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Abstract

The brush model was introduced to interpret AFM indentation data collected on biological cells
in a more consistent way compared just to the traditional Hertz model. It takes into account the
presence of non-Hertzian deformation of the pericellular brush-like layer surrounding cells (a
mix of glycocalyx molecules and microvilli/microridges). The model allows finding the effective
Young’s modulus of the cell body in a less depth-dependent manner. In addition, it allows to find
the force due to the pericellular brush layer. Compared to simple mechanical models used to
interpret the indentation experiments, the brush model has additional complexity. It raises the
concern about the possible unambiguity of separation of mechanical properties of the cell body
and pericellular layer. Here we present the analysis of the robustness of the brush model and
demonstrate a weak dependence of the obtained results on the uncertainties within the model and
experimental data. We critically analyzed the use of the brush model on a variety of AFM force
curves collected on rather distinct cell types: human cervical epithelial cells, rat neurons, and
zebrafish melanocytes. We conclude that the brush model is robust; the errors in the definition of
the effective Young’s modulus due to possible uncertainties of the model and experimental data
are within 4%, which is less than the error, for example, due to a typical uncertainty in the spring
constant of the AFM cantilever. We also discuss the errors of parameterization of the force due

to the pericellular brush layer.
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1. Introduction

Atomic force microscopy (AFM) has shown the ability of high-resolution imaging of biological
surfaces in situ and in vivo !~. However, the true uniqueness of AFM is its capability to measure
various physical and mechanical properties of sample surfaces. The study of cell mechanics by
means of AFM is an active area of research “°. Mechanical properties of cells are important
factors that define cell functionality, motility, tissue formation > 8, stem cell differentiation °, etc.
Correlation between cell elasticity and various human diseases, abnormalities has been
implicated in the pathogenesis of such diseases as vascular diseases, cancer, malaria, kidney
disease, cataracts, Alzheimer's Dementia, complications of diabetes, cardiomyopathies, arthritis,

13,14 \was found to be

and even aging '°!2, The stiffening of red blood cells infected with malaria
responsible for fatal incidents of this disease. Low rigidity of the majority of cancer cells was
recently suggested to be used for cancer diagnosis !> 16, Therefore, besides the fundamental

interest, there is a practical need to measure cell mechanics quantitatively.

It has recently been shown that the AFM indentation allows extracting information not
only about cell mechanics but also about the pericellular coat or brush-like layer surrounding
eukaryotic and the majority of prokaryotic cells > %1718, The pericellular brush (PB) layer is a
combination of glycosaccharides, glycoproteins, and membrane protrusions (microridges and
microvilli). The biological significance of this layer is known though not fully investigated. It
was demonstrated that damages of the PB layer led to multiple diseases and complications, such

as cardiovascular and blood-related diseases '*-2°

, and the change in the invasiveness of cancer
cells 223, In particular, artificial removal of the molecular part of the PB layer enhances the
ability of cells to move through tissue and increases the cell adhesion to the walls of blood
vessels 212224, Furthermore, it was shown that this layer is substantially changed when cells
become cancerous *°. A whole series of works on AFM imaging of physical properties of the cell
surface, which were performed on fixed dried cells, showed a substantial change of the cell
surface during progression towards cancer 2. It was demonstrated on the human cervical

cancer model in vitro 2628

, and recently, on cells extracted from urine of patients who have active
bladder cancer (patients with no bladder cancer were the control group) *°. Furthermore, the use

of a novel AFM imaging mode, named Ringing mode, allowed to separate two similar cell lines



of human colorectal epithelial cancer of different aggressiveness based on the use of images of

the cell surface 3.

The brush model was suggested to find the effective Young’s modulus of the cell body,
which is covered with the PB layer, through the analysis of the force curves collected in AFM
indentation experiments. The model takes into account the presence of the non-Hertzian behavior
of the PB layer. As was demonstrated *2, the brush model allowed extraction of the effective
Young’s modulus of the cell body in a self-consistent, nearly depth-independent manner.
Without taking the brush layer into consideration, the effective Young’s modulus of the cell
typically shows a strong depth dependence * 3. It should be noted that it is still technically
possible to use a “relative” modulus of elasticity and without the brush model, for example, to
classify cells with substantially different elastic modulus. However, the lack of self-consistency
of the used Hertz model creates a substantial difficulty in comparing the results obtained in
different laboratories because it requires to verify the degree of deviation from the non-Hertzian
behavior, which might be different in different experimental setups. Extraction of the force due
to the PB layer is an important bonus of the brush model. When analyzing the obtained force
dependence due to the PB layer, it was found that the PB layer could be reasonably described
using the Alexander-de Gennes model, which is typically a good description of grafted polymer

molecules or polymer brushes.

The brush model was experimentally verified on soft polymers covered with a small
polymer brush **. The ability of the model to distinguish contributions of long polysaccharide
molecules to the PB layer and the corrugations of the pericellular membrane (microridges and
microvilli) was demonstrated using guinea pig fibroblast cells *°. The utility of the brush model

6, 25,35-37

was confirmed in the study of cancer cells , aging %, the dependence of cell mechanics

on cell passages ¢, etc.

Despite the demonstration of the utility of the brush model, it has not been yet broadly
used. Besides the additional complexity of the brush model, the robustness of the model was not
investigated in a systematic way. It is paramount for any physical model to prove the model
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robustness , 1.e., stability of the obtained results against various uncertainties in the

experimental data and possible ambiguities in the model.



Here we present a comprehensive analysis of the robustness of the brush model applied to
the study of cells. We analyze the dependence of the accuracy of the extracted cell parameters
(cell modulus and characteristics of the PB layer) on possible uncertainties within the model and
experimental data. We use the AFM indentation data (force curves) obtained collected on cells
from rather distinctive regions of the cell realm, human cervical epithelial cells, rat neurons, and
zebrafish melanocytes. We show that the uncertainties in the calculation of the cell effective
Young’s modulus are small (<4%) across all three types of cells. It is worth noting that the
obtained uncertainties/errors are substantially smaller than the well-known errors in the AFM
indentation experiments, such as the uncertainty in the value of the spring constant of the AFM
cantilever (5-20%) and the Poisson ratio of the cell material (~5%) * 3> 4. We also discuss the
variations of calculation of the brush parameters (the force-due-to-brush layer), which can be as
high as 25% when attempting to fit in the Alexander - de Gennes model. It is important to stress
that these variations are completely independent of the calculation of the effective Young’s
modulus of the cell body. Moreover, the variations of the brush parameters are conceivably real

heterogeneity in the repulsive force within the PB layer. Thus, it can be informative by itself.

