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Abstract—Graph pattern matching searches a data graph for
all instances of one or more query patterns. Since it is one of the
most fundamental problems in graph analytics, many graph
pattern matching systems have been proposed with distinct
features to provide a mix of flexibility and performance, and
it is generally accepted that distinct use cases may necessitate
the use of different systems. In this paper, we propose Dryadic,
a system which integrates comprehensive flexibility features,
yet can still outperform four state-of-the-art graph pattern
matching systems on the primary use cases they target. Unlike
existing systems that employ a case-by-case design strategy,
all functionalities of Dryadic are centered around a powerful
intermediate representation, the computation tree structure,
which encodes the matching algorithms for arbitrary patterns.
Dryadic implements novel techniques to optimize the com-
putation tree and maps it to different backends to perform
compiled, interpreted, or distributed graph pattern matching.
Extensive experiments on nine real-world graphs of different
scales show that Dryadic, despite its all-in-one nature, is often
one to three orders of magnitude faster than other systems in
three common usage scenarios.

Keywords-Subgraph pattern matching, compiler optimiza-
tion, intermediate representation

I. INTRODUCTION

The amount of graph data has recently surged in nu-
merous domains, including bioinformatics [30], social net-
works [27], and cybersecurity [37]. Each domain has its
own demands for graph data processing, but each also
shares a significant interest in graph pattern matching. This
family of problems stems from the well-known Subgraph
Isomorphism problem, and requires finding all subgraphs in
a dataset that are isomorphic to a given query pattern. As
pointed out by Sahu et al. [40], many problems, such as
motif enumeration, clique finding, and subgraph matching,
are variants of the graph pattern matching problem. Many
applications, including fraud detection [33] and graph min-
ing [16], use subgraph pattern matching as the primitive
within their core functionality, and consequently demand
a graph matching system that can provide both sufficient
flexibility and high performance.

A flexible subgraph pattern matching system should sup-
port four key features. First, the system should enable both
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edge-induced and vertex-induced pattern matching. Edge-
induced matching focuses on identifying the connectivity
between vertices, which is widely used in graph database
systems [34], [48]. Vertex-induced matching additionally
considers the absence of connectivity and is useful for graph
characterization [2], [47]. Second, the system should support
labeled pattern matching to allow applications to leverage the
rich non-topological data that labels can offer. Third, the
system should handle arbitrary pattern queries which may
or may not be available for offline optimization. Finally, the
system should be able to process large-scale graphs with
billions of edges, which is increasingly important due to the
tremendous growth rate of real-world graphs [40].

The performance requirement faces even more challenges.
The Subgraph Isomorphism problem is known to be NP-
Complete [13], so the inherent workload for graph pattern
matching problems is far heavier than that of traditional
graph analytics (e.g. graph traversal). High performance
systems should optimize not only for the irregularity inherent
in the graph data structure, but also for the complex control
flow and redundant computation induced by the matching
algorithm. Moreover, pattern queries may only be avail-
able online, inhibiting exhaustive search-based optimizations
used in most compilation systems.

There exist many performance-oriented systems for graph
pattern matching, but each specializes in only a subset of
the flexibility features. For example, DAF [17] can effi-
ciently process small labeled graphs, but its performance
drops quickly when processing reasonably large graphs
with millions of edges. AutoMine [29] employs compilation
techniques to generate query code tailored to a given set
of patterns, but must re-compile for every new query. Pan-
golin [9] leverages the high-performance parallel operation
and scheduling of the Galois engine [35] and avoids re-
compilation for new queries. However, Pangolin can be more
than ten times slower than AutoMine for heavy workloads.
While it is always possible to “tune” the experiments to
favor one system over another, as shown in Section II, these
systems form a superiority cycle for common workloads.
Therefore, no system can consistently outperform the others.
A user would have to use multiple different systems to
handle distinct usage scenarios.



This paper proposes Dryadic, a flexible and efficient
graph pattern matching system which 1) supports the above-
mentioned important flexibility features to enable easy adop-
tion into existing real-world applications and 2) offers sub-
stantially better performance than all existing systems in the
primary usage scenarios target. Dryadic is motivated by an
observation that existing systems specialize the execution of
similar pattern matching algorithms in specific settings. The
observation demonstrates an opportunity to employ a key
methodology leveraged in compiler research — intermediate
representation-centered optimization and backend support.

However, building the intermediate representation and
efficient backends for graph pattern matching presents multi-
ple unique challenges. First, the intermediate representation
must be flexible enough to meet the needs of different pat-
tern matching algorithms (e.g., simultaneous multi-pattern
matching). Second, the intermediate representation should
be easy to manipulate to apply both static and dynamic
optimizations. Third, different usage scenarios (e.g., patterns
available offline vs. online) demand dramatically different
backends, each of which requires significant effort to de-
velop.

To address these challenges, Dryadic builds a flexible in-
termediate representation, called the computation tree, which
encodes a compact representation of matching algorithms for
arbitrary labeled or unlabeled patterns. The tree structure fa-
cilitates important optimizations to eliminate computational
redundancy both within a single pattern’s algorithm, and
between the algorithms for multiple patterns. It also supports
a work-stealing runtime, which enables parallel workers to
steal fine-grained tasks from other workers to dramatically
improve load balancing. In comparison, existing work only
supports coarse-grained stealing. Moreover, the tree structure
is simple enough to interpret, compile, and parallelize.

Empowered by its intermediate representation, Dryadic’s
backends are much easier to build compared to specialized
systems. Each backend only needs to determine the order
to execute the computation tree on the data graph and im-
plement the rudimentary operations. We implemented three
backends with about 3,000 lines of C++ code. Dryadic can
compile the computation tree directly to efficient, reusable
C++ code for parallel and distributed execution when the
target pattern is fixed and used across multiple input graphs.
If the pattern is only known at runtime, Dryadic quickly
builds a computation tree and uses the Galois parallel
engine [35] as an interpreter to run it on the input graph.

