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Abstract. We consider a class of reaction-diffusion equations of Fisher-KPP type in
which the nonlinearity (reaction term) f is merely C1 at u = 0 due to a logarithmic
competition term. We first derive the asymptotic behavior of (minimal speed) traveling
wave solutions that is, we obtain precise estimates on the decay to zero of the traveling
wave profile at infinity. We then use this to characterize the Bramson shift between
the traveling wave solutions and solutions of the Cauchy problem with localized initial
data. We find a phase transition depending on how singular f is near u = 0 with quite
different behavior for more singular f . This is in contrast to the smooth case, that
is, when f ∈ C1,δ, where these behaviors are completely determined by f ′(0). In the
singular case, several scales appear and require new techniques to understand.
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1. Introduction

In this paper, we consider a Fisher-KPP (FKPP) type equation with a rough non-
linearity

(1.1) ut = uxx + u

(
1−A

(
log
(ν
u

))1−r
)
,

for r > 1, A > 0, and ν = eA
−1/(r−1)

. We note that ν is a normalization constant that
may be removed by scaling; however, it ensures that 1 is a steady state of (1.1). Our
goal is to understand the effect of the parameter r, which quantifies the singularity of
the reaction term, on the behavior of solutions. In particular, we study the shape of the
minimal speed traveling wave solutions of (1.1) and the spreading of the solutions of (1.1)
when the initial density u0 is localized.

To present our results, we recall the known results for the FKPP equation, which is
one of the simplest models for the spreading of a population. It is given by

(1.2) ut = uxx + f(u),

where f satisfies f(0) = f(1) = 0, f ′ ≤ f ′(0) = 1, and f > 0 on (0, 1). The typical
choice of f is u(1 − u); however, other choices arise naturally through connections to
branching processes [12, eqn (2a)]. We note that the model (1.1) arises in connection
with the nonlocal FKPP equation (see [11] for the connection to the nonlocal FKPP
equation and [14] for the introduction of the nonlocal FKPP equation, which has been
studied extensively since).

Starting from to the seminal papers of Fisher [23], Kolmogorov, Petrovskii and Piskunov
[30] and Aronson-Weinberger [5], an enormous body of literature has developed studying
the existence, qualitative behavior, and stability of traveling wave solutions of (1.2). In
particular, the equation (1.2) with f(u) = u(1−u) admits (minimal speed) traveling wave
solutions U with speed 2 such that U(ξ) ∼ ξe−ξ as ξ → ∞ [26]. In addition, going back
to the work of Bramson [12, 13] and Uchiyama [39], it is known that if u0 is compactly
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supported, the front of u is located at

(1.3) X(t) = 2t− 3

2
log t+ s0,

where s0 is a shift depending only on u0, in the sense that u(t, ·+X(t))→ U . Interestingly,
the “delay” between the traveling wave and u, given by (3/2) log(t) is o(t) but tends to
infinity. These proofs have been simplified in recent years [27, 37], with some refinements
to the expansion of X by Nolen, Roquejoffre, and Ryzhik [34, 33] and Graham [25].

Some of the above results can be extended to more general f as long as it is sufficiently
regular near 0. In particular, the arguments in [26, 27] require explicitly that there is
some δ > 0 such that f is C1,δ. On the other hand, preliminary results in [11] make clear
the surprising fact that (1.3) does not hold without this regularity assumption. In this
paper, we are interested in understanding how the regularity of f , measured through the
parameter r, affects the decay of traveling waves and the correction between the traveling
wave position X̄(t) = 2t and the position X(t) of the front for localized initial data.

Setup and main results. For the initial condition, we assume1 that u0 is localized to
the left of the origin:

(1.4) 0 ≤ u0 ≤ 1, u0(x) = 0 for all x ≥ 0, and lim inf
x→−∞

u0(x) > 0.

We expect our results to hold when u0 has “fast” exponential decay, that is, u0(x)e(1+ε)x →
0 as x → 0 for some ε > 0, rather than compactly supported on the right, but in this
work, we opt for a simpler setting in the interest of clarity. We recall that the front
position asymptotics for solutions of (1.2) with u0 that has a sufficiently slow exponential
tail on the right is different from (1.3), see [12, 13], and, hence, the “fast” exponential
decay condition above cannot be weakened further.

Our first result is about the behavior at infinity of critical (minimal speed) traveling
wave solutions of (1.1); that is, solutions of

(1.5) −2U ′ = U ′′ + U

(
1−A

(
log
( ν
U

))1−r
)

with the far-field conditions U(−∞) = 1 and U(+∞) = 0. In the study of (1.2), critical
traveling waves attract any initial data u0 satisfying (1.4) and, at a technical level, under-
standing their profile at +∞ [26] is crucial in quantifying the position of level sets [27].

Theorem 1.1. Let U be a traveling wave solution of (1.1), that is solving (1.5). Then
U is monotonically decreasing, less than 1, and has the following behavior at infinity:

(i) If r > 3, then lim
ξ→∞

U(ξ)/(ξe−ξ) = κ for some κ > 0.

(ii) If r = 3, then lim
ξ→∞

U(ξ)/(ξαe−ξ) = κ for some κ > 0 and where α is the unique

solution of α(α− 1) = A such that α > 1.
(iii) If r ∈ (1, 3), then

lim
ξ→∞

log(eξU(ξ))

ξ
3−r

2

=
2
√
A

3− r
.

More importantly, this theorem shows a transition between the standard FKPP regime
for r > 3 and regime r ≤ 3 for which the nonlinearity plays a crucial role in the decay of
the waves. This transition is new in the literature up to our knowledge.

Let us note that if r ∈ (1, 3), we obtain a two-term asymptotic expansion of logU :

logU(ξ) = −ξ +
2
√
A

3− r
ξ

3−r
2 + o

(
ξ

3−r
2

)
.

1Notice that, up to shifting the system, we lose no generality from the case where u0 is zero to the
right of some x0 ∈ R.
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Some lower order terms in this expansion are expected, with the number of nontrivial
terms increasing as r gets closer to 1. The expansion in Theorem 1.1, however, is sufficient
for our purposes. It is also worth pointing out that some error estimates in Theorem 1.1
could be derived from our analysis. Since it is not our purpose here, we have decided not
to pursue this matter further.

The main result of this paper is the following.

Theorem 1.2. Suppose that u satisfies (1.1) and (1.4).

