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A B S T R A C T   

Rainfall in the Amazon is influenced by atmospheric circulation dynamics on multiple spatiotemporal scales. 
Anthropogenic influences such as deforestation, land-use changes, and global climate change are also critical 
factors in determining rainfall in South America. Modeling studies have projected a drier climate with the 
ongoing deforestation in the Amazon, but observational evaluation of the variability of rainfall and deforestation 
patterns has been limited. This study analyzes spatiotemporal trends in rainfall between 1981 and 2020 and 
relationships with deforestation age in the Brazilian Legal Amazon (BLA). An improved rainfall dataset is derived 
by calibrating the Climate Hazards Group Infrared Precipitation with Stations (CHIRPS) data with observations 
from a rain gauge network in the BLA. Trend analysis is employed to identify significant changes in precipitation 
over the BLA. Satellite-based land cover data Mapbiomas and ET datasets are used to evaluate similar trends. 
While large spatial variability is observed, the results show coherent relationships between negative dry-season 
rainfall trends and old-age deforested areas. Deforestation aged up to a decade enhanced rainfall and older 
deforested regions have reduced rainfall during the dry season. These results suggest substantial changes in the 
hydroclimate of the BLA and increased vulnerability to future land cover change.   

1. Introduction 

The Amazon forest plays vital roles in climate patterns, ecosystems, 
hydrological cycling, carbon storage, and biodiversity. Rainfall infor
mation for the Amazon is important for economic services, water re
sources, and climate variability applications (Cavalcante et al., 2020). 
The Amazon exhibits high spatiotemporal variability of rainfall. The 
ongoing deforestation in the Brazilian Legal Amazon (BLA) can trigger 
substantial feedbacks with surface temperatures, evapotranspiration 
(ET), and rainfall from local-to-continental scales. 

The Amazon, on average, experiences extreme flood or drought 
events every 10 years, and the decadal variations in the intensity and 
frequency of extreme events can have significant environmental and 
socioeconomic consequences in the region (Marengo et al., 2011; Zilli 
et al., 2017; Cerón et al., 2022). Extreme events are associated with 
local, regional and global atmospheric circulation patterns. In South 
America, rainfall variability is affected by the South Atlantic Conver
gence Zone (SACZ), Intertropical Convergence Zone (ITCZ), Bolivian 
High (BH), Costal Squall Lines (CSL), and local-scale systems (De Souza 
and Ambrizzi, 2004; Santos et al., 2015). Yet, climate variability is also 

associated with large-scale tropical circulation mechanisms, including 
the El Niño/Southern Oscillation (ENSO) and the Pacific Decadal 
Oscillation (PDO) (Marengo and Espinoza, 2016). Intraseasonal and 
submonthly climate variability is also influenced by the interhemi
spheric sea surface temperature (SST) gradients in the Atlantic Ocean 
(De Souza et al., 2005; Cerón et al., 2021). 

Human-caused environmental disturbances in South America have 
been historically large. Roughly, 20% of the forest cover in the BLA has 
been converted to pasture, agricultural lands and other land uses (Souza 
Jr et al., 2013). Deforestation is linked to changes in the amount and 
distribution of rainfall at a variety of spatial and temporal scales, 
therefore influencing local and regional climates (Davidson et al., 2012; 
Lawrence and Vandecar, 2014; Mu et al., 2021a). Durieux (2003)’s 
analysis of cloud cover and precipitation trends suggested that a 
regional climate change may already be underway in the most defor
ested part of the arc of deforestation, and the deforestation may lead to 
increased seasonality. Thus, it is important to further understand the 
spatiotemporal variability of rainfall in the BLA, identify and quantify 
potential linkages with land-cover land-use changes (Haghtalab et al., 
2020). 
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The ability to understand changes in rainfall patterns from in-situ 
measurements is limited due to the sparse rain gauge network (Silva 
Junior et al., 2018). Thus, rainfall data estimated from remote sensing or 
reanalyses are viable options for detecting changes in rainfall. The 
Climate Hazards Group InfraRed Precipitation with Station data 
(CHIRPS) provides blended gauge-satellite precipitation with 0.05◦

latitude/longitude grid spacing and daily to annual temporal resolutions 
spanning 50◦S-50◦N from 1981 to the present and it can be used for 
trend analysis and seasonal drought monitoring (Funk et al., 2015). 
CHIRPS has been validated in different regions of the globe (Hessels, 
2015; Katsanos et al., 2016; Bai et al., 2018; Wu et al., 2019; Cavalcante 
et al., 2020; Nawaz et al., 2021). CHIRPS shows good performance in 
different studies. For the Brazil Amazon, CHIRPS has been validated 
against 45 rain gauges, showing an underestimation of extreme rainfall 
indices (Cavalcante et al., 2020). Paca et al. (2020) validated CHIRPS 
with 98 gauges in the Amazon basin and Paredes-Trejo et al. (2017) used 
21 gauges in Northeast Brazil. 

