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Guaranteed State Estimation via Direct
Polytopic Set Computation for Nonlinear
Discrete-Time Systems

Mohammad Khajenejad

Abstract—This letter introduces a set-theoretic state
estimation approach for bounded-error nonlinear discrete-
time systems, subject to nonlinear observations or con-
straints, when polytope-valued uncertainties are assumed.
Our approach relies on finding a polytopic enclosure to
the true range of nonlinear mappings via the direct use of
hyperplane and vertex representations of polytopes. In par-
ticular, we derive a tractable enclosure of the set-product of
an interval and a polytope, which is then used in a two-step
state estimation approach consisting of (i) state propa-
gation (prediction) using the nonlinear system dynamics
and (ii) measurement update (refinement) based on nonlin-
ear observations. Moreover, we analyze the computational
complexity of our proposed technique and derive sufficient
conditions for stability of the estimation errors. Finally, we
compare the effectiveness of our approach with existing
polytopic and interval observers in the literature.

Index Terms—Estimation, observers for nonlinear
systems, uncertain systems, polytope-valued observers.

[. INTRODUCTION

TATE estimation for systems where statistical

characterization of uncertainties are not known/available
has broad application in many research areas such as state-
feedback control [1], localization [2] and fault detection and
isolation [3]. The lack of (known) stochastic distributions in
this setting renders particle and/or Kalman filtering-based
approaches not applicable. Consequently, the literature
considers the problem of state estimation in terms of com-
puting guaranteed sets that contain true state trajectories
and are compatible/consistent with system dynamics and
constraints/observations.

Literature review: Several modifications to the commonly
used propagation-update approach have been proposed for
state estimation in dynamical systems in the presence of
bounded but distribution-free uncertainties, where set-theoretic
approaches are usually leveraged to compute enclosing sets of
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all possible system trajectories [4]. These methods consist of
computing an enclosing set to the image set of the vector field
of the system dynamics (propagation/prediction) and refining
the obtained propagated set by finding an enclosure to its
intersection with the set of states that are compatible/consistent
with the observations/measurements (update).

However, it is well known that the computation of exact
(tight) enclosures of sets that contain the evolution of the
system states is in general intractable with complexity that
grows exponentially with time, even for linear systems with
polytopic initial and uncertainty sets [5]. Consequently, recent
research focuses on developing set-theoretic approaches to
tractably compute the tightest possible enclosures containing
such sets. Several studies considered a trade-off by comput-
ing more conservative (i.e., outer-approximating) enclosures
with lower computational complexity by assuming structurally
simpler sets such as intervals [6], [7], hyperballs [8], [9], par-
allelotopes [10], or zonotopes [11]. In particular, zonotopic
state estimation methods have been developed, e.g., in [12],
based on first-order Taylor expansion, mean value extension or
DC programming. However, the wrapping effect in interval-
based approaches, as well as the symmetry of zonotopes in
these techniques are sources of considerable conservatism,
even when observation functions are linear.

To reduce the aforementioned conservatism, methods based
on constrained zonotopes (CZ) [13] and zonotope bundles
(ZB) [14], which are equivalent representations of poly-
topes, were introduced, where the key insight is to compute
with sets in the space of generators of CZ and ZB that
are intervals and hence, interval arithmetic could be directly
applied [2]. Specifically, [4], [15] proposed CZ and ZB prop-
agation and update algorithms for constrained discrete-time
nonlinear systems based on mean value and first-order Taylor
extensions of intervals, that are computationally efficient but
potentially conservative due to the use of interval arithmetic.
On the other hand, our recent work [16] proposed alternative
CZ and ZB propagation and update approaches using mixed-
monotone remainder-form decomposition functions [17]. By
contrast, this letter considers the (direct) use of hyperplane
and vertex representations of polytopes that can potentially
return less conservative and faster results.

Contributions: This letter proposes novel methods for recur-
sive state estimation using polytopes for bounded-error nonlin-
ear discrete-time systems with nonlinear observation functions
that (directly) use a combination of hyperplane (H) and vertex
(V) representations of polytopes. First, we derive a tractable
approach for finding the enclosure/outer-approximation of the
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set-product of an interval and a polytope, which naturally
appears when applying the mean value theorem on non-
linear functions. Then, this result is leveraged to design a
two-step state estimation approach consisting of state prop-
agation (prediction) and measurement update (refinement)
steps. In particular, the proposed propagation step that com-
putes the predicted set of states in the next time step based
on system dynamics is most efficiently computed using the
V-representation of polytopes, while the update step that com-
putes the intersection of the predicted set with the set of states
that are compatible with uncertain observations via nonlin-
ear observation functions can be more conveniently performed
using its H-representation. Further, we derive sufficient stabil-
ity conditions for the obtained polytope-valued estimates and
analyze the computational complexity of our proposed tech-
nique. Finally, our proposed approaches are shown in several
examples to yield the smallest set volumes when compared to
existing approaches in the literature.