(i) If r > 3, then the solution u propagates with a logarithmic delay:

lim
L→∞

lim inf
t→∞

inf
x≤−L

u
(
t, 2t− 3

2
log t+ x

)
= 1 and(1.6)

lim
L→∞

lim sup
t→∞

sup
x≥L

u
(
t, 2t− 3

2
log t+ x

)
= 0.(1.7)

(ii) If r = 3, then the solution u propagates with larger logarithmic delay: defining α > 1
to be the solution of α(α− 1) = A,

lim
L→∞

lim inf
t→∞

inf
x≤−L

u
(
t, 2t− 2α+ 1

2
log t+ x

)
= 1, and(1.8)

lim
x→∞

lim sup
t→∞

u
(
t, 2t− 2α+ 1

2
log(t) + x

)
= 0.(1.9)

(iii) If r ∈ (1, 3), then the delay is algebraic: there exists Θr > 0, such that

lim
t→∞

inf
x≤2t−ΘrAγtβ+o(tβ)

u(t, x) = 1 and(1.10)

lim
t→∞

sup
x≥2t−ΘrAγtβ−o(tβ)

u(t, x) = 0.(1.11)

with γ := 2
1+r and β := 3−r

1+r . Further, Θr = φ(0) where φ solves

φ′ =
γ

2
y −

√
γ2y2

4
+Ay1−r − βφ

φ (ȳr) =
γ2ȳ2

r

4β
+
Aȳ1−r

r

β
where ȳr = (1 + r)γ .

(1.12)

Some comments are now in order. First, the case r > 3 as already been established
in our earlier work with Ryzhik [11] and will, thus, not be discussed in the sequel. We
include it in Theorem 1.2 for the sake of completeness.

Second, each delay coefficient has a heuristic meaning behind it. As described in the
introduction of [11], the main length scale on which the nonlinearity acts is x ∼ tγ . When

r > 3, then γ < 1/2 and the diffusive length scale x ∼ t1/2 dominates, allowing us to
ignore the nonlinearity. In this case, the heuristics are as in the standard case when
f(u) = u(1− u): roughly, following [27, Section 1], the 3/2 coefficient arises because the

time decay of the (Dirichlet) heat kernel on the half-line [0,∞) is t−3/2. When r = 3,
γ = 1/2 and both scales balance and the nonlinearity is relevant. In this case, the
coefficient α + 1/2 comes from the fact that solutions of ht = hxx − Ax−2h have time

decay t−α−1/2 (note that, from Theorem 1.1, we expect log(ν/h)1−r ∼ x−2 when r = 3).
When r ∈ (1, 3), the scale of the nonlinearity is larger than the scale of the diffusion.
Thus, to understand the dynamics, it is required to understand the large deviations rate
function appearing on that scale. For a more in-depth heuristic discussion of this, we
refer to the outset of Section 4, as well as Proposition 4.1 and Remark 4.2.

Finally, one of the main interests of Theorem 1.2 is in the fact that all leading order
delay constants can be characterized explicitly (when r ≥ 3) or implicitly (when r ∈
(1, 3)). In particular, while, to our knowledge, (1.12) does not have an explicit solution, it
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Figure 1. The approximate value of Θr as a function of r ∈ (1, 3). From
both plots we see that Θr seems to be increasing in r and tends to 1 on
the left and ∞ on the right. In the second plot, the dashed red curve is a
line with slope −1. Hence, we see that log Θr ∼ − log(3− r) as r ↗ 3.

is easy to compute numerically, meaning the constant Θr, when r ∈ (1, 3), can be found
approximately, which is not possible without the implicit characterization we provide
above. Indeed, we see in Figure 1, that Θr appears to be increasing in r, with Θr ↘ 1 as
r ↘ 1 and Θr ∼ α/(3− r) for some α > 0 as r ↗ 3. These asymptotics are an interesting
open question that we do not settle here.

Related works. The history of the precise asymptotics of the FKPP equation with
nonlinearity u(1− u) was given above. As said briefly earlier, this paper is a companion
to [11], in which we had studied the issue of the Bramson correction in the non-local
Fisher-KPP equation. However, the estimates in [11] were not explicit and were far from
sharp when r ∈ (1, 3]. The connection to the nonlocal FKPP equation is one of the main
motivations of the current work in addition to the intrinsically interesting issue of the
affect of the particular choice of f on the dynamics of solutions to (1.2).

We note that explicit algebraic delays are not common in the literature. As far as
algebraic delays are concerned, we point to the work of Fang and Zeitouni [22], Maillard
and Zeitouni [31], and Nolen, Ryzhik, and Roquejoffre [32] where a Fisher-KPP model
with a diffusivity that changes slowly in time was studied, and a delay, roughly, of order
t1/3 was obtained. However, both the set-up and the mechanism for the large delay are
quite different in these papers than in the present work. Finally, we also mention the
recent paper of Ducrot [19] in which he constructs a class of non-linearities f(x, u), which
tend to u(1 − u) as |x| → ∞, such that if the nonlinearity u(1 − u) in (1.2) is replaced
by f(x, u), then the front is at 2t− λ log(t) for any λ ≥ 3/2.

A bit further from the present setting are the following related threads of research:
branching random walk [2, 3, 15, 40], branching Brownian motion with absorption [4, 6, 7,
9, 29], systems of reaction-diffusion equations [17, 20], and inhomogeneous environments
and nonlocal interactions [1, 10, 11, 19, 28, 36]. There is also a higher dimensional
analogue to Bramson’s result [19, 24, 38]. It is also important to point out the important
contributions in the applied literature [8, 16, 21]. Due to the huge amount of research in
this area, the previous list is unfortunately quite incomplete.
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Organization and notation. The rest of the paper is organized as follows. The fol-
lowing Section 2 contains the proof of Theorem 1.1. In Section 3, we present the proof
of the case r = 3: Theorem 1.2.(ii). Finally, the case r ∈ (1, 3), that is the proof of
Theorem 1.2.(iii) is in Section 4. Note that to keep this introduction relatively short, we
have chosen to present all important heuristics at the beginning of each case’s dedicated
subsection. Finally, the last section, Section 5, is devoted to a technical lemma, giving
rough upper and lower bounds of (1.1), that is used throughout.

We use C to be a positive universal constant, changing line-by-line, that depends only
on r and A, unless otherwise indicated. Letting R+ = [0,∞), we denote the L2(R+) inner
product using the bra-ket notation; that is, for f, g ∈ L2(R+), we write

〈f |g〉 =

ˆ ∞
0

f(x)g(x)dx.

We use ·+ to denote the positive part operator; that is, for x ∈ R, we define x+ =
max{0, x}.

Acknowledgements. CH was partially supported by NSF grant DMS-2003110.

2. The shape of traveling waves - Proof of Theorem 1.1

Proof. The fact that U is less than 1 follows from the maximum principle, and the fact
that U is decreasing follows directly from standard arguments, see [5]. We remove an
exponential factor, letting Q = νeξU . Then Q satisfies

(2.1) Q′′ = A (ξ − log(Q))1−rQ.

Note that ξ− log(Q) = log(ν/U) ≥ 0 since ν > 1 > U and, hence, Q′′ > 0. It follows that

(2.2) Q(ξ) ≥ Q′(ξ0)(ξ − ξ0) +Q(ξ0) for any ξ, ξ0 ∈ R.
Since U = Qe−ξ is bounded as ξ → −∞, we have that Q(ξ) → 0 as ξ → −∞. It follows
that the derivative Q′ is necessarily nonnegative everywhere; indeed, if Q′(ξ0) < 0 for
some ξ0, then the inequality (2.2) yields a contradiction as ξ → −∞. As a consequence,
Q and Q′ are strictly increasing.