Satellite-only rainfall estimates have significant uncertainty because 
none of the satellite sensors directly measure rainfall (Tian and Peters- 
Lidard, 2010). In contrast, previous observational studies based on 
rain gauges-only are unable to accurately characterize spatial variations 
in trends over the Amazon (Angelis et al., 2004; Almeida et al., 2017). 
Almeida et al. (2017) found that future studies with more weather sta
tions and longer periods would improve the spatial analysis of rainfall 
trends and could increase the understating of rainfall variability. These 
conclusions motivate the development of additional datasets blending 
satellite data with rain gauges rainfall to improve trend analysis (Cav
alcante et al., 2020; Mu et al., 2021b). 

This study aims to contribute to this research effort to determine 
trends in rainfall and linkages with land-use land-cover changes over the 

BLA. Specifically, the objectives of this study are: (a) to develop an 
improved dataset Brazilian Amazon CHIRPS (baCHIRPS) from 1981 to 
2020 by blending CHIRPS with a rain gauge network in the BLA; (b) to 
examine the relationships between the age of deforestation and dry- 
season rainfall in the BLA. The main strength of the study is that it 
uses a large number of rain gauges observations for validation and 
blending over a 40-year period, and it examines the dry season rainfall in 
relation to the age of deforestation and ET. Section 2 describes the study 
region, data, and analysis methods. The results are presented and dis
cussed in Section 3. The summary and conclusions are in Section 4. 

2. Materials and methods 

2.1. Study area 

The study area covers the BLA, an area of 5 million km2 including the 
states of Acre, Amapá, Amazonas, Mato Grosso, Pará, Rondônia, Ror
aima, Tocantins, and part of Maranhão State located west of 44◦W 
longitude (Fig. 1). The Amazon region is characterized by having a moist 
atmosphere with average annual rainfall between 1400 mm and 3000 
mm (Cavalcante et al., 2020). The climate varies over the BLA, and it is 
influenced by various physical and dynamical processes on local, 
regional and large scales (Santos et al., 2015). The northwest part of the 
region features a continuous rainy season, but wet/dry transitional and 
long dry season climate in the south and east (Davidson et al., 2012). 
Within the BLA, the Arc of Deforestation is located in the southeastern 
region, where the forest has been converted to agriculture and pasture 
lands since 1970 (INPE, 2020). 

Fig. 1. Map of the Brazilian Legal Amazon with the locations of rain gauges, and the number of years available for each gauge. The 2020 land cover data are from 
Mapbiomas Project Collection 6 (Mapbiomas Project, 2021). 
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2.2. Rainfall data 

Daily rainfall data were obtained from the Brazilian National Water 
Agency (ANA) (available at http://www.snirh.gov.br/hidroweb/). For 
the BLA, a total of 1034 rain gauges were acquired from 1981 to 2020. 
For this analysis, inventory and quality control of the rain gauge data 
was conducted in two steps: (a) calculate monthly rainfall from daily 
values and examine data availability as a percentage of days for each 
month and year. (b) months that have quality flags of blank, uncertain, 
and estimated for any day were removed; (c) exclude gauges with re
cords shorter than 10 years after 1981. This resulted in 765 gauges over 
the study area. 