[1. PRELIMINARIES

Notation: N, N,, R” and R™" denote the set of positive
integers, {1, ...,n}, the n-dimensional Euclidean space and
the space of m by n real matrices, respectively. For Z, W C
R", R e R™" Y Cc R™, and w:R" — R™, the following

RZ 2 (Rzlz € Z}, n(2) 2 {u(@)|z € 2}, Ver(2),
ZOW=E z+wzeZweW)L,ZOWE Zd (-W),
ZU, Y 2 (ze Z|n(2) € YV}, int(2), Proj,, () and

Conv(2) 2 {Z rizilzi € Z, A € [0, 1], Z‘ ri=1,n, €N},

denote the linear mapping, general (nonlinear) mapping, the
vertex set of (bounded) Z, Minkowski sum, Pontryagin dif-
ference, generalized (nonlinear) intersection, interior of Z,
projection of ) onto the first n dimensions and convex hull
of Z, respectively. For z € R”, ||z]loo £ max;en, |zi| denotes
the oo-norm of z, z¥ = max{z, 0} and z~ = z* — z, while for
M, M € RV, M <M’ denotes M;j < lej for all i € N,, and
Jj € Nj,. Moreover, the transpose, Moore-Penrose pseudoin-
verse, (i, j)-th element, and spectral radius of R are given by
RT,RT, R and p(R), respectively. B 2 zeRY|zllee < 1}
is the oco-norm unit hyperball and D, is the set of n by n
diagonal matrices.
Next, we formally define intervals, four different equivalent
representations of polytopes and a new set operation that we
will frequently use throughout this letter.
Definition 1 (Intervals): A set 1Z C R" is an interval in R”
if 37,7 € R” such that 1Z = [z,z] £ {z e R*z <z < Z}. An
interval matrix can be defined similarly, in an element-wise
manner. IR"” and TR"*” denote the sets of all intervals in R”
and R, respectively. Finally, diam(IZ) £ Z— z denotes the
diameter of the interval vector/matrix [.Z.
Definition 2 (Polytopes): A set P C R" is a (convex} poly-
tope, if it can be characterized via either of the following
equivalent representations:
(i) H-representation: A, € R"*" b, € R™ such that P =
{Ap, bytp = {z € R"Apz < by} is bounded;

(ii) V-representation: 3V = {vi,...,vp} £ Ver(P), such
that P = Conv(V); _

(iii) Constrained Zonotope (CZ)-representation: 3IG €
R™"%, ¢ € R”, A € R**"% b e R™ such that P =
(G, c,A,b}CZ = {GE + cl¢ € IB%”K,A?; b} with ng
generators and n. constraints;

(iv) Zonotope Bundle (ZB)-representation: 3{G; €

R ¢; e RS such that P = N3_ {Gs, ¢}z £

s:l{G 4+l € IB%"S}, with 7y generators for each
zonotope {Gy, ¢s}z, s =1,..., 5.

It is worth mentioning that the CORA 2020 toolbox [18] can
exactly convert polytopes among all the above representations,
including the transformation between H- and V-representations
that is frequently used in this letter, summarized as:

P = {4y, by}p &= Conv(Ver(P)).

Definition 3 (Set-Product): For an interval matrix J €
IR™" and aset PCR, S=JOP &£ (seR"s=Jp,J e
J, p € P} is called the set-product of J and P.

Finally, we present two propositions, which will be used
later to derive the main results of the letter.

Proposition 1: Suppose Zi,..., 2, are nZ € N (convex)

polytopes with vertex sets V| = Ver(Zl) Vi, = Ver(Zy,).
Let us define S £ ConV(Zl,...,ZnZ) = {lel AiZilzi €
Zi, A € [0,1], ZL Ai = 1}. Then, the following inclusion

holds: S € Conv(lJ,Z; V).
Proof: Let s € S. Then, by the definition of S,
n; n;
s = Zkizi, for some A; € [0, 1],z; € Z;, s.t. ZAI- =1. (1)
i=1 i=1
On the other hand, by convexity of Z;’s, each z; can be
represented as a convex combination of the members of

V;. In other words, z; = Zjl ’ll oz]v], where vj’» € Vi, oz} €

[0, 1], Z,l.vi ! a; = 1 and |V}| is the cardinality of V;. Combining
this and (1), we find that s = ) ° Zlvlka/ vj, where

Vil i .
vie Vel € 0,1, ") = 1,5, 4 = 1, which
implies that s is a linear combmatlon of Vi € U V. To
show that it is also a convex combination, first note that

)"O‘ji € [0, 1], since 2; € [0, 1] and Otji € [0, 1]. Moreover,

Y S el = 3 4 Y el = 30 3 = 1. Hence,
can be represented as a convex combmation of the union of
the vertex sets V;’s, i.e., s € Conv(Ul 1 Vi). This, completes
the proof. |

Proposition 2: Let A € [A, A] ¢ IR™" and x € R”. Then,
Axt —Ax™ < Ax < AxT — Ax™. As a corollary, if x > 0, then
Ax < Ax < Ax, and if x < 0, then Ax < Ax < Ax.