To evaluate Dryadic’s performance in different usage
scenarios, we always compare it with the state-of-the-art
graph pattern matching system specialized for that use case.
The highlights of the results are summarized as follows:
1) For labeled pattern matching, Dryadic is up to 56X and
on average 11.4X faster than DAF on 64 workloads using
10 patterns and 7 graphs. 2) We study two use cases in
unlabeled multi-pattern matching. For single-machine par-

allel motif enumeration, Dryadic outperforms Pangolin and
AutoMine by up to 25.4X and 6X, respectively. For single-
machine parallel motif-counting, Dryadic is on average 5X
faster than PGD [2], which is (to our knowledge) the fastest
manual implementation of size-4 motif counting. 3) For
distributed pattern matching on 16 machines, Dryadic is up
to 20X faster than CECL

Overall, the paper makes the following contributions. 1)
We propose the Dryadic system to harmonize flexibility
and performance, which supports the most comprehensive
features and still outperforms specialized state-of-the-art
subgraph pattern matching systems. 2) We propose the com-
putation tree representation to encode matching algorithms
for arbitrary labeled and unlabeled patterns, as well as
multiple optimizations to eliminate computation redundancy
and improve load balance. 3) We develop a set of backends
to efficiently map these optimized trees to unique execution
environments.

II. BACKGROUND AND MOTIVATION

Many graph pattern matching systems have slightly dif-
ferent problem statements, and claim a variety of distinct
features. In this section, we define the graph pattern match-
ing problem in a flexible manner. Next, we describe five
distinct features which distinguish multiple state-of-the-art
pattern matching systems from others. Finally, we present
the demand and opportunity to implement all these features
in a single system while providing competitive performance
against existing systems.

A. Graph Pattern Matching Basics

Given a query graph pattern Q) = (V, Eg) where Vg is a
set of vertices and Eg is a set edges whose end vertices are
in Vg, the graph pattern matching problem accepts an input
graph G and identifies all subgraphs of GG that are isomorphic
to Q. Each such subgraph S = (Vs, Eg) is called an
induced subgraph and the mapping from () to S is called an
embedding. S is a vertex-induced subgraph if .S includes all
edges in G whose endpoints are in Vg. Otherwise, S is edge-
induced. Like many prior studies [29], [3], [23], we focus
on undirected graphs, while the techniques can be readily
applied to directed patterns and graphs.

Figure 1 shows an example of matching two query pat-
terns in a data graph. A graph pattern matching system
should identify two sets of subgraphs. The subgraphs in
the first set should be isomorphic to Q)1 and those in the
second set isomorphic to 2. To compute a set, the system
can generate a matching order. For instance, the matching
order could be (A, B, B,C') to match Q1. The system then
follows this order to identify embeddings of (1 in the data
graph. In this paper, we use the matching order generation
algorithm proposed in AutoMine [29]. We leave dynamic
matching order generation and selection to future work.
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Figure 1: A graph pattern matching example with two
labeled patterns.

B. Distinct Features in Existing Systems

State-of-the-art systems implement some distinct perfor-
mance features, which empower them to substantially exceed
the capabilities of prior work. We illustrate five critical
features and briefly describe how they are implemented in
those systems.

Feature 1: Symmetry breaking. The inherent symmetry
in the pattern may cause redundant computation by identify-
ing the same embedding more than once. For instance, with-
out symmetry breaking, each embedding of ()1 in Figure 1
is identified twice because based on the pattern topology and
label information, it is impossible to distinguish the two B
vertices connected to A. A popular method is to use the
vertex IDs to break symmetry [15]. For 1, we can enforce
that in the same embedding, the first vertex matching B
should have a larger ID than the second vertex matching B.
As in prior systems [3], [28], [38], we follow this idea to
break symmetry.

Feature 2: Multi-pattern redundancy elimination.
When a user queries multiple patterns, matching the pat-
terns sequentially may cause significant computation and
data access redundancy. Consider the two patterns in Fig-
ure 1. Since they share the same triangle-shaped sub-pattern,
the two queries should be executed at the same time to
share the sub-embeddings corresponding to the shared sub-
pattern. Arabesque [47], RStream [51], and Pangolin [9]
naturally exploit the shared sub-patterns through their it-
erative exploration-reduction execution model. Each itera-
tion consists of an exploration and a reduction phase. The
exploration phase extends a set of initial embeddings by
appending one more connected vertex or edge to each.
The reduction phase runs an isomorphism check on each
extended embedding to determine whether it matches a
subpattern of the query. The system keeps the matched
ones as initial embeddings for the next iteration. When
embeddings of different patterns are formed from the same
sub-embedding, these systems successfully eliminate redun-
dancy.

Feature 3: Leveraging efficient graph processing run-
time. Several existing systems are built upon highly opti-
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Figure 2: The circular “superior-to” relationship between
four graph pattern matching systems.

mized parallel runtime to improve performance [47], [9]. For
example, Pangolin is built upon Galois, a parallel processing
engine particularly good at irregular applications, to acceler-
ate operation scheduling and synchronization. Pangolin thus
evolves together with Galois and enjoys its additional graph
processing features. In comparison, standalone graph pattern
matching systems may not get adopted due to the limited
functionality.

Feature 4: Code specialization. Compilation-based
graph pattern matching systems, represented by Empty-
Headed [1] and AutoMine, generate a specialized program
for the given pattern. The program has a nested loop at each
layer trying to extend the embedding by including one more
vertex. This approach avoids substantial runtime overhead
incurred by non-compilation based systems, but it generates
a new program whenever a new pattern is given, which
requires another round of compilation, but may be amortized
over many uses.

Feature 5: Parallel and Distributed matching. Pattern
matching on large-scale graphs is computationally intensive
and has a huge amount of inherent parallelism, which
motivates many systems to leverage parallel and distributed
execution to improve performance. AutoMine and Pangolin
respectively use OpenMP and Galois for parallel processing
on a single machine. Distributed pattern matching systems,
represented by CECI [3], focus their optimizations on load
balance and minimizing the data exchange between ma-
chines.

C. Demand and Opportunity for a Single Flexible and
Efficient Graph Matching System

Existing systems fall short in one or more of the flexi-
bility and performance features, due to specialization for a
particular use case. They have a good reason to make such a
choice, because different features often indicate conflicting
optimization goals. However, modern applications are com-
plex, and may encounter different usage scenarios, which
makes it difficult to determine the best system to satisfy
different requirements.

