
Sankhyā A : The Indian Journal of Statistics
https://doi.org/10.1007/s13171-021-00257-0
c© 2021, Indian Statistical Institute

Null Models and Community Detection
in Multi-Layer Networks

Subhadeep Paul
The Ohio State University, Columbus, USA

Yuguo Chen
University of Illinois at Urbana-Champaign, Champaign, USA

Abstract

Multi-layer networks of multiplex type represent relational data on a set of
entities (nodes) with multiple types of relations (edges) among them where
each type of relation is represented as a network layer. A large group of
popular community detection methods in networks are based on optimizing
a quality function known as the modularity score, which is a measure of the
extent of presence of module or community structure in networks compared
to a suitable null model. Here we introduce several multi-layer network mod-
ularity and model likelihood quality function measures using different null
models of the multi-layer network, motivated by empirical observations in
networks from a diverse field of applications. In particular, we define multi-
layer variants of the Chung-Lu expected degree model as null models that
differ in their modeling of the multi-layer degrees. We propose simple esti-
mators for the models and prove their consistency properties. A hypothesis
testing procedure is also proposed for selecting an appropriate null model
for data. These null models are used to define modularity measures as well
as model likelihood based quality functions. The proposed measures are
then optimized to detect the optimal community assignment of nodes (Code
available at: https://u.osu.edu/subhadeep/codes/). We compare the effec-
tiveness of the measures in community detection in simulated networks and
then apply them to four real multi-layer networks.

AMS (2000) subject classification. Primary 62F10, 62F40, 62R07; Secondary
62H30, 90B15.
Keywords and phrases. Configuration model, Degree corrected multi-layer
stochastic block model, Expected degree model, Multi-layer network, Multi-
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1 Introduction
The complex networks encountered in biology, social sciences, economics

and machine learning are often “multi-layered” or “multi-relational” in the
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sense that they consist of multiple types of edges/relations among a group of
entities. Each of those different types of relation can be viewed as creating
its own network, called a “layer” of the multi-layer network. Multi-layer
networks are a more accurate representation of many complex systems since
many entities in those systems are involved simultaneously in multiple net-
works. This means each of the individual network layers carries only partial
information about the interactions among the entities, and full information is
available only through the multi-layer networked system (Rocklin and Pinar,
2011; Paul and Chen, 2016). While the term multi-layer networks is often
used to include networks with more general connectivity patterns, e.g., inter-
layer connections (Kivelä et al., 2014), we restrict our attention to networks
with multiple types of relations on the same set of entities and without inter-
layer connections. Such networks have also been called “multiplex networks”
in the literature (Kivelä et al., 2014).

We will consider a number of such inherently multi-layer networks as real
world examples in this paper. In the social networking website Twitter, users
can engage in various types of interactions with other users, e.g., “mention”,
“follow”, “retweet”, etc. (Greene and Cunningham, 2013; Paul and Chen,
2016). Although the individual network layers created by these relation-
ships are structurally highly related, they represent different facets of user
behavior. In another example from biology, the neural network of a small
organism, Caenorhabditis elegans, consists of neurons which are connected
to each other by two types of connections, a synaptic (electrical) link and an
ionic (inter-cellular chemical gap junction) link. The two types of links have
markedly different dynamics and hence should be treated as two separate
layers of a network instead of fusing together into a single network (Boc-
caletti et al., 2014). See Kivelä et al. (2014), Boccaletti et al. (2014), and
Nicosia and Latora (2015) for more examples and discussions of multi-layer
networks.

Efficient detection of community structure is an important learning goal
in networks. Communities or modules in a network are defined as subsets
of nodes which are more similar to each other than the rest of the net-
work. This definition is a bit ambiguous in the sense that a group of nodes
might be “similar” in many different ways. A general acceptable definition
is the so called “structural communities”, where nodes within the commu-
nity are densely connected among themselves as compared to the rest of the
network (also known as assortative mixing or homophily (Newman, 2003)).
The stochastic block model (SBM), a popular model for networks with com-
munity structure, generalizes the notion of community to include all nodes,
whose connection probabilities to other nodes are similar, in a community
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(“stochastically equivalent”) (Holland et al., 1983; Bickel and Chen, 2009;
Rohe et al., 2011). The problem of detecting modules or communities is
relatively well studied for single layer networks (Fortunato, 2010; Golden-
berg et al., 2010). Community detection by optimizing a quality function
known as modularity (Newman and Girvan, 2004) is popular in various ap-
plication areas and its theoretical properties have been studied extensively
as well (Bickel and Chen, 2009; Zhao et al., 2012). However the community
detection problem for multi-layer networks has not been studied well in the
literature until recently.

Motivated by the goal of developing methods for community detection in
multi-layer networks that can take into account the information present in all
the network layers simultaneously, we propose a number of null models and
derive modularities based on those null models. Recently there has been a
surge in analysis of networks with multiple layers (De Domenico et al., 2013;
Bazzi et al., 2016; Boccaletti et al., 2014; Kivelä et al., 2014; Han et al.,
2015; Paul and Chen, 2016; Peixoto, 2015; Stanley et al., 2016; Taylor et al.,
2016). A few modularity measures have also been proposed in the literature.
Mucha et al. (2010) used a null model formulated in terms of stability of
communities under Laplacian dynamics in networks to derive a modularity
measure for multi-layer networks with inter-layer node coupling. Another
extension of the Newman-Girvan modularity (Newman and Girvan, 2004)
to multi-layer settings as a sum of layer-wise modularities was mentioned
by Liu et al. (2014) and Sarzynska et al. (2016). Aggregation of adjacency
matrices as a way of combining information from multiple graphs has also
been explored in the literature. However, recent information theoretical
results show that community detection on such aggregated graph does not
always perform quite well as the different types of layers might have quite
different properties in terms of density and signal quality which will get lost
due to aggregation (Paul and Chen, 2016). In this paper, we are interested in
the problem of detecting a common set of communities for the nodes, which
is distinct from the problem of detecting different (but perhaps related)
communities in the layers of the network.

The main contributions of this paper can be summarized as follows.

• We propose two sets of null models for multi-layer networks, inde-
pendent degree (ID) and shared degree (SD) models, depending upon
how the degrees of different layers are modeled. We propose simple
closed form estimators for the parameters of the models and study
their asymptotic consistency properties. We also propose a hypothesis
test to select between the two models.
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• We use two variations of the above degree based null models, based
on whether the null model conditions on expected (unknown) degrees
or observed degree sequence, and develop a series of modularity and
likelihood quality function measures on the basis of those null mod-
els. The new null models can be thought of as multi-layer extensions
of the expected degree and configuration models widely employed in
community detection. We study the properties and performance of the
proposed quality functions and maximization procedures in simulated
and real multi-layer networks.

The rest of the paper is organized as follows. Section 2 deals with degree
distributions in multi-layer networks, defines two families of multi-layer null
models, and develops tools for parameter estimation and model selection.
Section 3 extends the Newman-Girvan modularity to multi-layer settings
with various multi-layer configuration models as null models. Section 4 first
defines four multi-layer degree corrected stochastic block models and then
derives modularity measures based on them. Section 5 deals with computa-
tional issues, while Section 6 presents a study of the proposed modularities
to assess their effectiveness on simulated networks. Section 7 applies the
methods for community detection in a number of real world networks and
Section 8 gives concluding remarks.

2 Multi-Layer Null Models: Estimation and Selection

We represent an undirected multi-layer graph as G = {V,E}, where the
vertex set V consists of N vertices representing the entities and the edge set
E consists of edges of M different types representing the different relations.
We define the adjacency matrix A(m) corresponding to the mth network
layer as follows:

A
(m)
ij =

{
1, if there is an mth type of edge between i and j,

0, otherwise.

Note that we do not consider the possibility of inter-layer edges in our multi-
layer network. The multi-layer network can be viewed as a graph with
vector valued edge information with the “edge-vector” between two nodes

i and j being Aij = {A(1)
ij , A

(2)
ij , . . . , A

(M)
ij }. In this connection we also

define the “multi-degree” of node i as ki = {k(m)
i ; m = 1, . . . ,M} where

k
(m)
i =

∑
j A

(m)
ij is its degree of mth type. For a multi-layer network with

K communities, we further denote the community assignment vector of the
nodes as z = {zi; i = 1, . . . , N} with zi taking values in the set {1, . . . ,K}.
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We will use the notations e
(m)
ql and e

(m)
q to denote the total number of edges

of type m between communities q and l and the total degree of type m

of all nodes in community q, i.e., e
(m)
ql =

∑
i,j A

(m)
ij I(zi = q, zj = l) and

e
(m)
q =

∑
i,j A

(m)
ij I(zi = q) =

∑
i k

(m)
i I(zi = q), where I(·) is the indicator

function which is 1 if the condition inside is satisfied and 0 otherwise. Note
that e

(m)
ql = e

(m)
lq , e

(m)
q =

∑
l e

(m)
ql , and e

(m)
qq is twice the number of edges

within the community q, for all m in an undirected multi-layer graph. The
total number of edges in layer m and in the entire network are denoted as
L(m) and L respectively.

2.1. Null Models for Community Detection in Single Layer Networks
Modularity can be viewed as a score that computes the difference between
the observed structure of the network from an expected structure under a
random “null” network. The null network can be generated by a random net-
work null model which creates connections between nodes at random without
any special structure of interest (Sarzynska et al., 2016; Bazzi et al., 2016).
In particular, for community detection the modularity score computes the
difference between the observed number of edges and that expected in a null
network within a group of nodes marked as a community. The community
structure is strong if this score, with a proper normalization, is high. As an
example, the celebrated Newman-Girvan modularity (Newman and Girvan,
2004) for single layer networks has the following expression:

QNG =
1

2L

∑
i,j

{
Aij −

kikj
2L

}
δ(zi, zj) =

1

2L

∑
q

{
eqq −

e2q
2L

}
, (2.1)

where ki and eq are the degree of node i and the total degree of community
q respectively, and eqq and L represent twice the total number of edges
within community q and the total number of edges in the entire network
respectively.

Although originally the modularity score in Eq. 2.1 was heuristically
motivated, one can recognize the configuration model or a random graph on
give degree sequence (Bollobás and Béla, 2001; Molloy and Reed, 1995) as
the null model that generates the null network for this modularity measure.
In the configuration model G(N,k) for a single layer network with number
of nodes N and given degree sequence k = {ki}, the null network is sampled
from a population of networks having the same degree sequence through
random matching of nodes. For some community assignment of the nodes
of the network, the method then computes the expected number of edges
according to this null network within each community. The modularity
score is then the difference between the observed number of edges and the
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expected number of edges obtained in the previous step. Optimizing this
modularity score across all possible community assignments will then lead
to a detection strategy for network communities.