2. The brush model in brief and definitions of possible uncertainties

in the brush model

The brush model was described in detail in '7-3%4*44 Here we give a short description of the
model while presenting details of its major steps. In particular, we describe specific steps of data
processing within the brush model, which allow for some uncertainty in the interpretation of
experimental data.

It should be noted that both the approach and retraction force curves are recorded during
AFM indentation. However, only the approach curve is further used for the analysis because the
AFM probe i1s known to disturb the PB layer of the cell, and it may have insufficient time to
relax to contribute fully to the retraction curve. In other words, the retraction curve carries a
signature of a complex dynamic of relaxation of the cell deformation, which is excessively
complicated to be analyzed at this stage. Thus, the approach curve is a better representation of an

undisturbed cell surface. We will not discuss the speed dependence on the force curves here. As



was shown in ©, the brush model is applicable to the force curves in a large range of the
indentation speeds. Obviously, the extracted effective Young’s modulus can still only be called
an effective Young’s modulus because of heterogeneity of the cell material.

As was previously demonstrated, the brush model is self-consistent only when using a
relatively dull AFM probe 2. The use of a standard commercial sharp probe presumably leads
to a nonlinear overstretched response of cellular material *°, which results in much higher and
depth-dependent values of the modulus. Thus, only a large spherical AFM indenter will be

considered here.

2.1. The brush model in brief

The brush model was introduced to take into account a “brushy” interface of biological cells,
which consists of the corrugation of the pericellular membrane and glycocalyx molecules. Here
we will not discuss the basic assumptions of this model because it is described in detail in the
previous publications. But we review the steps we need to go through to analyze the indentation
data with the brush model. This is needed to describe in the next Section 2.2 the places in which
there are possible uncertainties in the processing of the data.

The force indentation curves collected by AFM are analyzed in two steps. During the 1%
step, the model allows deriving an effective Young’s modulus of the cell body that is relatively
self-consistent with the assumption of homogeneous and isotropic approximation of the cell
material. In the 2™ step, the model allows to extract the force due to the intrinsically nonlinear
PB layer. The model deals with the processing of “raw” force-indentation curves collected in one
of the vertical ramping (vertical oscillatory) modes, which can simultaneously record cell
topography (for example, the classical force-volume mode). The raw data of the force curve
means the data describing the dependency of the cantilever deflection d on the vertical
displacement of the AFM scanner Z. An example of such a curve is shown in Fig. 1a. An AFM
probe deforming a cell surface, which is covered with the PB layer, is also shown in Fig. 1a for
different parts of the force curve. The origin of Z (Z=0) is defined at the maximum deflection of
the AFM cantilever (maximum indentation force that is typical for Bruker AFMs; this is not
universal and has to be modified for other formats of AFM files). Simple geometrical reasoning

gives the following relation between the geometrical parameters defined in Fig. 1b:



h=7Z-Z,+i+d, (1)
where Z is the position of the undeformed cell body, # is the distance between the AFM probe
and the surface of the cell body, i is the deformation of the cell body. The latter can be calculated

2/3
= 2& RProbe + Rcell d2/3 , (2)
16 E RprobeRcell

where E is the (effective) Young’s) modulus, & is the spring constant of the AFM cantilever, and

using the Hertz model:

Rprobe (R cenr) are the radius of the AFM probe (cell). The Poisson ratio of a cell is chosen to be 0.5
(because of a small range of possible variations of v, the error in the modulus due to the

uncertainty of its definition is relatively small, within 5% 3?).
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Figure 1. (a) An example of raw force curve, showing the different positions of the AFM probe
and deformation of the cell body/PB layer. (b) A schematic of interaction between an AFM
spherical indenter (probe) and cell demonstrating definitions of the parameters used in the brush
model. Z is the vertical position of the AFM scanner, d is the cantilever deflection, Z, is the
undeformed position of the cell body, i is the deformation of the cell body, Z=0 is at the
maximum deflection (assigned by the AFM user), and /4 is the separation between the cell body
and AFM probe.



Within the brush model, raw data obtained from the indentation experiments (Z versus d)
are processed in two steps. These steps are described below and also presented in a schematic
shown in Figure 2.

Step 1: Finding the (effective) Young’s modulus of the cell body. The whole concept of

the Young’s modulus is based on the assumption of isotropy and homogeneity of the sample
material. While isotropy could be considered to be a good approximation for a majority of cells
(unless they are elongated with explicitly anisotropic stress fibers), cells are obviously far from
being homogeneous. Nonetheless, it is well-known that even a highly heterogeneous material can
be treated as approximately homogeneous for sufficiently small stresses/strains. Sufficiently
large forces would allow AFM to start detecting the inhomogeneity, for example, due to the
internal structure of cells, organelles, and even typically rigid substrate. Therefore, the
indentation force should not be too large to avoid the heterogeneity problem. To find such forces,
it was suggested to use the strong linearity principle (see, e.g., ** for detail), which stands that
the obtained effective Young’s modulus should be independent of the indentation depth (or the
load force). It is the necessary condition of applicability of the Hertz model “¢. The Hertz model
is chosen because of the use of a spherical indenter, approximately spherical cell contact, and
negligible adhesion between the probe and cell surface (the adhesion is typically either absent or
small compared to the indenting force). Thus, one needs to find a limit of the load force, above
which the modulus is no longer constant.

