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Abstract

We consider a coupled reaction-advection-diffusion system based on the Fisher-KPP and Burgers

equations. These equations serve as a one-dimensional version of a model for a reacting fluid in which

the arising density differences induce a buoyancy force advecting the fluid. We study front propagation

in this system through the lens of traveling waves solutions. We are able to show two quite different

behaviors depending on whether the coupling constant ρ is large or small. First, it is proved that there

is a threshold ρ0 under which the advection has no effect on the speed of traveling waves (although

the advection is nonzero). Second, when ρ is large, wave speeds must be at least O(ρ1/3). These

results together give that there is a transition from pulled to pushed waves as ρ increases. Because

of the complex dynamics involved in this and similar models, this is one of the first precise results in

the literature on the effect of the coupling on the traveling wave solution. We use a mix of ordinary

and partial differential equation methods in our analytical treatment, and we supplement this with a

numerical treatment featuring newly created methods to understand the behavior of the wave speeds.

Finally, various conjectures and open problems are formulated.

1 Introduction

The existence and stability of traveling wave solutions to reaction-diffusion equations of the form

Tt +∇ · (uT ) = ∆T + f(T ) (1.1)

has been an area of great activity during the past century [13, 24, 47]. Of particular interest in recent years

is the influence of the advection u on the speed of fronts [3, 7, 11, 12, 16, 23, 30, 36–41, 52–54]. Generally

one finds that unbiased advection “stirs up” a reaction, increasing the speed of traveling waves [3]. The

mechanism for this is complex but intimately connected to issues in homogenization and mixing problems.

However, most previous works focus on settings where the advection is imposed from the outside, that is,

u is independent of the evolution of T . Often works consider u that is time independent and has rigid

structure, such as periodicity or stationary ergodicity. For many physical systems, the reacting quantity and

the advection influence each other, evolving in time together. These coupled systems, which can be thought

of as “reacting” active scalars [22], are much more difficult to analyze as standard techniques that strongly

use the structure of u do not apply. Two prominent examples are the dynamics of a population of chemotactic

bacteria [20] and of the temperature of a fluid undergoing a chemical reaction (flame propagation) [31]. In

this paper, we are interested in the latter setting and our particular focus is on how the strength of the

coupling between u and T affects the speed of traveling waves.
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The model that we consider is a one-dimensional reactive Burgers equation that serves as a simplified model

for the situation in which a fluid undergoes a chemical reaction that increases its temperature and the density

differences that arise from the temperature being out of equilibrium induce a buoyancy (gravity) force (cf. the

discussion of (1.4) below). Precisely, the equations are given by

Tt − Txx + (uT )x = T (1− T ),

ut − νuxx + uux = ρT (1− T ).
(1.2)

Here T (x, t) and u(x, t) denote the temperature and velocity of the fluid, respectively, each dependent on

space x ∈ R and time t ≥ 0. The quantity ν ≥ 0 represents the viscosity of the fluid. The first equation

in (1.2) is the Fisher-KPP (FKPP) equation [13, 24], which is a prototypical equation used in population

dynamics and combustion. In this setting we use the latter interpretation. The temperature, T , increases

due to combustion and is advected by the solution of the second equation, u, which is the Burgers equation

with a Boussinesq-type gravity term on the right hand side, given here by ρT (1− T ). The parameter ρ is a

positive constant quantifying the strength of coupling.

The goal of this paper is to prove the existence of traveling wave solutions to (1.2) and understand how

their behavior depends on the parameters ρ and ν. That is, abusing notation, we seek solutions of the form

T (x, t) = T (x− ct) and u(x, t) = U(x− ct) where the profiles satisfy the limits

(T (−∞), U(−∞)) = (1, u0), (T (∞), U(∞)) = (0, 0), (1.3)

for some u0 ∈ R, where (1, u0) is a spatially-independent equilibrium solution of (1.2). Throughout, we adopt

the nomenclature from the usual Burgers equation that (1.2) with ν = 0 is inviscid, while the equation having

ν > 0 is viscous. In particular, our interest is in the relationship between the range of speeds c that traveling

wave solutions move at and the coupling constant ρ. Our main results show that there is a transition in

behavior between small values of ρ where the minimal admissible speed of any traveling wave is 2 (as in the

FKPP case, where u ≡ 0) and large values of ρ where the advection “speeds up” the minimal speed to be

O(ρ1/3). This corresponds to a transition between “pulled” traveling waves, typical for FKPP, and waves

that are “pushed” by the advection u.

The meaning of equation (1.2) can be understood with reference to two similar models for the same physical

setting. First, it is a one-dimensional version of the class of reactive-Boussinesq models in which T is governed

by (1.1), while u satisfies ∇ · u = 0 and

Lfluid(u) = ρT ẑ, (1.4)

where ẑ is the upward pointing unit vector and Lfluid is the any operator for a fluid equation. For example,

one might have Lfluid being the Navier-Stokes equations

Lfluid(u) = ut + u · ∇u−∆u+∇p, (1.5)

where p is the pressure term. In this setting, the ρT is a gravity term and ρ is the Rayleigh number,

which is a nondimensional constant roughly representing the strength of gravity with respect to the internal

properties of the fluid. The dynamics of solutions of (1.1) coupled with (1.4) are known to be complex.

To our knowledge the model was introduced in [31], with traveling waves being constructed in various

settings [2, 9, 18, 25, 26, 43], and some general bounds for the Cauchy problem were obtained in [8]. In

addition, it is known that there is a destabilizing bifurcation that depends on the parameter ρ so that planar

waves (in which u ≡ 0) are stable for ρ small but unstable for ρ large [8, 43–45]. In these works, however,

little is known about the case ρ � 1; in particular, the affect of ρ on the speed of waves is unknown.

Furthermore, to our knowledge, there is no conjectured asymptotics of the speed c = c(ρ) as ρ→∞.
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Closer to our setting is the system considered by Constantin et al. [10], given by

Tt − Txx + uTx = f(T ),

ut − uux = ρT.
(1.6)

The authors construct traveling waves and investigate quenching with a particular focus on the structure

of solutions. They prove that there are 0 < ρ1 < ρ2 such that the following takes place. When ρ ∈
(0, ρ1] solutions decompose into a traveling wave moving to the right and an accelerated shock wave moving

leftwards. When ρ ≥ ρ2 these traveling waves additionally have a wave fan component. They also show that

quenching occurs on any length scale when ρ is sufficiently large. We note that quenching is not possible in

our context as we use the choice f(T ) = T (1− T ) instead of an ignition type nonlinearity as in [10]. In the

present work, we are most interested in the behavior of the traveling wave speed as ρ varies while, in [10],

the authors are focused instead on the structure of the waves and the phenomenon of quenching; as such,

they do not address how the speed of traveling waves is affected by the value of ρ.

The two main differences between (1.2) and (1.6) that we point out are (i) the advective term: (uT )x in (1.2)

versus uTx in (1.6), and (ii) the gravity term: ρT (1 − T ) in (1.2) versus ρT in (1.6). The reason for our

choice of advective term is that it allows the total internal energy, in the absence of reaction, to be conserved.

Explicitly, if T̃ (x, t) satisfies

T̃t − T̃xx + (uT̃ )x = 0,

with initial condition T̃ (x, 0) ∈ L1(R), then
∫
T̃ (x, t)dx is independent of t. This would not be true if (uT̃ )x

were replaced by uT̃x. (We note that the reactive-Boussinesq equation (1.4) also conserves energy in the

absence of reaction due to the assumption that ∇ · u = 0.) Hence, in (1.2) any change to the total internal

energy of the system arises through the reaction. Turning to the the gravity term, there are two reasons for

our choice of ρT (1 − T ). First, in [10], it is observed that with the choice ρT , the advection is unbounded,

which is not physical. Second, with this choice, if T is in equilibrium, no advection is induced. This is

consistent with the reactive-Boussinesq model (1.4).

Our proofs of the existence of traveling wave solutions to (1.2) rely on converting the problem to finding

heteroclinic connections to an associated spatial ordinary differential equation (ODE) in the traveling wave

independent variable ξ = x − ct. The analysis naturally splits into distinct cases for the inviscid and the

viscous equation, with the former leading to a planar ODE and the latter leading to an ODE in three

dimensions. This means that although the approach to the inviscid and viscous equations are similar,

different arguments are required to prove the existence of traveling wave solutions.

In the inviscid case, we show that traveling waves, when they exist, must be monotone; however, due to

the increased complexity of three dimensional ODE systems, we are unable to establish this in the viscous

setting. In this work, we focus exclusively on traveling waves with monotone profiles (T,U). This decision is

not arbitrary, as non-monotone solutions to reaction-diffusion systems with monotone dynamics have been

proven to be unstable in similar systems [14, 46]. We note that our system differs from these previous studies

since they are restricted to scalar equations or linear advection, whereas system (1.2) has two components

and the advection is nonlinear. In addition, we present numerical evidence below that the traveling waves

that are stable are monotone (see Figures 2 and 3). While we believe that non-monotone waves (if they

exist) are similarly unstable in (1.2), we leave a proof of this to a follow-up paper that hopes to also detail

the stability properties of the monotone fronts proven to exist in this work.

The remainder of this paper is organized as follows. In Section 2 we present our main results, split up

between the inviscid and viscous cases, along with our numerical findings which complement our analysis.

Particularly, we provide results from numerical simulations to observe the transition from pulled to pushed

traveling waves and demonstrate how recent numerical bounding techniques due to [5] can be employed to
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determine the asymptotics of the minimum wave speed in the large ρ parameter regime. Details on this

numerical bounding technique can be found in the appendix. The proofs of the main results are given in

Sections 3 and 4, with the former featuring the results in the inviscid case and the latter focussing on the

viscous case. The paper then concludes with Section 5 where a brief discussion of our findings and potential

avenues for future work can be found.
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2 Main Results

As discussed in the introduction, our investigation of (1.2) naturally splits into the inviscid (ν = 0) and

viscous (ν > 0) cases. The results are slightly different and therefore broken up in what follows. Particularly,

we obtain a more complete understanding of the inviscid case, primarily due to the dimensionality of the

resulting spatial ODE used to find traveling wave solutions. The results for the viscous case therefore aim

to demonstrate that many of the inviscid case results extend into ν > 0, at least when ν is sufficiently

small. After stating our main theorems for both cases of (1.2) we then present our numerical findings that

complement our analysis. This section then concludes with a brief discussion of related work which frames

our findings within the larger body of research into traveling wave solutions to reaction-diffusion equations

of the type (1.1).

The inviscid case

Our first result establishes the existence and some qualitative properties of traveling wave solutions of (1.2)

in the inviscid case.

Theorem 2.1. Fix ν = 0 in (1.2). There exists c∗(ρ), finite for all ρ > 0, such that the system (1.2) has

a unique nonnegative traveling wave solution (T (x, t), u(x, t)) = (T (x − ct), U(x − ct)) satisfying the limits

(1.3) if and only if c ≥ c∗(ρ) and u0 = c + ρ −
√
c2 + ρ2. Furthermore, T and U are monotone decreasing

and satisfy the ordering

0 < U(x− ct) < ρT (x− ct) < ρ (2.1)

for all x ∈ R and t ≥ 0.

Roughly, this yields that, similar to the FKPP equation, all traveling waves are monotonic and the set

of speeds c for which there is a corresponding traveling wave solution is a closed half-line [c∗(ρ),∞) with

minimal speed c∗(ρ). We extend these results with the following characterization of the minimum speed.

Theorem 2.2. The minimal speed c∗(ρ) in Theorem 2.1 satisfies the following:

(1) c∗(ρ) ≥ 2 for all ρ > 0.

(2) There exists a ρ0 ∈ [1, 16
3 ] such that for all ρ ∈ (0, ρ0] we have c∗(ρ) = 2.

(3)

(
3

2

)1/3

≤ lim inf
ρ→∞

c∗(ρ)

ρ1/3
≤ lim sup

ρ→∞

c∗(ρ)

ρ1/3
≤
√

3.