Another related model is the “expected degree model” by Chung and Lu
(2002b), which can be thought of as a null model for a likelihood modularity
based on the degree corrected block model (Zhao et al., 2012). In this model
each vertex i is associated with a parameter wi which represents its expected
degree. The probability Pij of an edge between nodes i and j is proportional
to the product of the expected degrees κi and κj (Chung and Lu, 2002a):

Pij =
κiκj∑
k

κk
, max

i
κ2i ≤

∑
k

κk. (2.2)

The null network is then formed by adding edges Aij between nodes i and
j independently with probability Pij , i.e., Aij ∼ Bernoulli(Pij). For the
subsequent discussions we use the re-parameterization in Perry and Wolfe
(2012) and Arcolano et al. (2012):

Aij ∼ Bernoulli(Pij), Pij = θiθj , θi ∈ (0, 1). (2.3)

Note the model includes the possibility of self-loops with probability of a
self-loop for node i being θ2i .

Let κi denote the expected degree of a node and 2L =
∑

i κi denote twice
the expected number of edges. We note that under this model, the expected
degree of a node and twice the expected number of edges are

κi = θi
∑
j

θj , 2L =
∑
i

∑
j

θiθj =

(∑
k

θk

)2

,

so that
κi√
2L

= θi.

This expression for θ motivates a commonly used estimator for estimating
θ (Perry and Wolfe, 2012; Olhede and Wolfe, 2012; Arcolano et al., 2012)

θ̂i =
ki√
2L

. (2.4)

Statistical properties of the estimator have been studied previously in the lit-
erature under varying assumptions. Arcolano et al. (2012) derived moments
of the estimator without any additional assumptions. Asymptotic normality
of the estimator was studied under the assumption of decaying tail degree
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similar to power law degree distribution in Olhede and Wolfe (2012). In
this paper we assume a condition on the average expected degree and prove
that the estimator is consistent for estimating θi in Thoerem 1. Our prove
technique is different from that of Olhede and Wolfe (2012).

A consequence of the estimator is that the estimated probability of a link
between i and j is given by P̂ij =

kikj
2L , which is the same as the one obtained

from the configuration model (Perry and Wolfe, 2012). Perry and Wolfe
(2012) further gave a motivation for the estimator as maximum likelihood
estimator (MLE) when the Bernoulli distribution is approximated with the
Poisson distribution for ease of computation (the model continues to allow
self-loops). The existence and consistency of MLE in the Bernoulli model
with logit links has been analyzed in Chatterjee et al. (2011) and Rinaldo et
al. (2013).

The Poisson distributed version of the random graph has been used pre-
viously in the literature as null model for community detection (Karrer and
Newman, 2011; Zhao et al., 2012; Perry and Wolfe, 2012; Yan et al., 2014).
Usually the distribution leads to multiple edges and the random variable Aij

represents the count of the edges between i and j, while Pij represents the
expected number of such edges. It has been argued that often graphs natu-
rally contain multiple edges (weighted graphs) and then the Poisson model
is appropriate. However, the Poisson distribution is also valid as an approx-
imation to the binary graph since we expect Pij to be small in modern large
scale networks which are quite sparse, and in such cases both distributions
would lead to similar results (Zhao et al., 2012; Perry and Wolfe, 2012; Yan
et al., 2014). This can be easily seen by comparing the moment generating
functions (MGFs) of the two distributions:

MPoi(t) = exp(p(et − 1)), MBern(t) = 1− p+ pet.

A first order Taylor expansion of the MGF of Poisson distribution shows

MPoi(t) = 1 + p(et − 1) +O(p2(et − 1)2).

Therefore, if p → 0, then the MGF of Poisson converges to the MGF of
Bernoulli.

Even though the estimator in Eq. 2.4 is derived assuming that the net-
work contains self-loops, the estimator can be used for networks without
self-loops as well. Perry and Wolfe (2012) showed that this estimator, when
plugged into the likelihood equation of a graph with Poisson distributed
edges but without self-loops, gives only a small error. They further showed
that the solution is a good approximation for the MLE in the original
Bernoulli model (without self-loops) as well.
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Nevertheless, we continue to consider the settings of the model in Eq. 2.3,
i.e., we have an unweighted random graph with edges distributed according
to Bernoulli distribution and contains self-loops. We prove uniform consis-
tency of the estimator in Eq. 2.4 in the following theorem. Define the average
expected degree of G, κ̄ = 2L

N = 1
N (

∑
k θk)

2.

Theorem 1. Let G be a graph generated according to the expected degree
model in Eq. 2.3 with parameters θ̄1, . . . , θ̄N . Assume the average expected
degree of G, κ̄ ≥ C logN , for a sufficiently large constant C not dependent
on N . Then the parameter estimates in Eq. 2.4 satisfy

sup
i∈{1,...,N}

|θ̂i − θ̄i|
p→ 0, as N → ∞.

The proof of this theorem and two other theorems later are in the
Appendix A. We have assumed that the average expected degree grows at a
rate faster than logN . This is a stronger condition than that in Olhede and
Wolfe (2012), however unlike Olhede and Wolfe (2012), we do not require
the degree distribution to decay.

2.2. Degrees in Multi-Layer Network and Null Models While the ob-
served number of edges among the nodes within a community is unique,
its expectation can vary depending on which network null model is chosen.
Hence there can be considerable variation in the communities detected using
a modularity score. The null model should be wisely chosen with the aim to
capture all sources of systematic variation in the network except the com-
munity structure. So given that the observed network is a realization of the
null model, the additional edges observed within the communities beyond
what is expected from a purely random phenomenon should be attributed
to the community structure.

From the preceding discussions it is clear that the degree sequence, ob-
served or expected, plays a major role in null models. In a multi-layer
network, every node is associated with a “multi-degree” vector instead of a
single degree. Hence in multi-layer networks degree heterogeneity might be
present in two aspects: across the nodes in a layer and across layers in a
node. The across layer heterogeneity can be due to two reasons. First, some
layers might be inherently sparse and some might be dense, and second,
nodes might participate in varying degrees in relations captured by different
layers. To illustrate this, consider the British Members of Parliaments (MPs)
in twitter dataset (Greene and Cunningham, 2013; Paul and Chen, 2016).
While there is clear degree heterogeneity across the different MPs within a
network layer depending on their political influence and significance, there
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might also be degree heterogeneity across layers for the same MP depend-
ing upon personal preferences. Moreover, the layer “follow” is somewhat
denser compared to the layers “mention” and “retweet”, possibly because
the former requires one time attention and the later, continued. Hence a
number of null models are possible depending upon how one models the
degree sequence.

We can broadly classify our null models into independent degree (ID)
models and shared degree (SD) models. The independent degree models
assume degrees in each layer are independent of the degrees in other layers,
and assign a separate degree parameter for each layer to each node. Hence
we can write the independent degree multi-layer (expected degree) model as

A
(m)
ij ∼ Bernoulli(P

(m)
ij ), P

(m)
ij = θ

(m)
i θ

(m)
j . (2.5)

In contrast, the shared degree models assign only one degree parameter to
each node, and layer-wise variations in degree are captured by a single layer-
specific global parameter. The shared degree multi-layer (expected degree)
model can be written as

A
(m)
ij ∼ Bernoulli(P

(m)
ij ), P

(m)
ij = θiθjβm. (2.6)

The shared degree model further requires an identifiability constraint∑
m βm = 1. Note that the ID model requires MN parameters while the SD

model requires only N+M−1 parameters. Since we have M network layers,
we effectively have O(MN2) data points. Hence in the context of sparse in-
dividual layers, the SD model, being more parsimonious, might lead to less
variance at the expense of bias.

It has been empirically observed that the layers of a multi-layer net-
work have many structural similarity (Kivelä et al., 2014). Among others,
it has been shown that the degrees are often highly correlated (Nicosia and
Latora, 2015). Since we expect the individual layers to be manifestation
of an underlying common structure, the degrees of a node in different lay-
ers are also expected to be highly inter-related. While there are instances
where the degrees can be negatively correlated, a large number of cases have
positively correlated degrees. Figures 1(a1), (b1) and (c1) show the degree
distribution of three layers (mention, follow, retweet) in Twitter network of
British MPs, three layers (get on with, best friends, work with) in a friend-
ship network of 7th grade school students, and two layers (synaptic, ionic)
of the neuronal network of C-elegans respectively. Three real-world multi-
layer networks from diverse fields, ranging from social networks, friendship
networks to neurological networks, exhibit a large positive correlation in the
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Figure 1: Observed degree distributions across layers in (a1) Twitter network
of British MPs, (b1) 7th grade school students and (c1) C-elegans neuronal
network; (a2, b2, c2) degree distribution fitted with a shared degree model
plotted as scatter plots with the observed degrees in each layer

degree distribution among their layers. In such cases a relatively parsimo-
nious shared degree null model described in Eq. 2.6 might be appropriate.
Figures 1(a2), (b2), and (c2) show that the shared degree null model fits
well (using the parameter estimators that we describe in the next section)
to the degree distribution of the layers in these networks respectively.

2.3. Estimation in Multilayer ID and SD Models To derive parame-
ter estimates for the multilayer ID and SD models in Eqs. 2.5 and 2.6
respectively, once again we approximate the Bernoulli log-likelihood with
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the Poisson log-likelihood. We justify the resulting estimators by showing
that they are consistent estimators for the parameters.

The Poisson approximated log-likelihood from the ID model (2.5) can be
written as

l(θ) =
∑
m

∑
i,j

{
A

(m)
ij

(
log

(
θ
(m)
i

)
+ log

(
θ
(m)
j

))
− θ

(m)
i θ

(m)
j

}

−
∑
m

∑
i,j

log
(
A

(m)
ij !

)
.

The likelihood equations are therefore,

∂l

∂θ
(m)
i

:

∑
j A

(m)
ij

θ
(m)
i

−
∑
j

θ
(m)
j = 0, i = {1, . . . N}, m = {1, . . . ,M}.

A solution to the likelihood equation leads to the following simple estimator:

θ̂
(m)
i =

k
(m)
i√
2L(m)

, (2.7)

which can be thought of as the multi-layer extension of the estimator in
Eq. 2.4.

For the SD model the Poisson approximated likelihood is

l(θ, β) =
∑
m

∑
i,j

{
A

(m)
ij (log(θi) + log(θj) + log(βm))− θiθjβm

}

−
∑
m

∑
i,j

log
(
A

(m)
ij !

)
.

Therefore the set of likelihood equations is given by

∂l

∂θi
:

∑
m

∑
j A

(m)
ij

θi
−
∑
m

∑
j

θj = 0, i = {1, . . . N},

∂l

∂βm
:

∑
i,jA

(m)
ij

βm
−
∑
i,j

θiθj = 0, m = {1, . . . ,M}.