On the other hand, due to the presence of the PB layer, the attempts to use very small
force have failed to provide the depth independent effective Young’s modulus either ,*. It was
shown that this pericellular layer behaves quite similar to the polymeric brushes, which is
characterized by the exponential force dependence between the probe and the grafted polymer
brush (see, Step 2, eq. 2). Because of highly nonlinear behavior, the PB layer cannot be
reasonably approximated as an elastic material. The brush model operates in the assumption that
the PB layer is softer than the cell body. As a result, the AFM probe squeezes the PB layer much
faster than deforms the cell body. At one point the stiffness of the squeezed PB layer becomes
equal to the stiffness of the cell body. After that one can analyze the elastic properties of the cell
body, and search for the independence of the effective Young’s modulus of the indentation
depth. Thus, the indentation force should be not too small to avoid highly nonlinear contribution

to the indentation force curve from the PB layer.
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Figure 2. An example of processing raw indentation AFM data through the brush model. Step 1
shows the fitting which defines the effective Young’s modulus of the cell body (the values of the
modulus at the depth-independent plateau). An optional step allows deriving more precise modulus
dependence on the load force by fixing Zo (undeformed position of the cell body). Step 2 displays the
derived force due to the PB layer at the function of the distance between the AFM probe and cell
surface. One can typically see the exponential force dependence (straight line in the logarithmic force

scale). Optionally, one can find the length and grafting density of the PB layer using equation (2).




Thus, the first step of the brush model is to find the region of the force indentation curve, in

which the indentation force is sufficiently large to substantially squeeze the PB layer and not too

large to start detecting heterogeneity of the cell and its substrate. As described above, to find this

appropriate range of forces, one should analyze the dependence of the modules on the
indentation depth. The Young’s modulus is determined from the fit of this part of the indentation
force curve by using equation (1) in which #=0. In addition to the Young’s modulus, each fitting
interval gives the unknown undeformed position of the cell body Zy. The appropriate force range
should correspond to a plateau in the modulus dependence as a function of the indentation depth.
Examples of the modulus plateau are shown in Figures 2, 3, 5. Quantitatively, a plateau was
defined by a tilt less than 10%, using the least-square fit over the tested force range. Fortunately,
the plateau seems to exist for virtually all cells.

It is worth noting that although we treat Zjas a free fitting parameter, the undeformed
position of the cell body is unique; it cannot change for different indentation forces by definition.
We found that if one fixes Zy and its value in the middle of the plateau and considers the
Young’s modules as the only unknown parameter in the above fitting, the plateau is substantially
increasing. It is clear that the value of the modulus will not change compared to the value of the
plateau. Therefore, this procedure makes sense if one obtains a relatively flat dependence of the
Young’s modulus on the indentation depth/force. Figure 3 shows an example of such processing
of a force curve. The modulus is recalculated for each part of the force curve (eq. 1 with 4=0)
while keeping Zy fixed at the value of the plateau. Because of the assumption of the squeezed
brush when calculating the modules (4=0), this step cannot be directly applied to the forces
smaller than the minimum force of plateau when the PB layer is not squeezed (nevertheless, it is
possible to estimate the modules for those small forces by characterizing out the force due to

brush, see ref.* for detail).



244 —=— i
—eo— Z0 fixed
2.2

ﬁk

I
Modulus Plateau 1
I

Modulus (kPa)
»

|
|
| with Fixed Zo
1.6 == -
| 1 I
| Modulus 1 1
14 I~ Plateau ! f
} with Zo ! !
1.2 | notfixed .
| —— |
1 O |I T T 'I T T T T T T T !

4 5 6 7 8 9 10
Force (nN)
Figure 3. An example of dependence of the Young’s modulus on the indentation
depth/force. The modulus is found by fitting the experimental data using two approaches when

treating Zy is a fitting parameter and when it is fixed. The plateau is substantially increased when

Zp 1s fixed.

Step 2: Finding the force due to the pericellular brush layer; parameterization of this

layer with the effective grafting density and brush length. The force due to the presence of the

PB layer, F'(h)=k-d(h), is extracted from the experimental data by treating equation (1) as the

equation for the inverse function, /(d). It is calculated while keeping E and Z fixed at the
plateau values found in Step 1. Up to this point, the force extracted due to the PB layer is
unambiguous up to the parameters £ and Zy obtained in the previous step. Fig.2 shows an
example of such force extracted from the raw indentation data shown in the same figure.

As an optional step, one can characterize the force due to the PB layer with just two
physical parameters. Besides getting some hint about the physical nature of the observed force, it
is also useful to do for the convenience of comparison different PB layers. For example, we have
suggested to use an exponential force dependence, which is typically observed when indenting
an entropic polymeric brush layer. The validity of the exponential approximation can typically be
seen if one plots the force due to the PB layer in the logarithmic scale (shown in Figure 2, Step
2). A clear straight line in such a plot indicates the exponential force-distance dependence. To

describe the parameters of such a layer, the following equation (Alexander - de Gennes model) is
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used for the force of repulsion between a spherical probe of radius R, and a semi-spherical cell

probe

of radius R, '*474%;

F(h)~100k,TR'N*? exp[—Zﬂ' %)L : )

where kg is the Boltzmann constant, T is the temperature, R” = Roove Reay [(R e + Regy) > N i

the surface density of the brush constituents (grafting density, or effective molecular density),
and L is the equilibrium thickness of the brush layer. Note that this formula is valid provided
0.1<h/L <0.8.

2.2. Possible uncertainties in the brush model

Here we define possible uncertainties in the brush model and experimental data by exampling the
application of the brush model in detail to calculate corresponding errors in finding the effective

Young’s modulus of the cell body (Step 1) and parameters of the PB layer (Step 2).

2.2.1. Possible errors due to uncertainty in the measured zero deflection of the AFM cantilever

(zero force)

An example of a well-defined zero force before the probe starts to interact with cells is shown in
Fig.4a. However, sometimes the force curve can demonstrate a different behavior before the
contact. Fig. 4b shows an example of a possible uncertainty in the definition of zero deflection of
the AFM cantilever before it touches the cell. One can see a sort of jump of the AFM probe in
the vicinity of the cell (recall that the approach force curve is shown). In principle, the behavior
shown in Fig. 4b seems to be visually similar to well-known jump-to-contact behavior, which
could be interpreted as a strong attraction of the AFM probe to the pericellular layer.
Implementing adhesive effects into the fit would require a modification of Alexander - de
Gennes model (eq. 1), which describes the interaction of a surface with a brush layer. To the best
of our knowledge, such a modification does not exist. Secondly, the jump may be just an artifact
of multiple reflections of coherent laser light used in the cantilever deflection measurements,
which is a substantial problem of many AFM optical detection systems. Furthermore, the

specific behavior exampled in Fig. 4b is not universal. So instead of analyzing the reason for
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such behavior, one can declare it as an uncertainty in the definition of zero deflection of the
AFM cantilever (zero force).