Proof: The proof is similar to the proof of [7, Lemma 1],
with changed roles of A and x, since here, A is the uncertain
variable (matrix) and x is a fixed vector. [ |

[1l. PROBLEM FORMULATION

System Assumptions: Consider the following bounded-error
nonlinear constrained discrete-time system:

X1 = f Ok, wie, uk) = f (i),
Ak, u) = (k) € Vi, xo € Xo, wie € W, 2
where 7 £ [xk wy 17, xx € R™ is the state vector, wy €
Wi C R™ is the augmentation of all exogenous uncertain
inputs, e.g., bounded process disturbance/noise and internal
uncertainties such as uncertain parameters and uy € Uy C R™
is the known input signal. Moreover, f : R — R™ (with
n, & ny+mn,) and u : R»* — R"™ are the nonlin-
ear state vector field and the observation/constraint mapping,
respectively, which are well-defined since u; in f(-,-) and
(-, ) are assumed to be known. Note that the mapping
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Fig. 1. lllustration of propagation and update steps in (3) and (4).

w(-) along with the set ) characterize all a priori known or
manufactured/redundant constraints over the states, uncertain
observations (with bounded measurement noise) or uncertain
parameters at time k. Moreover, we assume the following.

Assumption 1: Xy and Wy, Vi, Yk > 0 are polytopes.

Assumption 2: The nonlinear vector fields f(-) and wu(-) are
locally Lipschitz on their domains. Consequently, they are
differentiable and have bounded Jacobian matrix elements,
almost everywhere. We further assume that given any Z C R’z
and X C R™, some upper and lower bounds for all ele-
ments of the Jacobian matrices of f(-) and w(-) over Z
and X are available or can be computed. In other words,
élf’jf c Rnxxnz’_leu e R™>*"  guch that: lf < Jr@ <
Jf’!u <Jux) <Ju,Vze Z,V¥x € X, where Jr(z) and J, (x)
denote the Jacobian matrices of the mappings f(-) and w(-) at
the points z and x, respectively.

Our goal is to design novel set-membership approaches for
obtaining set-valued state estimates for bounded-error nonlin-
ear systems in the form of (2). In particular, we consider a
two-step approach consisting of i) propagation (prediction) and
ii) update (refinement) steps, where at each time step k € N,
we seek to solve the following problems:

Problem 1 (Propagation): Given the ‘updated set’ A}’ ,

from the previous time step and Wy_ (with Z;_; £ A x
Wi—1), find the ‘propagated set’ X,f that satisfies

fE)) 2 fowmnlxe X, we Wi S AL (3)

Problem 2 (Update): Given the ‘propagated set’ X,f and the
uncertain observation/constraint set )y at time step k, find the
‘updated set’ A} that satisfies

XY N Ve = {x e X7 nx) € Wi} € XL 4)

Figure 1 schematically illustrates the propagation and
update steps in (3) and (4). In a previous work [16], we
addressed these problems using (indirect) CZ- and ZB-
representations of the polytopes (cf. Definition 2-(iii), (iv)). In
this letter, we consider them using a combination of (direct)
H- and V-representations (cf. Definition 2-(i), (ii)).

IV. DIRECT PoLYyToPIC SET COMPUTATION

As above-mentioned, we consider a recursive two-step
state estimation approach consisting of state propagation
(prediction) and measurement update (refinement) steps by
solving Problems 1 and 2. Our recursive algorithm can be
either initialized at time O with the initial polytopic state esti-
mate X as Xé’ = Ay or if ) is available/measured, with
X(’)’ = Xy and the application of the update step by solv-
ing Problem 2 at time O to obtain A. At each time step &,
beginning with the updated set &}’ | from the previous time
step in the V-representation, we find the propagated set X,f
by solving Problem 1. As will be described in Section IV-B,
this propagation step is most efficiently computed using the

V-representation of polytopes, hence, A7’ | is first converted
into its equivalent V-representation, e.g., by using CORA [18],
if necessary, for this step. Next, given the uncertain observa-
tion/constraint set )V, we find the updated set X,f by solving
Problem 2. This update step will be shown in Section IV-C to
be more conveniently performed using the H-representation
of polytopes and it involves the exact conversion from V-
representation of a certain set into its H-representation, e.g.,
by using CORA [18]. Since this recursive approach involves
the use of and conversion between (direct) V- and H- repre-
sentations of polytopes, for simplicity, we will refer to this
approach as the direct polytopic V-H approach.