The satellite-based rainfall product CHIRPS from the Climate Hazard 
Group was used for this analysis (available online at https://data.chc. 
ucsb.edu/products/CHIRPS-2.0/). According to Funk et al. (2014), 
CHIRPS includes several data sources: (1) monthly (six pentads per 
month) precipitation climatology CHPClim; (2) quasi-global geosta
tionary thermal infrared (IR) satellite observations from the NOAA data, 
products of the Climate Prediction Center (CPC) and the B1 IR from the 
National Climatic Data Center; and (3) in-situ precipitation from a va
riety of sources such as the Global Historical Climate Network (GHCN), 
the Global Summary of the Day dataset (GSOD) and the World Meteo
rological Organization’s Global Telecommunication System daily data 
provided by NOAA CPC and over a dozen of public and private meteo
rological services. Monthly CHIRPS data were used from January 1981 
to December 2020 at a spatial resolution of 0.05◦ (about 5.3 km over the 
Amazon region) (Funk et al., 2014), which overlaps with the ANA rain 
gauges data period. 

2.3. Deforestation and ET data 

The deforestation age is the year a pixel transitioned from forested to 
pasture and other non-vegetated land cover types. We calculated the age 
of deforestation in Google Earth Engine (GEE) using classified land cover 
data from Mapbiomas (2021) at 30-m resolution from 1985 to 2020. A 
full description of the Mapbiomas data is in Souza Jr. et al. (2020). We 
used ERA5-Land monthly reanalysis for ET trends analysis, which 
combines model data with observations from across the world (Hers
bach et al., 2020). ERA5 ET also accounts for seasonally varying 
monthly vegetation maps from MODIS-based satellite datasets (Bous
setta et al., 2013). The Global Land Evaporation Amsterdam Model 
(GLEAM) ET dataset was also used for comparison with ERA5 ET 
(Martens et al., 2017). 

2.4. Data blending method 

Here, a new rainfall dataset baCHIRPS (0.05
◦

× 0.05
◦

resolution, 
1981–2020), was developed by blending the 765 calibration rain gauges 
data with CHIRPS using the Background-Assisted Station Interpolation 
for Improved Climate Surfaces (BASIICS) algorithm in Geospatial 
Climate Data Management and Analysis (GeoCLIM) software. GeoCLIM 
is developed and maintained by the United States Geological Survey 
(USGS) and Family Early Warning Systems Network (FEWS NET) 
(Pedreros and Tamuka, 2020). The BASIICS algorithm combines rain 
gauges with raster or gridded data to produce a more accurate gridded 
dataset using a modified Inverse Distance Weighting (IDW) that borrows 
some concepts from simple and ordinary kriging (Pedreros and Tamuka, 
2020). We used modified IDW interpolation with the following param
eters: 2.0 weight power, 500 km search radius and maximum effective 
distance, 0 (min) to 10 (max) gauges, 3.0 maximum ratio of the gauge to 
CHIRPS value, and a 1.0 fuzz factor. Following the method described in 
Funk et al. (2015), the blending process involved the following steps: a) 
Extract monthly grid values for all locations where the gauge data have 
valid values. This step produces a comparable gridded dataset that can 
be directly compared to the gauge values; b) ratios are calculated be
tween the gauge and gridded values and these ratios are interpolated 

using a modified IDW method; and c) the pixels are multiplied by the 
interpolated ratio layer if they are within the maximum effective dis
tance, otherwise the original grid layer is used. The resulting monthly 
product is available from 1981 to 2020 and has the same spatial reso
lution as CHIRPS (0.05◦). 

2.5. Cross-validation 

The resultant baCHIRPS data were cross-validated in the BASIICS 
blending process. For each gauge point, the validation produces a cross- 
validated value which is the blended grid value at the gauge location 
when the gauge is not included in the BASIICS (Cross-Validated baCH
IRPS value), and the interpolated gauge value without blending in the 
background grid. We carried out point-to-pixel comparison statistics for 
these values. The root-mean-square error (RMSE) Eq. (1) and the coef
ficient of determination (R2) Eq. (2) were used for statistical metrics. 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1
( grids − gauges )

2

n

√
√
√
√
√

(1)  

R2 =

∑n

i=1
( gaugesi − μ)

2

∑n

i=1
(gridsi − μ)

2
(2)  

2.6. Rainfall data analysis and trends 

The new blended rainfall data baCHIRPS was used for rainfall 
analysis. The average analysis method calculates the temporal average 
value for each pixel for a period. To investigate the difference anomaly 
for the average monthly rainfall for the baseline (1981–2020), the 
standardized anomaly method was used (Eq. (3)). The standardized 
anomaly expresses the difference anomaly as a percent of the standard 
deviation (SD). 

stdanom =
(averagemonth − averagebaseline) + 0.1

SDbaseline + 0.1
(3) 

