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Abstract
The effects of magnetostatic coupling on switching dynamics are investigated for assemblies of
patterned disc-shaped magnetic elements using mumax3 micromagnetic simulations. The
arrangements of coupled dots were designed using information about the switching fields and
reversal dynamics of isolated dots, as well as the magnitude of the magnetic stray fields they
generate. The magnetization dynamics for individual dots was examined during a reversal
cascade down a linear chain of dots. The magnetization angle fluctuated much more when
neighboring dots have opposite magnetization directions, consistent with a lower energy barrier
for reversal. The data were analyzed to differentiate thermal and interaction field effects. While
many systems of interacting nanomagnets have been analyzed in terms of empirical models, the
dynamical energy barrier approach offers a methodology with a more detailed and physically
intuitive way to study both simple systems like the chain and more complex assemblies such as
artificial spin ice.
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1. Introduction

Interacting nanomagnets are known to have more complex
dynamics than isolated monodomain nanoparticles. An isol-
ated particle may be magnetically stable and switched determ-
inistically, as described by the Stoner–Wohlfarth model [1].
Alternatively it could be superparamagnetic if thermal fluctu-
ations are sufficient to reorient the magnetic moment direction
within the measurement time. In this case Néel–Brown the-
ory applies to the net magnetization of an ensemble of non-
interacting particles as a function of temperature and mag-
netic field, and the magnetization relaxes exponentially in time
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[2–4]. With interactions, the anisotropic and long-range nature
of the magnetostatic field generated by a nanomagnet leads to
a broad range of relaxation times for nearby nanomagnets. In
strongly interacting systems the magnetic relaxation can even
be logarithmic in time [5]. Time and frequency-dependent
measurements are the most sensitive way to probe the inter-
actions [6]. The AC susceptibility shows Vogel–Fulcher (VF)-
like behavior in the χ” loss peak temperature, which has been
associated with a spin freezing temperature analogous to the
Blocking temperature for superparamagnets [7–10]. The term
superferromagnet is sometimes used to refer to thermally fluc-
tuating clusters of particles above the spin freezing temper-
ature [11]. These systems are also referred to as super-spin
glasses because of the distribution in relaxation times, though
the sharp cusp in the magnetization versus temperature has
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not been reported. While most assemblies of monodomain
nanoparticles have somemagnetic frustration due to the spatial
anisotropy of the dipolar field, in artificial spin ice (ASI), mag-
netic frustration is engineered through the geometry of the
periodic nanopatterns [12–16]. ASI has a blocking transition
between a frozen and liquid-like fluctuating state that has been
modeled by a VF relation [17] or stretched exponential [18]
distribution of relaxation times [19].

For both nanoparticle assemblies and nanopatterns of ASI,
magnetostatic interactions lead to changes in the magnetiza-
tion dynamics. While there are models that can fit the exper-
imental data, they also reduce very complex behavior to a
small number of empirical parameters, and have underlying
assumptions that are not always valid. For non-interacting
particles, the Néel–Brown–Arrhenius law gives a character-
istic relaxation time τ = τ0 exp [E0/kBT], where the inverse
attempt rate τ−1

0 is known to within an order of magnitude,
and corresponds physically to the Larmor precession time,
and the energy barrier E0 depends on the anisotropy and
particle volume. The magnetization M then relaxes at a rate
∼exp [−t/τ ]. The VF law has similar exponential relaxation,
except that τ = τVF = τ0 exp [E/kB (T− T0)]. Here the energy
barrier E includes the average interaction energy Eint as well as
E0, and T0 is the spin freezing temperature τ0, Eint, and T0 are
fitting parameters. The argument of the exponential in the VF
formula arises from assuming a statistical distribution of inter-
action fields that contribute to a Langevin function, and tak-
ing the first order in the series expansion [17]. In the stretched
exponential approach, and the related Cole–Davidson model

[20], M∼ exp
[
−(t/τSE)

β
]
, and the exponential factor is the

integral of exp [−t/τ ] weighted by a distribution of relaxa-
tion times. This distribution rises sharply near the endpoints
of the shortest (τ = 0) and longest (τmax) relaxation times in
the ensemble, and a relatively flat distribution in between [21].
In the Street and Woolley model of magnetic viscosity [5],
which has been used to explain the slow relaxation dynamics
in magnetic recording media [22], the distribution of energy
barriers is assumed to be flat betweenmaximum andminimum
values.

