt (Nt := |Vt|) with the number
of pairs It =

(Nt
2

)
, TAMD in Problem 1 is equivalent to a

bilevel optimization whose outer problem is given as:

u∗T−1 = arg min
uT−1,sτ

J(uT−1)+
�∑

τ=κ

λτ sτ (POuter)

s.t.∀k ∈ Z
t
T−1 : (4) holds, (20a)

∀k ∈ Z
0
t−1 : uT−1(k) = u∗t−1(k), (20b)

∀i ∈ Vt,∀x̄0
i ∈ X0, ∀k ∈ Z

0
T−1,

∀yi(k + 1), di(k),

∀wi(k), vi(k + 1):

(1)-(3), (5), (7)-(9) hold

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

: ∀k ∈ Z
+
T : (6) holds, (20c)

∀τ ∈ Z
κ
� ,∀ν ∈ Z

+
It

: δ∗ν,τ ≥ ετ − sτ , (20d)

(16), (17) hold, (20e)

where δ∗ν,τ is the optimal solution of the following inner
problem for pair ν and segment τ

δ∗ν,τ (u
t
τ−1) = min

δν,τ ,x̄0
ν ,dν,τ−1,wν,τ−1,v

+
ν,τ−1

δν,τ (Pinner(ν,τ ))

s.t. for ν = (i, j) :⎧⎪⎪⎨
⎪⎪⎩

∀k ∈ Zτ−1 : (1) holds,
∀k ∈ Z

+
τ : (2) holds,

∀k ∈ Z
τ

τ , k ≥ t + 1 : |zi(k)− zj(k)| ≤ δν,τ1,

∀ x̄0
ν, dν,τ−1, wν,τ−1, v+ν,τ−1 : (3), (5), (7)–(9) hold.

(21a)

Proof: The proof follows a similar procedure as in [3].
Then, employing robust optimization to the outer problem

and KKT conditions to the inner problems, we obtain the final
single level MILP in the following theorem.

Theorem 1: Suppose P̄T
y,i�

y,T
ui = 0. The bilevel

optimization problem in Lemma 1 is equivalent to a MILP as:

u∗T−1 = arg min
uT−1,sτ ,x̄ν,T ,�i,μ1

ντ ,μ2
ντ

J(uT−1)+
�∑

τ=κ

λτ sτ

s.t.Q̄T−t
u ut

T−1 ≤ q̄T−t
u , (22a)

∀k ∈ Z
0
t−1 : uT−1(k) = u∗t−1(k), (22b)

∀i ∈ Vt : �i ≥ 0,��i

[
HT

x̄,i

P̄T
y,i	

y,T
i

]
= P̄T

x,i	
x,T
i , (22c)

��i

[
hT

x̄,i

p̄T
y,i − P̄T

y,if̄
y,T
i

]
≤ p̄T

x,i − P̄T
x,if̄

x,T
i

−(P̄T
x,i�

x,T
ui )uT−1,

(22d)

∀τ ∈ Z
κ
� ,∀ν ∈ Z

+
It

: δν,τ (uτ−1) ≥ ετ − sτ , (22e)

(16), (17), (23), (24) hold, (22f)
where details of the dual variables �i, μ1

ντ , μ2
ντ , and con-

straints (23), (24) are provided in the proof.
Proof: First, (22a) is the concatenated form of (20a),

and (22b) is exactly the same as (20b).
Next, due to P̄T

y,i�
y,T
ui = 0, the responsibility of the

uncontrolled states is not influenced by uT−1. Consequently,
constraints (20c) is reformulated as its robust counterpart given
in (22c) and (22d) using dual matrix variable �i.

Before applying KKT conditions to the inner problems, we
rewrite the output difference constraints in a compact form:

(�τ

τ
ν )x̄ν,τ ≤ δν,τ1− (�τ Ē

τ
uν)uτ−1 −�τ θ̄

τ
ν ,

where �τ = [I,−I;−I, I] with I of dimension pτ . Let ts =
max{τ , t+ 1}, from the above inequality, we extract the rows
from pts to pτ and from 2pts to 2pτ , then append these 2p(τ−
ts + 1) rows to build the following:

�ν,τ x̄ν,τ ≤ δν,τ1− Lν,τ uτ−1 − bν,τ .