Moreover, since Qe−ξ goes to 0 at +∞, we have that ξ − log(Q) → ∞ as ξ → +∞.
Using (1.5), it follows that Q′′/Q→ 0 as ξ → +∞. Using this with the fact that Q′/Q ≥ 0
and satisfies (

Q′

Q

)′
=
Q′′

Q
−
(
Q′

Q

)2

,

we deduce that

(2.3) lim
ξ→∞

log(Q)′ = lim
ξ→∞

Q′

Q
= 0.

Case (i): r > 3. Using the observations above, fix ε ∈ (0, 1) and ξ0 sufficiently close
to −∞ such that | log(Q)| < εξ for all ξ larger than ξ0. Integrating (2.1), we find, for any
ξ > ξ0,

Q′(ξ) ≤ Q′(ξ0) +A(1− ε)1−r
ˆ ξ

ξ0

x1−rQ(x) dx

= Q′(ξ0) +A(1− ε)1−r
(
ξ2−r

2− r
Q(x)− ξ2−r

0

2− r
Q(ξ0)−

ˆ ξ

ξ0

x2−r

2− r
Q′(x) dx

)
≤ Q′(ξ0) +A(1− ε)1−r ξ

2−r
0

r − 2
Q(ξ0) +A(1− ε)1−r

ˆ ξ

ξ0

x2−r

r − 2
Q′(x) dx,

= Q′(ξ0) +A(1− ε)1−r
ˆ ξ

ξ0

x2−r

r − 2
Q′(x) dx,

(2.4)
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where we have used the non-negativity of Q and that r > 3 > 2. Using the Grönwall
lemma in its integral form, we find, for all ξ ≥ ξ0,

Q′(ξ) ≤ Q′(ξ0) exp

{ˆ ξ

ξ0

A(1− ε)1−r x
2−r

r − 2
dx

}
≤ Q′(ξ0) exp

{
A(1− ε)1−r

(r − 3)(r − 2)
ξ3−r

0

}
.

The last inequality follows from explicitly computing the integral in the exponential and
using that r > 3. As a consequence, Q′ is bounded above as ξ →∞.

To summarize, Q′ is positive, increasing, and bounded above. It follows that Q′(ξ)→ κ
for some κ > 0 as ξ →∞. This yields the result.

Case (ii): r = 3. We define α to be the solution of α(α − 1) = A such that α > 1.
Writing, for positive ξ, Q = ξαM and using (2.1), we find

(2.5) M ′′ +
2α

ξ
M ′ =

A

ξ2

[(
1− log(Q)

ξ

)−2

− 1

]
M.

We now prove that M is convergent. Fix ξ0 > 0. Notice that the left hand side above
is equal to ξ−2α(M ′ξ2α)′. Hence, multiplying both sides by ξ2α and integrating gives, for
all ξ ≥ ξ0,

(2.6) M ′(ξ) = ξ2α
0 M ′(ξ0)ξ−2α + ξ−2α

ˆ ξ

ξ0

A
[(

1− ξ′−1 log(Q)(ξ′)
)−2 − 1

]
ξ′2(α−1)M dξ′.

Recalling that α > 1 and integrating once again yields

M(ξ) = M(ξ0) + ξ2α
0 M ′(ξ0)

(
ξ1−2α

0

2α− 1
− ξ1−2α

2α− 1

)
+

ˆ ξ

ξ0

x−2α

ˆ x

ξ0

A
[(

1− ξ′−1 log(Q)
)−2 − 1

]
ξ′2(α−1)M dξ′ dx,

≤ K0 −
ξ1−2α

2α− 1

ˆ ξ

ξ0

A
[(

1− ξ′−1 log(Q)
)−2 − 1

]
ξ′2(α−1)M dξ′

+

ˆ ξ

ξ0

ξ′1−2α

2α− 1
A
[(

1− ξ′−1 log(Q)
)−2 − 1

]
ξ2(α−1)M dξ′

≤ K0 +
A

2α− 1

ˆ ξ

ξ0

ξ′−1
[(

1− ξ′−1 log(Q)
)−2 − 1

]
M dξ′,

(2.7)

where

K0 = M(ξ0) +
ξ0M

′(ξ0)

2α− 1
<∞

and we have used that M and log(Q) are positive and thus

M
((

1− ξ′−1 log(Q)
)−2 − 1

)
≥ 0.

By the Grönwall lemma, one gets that

(2.8) M(ξ) ≤ K0 exp

{
A

2α− 1

ˆ ξ

ξ0

[(
1− ξ′−1 log(Q)

)−2 − 1
]
ξ′−1 dξ′

}
.

We use (2.8) twice, where we improve our bound each time we use it. First, we obtain
a preliminary bound to show that ξ′−1 logQ tends to zero. From (2.3), up to increasing
ξ0, we have that | logQ(ξ)| ≤ ξ/2 for all ξ ≥ ξ0. Hence, (2.8) becomes

M(ξ) ≤ K0 exp

{
3A

2α− 1

ˆ ξ

ξ0

ξ′−1 dξ′
}
≤ K0

(
ξ

ξ0

) 3A
2α−1

.
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In particular, this yields C > 0 such that, if ξ ≥ ξ0,

logQ(ξ) = log(ξαM(ξ)) ≤ C log(ξ).

We plug this bound back into (2.8) in order to obtain a uniform bound on M . Indeed,
using a Taylor expansion, we find, up to increasing ξ0,

(2.9)
(
1− ξ−1 logQ(ξ)

)−2 − 1 ≤ 4C log(ξ)

ξ
.

Plugging this into (2.8), we obtain the improved bound:

M(ξ) ≤ K0 exp

{
4AC

2α− 1

ˆ ξ

ξ0

log(ξ)

ξ2
dξ′
}
.

Thus, M is uniformly bounded for ξ ≥ ξ0. Let M∞ = ‖M‖L∞(ξ0,∞).
From (2.6) and (2.9), we see

(2.10)
∣∣ξ2αM ′(ξ)

∣∣ ≤ ∣∣M ′(ξ0)ξ2α
0

∣∣+ 4ACM∞

ˆ ξ

ξ0

log(ξ)

ξ2
dξ.

It follows from the above and the fact that α > 1, that M ′ is integrable as ξ → ∞. We
conclude that M(ξ)→ κ as ξ →∞ for some κ ≥ 0.

We are finished if we show that κ > 0. To this end, we argue by contradiction, assuming
that κ = 0. Taking ξ →∞ in the first line of (2.7), we find, for all ξ0 > 0,

M(ξ0) ≤ −ξ0M
′(ξ0)

2α− 1
.

Including (2.10) in the above yields, for some C > 0 and all ξ0 sufficiently large,

M(ξ0) ≤ Cξ1−2α
0

Returning to Q, we deduce that Q(ξ0)→ 0 as ξ0 →∞, which contradicts the fact that Q
is increasing and everywhere positive. Thus, we conclude that κ > 0, which finishes the
proof.