We note that the O(ρ1/3) scaling obtained in Theorem 2.2(3) is not obvious. In fact, a näıve argument might

go as follows. Since U ≈ u0 on the left, we might expect

c = 2 + u0. (2.2)
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Indeed, if U ≡ u0 then this equality would hold. Substituting in for u0, considering ρ � 1, and using a

Taylor expansion, yields

c = 2 + c− c2

2ρ
+O

(
c4

ρ3

)
. (2.3)

From the leading order terms we conclude that c ≈ 2ρ1/2, which, in view of Theorem 2.2, is not accurate at

all.

The proofs of Theorem 2.1 and 2.2 are left to Section 3 where we show that the problem of finding traveling

wave solutions to (1.2) is equivalent to determining the existence of heteroclinic orbits in a planar ODE. The

main step in the construction of traveling waves and in obtaining upper bounds on the minimum wave speed

is in finding “trapping regions” of the ODE system. On the other hand, the lower bound on the minimum

wave speed (when ρ � 1) is obtained through the analysis of several integral quantities. These arguments

are reminiscent of partial differential equations (PDE) arguments based on analyzing the “bulk-burning

rate” developed in [7], though we are able to obtain more precise bounds in the present setting due to the

particular structure of (1.2).

From a PDE point of view, one of the major difficulties associated to (1.2) is the lack of a general comparison

principle. As a result, standard techniques based on the construction of sub- and super-solutions do not

apply. In particular, one cannot use (1, u0) as a super-solution to immediately obtain a priori bounds on

(T,U). While it might be possible to construct more complicated sub- and super-solutions, doing so would

require a precise understanding of the profiles of T and U , which appears very difficult. On the other hand,

the construction of trapping regions has the advantage that one need only understand the relationship of T

and U to each other. Stated another way, to construct trapping regions, we need only understand the phase

plane on the boundary of a set as opposed to on the entirety of the set. Hence, we are able to obtain bounds

via trapping regions despite knowing very little about the shape of T and U .

As we discuss below, numerically we see that c∗(ρ) appears to be monotonic in ρ, indicating that there exists

a critical value ρc > 0 such that c∗(ρ) = 2 if ρ < ρc and c∗(ρ) > 2 if ρ > ρc. We are unable to establish

this here and leave it as a conjecture for future investigation. Furthermore, the upper bound of 16/3 on ρ0

comes from Lemma 3.9 below where we give a lower bound on the minimum wave speed by ruling out the

existence of said heteroclinic orbits. This lemma not only provides the upper bound on ρ0, but shows that

c∗(ρ) & ρ1/3, partially contributing to the result Theorem 2.2(3). Interestingly, the numerical findings below

have led us to believe that the lower bound provided by Lemma 3.9 is asymptotically sharp in ρ. Attempts

to prove this analytically remain elusive and would require one to bring down the upper bound on c∗(ρ)

provided in Lemma 3.8. The reader is directed to our discussion of the numerical findings below for more

details on this.

The viscous case

When ν > 0, many of the results above can be recovered, albeit with more difficulty. In particular, we obtain

the existence of traveling waves for a half-infinite set of speeds, although possibly not a line. We show that,

for large ρ, all waves must have speed at least O(ρ1/3), though we are only able to construct waves for speeds

like O(ρ1/2). Finally, we establish a range of ν and ρ for which the set of admissible speeds is [2,∞). In

the small ν > 0 parameter regime, our results indicate a regular perturbation of the inviscid case, although

regularity of the wave speed has not been confirmed here. We present these results in the following theorem

whose proof is left to Section 4.

Theorem 2.3. For every ν > 0, there exists c∗(ν, ρ) and c∗(ν, ρ), positive and finite for all ρ > 0, such

that the system (1.2) has a unique nonnegative monotone traveling wave solution (T (x, t), u(x, t)) = (T (x−
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ct), U(x− ct)) satisfying the limits (1.3) if c ≥ c∗(ν, ρ) and only if c ≥ c∗(ν, ρ), with u0 = c+ ρ−
√
c2 + ρ2.

The functions c∗(ν, ρ), c∗(ν, ρ) satisfy the following:

(1) For all ν, ρ > 0 we have 2 ≤ c∗(ν, ρ) ≤ c∗(ν, ρ) <∞.

(2) For all ν > 0 we have c∗(ν, ρ)→ 2 as ρ→ 0+, and consequently c∗(ν, ρ)→ 2 as well.

(3) There exists ν∗ ≥ 2 so that for all ν ∈ (0, ν∗) there exists ρν ∈ (0, 8] such that c∗(ν, ρ) = c∗(ν, ρ) = 2 for

all ρ ∈ (0, ρν ].

(4) For all ν > 0 we have lim inf
ρ→∞

c∗(ν, ρ)

ρ1/3
≥ 1 and lim sup

ρ→∞

c∗(ν, ρ)

ρ1/2
≤ 2.

Despite the results for the inviscid and viscous cases being similar, we note that the analysis is fundamentally

different. That is, the spatial ODEs used to prove the existence of traveling waves have different dimensions

and therefore require different analytical treatments. For this reason our results in the viscous setting are

weaker than in the inviscid case. The most notable differences are the upper bound on c∗(ν, ρ) being O(ρ1/2)

and the fact that we can only establish c∗(ν, ρ) = c∗(ν, ρ) when ν and ρ are small, so that we do not know

if the set of admissible speeds make up a half-line. The former issue is technical and discussed in greater

detail in Section 4. We note that the latter issue is related to the fact that two initially ordered curves must

cross in 2D in order to “flip” their order, while in 3D they can “wind” around each other without crossing

(see Lemma 3.5 for this crossing argument in 2D).

Before discussing our numerical findings, we note the following subtlety in the viscous case. In addition to

the steady-state (1, c + ρ −
√
c2 + ρ2) which forms the backwards limit of traveling waves in Theorem 2.3,

there is a second steady state (1, c + ρ +
√
c2 + ρ2) which could also serve as an asymptotic rest state for

traveling wave solutions of (1.2). Due to the particular dynamics presented in Section 3, traveling waves

connecting this second steady state to (0, 0) can be proven to not exist in the inviscid setting (see Lemma 3.1);

however, it is not clear that these can be ruled out in the viscous case. Analytically, it is clear that, were

these to exist, they would not be monotonic and, as discussed in the introduction, non-monotone solutions

to reaction-diffusion systems with monotone dynamics have been shown to be unstable in similar systems

[14, 46]. In addition, the numerics (discussed below) seem to indicate the stability of the monotone wave

connecting (1, c + ρ −
√
c2 + ρ2) and (0, 0). For these reasons, we restrict our attention to these monotone

waves in this work. As an aside, it is worth noting that the results on the instability of non-monotone

traveling waves in [14, 46] do not directly translate onto our system since they only consider scalar equations

and/or linear advection, but could be used to inform a proper analytical undertaking into the wave stability.

In addition, it is possible that a bifurcation occurs at some critical ρ changing the stability of the monotone

wave, as happens in the Boussinesq model discussed above [8, 43–45]. We leave an investigation of the

stability of the waves constructed here and the issues mentioned above to a follow-up work.

Numerical findings

We now discuss our numerical findings that complement the analysis of system (1.2). To better understand

the behaviour of ρν as ν ≥ 0 is varied, we have simulated the full PDE (1.2) and determined the asymptotic

spreading speed of traveling wave solutions. To do this we have initialized both T and u as Heaviside

functions on a spatial domain of −20 ≤ x ≤ 100 to allow the wave to travel sufficiently far to the right to

observe the asymptotic speed. We set T = U = 0 at the right boundary, while setting T = 1 at the left and

using Neumann boundary conditions in u. The reason for the discrepancy of boundary conditions at the left

is that Theorem 2.1 dictates that the waves asymptotically connect to u0 as x− ct→ −∞, which can only

be determined upon knowing the exact spreading speed.

The resulting speeds are plotted in Figure 1 for ν = 0, 0.1, 1, 10, and Figures 2 and 3 provide profiles from the

6



0.5 1 1.5 2 2.5 3 3.5 4

2

2.1

2.2

2.3

2.4

2.5

2.6

Figure 1: Asymptotic spreading speeds, c, observed in numerical integrations of system (1.2) for various

ν ≥ 0. Notice the clear appearance of threshold ρv below which the minimals speed is 2 and the apparent

monotonicity of the spreading speed in both ν and ρ.

temporal evolution with ν = ρ = 1. We comment on the fact that we do not have a result that guarantees

that such initial conditions asymptotically spread at the minimum wave speed and so the plots in Figure 1

are only meant as heuristics.

There are a number of conjectures that we can make using these numerics. First and most importantly, from

Figures 2 and 3, it appears that the monotone waves connecting (1, c+ ρ−
√
c2 + ρ2) to (0, 0) are stable, at

least in the small ρ parameter regime. Second, we expect that ν∗ in Theorem 2.3 is at least 10 and that ρν

monotonically decreases in ν > 0. What is unknown is whether or not ρν limits to 0 at either a finite value

of ν > 0 or as ν →∞. We also observe that the bounds ρ0 ≤ 16
3 and ρν ≤ 8 appear to be overly conservative

since ρν ≤ ρ0 ≈ 2.5 in Figure 1. Finally, we expect that c∗(ρ), c∗(ν, ρ), and c∗(ν, ρ) are increasing in both ν

and ρ, although a proof of this is notably absent from the results stated above.

In the case when ρ > 0 is large, our analytical results dictate that the traveling waves propagate at speeds

that are at least proportional to ρ1/3. Therefore wave speeds become large when ρ is large and simulating

the spreading phenomenon numerically would require significantly larger domains to allow sufficient space

for the wave speed to asymptote. Instead of taking such a potentially computationally expensive task, we

turn to using the numerical bounding procedures from [5]. In the appendix, we provide detailed information

about how the wave speed bounding procedure is applied to (1.2), while here we only discuss the results.

In Table 1, we present these upper and lower bounds on the wave speed divided by ρ1/3 for various ν in an

effort to determine the asymptotic pre-factor and to provide justification that c∗(ν, ρ) = c∗(ν, ρ), at least

for large ρ. In all cases the bounds are within 1-2% of being sharp and the pre-factors have converged to

at least two significant digits. From these values we again see significant evidence for the conjecture that

the minimum wave speed is monotonically increasing in ν ≥ 0. As pointed out above, the lower bound

provided by Lemma 3.9 appears to be sharp since it gives an asymptotic pre-factor for the inviscid equation

of at least (3/2)1/3 ≈ 1.1447, which matches our upper and lower bounds to three significant digits. This

provides evidence for the conjecture that our lower bound in Lemma 3.9 is sharp, while the upper bound

of
√

3 ≈ 1.7321 from Lemma 3.8 could be improved. Unfortunately, our upper and lower bounds for the

viscous equation, presented in Lemmas 4.6 and 4.7, do not appear to be similarly sharp.
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Figure 2: Temporal evolution of system (1.2) at ν = ρ = 1 with Heaviside initial conditions. Profile snapshots

are provided at t = 0, 10, 20, 30, 40, 50 with the waves propagating to the right with asymptotic speed 2. With

these values we have u0 ≈ 0.76393, represented at the elongating middle plateau of the u(x, t) component. It

is important to note here that the steady state selected at the back of the emerging wave in u(x, t) corresponds

to u0 = c+ ρ−
√
c2 + ρ2 instead of c+ ρ+

√
c2 + ρ2.

Related work

Our results are placed into the large body of applied and mathematical studies into the connection between

front propagation and advection. Due to the size of this literature, we are only able to give an incomplete

sampling of what has been done and encourage the interested reader to look at references within those

cited works below. We mention the following threads of research: the effect of a large shear flow [16], a

large periodic flow [52–54], a fractal flow [29], a random spatially invariant flow [19, 38] and large random

shear flow [37]. We also point out related work in which the reaction-diffusion equation is replaced instead

by a Hamilton-Jacobi equation [48–50] (see, e.g., [30] for a discussion of the connection between this and

reaction-diffusion equations). It is also important to mention the large amount of formal work done on the

applied end into turbulent combustion [1, 6, 21, 32, 33, 51].

In the above works, the advection is prescribed and is independent of the reacting quantity. The closest

works to the current one are those in which the advection is coupled to the reacting quantity. The reactive

Boussinesq equation and the FKPP-Burgers of Constantin et al. are the closest to the setting investigated

here and were discussed in the introduction. Due to Theorems 2.2 and 2.3 above, it is natural to conjecture

that traveling waves in the reactive Boussinesq model have minimal speed that is O(ρ1/3) when ρ is large.