To demonstrate this challenge, we conduct four experi-
ments, each to compare two systems, using several popular
graph datasets considered in many prior studies [29], [3],



[47], [9]. Figure 2 shows that the four considered systems
form a circular “superior-to” relationship. DAF is faster
than AutoMine when running five different queries on the
Mico graph (details in Section IV), because the pattern
queries are given online, so AutoMine’s code generation and
compilation costs are on the critical path. When we match
a fixed pattern (a size-4 clique) on the LiveJournal graph,
AutoMine produces better performance than Pangolin, which
in turn outperforms CECI. CECI could be 5.2X faster than
DAF on the Patents graph thanks to CECI’s distributed
computing capability.

We observe that these graph pattern matching systems
run similar algorithms, which identify and prune certain
sets of candidate vertices in the data graph to match the
pattern vertices. Each system employs manual optimizations
for the targeted setting (e.g., large graph size or availability
of query patterns). However, in many other domains, systems
are not built in such an ad hoc manner. For example,
database systems build one or more intermediate represen-
tations for arbitrary queries, and leverage a set of query
optimizations and backends to map the representations to
specialized executions. The Java virtual machine uses a
similar methodology to build even more general intermediate
representations, optimizations, and backends for arbitrary
Java programs. This paper is the first to apply the interme-
diate representation-centered design philosophy, which has
been successful in other domains, to graph pattern matching.

ITII. THE DRYADIC SYSTEM

The Dryadic system integrates all the flexibility features
identified in the previous sections, and still outperforms each
state-of-the-art graph pattern matching system in its area
of specialization. The power of Dryadic is rooted in a key
methodology leveraged by compiler research — intermediate
representation-centered optimization and backend support.
The intermediate representation encodes the matching al-
gorithms for arbitrary patterns, and is amenable to both
static and dynamic optimizations, as well as compilation
and interpretation. Each backend is tailored for a particular
user scenario or hardware setting, and maps the intermediate
representation to efficient execution.

Dryadic implements a tree-structured intermediate repre-
sentation, referred to as the computation tree, to encode
the graph pattern matching algorithms. Dryadic has three
major components centered around the computation tree.
The tree construction component takes the input patterns,
and generates the matching order and symmetry-breaking
restrictions for each pattern. It then builds the computation
tree by merging the matching orders and associates each
node in the tree with a compound set operation. The tree
optimization component applies several optimizations to the
computation tree to eliminate redundant computation and
improve load balance. The execution component can be
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Figure 3: A computation path for @1 in Figure 1 and its
corresponding embedding trees for a data graph. In (a),
the solid lines with arrows indicate the matching order, the
dotted line with an arrow means the source pattern vertex
restricts the destination pattern vertex, and the dotted lines
without arrows show the topological relations between the
vertices in the query pattern. In (c), the dotted box means
the included subtree is pruned by the restriction. A cross
shows that no matched vertices can be found to extend the
tree along the corresponding path.

configured to meet specific needs, which supports three exe-
cution modes, including interpreted execution by Galois and
C++ code generation for parallel and distributed execution.

The Dryadic system is straightforward to use. A user only
needs to provide a file to describe patterns of interest in a
simple format, and specify one of the supported execution
modes (i.e., compiled or interpreted). Dryadic also imple-
ments helper functions to generate patterns. For instance,
it can generate all connected patterns of a certain size to
support applications such as motif counting.

A. Computation Tree-Centered Representation and Opti-
mization

Dryadic builds a computation tree to naturally support
simultaneous multi-pattern matching as described in Sec-
tion III-Al. The static optimizations move partial set op-
erations to upper levels of the tree to avoid redundant
computation, and are described in Section III-A2. The run-
time optimization achieves load balance through fine-grained
work stealing as described in Section III-A3.

1) Computation Tree Construction: Given a pattern,
Dryadic uses prior techniques to compute a matching order
and the restrictions to break symmetry as described in
Section II. The matching order of a pattern specifies the
dependencies of computations to identify the vertices in
an embedding, while the restrictions enforce “id-is-larger”
relations between some of the vertices to avoid identifying
the same embedding multiple times. The matching order,
the restrictions, and the topology of the pattern together
determine the operations to compute the matched vertices
for each pattern vertex.

Figure 3 (a) shows a graph structure to demonstrate
all these three kinds of information. However, it does not
directly show what computations should be performed on
the data graph. We hence transform it to the representation
in Figure 3 (b) by assuming that a user is interested in vertex-
induced graph pattern matching. In this new representation,



except the first pattern vertex (i.e., A), every pattern vertex
is associated with a compound set operation to encode its
topological relations with other pattern vertices before it in
the matching order. For example, the fourth pattern vertex’s
compound set operation is N (u1) — N(ug) — N(uz), where
N is an operation to return the neighbor list of a vertex
and the minus sign represents a set difference operation.
The intuitive understanding is that us is in w;’s neighbor
list but not in ug or wus’s neighbor list. The compound
set operations specify ways to extend partial embeddings.
Consider an embedding consisting of v;, vj, and v that
matches the sub-pattern formed by wug, ui, and ug (ie, a
triangle). If v;, v;, and vy, match wug, u1, and ug, respectively,
each vertex in the set computed by N (v;) — N (v;) — N (vk)
forms an embedding with v;, v;, and v, which matches the
sub-pattern consisting of wug, w1, uz, and us (i.e., a tailed
triangle). To account for the restrictions, we need bounded
set operations like the one associated with the third pattern
vertex. In this example, u; restricts us, so if v;, which
matches uq, is used to compute a set of vertices to match
uo (referred to as us’s vertex set), the ID of each vertex in
the set should be smaller than v;’s ID.

We define a matching order and its associated com-
pound set operations as a computation path, represented
by CP. CPJi] is called a computation node. C P[i].label
and C'P[i].SetOp respectively represent the label and the
associated compound set operation of the ¢th pattern vertex
in the matching order. Note that the computation path only
defines how to extend each partial embedding towards the
target pattern instead of the order to extend the partial
embeddings. Two intuitive orders to extend partial embed-
dings are breadth-first and depth-first. The breadth-first order
requires that smaller partial embeddings should be extended
before larger partial embeddings. When there exist more than
one smallest partial embeddings, the embedding generated
the earliest should be extended, which can be easily imple-
mented by a queue. The depth-first order, in contrast, extends
larger embeddings first, and can be implemented with a stack
of increasingly larger embeddings.