Solving the likelihood equations, we obtain the following estimators:

θ̂i =

∑
mk

(m)
i√

2L
, β̂m =

L(m)

L
. (2.8)



12 S. Paul and Y. Chen

The parameter estimates are uniformly consistent under the original
Bernoulli model which is given by the following two theorems. We start with
a few observations that serve as motivation for the estimators in Eqs. 2.7

and 2.8. Let κ
(m)
i denote the expected degree of a node i in the mth layer

and 2L(m) =
∑

i κ
(m)
i denote twice the expected number of edges in layer m.

Further, let L =
∑

m L(m) be the total number of edges in the multi-layer
network. We note that under the ID model,

κ
(m)
i = θ

(m)
i

∑
j

θ
(m)
j , 2L(m) =

∑
i

∑
j

θ
(m)
i θ

(m)
j =

(∑
k

θ
(m)
k

)2

,

and consequently,
κ
(m)
i√
2L(m)

= θ
(m)
i . Similarly, for the SD model

∑

m

κ
(m)
i = θi

∑

j

θj
∑

m

βm = θi
∑

j

θj , 2L(m) =
∑

i

∑

j

θiθjβm = βm

(
∑

k

θk

)2

,

2L =
∑
i

∑
j

∑
m

θiθjβm =

(∑
m

βm

)(∑
k

θk

)2

=

(∑
k

θk

)2

.

Note that here we have used the model constraint that
∑

m βm = 1. There-
fore, for the SD model,∑

m
κ
(m)
i

√
2L

= θi,
L(m)

L = βm.

Theorem 2. Let G be a multi-layer graph generated according to the in-

dependent degree model in Eq. 2.5 with parameters θ̄
(m)
i , i = {1, . . . , N}, m =

{1, . . . ,M}. Assume L′ = minm L(m) ≥ CN log(MN), for a sufficiently
large constant C not dependent on N . Then the parameter estimates in
Eq. 2.7 satisfy

sup
i∈{1,...,N},
m∈{1,...,M}

|θ̂(m)
i − θ̄

(m)
i | p→ 0, as N → ∞.

Theorem 3. Let G be a multi-layer graph generated according to the
shared degree model in Eq. 2.6 with θ̄1, . . . , θ̄N , β̄1, . . . , β̄M . Assume L̄ =
1
M

∑
m L(m) ≥ CN logN , for a sufficiently large constant C not dependent

on N . Then the parameter estimates in Eq. 2.8 satisfy

sup
i∈{1,...,N}

|θ̂i − θ̄i|
p→ 0, as N → ∞,
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sup
m∈{1,...,M}

|β̂m − β̄m| p→ 0, as N → ∞.

The proofs of these two theorems are in the Appendix A. We note that
the condition required on the expected number of edges of the multi-layer
network is stronger for Theorem 2 than for Theorem 3. While in Theorem
2 on ID model we need the minimum expected degree across layers to be
Ω(N log(MN), for Theorem 3 on SD model we need the average expected
degree across layers to be Ω(N logN).

Finally, throughout this section we have allowed the possibility of self-
loops in the models. However, many observed networks do not contain self-
loops. Therefore, we also study the effect of not allowing for self-loops on
the estimators and how much error the estimators make in that situation in
the Appendix A.

We summarize the properties of the estimators below.

• The estimators are consistent under the original Bernoulli model even
though they are not the MLE under that model. We prove this result
directly through concentration inequalities.

• The estimators are MLE under the Poisson approximation model.

• If the model does not allow self-loops, the estimators are not MLE even
under the Poisson approximation. We do not have any consistency
results under this setting, however, we discuss the extent of expected
difference of the estimators from the MLE under the model.

2.4. Null Model Selection By dissociating the degree based null model
from the community structure component of a modularity measure, we make
it easier to first choose the appropriate null model based on observed degree
pattern, and then choose an appropriate modularity measure based on the
null model. In this context a question that naturally arises is, given a multi-
layer network how would one choose between an independent degree and a
shared degree null model?

A hypothesis testing based framework for model selection was developed
in Yan et al. (2014) for selecting between the ordinary stochastic blockmodel
(SBM) and the degree corrected block model (DCBM) in single layer net-
works. In our case, however, the question is not between choosing degree
correction or not, rather between what kind of degree correction is required;
an independent degree model or a shared degree model. Here we provide a
guidance through a simple approximate model selection procedure based on
likelihood ratio calculations. The null hypothesis is that the SD model is the
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true data generating model whereas the alternative hypothesis is that it is
the ID model that generates the data. The maximized Poisson log-likelihood
with the MLE solution as in Eq. 2.7 is

Λ1 =
∑
i

∑
m

k
(m)
i log

k
(m)
i√
2L(m)

− L+ c1, (2.9)

where c1 =
∑

m

∑
i<j log

(
A

(m)
ij !

)
. For the SD model, using the MLE in

Eq. 2.8, the maximized Poisson log-likelihood is

Λ2 =
∑
i

∑
m

k
(m)
i log

∑
m
k
(m)
i

√
2L

+
∑
m

L(m) log

(
L(m)

L

)
− L+ c1. (2.10)

Note that c1 and the L terms cancel when we subtract (2.10) from Eq. 2.9 to
compute the logarithm of likelihood ratio. The standard theory on likelihood
ratio tests would suggest that 2(Λ1 −Λ2) is distributed as a χ2 distribution
with degrees of freedom MN − (N +M −1). However there is some concern
about the validity of the assumptions under which the asymptotic distribu-
tion of the test statistic is usually derived in the present case. In particular
the “effective sample size” in sparse multi-layer graphs (average degree per
layer is O(1)) is O(MN) and the ID model contains MN parameters, lead-
ing to the failure of standard asymptotics (Yan et al., 2014). In Theorems 2
and 3 we have shown consisteny of the MLEs. However, it is not clear im-
mediately if the asymptotic normality with

√
n rate holds for the MLEs and

consequently if the second order delta method can be applied. Hence we use
parametric bootstrap to compute the empirical distribution of the likelihood
ratio test (LRT) statistic under the null model. In particular we fit the SD
model to the data and estimate the parameters θ̂i, β̂m. We then generate
a large number of networks (we used 1000 in data analysis) from the SD
model with the estimated parameters and compute our test statistic on each
of those networks. The values of the statistic form an empirical distribution
which is subsequently used to calculate p-value for the test. Once a null
model selection is performed, the user can choose an appropriate modularity
measure among the ones we define in upcoming sections.

3 Multi-Layer Configuration Models and Modularity Measures

Similar to the multi-layer extensions of the expected degree model devel-
oped in the previous section, we define several extensions of the configuration
model for multi-layer networks, conditioned upon the observed multi-degree
sequence k = {k1, . . . ,kN}.
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In the first model we propose, we assume the degree sequence in one
layer is independent of the degree sequence in other layers. The number of

stubs or half-edges (one end of an edge) coming out of node i is k
(m)
i . For

every stub, there are 2L(m) − 1 stubs or half-edges available to connect to.
Out of these half-edges, the number of half-edges that will lead to an edge

of type m between nodes i and j is k
(m)
j . Therefore, the probability of a

connection of type m between nodes i and j is given by
k
(m)
i k

(m)
j

2L(m)−1
≈ k

(m)
i k

(m)
j

2L(m) ,
which is the same as the estimate of pij in the ID model in Eq. 2.5 using the
estimator in Eq. 2.7. It is a general convention in configuration model to
write 2L(m) in the denominator instead of 2L(m)−1 for simplification as L(m)

is generally quite large. We call this model the independent degree multi-
layer configuration model (ID-MLCM). Using this model as a null model, we
then define our first extension of Newman-Girvan (NG) modularity, which we
call the multi-normalized average (MNavrg) since the expression is effectively
an average of the layer-wise normalized NG modularities:

QMNavrg =
1

M

∑
m

∑
i,j

1

2L(m)

{
A

(m)
ij −

k
(m)
i k

(m)
j

2L(m)

}
δ(zi, zj)

=
1

M

∑
m

∑
q

1

2L(m)

{
e(m)
qq − (e

(m)
q )2

2L(m)

}
. (3.1)

There is a similar version of this modularity that has appeared in the liter-
ature before for community detection in multi-layer networks — the intra-
layer part of the multi-slice modularity in Mucha et al. (2010) and
Bassett et al. (2013) (see also the discussion in Sarzynska et al. (2016)),
and “composite modularity” in Liu et al. (2014). In those earlier instances,
the layer-wise modularity scores are typically not normalized before adding
together. To minimize the impact of varying sparsity across layers, it is pru-
dent to normalize the measures by the density of layers before aggregating
(Paul and Chen, 2016).

We next describe the shared degree multi-layer configuration model (SD-
MLCM). We bring a regularization effect into the null model by sharing
degree across layers for networks. This will be particularly useful in the
case when all the network layers are extremely sparse. If we do not distin-
guish the stubs in terms of type, then according to the simple configuration
model, the probability of an edge (of any type) between nodes i and j will

be given by

(∑
m k

(m)
i

)(∑
m k

(m)
j

)

2L−1 . Now, given that these two nodes i and j
are the endpoints of a randomly chosen edge, we look into the probability
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that an edge of type m is formed between the nodes. This probability can
be modeled in three different ways, leading to three different shared degree
multi-layer configuration models (SD-MLCMs) and consequently three dif-
ferent modularities. To illustrate this, we abuse the notation a little bit and
write the probability of an mth type of connection between nodes i and j
as P (i, j,m) = P (i, j) × P (m|i, j), where P (i, j) denotes the unconditional
probability of an edge between nodes i and j, and P (m|i, j) denotes the
conditional probability of an mth type of edge between i and j given there
is an edge between them.