Aside from those, the FKPP-Keller-Segel equation [35] is the only other setting we are aware of that has

seen significant interest in recent time. In this equation, the reacting quantity is a population of bacteria

that tend to aggregate. This aggregate is modeled via a coupled advection term (chemotaxis). However, in

contrast to our work, it is known that the chemotactic term (the advection) neither slows down nor speeds

up front speeds [4, 35, 42]. Hence, that phenomena and those studied here are quite different. We mention,

however, various settings in which dispersive chemotaxis can cause faster propagation [15, 17].

3 Proof of Theorems 2.1 and 2.2

Throughout this section we consider (1.2) with ν = 0, referred to as the inviscid equation. Traveling wave

solutions of (1.2) take the form T (x, t) = T (ξ) and U(x, t) = U(ξ), where ξ := x − ct is the traveling wave
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Figure 3: Temporal evolution of system (1.2) at ν = ρ = 1. T is initialized with a Heaviside initial function

while u is initialized to be identically zero. Solutions are again plotted at t = 10, 20, 30, 40, 50.

variable and the parameter c ≥ 0 is the wave speed. With this ansatz T (ξ) and U(ξ) solve

−cdT

dξ
− d2T

dξ2
+

d

dξ
(UT ) = T (1− T ),

−cdU

dξ
+ U

dU

dξ
= ρT (1− T ),

(3.1)

where we recall that the second equation has no second derivative in ξ since ν = 0. Introducing the ξ-

dependent quantity

V := cT +
dT

dξ
− UT (3.2)

results in the first order system of ODE

Ṫ = −cT + UT + V,

U̇ =

(
ρ

U − c

)
T (1− T ),

V̇ = T (T − 1).

(3.3)

Here and in what follows we use a dot to denote differentiation with respect to the independent variable

ξ. We note that the existence of traveling wave solutions of (1.2) with ν = 0 is now equivalent to finding

heteroclinic trajectories between two equilibria of (3.3) such that T ≥ 0 using the wave speed c > 0 as a

parameter.

We can simplify our analysis of (3.3) by observing that it has a conserved quantity; that is, the equality

1

2
U2 − cU + ρV = C (3.4)

holds along trajectories of (3.3) for some fixed C ∈ R and all ξ ∈ R. Since we are interested in heteroclinic

solutions of (3.3) that satisfy (T (∞), U(∞)) = (0, 0), it follows from the above conserved quantity that we

may restrict ourselves to the curve

1

2
U2 − cU + ρV = 0 ⇐⇒ V =

U

2ρ
(2c− U) (3.5)
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ρ 103/2 102 105/2 103 107/2 104 109/2 105 1011/2 106

Upper Bound/ρ1/3 1.194 1.169 1.158 1.154 1.151 1.150 1.149 1.148 1.148 1.148

Lower Bound/ρ1/3 1.168 1.152 1.145 1.142 1.142 1.141 1.142 1.142 1.142 1.142

ρ 103/2 102 105/2 103 107/2 104 109/2 105 1011/2 106

Upper Bound/ρ1/3 1.212 1.190 1.180 1.176 1.173 1.172 1.171 1.171 1.171 1.170

Lower Bound/ρ1/3 1.159 1.140 1.133 1.129 1.126 1.124 1.124 1.123 1.123 1.123

ρ 103/2 102 105/2 103 107/2 104 109/2 105 1011/2 106

Upper Bound/ρ1/3 1.371 1.357 1.351 1.349 1.347 1.346 1.346 1.346 1.346 1.346

Lower Bound/ρ1/3 1.343 1.331 1.327 1.324 1.322 1.319 1.317 1.318 1.318 1.319

ρ 103/2 102 105/2 103 107/2 104 109/2 105 1011/2 106

Upper Bound/ρ1/3 1.861 1.862 1.864 1.865 1.866 1.866 1.866 1.866 1.867 1.867

Lower Bound/ρ1/3 1.861 1.862 1.864 1.865 1.865 1.865 1.864 1.864 1.862 1.862

Table 1: Bounds on the pre-factor of the wave speeds using the bounding methods of [5]. We present upper

and lower bounds on the minimum wave speed divided by ρ1/3 for system (1.2), with ν = 0, 0.1, 1, 10, from

top to bottom.

representing C = 0 in (3.4). This results in the planar dynamical system

Ṫ = −cT + UT +
U

2ρ
(2c− U),

U̇ =

(
ρ

U − c

)
T (1− T ),

(3.6)

which forms the basis for investigation in what follows.

This section is broken down into two subsections. The first, § 3.1, provides a quantitative analysis of (3.6)

and details the existence of the desired heteroclinic solutions all ρ > 0 and c > 0 taken sufficiently large.

We also prove the ordering (2.1) that must hold for traveling wave of the inviscid equation. We follow this

general analysis with § 3.2 where we begin by proving the existence of a minimal parameter value, c0(ρ), for

which traveling waves of (1.2) with ν = 0 exist if and only if c ≥ c0(ρ), for all ρ > 0. Upon proving the

existence of this minimal wave speed we turn to proving the properties of c0(ρ) detailed in Theorem 2.2 in

the small and large ρ > 0 parameter regimes.

3.1 Existence of traveling waves

In this subsection, we show that, when c is sufficiently large, the planar ODE (3.6) exhibits the desired

heteroclinic trajectories, thereby showing the existence of traveling wave solutions of (1.2) with ν = 0 for

large c. First, we notice that the only equilibrium solutions of (3.6) of the form (1, u0) are those corresponding

to

u0 = c+ ρ±
√
c2 + ρ2. (3.7)

Our first result shows that there is no heteroclinic connection between (1, c+ ρ+
√
c2 + ρ2) and (0, 0), the

proof of which is left to Section 3.1.2.
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Lemma 3.1. Suppose that c ≥ 1 and (T,U) is a solution of (3.6) such that (T (−∞), U(−∞)) = (1, c+ ρ+√
c2 + ρ2). Then, either T becomes negative or lim inf

ξ→∞
U(ξ) = c.

As a result of Lemma 3.1, we can restrict our attention to finding heteroclinic orbits connecting (1, u0) to

(0, 0), where u0 := c+ ρ−
√
c2 + ρ2. The following subsection is dedicated to this.

3.1.1 Heteroclinic orbits connecting (1, u0) to (0, 0)

Any such heteroclinic orbit must be on the unstable manifold of (1, u0) and, as seen in the following propo-

sition, Proposition 3.2, either enters

B = {(T,U) : 0 ≤ T ≤ 1, 0 ≤ U ≤ u0}, (3.8)

or the quadrant Q = {(T,U) : T > 1, U > u0}. A simple argument that follows as in the first case of the

proof of Lemma 3.1 shows that the component entering the quadrant Q cannot connect back to the origin as

ξ → ∞. Therefore, this provides an a priori justification that we may restrict our attention to heteroclinic

orbits that enter into the box B.

Proposition 3.2. For each c, ρ > 0 we have the following:

(1) The origin of (3.6) is locally asymptotically stable for all c > 0. In particular, when c ∈ (0, 2) the

linearization of (3.6) about the origin has a pair of complex-conjugate eigenvalues with negative real

part, and when c ≥ 2 all eigenvalues are real and negative.

(2) The unstable manifold of the equilibrium (1, u0) of (3.6) is one-dimensional and its tangent vector at

this equilibrium points to the interior of B.

(3) The unstable manifold of (1, u0) is necessarily monotone while it remains in B. That is, Ṫ < 0 and

U̇ < 0 everywhere along the trajectory in B.

(4) The unstable manifold of (1, u0) can only leave B by crossing U = 0.

Proof. The stability of the equilibria is a straightforward checking of the eigenvalues and eigenvectors of the

Jacobian matrix evaluated at each of the equilibria, and is therefore omitted. We now prove the monotonicity

of the unstable manifold of (1, u0). We begin by noting that the linearization about the equilibrium (1, u0)

implies that the segment of the unstable manifold that enters in the interior of B necessarily satisfies Ṫ < 0

initially and we see that any solution which belongs the interior of B has U̇ < 0 everywhere since U < c and

0 < T < 1. Let us then assume for contradiction that there exists some ξ0 ∈ R such that Ṫ (ξ0) = 0 and

Ṫ (ξ) < 0 for all ξ < ξ0. Differentiating the first equation in (3.6) with respect to ξ and evaluating at ξ = ξ0

gives

T̈ (ξ0) = −cṪ (ξ0) + Ṫ (ξ0)U(ξ0) + T (ξ0)U̇(ξ0)− U̇(ξ0)

ρ
(U(ξ0)− c).

By assumption we have Ṫ (ξ0) = 0 and 0 < T (ξ0) < 1, thus giving that U̇(ξ0) < 0. Putting this all together

gives that

T̈ (ξ0) = T (ξ0)U̇(ξ0)− U̇(ξ0)

ρ
(U(ξ0)− c) < 0.

Hence, T achieves a local maximum at ξ = ξ0, which is impossible since T is decreasing for all ξ < ξ0. This

proves the point (3) in the lemma.

Finally, is a straightforward checking that the unstable manifold of (1, u0) cannot leave B through the face

T = 0 since we have Ṫ ≥ 0 here. Since the unstable manifold of (1, u0) is decreasing in B, it follows that

11



it cannot leave through the face T = 1 or U = 1. Therefore, it can only leave through the face U = 0, as

claimed.

From Proposition 3.2(1) we can see that for 0 < c < 2 a heteroclinic orbit (if it exists) would necessarily

have negative T and U components. This of course violates the condition that we are seeking nonnegative

traveling waves and therefore we have the explicit lower bound c∗ ≥ 2 on the minimum wave speed, as

given in Theorem 2.2(1). Notice that Proposition 3.2(3) also gives the desired monotonicity results from

Theorem 2.1 whenever a heteroclinic solution exists.

Most important to what follows is that Proposition 3.2(4) details that the unstable manifold of (1, u0) can

only leave B by crossing U = 0. The following lemma shows that an appropriate trapping boundary can be

constructed to prevent U from crossing 0 for any fixed ρ > 0 and all sufficiently large c. This result therefore

shows that fast-moving (c � 1) traveling waves of (1.2) exist for each fixed ρ > 0 since any trajectory of

(3.6) that remains in B for all ξ ∈ R must converge to the origin.

Lemma 3.3. For each ρ > 0, there exists a c ≥ 2, which depends on ρ, such that for all c ≥ c system (3.6)

has a heteroclinic orbit from (1, u0) to (0, 0) which remains in B for all ξ ∈ R.

Proof. To prove this lemma we show that for each fixed ρ > 0 the curve

U = c−
√
c2 − cρT , T ∈ [0, 1] (3.9)

lies in B and bounds trajectories above it for all c � 1. We comment on the fact that if (3.9) does indeed

define a trapping boundary (for the unstable manifold of (1, u0)) that remains in B for all ξ ∈ R, it follows

from the monotonicity results in Proposition 3.2(3) that this unstable manifold must converge to the origin

as ξ →∞.

Hence, our first goal is to show that if c is taken large enough, the curve (3.9) is contained in B for all

T ∈ [0, 1] and that the unstable manifold of (1, u0) is initially above it. Using straightforward calculations,

we see that

c−
√
c2 − cρ < u0 ⇐⇒

√
c2 + ρ2 < ρ+

√
c2 − cρ⇐⇒ c2 + ρ2 < ρ2 + (c2 − cρ) + 2ρ

√
c2 − cρ

⇐⇒ c

2
<
√
c2 − cρ⇐⇒ c2

4
< c2 − cρ⇐⇒ ρ <

3c

4
.

Hence, as long as c > 4ρ/3, we have c−
√
c2 + ρ2 < u0 as desired. This implies that we find that the curve

(3.9) does indeed lie entirely in B for all T ∈ [0, 1] for all c sufficiently large, relative to ρ. We now show that

this curve is a trapping boundary.