Figure 3 (c) shows the matched vertices when running
the computation path in Figure 3 (b) on each vertex in
the data graph from Figure 1. The execution on each data
vertex forms a tree structure, which we call an embedding
tree. Note that the figure only demonstrates two embedding
trees because only two data vertices successfully match the
root pattern vertex. The embedding tree has three important
properties. First, its height is at most |Qy|, the number of
vertices in the query pattern. Second, each path of length
|Qv| from root to a leaf represents a distinct embedding.
Third, the embeddings explored by a pruned sub-tree are
present in a non-pruned path, due to symmetry breaking.

Given multiple patterns, Dryadic builds a distinct com-
putation path for each pattern and merges the computation
paths to form a computation tree as follows. C'P;[k] and
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Figure 4: A computation tree and its corresponding embed-
ding tree for a data graph.

CP;j k| are merged if and only if the first K — 1 computation
nodes in CP; and C'P; are merged and CP;[k].label =
CPjlk].label & CP;[k].SetOp = CP;[k].SetOp. Figure 4
shows a computation tree by merging the computation paths
for @1 and Q2 from Figure 1.

As shown in Figure 4, the merged computation tree for Q1
and )2 only has seven pattern vertices because the first two
vertices in both matching orders have the same associated
set operations, and their labels are the same. The compound
set operations associated with the two vertices and their
results are reused by both patterns. However, we cannot
merge the third vertices in the two patterns — although they
have the same topological relations to the first two vertices
and the labels are the same, their associated set operations
are different (i.e., one is bounded and the other is not) due
to symmetry breaking. Note the merging does not confuse
embeddings for the two patterns. The vertices matched to
the last pattern vertex for each pattern uniquely identify the
corresponding embeddings.

Given a pattern, Dryadic builds the same computation
tree to perform both vertex-induced and edge-induced graph
pattern matching. The compound set operations for edge-
induced pattern matching replaces set difference with an
operation that removes the corresponding vertex from the
set, to guarantee no vertex appears more than once in an
embedding.

2) Operation Motion to Minimize Redundant Computa-
tion: Computation tree merging eliminates a certain amount
of redundancy, but there still exist two kinds of redundancy.
First, set operations may run multiple times with the same
inputs. Consider the operation N(u1) — N(ug) — N(ug) —
N (u3) associated with the pattern vertex u4 in Figure 4. If
the vertex matched to us has a large degree, it is possible that
the first two set operations (i.e., NV (u1)—N (ug)—N (ug)) are
repetitively run with the three vertices mapped to g, u;, and
u9 as inputs. Because the embedding tree expands to include
more vertices at lower levels, this redundancy problem is
even more serious than the one addressed by merging the
computation trees. Second, the same set operation may be
performed multiple times with the same input to match
different patterns. As Figure 4 shows, the compound set
operations associated with the fourth vertex in Q1 and Q2
both perform N(u;) — N(ug), which may be redundant if



the extended embeddings for both patterns have the same
vertices mapped to ug and wuy.

Algorithm 1: Operation motion algorithm

input : node //A node in the computation tree
1 begin
2 for child in node.children do

3 L run Code Motion on child

4 if node.parent # null then

// mnode.setOp is the SetOp
associated with node

// mnode.sets is a set of setOps
moved to node from node’s
sub-tree

5 Insert node.setOp to node.parent.sets

6 for setOp in node.sets do

7 if setOp.parent € node.parent.sets then
8 | continue

9 else

10 L Insert setOp to node.parent.sets

We call a set operation a redundant operation if it is
run multiple times with the same inputs to explore the
same embedding tree. Dryadic implements Algorithm 1 to
completely eliminate redundant operations by moving set
operations to upper levels of the computation tree, which
we refer to as operation motion. It uses a three-field data
structure, SetOp;, to represent a compound set operation
associated with a pattern vertex ¢. The first field, in, includes
all pattern vertices connected to vertex ¢ and before vertex
1 in the matching order. The second field, out, contains all
pattern vertices disconnected to vertex ¢ and before ¢ in the
matching order. Finally, the res field contains the ID of
the pattern vertex restricting vertex ¢. Recall that within an
embedding the ID of the matched vertex for the ith pattern
vertex must be larger than the ID of the matched vertex
for the pattern vertex indicated by res. If res is -1, the
vertex set computed by SetOp; is not restricted. We define
SetOp.parent as the parent of SetOp, which is a copy of
SetOp except that 1) it excludes the largest ID in SetOp.in
and SetOp.out and 2) it has —1 in its res field. Given
that SetOp.parent is already computed, the compound set
operation corresponding to SetOp only needs to perform
one set operation. For example, N (u1) — N(ug) — N(uz2)’s
parent is N (u1) — N(ug). Given that u; and ug are mapped
to the same data vertices, the former only needs to perform a
set difference operation if the result of the latter is available.

Algorithm 1 recursively moves SetOp;.parent to asso-
ciate with the parent vertex of the vertex SetOp; is associ-
ated with. It uses a set container to store all the SetOps
associated with a pattern vertex to eliminate duplicates.
When the algorithm terminates, every pattern vertex in the

computation tree has a set of distinct SetOps’. We show
in the following lemma (proof omitted for brevity) that this
algorithm guarantees that the processed computation tree is
free of redundancy.

Lemma 1. Algorithm 1 does not change the semantics
of the computation tree and eliminates all redundant set
operations.

Dryadic implements two additional optimizations to fur-
ther improve the performance of the computation tree.
The first optimization is based on the observation that if
SetOp.ins is empty, we have to use expensive set com-
plement operations. For instance, if SetOp;.ins = () and
SetOp;.out = {j}, we need to compute all vertices not in
the neighbor list of the vertex matched to pattern vertex j.
Hence, Dryadic does not move SetOp.parent to a higher
level, if |SetOp.in| = 1 and |SetOp.parent.in| = 0.

The second optimization is motivated by the observation
that because Algorithm 1 always sets the res field to
—1 when computing SetOp.parent, it may compute an
unnecessarily large vertex set. Consider an unlabeled clique
pattern. The ith (¢ > 2) pattern vertex’s parent is at least
associated with SetOp;_; and SetOp;.parent. The former
is restricted by ¢ — 2 while the latter is not restricted.
However, since SetOp; is restricted by 7 — 1, the matched
vertices computed by SetOp;.parent would be useless if
they violate the restriction. Therefore, we should leverage
the transitivity of restrictions and also use ¢ — 1 to restrict
SetOp;.parent. We generalize the idea in the following
way. Given that SetOp; is generated by the recursive
procedure starting from SetOpy,, we assign j to SetOp;.res
is the jth pattern vertex transitively restricts the kth pattern
vertex.