The error due to this uncertainty can be found as follows. For example, the uncertainty of
zero deflection of the AFM cantilever shown in Fig. 4b is ~2 nm. Using the experimental
parameters (R=2500 nm, k= 0.086 N/m, R..;; = 8.76 um), one has the error in the fitted effective
Young’s modulus £ of 0.01 kPa (or 0.9% of the modulus value of 1.1 kPa). This error is
calculated as one standard deviation of the moduli calculated for five values of the zero-contact
uniformly distributed within this 2 nm uncertainty interval. A more solid statistical analysis of
the uncertainty of the modulus and other brush layer parameters due to the uncertainty in zero-

force will be described in the Results section.

Figure 4. Examples of the force curves demonstrating the uncertainty in defining the effective
Young’s modulus and PB layer parameters when experimentally identifying zero force (zero
deflection of the AFM cantilever). (a) A well-defined zero deflection. (b) An uncertain zero
deflection; the insert is a zoom version of the curve highlighted by the square box.

Examples of curves obtained on a zebrafish melanocyte cell are shown.
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2.2.2. Possible errors due to uncertainty in choosing the fitting region (plateau) of the force-

indentation curve to be used for Step 1

2.2.2.1. Location and length of the fitting region

Step 1 deals with the Hertz fitting of parts of a force-indentation curve, in which the PB layer is
almost squeezed. Because the elastic properties of the PB layer and cell body are substantially
different, it is impossible to use one simple Hertz fitting for the entire force indentation curves.
As was described above, one needs to find the plateau in the dependence of the effective
Young’s modulus on the indentation force. To do that, one needs to apply the Hertz fitting to
different parts of the force indentation curves. There are two degrees of freedom, i.e.,
uncertainties here: the fitting location and length of the fitting region.

Fig. 5a shows an example of the Hertz fitting for three different locations of the fitting
region while keeping the length of the fitted region constant. Extrapolation of the Hertz model
beyond the fitting region is shown. One can clearly see that all fitting regions display the
extrapolation that diverges significantly from the rest of the curve. For example, the effective
Young’s modulus £ derived using the region of the force curve located around d =20 nm is 0.15

kPa, whereas £= 1.2 kPa if the region around d=120 nm is used for the fitting.

The effect of the change of fitting region length is shown in Fig. 5b. Extrapolations
beyond the fitting region are also shown. Similar to Fig. 5a, if the extrapolation curves were the
same, it would mean the validity of the applied Hertz model. In the case of the example shown in
Fig. 5b, the effective Young’s modulus derived from the fitting of the shown 3 fitting regions
will be: 0.68, 0.88, 1.2 kPa for regions 1,2,3, respectively.

13
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Figure 5. An example of the force curve explaining the origin of the uncertainty in defining the effective
Young’s modulus and PB layer parameters when choosing different fitting regions (Step 1 of the model).
Uncertainties in (a) the location and (b) the length of the fitting region. The Hertz extrapolation beyond
the fitted region is also shown. The difference in extrapolation beyond the fitted intervals and
experimental data demonstrates that the Hertz model could not be applied to the entire indentation curve.

Examples of curves obtained on a zebrafish melanocyte cell are shown.

2.2.2.2. Influence of location and length of the fitting region on finding the plateau in the

modulus dependence on the indentation force

To find the dependence of the effective Young’s modulus on the indentation depth, and
correspondingly, the modulus plateau, one should fit the force-indentation curve with the Hertz
model for different regions on the indentation force. As was shown in the previous section, this
carries an uncertainty due to an arbitrary choice of the length of the fitting region (Fig. 5b).
Figure 6 shows an example of such dependence of the effective Young’s modulus calculated for
the same force-indentation curve when using different lengths of the fitting region while moving
the position of the region along the force curve. It is a bit easier to plot the modulus versus the
indentation force rather than that depth (obviously, the depth is proportional to the force). To
consider different fitting intervals, it is easier to split the force curve into equal intervals of Z.
Too large Z intervals excessively smear out the modulus dependence, hiding details of the

dependence on the indentation depth. Too small fitting regions produce a rather noisy modulus
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dependence. The intermediate fitting regions give a reasonable balance between noise and
details.

One can see the plateau in Fig.6 conservatively located in the force interval of 4-5 nN.
Although the value of the effective Young’s modulus of the plateau is the correct self-consistent
results of the Hertz fitting, there is still a relatively small variation of the modulus value within
the plateau. For example, if we take the middle size of the fitting region of force (A4Z = 820 nm),
the modulus changes between E = 0.83 kPa and 0.86 kPa within this plateau. This is the error

due to uncertainty in choosing the location of the Z interval of the force-indentation curve for

calculation of the effective Young’s modulus. Note that if the initial plateau point is taken for its
corresponding modulus values, then the modulus values for the Z intervals of 410, 615, and 820
would be 0.89 kPa, 0.87 kPa, and 0.86 kPa, respectively. This is the error due to uncertainty in

choosing the size of Z interval of the force-indentation curve for the calculation of the effective

Young’s modulus.
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Figure 6. An example of the dependence of the effective Young’s modulus on the location of Z
interval used to calculate the modulus. Several dependences are also shown for different lengths
Z interval used to calculate the modulus. One can see that the size of Z interval should not be too

large to detect the plateau. Analysis was done on a Zebrafish melanocyte cell.
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It is important to note the possible existence of multiple plateaus. In the example of figure
6, one can see that there is another plateau around 6 nN. Because we assume homogeneity of the
material, which can only be true for relatively small forces, the Hertz model cannot be used to
describe the 2" plateau. It is rather helpful to note that the force of the plateau almost universally
stays between 3 to 6 nN for a diversity of cell phenotypes (when using a spherical indentation
probe of 5 um). Finally, it might be the case in which the plateau does not exist at all. Then, the
model cannot be used (cell is presumably too heterogeneous). Fortunately, such a situation is

quite rare.