A. Set-Product Bounding

A key component of our approach to solve Problems 1
and 2 is via the application of the mean value theorem (in
set-theoretic form) on the nonlinear functions f(-) and w(-)
in (2), where a set-product of an interval and a polytope
naturally appears since the Jacobian matrices are given as
intervals (cf. Assumption 2). Hence, we first state a result
on bounding/enclosing/outer-approximating the set-product
(cf. Definition 3) of an interval matrix and a polytope in the
H-representation, through the following lemma.

Lemma 1 (Set-Product Bounding): Let P C R" be a poly-
tope with the vertex set Ver(P) = {v,-};'i , and J = [J, J] e
IR™ " be an interval matrix, with Ver(J) £ {J € R™M Ty =
lij Vv Jij = .7ij,1 < i <mn,1 <j < m}. Then, the following
inclusion holds:

np
J©P < Conv(|_J Ver(sy).
i=1
where S; £ [lv;F —.7vi_,.7v?' —Jvi ], Vie Ng,.

Proof: Let s € JOP. By Definition 3, 3p € P and J € [J, J]
such that

)

p &2

s=Jp= Z)\,,’JV,’, for some A; € [0, 1], Z)‘i =1. (6)

i=1 i=1

On the other hand, from Proposition 2, Jv; € S;. Combining
this with (6) results in s € Conv(Sy, ..., S,,), from which we

obtain s € ConV(Uf.i” | Ver(S;)) using Proposition 1. [ |

B. Polytopic Propagation

Now, equipped with Lemma 1, we propose a solution to
Problem 1 that combines Lemma 1 and Proposition 2 to find
a polytopic inclusion for the range/image set of the vector
field f(-) in (2), when its domain is the polytope P in the
form of a convex combination of vertex sets of hyper-intervals.
The following theorem formally summarizes this result, where
the solution to Problem 1 can be found as X,f = Pr given
P = Xé’:l X Wk—l-

Theorem 1 (Direct Polytopic  Propagation):  Suppose
f  R= — R™  satisfies Assumption 2 (i.e.,
Jrx) € Jr £ [Jp,Jfl,¥x € X with known Jy), and let
P be a polytope in R" with the vertex set Ver(P) = {v;};7,.
Then, for an arbitrary point in the interior of the polytope P,
i.e., po € int(P), the following set inclusion holds:

f(P) < Conv(|_J Ver(§) £ Py,

i=1

N
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where S; £ [JF — I +f(po). v — J;¥; +f(po)] and
R S po, Vi € Ny,.

Proof: By applying a generalized version of the mean value
theorem [19] to the nonlinear function f(-) and using Lemma 1
to bound the resulting set-product, we obtain: f(P) < f(po) ®
Jr © (P& po) € Conv(l 2, Ver(S)). u

Note that the above approach for state propagation uses the
vertices of P = A} | x Wy (i.e., in V-representation), and

the resulting set X7 = Pr is also in its V-representation.

C. Polytopic Update

Next, we address Problem 2 by proposing a method for
computing the updated set estimate A&}’ by intersecting the
predicted set X,f with the set of states that are compatible
with uncertain observations/constraints ) and the polytopic
inclusion for the range/image set of the nonlinear observa-
tion function w(-) in (2). This can be achieved, as shown
in the following theorem, with Py = X,f in both V- and
H-representations (with conversion using CORA [18], if nec-
essary) and P, = ) in its H-representation as inputs and
Xyt =Py is the resulting updated set.

Theorem 2 (Polytopic Update): Suppose R™  —
R satisfies Assumption 2 and let Py = {Af, brlp &
Conv({v,-}?il) C R™ and P, = {Au, bulp C R™ be two
polytopes in V- and H-representations (cf. Definition 1), with
A € R A, e R™>"e For all x € R™, define ¢(x) £
A, p(x) and suppose that Jy(x) € Jy £ [Lp,j(p],Vx € X,
where J (x) is the Jacobian matrix of ¢(x) at x € A and the
interval matrix Jgs is known (or computed with interval arith-
metic). Then, for any g € int(Pr), the following set inclusion
holds:

Pf n;,L P[,L g Pu é Projnx({Auv bu}P)v (8)
—Jg 1 by +Jgq0 — $(qo)
where A, £ | Ay 0|, b, = by
0 A b
Further,
nf
Conv( U Ver(W))) A, by, 9)

i=1
with W; £ J[—diam(J)[7il, diam(Jg)|¥i[], ¥ £ vi—qo, Jj £
1, +7Ty) and diam(Jg) =Ty — J .