3) Load Balance with Minimized Footprint: The compu-
tation tree-based representation is amenable to paralleliza-
tion because a system can use different workers to easily ex-
ecute it on different vertices in the data graph. However, such
a naive parallelization method would lead to a serious load
balancing problem. As shown in numerous prior studies [22],
[14], [7], [39], the degree distribution in real-world graphs
is highly skewed, so the embedding tree rooted at one vertex
can be several orders of magnitude larger than one rooted on
a different vertex. Worse, the more complex the pattern is,
the more serious the problem becomes. Assume that we are
interested in all the single-edge embeddings in an unlabeled
data graph. The gap between the largest embedding tree and
the smallest is O(D,,q0) —O(Dmin) Where Diyq. and Doy
respectively represent the largest and the smallest degree in
the data graph. If we instead match the triangle pattern, this
gap becomes O(D?naz) - O(Dgnln)

A popular approach to combating the load imbalance
problem is to compute all smaller embeddings before larger
embeddings [47], [51], [9]. Explained in the computa-
tion tree terms, this would involve performing a breadth-



first execution of the computation tree on the data graph.
Specifically, this approach enforces a global synchronization
between any two adjacent levels across all embedding trees.
Because of the inherent dependencies in the embedding
tree structure, it must maintain at least all embeddings at
level ¢ before the computation of vertices at level 7 + 1.
This approach hence has significant space overhead, which
cancels or even outweighs its benefit, especially for large
graphs.

Although Dryadic can easily support breadth-first exe-
cution, its default execution is depth-first to minimize the
memory footprint. A straightforward approach for improving
load balancing is to support coarse-grained work stealing [3].
Every worker is initially assigned a set of data vertices to
work on. An idle worker steals from other workers their
unprocessed data vertices. However, as mentioned above,
this approach does not resolve the load balancing issue
introduced by the huge disparity between embedding trees
rooted at different vertices.

Dryadic improves load balancing through fine-grained
work stealing based on the computation tree and embed-
ding tree abstraction. While the essence of coarse-grained
work stealing is to steal entire embedding trees, Dryadic’s
fine-grained work stealing supports stealing arbitrary sub-
embedding trees. Consider the example in Figure 3. Suppose
that worker 2 finishes traversing the embedding tree rooted
at data vertex vg when worker 1 is still processing the
embedding tree rooted at vertex vy and is somewhere in the
left sub-embedding tree. Worker 2 can in concept safely steal
the right sub-embedding tree. However, we must address
three problems to properly implement the stealing. First, the
runtime should determine which sub-embedding tree, if any
left, to steal from the victim worker. Second, we should
figure out what data are needed to process the stolen work.
Third, we should make sure that processing the stolen work
in parallel does not cause data race conditions.

To solve the first problem, Dryadic gives a total order to
all paths of the same length from the root data vertex in an
embedding tree. Given two paths, P; and P;, in the same
embedding tree, P, > P; if P;[k].ID > P;[k].ID where
k is the smallest non-negative integer for P;[k].ID to be
different from P;[k].ID. If such a k does not exist, P, = P;.
Because Dryadic implements the vertex set in a way such
that the vertices with smaller IDs are always processed first,
if a worker is processing the /th vertex in path P, a path P’
has not been processed if P'[0:1—1] > P[0 :— 1]. Based
on the ordering, Dryadic randomly selects an active thread as
the victim, and runs Algorithm 2 to locate a sub-embedding
tree at the highest possible level for work stealing.

To compute the stolen sub-embedding tree, we need the
path from the root vertex of the embedding tree to its root
vertex, as well as all the computed vertex sets based on
only the vertices on that path. We wrap all such data in a
data structure called the context of the sub-embedding tree.

Algorithm 2: Locating a sub-embedding tree to steal.

input : P //The path the victim worker is working on
1 begin
for i <— 0 to P.size —1 do
vs +— vertex set containing P[]
if P[i] is the last vertex in vs then
| continue

L7 I NS 8

else

7 v <— vs.pop_back()

// the stolen sub-embedding
tree is at level ¢ rooted
at v

8 return v, ¢

=)

9 return stealing_fail

When a sub-embedding tree is stolen, Dryadic duplicates its
context and sends it to the stealer. Dryadic also properly
synchronizes the stealer and the victim to avoid data race
conditions in the stealing process. Finally, the duplication of
the context also guarantees that the processing of the stealer
does not conflict in any way with the victim.

B. Different Modes to Execute the Computation Tree

The computation tree representation is flexible and can be
executed on data graphs in different modes. In this section,
we describe an implementation that uses the Galois parallel
engine to interpret the computation tree in the depth-first
order on data graphs. We also describe the code generation
component to directly map the computation tree to nested
loops in C++ code for parallel and distributed execution.

1) Galois-Based Interpretation: Dryadic leverages the
Galois parallel engine to support flexible pattern matching
when the patterns are not known offline. Galois imple-
ments a set of features to accelerate irregular applications,
which empowers multiple graph processing systems. The
most important features leveraged by Dryadic are automatic
parallelization and per-thread data allocation. Specifically,
Dryadic uses the interface provided by Galois to create a
work list, and pushes all vertices in the data graph into it.
Dryadic then passes a lambda function to Galois’s do_all
operator, which automatically runs the function on each
vertex in the work list.

The lambda function executes the computation tree in the
depth-first order, which can be implemented in a recursive
way as described in Algorithm 3. However, in practice, the
recursion would incur significant overhead. Thus, Dryadic
uses a stack to emulate recursion to improve performance.
Dryadic allocates a stack for each thread through Galois’s
per-thread storage allocation API. Each element in the stack
is a data structure that contains a vertex on the explored path
and pointers to the results of its associated set operations.
Dryadic pushes the vertex into the stack and executes a loop.



Algorithm 3: Depth-first interpretation.

input : v //A data vertex
input : n //A node in the computation tree
1 begin
2 if v does not match n.label then
3 | return
// setMap stores computed vertex
sets
4 for setOp in n.sets do
5 setMap[setOp] + compute setOp on v with
L set M ap[setOp.parent)

6 for n’ in n.children do
7 for v’ in setMap[n'.setOp] do
| recurse on v/, n/

The loop body has two parts — the first part computes the
compound SetOps associated with the vertex at the top of
the stack. Due to the nature of recursion, SetOp.parent
must have been computed, and its result stored in the
setMap as shown in the algorithm. Dryadic needs to choose
one of two options in the second step — if the vertex at
the top of the stack has unprocessed neighbors that match
the label of the next pattern vertex, Dryadic pushes one of
these neighbor vertices into the stack. Otherwise, it pops an
element off the top of the stack. The algorithm terminates
if the stack does not have any vertex.