Improved computational and experimental methods [23]
enable detailed monitoring of fast dynamics within individual
particles of an assembly. A more detailed quantitative under-
standing of the dynamics will be useful in designing interact-
ing nanomagnets for applications such as short-term memory
for magnetic logic [24–30], reservoir computing [31–34] and
fast magnonic devices [35]. As interest increases in more com-
plex systems, there is a need for improved methodology. In
particular, the energy barrier distribution and its relative pop-
ulation over time will impact the relaxation dynamics. In this
paper we describe an approach using simple arrangements of
nanoparticles and their distribution of switching times. The
data are analyzed to quantitatively differentiate effects from
thermal and magnetostatic energies. We show for a single tem-
perature how interactions change the energy barrier distribu-
tion and relaxation dynamics, for a nanomagnet within a chain,
and for an example with magnetic frustration.

2. Simulations of non-interacting magnetic
nanodots

The first issues addressedwere the effects of size and ellipticity
of the dots, which determines their coercivityHc and the role of
thermal fluctuations at 300 K.We beganwithmumax3 [36–38]
simulations for isolated nanodots, where the length and width
of the dots were varied and the thickness was kept constant
at 3 nm. The material parameters were typical of cobalt iron
boron (saturation magnetization of 8.0× 105Am−1, exchange
stiffness of 2.2× 10−11Jm−1, and a Gilbert damping constant
α of 0.03). Mesh sizes were calculated in each simulation such
that the cell size was between 2 to 3 nm. The steepest conjugate
gradient method was used to minimize the energy of the sys-
tem. The maximum change in magnetization required to stop
the iterations was set to a fractional difference of 1× 10−11

between each step. The simulations were run for 150 ns with
a 10 ps time step. Simulations were repeated using 20 differ-
ent thermal seeds. The coercivity of individual noninteracting
dots was determined by simulating the influence of an external
applied field. The magnitude of this field was varied and the
system was allowed to equilibrate. The process was repeated
to scan a range of fields, once while stepwise increasing and
once while decreasing the field magnitude. The step size was
decreased from 50 to 10 Oe near the anticipated coercivity, and
five trials were averaged for increased precision. We wanted
the dots to have a monodomain ground state, but not to be
superparamagnetic, on the time scale of the simulations. Coer-
civity increases as the measurement time is reduced, and here
the effective measurement time is ∼100 ns. Magnetometry
typically involves measurement times ∼100 s, where the nan-
omagnets studied here would be deemed superparamagnetic.
However, for interest in future studies of fast dynamics, such
as applications in magnonics, smaller patterns are desirable.
The ellipticity of the dots introduces shape anisotropy, produ-
cing a non-zero coercivity. Figure 1 shows the average mag-
netization of the dot along the external field for a representative
70 × 65 nm elliptical dot, which had a coercivity of approxim-
ately 34 Oe. The results ofmultiple dimensions of dots showed
that the coercivity of dots increased with ellipticity as expec-
ted. The coercivity also decreased with the overall size of the
dot, as the device is leaving the coherent rotation-like regime,
and reversal proceeds by nucleation and domain wall motion
[23]. The results are summarized in table S1 (available online
at stacks.iop.org/JPhysD/55/265002/mmedia).

3. Simulations of a chain of interacting nanodots

We selected the 70 × 65 nm size to study the effect of mag-
netostatic interactions based on the requirement of moderate
thermal stability, at least on short time scales, and the need
to generate a net field comparable to Hc in neighboring dots.
Future experimental work will use spin orbit torque to initiate
the magnetization dynamics of the interacting dots (IDs) by
switching a larger control dot nearby. A simpler approach was
used for the simulations, but also involved a control dot. The
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Figure 1. Hysteresis loop simulation of a 70 × 65 nm elliptical dot.
The coercivity of this dot is approximately 34 Oe. The simulation
was equilibrated for 1 ns for each step.