We can use the global frequency of the occurrence of themth type of edge
among the multi-layer network as an estimate of the probability P (m|i, j).
We call the resulting modularity score shared degree average (SDavrg) since
we are using a global estimate for each node. The modularity can be written
as

QSDavrg =
1

M

∑
m

∑
i,j

1

2L(m)

⎧⎨
⎩A

(m)
ij −

L(m)
(∑

mk
(m)
i

)(∑
mk

(m)
j

)
2L2

⎫⎬
⎭δ(zi, zj)

=
1

M

∑
m

∑
q

1

2L(m)

⎧⎪⎨
⎪⎩e(m)

qq −
L(m)

(∑
me

(m)
q

)2
2L2

⎫⎪⎬
⎪⎭ . (3.2)

We can also use local estimates of this probability of the mth type of
connection that is specific to a node or a group of nodes. One such measure
would be the ratio of the mth type of stubs to all stubs in the communities
to which nodes i and j belong. Instead of looking into the entire network,
this ratio measures the relative frequency of the occurrence of the mth type
of edge involving stubs emanating from the groups of either i or j. Hence
this is a more local measure of the relative density of the mth type of edges.
The total number of edges (of any type) that have an end in the group to

which i and j belong is
∑

m

(
e
(m)
zi + e

(m)
zj

)
. Out of these only

(
e
(m)
zi + e

(m)
zj

)
are of type m. Hence according to this estimate, the probability of an mth

type of stub emanating out of i or j is
e
(m)
zi

+e
(m)
zj∑

m

(
e
(m)
zi

+e
(m)
zj

) . The corresponding

modularity, which we call shared degree local (SDlocal) to highlight the fact
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that it uses a more local estimate of the expected number of edges, is given
by

QSDlocal =
1

M

∑

m

∑

i,j

1

2L(m)

⎧
⎨

⎩A
(m)
ij −

(
e
(m)
zi + e

(m)
zj

)(∑
mk

(m)
i

)(∑
mk

(m)
j

)

∑
m

(
e
(m)
zi + e

(m)
zj

)
2L

⎫
⎬

⎭ δ(zi, zj)

=
1

M

∑

m

∑

q

1

2L(m)

⎧
⎨

⎩e(m)
qq −

e
(m)
q

(∑
me

(m)
q

)

2L

⎫
⎬

⎭ . (3.3)

The last one is also a local measure of P (m|i, j), but a more direct
measure. We take the ratio of the expected number of edges of type m
to the total number of expected edges between the groups to which i and
j belong according to the configuration model. Clearly, as per the single
layer configuration model, the expected number of edges of type m between

groups zi and zj is e
(m)
zi e

(m)
zj /2L. Hence in the multi-layer context, given that

there is an edge between the groups zi and zj , the probability that the edge

would be of type m is given by
e
(m)
zi

e
(m)
zj∑

m

(
e
(m)
zi

e
(m)
zj

) . We call this modularity the

shared degree ratio (SDratio) to highlight the fact that it takes the ratio of
the expected number of edges of type m to the total expected number of
edges. The expression is as follows,

QSDratio =
1

M

∑

m

∑

i,j

1

2L(m)

⎧
⎪⎪⎨

⎪⎪⎩
A
(m)
ij −

(
e
(m)
zi e

(m)
zj

)(∑
mk

(m)
i

)(∑
m
k
(m)
j

)

∑
m

(
e
(m)
zi e

(m)
zj

)
2L

⎫
⎪⎪⎬

⎪⎪⎭
δ(zi, zj)

=
1

M

∑

m

∑

q

1

2L(m)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩
e
(m)
qq −

(
e
(m)
q

)2
(∑

m
e
(m)
q

)2

2L
∑
m

(
e
(m)
q

)2

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭
. (3.4)

4 Degree Corrected Multi-Layer Stochastic Blockmodel

Our next set of quality functions are based on a statistical model of
random multi-layer networks which we call the degree corrected multi-layer
stochastic blockmodel (DCMLSBM). This model can be thought of as a
model with community structure that is built upon the multi-layer expected
degree models introduced in Section 2 as null models. Both the multi-layer
stochastic blockmodel (MLSBM) and the DCMLSBM have been previously
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used in the literature as a statistical model for multi-layer networks with
block structures (Valles-Catala et al., 2016; Han et al., 2015; Peixoto, 2015;
Paul and Chen, 2016; Taylor et al., 2016; Stanley et al., 2016). In what
follows we first define various degree corrected extensions of the two models
analyzed in Paul and Chen (2016), the MLSBM and the restricted MLSBM
(RMLSBM) based on the multi-layer expected degree null models defined
earlier, and then derive likelihood modularity functions (Bickel and Chen,
2009; Karrer and Newman, 2011) from them. Several generative models
based on multi-layer extensions of SBM were developed in Peixoto (2015)
with priors on the parameters and a Bayesian model selection procedure was
developed. In this paper we restrict ourselves to variations only in terms
of degree through the SD and ID multi-layer expected degree null models
described in Section 2 and variation in terms of block parameters through a
restriction similar to Paul and Chen (2016).

It has been argued previously in the literature that the modularities
based on the single layer SBM and DCBM are more widely applicable than
ad hoc forms of quality functions and often remedy some of the deficiencies
of the later (Ball et al., 2011; Bickel and Chen, 2009). Since the Newman-
Girvan modularities consider only the intra-community edges and do not
take into account the inter-community edge structure directly (although they
are used indirectly to compute the expected intra-community edges), they
miss some of the information taken into account by the likelihood modular-
ities which consider both intra and inter community edges. As an example,
the NG modularities fail to detect dissortative mixing/heterophilic commu-
nities and perform poorly if the community sizes are unbalanced, while like-
lihood modularities are robust to such cases.

Similar to the single layer stochastic blockmodel, the multi-layer stochas-
tic blockmodel also assumes stochastic equivalence of nodes for a given type
of edge within each community and hence fails to model real life multi-layer
networks with degree heterogeneity. To remedy the situation for single layer
graphs, degree corrected blockmodel (DCBM) was proposed by Karrer and
Newman (2011). They also characterized the modularity based on this model
as a Kullback-Leibler divergence between this model and a null model with-
out the community structure. Such a null model would be equivalent to the
Chung-Lu expected degree random graph model. Hence both the MLSBM
and RMLSBM should be corrected for degree variation using multi-layer
extensions of the expected degree null models described earlier in Eqs. 2.5
and 2.6.

Throughout the section we assume that the edges A
(m)
ij between two

nodes i and j are formed independently following Poisson distribution, given
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the community assignments of the nodes zi and zj and the degree vectors of
the two nodes ki and kj :

A
(m)
ij |(zi = q, zj = l) ∼ Poisson

(
P

(m)
ij

)
.

We model the Poisson mean parameter for the multi-layer stochastic block-
model in four different ways with varying number of parameters. The first
two of the models have the independent degree (ID) expected degree model
as their null model. The first model is parameterized by node-layer spe-

cific parameters θ
(m)
i similar to the ID model and community-layer specific

parameters π
(m)
ql . Formally,

P
(m)
ij = θ

(m)
i θ

(m)
j π

(m)
ql , i, j ∈ {1, . . . , N},m ∈ {1, . . . ,M}, q, l ∈ {1, . . . ,K},

(4.1)
with the identifiability constraints∑

i:zi=q

θ
(m)
i = 1, m ∈ {1, . . . ,M}, q ∈ {1, . . . ,K}.

We call this model the degree corrected multi-layer stochastic blockmodel
(DC-MLSBM).

The next model is the degree corrected version of the RMLSBM, which
we call the DC-RMLSBM,

P
(m)
ij = θ

(m)
i θ

(m)
j πql, i, j ∈ {1, . . . , N},m ∈ {1, . . . ,M}, q, l ∈ {1, . . . ,K},

(4.2)
with identifiability constraints∑

i:zi=q

θ
(m)
i = 1, m ∈ {1, . . . ,M}, q ∈ {1, . . . ,K}.

This model has node-layer specific parameter θ
(m)
i similar to DC-MLSBM,

while the community specific parameters πql are the same across layers.
The DC-MLSBM and DC-RMLSBM have M(N −K) +MK(K +1)/2 and
M(N −K) +K(K + 1)/2 parameters respectively.

In the next two models the underlying null model is the shared degree
(SD) expected degree model, and hence the node specific “degree” param-
eter θi is common across the layers. We call the models the shared degree
multi-layer stochastic blockmodel (SD-MLSBM) and the shared degree re-
stricted multi-layer stochastic blockmodel (SD-RMLSBM) respectively. The
SD-MLSBM is

P
(m)
ij = θiθjπ

(m)
ql , i, j ∈ {1, . . . , N}, m ∈ {1, . . . ,M}, q, l ∈ {1, . . . ,K},

(4.3)
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with identifiability constraints∑
i:zi=q

θi = 1, q ∈ {1, . . . ,K},

and the SD-RMLSBM is

P
(m)
ij = θiθjβmπql, i, j ∈ {1, . . . , N}, m ∈ {1, . . . ,M}, q, l ∈ {1, . . . ,K},

(4.4)
with identifiability constraints∑

m

βm = 1,
∑
i:zi=q

θi = 1, q ∈ {1, . . . ,K}.

The SD-MLSBM and SD-RMLSBM have N −K +MK(K +1)/2 and N −
K +M − 1 +K(K + 1)/2 parameters respectively.

Clearly the four models are nested models with different number of pa-
rameters. We consider an asymptotic scenario here to estimate the number of
parameters each of the models will have asymptotically. We consider asymp-
totics as both M and N grow. However, we do not assume any relationship
between them, nor do we require both of the them to grow simultaneously.
For example, it could be the case that only N grows or only M grows. Let
the growth rate of communities be K = O(f(N), g(M)) for some functions
f and g with the constraint that K ≤ N , since the number of communities
cannot be larger than the number of nodes.

• Let f(N) = 1, g(M) = 1, i.e., K = O(1), which implies that K
does not grow with N or M . Then DC-MLSBM, DC-RMLSBM have
O(MN) parameters while SD-MLSBM and SD-RMLSBM have O(N+
M) parameters.

• Let f(N) = N1/2, g(M) = 1, i.e., K = O(N1/2), which implies that
K grows with N but does not grow with M . Then DC-MLSBM,
DC-RMLSBM and SD-MLSBM have O(MN) parameters while SD-
RMLSBM has O(N +M) parameters.

• Let f(N) = 1, g(M) = M1/2, i.e., K = O(M1/2), which implies
that K grows with M but does not grow with N . However, here
we need to assume that M1/2 < N to make sure that K < N holds.
Then DC-MLSBM, DC-RMLSBM have O(MN+M2) parameters, SD-
MLSBM has O(M2+N) parameters, while SD-RMLSBM has O(M +
N) parameters.
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From the preceding discussion we see that SD-RMLSBM has fewer pa-
rameters in most asymptotic scenarios and in some case by order of mag-
nitude. In general, for the models that have considerably fewer number of
parameters (e.g., SD-RMLSBM), we expect the maximum likelihood esti-
mates to have less variance at the expense of some bias. Such gain in terms
of low variance at the expense of bias would be advantageous in situations
where the network layers are sparse (Paul and Chen, 2016). On the other
hand, when network layers are dense, we expect SD-RMLSBM to underper-
form compared to a model (e.g. DC-MLSBM) which has less bias.

4.1. Likelihood Quality Functions To derive quality functions based on
the four models defined above, we take the profile likelihood approach sim-
ilar to Bickel and Chen (2009) and Karrer and Newman (2011), where we
maximize the conditional log-likelihood l(A|z;P ) of the adjacency matrix
given the group assignments. This is done by plugging in the MLE of the
parameter set P conditional on z. The conditional log-likelihood for DC-
MLSBM can be written as (dropping the terms that do not depend on the
class assignment)

l(A; z, π, θ) =
1

2

M∑
m=1

∑
i,j

{
A

(m)
ij

{
log

(
π(m)
zizj

)
+ log

(
θ
(m)
i

)
+ log

(
θ
(m)
j

)}

−θ
(m)
i θ

(m)
j π(m)

zizj

}
=

∑
m

∑
i

k
(m)
i log

(
θ
(m)
i

)
+
∑
m

∑
q≤l

{
e
(m)
ql log

(
π
(m)
ql

)
− π

(m)
ql

}
.