Dryadic supports coarse-grained work stealing because
the do_all operator ensures that no threads stay idle if the
work list still has unprocessed vertices. However, recall that
the coarse-grained work stealing is insufficient to address the
load imbalance problem. Dryadic allows the Galois runtime
to interact with the work stealing runtime, discussed in
Section III-A3, by adding a dummy vertex into the work
list after all data vertices are pushed. When Galois runs the
lambda function on the dummy vertex through the do_all
operator, the lambda function invokes the stealing runtime
to attempt to steal work from other threads. A failed attempt
means that no other threads have available sub-embedding
tree to steal. Otherwise, the lambda function should process
the stolen work and push the dummy vertex back to the
work list.

Dryadic implements two optimizations to further improve
performance. First, The setMap data structure indexed by
SetOp incurs substantial overhead, because Dryadic needs
to frequently access it for most compound set operations. To
address this, Dryadic assigns a unique non-negative integer
to each set operation and stores the results in a vector
indexed by that integer. Second, each set operation produces
a new vertex set which needs to be stored in memory, lead-
ing to substantial memory management overhead. Dryadic
analyzes the computation tree to figure out the maximum

number of set operations associated with the longest path.
At the beginning of the execution, it allocates that many
memory regions, each having just enough memory to store
the max-degree number of vertex IDs. Dryadic reuses these
regions to minimize the memory management overhead.

2) Code Generation for Parallel and Distributed Execu-
tion:

Mapping to nested loops.: As prior systems [29], [1]
show, generating and pre-compiling code specialized for
specific patterns typically has high performance as it avoids
runtime overhead to handle general patterns. For example,
one can write a three-level nested for loop to only match the
unlabeled triangle pattern, while a general pattern matching
system must, at a minimum, determine the routine to execute
while match the pattern, and sometimes must even run an
isomorphism check to determine the pattern of enumerated
embeddings [47], [51], [9].

The computation tree naturally maps to a nested loop
structure, with each pattern vertex corresponding to a loop.
Its children, if any, correspond to consecutive nested loops in
its loop body. The outermost loop traverses all the vertices,
while each iteration of the innermost loop computes a set
of vertices to match the last pattern vertex. Each of the
loops in-between traverses over a vertex set computed by the
compound set operation associated with its pattern vertex.
We point out three properties of the generated nested loop
structure. First, it explores the embedding trees in the depth-
first order. Second, an iteration of any inner loop explores
a sub-embedding tree. Third, every loop is parallelizable
because the iterations of the same loop explore distinct sub-
embedding trees, which do not depend on each other.

Parallel and Distributed Execution.: Nested loop struc-
tures parallelize naturally at the outermost level using stan-
dard tools like OpenMP parallel for. In this case, the outer
loop corresponds to a single vertex per iteration, and each
inner loop adds a vertex to the partial embedding. Because
of this property, the execution time of an iteration of the
outermost loop is sensitive to the degree of every vertex that
appears in a particular embedding. On the LiveJournal [54]
graph, the most expensive vertex iteration of motif 4 enu-
meration takes as long as the cheapest 96.6% of the vertex
iterations, accounting for over 7.3% of the total CPU time
as a single iteration among 4 million. Clearly, this poses
some load balancing challenges, which are exacerbated as
the pattern size increases.

In a distributed environment, we assign work to machines
on the basis of a fair distribution of edges. On an individual
machine, the OpenMP dynamic scheduler handles the task of
assigning work to threads. Using it with a task granularity of
64 introduces minimal overhead, but helps mitigate the load
balance issue by ensuring no one thread has to do excessive
work. There is still an upper limit to how well this approach
can handle load balance. However, due to the nature of the
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Figure 5: Pattern queries used in the evaluation.

pre-compiled nested loop structure, it cannot easily interact
with the stealing runtime. We leave this to future work.

IV. EVALUATION

In this section, we evaluate the effectiveness of the com-
putation tree, and the efficiency of the backends in Dryadic.

A. Methodology

Compared systems. We compare Dryadic with four
recently published state-of-the-art systems. DAF [17] is the
fastest graph pattern matching system for labeled graphs,
and it avoids exploring failing paths in the embedding tree.
AutoMine [29] and Pangolin [9] are the fastest single-
machine graph pattern mining systems, and can also be used
for pattern matching. They are particularly good at parallel
multi-pattern matching. Note that although Peregrine [19]
and DwarvesGraph [6] claim to outperform several other
systems for multi-pattern matching, they actually perform
pattern counting instead of enumeration, so we exclude
them from our comparisons. CECI [3] is the only open-
source distributed graph pattern matching system, and claims
to outperform multiple single-machine systems, including
Psgl. [42] and DUALSIM [20]. In addition, we also compare
Dryadic with PGD [2], a state-of-the-art manual implemen-
tation of motif counting. For a fair comparison, we use PGD
to only count connected patterns.

Datasets and patterns. Table I shows the nine real-world
graphs used in the experiments. Most are from the Stanford
SNAP collection of datasets [27], representing a sampling of
online social network, interaction, and collaboration graphs.
Most of the graphs do not have labels. For consistency, we
randomly assign one of ten distinct labels to each vertex.
We use ten non-clique query patterns of five different sizes
shown in Figure 5 with randomly generated labels assigned
to the pattern vertices. The experiments to compare Dryadic
with DAF use these patterns. The other experiments either
use clique patterns or all the connected patterns of a certain
size.

Machine environment. Our single-machine experiments
run on a system with two Intel Xeon E7-4830 v3 CPUs (hy-
perthreading disabled) and 256GB of memory. The system
runs Ubuntu 18.04 with Linux kernel 4.15, and compiles
with GCC version 7.5 at optimization level -O3. Our dis-
tributed experiments run on a cluster of machines each with
two Intel Xeon E5-2670 CPUs (hyperthreading disabled)

Graphs | #Vertices | #Edges | Description
WikiVote [25] 7K 100K Wiki editor voting
Enron [21] 37K 183K Email network
Amazon [54] 334K 926K Product network

DBLP [54] 317K 1M Collaboration network
MiCo [12] 96K 1.1M Co-authorship
Patents [26] 3.8M 16.5M US Patents
LiveJournal [54] 4aM 34.7M Social network
Orkut [54] 3.1M 117.2M Social network
Friendster [54] 65.6M 1.8B Social network

Table I: Graph Datasets.