Case (iii): r ∈ (1, 3). In this case, we expect sub-exponential growth at infinity. As
a consequence, we define W = log(Q). Notice that W > 0 for all ξ � 1 and W ′ > 0 for
all ξ since Q, Q′, and Q′′ are positive. Then W satisfies

W ′′ + |W ′|2 = A(ξ −W )1−r,

where we know that limξ→∞W (ξ)/ξ = 0 by (2.3).
Let V = W ′. This satisfies

(2.11) V ′ + |V |2 = f2,

where f(ξ) = A
1
2 (ξ −W )

1−r
2 . From the above, it is heuristically clear that, as ξ → ∞,

V ∼ f . We aim to show this.
First, we claim that V ≥ f for all ξ sufficiently large. To prove this, first notice that

f ′ < 0 for ξ sufficiently large by (2.3). Then, whenever V < f , V is increasing. Since
V > 0 and f → 0 as ξ → ∞, it follows that there exists ξ0 > 0 such that V (ξ0) > f(ξ0)
and f ′ < 0 on [ξ0,∞). Let ξ1 > ξ0 be the first time that V (ξ1) = f(ξ1). If no such ξ1

exists, we are finished. Otherwise, we have that V ′(ξ1) ≤ f ′(ξ1) since ξ1 is the location of
a minimum of V − f on [ξ0, ξ1]. However, by the choice of ξ1 and (2.11), V ′(ξ1) = 0 and
f ′(ξ1) < 0. This is a contradiction. We conclude that V ≤ f for all ξ sufficiently large.

Let Y = V
f − 1. Then Y satisfies

Y ′ = −Y
(

(2 + Y )f − f ′

f

)
− f ′

f
.
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By the paragraph above, we find ξ0 such that Y is nonnegative on [ξ0,∞). Then, on this
domain,

Y ′ ≤ −Y
(

2f − f ′

f

)
− f ′

f
,

Solving this differential inequality yields, for ξ ≥ ξ0,

Y (ξ) ≤ exp

{
−
ˆ ξ

ξ0

(
2f − f ′

f

)
dx

}(
Y (ξ0)−

ˆ ξ

ξ0

f ′

f
exp

{ˆ x

ξ0

(
2f − f ′

f

)
dx′
}
dx

)
=

f(ξ)

f(ξ0)
exp

{
−
ˆ ξ

ξ0

2f dx

}(
Y (ξ0)− f(ξ0)

ˆ ξ

ξ0

f ′(x)

f(x)2
exp

{ˆ x

ξ0

2f dx′
}
dx

)
By increasing ξ0, we have 0 ≤W ≤ ξ/2 on [ξ0,∞). Hence, letting β0 = 2−

1−r
2 ,

(2.12)
√
Aβ0ξ

1−r
2 ≤ f(ξ) ≤

√
Aξ

1−r
2 for all ξ ≥ ξ0.

Plugging this into the above (recalling that f ′ ≤ 0), we find

Y (ξ) ≤ f(ξ)Y (ξ0)

f(ξ0)
exp

{
−2
√
Aβ0

ˆ ξ

ξ0

x
1−r

2 dx

}
− f(ξ)

ˆ ξ

ξ0

(
1

f(x)

)′
exp

{
−2
√
Aβ0

ˆ ξ

x
x′

1−r
2 dx′

}
dx

=
f(ξ)Y (ξ0)

f(ξ0)
exp

{
−4
√
Aβ0

3− r

(
ξ

3−r
2 − ξ

3−r
2

0

)}

+ f(ξ)

ˆ ξ

ξ0

r − 1

2
√
A

(x−W )−
3−r

2 (1−W ′) exp

{
−4
√
Aβ0

3− r

(
ξ

3−r
2 − x

3−r
2

)}
dx.

Further increasing ξ0 if necessary, we have (x−W )−
3−r

2 (1−W ′) ≤ β−1
0 x−

3−r
2 . Hence, we

find

Y (ξ) ≤ f(ξ)Y (ξ0)

f(ξ0)
exp

{
−4
√
Aβ0

3− r

(
ξ

3−r
2 − ξ

3−r
2

0

)}

+ f(ξ)

ˆ ξ

ξ0

r − 1

2
√
Aβ0

x−
3−r

2 exp

{
−4
√
Aβ0

3− r

(
ξ

3−r
2 − x

3−r
2

)}
dx.

The first term clearly tends to zero. Hence, we focus on the second term. Changing
variables and using (2.12) yields

f(ξ)

ˆ ξ

ξ0

r − 1

2
√
Aβ0

x−
3−r

2 exp

{
−4
√
Aβ0

3− r

(
ξ

3−r
2 − x

3−r
2

)}
dx

≤ r − 1

β0

ˆ 1

ξ0
ξ

u−
3−r

2 exp

{
−4
√
Aβ0

3− r
ξ

3−r
2

(
1− u

3−r
2

)}
du.

Applying the Lebesgue Dominated Convergence Theorem, we conclude that the left hand
side tends to zero. Putting together all estimates above, we find that

(2.13) lim
ξ→∞

Y (ξ) = 0.

We now show how to conclude. Fix any ε > 0 and find ξ0 such that if ξ ≥ ξ0, then∣∣∣V (ξ)−
√
Aξ

1−r
2

∣∣∣ ≤ εξ 1−r
2 .

8



This follows from (2.13), the definition of f , and the fact that W (ξ)/ξ → 0 as ξ → ∞.
Then, for any ξ ≥ ξ0,∣∣∣∣∣W (ξ)− 2

√
A

3− r
ξ

3−r
2

∣∣∣∣∣ =

∣∣∣∣W (ξ0) +

ˆ ξ

ξ0

(V (x)−
√
Ax

1−r
2 )dx

∣∣∣∣
≤W (ξ0) + ε

ˆ ξ

ξ0

x
1−r

2 dx ≤W (ξ0) +
2ε

3− r
ξ

3−r
2 .

The result follows from the above. This concludes the proof. �

3. The case r = 3: Theorem 1.2.(ii)

Throughout this section r = 3 always, even when not explicitly stated. The proof
proceeds in two main parts: the lower bound and then the upper bound on the delay term.
Before embarking on the proof, we state a weak estimate of u, obtained by approximating
with solutions of the heat equation, that is required to control behavior for small times.
This is proved in Section 5.

Lemma 3.1. Suppose that u : [0,∞)× R→ [0, 1] satisfies

(3.1) ut = uxx + f(u),

where f enjoys the bounds 0 ≤ f(u) ≤ u for all u ∈ [0, 1]. If u0 satisfies (1.4), then there
is a universal constant C > 0 such that, for all t ≥ 1 and x ∈ R

√
t

C(x+ +
√
t)
e−

x2
+

4t
−Cx+

t ≤ u(t, x) ≤ C
√
t

x+ +
√
t
et−

x2
+

4t .

Throughout this section, we refer to the shift constant α+ 1/2 often. It is, thus, useful
to have a shorthand for this constant. As such, we let

SA = α+
1

2
.

3.1. Lower bound for the Bramson correction: proof of (1.8). Miraculously, we
can construct two subsolutions (one in the “beyond the front” regime and the other in
the “at and to the left of the front” regime) that, when glued together, give us the sharp
asymptotics.