Proof: First, note that by definition, Pr N, Py = {x €
Prln(x) € Pu} = {x € PrlAppu(x) < by} = {x € Prlp(x) =<
b, }. So, our goal is to show that {x € Pr|¢(x) < b,} € P,. To
do this, we first apply the mean value theorem to obtain the fol-
lowing: ¢ (Pr) € ¢(qo)DJyO(PrSqo). On the other hand, the
interval matrix Jg can be decomposed as Jg = Jy' @ J $ with

J$ = 3[—diam(Jy), diam(J4)] and Jy and diam(Jy) given
in (9). Plugging this back into the above enclosure results in
$(Pp) S ($(q0) — I} q0) ® TP @ T50(Pr © o). (10)

Then, we apply Lemma 1 to the set-product Jﬁ@(?f S q0)
to obtain the enclosure Conv(U:.li 1~Ve~r(Y\7\\,’,-)), as well as its
conversion to its H-representation, {A, b}p, i.e.,
Ny
J50(Prego) € Conv(| ] Ver(Wy) &5 (4, b)p, (1)

i=1

2063
TABLE |
COMPLEXITY OF THE PROPOSED PREDICTION AND UPDATE STEPS
Steps Complexity
Prediction | O(np(nz(ne + nw)> + 2"%))
Update O(mmnfc(ngmm 4 2me)3 4 n,%nh)

with W; given in (9). Combining (10) and (11) yields:
{x € Prlop(x) < bu} < Pu,

where P, = {x € R | Agx < bp,3z € R" 5.1, Az < b A
d(qo0) — JZ‘qo + J(';x +z < by,}. In the above, augmenting the
affine constraints in P, results in a lifted polytope {A,, b,}p,
whose projection onto the first n, dimensions, i.e., the state
space, is equivalent to P,, by construction. |

(12)

V. UNIFORM BOUNDEDNESS OF ESTIMATES

In this section, we investigate the stability/convergence of
the obtained polytopic enclosures through Theorem 3, for
which we only provide a proof sketch due to space limitation.
To do so, we first define the notion of stability we consider.

Definition 4 (Stability): A sequence of polytopes {Py}2,, is
called stable, if there exists a sequence of enclosing intervals
(IX, & [xz Xk]},fio, such that each IX} is an enclosing interval
to the polytope Py (i.e., Pr C IXy) and {||Axklloo £ [|IXk —
X lloo}ze is a uniformly bounded sequence.

Theorem 3 (Stability): Suppose all assumptions in
Theorems 1 and 2 hold and without loss of generality,
Jp = —Jy. Then, the sequence of {A}}7°, is stable if
minpep; p(L(D)) < 1, where D, £ (D e, |Vie
Ny, Diiy = 0 if the i-th row of I — J(';’TJ:; is not zero}, and

L(D) £ DI} |(Sdiam(Ty) + 212175 + 2 — D)Jy.

Proof: (Sietch) Starting from an initial polytope Py =
Conv({V;}?_,), by sequentially applying the polytopic prop-
agation and update steps in Theorems 1 and 2, we obtain a
stable sequence of polytopes, through the following steps:

1) Py CIXg £ [minjen, {Vi}, maxien, {i}] with Axg >
max;en, |Vil; B

2) Py C IXy £ Jr © [— maxien, |Vil, max;en, |Vill;

3) Py € I £ (U — UpHTT = wr UHTT -

(Jf)_z + «r], where { £ J$+5f~ — Jg %, 2 c+
jdiam(J ) maxien, [¥il, & = 00, ¢ £ by, — ¢(qo) + J5 q0;

4) P, is included in an interval whose diameter is less than
min(Axy, Ax,) < DAx, + (I — D)Axy, VD € Dy, ;

5)If D € ), , then Axy < L(D)Axy—1 + D|J"|c. ]

VI. COMPLEXITY ANALYSIS

In this section, we study the worst-case complexity analysis
of our proposed polytopic state estimator, namely for each of
the propagation and update steps, and the results are summa-
rized in Table I. For the complexity analysis of the propagation
step, we assume that Z; | = A} | x Wiy C R s
already given in its V-representation with np vertices. Then,
the complexity of the propagation step in Theorem 1 consists
of O(ny(ny + ny)?) for finding each interval matrix S; and
0O(2™) for enumerating the vertices of each S;, resulting in a
total of O(np(ny(ny + ny)% + 2')).