WikiVote pmmsm Amazon s
Enron momm

DBLP ===

Speedup
o N A O O

gl 92 93 94 g5 g6 q7f g8 g9 q10

Figure 6: Results on labeled pattern matching on four graphs.

and 64GB of memory, running CentOS version 6.3 with
Linux kernel 2.6 and compiling with GCC version 4.4.7 at
optimization level -O3. We use OpenMPI version 3.0.0 to
drive the QDR InfiniBand interconnect.

B. Labeled Pattern Matching

We compare Dryadic’s generated code with DAF by
running the ten patterns in Figure 5 on the first seven graphs
in Table I. Edge-induced matching is used because DAF does
not support vertex-induced matching. Figure 6 shows the
speedups of Dryadic over DAF on the four smaller graphs
(i.e., WikiVote, Enron, Amazon, and DBLP). Out of the
40 runs, Dryadic is faster than DAF for 32 runs. Dryadic’s
average speedups over DAF are 1.34X, 1.47X, and 3.1X for
WikiVote, Amazon, and DBLP, respectively. DAF achieves
a 1.14X speedup over Dryadic for Enron. However, DAF’s
performance significantly drops when processing reasonably
large graphs. As Figure 7 shows, the performance gap
between DAF and Dyradic increases substantially for the
three larger graphs. We only show the results for six patterns
because DAF times out at 20 minutes for the others. On
average, Dryadic outperforms DAF by 8.4X, 37.4X, and
17.7X for Mico, Patents, and LiveJournal, respectively.
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Figure 7: Results on labeled pattern matching on three
graphs.
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Figure 8: Memory consumption for labeled pattern matching
on three graphs.

Graph | Size | AutoMine | Pangolin | Dryadic-C | Dryadic-G
‘WikiVote 4 48.2 16.96 1.13 2.19
5 4182.95 13827.8 454.45 719.47
Enron 4 353 29.26 1.24 2.38
5 10363 34768.5 607.76 1667.18
Amazon 4 0.47 1.14 0.13 0.53
5 218.53 160.12 7.58 31.47
DBLP 4 0.84 3.87 0.36 0.88
5 69 734 51.2 41.9
Patents 4 24.4 95 6.18 14.7
5 2867 24069 1680 748
Mico 4 28.2 111 9.65 16.7
LiveJournal 4 5286 19741 881 1081

Table II: Performance comparison between AutoMine, Pan-
golin, and Dryadic on motif enumeration in seconds.

By investigating DAF’s slowest runs, we identified two
problems. First, DAF’s auxiliary data structure consistently
consumes a large amount of memory. Figure 8 reports the
peak memory consumption of DAF and Dryadic for the
executions on the three larger graphs. For the largest graph,
LiveJournal, DAF consumes on average 50X more memory
than Dryadic. DAF requires about 16GB memory to process
LiveJournal, while the graph data consumes only 296 MB.
In comparison, Dryadic only requires 323 MB for the same
workload. Second, DAF incurs a large number of recursive
calls. For example, DAF reports about 447M recursive calls
when running ¢5 on LiveJournal, but Dryadic’s nested loop
does not invoke any recursive functions.

C. Single-Machine Unlabeled Pattern Matching

We compare Dryadic (both its compilation mode,
Dryadic-C, and its Galois-based interpretation mode,
Dryadic-G) with AutoMine and Pangolin. To evaluate these
systems’ ability to perform multi-pattern matching, we
run size-4 and size-5 motif enumeration (vertex-induced
matching), which enumerates all the embeddings for each
connected pattern of the given size. We omit the results when
Pangolin times out at ten hours. As Table II shows, Pangolin
is the slowest system due to its breadth-first execution,
which needs to maintain all enumerated sub-embeddings.
Although both Dryadic-C and AutoMine’s codes are gen-
erated, Dryadic-C is faster than AutoMine in all runs with
up to 42.8X speedup (Motif-4 on WikiVote). This is mainly
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Figure 9: Performance comparison between AutoMine, Pan-
golin, and Dryadic on clique finding. The two missing bars
indicate that the corresponding experiments for Pangolin run
out of memory.

Graph | Dryadic-C | PGD
‘WikiVote 0.1 0.22
Enron 0.13 0.26
Amazon 0.04 0.21
DBLP 0.08 0.31
Mico 0.4 2
Patents 0.96 14.84
LiveJournal 19.96 260.5

Table III: Performance comparison between Dryadic and
PGD on size-4 motif counting in seconds.

because AutoMine suffers from redundant set operations,
while Dryadic eliminates such redundancy. Dryadic-G is
substantially slower than Dyradic-C in most runs due to its
runtime overhead except for the largest graphs where the
fine-grained stealing produces the largest benefit.

Figure 9 shows the results of finding cliques of three
different sizes. Results for some experiments are omitted
because Pangolin ran out of memory. Pangolin is again the
slowest system, but the performance gap between Pangolin
and other systems is smaller. The major reason is that
for single-pattern matching, Pangolin does not incur as
much space overhead as for multi-pattern matching. Since
AutoMine applies an aggressive optimization to load only
half of the data graph, it is faster than Dryadic-G in six out of
eight experiments, due to its better cache performance from
the smaller working set. Despite running on the entire graph,
Dyradic-C outperforms AutoMine for most heavy workloads
by up to 2.4X (size-6 clique finding on LiveJournal).

Table III shows the performance comparisons between
Dryadic-C with PGD, a state-of-the-art manual implemen-
tation of size-4 motif-counting. The results on Orkut and
Friendster are omitted because PGD times out at ten hours.
Both Dryadic and PGD count the embeddings of rectangle
and size-4 clique patterns, and use the same formulas
to derive the counts of the other patterns (details of the
formulas in [2]). The performance improvement of Dryadic-
C over PGD ranges from 1.97X to 15.5X with an average of
5X, and we observe that the performance gap tends to widen
with larger input graphs. The advantage of Dryadic over
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Figure 10: Performance benefits from fine-grained stealing
for motif-4 enumeration.
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Figure 11: Level distribution of stolen sub-embedding trees.