Then, the separability constraints in (21a) can be written as⎡
⎣ Hτ

x̄,ν

P̄τ
y,ν	

y,τ
ν

�ν,τ

⎤
⎦x̄ν,τ ≤ δν,τ

[
0
0
1

]
−

[
0
0

Lν,τ

]
uτ−1 +

⎡
⎣ hτ

x̄,ν

P̄τ
y,ν f̄ y,τ

ν

−bν,τ

⎤
⎦

and for convenience, we denote the above inequality as

Rν,τ x̄ν,τ ≤ δν,τ

[
0
0
1

]
− Sν,τ uτ−1 + rν,τ . (23)

In (23), the number of columns of Rν,τ is ξ = 2(n+ τms)
with ms = md + mw + mv. To apply KKT conditions, we
introduce the dual variables μ1

ντ [i](i ∈ Z
+
ρ ) for the first ρ =

2(c0 + τcs) rows with cs = cd + cw + cv + cy, μ2
ντ [i](i ∈ Z

+
ζ )

for the last ρ + 1 to ρ + ζ rows with ζ = 2p(τ − ts + 1).
Finally, the KKT conditions are given as follows.

0 = R�ν,τ [:, m] vec{μ1
ντ ,μ

2
ντ },∀m ∈ Z

+
ξ , 0 = 1�μ2

ντ , (24a)

0 ≤ μ1
ντ , 0 ≤ μ2

ντ , (24b)

0 = μ1
ντ [i](R�ν,τ [i, :]x̄ν,τ + Sν,τ [i, :]uτ−1

− rν,τ [i]),∀i ∈ Z
+
ρ , (24c)

0 = μ1
ντ [i](R�ν,τ [i+ ρ, :]x̄ν,τ − rν,τ [i+ ρ]

+ Sν,τ [i+ ρ, :]uτ−1 − δν,τ ),∀i ∈ Z
+
ζ , (24d)

where (24a) is the stationarity condition, (24b) is the dual
feasibility, and (24c), (24d) serve as complementary slackness
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that can either be described as SOS-1 constraints or be
reformulated using big-M method.

Theorem 1 solves Problem 1 and the MILP can be solved
efficiently using off-the-shelf solvers, e.g., Gurobi [16].

B. Construction of IMI Tree
First, we enable the trace concatenation operation using the

operator ⊕. Given ωα(Vα) and ωβ(Vβ) satisfying α + 1 =
β and ωα(Vα)[α] ⊇ Vβ , the concatenated trace ωβ(Vα) :=
ωα(Vα)⊕ ωβ(Vβ) with its first α − α + 1 elements identical
to ωα(Vα) and the remaining the same as ωβ(Vβ).

Proposition 1 (Partition): Given any trace ωt(Vt), it can be
partitioned as ωt(Vt) = ωα−1(Vt) ⊕ ω∗t (Vα) α ∈ Z

t
t (i.e., a

general trace followed by an identical trace).
Proof: This directly follows from Definition 4.

Definition 7 (Exact Partition): An exact partition ωt(Vt) =
ωα−1(Vt)⊕̄ω∗t (Vα) enforces ωα−1(Vt)[α−1] ⊃ Vα , where ⊕̄
is particularly used for exact partition.

Proposition 2: The exact partition of any trace is unique.
Proof: Assume two exact partitions exist, i.e., ωt(Vt) =

ωα−1(Vt)⊕̄ω∗t (Vα) = ωβ−1(Vt)⊕̄ω∗t (Vβ), and without loss of
generality, let α < β. ω∗t (Vα) forces that ωt(Vt)[β−1] = Vβ ,
which violates the subset relation enforced by the definition
of exact partition at β.

Proposition 3 (Complete Exact Partition): Any trace ωt(Vt)
can be partitioned as a concatenation of multiple identical
traces, i.e., ωt(Vt) = ⊕̄F

π=1ω
∗
tπ

(Vtπ ) with Vtπ ⊃ Vtπ+1 , and
this complete exact partition is unique.

Proof: This directly follows from Propositions 1 and 2.
Definition 8 (End Replication): Given any trace ωt(Vt),

we define the end replication operation formally given as
ER(ωt(Vt), m) := ωt(Vt)⊕̄ω∗t+m(ωt(Vt)[t]).