Pixel-by-pixel trend analysis allowed us to identify a change in the 
expected rainfall value and the spatial distribution that occurred over a 
period of time. We used one non-parametric method to identify the 
magnitudes of trends in the study area. We calculated the monotonic 
trend based on the Kendall Tau statistic and the Theil-Sen slope (Sen, 
1968; Kendall, 1975; Gilbert, 1987; Siegel, 1982; Theil, 1992) for the 
baCHIRPS gridded data time series. The Kendall Tau is a ratio of the 
actual correlation rating score to the maximum possible score. The 
dataset is sorted in ascending order by time to generate the rating score 
for a time series. The test statistic Tau results in a range between −1 to 
+1, with negative values indicating a downward trend (more negative 
“steps”) and positive values indicating an upward trend (more upward 
“steps). To find significant trends, we utilized a significance threshold α 
= 0.05. For more details on how both statistical tests are structured, see 
ElNesr et al. (2010). 

3. Results and discussion 

3.1. Cross-validation results 

Fig. 2 shows rain gauge observations (N = 765), and CHIRPS rainfall 
estimates at a monthly scale for the 1981–2020 period. Overall, CHIRPS 
shows a moderate estimation of the observed rainfall with an R2 of 0.74 
and RMSE of 75.6 mm/month. There is an overestimation of the low 
rainfall values and an underestimation of high rainfall values. This 
suggests that rainfall estimation errors could occur for regions with 
extreme rainfall events. The number of gauges used in the CHIRPS data 
in Brazil is highly variable and decreased starting in 1985 and fell to a 
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few hundreds by 2013 (Carvalho, 2020). Thus, the initial validation 
helps to determine that the CHIRPS dataset is correlated with rain 
gauges, but a blended satellite-gauge dataset can provide improved re
sults. (Pedreros and Tamuka, 2020). Fig. 3 shows the at-gauge inter
polated gauge values without satellite background against CHIRPS 
values and cross-validated baCHIRPS values. Note that both the inter
polated gauges and cross-validated baCHIRPS values exclude that gauge 
used for blending. The cross-validation result shows that baCHIRPS (R2 

= 0.95, RMSE = 29.2 mm/month) better represent the values of rain 
gauges than the original CHIRPS (R2 = 0.88, RMSE = 44.6 mm/month). 
baCHIRPS, blended with rain gauges, has higher accuracy in estimating 

high and low rainfall values (Fig. 3). The baCHIRPS is therefore, used in 
the following trend and spatial analyses over the BLA. 

3.2. Monthly rainfall anomalies 

To examine how much wetter and drier the BLA was for a month, we 
calculated the difference anomaly for the average monthly precipitation 
for each year and expressed it in terms of standard deviations away from 
the mean. Fig. 4 shows the standardized anomalies of monthly mean 
rainfall for the BLA from 1981 to 2020. Extreme positive values are 
identified in 1989 (1.11 in June, 0.79 in July, and 0.91 in August), 1984 
(1.16 in September), 1994 (1.34 in June), and 2009 (0.82 in May and 
1.04 in June). The extreme positive anomalies in 1989 and 2009 were 
associated with extreme seasonal flood events. Floods in the Amazon in 
1989 were related to La Niña that impacted rainfall (Marengo et al., 
2012; Espinoza et al., 2013). In the year 2009, the flood event was 
related to an anomalously southward migration of ITCZ during 
May–June 2009 due to the warming in the Tropical South Atlantic (TSA) 
(Marengo et al., 2010; Marengo et al., 2012). 

Low negative values are observed in 1983 (−0.86 in January and −
0.76 in May), 1995 (−0.75 in August), 1997 (−0.82 in July, −0.73 in 
October), 1998 (−0.66 in February), 2005 (−0.5 from June to August), 
2010 (−0.74 in September and − 0.61 in March), 2015 (−1.01 in 
September, −0.83 in October, −0.85 in November and − 1.12 in 
December), and 2016 (−0.76 in February). Marengo and Espinoza 
(2016) reported that deficient rainfall in 1983, 1995, 1997–1998, 2005, 
and 2010 caused anomalously low river levels and increased fires in 
Amazonia. The negative rainfall anomalies are associated with extreme 
drought events that occurred in the Amazon in 1995, 1997–1998, 2005, 
2010, and 2015–2016, which were related to the El Niño-Southern 
Oscillation (ENSO), warming of the Tropical North Atlantic (TNA) 
Ocean, or a combination of both (Lewis et al., 2011; Marengo et al., 

Fig. 2. CHIRPS-based rainfall estimates and rain gauges (N = 765) and for the 
1981–2020 period. Blue line indicates 1:1 correspondence and red line gives the 
linear regression best fit. (For interpretation of the references to colour in this 
figure legend, the reader is referred to the web version of this article.) 