Figure 2. A 160 × 80 nm control dot is used to switch a series of
thirty 70 × 65 nm secondary dots, all with an edge-to-edge spacing
of 20 nm. In order to prevent thermally induced reversal on the right
end of the chain, there is a separate 100 × 65 nm blocking dot set
off by a 40 nm spacing. An external field of 15 Oe was applied in
the +x direction in order to grow the reversed domain in the control
dot. This image shows a snapshot in time of the chain of dots. See
video S1 in supplemental material for a video of the dots as they
fluctuate and switch over time in the reversal cascade.

elongated control dot was a rectangle merged with circles on
each end. The inter-dot spacing is constrained by lithography
to be ≥20 nm and impacts the strength of the magnetostatic
coupling and the speed of reversal along the chain. Figure 2
shows a schematic of the control dot and chain of 30 second-
ary dots. The large number of dots was used to obtain improved
statistics on switching, and to determine the conditions for a
cascade of reversal in the secondary dots, which would be rel-
evant for magnonics, magnetostatic logic or reservoir comput-
ing. The magnetostatic fringe field Hfringe due to a uniformly
magnetized dot was calculated as a function of distance in the
x-direction, which is along the chain of particles in the final
simulations. The system was relaxed at 300 K before record-
ing the magnetostatic field, and the results are analyzed based
on 20 trials using different thermal seeds.

Figure 3 shows the magnetostatic fringe field of a con-
trol dot along the direction of the chain of secondary dots.
For a fixed aspect ratio, the magnitude of the fringe field
increases with the dot size, but the effect is small, as shown in
figure S1.

The coercivity of the control dot exceeds that of the sec-
ondary dots, which makes it harder to distinguish the effect
of magnetostatic coupling from that of an external field. We
were able to reduce the magnitude of the external field by arti-
ficially nucleating a circular reversed region at one end of the
control dot. The simulation was run at different values of the

Figure 3. Fringe field of a 160 × 80 nm elliptical control dot,
increasing distance from the edge of the dot in the x-direction. The
fringe field was measured on a line parallel to the x-axis and
centered with the dot in the y and z directions. The coercivity of a
70 × 65 nm secondary dot is shown as a comparison. The fringe
field of the control dot will be strong enough to flip the secondary
dot up to ∼50 nm away.

Figure 4. (a) Snapshots of simulation of a 160 × 80 nm dot with a
reversed domain nucleation region, switching entirely under a 15 Oe
external field in the x direction. The total time shown is 600 ps.
(b) Color code for the magnetization direction of the images of part
(a), as well as for other simulation results.

external magnetic field to determine the lowest external mag-
netic field needed to switch the dot. Figure 4 shows images of
the magnetization pattern as a function of time.

The lowest external magnetic field required to switch the
dot increased with the x length of the elongated dot. The res-
ults of the 160 × 80 nm dot suggest that the results are pro-
portional to the ratio of x and y lengths rather than the size of
the dot. The results are summarized in table S2.

Next we optimized the conditions such that the reversal of
the control dot creates a fringe field that initiates a cascade
of switching in the chain of secondary dots.There needs to be
a large difference in the fringe field of the control dot and the
secondary dot, which can be achieved by increasing the size of
the control dot and/or by decreasing the size of the secondary
dots. |Hext|must be less than the coercivity of secondary dot 1
and greater than the minimum field needed to grow the reverse
domain nucleation region in the control dot. Another observa-
tion was that thermal fluctuations were occasionally sufficient
to initiate reversal from the right-hand end of the chain. This
problem was solved through the addition of a 100 × 65 nm
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Figure 5. Normalized mx (dot_m_x) as a function of time for one of
the secondary dots, showing a typical switching event. There are
four distinct time regions when the dot magnetization is fluctuating
but not switching: (a) when neither dot i nor dot (i− 1) has
switched (u_bff), (b) after dot (i− 1) has switched but not dot i
(u_aff), (c) after dot i has switched but before the dot (i+ 1) (f_bff),
and (d) after dot (i+ 1) has switched and dot i is part of the flipped
chain (f_aff). The time of a switching even is shown as switching_t,
and the time between switches in adjacent dots is flip_dt.

unreversed blocking dot with a 40 nm gap relative to the right-
most secondary dot.