The ER operation generates a new trace by replicating the
last entry of a trace multiple times and is used in Algorithm 1
to construct the IMI tree (cf. Problem 4). For each trace in
T 0

T−1(Z
+
N ), first determine its complete exact partition. Next,

starting with π = 1, concatenate the first π identical traces
to obtain a length t trace, then extend its length to T with
end replication and design separating inputs by TAMD. Lastly,
save the first t inputs as fixed values for the next iteration.

C. Model Invalidation
The MI problem can be formulated as a feasibility check

of an LP which is formally stated as follows:
Theorem 2: Given model Gi and the input-output sequence
{ũ(k), z̃(k + 1)}t−1

k=0, the model invalidation problem given in
Problem 2 is equivalent to checking the feasibility of the
following problem:

Find x̄i,t

s.t. (P̄t
x̄,i	

t
i)x̄i,t ≤ p̄t

x̄,i − P̄t
x̄,if̄

t
i − (P̄t

x̄,i�
t
ui)ũt−1, (25a)


 t
i x̄i,t = −Ē

t
uiũt−1−θ̄ t

i+z̃+i,t, (25b)

Ht
x̄,ix̄i,t ≤ ht

x̄,i, (25c)

where P̄t
x̄,i = diagt{diag{Px,i, Py,i}} and p̄t

x̄,i =
vect{vec{px,i, py,i}}.

Proof: First, the constraints (1), (2) are expressed as the
concatenated equations (14a) and (14d). Then, it is straight-
forward to see that (25a) is a concatenated form of (14a), (6)
and (7) associated with x̄i,t, and (25b) is equivalent to (14d).
Lastly, (25c) is a combination of (3), (5), (8) and (9).

Theorem 2 solves Problem 2 and the computational cost of
the resulting feasibility check of an LP is relatively low. which
renders its online applicability.

Algorithm 2: IMI Implementation

Data: Gi, (3)-(9), T R(Z+N ), x̄(0)

Result: The identified Model Index i∗
1 Initialization: t← 0; V0 ← Z

+
N ; ω0[0]← Z

+
N ;

2 while |Vt| ≥ 2 and t ≤ T do
3 Go to branch BR0

T−1(ωt(Z
+
N ));

4 ũ(t)← C(ωt(Z
+
N )[t]);

5 Compute z̃(t + 1) as in (1), (2) with w(t), v(t + 1);
6 Update {ũ(k), z̃(k + 1)}tk=0;
7 Compute Vt+1 by MI using {ũ(k), z̃(k + 1)}tk=0;
8 ωt+1 ← ωt ⊕ Vt+1;
9 t← t + 1;

10 end
11 i∗ ← the only element of Vt

TABLE I
COMPLEXITY OF TAMD (BIG-M FORMULATION) AND MI

D. Integrated Model Identification
Given the IMI tree computed recursively using TAMD

and the online-solvable MI technique, we provide our novel
algorithm for real-time model identification as described in
Algorithm 2, which can be viewed as a direct implementa-
tion of Problem 3 (see also Remarks 3 and 4). Further, given
the IMI tree T R(Z+N ), the extracted inputs corresponding to
a trace ωt(Z

+
N ) is defined as a mapping C(·). The algorithm

terminates once the index set Vt has only one element which
is the index of the identified model.

Further, computational complexity of TAMD and MI in
terms of the number of continuous variables (CV), integer
variables (IV) and constraints are summarized in Table I.

V. SIMULATION EXAMPLE

The integrated model identification method is applied to a
highway lane-changing scenario in [3] to identify the intention
of other road participants, where the input of the ego vehicle
is designed to distinguish the intentions of the human-driven
vehicle. The equations of motion are:

xe(k + 1) = xe(k)+ vx,e(k)δt,

vx,e(k + 1) = vx,e(k)+ ux,e(k)δt + wx,e(k)δt,

ye(k + 1) = ye(k)+ vy,e(k)δt + wy,e(k)δt,

xo(k + 1) = xo(k)+ vx,o(k)δt,

vx,o(k + 1) = vx,o(k)+ d(k)δt + wx,o(k)δt,

where xe(vx,e) and xo(vx,o) are the longitudinal position
(velocity) of the ego car and the other car, respectively. In the
lateral direction, only the position (velocity) of the ego car,
denoted as ye (vy,e), is considered. ux,e and d represent the
longitudinal acceleration input for the ego car and the other
car, respectively. Here, u = [ux,e, vy,e] is the separating con-
trol and d is the uncontrolled input reflecting the other car’s
intent. Both vehicles are affected by noise w. In addition, the
system’s output is the longitudinal velocity of the other car
given as z(k) = vx,o(k) + v(k) with output noise v(k). Both
cars are close to their center lane initially.