2.2.3. Possible error in the parameters of the pericellular brush layer due to uncertainty in

choosing the fitting region in Step 2.

Step 2 of the model deals with the extraction of the force due to the PB layer. While the
extraction of this force using equation (1) is unambiguous, finding the parameters to describe this
layer using equation (2) involves two uncertainties similar to the calculation of the modulus, the
length, and the location of the fitting region. As previously discussed, the exponential
dependence of the indentation force on the separation distance between the AFM probe and cell
body (equation (2)) can be seen as a straight line in the force plots when the force is presented in
the logarithmic scale. However, due to the natural inhomogeneity of this layer, there are
deviations from the pure exponential behavior. Fig. 7 presents two typical examples of the forces
due to the PB layer. In Fig. 7a, two chosen fitting regions provide no noticeable variation to the

brush parameters of the fit of equation (2), the brush length L and grafting density N. The first

1
pum?’

region corresponds to L= 1115 nm, N=233 and the second region gives L= 1122 nm, N=229

— Fig. 6b shows an example of stronger dependence of the brush parameters on the fitting

1
um?’

region. The first region corresponds to L= 1635 nm, N=165 whereas the second region gives

1
um?’

different values: L= 1115, N=250
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Figure 7. Uncertainty because of the freedom in choosing the location of the fitting region in the
force due to the PB layer used to calculate the parameter of the PB layer: the brush length and
grafting density (Step 2, optional parameterization of the PB layer). (a) A good exponential
fitting; no or weak dependence of the brush parameters on the fitting region. (b) A non-ideal
exponential fitting; a stronger dependence of the brush parameters on the fitting region. Zebrafish

melanocyte cell used for analysis.

Similar to the uncertainty in the fitting region for Step 1, there is uncertainty not only in
the choice of location of the fitting region but also in the length of that region. Fig. 8

demonstrates two fitting regions of the force due to the PB layer. The first region corresponds to

1
pum?’

L= 1220 nm, N=225

whereas the second region gives different values: L= 1140 nm, N=235

1
m2’

When we analyze the dependence of these parameters on the fitting region length AND on

the location of the fitting region, it is obvious that the larger length of the fitting region gives less
variation of the derived brush parameters. In principle, it makes sense to use the full range of

allowable size of the fitting region for equation (2), 0.1< A/L <0.8.
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Figure 8. Uncertainty due to the freedom in choosing the length of the fitting region to calculate
the parameters of the PB layer, the brush length, and grafting density (Step 2, optional

parameterization of the PB layer). Zebrafish melanocyte cells were used for analysis.

3. Results

Here we present the statistical results for the errors defined in the previous section due to
uncertainties in the force curves and model definitions. We analyze the value of the effective
Young’s modulus of the cell body (£), the position of non-deformed cells (Zy), and the
parameters of the brush layer: the brush length (L) and grafting density (V).

3.1. Method of choosing the force curves for analysis and definition of the
relative errors

The results were obtained using 60 AFM indentation curves from a diverse source of cells: 20

from zebrafish (melanocytes; 9 cells, about 2 force curves per cell), 20 rats (neuronal cells; 10
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cells, about 2 force curves per cell), and 20 humans (cervical cells; 8 cells, about 2 force curves

per cell).

To avoid the favorite “pre-filtering” of the force curves chosen for the analysis, we used

the following unambiguous rule to pick the force curves. The force curves were chosen

randomly, spaced over the cell surface when satisfied with the following rules:

1.

The location is near the cell top. Since the Hertz model was used to calculate the Young’s
modulus, the contact geometry is restricted to sphere-to-sphere contact. This limits the
locations of collection of the force curves to either the top of the cell or its flat areas.
Many cells did not have flat areas, being relatively small. So, for the sake of uniformity,
we restricted the locations only to the top of the cells, similar to the previous publications
17" when the incline of the cell surface is less than 10°.

Only the force curves that demonstrated consistency with the Hertz contact model were
considered (otherwise, the concept of the elastic modulus, in general, is not applicable).
This was verified by observing the independence of the modulus of the indentation depth
(the load force). Specifically, the observed independence/plateau should satisfy the
following criteria: a) the plateau size > 0.5 nN, b) the deviation from flatness < 10° (in
kPa vs nN scale).

It is worth noting that the plateau started between 2 — 6 nN for all cells of the
study. If the plateau does not occur within this region, then the entire force curve is
discounted. It also should be noted that some of the force curves showed multiple
plateaus. For consistency with the Hertz model, only the first plateau can be used for
calculations.

Clearly identifiable zero-force part of the force curve (see, for example, Fig.3). The

tolerance of uncertainty was put here to < 0.2 nN (2nm of the cantilever deflection).

For the cell samples used for the analysis in this work, the percent of the force curves

chosen around the top of each cell that satisfied the above requirements was as follows: 40%

human cervical epithelial cells, 60% rat neurons, and 60% zebrafish fibroblasts.

To find the error / uncertainty in the predicted cell parameters, we calculate the relative

error, which is independent of the absolute value of the parameter. This is done because it

allowed us to compare the errors between different force curves, which may correspond to very
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different values of the derived physical parameters. For example, let the average Young’s moduli
derived from two force curves be 1kPa and 10 kPa, respectively. And let the relative
error/uncertainty in the derivation of these moduli be 1% for both curves. It would be rather
misleading to try to average the absolute values of the error, 0.1 and 1 kPa in this case. It would
lead to a confusing result of 0.5kPa error, which is obviously misleading for the curve that gives
1kPa modules. Because our goal is to present the overall statistics of the error of the model and
uncertainty of the experiments, we are saying that the average relative error is 1% in the

considered case.

To calculate the relative errors due to the uncertainties described above, we did the
following. The Hertz plateau (Fig.6) was defined for a fixed split of the full Z interval (from the
beginning of the contact — the point of first noticeable deflection d - and the maximum force)
into six equal intervals ( ~ 820 nm in length for the example of Fig. 6). It corresponds to a
reasonable balance between over-smearing and under-smoothing of the modulus dependence on

the indentation force.