On the other hand, for the complexity analysis of the update
step, we assume that X,f C R™ is given in both H- and
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V-representations with m, constraints and ny vertices, respec-
tively, and )y C R™ is in H-representation with m, con-
straints/facets. In this case, the complexity for computing each
interval matrix and its vertex enumerations, W;, is O(n)zcmx)
and O(2"), respectively, which brings the complexity for
finding U?il Ver(W;) in Theorem 2 to O(nf(n)%mx + 2MxY),
Then, its conversion to H-representation has a complexity of
O(mxn;(nfmx + 2™)3) with at most nj < nfz(n)%m)c + 2mx)2
facets/constraints (i.e., A€ R™>"xy [20]. Finally, the projec-
tion operation has a complexity of O(nﬁ"h) when using the
Fourier-Motzkin method, leading to the total complexity in
Table I, which is relatively high in the worst-case but is often
faster in practice, as shown in the simulation examples in the
following section.

VIl. SIMULATIONS

In this section, we compare the performance of the proposed
state estimation approach with several existing methods in
the literature in terms of computational time and volume of
obtained enclosures. All computations are conducted on a sin-
gle Intel core 15-8250U 1.6 GHz CPU with 8§ GB memory,
using MATLAB 2020b. We compare the following polytope-
valued estimation methods: i) RRSR, i.e., the mean value
extension-based technique introduced in [4], ii) V-H, i.e., the
direct polytopic set computation introduced in Section IV,
iii) D-ZB, i.e., decomposition-based propagation and update
with ZBs proposed in our previous work [16] and iv) D-
CZ, i.e., decomposition-based propagation and update with
CZs that was also introduced in [16], using a two dimen-
sional nonlinear benchmark system from [4], followed by a
three dimensional unicycle system from [21]. Note that J,,, J
is computed via interval arithmetic using CORA 2020 tool-
box [18]. The corresponding computation time as well as the
time required for conversion between V- and H-representations
are included in the results below.

A. Example | (Benchmark System in [4])
Consider the following discrete-time system [4]:

2
X1k = 3X1 k=1 — S e L + Wi k-1
’ T 7 4+ x1 k-1 Y
3X1 k—1X2,k—1
Xk =—2X 41 + ———"— + W21,
4+ x1 k-1
YLk = X1k +Vik Y2k = =Xk + X2k + V2 i, (13)
with [[Willoo < 0.1, |IVklloe =< 0.4, and an ini-
tial zonotope that includes the the initial state, Xy =
0.1 0.2 —0.1| 0.5
0.1 01 0 [|”|05]],
Figure 2 depicts the ogtained polytope-valued estimates
for time steps k = 0,...,4 using the four aforementioned

approaches. As can be observed, the enclosures obtained using
the proposed V-H method are the least conservative for all
time steps, presumably since approximation errors incurred
by the use of decomposition functions in the D-CZ and D-ZB
approaches can be avoided. Moreover, the results attained by
the D-CZ approach are quite similar to the ones by RRSR. The
resulting sets from intersecting the sets from all approaches at
each time step (COMB method) were also plotted in Figure 2
to illustrate the best possible estimates. For further compari-
son, the average computation times and average volumes of

Fig. 2. Results for the first four time steps of the different polytope-
valued state estimation methods in Example |. Black dots are obtained
from uniform sampling of A and their propagation through the vec-
tor field. Note that the red sets from the V-H method lie almost exactly
behind the blue sets obtained from intersecting the sets from all methods
at each time step.

TABLE Il
AVERAGE COMPUTATION TIMES (IN SECONDS) AND AVERAGE
VOLUMES OF THE SET ESTIMATES AT EACH TIME STEP FOR
EXAMPLE | USING VARIOUS ESTIMATION APPROACHES. AVERAGES
ARE TAKEN OVER 50 SIMULATION RUNS WITH RANDOM NOISE

Methods: k=0 k=1 k=2 k=3 k=14
RRSR Time: 0.0866 1.0000 0.9241 0.9321 0.9890
Vol.:  0.3496 0.5926 0.6288 0.5780 0.4120
V-H Time: 0.0672 0.7030 0.6655 0.6140 0.7031
Vol.:  0.3496 0.5489 0.5826 0.4077 0.2306
D-7B Time: 0.0709 3.5132 3.5092 2.8569 4.0240
Vol.:  0.3496 0.5691 0.5877 0.5661 0.4266
D-C7 Time: 0.0711 2.0940 3.5201 2.8575 2.5850
Vol.:  0.3496 0.6226 0.6077 0.5936 0.4676
COMB Time: 0.0710 7.0943 6.9250 6.9278 7.5850
Vol.:  0.3496 0.5405 0.5625 0.4033 0.2302

the set estimates from 50 runs using the different methods are
given in Table II, where the V-H approach is the fastest and
also yields the most accurate estimates, i.e., with the smallest
volumes at each time step. Moreover, we also tried to imple-
ment the interval observer in [6] on this example. However, the
interval observer design did not result in any feasible observer
gain, and when we modified the system such that [6] is appli-
cable, we observed that the sets obtained by [6] had volumes
that were often 100 times larger than those obtained by the
V-H approach.