Fig. 3. Interpolated rain gauges and cross-validated baCHIRPS (left) and CHIRPS (right) for the 1981–2020 period (N = 249,067). The blue line indicates 1:1 
correspondence and the red line gives the linear regression best fit. (For interpretation of the references to colour in this figure legend, the reader is referred to the 
web version of this article.) 
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2011; Jiménez-Muñoz et al., 2016). Our results show that 2015 had the 
highest rainfall deficit over the past 40 years in BLA, which is consistent 
with Panisset et al. (2018) who reported that this drought episode 
exceeded the amplitude and spatial extent of the previous events that 
affected more than 80% of the Amazon basin. The 2015 extreme drought 
event was driven by ENSO combined with the regional warming trend 
(Jiménez-Muñoz et al., 2016). 

3.3. Spatiotemporal trends and variability 

Fig. 5 shows the Tau statistics for the baCHIRPS data with hatched 
areas indicating statistically significant annual trends at the 0.05 level. 
The baCHIRPS data have rain gauges blended in, and shows improve
ment in rainfall trends identification, which is consistent with previous 
studies (Cavalcante et al., 2020; Mu et al., 2021b). The results show that 
significant positive and negative trends are present throughout the BLA. 
The northern and central parts of the domain show significant positive 
trends, while southern Roraima, central Amapá, northeastern and 
western Amazonas have large areas with Tau >0.3. Significant negative 
trends are mainly located over the states of Rondônia and Amazonas, 

southern Mato Grosso, western Amazonas down to easter Acre, and 
northern Mato Grosso up to southern Pará. 

Amazon rainfall varies on seasonal scales such that maximum rain
fall occurs in December–February (DJF) over the central-western and 
southern Amazon and maximum in March–May (MAM) over the eastern 
and central Amazon (Angelis et al., 2004). South of the Equator, the dry 
season is more evident in June–August (JJA), while the equatorial 
northern part does not have a well-defined dry season (Ronchail et al., 
2002). Here, we define the seasons as Summer DJF; Autumn MAM; 
Winter JJA; Spring SON, which had also been used in previous studies 
(Cavalcante et al., 2020; Regoto et al., 2021). 

Fig. 6 shows the Kendall Tau values for the seasonal rainfall trends. 
In all seasons, the overlapping regions with significant trends are similar 
to the annual trends in Fig. 5. During DJF, positive rainfall trends are 
observed from the central to western BLA, while western Amazonas, 
southern Rondônia, and north and northwest parts of the Mato Grosso 
experience negative trends. During MAM, a positive rainfall trend is 
more evident from the northern to eastern BLA, especially in the states of 
Roraima, Amapa, and Tocantins. Based on baCHIRPS and previous 
studies (Silva Junior et al., 2018; Haghtalab et al., 2020), rainfall trends 

Fig. 4. Standardized anomalies of monthly mean rainfall of the Brazilian Amazon. The blue bars represent positive values, and the red bares represent negative 
anomalies. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 5. Trends of mean annual precipitation of CHIRPS (left) and baCHIRPS (right) over the Brazilian Amazon in the period 1981–2020. Hatches show significant 
trends at a 5% confidence level. 
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during the wet season are spatially heterogeneous. During both DJF and 
MAM, negative trends tend to be collocated over the same regions 
(Fig. 6a and b). In the dry season, negative trends are found in the 
central, southern, and southeastern regions of the domain, which is 
consistent with other studies (Almeida et al., 2017; Silva Junior et al., 
2018). Precipitation indices also showed increasing consecutive dry 
days over almost all of Brazil (Avila-Diaz et al., 2020b, 2020a). While 
the dry season rainfall variations are associated with ENSO and the 
warming of the TNA, large areas of significant negative trends (Tau <
−0.3) are over the “arc of deforestation” in the southern and eastern 
parts of the basin (Fig. 6c and d). 