(4.5)

The MLE of π can be obtained by a straightforward differentiation of the log-
likelihood function. However to find the MLE of θ under the identifiability
constraints, we need to use the Lagrange multipliers as follows. The objective
function to be optimized is

Λ(θ, λ) =
∑
i

∑
m

k
(m)
i log

(
θ
(m)
i

)
+
∑
m

∑
q

λmq

⎛
⎝ ∑

i:zi=q

θ
(m)
i − 1

⎞
⎠ .

Solving for θ and λ we obtain the following solutions for the MLE:

θ̂
(m)
i =

k
(m)
i∑

i:zi=q k
(m)
i

=
k
(m)
i

e
(m)
q

, π̂
(m)
ql =

∑
i,j: zi=q,zj=l

A
(m)
ij = e

(m)
ql .
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Plugging in these estimates into the log-likelihood function gives the maxi-
mized log-likelihood function as

l(A; z) =
∑
i

∑
m

k
(m)
i log

(
k
(m)
i

e
(m)
q

)
+
∑
m

∑
q≤l

{
e
(m)
ql log

(
e
(m)
ql

)
− e

(m)
ql

}

=
∑
m

∑
q≤l

e
(m)
ql log

(
e
(m)
ql

)
−
∑
m

∑
q≤l

e
(m)
ql +

∑
i

∑
m

k
(m)
i log

(
k
(m)
i

)

−
∑
q

∑
m

e(m)
q log

(
e(m)
q

)
. (4.6)

Now ignoring the terms that do not depend on the class assignment (the 2nd
and 3rd terms), we get

l(A; z) =
∑
m

∑
q≤l

e
(m)
ql log

(
e
(m)
ql

)
−
∑
q

∑
m

e(m)
q log

(
e(m)
q

)
. (4.7)

It is easy to see that this maximized likelihood function can be written as

Q =
∑
m

∑
q≤l

⎧⎨
⎩e

(m)
ql log

⎛
⎝ e

(m)
ql

e
(m)
q e

(m)
l

⎞
⎠
⎫⎬
⎭ ,

which we call the un-normalized likelihood quality function.
However, the quality function at this form take more contribution from

denser layers as compared to the sparser ones and are not appropriate for
community detection in multi-layer networks. Since we are interested in
inference about the underlying community structure across the layers, we
want to capture the “signals” available from each layer irrespective of its
density and combine them together. Hence we need to normalize this like-
lihood quality function layer-wise. The role of normalization is especially
important in situations where the layers of a network represent quite differ-
ent relationships. In those situations it may happen that a dense network is
uninformative and a sparse one is quite informative. The deficiencies in un-
normalized likelihood quality are conceptually the same as those for which an
aggregate of adjacency matrices across layers fails to detect the community
signal. Apart from reducing the undue influence of highly dense layers on the
objective function, normalization helps to retain the Kullback-Liebler (KL)
divergence based probabilistic interpretation of likelihood quality (Karrer
and Newman, 2011). Since by assumption, given the label assignments of
the nodes, the network layers are formed independently each with a Poisson
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distribution, the KL divergence of the model with block structure from a
null model without a block structure is an indicator of the goodness of fit
for that model in each of the network layers. Hence much like the configura-
tion model case, the multi-layer likelihood quality function in the stochastic
blockmodel case can also be viewed as an aggregation of divergences in the

component networks. For this purpose we normalize A
(m)
ij by twice the to-

tal number of edges in the mth layer, 2L(m). Consequently quantities that
are derived from A also gets normalized accordingly. The likelihood quality
function after proper normalization can be written as

QDC−MLSBM =
∑
m

∑
q≤l

⎧⎨
⎩

e
(m)
ql

2L(m)
log

⎛
⎝ e

(m)
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e
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)(
e
(m)
l /2L(m)

)
⎞
⎠
⎫⎬
⎭ .

(4.8)
Similarly for DC-RMLSBM, the conditional likelihood along with the

constraints can be simplified as (dropping the terms not dependent on the
parameters)

l(A; z, π, θ) =
1

2
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)
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e
(m)
ql log(πql)− πql

}
.(4.9)

The MLEs of θ and π under the constraints are once again obtained by the
method of Lagrange multipliers as explained before:

θ̂
(m)
i =

k
(m)
i∑

i:zi=q k
(m)
i

=
k
(m)
i

e
(m)
q

, π̂ql =
∑
m

∑
i,j: zi=q,zj=l

A
(m)
ij =

∑
m

e
(m)
ql .

The profile likelihood quality function can be obtained by plugging in the
MLEs into the log-likelihood equation and then dropping the terms that do
not depend on the class assignment:

l(A; z) =
∑
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ql log
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−
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)
, (4.10)
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and with proper normalization the likelihood quality function is

QDC−RMLSBM =
∑
m
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(4.11)
The likelihood quality functions for the two shared degree models can

also be derived in a similar fashion. For SD-MLSBM, the conditional log-
likelihood without the terms independent of the parameters is

l(A; z, π, θ) =
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The maximum likelihood estimates of the parameters are
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and hence the profile likelihood quality function with normalization is
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For SD-RMLSBM, the conditional log-likelihood without the terms in-
dependent of the parameters is

l(A; z, π, θ) =
1

2
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The maximum likelihood estimates of the parameters are
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Ignoring the terms not dependent on the label assignments and after nor-
malization, the likelihood quality function is
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5 Computation

We adapt the Louvain algorithm (Blondel et al., 2008) to multi-layer
network settings for computing both the number of communities and the
optimal partitions using the multi-layer configuration model (MLCM) based
multi-layer modularities from Section 3. Similar to the original Louvain
algorithm, the modified algorithm is also a two-phased fast greedy optimiza-
tion method for community detection. For optimizing the likelihood quality
function based measures from Section 4, we implement a multi-layer ver-
sion of the algorithm used by Karrer and Newman (2011). As in Karrer
and Newman (2011), we need the number of communities K to be known
in advance for this method. The algorithm is a Kernighan-Lin type graph
partitioning algorithm and is a non-greedy approach which leads to more
accurate results for a known K than the Louvain approach. It however re-
quires a starting partition and the final solution depends on the quality of
the initial value. This algorithm often gets stuck in a local minimum and
hence we use multiple starting points to improve the quality of partitions.

We refer the reader to Blondel et al. (2008) and Karrer and Newman
(2011) for details of the algorithms. For both algorithms the execution speed
heavily depends on the ability to quickly compute the increase in modularity
score for a one step change without having to re-compute the modularity
value for the entire network. For the Louvain algorithm, this one step change
is the increase in modularity for removing a node i from its own community
(i.e., the community which only contains i) and moving it to the community
of one of its neighbors j, say community q. For each one of the modularities,
we have derived this one step change. Here we only give example formulas for
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three MLCM based modularities to compute the one step change in Louvain

algorithm. We define an additional notation. Let d
(m)
iq denote the number

of type m edges from node i to a neighboring community q. Then
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The Kernighan-Lin type algorithm for optimizing the likelihood quality
functions starts with an initial assignment of nodes to the K communities,
and loops through each node to consider moving it from its current commu-
nity to any of the other K−1 candidate communities (Karrer and Newman,
2011). A move is made if the likelihood is increased as a result of that move.
Once all nodes have been considered (each node is checked only once), we
arrive at a new community assignment and repeat this process until the
likelihood does not increase beyond a pre-specified tolerance. The key to
this algorithm is fast computation of change in likelihood due to moving
node i from its community r to another neighboring community s (Karrer
and Newman, 2011). In particular, we do not need to compute the full
likelihood value at each iteration because the difference can be found as a
function involving only a few quantities. Here we provide an expression for
the change for DC-MLSBM, which serves as an example. Define the function
f(x) = x log x . Then
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We have implemented these methods in Python and the codes are avail-
able at https://u.osu.edu/subhadeep/codes/.

6 Simulation Results

In this section we numerically compare the performance of the various
quality functions for community detection through a simulation study. Since
the true class labels of the nodes are known in simulated data, we compare
the class assignments from different methods with the true labels. This
comparison involves two stages. Since the Louvain algorithm applied to the
modularities can identify the number of clusters automatically, an effective
community detection in situations where the number of communities is un-
known must first identify the number of communities correctly. Hence the
first step of comparison is in terms of the number of communities detected.
The metric used for this purpose is the mean square error of the number
of classes recovered across the repetitions. The second step would be to
compare the goodness of the class assignments. As a metric, we use the
normalized mutual information (NMI) which is an information theory based
similarity measure between two cluster assignments (Karrer and Newman,
2011). This metric takes values between 0 and 1, where, in theory 0 in-
dicates that the class assignment is random with respect to the true class
labels and 1 indicates a perfect match with the true class labels. However,
we note that the NMI score can take a small positive value even when the
estimated cluster assignment is random with respect to the true cluster as-
signment purely due to chance. Since the measure is “normalized” it can
be used to compare clustering solutions with different number of clusters as
well. Finally assuming that the number of clusters is known in advance, we
compare the clustering accuracy of the modularity scores in terms of NMI.
All the results reported throughout the section are the average of the metric
across 40 repetitions of the simulations.

We then compare the relative performance of the multi-layer modularities
along with a baseline method for comparison, the NG modularity on the
aggregated adjacency matrix. The comparison is performed under various
settings on the number of nodes N , the number of communities K and the
average degree per layer.

6.1. Data Generation We generate data from both the multi-layer stochas-
tic blockmodel and its degree corrected version. For this purpose, we first
generate N node labels independently from a K class multinomial distribu-
tion. The network community sizes are varied by varying the parameters of
the multinomial distribution with equal parameters leading to “balanced”
communities. We next generate theM layers using the stochastic blockmodel

https://u.osu.edu/subhadeep/codes/
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each with a different connectivity matrix. In our stochastic blockmodel, the
connectivity matrices give larger probabilities for intra-block edges in com-
parison to the inter-block edges. The general structure of the connectivity
matrix has (ρλ1, . . . , ρλk) in the diagonal and the same element ρε in the off
diagonal. We control the signal strength in different layers by varying the
ratio of λ’s with ε from layer to layer while we control the average degree
per layer by varying the parameter ρ. Throughout the section strong signal
means that each of λi is roughly 3-4 times greater than ε and weak signal
means each of λi is only marginally greater than ε. If the degree corrected
stochastic blockmodel is used for data generation, then the degree parameter
is generated using a power law distribution, one parameter for each node in
the shared degree model and one parameter for each node in each layer in
the independent degree model.