Along the way, we obtain a slightly weaker lower bound on u that holds for all ≥ 1.
This is useful in our proof of the upper bound in the sequel. We state this as a proposition
here; its proof is obtained along the way while establishing (1.8), below.

Proposition 3.2. Given u satisfying (1.1), there exists C, depending only on the initial
data such that, for all t ≥ 1,

1

C

(
1(−∞,0](x) + (1 + x)α1(0,∞)(x)e−x−

x2

4t

)
≤ u(t, x+ (2t− SA log(t))).

Here α > 1 is the parameter given in (1.1).

We now prove the lower bound in Theorem 1.2.(ii).

Proof of (1.8). We proceed in multiple steps outlined here. First, we change to the moving
frame corresponding to the above bound. Then, we construct a subsolution of (1.1) in
the moving from x 7→ x+ 2t. After, we “fit” this under the function u at a future time in
order to get a bound for any x ≥ 2t. The final step is to bootstrap this up to a bound on
[2t− (α+ 1/2) log(t+ 1), 2t] using a shift of the traveling wave as a subsolution to “pull
back” the previous bound.

For the first step, let u(t, x) = e−(x−2t)ũ(t, x− 2t). We see that

(3.2) ũt = ũxx −A(x+ log(1/ũ))−2.
9



The next step is to obtain a lower bound of u on [2t,∞) via the construction of a
subsolution of ũ. To this end, let, for all x ≥ 0 and t ≥ 1,

u(t, x) = ε
xα

(t− 1/2)SA
e
− x2

4(t−1/2) ,

where ε > 0 is chosen such that u < 1 for all x ≥ 0 and t ≥ 1. Recall that SA = α+ 1/2.
Then

ut − uxx +A(x+ log(1/u))−2 =
u

x2

[
Ax2

(x+ log(1/u))2
− α(α− 1)

]
=
Au

x2

[
x2

(x+ log(1/u))2
− 1

]
,

(3.3)

where the second equality follows from the fact that, by definition, α(α − 1) = A. Since
u < 1, we have (x+ log(1/u))2 > x2. Thus

(3.4) ut − uxx +A(x+ log(1/u))−2 ≤ 0.

Using Lemma 3.1 we have that, for all x ≥ 0,

ũ(1, x) ≥ ex

C
e−

(x+C+2)2

4 ≥ 1

C
e−

x2

4
−C

2

4
−1−Cx

2
−C .

Then, up to decreasing ε further, we find

u(1, x) = ε2SAxαe−
x2

2 ≤ ũ(1, x).

Hence, recalling (3.4), the comparison principle implies that u(t, x) ≤ ũ(t, x) for all t ≥ 1
and x ≥ 0. This establishes that, for some C > 0,

(3.5) u(t, x+ 2t) ≥ 1

C

xα

tSA
e
−x− x2

4(t−1/2) for all t ≥ 1, x ≥ 0.

We have a lower bound on u on [2t,∞); however, we do not have control on (−∞, 2t].
Let U be the (speed 2 traveling wave) solution of

(3.6) −2U ′ε = U ′′ε + Uε

(
1−A log

(
ν − ε
Uε

)−2
)
,

for any fixed ε ∈ (0, ν), satisfying Uε(+∞) = 0. In this case, Uε(−∞) satisfies A log((ν −
ε)/Uε(−∞))−2 = 1 and is, thus, less than 1. In addition, by Theorem 1.1, Uε is decreasing.

Fix L ≥ 0 to be chosen. For all t ≥ 1 and x ≥ 0, let

v(t, x) = Uε (x− 2t+ SA log(t) + L) .

A direct computation using (3.6) yields

vt − vxx − v
(

1−A log
(ν
v

)1−r
)

=
SA
t
vx +Av

(
log
(ν
v

)−2
− log

(
ν − ε
v

)−2
)

Since Uε is decreasing, vx < 0. In addition, ν − ε < ν, so so parenthetical term above is
negative as well. It follows that v is a subsolution of (1.1).

We now show that, at a positive time t0 to be determined, v(t0, ·) ≤ u(t0, ·) on (−∞, 2t+√
t]. First, we check the left hand boundary x = −∞. By standard theory [41],

lim
t→∞

inf
x≤0

u(t, x) = 1.

Hence, there is t0 ≥ 1 sufficiently large that u(t0, x) ≥ U(−∞) for all x ≤ 0.
Next we check the right hand boundary x = 2t. On the one hand, we have, by (3.5)

that

u(t, 2t+
√
t) ≥ 1

Ct
α+1

2

e
−
√
t− 1

4(1−(2
√
t)−1) .
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On the other hand, using Theorem 1.1, there is κ > 0 such that, for all t sufficiently large,

v(t, 2t+
√
t) = Uε(

√
t− SA log(t)) ≤ 2κ(

√
t− SA log(t) + L)αe−(

√
t+(α+1/2) log(t)+L)

= 2κ(
√
t− SA log(t) + L)αt−α−

1
2 e−

√
t−L ≤ 2κ

(
1 +

L√
t

)α
t−α−

1
2 e−

√
t−L.

It follows from the work in the previous paragraph that, up to increasing L,

u(t0, 2t0 +
√
t0) ≥ v(t0, 2t0 +

√
t0).

All arguments above show that v ≤ u on the parabolic boundary of {(t, x) : t ≥ t0, x ∈
(−∞, 2t+

√
t)} and v is a subsolution of u on this set. We may, thus, apply the comparison

principle to conclude that v ≤ u on (−∞, 2t+
√
t). In particular, we find that

(3.7) u(t, 2t− SA log(t) + x) ≥ Uε(x).

We note that, taking ε sufficiently close to ν depending only on lim infx→−∞ u0(x), we
can take t0 = 1 and all work above can easily be modified in this case to conclude (3.7).
In this case, the combination of (3.5) and (3.7) yield Proposition 3.2.

Returning to the proof at hand, we use (3.7) to conclude that, choosing Rε such that
Uε(Rε) = Uε(−∞)− ε,

inf
t≥t0,x≤−Rε

u(t, x+ 2t− (α+ 1/2) log(t)) ≥ inf
x≤−Rε

Uε(x) = Uε(−Rε) = Uε(−∞)− ε.

Since Uε(−∞)→ 1 as ε→ 0, the result follows. The proof is finished. �

3.2. The upper bound for the Bramson correction when r = 3.

3.2.1. A supersolution and the proof of (1.9). Our starting point is the lower bound
Proposition 3.2. We use this in order to construct a sharp supersolution. To do so we
proceed in several steps, the first of which is to consider a new problem, of which u is a
sub-solution. For t0 to be determined, let

v(t, x) = ν−1exu(t, x+ 2t− SA log(t/t0)).

Recall that SA = α+1/2, where α > 1 solves α(α−1) = A. Indeed, using Proposition 3.2,
we have that, for all (t, x) such that t ≥ 1 and x ≥ 0,

0 = vt +
SA
t

(vx − v)− vxx +Av log(1/e−xv)−2

≤ vt +
SA
t

(vx − v)− vxx +A
v

(x+ x2

4t − α log(1 + x) + logC0)2
.