For this curve to be a trapping boundary we require that on the curve (3.9) we have

d

dξ

(
U

2ρ
(2c− U)− c

2
T

)
≥ 0. (3.10)

Indeed, rearranging (3.9) we have
U

2ρ
(2c− U)− c

2
T = 0, (3.11)

and therefore (3.10) defines a condition for which trajectories of (3.6) that initially start above (3.9) in B

12



must remain above it for all ξ. Restricting T and U to satisfy (3.9) and evaluating gives

d

dξ

(
U

2ρ
(2c− U)− c

2
T

)
=

1

ρ
(c− U)U̇ − c

2
Ṫ

= T (T − 1)− c

2
(−cT + UT +

c

2
T )

= T

[
− c2

4
− c

2
(U − c) + (T − 1)

]
= T

[
− c2

4
+
c

2

√
c2 − cρT + (T − 1)

]
.

(3.12)

For the above expression to be nonnegative we require that

c2

4
− c

2

√
c2 − cρT + (1− T ) ≤ 0 (3.13)

for all T ∈ [0, 1]. Again taking c� 1, we have that (3.13) is bounded as follows for all T ∈ [0, 1]:

c2

4
− c

2

√
c2 − cρT + (1− T ) ≤ c2

4
− c

2

√
c2 − cρ+ 1

= −c
2

4
+
cρ

4
+ 1 +O(ρ2),

(3.14)

which for each fixed ρ > 0 is strictly negative for all sufficiently large c > 0. This therefore shows that

the curve (3.9) forms a trapping boundary when c is taken sufficiently large, and therefore trajectories in B
cannot cross this curve. From the previous discussion, this implies that for fixed ρ > 0 and sufficiently large

c we have that the unstable manifold of (1, u0) converges to the origin as ξ →∞, thus giving a heteroclinic

orbit. This completes the proof.

Having now demonstrated the existence of traveling waves, we provide the following auxiliary result which

establishes the ordering (2.1) and is useful for showing that the set of admissible traveling wave speeds makes

up a closed half-line in the following subsection.

Lemma 3.4. Fix any c, ρ > 0 and suppose that (T,U) solves (3.6) with (T (−∞), U(−∞)) = (1, u0). If

(T (ξ), U(ξ)) ∈ B for all ξ < ξ0 then ρT (ξ0) < U(ξ0).

Proof. By the arguments in Proposition 3.2, we have that Ṫ (ξ0) < 0. Hence, from (3.6), we have

0 < −Ṫ ≤ (c− U)T − U

ρ

(
c− U

2

)
≤ (c− U)T − U

ρ
(c− U). (3.15)

Using the fact that U ≤ u0 < c, we arrive at the ordering ρT (ξ0) < U(ξ0) by simply rearranging the above

and dividing by c− U .

3.1.2 Ruling out the other unstable equilibrium: proof of Lemma 3.1

Proof of Lemma 3.1. The proof when (T,U) is an equilibrium is trivial, and, hence, omitted. Using the

linearization principle, either Ṫ (ξ) is positive or negative for all sufficiently negative ξ.

Case one: Ṫ (ξ) is negative for sufficiently negative ξ. One can readily check that then U̇(ξ) is positive

whenever T ∈ (0, 1). If T becomes negative, the proof is finished. Hence, we assume that T ≥ 0 everywhere.

Next, we rule out that T ≥ 1 ever via an argument by contradiction. If this were to happen, it must be that

T has a local minimum at ξ0 such that T (ξ0) ∈ [0, 1). We consider first the case where T (ξ0) > 0. Then,

differentiating (3.6), we find

T̈ (ξ0) = −cṪ (ξ0) + Ṫ (ξ0)U(ξ0) + T (ξ0)U̇(ξ0)− U̇(ξ0)

ρ
(U(ξ0)− c). (3.16)
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Since ξ0 is the location of a minimum, we have that the left hand side is nonnegative and Ṫ (ξ0) = 0. It

follows that

0 ≤ T (ξ0)U̇(ξ0)− U̇(ξ0)

ρ
(U(ξ0)− c) = −U̇(ξ0) (U(ξ0)− c− T (ξ0)) . (3.17)

As T ∈ (0, 1) for all ξ < ξ0 and, thus, U̇(ξ) > 0 for all ξ ∈ (−∞, ξ0], it follows that U(ξ0) > U(−∞) > 2c ≥
c+ T (ξ0), since we have assumed that c ≥ 1. The combination of this and the positivity of U̇ , implies that

the right hand side in (3.17) is negative, which is a contradiction.

Next, we consider the case where T (ξ0) = 0. In this case, we have

0 = Ṫ (ξ0) =
U(ξ0)

2ρ
(2c− U(ξ0)) . (3.18)

Arguing as in the previous paragraph, we have U(ξ0) > 2c, which implies that the right hand side above is

negative. Hence, at ξ = ξ0, T transversely crosses from positive to negative, and therefore is negative for ξ

in an open neighbourhood to the right of ξ0. This is a contradiction since we assumed T ≥ 0 for all ξ ∈ R.

This concludes the proof for the first case.

Case two: Ṫ (ξ) is positive for sufficiently negative ξ.

We consider first the case that it is positive. Notice that, as a result, T > 1 on a set (−∞, ξ0), where we

allow for the possibility ξ0 =∞.

We first suppose that ξ0 =∞. In this case, define the auxiliary function Y = (U − c)2. We see that

Ẏ = 2(U − c)U̇ = 2ρT (1− T ),

and, hence, Y is decreasing everywhere. As Y ≥ 0, by definition, we find that U cannot have crossed c, as

this would have caused Y to increase. It follows that lim inf
ξ→∞

U(ξ) ≥ c.

Next, consider the case where ξ0 <∞. There are two subcases: either U crosses c or not on (−∞, ξ0).

Let us consider the first subcase; that is, suppose that there exists ξ1 < ξ0 such that U(ξ1) = c. Let Y be

as above and notice that, Ẏ (ξ1) < 0 and Y (ξ1) = 0, implying that Y becomes negative. This is clearly a

contradiction, which implies that this subcase may not occur.

We now consider the second subcase; that is, suppose that U(ξ0) ≥ c. Since T > 1 on (−∞, ξ0) and

T (ξ0) = 1, it follows that Ṫ (ξ0) ≤ 0. Using (3.6), we have

0 = Ṫ (ξ0) ≥ −cT + UT +
U

2ρ
(2c− U) = −c+ U +

U

2ρ
(2c− U) .

Recalling that T > 1 on (−∞, ξ1], we see that U is decreasing on (−∞, ξ0), which implies that U <

c+ ρ+
√
c2 + ρ2. Since U(ξ0) is between the roots of the polynomial (in U) in the right hand side above, it

follows that the right hand side above is positive. This is a contradiction, which finishes the proof.

3.2 The minimum wave speed

In this section we prove that for all ρ > 0 there exists a closed half-line of speeds with minimum wave speed

c∗(ρ) ≥ 2 of nonnegative traveling waves to (1.2) when ν = 0. In addition, we obtain estimates on the

behavior of c∗(ρ) near ρ = 0 and when ρ� 1.
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3.2.1 A half-line of admissible speeds

We begin by establishing that the admissible speeds of traveling waves make up a half-line [c∗(ρ),∞). The

main step in this direction is to establish the following lemma, which states that if a wave exists with a

particular speed c1, then a wave exists with any speed c > c1. In the previous section, we showed that

traveling waves exist for c sufficiently large and do not exist for c < 2. Hence, the lemma below shows that

the set of admissible speeds is has the form (c∗(ρ),∞) or [c∗(ρ),∞) for some c∗(ρ) ≥ 2.

Lemma 3.5. Fix any ρ, c > 0 and suppose that (T ,U) ∈ B is a heteroclinic trajectory of (3.6) from (1, u0)

to (0, 0) with c = c. Then, for any c > c, there exists a heteroclinic trajectory (T ,U) ∈ B with c = c.

Proof. Let (T ,U) denote the component of the unstable manifold of (1, u0) that enters into B. From our

work in the previous subsection, as long as (T ,U) remains in the box B, (T ,U) → (0, 0) as ξ → ∞ and

is, thus, a desired heteroclinic trajectory of (3.6). In addition, Proposition 3.2(4) details that (T ,U) can

only initially exit the box B through the face {(T, 0) : 0 ≤ T ≤ 1}. In summary, it is enough to show that

U > 0 for all ξ ∈ R. In order to establish this, we show that (T ,U) cannot cross the trajectory (T ,U), which

establishes the positivity of U via the positivity of U . We argue by contradiction, assuming that (T ,U) is

not always above (T ,U).

We begin by noting that

U(−∞) = c+ ρ−
√
c2 + ρ2 > c+ ρ−

√
c2 + ρ2 = U(−∞). (3.19)

The inequality here is due to the fact that c + ρ −
√
c2 + ρ2 is strictly increasing as a function of c > 0.

Hence, (U, T ) is initially above (T ,U) and so, in what follows we assume that there exists some ξ0 ∈ R such

that

(T (ξ0), U(ξ0)) = (T (ξ0), U(ξ0)) ∈ B (3.20)

and (T (ξ), U(ξ)) always lies above the curve {(T (ξ), U(ξ)) : ξ ∈ (−∞, ξ0)} for all ξ < ξ0. Some simple vector

calculus and the non-positivity of Ṫ , U̇ , Ṫ , and U̇ implies that

U̇(ξ0)

Ṫ (ξ0)
≥ U̇(ξ0)

Ṫ (ξ0)
. (3.21)

For the ease of notation, let us write

T = T (ξ0) = T (ξ0) and U = U(ξ0) = U(ξ0). (3.22)

Then, using (3.6), (3.21) becomes

ρT (1− T )

(c− U)
[
(c− U)T − U

2ρ (2c− U)
] ≥ ρT (1− T )

(c− U)
[
(c− U)T − U

2ρ (2c− U)
] . (3.23)

which is equivalent to

(c− U)

[
(c− U)T − U

2ρ
(2c− U)

]
≤ (c− U)

[
(c− U)T − U

2ρ
(2c− U)

]
. (3.24)

We now show that this cannot hold and so the point ξ0 cannot exist, completing the proof.

Let us define

F (c) = (c− U)

[
(c− U)T − U

2ρ
(2c− U)

]
. (3.25)
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Notice that proving F is strictly increasing implies that (3.24) cannot be true, and therefore the proof is

finished. To show this we differentiate F with respect to c to obtain

dF

dc
=

[
(c− U)T − U

2ρ
(2c− U)

]
+ (c− U)

[
T − U

ρ

]
. (3.26)

The second term above is positive since c > U for any c ≥ c and from Lemma 3.4 we have that T > U/ρ.

On the other hand, we have that the first term is positive when c = c since this is equal to −Ṫ (ξ0), which is

positive from Proposition 3.2(3); that is[
(c− U)T − U

2ρ
(2c− U)

]
= −Ṫ (ξ0) > 0. (3.27)

Thus, we conclude that F ′ > 0, which from our arguments above shows that (3.24) cannot be true, and

therefore completes the proof.

We now show that there is a traveling wave with speed c∗(ρ), which shows that the set of admissible speeds

is of the form [c∗(ρ),∞).

Corollary 3.6. For each ρ > 0 there exists 2 ≤ c∗(ρ) < ∞ such that (3.6) has a unique heteroclinic

trajectory from (1, u0) to (0, 0) if and only if c ≥ c∗(ρ).

Proof. As discussed above, the arguments in Lemma 3.5, Lemma 3.3, and Proposition 3.2(1) combine to give

that the set of admissible speeds is either (c∗(ρ),∞) or [c∗(ρ),∞) for some c∗(ρ) ≥ 2. Hence, it is enough to

show that there is a traveling wave with speed c∗(ρ) in order to conclude. But, if we assume that at c = c∗(ρ)

there is not a heteroclinic trajectory, Proposition 3.2 implies that the U -component unstable manifold of

(1, u0) must become negative at some point. A simple limiting argument using the heteroclinic trajectories

for any c > c∗(ρ) (for which the U -components are non-negative) gives that this cannot be possible, and

hence the result of the corollary follows.

3.2.2 The behavior of the minimal speed for small and large ρ

Having now characterized the set of admissible traveling wave speeds of (1.2) as a closed half-line, we now

seek to prove the bounds on the minimal speed c∗(ρ) for small and large ρ > 0. We begin with the following

result pertaining to small ρ > 0.