PGD comes from two sources. First, Dryadic uses symmetry
breaking to avoid over-counting, while PGD may identify
the same embedding multiple times. Second, Dryadic’s code
motion eliminates all redundant set operations, which is not
achievable in PGD. Although one can manually implement
Dryadic’s optimizations in PGD, doing so requires signif-
icant effort and is limited to one specific workload (i.e.,
size-4 motif counting). In comparison, Dryadic’s approach
is general, and applies to arbitrary patterns.

Effects of Work Stealing.: Figure 10 shows the per-
formance benefits of Dryadic’s fine-grained work stealing
on motif-4 enumeration. The speedup due to work stealing
is up to 1.27X, demonstrating the serious load imbalance
problem across the embedding trees. We also use size-6 and
size-8 clique finding on DBLP to investigate the efficiency
of the work stealing. Recall that the stealing runtime tries
to steal a sub-embedding tree rooted at the highest possible
level for each attempt. For each run, we record the root
level of each stolen sub-embedding tree. Figure 11 reports
the level frequency distribution. For size-6 clique finding,
69% of the sub-embedding trees are rooted at level 1. On
average, sub-embeddings rooted at higher levels should be
larger, so stealing at higher levels minimizes the relative
synchronization overhead of stealing.

D. Distributed Unlabeled Pattern Matching

In this part, we compare Dryadic with CECI for dis-
tributed execution. Since the released CECI system has bugs
as mentioned earlier, we use its results collected on a 16-
node cluster in the paper [3]. Each node in the cluster has
two 8-core Intel Xeon E5-2650 CPUs and 128 GB memory.
The CPUs are comparable to the ones in our system.
Though our system has less memory, it should not affect
the comparisons by much because all the evaluated graphs
can already fit in memory. Figure 12 shows the performance
benefits of Dryadic over CECI on size-3 and size-4 clique
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Figure 12: Performance comparisons between Dryadic and
CECI for distributed execution with 1, 2, 4, 8, and 16
machines.

finding using 1, 2, 4, 8, and 16 machines. Due to space limit,
we omit the results on other patterns, but they show similar
trends. Dryadic substantially outperforms CECI for all the
distributed runs. Using 16 machines, Dryadic is on average
20X and 6.7X faster than CECI for size-3 and size-4 clique
finding, respectively. Dryadic’s single-node performance is
much better thanks to the aggressive optimization applied
to the computation tree. The sub-figures demonstrate the
scalability of the two systems. For size-3 clique finding,
Dryadic and CECI have similar scalability for Orkut and
Friendster, achieving around 11X-12X speedups by using
16 machines over one machine. But CECI’s scalability on
LiveJournal drops significantly beyond four machines. A
plausible reason is that CECI cannot well address the load
balance problem. For size-4 clique finding, CECI has slightly
better scalability for Orkut and Friendster, but again fails to
scale beyond four machines for LiveJournal.

V. RELATED WORK

General graph analytics frameworks. Numerous graph
processing systems have been proposed in recent years to
optimize irregular computation [44], [36], minimize com-
munication [14], reduce redundant computation [50], and
improve locality [53]. However, such infrastructure-level
optimizations cannot take advantage of the unique properties
of graph pattern matching workloads. As shown by the
Galois backend in Dryadic, a promising direction is to
integrate Dryadic with those systems to complement their
strengths.

Labeled pattern matching. Practical graph pattern
matching can be traced back to Ullmann’s backtracking algo-
rithm [49], which proposes the basic approach to iteratively
matching pattern vertices based on certain orders. A number
of studies examine the backtracking algorithm, optimizing
the matching orders to improve performance [10], [41], [56],



[31]. As pointed out by Lee [24], the best matching orders
depend on the local topology and label distribution within
a data graph. Inspired by this finding, TurbolsO [18] and
CFL-Match [4] build a query tree using the given pattern,
and adaptively change the matching order within the same
run. However, the query tree introduces numerous false
positives, thereby adding redundant computation. DAF [17]
addresses this problem by performing matching through a
DAG based on the pattern, while still supporting adaptive
matching orders. Dyradic uses a static matching order, and
focuses on optimizing the computation tree instead of input
adaptation, but it may be interesting to combine the two
methods in the future.

Single-machine parallel pattern mining. Many studies
focus on parallel execution efficiency for graph pattern
matching [20], [45], [46]. Chen et al. [9] finds that a
critical reason for existing systems’ poor performance is
inefficient implementations of parallel operations and data
structures. They closely integrate the Pangolin system with
the Galois engine to outperform several systems, including
G-Miner [5], Kaleido [55], and Fractal [11]. However, Pan-
golin’s breadth-first execution does not exploit the structure
of the given patterns, which is to some degree addressed
by AutoMine [29] and Peregrine [19]. DwarvesGraph [6]
decomposes a pattern into smaller patterns for acceler-
ated processing, and focuses on pattern counting instead
of pattern matching. SandSlash [8] proposes a two-level
programming abstraction to incorporate domain knowledge
for efficient graph pattern mining.

Distributed pattern matching. Thanks to the massive
parallelism in graph pattern matching, many approaches
use a distributed system to accelerate execution. A popular
approach is to duplicate the data graph in each node,
and focus on load balancing for optimization [47], [3].
RADS [38] partitions the graph into multiple machines, and
employs a framework of region-grouped multi-round expand
verify & filter to reduce communication and minimize the
intermediate result storage. BENU [52] implements a global
caching technique to exploit data sharing. Lai et al. [23]
use the Timely dataflow system [32] to evaluate multiple
graph pattern matching algorithms, and propose a practical
guide. GraphPi [43] implements a set of novel techniques to
optimize graph pattern matching for supercomputers.

VI. CONCLUSION

A number of graph pattern matching systems have been
proposed in recent years. We demonstrate how each system
is specialized for certain settings, meaning no system con-
sistently outperforms the others. We argue that a systematic
approach is needed to build a flexible and efficient graph
pattern matching system. We present Dryadic, a graph
pattern matching system based on a powerful intermediate
representation. Extensive experiments show that the back-

ends in Dryadic enable it to substantially outperform four
state-of-the-art graph pattern matching systems.
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