B. Example Il (Unicycle System in [21])

Next, we consider the discretized unicycle-like mobile robot
system [21], as follows:

Sxk+1 = Sx.k + Todyw cos(Or) + w1k,
Syk+1 = Sy k + Tody sin(Or) + wok,
Ok+1 = Ok + Tode + w3k,

Vi = [dix 1k dok d2il + vi, (14)

where xp £ [sxkSyxOkl’, Wk = [Wexwyk Wokl's Pwr =
03,99x = 015w = 0.2(0.5/0,(1’,( — 03),wyx =
0.2(0.3p5,, — 0.2) and wgi = 0.2(0.6p., — 0.4), with
px, €10, 1] (1=1,2,3) and initial state xo = [0.1 0.2 1]T.

Moreover, Vi € {1,2}, dij =

\/(Sx,- - Sx,k)2 + (sy, — sy,k)z
Syi TSk
Sx; —Sx,k

and ¢;x = 6 — arctan( ), with sy,sy, being two
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Fig. 3. Results for the first four time steps of the different polytope-

valued state estimation methods in Example Il. Black dots are obtained
from uniform sampling of A%y and their propagation through the vector
field.

TABLE IlI
AVERAGE COMPUTATION TIMES (IN SECONDS) AND AVERAGE
VOLUMES OF THE SET ESTIMATES (WITH A FACTOR OF 10*4) AT
EACH TIME STEP FOR EXAMPLE Il USING VARIOUS ESTIMATION
APPROACHES. AVERAGES ARE TAKEN OVER 20 SIMULATION RUNS
WITH RANDOM NOISE

Methods: k=0 k=1 k=2 k=3 k=4
RRSR Time: 0.5640 0.8780 0.9654 0.8964 1.8071
Vol.: 0.3022 0.4012 0.3022 0.4002 0.3021
V-H Time: 1.1080 59.9411 59.2030 60.4890 69.1305
Vol.:  0.3000 0.3001 0.4000 0.4000 0.3000
D-ZB Time: 5.3137 69.539 139.75 172.15 150.34
Vol.: 0.3001 0.5011 0.3012 0.3002 0.3021
D-CZ Time: 0.7535 4.0616 3.7081 4.1103 4.3882
Vol.: 0.3022 0.4001 0.4002 0.4011 0.4000

known reference points. Furthermore, v x = 0.02py, x —0.01,
vok = 0.03py, r — 0.01, v3x = 0.03py, p — 0.02, v4 =
0.050y,,k —0.03 and py, x € [0, 1] (k=1,2,3,4).

Figure 3 illustrates the state estimation results when apply-
ing the methods i)-iv). As can be observed, the sets are fairly
close to each other, with the V-H approach once more per-
forming a little better than all other methods. Table III shows
that RSRR and D-CZ have the lowest computation time, fol-
lowed by the V-H approach. As expected, when the system
dimension increases, the number of vertices when using the
V-H approach also increases, resulting in higher average com-
putation times, although they are still substantially lower than
when using the D-ZB approach. Further, the volumes of the
set estimates using all methods are comparable to each other.
In contrast to Example I, we did not include the results from
combining all methods (COMB), since they are identical to
the ones from the V-H method.

VIIl. CONCLUSION

Novel polytope-valued algorithms using direct V- and H-
representations were proposed in this letter for state estimation
in bounded-error nonlinear discrete-time systems subject to
nonlinear observation/constraint functions. We adopted the
commonly used two-step propagation and update strategy,
where the propagated set estimates are obtained by comput-
ing a polytopic enclosure to the true range of the nonlinear
vector field/system dynamics and the updated set estimates
are computed by intersecting the predicted set with the set
of states that are compatible with the observations/constraints.
Our method relied on a novel approach to bound/enclose/outer-
approximate the set-product of an interval matrix and a

polytope. Further, sufficient conditions for the stability of the
set-valued estimates were provided. Finally, the computational
complexity of the proposed approach was studied, and its
effectiveness was demonstrated by comparing the average vol-
umes and computation times of the resulting sets with the ones
returned by existing techniques in the literature.

REFERENCES

[1] M. A. Dahleh and J. B. Pearson, “£1-optimal feedback controllers for
MIMO discrete-time systems,” IEEE Trans. Autom. Control, vol. 32,
no. 4, pp. 314-322, Apr. 1987.