Lemma 3.7. If 0 < ρ ≤ 1 and c ≥ 2, then system (3.6) has a heteroclinic orbit from (1, u0) to (0, 0) which

remains in B for all ξ ∈ R. As a consequence, c∗(ρ) = 2 for all ρ ∈ (0, 1].

Proof. We argue as in the proof of Lemma 3.3 but now restrict ourselves to the small ρ > 0 parameter

regime. Again we consider the trapping curve (cf. (3.9))

U = 2−
√

4− 2ρT , T ∈ [0, 1] (3.28)

and show that for ρ ∈ (0, 1) this curve forms a trapping boundary with c = 2. In view of Proposition 3.2,

which implies that no traveling wave solutions exist for 0 < c < 2, and Lemma 3.5, this shows that c∗(ρ) = 2

for all ρ ∈ (0, 1).

From the arguments in Lemma 3.3, we see that, as long as ρ < 3/2 (recall that c = 2, here), the component

of the unstable manifold of (1, u0) that enters into B initially lies above the curve (3.28), that is

U(−∞) = u0 > 2−
√

4− 2ρ = 2−
√

4− 2ρT (−∞). (3.29)
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It therefore remains to show that the solution (T,U) of (3.6) cannot cross the curve (3.28) in B. Recall that

due to Proposition 3.2(4), this shows that (T,U) cannot exit the box B. Hence, from the monotonicity of

(T,U), in B, it follows that (T,U) is a heteroclinic connection between (1, u0) and (0, 0) with c = 2, which

would finish the proof. We now establish this.

First note that (3.28) is the lower solution of

U

2ρ
(4− U)− T = 0. (3.30)

Hence, if (T,U) were to cross the curve (3.28) at some point ξ0 ∈ R, it must be that U(ξ)
2ρ (4− U(ξ))− T (ξ)

goes from positive to negative at ξ0. This yields that, at ξ0,

d

dξ

(
U

2ρ
(4− U)− T

)
≤ 0. (3.31)

We show that this inequality cannot hold. Indeed, if ξ0 exists then

0 ≥ d

dξ

(
U

2ρ
(4− U)− T

)
=

1

ρ
(2− U) U̇ − Ṫ = −T (1− T ) + T (2− U)− U

2ρ
(4− U)

= T (T − U) .

(3.32)

In the last equality, we used that (U/2ρ)(4− U) = T at ξ0. By Lemma 3.4, we have that U ≤ ρT . Putting

this into (3.32), we find

d

dξ

(
U

2ρ
(4− U)− T

)
= T (T − U) ≥ T (T − ρT ) > 0,

since ρ < 1, which concludes the proof in this regime. The case ρ = 1 can be obtained through a simple

limiting argument that we omit. This finished the proof.

We now move to the large ρ > 0 parameter regime to show that c0(ρ) ∼ ρ1/3 as ρ → ∞. In what follows,

Lemma 3.8 proves that an upper bound on c0(ρ) in terms of ρ1/3 exists and Lemma 3.9 complements this

result with a lower bound that is of the form ρ1/3 as well. These results combined prove Theorem 2.2(3).

Lemma 3.8. Fix any σ >
√

3. There exists ρ0 > 0 such that for all ρ ≥ ρ0, system (3.6) has a heteroclinic

orbit from (1, u0) to (0, 0) which remains in B for all ξ ∈ R and c ≥ σρ1/3. As a consequence,

lim sup
ρ→∞

c∗(ρ)

ρ1/3
≤
√

3.

Proof. We proceed similarly as in the proof of Lemmas 3.3 and 3.7 by constructing an appropriate trapping

region. We now take c = σρ
1
3 with a some σ >

√
3 and consider the curve

U = σρ
1
3 − ρ 1

3

√
σ2 − 2T , T ∈ [0, 1], (3.33)

which can equivalently be written as the lower branch of the curve

U

2ρ
(2σρ

1
3 − U)− ρ− 1

3T = 0. (3.34)

Note the subtle difference in the curves (3.9) (see also (3.28)) and (3.33): crucially, the coefficient in front of

the T term changes. We show that when ρ� 1 the curve (3.33) forms a trapping boundary inside of B.
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We first confirm that this curve lies in B for all T ∈ [0, 1] by checking that σρ
1
3 − ρ 1

3

√
(σ2 − 2) < u0. We

have

σρ
1
3 − ρ 1

3

√
(σ2 − 2)− u0 = −ρ− ρ 1

3

√
(σ2 − 2) +

√
σ2ρ

2
3 + ρ2

= −ρ− ρ 1
3

√
(σ2 − 2) + ρ

√
1 + σ2ρ−

4
3

= −ρ− ρ 1
3

√
(σ2 − 2) + ρ+

σ2

2ρ
1
3

+O
(

1

ρ
5
3

)
= −ρ 1

3

√
(σ2 − 2) +

σ2

2ρ
1
3

+O
(

1

ρ
5
3

)
(3.35)

Since σ >
√

3 is fixed, it follows that for sufficiently large ρ > 0 we have that (3.35) is negative, verifying

that the curve (3.33) lies in B for all T ∈ [0, 1].

We now verify that (3.33) is a trapping boundary in B when ρ is taken large enough. Following the proof of

Lemma 3.3 (see (3.12)), it follows that the trapping boundary condition is equivalent to having

1

ρ
2
3

−
√

(σ2 − 2T ) + (1− T ) ≤ 0 (3.36)

for all T ∈ [0, 1]. Then, using that 0 ≤ T ≤ 1, we find

1

ρ
2
3

−
√

(σ2 − 2T ) + (1− T ) ≤ 1

ρ
2
3

−
√

(σ2 − 2) + 1. (3.37)

As σ >
√

3, the right hand side above is negative if ρ is sufficiently large. This concludes the proof.

Lemma 3.9. The system (3.6) does not have a heteroclinic orbit from (1, u0) to (0, 0) that remains in B for

all ξ ∈ R for any c < (3ρ/2)1/3. As a consequence,

c∗(ρ) ≥ min

{
2,

(
3

2

)1/3

ρ1/3

}
for all ρ ≥ 0.

Proof. We prove this by assuming that we have a heteroclinic orbit from (1, u0) to (0, 0) remaining in B and

obtain a lower bound for c. The lower bound of 2 follows from Proposition 3.2, so we need only obtain the

O(ρ1/3) lower bound claimed above. We begin with the fact that V ≥ 0 (see (3.5)) and 1 − T ≥ 0 since

(T,U) ∈ B, by assumption. Hence,

0 ≤
∫

(1− T )V dξ,

where the limits of integration are always −∞ and ∞, respectively. On the other hand, due to (3.2), we can

re-write this as

0 ≤
∫

(1− T )
[
Ṫ + (c− U)T

]
dξ ≤

∫
d

dξ

(
T − T 2

2

)
dξ +

∫
(c− U)T (1− T )dξ.

The first term on the right is readily computed to be −1/2. Rearranging the above yields

1

2
≤
∫

(c− U)T (1− T )dξ. (3.38)

We now aim to compute the right hand side of (3.38). Using (3.6), we find∫
(c− U)T (1− T )dξ = −1

ρ

∫
(c− U)2U̇dξ =

1

3ρ

∫
d

dξ
(c− U)3dξ =

1

3ρ

(
c3 − (c− u0)3

)
.

Hence, (3.38) becomes
3ρ

2
≤ c3 − (c− u0)3 ≤ c3.

Taking the cubed root of both sides yields the claim.
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4 Proof of Theorem 2.3

In this section, we consider the existence and further properties of traveling wave solutions to (1.2) with

ν > 0, the aforementioned viscous equation. As in the previous section, we consider ρ > 0 and substitute

the ansatz T (x, t) = T (x− ct) and u(x, t) = U(x− ct) into (1.2) to arrive at

−cdT

dξ
− d2T

dξ2
+

d

dξ
(UT ) = T (1− T ),

−cdU

dξ
− ν d2U

dξ2
+ U

dU

dξ
= ρT (1− T ),

(4.1)

where as in the previous section ξ := x − ct is the traveling wave independent variable. Let us define the

ξ-dependent quantities

V := cT +
dT

dξ
− UT,

W := cU + ν
dU

dξ
− 1

2
U2,

(4.2)

to transform (4.1) to the first order system of equations

Ṫ = −cT + UT + V,

U̇ =
1

ν

[
− cU +

1

2
U2 +W

]
,

V̇ = T (T − 1),

Ẇ = ρT (T − 1).

(4.3)

In system (4.3) we have that a traveling wave solution of (1.2) as described in Theorem 2.3 corresponds to

a heteroclinic trajectory connecting the equilibrium (1, u0, c− u0, ρ(c− u0)) to the origin.

Much like system (3.3), system (4.3) has a conserved quantity. Precisely, along trajectories of (4.3) we have

ρV −W = C, (4.4)

for a fixed constant C ∈ R and all ξ ∈ R. Since we are searching for solutions which asymptotically approach

the origin, we may restrict ourselves to C = 0 and reduce the dimension of the system (4.3) by taking

W = ρV . In this case (4.3) becomes

Ṫ = −cT + UT + V,

U̇ =
1

ν

[
− cU +

1

2
U2 + ρV

]
,

V̇ = T (T − 1),

(4.5)

which is the system that forms the basis for inspection in this section.

This section is broken down into three subsections. The first subsection, § 4.1, parallels § 3.1 by providing

the existence of traveling wave solutions of (1.2) that travel at fast speeds, i.e. c� 1. This is again achieved

by proving the existence of heteroclinic orbits to (4.5) for all ρ > 0 that connect (1, u0, c− u0) to the origin.

Our analysis notably lacks the existence of a minimum wave speed, and therefore we focus on the existence

of traveling wave solutions in the two distinct parameter regimes: ρ > 0 small and large. The parameter

regime of small ρ > 0 is handled in § 4.2 where we prove the points (2) and (3) of Theorem 2.3. In § 4.3

we turn to the large ρ > 0 parameter regime to prove Theorem 2.3(4). In total, the results in the following

subsections prove the entirety of Theorem 2.3 as presented in Section 2.

19



4.1 Existence of traveling waves

The work of this section parallels the work of Subsection 3.1 applied to system (4.5). In particular, we show

that for any ν, ρ > 0 and sufficiently large c > 0, system (4.5) has a heteroclinic trajectory corresponding to

a traveling wave solution of (1.2). We are interested in heteroclinic orbits that belong to the cube C, given

by

C = {(T,U, V ) : 0 ≤ T ≤ 1, 0 ≤ U ≤ u0, 0 ≤ V ≤ c− u0}.

We present the following lemma outlining the basic properties of the equilibria that make up the desired

heteroclinic trajectories and the dynamics in the cube C.

Proposition 4.1. For each c, ν, ρ > 0 we have the following:

(1) The origin of (4.5) is locally asymptotically stable for all c > 0. In particular, when c ∈ (0, 2) the

linearization of (4.5) about the origin has a single real and negative eigenvalue along with a pair of

complex-conjugate eigenvalues with negative real part, and when c ≥ 2 all eigenvalues are real and

negative.

(2) The equilibrium (1, u0, c − u0) of (4.5) is hyperbolic with a one-dimensional unstable manifold whose

tangent vector at this equilibrium points to the interior of C.

(3) The unstable manifold of (1, u0, c − u0) is necessarily monotone while it remains in C. That is, Ṫ < 0,

U̇ < 0, and V̇ < 0 everywhere along the trajectory in C.

(4) The unstable manifold of (1, u0, c− u0) can only leave C by crossing V = 0.

(5) If the unstable manifold of (1, u0, c− u0) leaves C by crossing V = 0 and connects to the origin, it must

be that T (ξ) < 0 for some ξ.

Proof. Point (1) is proved by simply inspecting the eigenvalues of the matrix resulting from linearizing (4.5)

about the origin and is therefore omitted. Similarly, points (3) and (4) follow in a nearly identical manner

to the analogous points in Proposition 3.2. Therefore, we only prove points (2) and (5) here, starting with

the former.