Errors in the finding of all sought parameters (modulus £, brush length L, brush grafting
density N, and non-deformed position of the sample Z,), e,, are defined as the variance of the

sought parameters calculated for each m force curve:

_100% (27, (x;—%)?

m X n-1

; )

where x; the values of each parameter calculated within each uncertainty region (e.g., uncertainty
in the zero deflection, etc; see Tables 1 — 5), n is the number of tested points within each
uncertainty region (n=5 in this work; the uncertainty regions were analyzed by using five equally

distant testing points); m=1..20 for each cell type.

The results of the calculated errors are presented in Tables 1-5 for each analyzed
uncertainty. The error due to all uncertainties combined is presented in Table 6. The error
averaged on all force curves and one standard deviation are shown in the tables for each of three

cell phenotypes.

Overall comparison of absolute values of the analyzed parameters is not within the scope

of the present work, we give it for general reference. So the average values of the Young’s
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modulus of zebrafish fibroblast, rat neurons, and human cervical epithelial cells analyzed in this

work were approximately 0.75, 1.6, and 2.7 kPa, respectively. The average effective parameters

of the pericellular brush layer, the equilibrium brush length L and grafting density N were as
follows: 1.9 pm and 170 um™2, 2.0 pm and 140 um, and 0.93 pm and 170 um? for zebrafish

fibroblast, rat neurons, and human cervical epithelial cells, respectively.

3.2. Errors due to uncertainty in zero deflection of the AFM cantilever

The errors due to uncertainty in zero deflection were calculated as described in section 2.2.1.

While the zero deflection was varied within the uncertainty interval, the other tested program

parameters were kept constant, specifically: Z interval (e.g., at 820 nm for the example of Fig. 5);

the modulus was taken at the middle of the modulus plateau; the length of the exponential

interval was chosen to stay within the exponential force dependence. It was found that the fitting

region between 0.1 and 0.4 h/L was always within the exponential force dependence. The

location of the exponential interval was taken at the center of the fitting region between 0.1 and

0.4 h/L. The resulting errors calculated as described in the previous section (question 3) are

shown in Table 1.

Table 1. The error of the brush model parameters due to uncertainty in the zero deflection of the

AFM cantilever (the average values and one standard deviation are given).

Epithelial

Error in Error in Brush Error in Error in
Cell type Modulus E Length L Brush Zy
% % Density N %
%
Zebrafish 0.52 +£0.32 72+3.1 6.6+4.2 0.50+0.26
Fibroblast
Rat Neuron 0.41+£0.23 6.0+£3.3 53+34 0.41+£0.20
Human Cervical | 0.61 +0.30 98+3.6 7.8+4.1 0.50+0.24
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3.3. Errors due to uncertainty in choosing the fitting region of the force-

indentation curve in Step 1

To verify the uncertainty in the modulus due to possible choice of Z interval (as explained in
Section 2.2.2.2 and Fig.5), Z steps of 300, 410, 615, 820, 1240, and 1650 nm were used (Z range
was divided by ~16,12,8,6,4,3 equal parts). The modulus plateau was not visible in most curves
for step sizes over 820 nm, whereas at step sizes under 410 nm the modulus plateau was
excessively noisy. So we used 820, 615, and 410 nm interval lengths and calculated the
errors/variation across the modulus plateau. The other tested parameters were kept constant,
specifically: zero deflection was taken at the smallest deflection point, the length of the
exponential interval was chosen to stay within the exponential force dependence. It was found
that the fitting region between 0.1 and 0.4 h/L was always within the exponential force
dependence. The location of the exponential interval was taken at the center of the fitting region

between 0.1 and 0.4 h/L.

The uncertainty of the modulus within the plateau was found by splitting the plateau into five
data points uniformly distributed over the force of the plateau. As the force locations in the
plateau were varied, the other tested parameters were kept constant as follows: zero deflection
was taken at the smallest deflection point, Z interval at 615 nm, and the length of the exponential
interval was chosen to stay within the exponential force dependence. The location of the

exponential interval was taken at the center of the fitting region between 0.1 and 0.4 h/L.

Table 2. The error of the brush model parameters due to the length of the fitting region of the

force-indentation curve (the average values and one standard deviation are given).

Error in Error in Error in Error in
Cell type Modulus E Brush Brush Zy
% Length L Density NV %
% %
Zebrafish 1.9+0.7 2622 0.79+0.86 |0.7+0.2
Fibroblast
Rat Neuron 20+1.2 1.7+ 1.6 0.56+0.57 [0.7+04
Human Cervical 1.3+0.7 22+1.6 0.52+0.62 |0.5+0.2
Epithelial
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Table 3. The error of the brush model parameters due to the fitting region location of the force-

indentation curve (the average values and one standard deviation are given).

Error in Error in Error in Error in
Cell type Modulus E Brush Brush Zy
% Length L Density NV %
% %
Zebrafish 1.6+£1.0 1.3+ 0.9 1.1+0.6 0.61 +£0.37
Fibroblast
Rat Neuron 1.4+£0.8 0.60 £0.53 0.90+0.53 |0.56+0.34
Human Cervical 1.0+£0.8 0.53+0.36 1.1+0.9 0.32+0.26
Epithelial

3.4. Errors in the parameterization of the pericellular brush layer due to

uncertainty in choosing the fitting region in Step 2.

It should be stressed that the extraction of the force due to the PB layer is an unambiguous
procedure, which is implemented by using equation 1. However, the parameterization of this
force using equation 2 carries the uncertainty described in section 2, the location and length of
the interval are to be fitted with equitation 2. Thus, in this section, we present the results for the

error of parameterization of the PB layer by means of equation 2.

3.4.1. Fitting Interval Location of the Brush

The location of the fitting (exponential) interval was chosen between the allowable limits starting
from 0.1 h/L and ending between 0.4 and 0.8 h/L (when the force curve was still visually
exponential - a straight line in the logarithmic scale). The interval locations were chosen by
equally dividing the fitting interval into five equal sub-intervals. Note that as the fitting region
location was varied, the other tested model parameters were kept constant, specifically: zero
deflection taken at the smallest deflection point, Z interval as 615 nm, the modulus value within

the middle of the visible modulus plateau.
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Table 4. The error of parameterization of the PB layer due to uncertainty in the location of the

fitting region (the average values and one standard deviation are given).