6.2. Number of Communities Unknown In our first simulation we as-
sume the number of communities is unknown and use the Louvain algorithm
to automatically determine the number of communities along with the parti-
tion. We consider two scenarios in terms of the composition of the component
layers: the first one having sparse strong signal in all layers and the second
one having mixed sparsity and signal quality in its layers where strong and
mixed are as described in the previous paragraph.

6.2.1. Sparse Strong Signal. With all component layers being sparse
and strong in signal quality, we design two simulation scenarios. First we fix
the number of communities K at 3 and the number of nodes N at 800 while
we vary the average density of the multi-layer graph. Figure 2(a) shows
the results of this simulation. The top figure is a comparison in terms of
NMI of the community assignment and the bottom figure is a box plot of
the number of communities detected. While there is not much difference
among the modularities compared in terms of the NMI, the box plots for the
number of classes detected show that the shared degree methods SDavrg and
SDlocal are closer to the correct number of communities (which in this case is
3) as compared to the MNavrg and the aggregate graph in sparser networks.
SDavrg and SDlocal also converge to the correct number of communities
faster than MNavrg and aggregate graph as the network becomes denser.

In the second simulation scenario, we fix the number of communities at
3 and vary the number of nodes from 300 to 600. Figure 2(b) shows the
results of this simulation where as before the top figure is the comparison
in terms of NMI of the community assignment and the bottom figure is the
box plot of the number of communities detected. Similar to the previous
case, we observe that the number of communities detected by SDavrg and
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Figure 2: Comparison of the performance of various multi-layer modularities
for data generated from the DCBM with independent degrees. The layers
are sparse and the signal is strong across all layers. (a) The number of nodes
and number of communities are fixed at 800 and 3 while the average degree
of the nodes across all layers combined is increased. (b) The number of
nodes is increased from 300 to 600 while the number of communities is fixed
at 3. In both cases, the top figure is the comparison in terms of NMI of the
community assignment and the bottom figure is the box plot of the number
of communities detected

SDlocal converges to the true number of communities faster than MNavrg
and aggregate graph as the number of nodes increases.

6.2.2. Mixed Signal Layers. In this simulation, the component layers
of the multi-layer graph vary in terms of both sparsity and signal strength
in the following way: two layers are sparse and have strong signal, two
layers are dense and have weak signal, while one layer is dense and has
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strong signal. This scenario is extremely useful to test the methods in a
very general situation where not all layers are informative and represent
interactions that vary in scales. In real applications, we cannot expect all
layers of a multi-layer network to contain high quality signals about the
community structure. Some of the layers will have a high amount of noise
interfering with the genuine signal from other layers. Likewise the layers
might represent very different relations and hence vary widely in density.
We design three simulation setups: for the first one we vary the average
density per layer while fixing N and K at 800 and 3 respectively, for the
second case we fix K at 3 and let N grow from 300 to 600 in steps of 100,
and for the third one we fix N at 800 and let the number of communities
grow from 3 to 9. As with the previous case we report both the comparison
in terms of NMI and box plots of the number of clusters detected.

For the first case, the results presented in Fig. 3(a) show that MNavrg
along with the shared degree methods outperform the aggregate graph con-
sistently in terms of both NMI and the accuracy of the number of com-
munities detected as the layers become denser. We observe a slight under-
performance of MNarvg compared to SDlocal, SDratio and SDavrg in terms
of the accuracy of the number of communities detected when the average
density of layers is lower, but eventually their performance is comparable.
Figure 3(b) shows very similar observation for the second case where the
number of nodes is increasing. Finally Fig. 3(c) shows that with increas-
ing number of communities performance deteriorates in all the modularities,
however the drop in performance is faster for aggregate graph and SDavrg
compared to the others.

From this simulation we see that although the aggregate graph fails to
provide good performance, the shared degree methods, in spite of combining
information from all layers in their null model, performs at par with the
MNavrg. Hence, this shows that the shared degree methods not only perform
better in sparse networks, but are also robust against the presence of high
degree of noise.

6.3. Likelihood Quality Functions With Number of Communities Known
In this section we assume the number of communities K to be known in ad-
vance and assess the effectiveness of the likelihood based quality functions.
We also include two modularity functions, MNarvg and aggregate graph for
comparison. For this simulation (Fig. 4(a) and (b)) we fix N , K and M
at 500, 2 and 4 respectively while we let the average degree density of all
layers together to grow. In the first case (Fig. 4(a)) the community sizes are
balanced with roughly half of the nodes belonging to either cluster, and in
the second case (Fig. 4(b)) the community sizes are unbalanced with 30% of
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Figure 3: Performance of various multi-layer modularities for data generated
from the independent degree DCBM. Both sparsity and signal quality are
mixed across different layers. (a) N and K are fixed at 800 and 3 while
the average degree of the nodes across all layers combined is increased. (b)
Increasing nodes with fixed K = 3. (c) Increasing number of communities
with fixed N = 800. In all cases, the left side figure is the comparison in
terms of NMI and the right side figure is the box plot of the number of
communities detected
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Figure 4: Comparison of performance with known number of communities of
various MLED modularities along with MNavrg for data generated from the
stochastic blockmodel. The layers are mixed in sparsity and signal quality.
The average degree on nodes across all layers are increasing while N , K and
M are fixed at 500, 2 and 4 respectively. We consider two cases: (a) balanced
community sizes (roughly half of the nodes belonging to either cluster), and
(b) unbalanced community sizes (30% of the nodes belonging to one cluster
and 70% belonging to the other)

the nodes belonging to one cluster and the remaining 70% belonging to the
other. The layers are mixed in terms of density and signal quality. As men-
tioned in Section 5, the Kernighan-Lin type algorithm used when the number
of communities is known requires an initial labeling. For this purpose we
randomly permute the labels of 50% of the nodes, keeping the correct labels
for the rest of the nodes, similar to Bickel and Chen (2009).

We notice that the DC-RMLSBM and SD-RMLSBM along with the ag-
gregate graph method perform worse than the DC-MLSBM and SD-MLSBM
as expected by the fact that the community signal content varies across lay-
ers. Moreover, as expected from our discussion in null model selection, we
observe that the shared degree methods perform considerably better than
the corresponding independent degree methods in this sparse regime. For
example, we note that the shared degree method SD-MLSBM outperforms
the corresponding independent degree method DC-MLSBM throughout the
range of the simulation. The same can be observed comparing the perfor-
mance of SD-RMLSBM with ID-RMLSBM, where SD-RMLSBM outper-
forms ID-RMLSBM for most of the range of the simulation. Lastly, the
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Figure 5: Performance of the proposed methods on data simulated from
benchmark multiplex network model as p increases from 0.85 to 1 with N =
400, K = 3, M = 30 for four different values of μ

method MNavrg based on the multi-layer configuration model performs quite
worse compared to the MLED likelihood quality function methods. This ob-
servation is consistent with the similar observations in case of single networks
by Bickel and Chen (2009) & Zhao et al. (2012).

6.4. Synthetic Networks from Benchmark Model of Bazzi et al. (2020)
Next, we test the performance of the proposed methods under synthetic net-
works generated from the benchmark models proposed in Bazzi et al. (2020).
We use the Matlab implementation of the benchmark models by Jeub and
Bazzi (2016). In the notation of Bazzi et al. (2020), we use the “Multiplex
Dependency Matrix” to generate our multilayer network. We set the number
of nodes as 400 and the number of communities as 3. In all our experiments,
we vary the sum of the “copying probabilities” p in (0.85, 0.90, 0.95, 0.98, 1).
Note that our methods assume the same community structure in all layers
and therefore correspond to p = 1. The remaining values of p gradually de-
viate from our model and therefore serve as tests of the robustness of these
methods. Since our methods generate only one community for each node in
the multilayer network, for cases when p 
= 1, we need to compare the esti-
mated community of a node with an approximation of the ground truth. We
choose the true community that a node belongs to in the maximum number
of layers as its ground-truth community. In the first experiment, we set the
number of layers at 30 and vary the parameter μ, which controls the fraction
of random edges (not related to the community structure) from 0.2 to 0.4
in increments of 0.1. For each of these 15 simulation settings, we generate
synthetic networks using the “Dirichlet DCSBM” benchmark model of Bazzi
et al. (2020) and present the NMI for the methods under consideration. Sim-
ilarly, in the second simulation, we fix the parameter μ at 0.30 and vary the
number of layers from 20 to 40 in increments of 10. We generate synthetic
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Figure 6: Performance of the proposed methods on data simulated from
benchmark multiplex network model as p increases from 0.85 to 1 with N =
400, K = 3, μ = 0.3 for three different settings of the number of layers M

networks for these 15 simulation settings and present the performance of the
methods in recovering the target community structure.

We present the results from the first simulation in Fig. 5. We note that
the methods perform pretty well in detecting the most common partition
when p is slightly different from 1. When p deviates much from 1, our defi-
nition of ground truth is not adequate, and consequently, the performance of
our methods against this ground truth worsens. In general, we find SDratio
to perform relatively better, which is in line with the observations we had
from the simulation study in the previous sections.

The results from the second simulation is presented in Fig. 6. In this
simulation we also observe that the performance of the methods sharply
improves as p gets closer to 1 and SDratio performs relatively better than
the other methods considered.

In the final two simulations we fix p = 1 and vary μ from 0.1 to 0.9
(Fig. 7(a)) and M from 2 to 25 (Fig. 7(b)) respectively. By setting p = 1 we
ensure that all layers have the same community structure which aligns with
the assumptions of this paper. Therefore we find our methods to work quite
well in this setting. We note that the methods generally perform well even
for μ = 0.8, which corresponds to the situation where 80% of the edges do
not conform to the community structure.

7 Real Data Analysis

In this section we analyze a variety of multi-layer network datasets from
different fields including social networks (three Twitter networks), friend-
ship networks (Vickers-Chan’s grade 7 peer network) and biological networks
(Neuronal network of C-elegans). We demonstrate the effectiveness of the
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Figure 7: Performance of the proposed methods on data simulated from
benchmark multiplex network model with N = 400, K = 3, p = 1 and (a)
increasing μ but fixing number of layers M at 30 and (b) increasing number
of layers M but fixing μ at 0.40

multi-layer methods discussed in this paper in detecting meaningful clusters
in the networks.

7.1. Twitter Datasets We consider three real world multi-layer net-
work datasets from the social network Twitter corresponding to interac-
tions among (a) British Members of Parliaments (MPs), (b) Irish politicians
and (c) Football players from the English premier league clubs. All the
datasets were curated by Greene and Cunningham (2013). For each of the
networks we consider three network layers corresponding to the twitter re-
lations “mentions”, “follows” and “retweets” among a set of nodes. We
apply the multi-layer community detection methods discussed in this paper
to cluster the nodes. The ground truth community labels are also provided
by Greene and Cunningham (2013) and correspond to different underlying
aspects of the nodes. For example, in the political networks (UK MPs and
the Irish politicians) the ground truth corresponds to the political affiliation
of the individuals, whereas in the network of premier league football players
the ground truth corresponds to the teams (English premier league clubs)
the players belong to.