Linearizing (4.5) about the equilibrium point (1, u0, c− u0) results in the matrixu0 − c 1 1

0 u0−c
ν

ρ
ν

1 0 0

 (4.6)

for which the eigenvalues, λ ∈ C, are roots of the characteristic equation:

g(λ) := λ3 +

(
(c− u0)(1 + ν)

ν

)
λ2 +

(
[(c− u0)2 − ν]

ν

)
λ+

u0 − c− ρ
ν

. (4.7)

We first note that g(0) < 0 by definition of u0, and since g is a cubic polynomial in λ with positive leading

coefficient, it follows from the intermediate value theorem that there exists a real positive root of g for all

c, ν, ρ > 0. We now show that the other roots of g have negative real part. Once we know that g has only

one root with positive real part, the fact that the tangent vector of this one-dimensional unstable manifold

points into C follows from a local analysis of the flow along the edges of C near the equilibrium (1, u0, c−u0).

We begin by showing that the roots of g never cross the imaginary axis through variations of the parameters

c, ν, ρ > 0. Note that this implies that the equilibrium (1, u0, c− u0) is hyperbolic for all relevant parameter
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values since none of the eigenvalues of (4.6) can lie on the imaginary axis. Substituting λ = iω for some

ω ∈ R, into g(λ) = 0 and separating out into real and imaginary parts gives that ω solves

−ω3 +

(
[(c− u0)2 − ν]

ν

)
ω = 0(

(u0 − c)(1 + ν)

ν

)
ω2 +

(
u0 − c− ρ

ν

)
= 0.

(4.8)

But, since u0 < c, it follows that no real value of ω can be obtained to solve the second equation for any

c, ν, ρ > 0, thus proving the claim.

Now that we know that the number of roots of g with negative and positive real parts do not change by

varying parameters, we consider the parameter region ν � 1 to show that there are two roots with negative

real part. Setting ε := ν−1 and considering 0 < ε� 1 gives that g can be written

g(λ) = λ3 + (c− u0)λ2 − λ+ ε[(c− u0)λ2 + (u0 − c)2λ+ u0 − c− ρ].

For 0 < ε� 1 the function g becomes a regular perturbations of the cubic polynomial λ3 + (c− u0)λ2 − λ,

and therefore the roots of g, denoted λ1, λ2, and λ3, are given by

λ1 =
1

2
(u0 − c−

√
(u0 − c)2 + 4) +O(ε),

λ2 = 0 +O(ε),

λ3 =
1

2
(u0 − c+

√
(u0 − c)2 + 4) +O(ε).

Since u0 < c we have that λ1 < 0 < λ3 for all sufficiently small ε > 0. It remains to show that λ2 < 0 for

sufficiently small ε > 0. Let us introduce λ2 = ελ̃2 so that

0 = g(λ2) = g(ελ̃2) = ε(−λ̃2 + u0 − c− ρ) +O(ε2).

Hence, λ2 = (u0− c− ρ)ε+O(ε2) for all sufficiently small ε > 0. Since u0− c− ρ < 0, it follows that λ2 < 0

when 0 < ε � 1, and from the above arguments we have that g always has two roots with negative real

parts and one positive real root. The proves Point (2).

In order to establish (5), we argue by contradiction. We assume that T ≥ 0 on R and that V becomes

negative for the first time on some interval (ξ
V
, ξV ). Since V is negative somewhere and V (∞) = 0, it must

increase somewhere on (ξ
V
, ξV ). Using (4.5) and our contradictory assumption, it follows that T must be

larger than 1 somewhere on (ξ
V
, ξV ). By Point (3), T and U are decreasing on (−∞, ξ

V
]. Further, by (4.5),

U is either negative or decreasing as long as V < 0. It follows that U < c on (ξ
V
, ξV ), which, by (4.5) again,

implies that T is decreasing on (ξ
V
, ξV ). Thus, T < 1 on (−∞, ξV ), which is a contradiction.

Much like the inviscid equation, we see from Proposition 4.1 that a heteroclinic orbit (if it exists) from

(1, u0, c− u0) to the origin necessarily1 has T and/or U components that are negative when c ∈ (0, 2), thus

giving a lower bound on the existence of nonnegative heteroclinic orbits, i.e. c∗(ν, ρ) ≥ 2 for all ν, ρ > 0 in

the language of Theorem 2.3.

Despite the system (4.5) having one more dimension than that of (3.6), from Proposition 4.1(4) the analysis

is similar since we need only protect the component V from becoming negative to ensure that a desired

heteroclinic orbit exists. We show this now.

1Actually, there is a small subtlety here. It is a priori possible that a heteroclinic connection approaches the origin along the

stable manifold associated to the real eigenvalue of the linearized equation, which allows it to avoid the rotation induced by the

complex eigenvalues when c < 2. This can be ruled out by computing the associated eigenvector, which is (0, 1, 0). It is, thus,

easy to see that this manifold is completely contained in the set {(0, U, 0) : U ∈ R} and, hence, cannot connect to (1, u0, c−u0).
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Lemma 4.2. Suppose that (T,U, V ) is a solution of (4.5) with (T (−∞), U(−∞), V (−∞)) = (1, u0, c− u0).

Then (T (∞), U(∞), V (∞)) = (0, 0, 0) and T ≥ 0 if and only if (T,U, V ) leaves (1, u0, c − u0) into C and

V ≥ 0.

Proof. We prove the forward direction first. Suppose that (T (∞), U(∞), V (∞)) = (0, 0, 0) and T ≥ 0. First

we suppose that (T,U, V ) leaves (1, u0, c−u0) out of C. It follows that T , U , and V are increasing initially by

Proposition 4.1.(2). In order to connect to the origin, it must be that either T or U must have a maximum.

Suppose that T has a maximum before U . Then, at the maximum, T > 1, T̈ ≤ 0, Ṫ = 0 and U̇ ≥ 0.

Plugging this into (4.1), we find

0 ≤ −cṪ − T̈ + U̇T + UṪ = T (1− T ) < 0,

which is a contradiction. A similar argument shows that the maximum of U cannot occur before T . We

conclude that (T,U, V ) cannot leave (1, u0, c− u0) out of C.

Next, we suppose that V < 0 somewhere. By Proposition 4.1.(5), it follows that T becomes negative, which

is a contradiction of our assumption T ≥ 0. We conclude that V ≥ 0 everywhere.

We now prove the backward direction. Suppose that (T,U, V ) leaves (1, u0, c−u0) into C and V ≥ 0 always.

By Proposition 4.1.(4), since V ≥ 0, it follows that (T,U, V ) remains in C. Thus, T ≥ 0. Further, as C is

compact and T , U , and V are decreasing, we must have that (T (∞), U(∞), V (∞)) = (0, 0, 0). This concludes

the proof.

We are now able to leverage the above characterization of traveling waves, Lemma 4.2, in order to establish

the existence of traveling waves at sufficiently large speeds for any ρ and ν.

Lemma 4.3. For each ν, ρ > 0, there exists a finite c∗(ν, ρ) ≥ 2, which depends on ρ and ν, such that for

all c ≥ c∗(ν, ρ) system (4.5) has a heteroclinic orbit from (1, u0, c−u0) to (0, 0, 0) which remains in C for all

ξ ∈ R.

Proof. This proof proceeds in a nearly identical manner to that of Lemma 3.3 by showing that, for c � 1,

we can form a region that prevents V from becoming negative. Begin by fixing ν, ρ > 0 and considering the

region

R1 = {(T,U, V ) ∈ C :
c

2
T ≤ V ≤ c− u0, T ∈ [0, 1]}. (4.9)

We show that this region contains the component of the unstable manifold of (1, u0, c − u0) that enters in

to C for all ξ ∈ R. We first discuss how confining this unstable manifold to the region R1 proves it must

converge to the origin as ξ →∞. Note that Proposition 4.1 gives that the only way by which this unstable

manifold can leave C is by crossing V = 0. If the unstable manifold lies in R1 up to a point where we get

V = 0, we notice that by definition we must also have T = 0. Notice that T = V = 0 is an invariant manifold

of (4.5), and so the trajectory remains at T = V = 0 indefinitely. On this invariant manifold in C, we have

that 0 ≤ U < c, and so U is decreasing towards U = 0 as ξ →∞, thus giving that the trajectory converges

to the origin as ξ → ∞. Hence, we see that if V = 0 we must converge to the origin, while if V > 0 for all

ξ ∈ R, the discussion prior to this lemma again proves that we converge to the origin. Thus, showing that

if the component of the unstable manifold of (1, u0, c− u0) that enters in to C remains in R1 for all ξ ∈ R,

then it is guaranteed that it converges to the origin, giving the desired heteroclinic orbit.

We next check that the equilibrium belongs to R1 for all sufficiently large c > 0. This amounts to checking

that c/2 < c− u0. Then, for c� 1 we have

c

2
− (c− u0) =

c

2
+ ρ−

√
c2 + ρ2

= − c
2

+ ρ+O
(
ρ2

c

)
,

(4.10)
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which is strictly negative for any ρ > 0 and all c taken sufficiently large, depending on the value of ρ. Hence,

we find that the curve (4.9) does indeed lie entirely in the cube C for all T ∈ [0, 1] for all c sufficiently large.

We now show that R1 traps the unstable manifold inside of it. Let us assume that at some ξ0 ∈ R this

unstable manifold hits the boundary of R1. From Proposition 4.1 this must occur at the lower boundary

V = c
2T . Then, it must be the case that at ξ = ξ0 we have

d

dξ

(
V − c

2
T

)
≤ 0 (4.11)

when V = c
2T inside of C. From the arguments above we may assume that T (ξ0) > 0, and using system

(4.5) at ξ = ξ0 we have that

0 ≥ d

dξ

(
V − c

2
T

)
= T (T − 1)− c

2

(
− cT + UT +

c

2
T

)
= −T

(
c2

4
+
c

2
(U − c) + 1− T

)
≥ T

(
− c2

4
+
c

2
(
√
ρ2 + c2 − ρ)− 1

) (4.12)

where we have used the fact that 0 ≤ U ≤ u0 and 0 ≤ T ≤ 1. From here we may proceed in a similar manner

to the arguments of Lemma 3.3. Indeed, when ρ/c� 1, we have
√
c2 + ρ2 = c+O(ρ2/c), and, hence, (4.12)

becomes

0 ≥ d

dξ

(
V − c

2
T

)
≥ T

(
c2

4
− cρ

2
+O

(
ρ2
)
− 1

)
. (4.13)

Hence, d
dξ

(
V − c

2T

)
> 0 for sufficiently large c. This is clearly a contradiction, thus showing the unstable

manifold cannot hit the boundary of R1. Hence, the region R1 contains the component of the unstable

manifold of (1, u0, c − u0) that enters in to C for all sufficiently large c > 0. This therefore completes the

proof.

4.2 Small ρ parameter regime

In this section we present results on the speeds for which traveling waves of the PDE (1.2) in the viscous

parameter regime exhibits nonnegative monotone traveling waves when ρ > 0 is small. First, examining the

proof of Lemma 4.3 (see, in particular, (4.10) and (4.13)), it is clear that c∗(ν, ρ)→ 2 as ρ→ 0. We collect

this in the following corollary.

Corollary 4.4. As ρ→ 0, c∗(ν, ρ)→ 2.

Having establishing this fact, which has no restriction on the range of ν, we specialize to the small ν regime

in order to establish the threshold result on ρ; that is, we show that, if ρ is sufficiently small, the minimal

speed is 2.

Lemma 4.5. There exists ν∗ ≥ 2 so that for all ν ∈ (0, ν∗) there exists ρν > 0 such that for all c ≥ 2

system (3.6) has a heteroclinic orbit from (1, u0) to (0, 0) which remains in B for all ξ ∈ R. As a consequence,

c∗(ν, ρ) = c∗(ν, ρ) = 2 for all (ν, ρ) ∈ (0, ν∗)× (0, ρν).

Proof. We proceed via the construction of a trapping region. The one in Lemma 4.3 is not sufficiently precise

in the ρ� 1 regime (see (4.13)) and, hence, we aim to show that the region

R2 = {(T,U, V ) ∈ C : 0 ≤ νU ≤ √ρT, c
2
T ≤ V ≤ c− u0, T ∈ [0, 1]} (4.14)
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contains the unstable manifold of (1, u0, c− u0) in C for all ξ ∈ R, for sufficiently small ρ > 0 and all c ≥ 2.

Throughout we take ν ∈ (0, 2) to ensure that ν is bounded. We note that this region is similar to the region

used to prove Lemma 4.4 but also has an upper bound on U .