Error in Brush Error in Brush
Cell type Length, L % Density, N %
Zebrafish Fibroblast 17+ 10 25+ 15
Rat Neuron 14+ 8.7 22+11
Human Cervical Epithelial | 17+ 7.6 25+ 11

3.4.2. Fitting Interval Length of the Brush

The length of the exponential interval was varied between the maximum and minimum ones
divided by a factor of 1,2,3,4,5. The maximum length of the exponential interval was is the
length of the interval starting from 0.1 h/L and ending between 0.4 and 0.8 h/L (when the force
curve was still visually exponential, a straight line in the logarithmic scale). The minimum length

of the exponential interval was 1/10™ of the maximum one.

Note that as the fitting region length was varied, the other tested model parameters were kept
constant, specifically: zero deflection taken at the smallest deflection point, Z interval at 615 nm,
the modulus point at the middle of the visible modulus plateau, and the location of the

exponential interval was taken at the center of the fitting region between 0.1 and 0.4 h/L.

Table 5. The error of parameterization of the PB layer due to uncertainty in the length of the

fitting region (the average values and one standard deviation are given).

Error in Brush Error in Brush
Cell type Length, L % Density, N %
Zebrafish Fibroblast 63+57 92+84
Rat Neuron 4.6+3.1 7.8+5.7
Human Cervical Epithelial | 5.1 +3.3 8.4+6.0
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4. Discussion

As was described, the brush model consists of two almost independent parts: calculation of the
effective Young’s modulus of the cell body (Step 1) and the extraction of the force-due-to-brush
(Step 2). The uncertainties (or errors) in the derivation of both parts due to ambiguity in the
interpretation of experimental data and the model steps were presented in Tables 1-3. Additional
Tables 4 and 5 show the results of ideologically different analysis, which is a part of Step 2, the
uncertainties or errors in the parameterization of the force-due-to-brush by using the exponential
formula, equation (2). The difference between the brush layer data presented in Tables 1-3 and
4,5 is as follows. Tables 1-3 show the ambiguity in the derived force-due-to-brush while keeping
the uncertainties in the parameterization of the brush fixed, whereas Tables 4,5 describe the
deviation of the force-due-to-brush from the exponential law. Thus, we discuss the results of

these tables separately.

Tables 1-3 present the errors/uncertainties in the calculation of the output model
parameters: the effective Young’s modulus (£) and undeformed position (Zy) of the cell body,
and the force-due-to-brush parameterized with a fixed fitting interval and the middle position of
the fitting interval. As one can see, all these errors are sufficiently small, in particular, the error
of defining the modulus and the undeformed position. It gives us justification to analyze the

sources of the errors separately. The error of each output parameter P°* can be represented as a
function of some input parameters {R"’ ,P;” yeres PA","} , which are defined with some uncertainty
{513;[", SP",..., 5P;,”} . (The specific examples of input parameters are the ones defined in section

2.2.) Then, the total error/uncertainty of the output parameter P** can be found as follows:

out out out
0 SP" + ZP”’ SP" + 587 SP] +O(SB",5P,...,6P)) 4)
2 N

OP" =—
a})lll’l
Due to a relatively small errors, we can keep only the linear terms in this formula. It
should be noted that a potential cross-correlation between different sources of the uncertainties
discussed in this work may exist. However, being the second-order effects, they can be ignored.

Adding the errors described in tables 1-3 together (linear contributions in equation 4), one
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obtains the results presented in Table 6. One can see that overall errors are rather reasonable and

well within the typical uncertainty in the spring constant of the AFM cantilever (~5-20%

) 49-51

Table 6. The total error of the brush model parameters due to 1) uncertainty in the zero

deflection of the AFM cantilever, 2) the length of the fitting region of the force-indentation

curve, and 3) the fitting region location of the force-indentation curve. The average values of

the errors (calculated using equation 3) and one standard deviation are given.

Error in Error in Error in Error in
Cell type Modulus E Brush Brush Zy
% Length L Density N %
% %

Zebrafish 4.0 11 8.5 1.8
Fibroblast
Rat Neuron 3.8 8.3 6.8 1.7
Human Cervical 2.9 13 94 1.3
Epithelial

Now, let us discuss the deviation of the force-due-to-brush from the exponential law,
which is shown in Tables 4,5. One can see that the uncertainty due to the position of the fitting
interval can be quite substantial, whereas the dependence on the length of the fitting interval is
much smaller. As we already briefly mentioned, this is NOT the error of the model but rather an
indication of deviation of the behavior of the actual pericellular brush layer from an entropic
brush model given by equation 2. This should not be a surprise because the entropic brush model
is obviously an oversimplification of the actual pericellular layer. As was demonstrated, the
pericellular layer may consist of two different constituents, a molecular part (glycoproteins and
glycosaccharides) and corrugation of the membrane (microridges, microvilli, and in some cases,
cilia and filopodia). The detailed analysis of the deviations of the force due to brush from the
exponential law is beyond the scope of the present work. It should be noted, though, that these
deviations can be used for additional characterization of the pericellular brush layer. This will be

done in future works.

It is instructional to discuss the rule of selection of the force curves as well as the total

number of the force curves analyzed in this work. In general, it is tempting to apply some
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computer algorithm or machine learning analysis to prescreen the curves suitable for AFM
analysis. Technically, it can definitely be done. However, it would not bring any noticeable
enhancement of the method described in this paper. The reason for that is that the total number of
force curves to analyze in a typical cell indentations experiment by means of AFM is relatively
small. The cell indentation is usually done with a load speed < 10 pm/s to avoid a too large
viscoelastic response of the cell material, and at the same time, not to disturb the cell too much
during an excessively long experiment. Next, to avoid the nonlinear overstretching of cells * ¥,
the indentation experiments are done with the AFM probe with a micron radius of curvature.
Furthermore, as we mentioned before, one needs to collect the force curves only above the cell
top (or on a flat area if it exists). All this results in a rather limited number of force curves that
can be used to extract geometry- and experiment- independent values of cell parameters in a self-
consistent way. Typically, the number of suitable force curves rarely exceeds 10 per cell.