(3.8)

Without loss of generality, we may assume that C0 is sufficiently large that (1+x)αe−x−x
2/4t/C0 <

1/2 and, hence, that

x+ x2/4t− α log(1 + x) + logC0 > log(2),

so that last term in (3.8) is well-defined.

Proposition 3.3. There exists t0, C0 ≥ 1, C > 0, and a smooth function v : [t0,∞) ×
[0,∞)→ R+ that satisfy the following:

(i) v solves

vt +
SA
t

(vx − v)− vxx +A
v

(x+ x2

4t − α log(1 + x) + logC0)2
= 0,

(ii) v(t0, x) ≥ v(t0, x) for all x ≥ 1,
(iii) v(t, 1) ≥ v(t, 1) for all t ≥ t0, and
(iv) v(t, x) ≤ C(1 + x)α for all t ≥ t0 and x ≥ 0.

11



Before proving the proposition, we show how to conclude the upper bound on u from
Proposition 3.3.

Proof of (1.9). We first show that v ≥ v via the comparison principle. In order to do
this, we notice that v is a super-solution of the equation that v is a sub-solution of by
Proposition 3.3.(i) and (3.8). In addition, v ≥ v on the parabolic boundary of [t0,∞) ×
[1,∞) by Proposition 3.3.(ii) and (iii). Hence, the comparison principle and the definition
of v imply that

v(t, x) ≥ v(t, x) = ν−1exu(t, x+ 2t− SA log(t/t0))

for all (t, x) ∈ [t0,∞)× [1,∞).
Using now Proposition 3.3.(iv), we have that

u(t, x+ 2t− SA log(t)) ≤ v̄(t, x)e−x ≤ C(1 + x)αe−x for all (t, x) ≥ [t0,∞)× [1,∞).

The conclusion that

lim
L→∞

lim sup
t→∞

sup
x≥2t−SA log(t)+L

u(t, x) = 0

is then clear, finishing the proof. �

3.2.2. The proof of Proposition 3.3. In this case (i.e., r = 3), the nonlinearity scales as
diffusion; hence, we turn to the natural diffusive self-similar variables. For t0 > 0 to be
chosen, let

τ = log
( t
t0

)
, and y =

x√
t
.

Roughly, we choose v(t, x) ∼ ζ(τ, y), and the change in variables has the advantage that
the spectrum of the resulting (spatial) differential operator is discrete, as we see below. In
addition, let ε = 1/

√
t0. It is convenient, in the sequel, to choose t0 large and ε = 1/

√
t0

is the term which “feels” the effect of this.
In these new variables we proceed by choosing ζ that solves

(3.9)

ζτ + LAζ = εSAe
− τ

2 ζy +

(
A

y2
− A

(y + E(τ, y))2

)
ζ, for τ > 0, y > 0,

ζ(τ, 0) = 0, for τ > 0,

ζ(0, y) = e−
y2

8 Q, for y > 0,

for Q that is defined below (see Lemma 3.5) and E and LA defined by:

E(τ, y) = εe−τ/2
(
y2

4
− α log(1 + ε−1eτ/2y) + log(C0)

)
and

LAζ = −ζyy −
y

2
ζy +

(
A

y2
− SA

)
ζ.

(3.10)

We note that LA arises via the change of variables from the operator −∆−(SA/t)+A/x2.
Unfortunately, LA is not self-adjoint so it is not as amenable to spectral analysis. Let

ζ̃ := e−ατ/2ey
2/8ζ and

MA := −∂2
y +

(
y2

16
+

1

4
+
A

y2
− 1 + α

2

)
.
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Notice that MA = e
y2

8 LAe
− y

2

8 − α
2 . Hence, from (3.9), we find

(3.11)

ζ̃τ +MAζ̃ = εSAe
− τ

2

(
ζ̃y −

y

4
ζ̃
)

+

(
A

y2
− A

(y + E(τ, y))2

)
ζ̃, for τ > 0, y > 0,

ζ̃(τ, 0) = 0, for τ > 0,

ζ̃(0, y) = e
y2

8 ζ0 = Q, for y > 0.

Throughout, it is useful to have an upper bound on y−2 − (y + E)−2. We state the
bound here, noting that, while it is not optimal, it is sufficient for our purposes.

Lemma 3.4. If C0 is sufficiently large and ε is sufficiently small, then∣∣∣∣ 1

y2
− 1

(y + E)2

∣∣∣∣ ≤ C min

{
4

y2
, ε1/2e−τ/4

(
1

y
+

1

y3

)}
.

Proof. Consider first the case y < log(C0)εe−τ/2/(2α). Then, since log(1 + z) ≤ z for all
z > 0, we find

E ≥ εe−τ/2
(
y2

4
− αε−1eτ/2y + log(C0)

)
≥ εe−τ/2

(
y2

4
+

log(C0)

2

)
≥ 0.

Hence, 0 ≤ y−2 − (y + E)−2 ≤ y−2, which concludes the proof in this case.

Now we consider the case where y ≥ log(C0)εe−τ/2/(2α). First, rewrite the expression
as

1

y2
− 1

(y + E)2
=

E
y2(y + E)

+
E

y(y + E)2
.

If E ≥ 0, then, since E ≤ εe−τ/2
(
y2 + log(C0)

)
, we find∣∣∣∣ 1

y2
− 1

(y + E)2

∣∣∣∣ =
E

y2(y + E)
+

E
y(y + E)2

≤
εe−τ/2

(
y2 + log(C0)

)
y3

,

from which the claim follows.
If E < 0, we use that log grows sub-polynomially. Indeed, choosing C0 ≥ e sufficiently

large such that α log(1 + z) ≤ z1/4 + log(C0)/2 for all z ≥ log(C0)/(2α), yields

E ≥ εe−τ/2
(
y2

4
−
(
ε−1eτ/2y

)1/4
+

log(C0)

2

)
≥ εe−τ/2

(
y2

4
−

(
1

2
+
ε−1/2eτ/4y1/2

2

)
+

log(C0)

2

)
≥ −ε

1/2e−τ/4y

2
.

which implies that y + E ≥ y/2 if ε is sufficiently small and that∣∣∣∣ 1

y2
− 1

(y + E)2

∣∣∣∣ = −E
(

1

y2(y + E)
+

1

y(y + E)2

)
≤ ε1/2e−τ/4y

2

(
1

y2(y/2)
+

1

y(y/2)2

)
≤ 3

ε1/2e−τ/4

y2
.

The claim follows by applying Young’s inequality. This finishes the proof. �

We establish the spectral gap of the operator MA in H1
0 (R+).

Lemma 3.5. The function Q(y) = Z−1yαe−
y2

8 , where Z > 0 is such that ‖Q‖L2 = 1,
solves

MAQ = 0.

Further, there exists λA > 0, depending only on A, such that for all ψ ∈ H1
0 (R+) such

that 〈ψ|Q〉 = 0, we have
〈MAψ|ψ〉 ≥ λA‖ψ‖2.
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Proof. The first claim is a straightforward computation using the fact that α(α− 1) = A,
by construction. We omit it.