We first show that this region is well-defined and that the equilibrium (1, u0, c − u0) belongs to R2, thus

giving that the component of the unstable manifold of (1, u0, c− u0) that enters in to C initially belongs to

R2. As in the previous proofs, we need only check at T = 1. The proof that c
2 < c− u0 for sufficiently small

ρ > 0 and all c ≥ 2 follows as in the proof of Lemma 4.3, and so the bounds on V are well-defined. We

therefore need only check that
√
ρ > νu0 to show that (1, u0, c− u0) ∈ R2 when ρ > 0 is small, uniformly in

c ≥ 2. Then,

√
ρ− νu0 =

√
ρ− ν(c+ ρ−

√
c2 + ρ2) =

√
ρ− νρ+O

(
ρ2

c

)
, (4.15)

so that for sufficiently small ρ > 0 we have that
√
ρ > νu0, uniformly in c ≥ 2 and ν ∈ (0, 2). Hence,

(1, u0, c− u0) ∈ R2 in the desired parameter region.

Let us now assume that there is some first point ξ0 ∈ R at which the unstable manifold of (1, u0, c − u0)

intersects a boundary ofR2 in C. From Proposition 4.1, we have that all components of this unstable manifold

are monotonically decreasing, and so this collision must take place at a lower boundary in (T,U, V ). First,

if U = 0, Proposition 4.1(4) implies that V = 0 as well. But then, from the definition of R2, it follows that

(T,U, V ) = (0, 0, 0), and so ξ0 = ∞, which would yield that the unstable manifold has converged to the

origin as desired. Hence, we may assume that that either (i) νU =
√
ρT or (ii) c

2T = V at ξ = ξ0 <∞. We

show that neither of these cases are possible.

Let us begin by assuming that at ξ0 we have νU =
√
ρT . Since this is a point of first collision, V ≥ c

2T and

d

dξ

[
√
ρT − νU

]
≤ 0. (4.16)

Then, assuming that νU =
√
ρT and ρ > 0 is held sufficiently small, from the vector field (4.5) we have

0 ≥ d

dξ

[
√
ρT − νU

]
=
√
ρ(U − c)T −

(
1

2
U2 − cU

)
+
√
ρ(1−√ρ)V

= ν(U − c)U −
(

1

2
U2 − cU

)
+
√
ρ(1−√ρ)V

=

(
c

2
−
(
ν − 1

2

)
(c− U)

)
U +

√
ρ(1−√ρ)V

≥
(
c

2
−
(
ν − 1

2

)
(c− U) +

c

2
(1−√ρ)ν

)
U,

(4.17)

where we have used the fact that
√
ρV ≥ c

√
ρ

2 T = cν
2 U in the last inequality. In the case that ν ∈ (0, 1

2 ), we

use the fact that 0 < U < u0 ≤ c to see that

0 ≥ d

dξ

[
√
ρT − νU

]
> 0, (4.18)

a contradiction. Therefore, we are left with the case that ν ∈ [ 1
2 , 2). Here we again use the fact that U < c

to get

0 ≥ d

dξ

[
√
ρT − νU

]
≥
(
c

2
− (ν − 1

2
)c+

c

2
(1−√ρ)ν

)
U =

(
c− ν

(√
ρ+ c

2

))
U. (4.19)

The term on the right is positive if and only if ν < 2c/(
√
ρ + c). Hence, if ν < 2, there exists ρ sufficiently

small depending only on ν so that the term on the right in (4.19) is positive. This is a contradiction, showing

that case (i) is not possible.
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Turning now to case (ii), we assume that c
2T = V while 0 < νU ≤ √ρT at ξ0. Proceeding as in Lemma 4.4,

it follows that

0 ≥ d

dξ

(
V − c

2
T

)
= −T

(
c2

4
+
c

2
(U − c) + 1− T

)
≥ −T (U − T ) ≥

(
1−
√
ρ

ν

)
T 2,

(4.20)

since we have c ≥ 2 and νU ≤ √ρT . Taking ρ > 0 sufficiently small then implies that

d

dξ

(
V − c

2
T

)
> 0, (4.21)

a contradiction. Therefore, case (ii) is also impossible, showing that the unstable manifold of (1, u0, c− u0)

cannot intersect the boundaries of R2 in C. This concludes the proof.

4.3 Large ρ parameter regime

In this subsection we consider (4.5), and subsequently (1.2) with ν > 0, in the large ρ > 0 parameter regime.

In particular, the first presented lemma (Lemma 4.6) shows that for each ν > 0, monotone traveling waves

of (1.2) exist at all speeds c & ρ1/2. The second lemma of this section, Lemma 4.7, shows that monotone

traveling waves of (1.2) cannot exist at speeds c . ρ1/3. In the context of Theorem 2.3 these lemmas imply

that c∗(ν, ρ) = O(ρ1/2) and c∗(ν, ρ) = O(ρ1/3) as ρ→∞.

We briefly comment on the obstruction to obtaining a bound of the order ρ1/3 on c∗(ν, ρ), as we did in the

inviscid case. In both cases, the proof proceeds via the construction of a trapping region. The key step in

establishing that a set is a trapping region is to analyze the phase plane on the boundary of the trapping

region. In the inviscid case, because the system is two-dimensional, any curve defining a boundary yields an

explicit relationship between T and U . This corresponds to establishing an inequality with only one degree

of freedom. In the viscous case, which is three-dimensional, there are two degrees of freedom, making the

argument significantly more complicated.

Lemma 4.6. Fix σ1 > 2. There exist ρ1 > 0 such that for all ρ ≥ ρ1, system (4.5) has a heteroclinic orbit

from (1, u0, c− u0) to (0, 0, 0) that remains in C for all ξ ∈ R and c ≥ σ1ρ
1/2. As a consequence,

lim sup
ρ→∞

c∗(ν, ρ)

ρ1/2
≤ 2.

Proof. We proceed as in the proof of Lemma 4.3 by constructing an appropriate trapping region that contains

the component of the unstable manifold of (1, u0, c− u0) that enters in to C for all ξ ∈ R, thus showing that

it converges to the origin.

Fix σ > 2 and let c = σρ1/2. Define the region

R3 =

{
(T,U, V ) ∈ C :

σ2

4
T ≤ V ≤ c− u0

}
. (4.22)

Throughout we will fix (T,U, V ) to be the unstable manifold of (1, u0, c − u0) that enters in to C. We first

show that (T,U, V ) ∈ R at ξ = −∞. To this end, we need only check that (σ2/4)T (−∞) ≤ V (−∞); that is

σ2/4 < c− u0. Notice that

c− u0 =
√
c2 + ρ2 − ρ =

c2

2ρ
+O(c4/ρ3) =

σ2

2
+O(ρ−1). (4.23)

This last term is larger than σ2/4 for ρ sufficiently large, confirming that (T,U, V ) ∈ R3 at ξ = −∞.
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Next, we check that (T,U, V ) cannot exit R3. Arguing by contradiction, we may take ξ0 to be the first time

that (T,U, V ) reaches a boundary of R3. As in Lemma 4.5, we have that T,U, V > 0 at ξ = ξ0.

As V is clearly decreasing, see (4.5), it must be that V (ξ0) = (σ2/4)T (ξ0). Since V (ξ) > (σ2/4)T (ξ) for all

ξ < ξ0, we conclude that, at ξ0,

0 ≥ V̇ − σ2

4
Ṫ . (4.24)

Using (4.5) and recalling that V = (σ2/4)T , we find

0 ≥ −T (1− T )− σ2

4
(−(c− U)T + V ) = T

(
T − 1−

(
σ2

4

)2

+
σ2

4
(c− U)

)
. (4.25)

Since U is decreasing by Proposition 4.1, it follows that

c− U ≥ c− u0 =
σ2

2
+O(ρ−1). (4.26)

Hence, we obtain

0 ≥ T
(
T − 1− σ4

16
+
σ2

4

σ2

2
+O(ρ−1)

)
= T

(
T − 1 +

σ4

16
+O(ρ−1)

)
. (4.27)

Recalling that σ > 2 and using the fact that T ∈ [0, 1], it follows that the rightmost expression above is

strictly positive for sufficiently large ρ > 0. This is a contradiction, thus showing that R3 forms a trapping

region for (4.5), as desired.

We now obtain a lower bound on c∗(ν, ρ) that exhibits the ρ1/3 scaling, thus completing the proof of Theo-

rem 2.3.

Lemma 4.7. The system (4.5) does not have a heteroclinic orbit from (1, u0, c−u0) to (0, 0, 0) that remains

in C for all ξ ∈ R for any c < ρ1/3. As a consequence,

c∗(ν, ρ) ≥ max{2, ρ1/3}.

Proof. The proof begins similarly as Lemma 4.6 and uses the same convention that all integrals are over

ξ ∈ (−∞,∞). Indeed, as in Lemma 4.6, it is possible to establish

1

2
≤
∫

(c− U)T (1− T )dξ (4.28)

in exactly the same manner. Unfortunately, the exact computations for the right hand side above that were

used in Lemma 4.6 do not work here as the form of U̇ is significantly more complicated.

Taking ξ → −∞ in the equation for T in (4.5), we find∫
T (1− T )dξ = c− u0.

Combining this and (4.28) and recalling that c− U < c, yields

1

2c
≤ 1

c

∫
(c− U)T (1− T )dξ ≤

∫
T (1− T )dξ = c− u0. (4.29)

If c ≥ ρ1/3, we are finished. Hence, we may assume that c < ρ1/3, in which case we can use a Taylor

expansion to find

c− u0 =
√
c2 + ρ2 − ρ =

c2

2ρ
+O

(
ρ−5/3

)
.
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Plugging this into (4.29) yields
1

2c
≤ c2

2ρ
+O

(
ρ−5/3

)
.

Rearranging this and recalling that c < ρ1/3, we find

ρ+O
(
ρ−1/3

)
≤ c3,

which concludes the proof.

5 Discussion

In this work we have proven the existence of monotone traveling wave solutions to an FKPP-Burgers equation.

We saw that the analysis of the system breaks into two distinct parts, termed the inviscid and the viscous

cases, which follow from the analogous nomenclature in the Burgers equation. We began by proving that in

the case of the inviscid equation there exists a minimum wave speed so that traveling wave solutions exist

for all speeds above the minimum speed and none below. We further showed that these waves are monotone

and satisfy the ordering (2.1). It was shown that there exists a critical value of ρ > 0 for which below this

value the minimum wave speed is exactly 2, as in the FKPP equation (i.e. u ≡ 0), while for large values of

ρ > 0 the speed is strictly larger than 2 and behaves like ρ1/3 as ρ → ∞. This transition from the linearly

determined wave speed 2 to one that is strictly larger than 2 represents the wave moving from being ‘pulled’

when ρ is small to ‘pushed’ (by the advection U) when ρ is large.

Our work in the viscous case showed that many the properties of traveling wave solutions to the inviscid

equation carry over. Notably lacking in our proofs is the existence of a minimum wave speed for all relevant

parameter values, but it was shown that when ν, ρ > 0 are taken small a minimum wave speed exists and is

exactly 2. This again shows that at least when ν > 0 is small, there is a transition from pushed to pulled

waves as ρ is increased. Despite not having a minimum wave speed, we were able to provide bounds for all

ν, ρ > 0 for which monotone traveling waves exist at all speeds above one value and no such waves exist below

another. Importantly, these bounds scale at least like ρ1/3 and at most like ρ1/2 as ρ → ∞ for all ν > 0,

thus showing the ‘pushed’ phenomenon as in the inviscid case. Our theoretical analysis in both the inviscid

and viscous cases was complemented with numerical simulations in the small ρ parameter regime and novel

computational bounding techniques helped us to determine the pre-factor of the asymptotic expansion in

the large ρ regime. Our numerical findings display significant agreement with our analysis and can be used

to motivate further investigations on the FKPP-Burgers system.

There are a number of open questions that can be addressed in a follow-up investigation. First and foremost

is proving the existence of a minimum wave speed for the viscous case. Although c∗(ν, ρ) and c∗(ν, ρ) coincide

when ν > 0 is sufficiently small, it is important to determine if they are indeed equal for all ν, ρ > 0. Beyond

this, one would conjecture that the minimum wave speeds (if they exist) are continuous in all parameters,

with the numerical evidence presented in Section 2 indicating that they are monotone in ν, ρ > 0 as well.