L. Jaulin, “A nonlinear set membership approach for the localization

and map building of underwater robots,” IEEE Trans. Robot., vol. 25,

no. 1, pp. 88-98, Feb. 2009.

[3] C. Combastel, Q. Zhang, and A. Lalami, “Fault diagnosis based on
the enclosure of parameters estimated with an adaptive observer,” IFAC
Proc. Vol., vol. 41, no. 2, pp. 7314-7319, 2008.

[4] B.S. Rego, G. V. Raffo, J. K. Scott, and D. M. Raimondo, “Guaranteed
methods based on constrained zonotopes for set-valued state estimation
of nonlinear discrete-time systems,” Automatica, vol. 111, Jan. 2020,
Art. no. 108614.

[5] M. Althoff and J. J. Rath, “Comparison of guaranteed state estima-
tors for linear time-invariant systems,” Automatica, vol. 130, Aug. 2021,
Art. no. 109662.

[6] A. M. Tahir and B. Ac¢ikmese, “Synthesis of interval observers for
bounded Jacobian nonlinear discrete-time systems,” IEEE Contr. Syst.
Lett., vol. 6, pp. 764-769, 2021.

[7]1 D. Efimov, T. Raissi, S. Chebotarev, and A. Zolghadri, “Interval state
observer for nonlinear time varying systems,” Automatica, vol. 49, no. 1,
pp. 200205, 2013.

[8] M. Khajenejad and S. Z. Yong, “Simultaneous input and state set-valued
Hoo-observers for linear parameter-varying systems,” in Proc. Amer.
Control Conf. (ACC), 2019, pp. 4521-4526.

[9]1 M. Khajenejad and S. Z. Yong, “Simultaneous mode, in put and state set-
valued observers with applications to resilient estimation against sparse
attacks,” in Proc. Conf. Decis. Control (CDC), Nice, France, 2019,
pp. 1544-1550.

[10] J. Wan, S. Sharma, and R. Sutton, “Guaranteed state estimation
for nonlinear discrete-time systems via indirectly implemented poly-
topic set computation,” IEEE Trans. Autom. Control, vol. 63, no. 12,
pp. 4317-4322, Dec. 2018.

[11] C. Combastel, “Merging Kalman filtering and zonotopic state
bounding for robust fault detection under noisy environment,”
IFAC-PapersOnLine, vol. 48, no. 21, pp. 289-295, 2015.

[12] T. Alamo, J. M. Bravo, M. J. Redondo, and E. F. Camacho, “A set-
membership state estimation algorithm based on DC programming,”
Automatica, vol. 44, no. 1, pp. 216-224, 2008.

[13] J. K. Scott, D. M. Raimondo, G. R. Marseglia, and R. D. Braatz,
“Constrained zonotopes: A new tool for set-based estimation and fault
detection,” Automatica, vol. 69, pp. 126—136, Jul. 2016.

[14] M. Althoff and B. H. Krogh, “Zonotope bundles for the efficient com-
putation of reachable sets,” in Proc. IEEE Conf. Decis. Control Eur.
Control Conf., Orlando, FL, USA, 2011, pp. 6814-6821.

[15] B. Rego, J. K. Scott, D. M. Raimondo, and G. V. Raffo, “Set-valued
state estimation of nonlinear discrete-time systems with nonlinear invari-
ants based on constrained zonotopes,” Automatica, vol. 129, Jul. 2021,
Art. no. 109638.

[16] M. Khajenejad, F. Shoaib, and S. Z. Yong, “Guaranteed state esti-
mation via indirect polytopic set computation for nonlinear discrete-
time systems,” in Proc. IEEE Conf. Decis. Control (CDC), 2021,
pp. 6167-6174.

[17] M. Khajenejad and S. Z. Yong, “Tight remainder-form decomposition
functions with applications to constrained reachability and guaranteed
state estimation,” 2021, arXiv:2103.08638.

[18] M. Althoff. CORA 2020 Manual. [Online]. Available: https://tumcps.
github.io/CORA/data/Cora2020Manual.pdf (Accessed: Oct. 29, 2020).

[19] W. Kiihn, “Rigorously computed orbits of dynamical systems without
the wrapping effect,” Computing, vol. 61, no. 1, pp. 47-67, 1998.

[20] Y. Yang, “A facet enumeration algorithm for convex polytopes,” 2021,
arXiv:1909.11843.

[21] B. Chen and G. Hu, “Nonlinear state estimation under bounded noises,”
Automatica, vol. 98, pp. 159168, Dec. 2018.

[

5>
—

Authorized licensed use limited to: ASU Library. Downloaded on April 30,2022 at 00:43:26 UTC from IEEE Xplore. Restrictions apply.