Since MA is a compact, self-adjoint operator, its spectrum is discrete. Since Q is
positive, it is the principal eigenfunction and 0 is the principal eigenvalue of MA. By
standard theory (see, e.g., [18]), 0 has multiplicity one. Hence, all of the eigenvalues of
MA except for 0 are positive. The second claim then follows via the Rayleigh quotient
interpretation of the spectrum. �

We now analyze the long-time behavior of ζ̃. We begin with a preliminary estimate on
the behavior of ζ̃ near the origin. We note that this is, roughly, an a priori estimate of
ζ̃y near the origin depending only on the L∞-norm of ζ̃ in the sense that it is not (yet) a
“closed” estimate.

Lemma 3.6. Fix any T > 0 and let θ =
√
A/(1 + α). There exists ε0 > 0, independent

of T , such that if ε ∈ [0, ε0], then, for all (τ, y) ∈ R+ × [0, θ],

ζ̃(τ, y) ≤ max{C, 2‖ζ̃‖L∞([0,T ]×{θ}/θ}y.

Proof. Let

N̄ = max
{

max
y

Q(y)

y
,
2‖ζ̃‖L∞([0,T ]×{θ})

θ

}
.

We claim that ζ(τ, y) = N̄y is a super-solution of (3.11) on [0, T ]× [0, θ]; indeed,

ζτ +MAζ − ζ
(
A

y2
− A

(y + E)2

)
+ εSAe

− τ
2

(
ζy −

y

4
ζ
)

= N̄

[
y

(
y2

16
+

1

4
+

A

(y + E)2
− 1 + α

2
− εSAe−

τ
2
y

4

)
+ λεe

τ
2

]
≥ N̄

[
y

(
A

(y + E(t, y))2
− 1

4
− α

2

)]
.

(3.12)

In the last line we used that, up to decreasing ε,

−εSAe−τ/2y2

4
≥ −y

3

16
−
S3
Aε

3e−3τ/28

27
≥ −y

3

16
− SAεe−τ/2.

We now show that the last line in (3.12) is non-negative if ε is sufficiently small. If
y ∈ [0, θ],

E(τ, y) ≤ εe−τ/2
[
y2

4
+ logC0

]
≤ ε

[
θ2 + logC0

]
.

Hence, we have that,

A

(y + E)2
≥ A

(θ + εθ2 + ε logC0)2
≥ A

(
√

2θ)2
=

1 + α

2
≥ 1

4
+
α

2
,

where the second inequality follows by choosing ε sufficiently small. Thus, ζ is a super-
solution of (3.11) as claimed.

By our choice of N̄ , we have that ζ̄ ≥ ζ̃ on {0}×[0, θ] and [0, T ]×{0, θ}. The comparison

principle then implies that ζ̄ ≥ ζ̃ on [0, T ]× [0, θ], which concludes the proof. �

Using Lemma 3.6, we now obtain a closed bound on the L2-norm of ζ̃. Here, and
throughout the rest of the present section, we use ‖ · ‖ to mean the L2(R+) norm for
notational ease.

Lemma 3.7. If ε is sufficiently small, ‖ζ̃(τ)‖ ≤ 2 for all τ ≥ 0.
14



Proof. Multiplying (3.11) by ζ̃ and integrating by parts, we find

1

2

d

dτ
‖ζ̃(τ)‖2 +

〈
MAζ̃

∣∣∣ζ̃〉 = εSAe
−τ/2

〈
ζ̃y −

y

4
ζ̃
∣∣∣ζ̃〉+

〈(
A

y2
− A

(y + E)2

)
ζ̃

∣∣∣∣ζ̃〉
= −εSAe−τ/2

〈
yζ̃
∣∣∣ζ̃〉+

〈(
A

y2
− A

(y + E)2

)
ζ̃

∣∣∣∣ζ̃〉 ≤ 〈( A

y2
− A

(y + E)2

)
+

ζ̃

∣∣∣∣ζ̃〉 .
From Lemma 3.5, we have that

〈
MAζ̃

∣∣∣ζ̃〉 ≥ 0, which yields

1

2

d

dτ
‖ζ̃(τ)‖2 ≤

〈(
A

y2
− A

(y + E)2

)
+

ζ̃

∣∣∣∣ζ̃〉 .
In order to conclude, we require bounds on the right hand side above. Fix

(3.13) R = min{θ, ε1/8e−τ/16},

where θ is as in Lemma 3.6. Using Lemma 3.4 and Lemma 3.6, we find〈(
A

y2
− A

(y + E)2

)
+

ζ̃

∣∣∣∣ζ̃〉 ≤ CAˆ R

0

|ζ̃|2

y2
dx+ CA

ˆ ∞
R

ε1/2e−τ/4
(

1

y
+

1

y3

)
|ζ̃|2dx

≤ CAR
∥∥∥ζ̃(τ)/y

∥∥∥2

L∞([0,θ])
+
CAε1/2e−τ/4

R3

ˆ ∞
R
|ζ̃|2dx

≤ CAε1/8e−τ/16
(

max
{

1, ‖ζ̃‖2L∞([0,τ ]×{θ})

}
+ ‖ζ̃‖2

)
,

where, in the last inequality we used the choice of R.
Thus, we arrive at the differential inequality

(3.14)
d

dτ
‖ζ̃‖2 ≤ Cε1/8e−τ/16

(
1 + ‖ζ̃‖2L∞([0,τ ]×{θ}) + ‖ζ̃(τ)‖2

)
.

This is useful if we bound ‖ζ̃‖L∞([0,τ ]×{θ}) by ‖ζ̃‖, but such a bound is not available.
However, parabolic regularity implies the following estimate that we prove in the sequel:

(3.15) ‖ζ̃‖2L∞([0,τ ]×{θ}) ≤ C
(

1 +

ˆ τ

0
‖ζ̃(τ ′)‖2dτ ′

)
.

Before proving (3.15), we show how to conclude the proof assuming it.
From (3.14) and (3.15), we find

d

dt
‖ζ̃(τ)‖2 ≤ Cε1/8e−τ/16

(
1 +

ˆ τ

0
‖ζ̃(τ ′)‖2dτ ′ + ‖ζ̃(τ)‖2

)
.

Let τ0 = sup{τ : ‖ζ̃(τ ′)‖2 ≤ 2 for all τ ′ ∈ [0, τ ]}. If τ0 =∞, then we are finished. Hence,
suppose that τ0 is finite. Then, integrating the above between 0 and τ0, we see that

1 = ‖ζ̃(τ0)‖2 − ‖ζ̃(0)‖2 ≤ Cε1/8

ˆ τ0

0
e−τ/16

(
1 +

ˆ τ

0
2dτ ′ + 2

)
dτ

≤ Cε1/8

(
8 + 2

ˆ τ0

0
τe−τ/16dτ + 16

)
≤ (8 + 2 · 162 + 16)Cε1/8.

This yields a contradiction if ε is sufficiently small. Hence, the proof is concluded
once (3.15) is established.