7.1.1. UK MPs. The first dataset consists of twitter interactions be-
tween 419 British MPs. We consider only those nodes which are connected
by at least one connection in all the three layers. Then this is the intersection
of the largest connected components in the layers. This reduces the number
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Table 1: The number of communities detected and the NMI of clustering for
different community detection methods for Twitter UK politics data
Method Conservative Labour Lib. Dem SNP no. comm. NMI

Ground truth 152 178 39 5 4 −
Single (mention) 149 172 48 5 4 0.8645
Single (follow) 152 177 45 − 3 0.9644
Single (retweet) 153 173 41 7 4 0.8838
MNavrg 152 178 39 5 4 1.00
SDarvg 151 176 41 6 4 0.9601
SDlocal 152 178 39 5 4 1.00
SDratio 152 178 44 − 3 0.9792
Aggregate 152 178 39 5 4 1.00

The community names are identified by optimal assignment

of nodes to 381. However, there are seven MPs in the trimmed network who
do not belong to any major political party (named “other” in the ground
truth). Hence we remove those nodes and analyze the network with the re-
maining 374 nodes. The ground truth community assignment contains 152
Conservative, 178 Labour, 39 Liberal democrats and 5 SNP. The highly cor-
related layer-wise degree distribution of this network is presented in Fig. 1.
The number of communities detected and the NMI of the clustering result
with ground truth for different community detection algorithms based on
multi-layer configuration model modularities (optimized using Louvain type
algorithm) are listed in Table 1. Clearly the multi-layer methods perform
better than the single layer methods with several of the methods (MNavrg,
SDlocal, NG modularity on aggregate graph) obtaining perfect clustering
solution.

7.1.2. Irish Politicians. The dataset on Irish politicians consists of twit-
ter interactions among 307 Irish politicians. The ground truth consists of
party affiliations of them into Republic of Ireland’s six major political par-
ties. However 23 of them are independents and do not belong to any parties.
We analyze the network both with and without these independents. The
corresponding results are reported in Table 2(b) and 2(a) respectively. As
expected the NMI with the ground truth is better when the network is
analyzed without independents. In both cases, the multi-layer methods gen-
erally outperform the single layer methods. The highest NMI in both cases
are obtained by the multi-layer method SDlocal. For the network without
the independents, three multi-layer methods, MNavrg, SDlocal and SDratio,
make only one incorrect assignment.
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When the number of communities is assumed to be known and set to
6, which is the number of communities in the ground truth, all multi-layer
methods, based on both modularities and likelihood quality functions per-
form very well and miscluster only one node (Table 2(c)). Note in this
case, with known K, the methods are optimized using Kernighan-Lin type
algorithm.

Our results on both political networks show how multi-layer methods
can correctly identify meaningful community structure in networks. The
near-optimal clustering for some of the multi-layer methods is quite sur-
prising and quite rare in network community detection. This is perhaps an
indication of how politicians heavily communicate with people within their
political ideologies and seldom communicate with people of different ideolo-
gies. Hence the social interaction patterns of politicians easily reveal their
political affiliations.

7.1.3. English Premier League Football Players. The last twitter dataset
we analyze consists of interaction among sports personalities; the football
players in the English Premier League. As before, we keep only those nodes
who are connected to at least one other node in each of the network layers.
The ground truth for this dataset consists of footballers assigned to the 20
football clubs that they play for. The number of clusters detected along with
the NMI of the solution with the ground truth are given in the Table 3(a).
We see that almost all methods, single layer and multi-layer, underestimate
the number of clusters. We compare the performance of these methods as-
suming that the number of clusters is known (20) in Table 3(b). We note
that the MLCM based multi-layer methods clearly outperform not only the
single layer modularities and the baseline aggregate method, but also the
multi-layer block model modularities. The single layer NG modularities also
outperform single layer DCBM modularities. In both groups of modularities,
multi-layer modularities perform better than their single layer counterparts.
Moreover one of the MLCM based shared degree method, the SDavrg, per-
forms the best among all the methods. This is expected because when the
number of communities K is large, the number of parameters to be esti-
mated in block model becomes large, resulting in poor estimation. Hence,
the NG modularities outperform the block model ones, while the MLCM
modularities outperform the multi-layer block model ones. For the same
reason, among the multi-layer likelihood quality function methods, the re-
stricted methods (DC-RMLSBM and SD-RMLSBM) with considerably less
block model parameters to estimate perform better than the unrestricted
ones.
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Table 3: Performance of different community detection methods in terms
of (a) number of clusters detected and NMI of clustering, and (b) NMI of
clustering with known number of communities for Twitter English Premier
League dataset
(a)
Method no. comm. NMI
Ground truth 20 −
Single (mention) 14 0.8104
Single (follow) 8 0.7656
Single (retweet) 14 7550
MNavrg 13 0.8330
SDarvg 12 0.8105
SDlocal 12 0.8245
SDratio 6 0.6996
Aggregate 13 0.8204

(b)
Method NMI
NG (mention) 0.8848
NG (follow) 0.9022
NG (retweet) 0.7910
DCBM (mention) 0.7243
DCBM (follow) 0.7552
DCBM (retweet) 0.6765
DCMLSBM 0.7898
DCRMLSBM 0.8082
SDMLSBM 0.7476
SDRMLSBM 0.8125
MNavrg 0.9176
SDarvg 0.9613
SDlocal 0.9129
SDratio 0.9047
Aggregate 0.8896

7.2. C-elegans Next we analyze a dataset from biology: the neuronal
network connectome of a nematode Caenorhabditis elegans. It is the only or-
ganism whose wiring diagram or connectome of the entire nervous system is
known and mapped (Chen et al., 2006; White et al., 1986). For this dataset
and the next one (grade 7 students) we use the versions of the dataset shared
by De Domenico et al. (2015). The present network consists of 279 neurons
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connected by two types of connections, a chemical link or synapse and an
ionic channel (Nicosia and Latora, 2015), and is a weighted network. This
network was previously analyzed both as a single layer network with the two
layers collapsed together (Sohn et al., 2011; Varshney et al., 2011; Fortunato
and Barthélemy, 2007) and as a multi-layer network (Nicosia and Latora,
2015). We convert both layers into undirected network but keep the edge
weights. Note that all our modularity measures can naturally handle posi-
tive edge weights with the weighted adjacency matrix replacing the binary
adjacency matrix in all the calculations. Further, we consider only the nodes
which are connected with at least one connection in both layers. The result-
ing network layers have 253 nodes and 1695 and 517 edges in the synapse
and ion layers respectively.

We apply the hypothesis testing procedure developed in Section 2.4 to
test between SD and ID null models to this data. The LRT statistic value is
379.62. The parametric bootstrap distribution is shown in Fig. 8(a). With
an empirical p-value less than 0.01, we reject the null hypothesis of SD
model and conclude that the ID model should be used as null model for
community detection. Note that using the chi-squared distribution assump-
tion (with degrees of freedom 252) for LRT statistic would also reach the
same conclusion. The two adjacency matrices plotted with class assignments
from the multi-layer methods SDlocal and MNavrg are presented in Figs. 9
and 10 respectively. The block structure confirms well separated structural
communities.

7.3. Grade 7 Students Network This dataset, obtained by Vickers and
Chan (1981), is a multi-layer network on 29 students of grade 7. The stu-
dents were asked to nominate a peer as an answer to one of the following
three question: (a) Who do you get on with in the class? (b) Who are your
best friends in the class? (c) Who would you prefer to work with? The
answers to these three questions create three layers of relations among the
students. Although the network edges are directed, we consider the net-
work as a 3-layer undirected network and apply our community detection
methods on it. The log-likelihood ratio test developed in Section 2.4 fails
to reject the null hypothesis of no difference between the shared degree and
independent degree null models. The parametric bootstrap distribution is
shown in Fig. 8(b). The value of the LRT statistic is 31.86, which corre-
sponds to a bootstrap p-value of 0.993. Moreover, the p-value obtained with
a chi-squared approximation (with degrees of freedom 56) is 0.996, which is
very close to the one obtained through bootstrap. Hence for parsimony we
will prefer the shared degree null model.
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)b()a(

Figure 8: Parametric bootstrap distribution of the likelihood ratio test statis-
tic for (a) C-elegans network and (b) Grade 7 students network. The ob-
served value of the test statistic is indicated with an arrow

Single layer Newman-Grivan modularity gives 3, 4 and 3 clusters for
get-on-with (gw), best friends (bf) and prefer to work with (ww) respec-
tively. However using the entire multi-layer network, three of the four MLCM
based methods along with aggregate detected 3 clusters of size 12, 15 and 2.

Figure 9: Adjacency matrices of the 2 layers in C-elegans connectome, (a)
ionic channel and (b) chemical synapse, sorted and marked according to the
clustering results obtained from SDlocal
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Figure 10: Adjacency matrices of the 2 layers in C-elegans connectome, (a)
ionic channel and (b) chemical synapse, sorted and marked according to the
clustering results obtained from MNavrg

Figure 11 depicts the three adjacency matrices sorted and marked into di-
agonal blocks according to this clustering solution. The density of intra-
community edges are clearly higher than the inter-community edges across
all three layers. Hence, the communities appear to be well separated in all
three layers.

Figure 11: Adjacency matrices of the three layers, (a) get on with, (b)
best friends and (c) work with, sorted and marked according to the (same)
clustering result obtained from SDlocal, SDratio and MNavrg
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Table 4: NMI of clustering with the gender-wise clusters assumption for 7th
grade students peer network; (a) Number of clusters detected and NMI of
clustering and (b) NMI of clustering with number of clusters given as 2
(a)
Method no. comm. NMI
Ground truth 2 −
Single (gw) 3 0.4698
Single (bf) 4 0.5871
single (ww) 3 0.5569
MNavrg 3 0.8726
SDarvg 2 0.7007
SDlocal 3 0.8726
SDratio 3 0.8726
aggregate 3 0.8726

(b)
Method NMI
NG (gw) 0.7007
NG (bf) 1
NG (ww) 0.7007
DCBM (gw) 0.4436
DCBM (bf) 1
DCBM (ww) 0.8123
DCMLSBM 1
DCRMLSBM 1
SDMLSBM 1
SDRMLSBM 1
MNavrg 1
SDavrg 0.8150
SDlocal 1
aggregate 1

Since the only external information known to us about these students
is the gender information, we investigate how well the different clustering
solutions align with communities based on genders. Surprisingly, we see quite
high NMI for the clustering solution mentioned above (Table 4(a)). In fact,
the nodes in the cluster of size 12 are all boys. The girls, however, got divided
into two classes, one of size 15 and another tiny cluster of size 2. In contrast,
the three clustering solutions from the single layers yielded poor NMI with
the gender-wise ground truth. From this we can conclude that fusing several
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layers of network information together, it is possible to learn meaningful
information about the properties of the nodes, which would not have been
possible with single layers. To further test our hypothesis of two gender-
wise clusters in this multi-layer network, we employed the stochastic block
model based modularities in conjunction with MLCM based modularities
with known number of communities 2. The results (Table 4(b)) show all
of the stochastic block model based modularities along with a number of
MLCM based modularities perfectly agree with gender based ground truth.