4. Analysis of reversal dynamics of interacting
nanodots

In order to analyze the results more quantitatively, we con-
sidered the magnetization of each secondary dot of figure 2
as a function of time t. With the chain oriented along the x-
axis, we define the average magnetization mx and my for each
dot i, and an angle θ = arctan(my/mx) The time of a switch-
ing event is determined from the plots of mx (t), as shown in
figure 5. The normalized mx fluctuates about +1 when the dot
is magnetized in the +x direction before a switch, and then
about −1 afterward. The time of a switching event is defined
as when mx crosses through zero. Omitting the duration of the
switching event, the time trace for dot i can be divided into
four regions.

These time regions were determined for each of the 30 sec-
ondary dots, and then used to plot histograms showing the dis-
tribution of θ before and after reversal, as shown in figure 6.
To obtain good statistics and minimize artifacts, the simula-
tions were repeated with 20 different thermal seed values. The
distributions are Gaussian, and centered around θ = 0 before
switching and around θ = π afterward. The distribution is nar-
rower when the neighbors on either side of the dot are both
unswitched (u_bff), or after both are switched (f_anf). When
the neighbors are in different states (u_aff or f_bnf), there is an
additional field-induced destabilization on top of the thermal
fluctuations.

We also examined the variation in the duration of switching
events for dots along the chain, as shown in figure S2. While
there is some arbitrariness in establishing the precise boundar-
ies, there was no obvious pattern to the duration of a switching

Figure 6. Probability P as a function of average magnetization
angle θ for the 30 dots, averaged over the four different time regions
specified above, for the conditions shown in figure 2.

event. It takes an average of ∼400 ps to switch the magnetiz-
ation from the +x to the −x direction.

5. Model of interactions

The Boltzmann method is then applied to further under-
stand the distribution of the magnetization within each time
region, where different full width half maxima (FWHM) are
observed. For simplicity we used a coherent rotation model
where the energy of an elliptical dot could be written as the
sum of the Zeeman energy and the shape anisotropy energy,
where E= Ez +EA. The Zeeman energy is defined as Ez =
−µ0HMVcosθ, where µ0 is the vacuum permeability, H is the
total external field,M is the saturation magnetization, V is the
volume of the elliptical dot device and θ is the angle between
the device magnetization and the external field H. In the dot
chain case of figure 2, we can approximate the fringe field gen-
erated by the two closest neighbors, and the add the applied
15 Oe field to estimate the total field H. The effective field
generated by one closest neighbor is estimated as the average
field over the device area, whereHeff =

∫HxdS
∫dS = 37 Oe, and the

H values or the four different time regions are shown schem-
atically in figure 7. The shape anisotropy energy is defined
as EA =−µ0

2 M
2 (Nb−Na)Vcos2θ+C, where Nb and Na are

demagnetizing factors for an elliptical thin film dot along the
minor axis and major axis, and C is a constant only related
to the shape of the device [39]. The distribution of magnet-
ization directions, characterized by angle θ, should then fol-
low a Boltzmann distribution ∼exp−E(θ)

kBT
, where kB is the

Boltzmann constant and the temperature T= 300K. The dis-
tribution peaks at θ = 0, where the energy of the system is
minimized. The boundary of the FWHM (θb) could be found
by solving 1

2 =
exp(−E(θ)/kBT)
exp(−E(0)/kBT)

, and FWHM= 2 |θb|. The the-
oretical prediction of the FHWMs for time region 1–4 are:
0.562,2.01,0.816, and 0.483 radians, respectively. The cor-
responding simulation results were: 0.65,1.5,0.75, and 0.55.
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Figure 7. Total effective field for the four different time regions of
figure 5. The signs are determined by whether the field is parallel or
antiparallel to the magnetization of the investigated dot.

The Boltzmann law dictates the distribution when the system
is at a relatively stable state, driven by thermal fluctuations.