Finally, simple algorithms like the goodness of curve fitting (R? or chi-square) do not bring any
noticeable separation between good and bad force curves (unless the curve is really bad, meaning
it doesn’t look like force curves all). Thus, it seems to be premature to develop a special

algorithm to filter out force curves that are not suitable for the analysis through the brush model.

As the total number of the force curves analyzed in this work (~120 were screened
through the rules described in section 3.1, and 60 were found to be good for the numerical
analysis), it looks to be sufficient because of consistent results across all force curves. This can
be seen through a relatively small standard deviation of the obtained errors, as well as

consistency between the different cell phenotypes.

In conclusion, the brush model proves to be robust. The obtained errors due to the model
and experimental uncertainties typically are less than 10%. The uncertainty in the definition of
the modulus of the cell body (the effective Young’s modulus) is less than 4%. This is
comparable or smaller than the uncertainty that may come from the measurements of the spring

constant of the AFM cantilever (5-20%) %324,
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Experimental Methods

Cells

AFM force-indentation curves were collected on three distinct cell types as described in detail in
corresponding references: zebrafish fibroblast >, rat neuron °, and human cervical epithelial
samples !”->°. Here we briefly describe the methods of sample preparation to outline details of
specific cell preparation for each cell type. Zebrafish fibroblast samples contained both dormant
and cancer-initiating cells, and were analyzed at 21°C. Rat neuron samples contained normal
cells that were analyzed at 25°C and 37°C. Human cervical epithelial samples contained normal
cells analyzed at 21°C. All cells adhered tightly to the bottom of 60 mm cell culture dishes. The
dishes were mounted on the chuck of the AFM with a double sticky tape. All indentation

experiments were done on living cells in their specific medium.

Zebrafish fibroblast cells

After humane euthanasia of the zebrafish, a spontaneously arising crestin: GFP + melanoma
tumor with some adjacent melanocytes was excised with a scalpel and dissociated mechanically
with a razor blade followed by treatment with 50% Ham's F12/50% DMEM, 10x Pen/Strep,
0.075 mg/mL Liberase for 30 minutes. The reaction was stopped with 50% Ham's F12/50%
DMEM, 10x Pen/Strep, 15% heat-inactivated fetal calf serum. After filtering through a 40-
micron mesh filter, cells were plated on a 60 mm plastic petri dish coated with fibronectin and
grown in zebrafish complete medium until imaging. Right before imaging, cells were washed

with PBS buffer, and studied with AFM in fresh PBS solution.

Human cervical epithelial cells

The cells were prepared by a two-stage enzymatic digestion of cervical tissue as described [33]
and cells were maintained in keratinocyte serum-free medium (Invitrogen, Carlsbad, CA).
Serum-free media do not have inevitable variability of sera, and it suppress a possible growth of
fibroblasts. Cervical epithelial tissues were isolated from healthy tissues of endzone of cervix as
described in >*. All donor tissues were obtained from the Cooperative Human Tissue Network.

The obtained normal cervical cells were used between 40 to 60 population doublings. All
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scanning and measurements related to rigidity were performed on viable cells maintained to
room temperature in Hank’s balanced salt solution (HBSS) within 2-3 hours after removal of the

growth medium.

Rat neurons
Rat cortices were obtained from Tufts Medical School isolated from embryonic day 18 rats. The
isolated corticies were incubated at 37°C in 5 mL of trypsin for 20 minutes. Trypsin was
inhibited with 10 mL of neurobasal medium (Life Technologies, Frederick, MD) which was
supplemented with GlutaMAX, b27 (Life Technologies), pen/strep (Life Technologies) 1%, and
10 mg of soybean trypsin inhibitor (Life Technologies). The cortices were mechanically
dissociated, the cells were centrifuged, the supernatant removed, and the cells were re-suspended
in 20 mL of neurobasal medium with L-glutamate (Sigma-Aldrich, St. Louis, MO). Cortices
were incubated in serum-free media, which reduces glia proliferation. The cells were
mechanically re-dispersed, counted, and plated at a density of 250,000 cells per 3.5 cm culture
disk. Each sample of cells was grown in 5% CO, at 37°C for a minimum of 2 days before
measurements. Neuronal cells were optically selected based on morphology.

Cell samples were cultured on 3.5 cm glass disks manufactured to fit in the Asylum
Research Bioheater fluid cell (Asylum Research, Santa Barbara, CA). Poly-D-lysine (PDL)
(Sigma-Aldrich, St. Louis, MO) coating was added to the glass disks by immersing them in a

PDL solution (0.1 mg/ml) for 2 hours at room temperature.

Atomic force microscopy

A Nanoscope™ Dimension 3100 (Digital Instruments/Veeco, Inc., Santa Barbara, CA) atomic
force microscope (AFM) was used to obtain the data on human cervical epithelial cells.
Zebrafish fibroblasts were studied with BioScope Catalyst (by Bruker Nano, Inc., Santa Barbara,
CA). MFP-3D-Bio AFM (Asylum Research/Oxford Instruments, Santa Barbara, CA) was used
to study rat neurons. Standard cantilever holders for operation in liquids were employed. All
AFM cantilevers used in this study had 5-13 micron spherical probes attached to tipless
cantilevers of 0.01-0.1 N/m spring constant. To obtain the distribution of the interface properties

of the cell, the force-volume mode of operation was utilized. The force volume mode provides
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information about both the surface topography and the force curves simultaneously. This is
important because the models to quantify the measurements have been developed for a sphere
over a surface of known geometry, a plane. Thus, we processed force curves only over relatively
flat areas of the cells (<10° of inclination angle). The force curves were collected over areas of
several hundred square microns with the vertical ramp size within 4-5 pm. The AFM probe
moves up and down during the force collection with a frequency of 2Hz to decrease viscoelastic
effects to a reasonable minimum (the approach speed was ~10 pm/s for all samples). While we
could not avoid the viscoelastic effects completely, to be consistent, we performed all
measurements with the same oscillation frequency of 2Hz. The global position of the AFM probe
was controlled by the built-in video system, which allows observation of areas from 150 x 110 to
675 x 510 pm? with 1.5um resolution. The measurement methodology described in detail can be

found, for example, in ref. >
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