8 Discussions, Limitations, and Conclusions

We have identified null models as the building blocks of modularity and
likelihood quality function based community detection and introduced two
sets of related multi-layer null models. The MLCM model conditions on ob-
served degree vector sequence while the MLED model specifies an expected
degree vector sequence. Both sets can be further divided into two categories,
those based on independent degree principle and those based on shared de-
gree principle. While the independent degree models have a separate degree
parameter in each layer for each node, the shared degree null models “share”
the degree parameter across layers, with a layer specific parameter account-
ing for all heterogeneity. The shared degree null models have considerably
fewer number of parameters and hence models based on them are more par-
simonious. In this connection, we have also developed a hypothesis testing
framework to test which model is more appropriate in a given scenario, an
independent degree model or a shared degree model.

Several modularity and likelihood quality function measures have been
derived based on these two sets of null models. Simulation results and real
data applications show the effectiveness of these proposed methods in com-
parison to single layer methods and baseline procedures like applying single
layer methods to an aggregate of the adjacency matrices of different layers.
Based on our results, while we do not make any clear recommendation of a
single measure to be used in all applications, we highlight some behaviors
we observed and expect to observe under different situations. The shared
degree models perform better in sparse graphs while the independent degree
models perform better in relatively dense graphs. The likelihood quality
function based methods generally perform either as good as or better than
MLCM modularities and are suited for a more wider variety of networks.
This is in line with the corresponding observation in single layer networks
(Bickel and Chen, 2009; Zhao et al., 2012).
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When the number of communities are high and the layers are relatively
sparse, the restricted block model based quality functions, DC-RMLSBM
and SD-RMLSBM, perform better than the corresponding unrestricted ones,
while the MLCM based modularities outperform both of these groups. This
is because in those cases it is difficult to accurately estimate a large number
of parameters that arise in block model based methods if K is large. We
also see that in such cases the shared degree versions of the models are more
useful. The baseline aggregate of adjacency matrix although performs well
under a few scenarios, it heavily relies on goodness of signal in denser layers
and can not extract powerful signal from sparser layers. Hence aggregate
works better mostly in situations where one or more of the comparatively
denser layers also work well.

8.1. Resolution Limits The multi-layer modularities described in Sec-
tion 3 further suffers from the well documented problem of resolution limit
(Fortunato and Barthélemy, 2007). Briefly, the resolution limit refers to the
property of modularity optimzation which prevents modules smaller in size
than a limit from being detected even if the modular structure is strong.
A common remedy is to use a resolution parameter. We will require simi-
lar resolution parameters for multi-layer modularity functions based on the
multi-layer configuration model as well. On the face of it, this issue does
not exist when likelihood quality functions from multi-layer degree corrected
stochastic blockmodels are used and the number of communities is known.
In fact it was shown in Newman (2016) that maximizing the likelihood of
a restricted version of stochastic blockmodel (planted partition model) is
equivalent to modularity optimization including the resolution parameter.
However, in practice the number of communities is unknown and needs to
be learned from the data. Estimating the correct number of communities,
especially in the presence of communities of smaller sizes, can be thought of
as a similar problem to the resolution limit.

8.2. Limitations Before we conclude, we point out a number of limita-
tions for the approaches outlined in this paper. First, the data structure we
tackle in this manuscript is a subset of the more general multi-layer networks
considered in parts of the literature that often contain entities of multiple
types and inter-layer edges. We restricted our attention to the case when
there are edges of different types among the same set of entities. Second, we
focused ourselves on the problem of detecting a common community struc-
ture for the nodes taking into account the information contained in the whole
multi-layer network. This is different from the problem of assigning separate
but perhaps related communities to each node-layer pair.
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We conclude by pointing out that the principles of null models outlined
in this paper can be extended to dynamic or time dependent networks as
well and modularity scores can be developed based on suitable null models.

Appendix A

Proof of Theorem 1

Proof. We start by noting that θ̂i =
ki√
2L

and θ̄i =
κi√
2L . From Cher-

noff inequality (Theorem A.1.4 of Alon and Spencer (2004)), we have for a
given i,

P (|ki − κi| > ε
√
Nκ̄) ≤ 2 exp

(
−2ε2Nκ̄

N

)
= 2 exp(−2ε2κ̄).

Taking a union bound over all i,

P

(
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i∈{1,...,N}
|ki − κi| > ε

√
Nκ̄

)
≤ 2N exp(−2ε2κ̄) = exp(log(2N)− 2ε2κ̄) → 0, as N → ∞,

for a sufficiently large C since κ̄ ≥ C logN by assumption. Therefore,
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→ 0 as N → ∞. (A.1)

Now
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Note that 2L = nκ̄. Then for any i, ki√
2L = κi√

2L + op(1) ≤ 1 + op(1) =

Op(1), since κi√
2L = θi ≤ 1 by model assumption. Moreover, since L =∑

i,j Lij is the sum of N2 independent random variables,

P (|2L− 2L| > ε2L) ≤ exp

(
−2ε2n2κ̄2

n2

)
→ 0 as N → ∞.
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Therefore, 2L
2L

p→ 1. Since the function 1√
x
is continuous at x = 1, by contin-

uous mapping theorem √
2L√
2L

p→ 1.

Therefore, the quantity

ki√
2L

|
√
2L√
2L

− 1| = Op(1)op(1) = op(1) for all i. (A.2)

Combining (A.2) and (A.1) we have the result
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Proof of Theorem 2

Proof. We follow the same proof technique as in Theorem 1. Recall

θ̂
(m)
i =

k
(m)
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2L(m)

, and θ̄
(m)
i =

κ
(m)
i√
2L(m)

. (A.3)

Since A
(m)
ij are independent binary random variables, from Chernoff inequal-

ity, we have for a given i and m and ε > 0,
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where L′ = minm L(m) ≥ CN log(MN) by assumption. Taking a union
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(A.4)



Null Models and Community Detection... 49

for a sufficiently large C.
Now similar to the arguments in the proof of Theorem 1, for any ε > 0

and given i and m,
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Hence combining results in Eqs. A.4 and A.5 we have the desired result.

Proof of Theorem 3

Proof. In the notation of the theorem,
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Note that by assumption, L =
∑
m
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⎞
⎠ → 0 as N → ∞.

As a consequence of the above result, we have
∑

m k
(m)
i√

2L =
∑

m κ
(m)
i√

2L +

op(1) = Op(1) (in particular, bounded by 2 with high probability) for all i,

since
∑

m κ
(m)
i√

2L = θ̄i ≤ 1 by model assumption. Further,

P (|2L− 2L| > ε2L) ≤ 2 exp

(
−2ε2N2M2(logN)2

N2M

)
→ 0. (A.7)

Then similar arguments as the proof of Theorem 1 lead to the result

P

(
sup

i∈{1,...,N}
|
∑

m k
(m)
i√

2L
−
∑

m κ
(m)
i√

2L
| > ε

)
→ 0.

Next we prove the result for the estimators of the βm parameters. Clearly,
since L(m) is the sum of N2 independent random variables,

P

(
sup

m∈{1,...,M}
{|2L(m)−2L(m)| > ε2L}

)
≤exp

(
logM− 8ε2L2

N2

)
→ 0, (A.8)

since L ≥ CNM logN.
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On the other hand, Eq. A.7 shows that∣∣∣∣LL − 1

∣∣∣∣ = op(1).

Now

P

(∣∣∣∣∣
L(m)

L
− L(m)

L

∣∣∣∣∣ > ε

)
≤ P

(∣∣∣∣∣
L(m) − L(m)

L

∣∣∣∣∣ > ε/2

)
+ P

(
L(m)

L

∣∣∣∣
L
L

− 1

∣∣∣∣ > ε/2

)
.

(A.9)

Since for any m, L(m) = L(m) + op(1), and L(m) ≤ L, we have L(m)

L =
Op(1), i.e., bounded (by 2) in high probability. Therefore, in the last term
of Eq. A.9,

L(m)

L

∣∣∣∣LL − 1

∣∣∣∣ = Op(1)op(1) = op(1),

for any m, while in first term on the right hand side of Eq. A.9,
∣∣∣L(m)−L(m)

L

∣∣∣
is also op(1) for any m by Eq. A.8. Therefore, combining the two results
leads to the result.

Approximations Without Assuming Self-Loops

While the model with self-loops is commonly used in the literature due to
simplified computations (Arcolano et al., 2012; Karrer and Newman, 2011;
Newman, 2016), we do note that such a model may not be appropriate for
graphs that do not contain self-loops. Here we estimate the expected error in
the estimators if the model does not allow for self-loops. For the ID model,
plugging in the proposed estimator into the likelihood equations leads to∑

j A
(m)
ij

θ̂
(m)
i

−
∑
j

θ̂
(m)
j + θ̂

(m)
i =

k
(m)
i√
2L(m)

.

The expected error can be approximated with standard assumptions on
growth rates of degrees widely employed in the literature. First we note
that a first order Taylor series approximation gives

E[θ̂
(m)
i ] = E

[
k
(m)
i√
2L(m)

]
≈ E[k

(m)
i ]√

2E[L(m)]
.

It is common in the literature to assume that expected degrees in sparse

networks scale with O(logN). Therefore E[k
(m)
i ] = O(logN) and E[L(m)] =
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O(N logN). Therefore the extent of error in each of the likelihood equation

is O(
√

logN
N ).

Plugging in the estimators for the SD model in the likelihood equation
for the SD model leads to the following estimate of errors:

∂l

∂θi
:

∑
m

∑
j A

(m)
ij

θ̂i
−
∑
m

∑
j θ̂j +

∑
m
θ̂i =

∑
m
θ̂i, i = {1, . . . N},

∂l

∂βm
:

∑
i<j A

(m)
ij

β̂m
−
∑
i<j

θ̂iθ̂j = L− L = 0, m = {1, . . . ,M}.

Therefore there is no error in the second set of likelihood equations and the
error in the first set can be quantified with the above growth rate assump-
tions. In particular the extent of error in each of the likelihood equations in
the first set is O(M).
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