Significantly more difficult would be to determine the form of the branching behaviour of the minimum

wave speed at ρν > 0 where the waves go from pulled to pushed. In addition, an interesting question is to

determine the exact form of

lim
ρ→∞

c∗(ρ)

ρ1/3
. (5.1)

We note that it is currently unknown if such a limit exists, however, it is expected that it does. When

ν = 0, we expect (3/2)1/3 while the behavior is unknown when ν > 0 (recall that we cannot yet prove that

c∗(ν, ρ) = O(ρ1/3) when ν > 0). Finally, we saw that the proofs of our main results relied heavily on the
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specific form of the nonlinearities on the right-hand-side of (1.2), and therefore it becomes interesting to see

what, if any, effect introducing different nonlinearities produces.

A Bounding the Minimum Wave Speeds Numerically

Here we briefly discuss the numerical bounding algorithm that is used to produce the values in Table 1.

In complete generality the method relies on obtaining auxiliary functions defined by convex differential

inequalities whose existence provides trapping boundaries defined by the level sets of the auxiliary function.

To be explicit, suppose we are given an ODE

ẏ = F (y) (A.1)

with F : Rn → Rn and some subset of phase-space Ω ⊆ Rn. We aim to find a continuously differentiable

function H : Ω→ R whose zero level set forms a trapping boundary of (A.1) in Ω. Following [4], one way to

obtain such a function is to determine the existence of a constant λ > 0 such that

λF (y) · ∇H(y) ≤ −H(y), ∀y ∈ Ω. (A.2)

Indeed, the term F (y) · ∇H(y) is exactly the derivative of H along trajectories of (A.1), and so we see

that the region {y ∈ Ω : H(y) ≤ 0} is forward invariant with respect to the dynamics of (A.1). Crucially,

searching for H over some convex class of functions gives that the set of functions satisfying (A.2) is convex

as well.

In the above analysis we have used the fact that traveling waves of (1.2) correspond to heteroclinic orbits of

a related spatial ODE. To use auxiliary functions to either confirm existence or non-existence of heteroclinic

orbits requires coupling the existence of a function H satisfying (A.2) with other constraints that are specific

to the ODE in question. These conditions are detailed explicitly below as they apply to the ODEs (3.6) and

(4.5). In general, providing existence of a heteroclinic orbit using (A.2) would require that the target and

source equilibria of the desired heteroclinic orbit both satisfy H(y) ≤ 0, while the boundaries of Ω for which

the unstable manifold of the source equilibrium could escape Ω have V (y) > 0. Proving non-existence of a

heteroclinic orbit is slightly simpler since we could have the source equilibrium lying in the interior of the

forward invariant region defined by H(y) ≤ 0, while the target lies in the complement of this set.

In the present investigation the wave speed c > 0 functions as an external parameter in the ODEs in which

we wish to confirm the existence or non-existence of heteroclinic orbits. Given the existence of a minimum

wave speed, one approach would be to find the extremal value of c for which an auxiliary function H can be

obtained to confirm the existence or non-existence a desired connection in phase-space. Unfortunately, this

leads to a non-convex optimization problem (see [4, Section 2c]) and so, to implement the process numerically,

we perform computations at multiple fixed values of c. For example, to find the smallest value of c for which

a heteroclinic connection exists, we perform the following iterative procedure. We begin with a sufficiently

large value of c for which a heteroclinic orbit exists and another sufficiently small value for which it does not.

We can then repeatedly bisect in c, attempting to find a (potentially) different auxiliary function H that

confirms the existence of a heteroclinic orbit in Ω at each new value of c. The smallest such c for which this

can be performed then becomes an upper bound on the minimum wave speed. Confirming non-existence

is similarly performed through such a bisection method in the wave speed c. All other parameters in the

system (i.e. ν, ρ > 0) are held fixed.

We refer the reader to [4] for a more complete discussion of the above method of bounding the wave speed

and how to implement this procedure numerically. Briefly, after determining the inequalities that a desired
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auxiliary function H must satisfy to confirm existence or non-existence of a heteroclinic orbit, we search

for H numerically as a degree d ≥ 1 polynomial in y with tunable real-valued coefficients. These convex

inequalities for H in the space R[y]d, the set of all polynomials with real-valued coefficients and degree

≤ d, defines a semidefinite program that can be relaxed to a series of sum-of-squares constraints that are

numerically tractable. The numerical implementation may either find admissible values for the coefficients

of H or return that no such values exist. The results in Table 1 were obtained using the MATLAB software

YALMIP (version R20190425) [27, 28] to translate the sum-of-squares constraints into semidefinite programs

which are then solved using Mosek (version 9.0) [34]. The code to reproduce the values in Table 1 is available

at the repository GitHub/jbramburger/FKPP-Burgers. Computations are performed by optimizing

over λ > 0 at each fixed degree d ≥ 1 of H. The degree is successively increased until convergence in the

bound is observed, typically around d = 10 to d = 14.

We conclude this section with a brief discussion of the specific conditions put on H to bound the wave speed

from above and below in the cases ν = 0 and ν 6= 0, respectively.

Upper bounds on c∗(ρ): From the work of Section 3, our ODE of interest is the planar system (3.6) and

the region of interest is Ω = B, defined in (3.8), for each fixed ρ > 0 and ν = 0. From Proposition 3.2 we have

that the unstable manifold of (1, u0) can only leave B by crossing U = 0, and so we impose the conditions

−λ
[
(c− U)

(
− cT + UT +

U

2ρ
(2c− U)

)
HT (T,U) + ρT (T − 1)HU (T,U)

]
≥ (c− U)H(T,U),

H(T, 0) ≥ εT (1− T ),

−ε ≥ H(1, u0)

H(0, 0) = 0,

(A.3)

for all (T,U) ∈ B, where subscripts denote partial differentiation. Indeed, the first condition is (A.2) for

the specific ODE (3.6), multiplied through by the positive term c − U to maintain that the inequality is

entirely stated in terms of polynomial functions when V is polynomial. For any ε > 0, the second condition

guarantees that the set {(T, 0) : 0 < T < 1} ⊂ B is such H(T, 0) > 0 for all 0 < T < 1, thus confirming

that the unstable manifold of (1, u0) cannot cross U = 0. The results in Table 1 always use ε = 10−4.

We comment that the presence of ε > 0 comes from the fact that strict inequalities cannot be handled nu-

merically. The third condition gives that the equilibrium (1, u0) lies in the interior of the forward invariant

region, thus confirming that its unstable manifold in B also lies in this set. Finally, the fourth condition gives

that the origin lies on the boundary of the forward invariant region. Finally, we note that we cannot have

H(0, 0) ≤ −ε since this would be inconsistent with the second condition, thus leading to the requirement

that H(0, 0) = 0, as stated above.

Lower bounds on c∗(ρ): Again we take Ω = B and consider the ODE (3.6). The conditions to confirm

non-existence of a heteroclinic orbit for each fixed ρ > 0 are then

−λ
[
(c− U)

(
− cT + UT +

U

2ρ
(2c− U)

)
HT (T,U) + ρT (T − 1)HU (T,U)

]
≥ −(c− U)H(T,U),

−H(T, 0) ≥ εU(1− U),

H(1, u0) = 0,

H(0, 0) ≥ ε,

(A.4)

for all (T,U) ∈ B. The first condition is a variant of (A.2), in this case of the form

λF (y) · ∇H(y) ≤ H(y), (A.5)
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which again gives that H ≤ 0 is forward invariant with respect to the dynamics of F . The reason for this

change in conditions is to maintain that the third and fourth conditions, which separate the target and source

equilibria, are consistent with the condition guaranteeing forward invariance of H ≤ 0. Indeed, using (A.2)

in the place of the first condition above would require that H(0, 0) = 0, thus not necessarily separating the

equilibria and in turn not necessarily prove non-existence of a heteroclinic orbit since both equilibria would

belong to the closed set H ≤ 0. The second condition gives that the line {(1, U 0 < U < 1} ⊂ B lies in the

forward invariant region, and since (1, u0) is a saddle, a local analysis near this equilibrium reveals that its

unstable manifold in B must enter into the forward invariant set H ≤ 0. As in the upper bounds on c0(ρ),

the second condition guarantees that H(1, u0) cannot be taken to be negative, and therefore we can only

have H(1, u0) = 0, in turn necessitating the alternative first condition.

Upper bounds on c∗(ν, ρ): Here now we consider the ODE (4.5) with Ω = C for ν, ρ > 0 fixed. From

Proposition 4.1 we have that the unstable manifold of (1, u0, c − u0) that enters into C can only leave by

crossing V = 0. We then seek H : R3 → R satisfying

−λ
[
(−cT + UT + V )HT (T,U, V )+

1

ν

(
− cU +

1

2
U2 + ρV

)
HU (T,U, V ) + T (T − 1)HV (T,U, V )

]
≥ H(T,U, V ),

H(T,U, 0) ≥ εT (1− T ) + εU(u0 − U),

−ε ≥ H(1, u0, c− u0),

H(0, 0, 0) = 0,

(A.6)

for all (T,U, V ) ∈ C. The first condition is exactly (A.2) with F specified by the right-hand-side of (4.5).

The remaining conditions are analogous to those for the upper bounds on c0(ρ).

Lower bounds on c∗(ν, ρ): Again we consider the dynamics (4.5) with Ω = C for fixed ν, ρ > 0. To

determine non-existence of a heteroclinic connection from (1, u0, c−u0) that remains in C we seek a function

H : R3 → R satisfying

−λ
[
(−cT + UT + V )HT (T,U, V )+

1

ν

(
− cU +

1

2
U2 + ρV

)
HU (T,U, V ) + T (T − 1)HV (T,U, V )

]
≥ H(T,U, V ),

−ε ≥ H(1, u0, c− u0),

H(0, 0, 0) = 0,

(A.7)

for all (T,U, V ) ∈ C, along with the condition

H(T,U, V ) ≥ 0, ∀T,U, V ∈ [0, δ]. (A.8)

The first condition above represents (A.2), while the following two conditions put the source equilibrium

(1, u0, c − u0) in the interior of the forward invariant region and the origin on the boundary. For some

sufficiently small δ > 0, the condition (A.8) works to guarantee that a region around the origin lies outside of

the forward invariant region H ≤ 0 when H is a polynomial in (T,U, V ). In our numerical implementations

we take δ = 0.05; larger values of δ lead to less precise bounds, while smaller values show little change in the

lower bound.
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[16] F. Hamel and A. Zlatoš, Speed-up of combustion fronts in shear flows, Math. Ann., 356 (2013),

pp. 845–867.

[17] C. Henderson, Slow and fast minimal speed traveling waves of the FKPP equation with chemotaxis,

forthcoming.

[18] , Pulsating fronts in a 2D reactive Boussinesq system, Comm. Part. Diff. Equations, 39 (2014),

pp. 1555–1595.

31



[19] C. Henderson and P. E. Souganidis, Brownian fluctuations of flame fronts with small random

advection, Math. Models Methods Appl. Sci., 30 (2020), pp. 1375–1406.

[20] E. F. Keller and L. A. Segel, Initiation of slime mold aggregation viewed as an instability, J.

Theoret. Biol., 26 (1970), pp. 399–415.

[21] A. R. Kerstein, W. T. Ashurst, and F. A. Williams, Field equation for interface propagation in

an unsteady homogeneous flow field, Physical Review A, 37 (1988), p. 2728.

[22] A. Kiselev, Regularity and blow up for active scalars, Math. Model. Nat. Phenom., 5 (2010), pp. 225–

255.

[23] A. Kiselev and L. Ryzhik, Enhancement of the traveling front speeds in reaction-diffusion equations
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Inst. H. Poincaré Anal. Non Linéaire, 26 (2009), pp. 815–839.

[39] , KPP fronts in a one-dimensional random drift, Discrete Contin. Dyn. Syst. Ser. B, 11 (2009),

pp. 421–442.

[40] A. Novikov and L. Ryzhik, Boundary layers and KPP fronts in a cellular flow, Arch. Ration. Mech.

Anal., 184 (2007), pp. 23–48.
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