We have 3 models corresponding to the other car’s 3 inten-
tions (i.e., Inattentive (I), Cautious (C) and Malicious (M)).
Their detailed description can be found in [3].
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Fig. 1. IMI Tree (TAMD: red; AMD: blue).

Fig. 2. IMI results: Models I (top left), C (top right), M (bottom).

In the simulation, the initial position of the ego car is 0
m, while constraints on initial position of the other car, input
constraints, state constraints and noise bounds are set as in [3].
Time horizon T = 4 with the sampling time �t = 0.3s. For
TAMD, we consider the complete partition (i.e., τ ∈ Z

+
4 ,

τ = τ ) and the desired separation is chosen to be ετ = 0.25,
the weights λτ = 0.1+ 0.05τ , and J(·) = || · ||1. Both TAMD
and online MI are solved using Gurobi 9.1.2 [16].

The IMI tree, which specifically presents 4 representa-
tive traces in terms of inputs u(t), computational cost δtc
and discrimination performance |�z|, is shown in Fig. 1. δtc
is the time cost of solving the optimization and |�z| :=

1
3KT

∑K
k=1

∑T
t=1

∑
i �=j |zi(t) − zj(t)| is the average output dif-

ference over K runs (K = 100), all time instants t ∈ Z
+
T and

all pairs. Results using TAMD and the traditional AMD [3]
are shown with red and blue undertones, respectively. From
Fig. 1, we observe that TAMD discriminates the models more
and requires significantly less computational cost (albeit with
increased J(uT−1)) than AMD in [3]. The online MI is a linear
program without integer variables and its computational cost
is around 0.03s for all tests, which demonstrates the online
applicability of the IMI algorithm.

The final IMI results using TAMD are shown in Fig. 2. For
all 3 intentions, the IMI algorithm with the inputs designed
by TAMD successfully identifies the correct intention.

VI. CONCLUSION

In this letter, we proposed a novel passive-active model
identification algorithm that combines TAMD and MI tech-
niques, where TAMD guarantees improved discrimination
performance in terms of more design flexibility and potentially
reduced computational cost. A novel IMI tree architecture and
an algorithm for its construction are also presented, which
assists the online implementation of IMI. Simulations of an

autonomous driving with intention identification example in
a lane-changing scenario demonstrates the applicability and
effectiveness of the proposed algorithms.

APPENDIX

In this Appendix, we provide definitions of matrices and
vectors that were previously omitted to improve readability.
In the following, † = {u, d, w}, � = {x, y}.

M
t
i =

⎡
⎢⎢⎣

Ai

A2
i
...

At
i

⎤
⎥⎥⎦, A

t
i =

⎡
⎢⎢⎣

I 0 · · · 0
Ai I · · · 0
...

. . .

At−1
i At−2

i · · · I

⎤
⎥⎥⎦,

A
t
i � B :=

⎡
⎢⎢⎣

B 0 · · · 0
AiB B · · · 0
...

...
. . .

At−1
i B At−2

i B · · · B

⎤
⎥⎥⎦, Mt := It ⊗M,

Ai =
[

Ax,i
Ay,i

]
, B†,i =

[
Bx†,i
By†,i

]
, fi =

[
fx,i
fy,i

]
,

�t
†i = A

t
i � B†,i, f̄ t

i = A
t
i(1t ⊗ fi), f̄ �,ti = At�,if̄ t

i + 1t ⊗ f�,i,
M�,ti = At

x,iM
t
i, �

�,t
†i = At�,i�t

†i + Bt�†,i, C̄t
i = Ct

iA
t
i,

D̄t
ui = Ct

i�
t
ui, D̄t

di = Ct
i�

t
di, D̄t

wi = Ct
i�

t
wi,

D̄t
vi = Dt

v,i, θ̄ t
i = Ct

i f̄
t
i + 1t ⊗ gi.
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