3.4. Deforestation, ET, and rainfall 

Other studies have found increased dry season length over the 
southern Amazon (Fu et al., 2013; Debortoli et al., 2015). The 
June–September (JJAS) dry season period is intensively used for 
deforestation, which coupled with economic and social activities con
tributes to the “arc of deforestation” regions (Khanna et al., 2017) (see 
also Fig. 1). To investigate possible linkages among the spatial extent of 
deforestation and trends in ET and rainfall, Fig. 7 shows deforested areas 
as of 2020 (Mapbiomas, 2021), JJAS ET and rainfall trends. Note that 
deforestation areas are mapped according to the age of deforestation. 
Focusing on the southern Amazon, heavily deforested regions show 
significant negative rainfall trends during the dry season. In Fig. 7a, it is 
important to highlight that regions with old ages of deforestation (dark 
brown areas) have more significant negative dry season rainfall trends. 
In Fig. 7a, the time series of JJAS ET and rainfall of three regions were 

shown, including the agricultural belts in Rondônia (left), Mato Grosso 
(bottom), and eastern Pará (right). These three regions have been largely 
deforested since 1985, and negative dry-season rainfall trends are 
shown. However, the time series of JJAS ET from ERA5 and GLEAM did 
not have any consistent trends. To further validate the dry-season 
rainfall trends, baCHIRPS grids with more than 50% deforestation 
were identified across the BLA. Fig. 7b shows the age of deforestation for 
each over 50% deforested grid against its JJAS rainfall trends. 

Regions with older ages of deforestation have longer years of forest 
conversion and, thus, larger percentages and sizes of deforested land. 
The large-scale and older deforested regions also show large negative 
trends in rainfall (Fig. 7a and b). Dry-season rainfall was enhanced at the 
0–10 age groups, and reduction occurred after the 10–15 age of defor
estation (Fig. 7b), suggesting a critical deforestation threshold for 
rainfall reduction. This dual deforestation impact on rainfall are 
consistent with other studies (Da Silva et al., 2008; Nobre et al., 2009; 
Leite-Filho et al., 2021). A shift from small-scale to large-scale defores
tation in the southern Amazon is found to modify the mechanisms and 
patterns of regional rainfall (Chambers and Artaxo, 2017). Empirical 
and modeling studies showed that large-scale deforestation influences 
cloud cover and rainfall (Gash and Nobre, 1997; Durieux, 2003; Ray 
et al., 2006; Leite-Filho et al., 2021). Deforestation alters the hydro
logical and energy balances by reducing evapotranspiration, increasing 
sensible heat flux, and decreasing latent heat flux. Additionally, defor
estation decreases surface roughness and increases surface albedo, 
which induces a decrease in absorbed solar radiation (Davidson et al., 
2012). The Amazon rainfall is highly dependent on recycled moisture 
since up to 70% of rainfall in the southern basin originates from 

Fig. 6. Trends of mean seasonal precipitation for (a) DJF, (b) MAM, (c) JJA, and (d) SON estimated by baCHIRPS in the Brazilian Amazon.  
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terrestrial ET upwind (van der Ent et al., 2010; Staal et al., 2018). 
Furthermore, the dry season may be more significantly affected by 
deforestation because it is typically driven by locally generated con
vection, shifting from a thermally to a dynamically driven hydroclimatic 
regime (Malhi et al., 2008; Khanna et al., 2017). The results of sensitivity 
analysis on the ET trends over the old-frontier deforested regions show 

that different ET datasets have high variability and uncertainty in the 
study regions. ET can be estimated from point observations, remote 
sensing products, and process modeling at various spatiotemporal res
olutions, and it is a poorly measured variable in the Amazon (Sörensson 
and Ruscica, 2018; Builes-Jaramillo and Pántano, 2021). ET estimates 
from land surface models and remote sensing have uncertainties, and 

Fig. 7. (a) Map of the deforestation and time series of JJAS dry season rainfall and ET in the BLA domain. Significant negative JJAS trend is in red hatches while 
significant positive trends are in blue hatches. Gray curves are the time series of all grids in each region, and green/blue lines are the trends. (b) Scatterplot of the age 
of deforestation and JJAS rainfall trend in the BLA. The solid lines indicate the regression slope for each group at the 5 years interval. The dashed line indicates the 
overall trend line. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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South America is very poorly covered with flux towers (Long et al., 
2014; Sörensson and Ruscica, 2018). Thus, further study is needed on 
the ET estimates in the region to improve our understanding of the 
regional climate interactions. 