Mumax3 simulations are based on the Landau–Lifschitz–
Gilbert equation rather than an energy barrier model. To
translate the simulation results into energy barrier models
with and without interactions, we first considered an isolated
nanopattern with a coherent rotation energy barrier domin-
ated by shape anisotropy, in a 15 Oe external field like that
shown in figure 7. Using 20 simulations with different thermal
seeds, we calculated probability that the magnetization of
the dot is not switched at time t, and fit to an exponential
function, P(t) = exp−t/τ [40], to determine τ = τisolated =
5.63 ns. Using this value, we estimated the appropriate value
for the attempt frequency, τ−1

0 . Here anisotropy was assumed
to be dominated by shape anisotropy, and the resulting energy
barrier contribution was EK = µ0KMV= 5.56kBT. The mag-
netostatic field due to the 15 Oe external field decreased the
total energy barrier energy barrier ETot by Ems = µ0HMV=
3.1kBT. The inverse attempt frequency is then estimated to be
τ0 = exp(ETot/kBT)/τisolated = 0.482 ns, consistent with res-
ults from previous work [40–43]. We assume that the attempt
frequency did not change when the nanomagnets interact.
Using this τ0 and the P(t) fit for the interacting chain of dots,
the characteristic ID relaxation time τID = 3.97 ns (figure 8),
corresponding to a total energy barrier of ETot,ID = 2.11kBT.
The interaction energy contribution to the barrier was there-
fore EID = ETot,ID −ETot =−0.35kBT.

Simulations showed that the smaller dots of figure 2 were
stable for at least 3 µs unless the control dot switched. Only
with the control dot reversal, and corresponding change in
the magnetostatic fringe fields to reduce the energy barrier,
do the smaller dots switch within this time. Obviously, devi-
ations from the coherent rotation model and long-range inter-
actions also modify the energy barrier, but the results sug-
gest that the interacting moments of the nanomagnets are
effectively frozen at 300 K over this time period unless the
neighboring moments point in opposite directions. In con-
trast, in the VF model, EID = Eint < E0, so we are in the
weak interaction regime of Shtrikman and Wohlfarth [17],

Figure 8. Comparison of simulation and exponential fits for the
probability that a nanodot has not reversed, as a function of time.

where the spin freezing temperature T0 = E2
int/kBEK = 6.6 K.

The large discrepancy arises because the VF model con-
siders an average interaction field, while in the cascading
chain of dots, the energy barrier is reduced for one dot at
a time.

This approach could be extended to ASI systems, with geo-
metries such as that shown in figure S3, leading to numerous
possible interaction fields that evolve over time as the system
relaxes. There would be a larger number of distinct energy bar-
riers, compared with two for the chain of dots. There could
be multiple relaxation pathways, but by adding their rates,
the overall relaxation could be modeled. For the short-term
memory and magnonic applications proposed for ASI, the key
feature is not overall relaxation to a ground state but propaga-
tion of excitations, and to realize these possibilities it will be
important to understand how the spatial distribution of energy
barriers varies over time.

6. Conclusions

Micromagnetic simulations were used to investigate magneto-
static effects on the reversal of a magnetostatically coupled
chain of dots. These elliptical nanopatterns were designed to
be stable on a microsecond time scale, but to switch in a
cascade when triggered by reversal of a larger control dot.
The average magnetization angle for a given dot fluctuated
in time, with a Gaussian distribution about the most stable
state. The FWHM of the distribution was much larger during
the time period when the two adjacent dots had moments in
opposite directions, temporarily reducing the energy barrier.
A small external field was used to break symmetry and favor
the sequential cascade of reversal. While the time of the actual
switching events was short (∼0.4 ns), the characteristic relax-
ation time τ was much longer, and reflected the local energy
barrier to reversal. The results can be interpreted in terms of
an Arrhenius law model, where the energy barrier varies spa-
tially and dynamically. We demonstrate for the simple case of
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a chain of dots that the effects ofmagnetostatic interactions can
be accounted for without requiring changes in the attempt fre-
quency or an unphysical spin freezing temperature. This same
approach has potential application to more complex systems
such as ASI.
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