4. Summary and conclusions 

We analyzed spatial and temporal rainfall patterns and trends using 
improved satellite-based rainfall estimates calibrated with rain gauges 
over the Brazilian Legal Amazon during 1981–2020. We have examined 
the impacts of deforestation on dry-season rainfall in the Brazilian Legal 
Amazon. Despite the limitations of available in-situ rain gauges in the 
Brazilian Amazon, we developed an improved blended satellite-rain 
gauges rainfall dataset over a 40-year period to understand changes in 
rainfall. Our results show that the northwest region continues to have a 
rainy climate, a wet/dry transitional climate in the center, and a long 
dry season climate in the south and east. However, the rainfall trends are 
very heterogeneous without a characteristic pattern over the entire re
gion. The trend in rainfall generally means that the wet season gets 
wetter and/or the dry season gets drier, but the significant localized 
trends show that it is more complex over the entire region (Haylock 
et al., 2006; Haghtalab et al., 2020; Regoto et al., 2021). In the southern 
region, large areas with significant dry season rainfall trends are located 
along the “arc of deforestation”. Deforestation aged up to a decade 
enhanced dry-season rainfall and older deforested regions have reduced 
rainfall during the dry season. Widespread old-frontier deforested re
gions could alter the local hydroclimatic balances (Wongchuig et al., 
2021). Leite-Filho et al. (2021) found that rainfall in the southern Bra
zilian Amazon decreases if deforestation exceeds a threshold, and this 
threshold is lower at large scales with rainfall reducing precipitously. 
Future projections also show that deforestation is estimated to reduce 
rainfall greater than natural variability by 2050 (Garcia-Carreras and 
Parker, 2011). Although the negative rainfall trends are not purely due 
to land-use changes (Parsons, 2020), the drought-deforestation feedback 
can be strengthened with cumulative deforestation (Staal et al., 2020; 
Mu et al., 2021a). 

Although this study does not investigate causality, the results pre
sented improved high-resolution rainfall estimates and can support 
additional studies to investigate drivers of rainfall changes in the Bra
zilian Amazon. Future studies can expand the study region to the entire 
Amazon Basin and examine how the patterns in the rainfall trends in the 
Amazon are related to climate variabilities, interhemispheric SST 
gradient in the Atlantic, and land-use change in the region. Further 
studies can also investigate the inconsistent trends among ET datasets to 
improve our understanding of the deforestation impacts on ET and land- 
atmosphere interactions in the Amazon. Some studies argue that the 
Amazon is projected to experience a drier climate than in the present 
and be exposed to more extreme events (Malhi et al., 2008; Davidson 
et al., 2012; Parsons, 2020). Extreme drought events can become more 
common through higher frequency and severity of ENSO events, rainfall 
reduction due to deforestation, forest fires, and climate change. 
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Guimarães, V., Oliveira, E., 2002. Interannual rainfall variabil-ity in the Amazon 
basin and sea-surface temperatures in the equa-torial Pacific and the tropical 
Atlantic Oceans. Int. J. Climatol. 22, 1663–1686. https://doi.org/10.1002/joc.815. 

Santos, E.B., Lucio, P.S., Silva, C.M.S.E., 2015. Precipitation regionalization of the 
Brazilian Amazon. Atmos. Sci. Lett. 16, 185–192. https://doi.org/10.1002/asl2.535. 

Sen, P.K., 1968. Estimates of regression coefficient based on Kendall’s tau. J. Am. Stat. 
Assoc. 63 (324), 1379–1389. https://doi.org/10.1080/01621459.1968.10480934. 

Siegel, A.F., 1982. Robust regression using repeated medians. Biometrika 69 (1), 
242–244. 

Silva Junior, C.H.L., Almeida, C.T., Santos, J.R.N., Anderson, L.O., Aragão, L.E.O.C., 
Silva, F.B., 2018. Spatiotemporal rainfall trends in the Brazilian legal amazon 
between the years 1998 and 2015. Water 10, 1220. https://doi.org/10.3390/ 
w10091220. 
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