We now establish (3.15). Observe that

(3.16) ‖ζ̃‖L∞([0,τ ]×{θ}) ≤ ‖ζ̃‖L∞([0,2]×{θ}) + sup
τ0∈[2,max{2,τ}]

‖ζ̃‖L∞([τ0−1,τ0]×{θ}).

We bound each term on the right separately.
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The first term on the right in (3.16) is bounded using the comparison principle. Indeed,
let ζ(τ, y) = NeRτy, where N = maxQ(y)/y and R = (1 + α)/2 and notice that

ζτ +MAζ − ζ
(
A

y2
− A

(y + E)2

)
+ εSAe

− τ
2

(
ζy −

y

4
ζ
)

= N
[
y
(
y2

16
+

1

4
+

A

(y + E)2
− εSAe−

τ
2
y

4

)
+ λεe

τ
2

]
.

Using Young’s inequality and decreasing ε, the right hand side is non-negative. It follows
that ζ is a supersolution of (3.11) and, hence, that ζ̃ ≤ ζ. We conclude that

(3.17) ‖ζ̃‖L∞([0,2]×{θ}) ≤ ‖ζ‖L∞([0,2]×{θ}) = Ne1+αθ.

Next, we consider the second term on the right in (3.16). We may clearly assume τ ≥ 2.
Here, we use parabolic regularity estimates as follows. For any τ0 ∈ [2, τ ], standard interior
parabolic regularity estimates in Sobolev spaces imply that

C‖ζ̃‖2H2
para([τ0−1,τ0]×[θ/2,3θ/2]) ≤ C‖ζ̃‖

2
L2([τ0−2,τ0]×[θ/4,2θ]),

where we use the notation H2
para = {u ∈ L2 : Du,D2u, ut ∈ L2} for the standard second

order parabolic Sobolev space. By the Sobolev embedding theorem, we find

‖ζ̃‖2L∞([τ0−1,τ0]×[θ/2,3θ/2]) ≤ C‖ζ̃‖
2
L2([τ0−2,τ0]×[θ/4,2θ]) ≤ C

ˆ τ

0
‖ζ̃(τ ′)‖2dτ ′.

Since this holds for all τ0 ∈ [2, τ ], the combination of this, (3.17), and (3.16) estab-
lishes (3.15), which completes the proof. �

In fact, relying on parabolic regularity theory (see the proof above), we obtain a uniform

L∞ bound on ζ̃ on [0,∞)×[θ/2,∞). Pairing this with Lemma 3.6, we obtain the following
lemma.

Lemma 3.8. If ε is sufficiently small, there exists a constant C such that

‖max{1, y−1} ζ̃‖L∞(R+×R+) ≤ C.

We require one final estimate on ζ̃, which shows that the Q part of ζ̃ dominates the
long time behavior. We establish that here.

Lemma 3.9. If ε is sufficiently small, there is β > 0 such that, for all y ≥ 0,

|ζ̃(τ, y)− ζ̃(0, y)| ≤ Cε1/8
(
Q(y) + e−βτ

)
.

Proof. We aim to use the spectrum of MA in order to conclude. Decompose ζ̃ into its Q
component and its orthogonal component, letting

φ =
〈
ζ̃
∣∣∣Q〉 and ζ̃ = φQ+ ψ.

To estimate the Q component, multiply (3.11) by Q and integrate by parts to find

|φ′(τ)| = A

ˆ
R+

∣∣∣∣ 1

y2
− 1

(y + E)2

∣∣∣∣ ζ̃(y)Q(y) dy +
∣∣∣εSAe−τ/2〈Qy +

y

4
Q|ζ̃〉

∣∣∣ ,
≤ A
ˆ
R+

∣∣∣∣ 1

y2
− 1

(y + E)2

∣∣∣∣ ζ̃(y)Q(y) dy + εSAe
−τ/2‖Qy +

y

4
Q‖‖ζ̃(τ, ·)‖,

(3.18)

The estimate of the first term goes exactly as in Lemma 3.7, where we applied Lemma 3.4
to conclude. Hence, we omit the details and assert thatˆ

R+

∣∣∣∣ 1

y2
− 1

(y + E)2

∣∣∣∣ ζ̃(y)Q(y) dy ≤ ε1/8e−τ/16
(
‖max{1, y−1ζ̃‖L∞(R+×R+) + ‖ζ̃‖

)
.

Recalling Lemma 3.7 and Lemma 3.8 and combining with (3.18) yields

|φ′(τ)| ≤ Cε1/8e−τ/16.
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Integrating this differential inequality, we deduce that

|φ(τ)− φ(0)| ≤ Cε
1
8 .

We now consider ψ. Since ψ ⊥ Q, we have
〈
MAζ̃

∣∣∣ψ〉 = 〈MAζ|ζ〉 ≥ λA‖ψ‖2. Hence,

multiplying (3.11) by ψ and integrating, we find

1

2

d

dt
‖ψ‖2 + 〈MAψ|ψ〉 =

〈(
A

y2
− A

(y + E)2

)
ζ̃

∣∣∣∣ψ〉+ SAεe
− τ

2

〈
φQy + ψy −

y

4
(φQ+ ψ)

∣∣∣ψ〉 .
The second inner product is estimating using that 〈ψy|ψ〉 = 0,

〈
yζ̃
∣∣∣ψ〉 ≥ 0, and the

Cauchy-Schwarz inequality. On the other hand, arguing as above using Lemma 3.4, we
bound the first time by〈(

A

y2
− A

(y + E)2

)
ζ̃

∣∣∣∣ψ〉 =

〈(
A

y2
− A

(y + E)2

)
ζ̃

∣∣∣∣ζ̃ − φQ〉 ≤ Cε1/8e−τ/16.

Using all ingredients above and recalling that 〈MAψ|ψ〉 ≥ λA‖ψ‖2, we obtain the differ-
ential inequality

1

2

d

dt
‖ψ‖2 + λA‖ψ‖2 ≤ Cε1/8e−τ/16 + Cεe−τ/2‖ψ‖.

Solving this differential inequality, there is β > 0 such that

‖ψ‖ ≤ Cε1/8e−βτ .

The claim then follows by using parabolic regularity theory in order to upgrade the L2

convergence to L∞ convergence. �

We are now able to conclude the proof of Proposition 3.3 using all ingredients above.

Proof of Proposition 3.3. Choose t0, C0 > 0 sufficiently large such that all above lemmas
hold. Fix M > 0 to be determined. Let ζ̃ be the solution of (3.11) and define, for t ≥ t0
and x ≥ 0,

v(t, x) = M

(
t

t0

)α
2

e−
x2

8t ζ̃(log(t/t0), x/
√
t).

By construction, we have that Proposition 3.3.(i) holds.
Next we examine the ordering of v and v at t = t0. From Lemma 3.1, we have, for all

x ≥ 1

v(t0, x) ≤ C
√
t0

x+ 2t0 +
√
t0
e
t0+x− (x+2t0)2

4t0 ≤ C
√
t0

x+ 2t0
e
t0− x2

4t0 .

On the other hand,

v(t0, x) =
M

Z

(
x√
t0

)α
e
− x2

4t0 .

It is clear that, up to increasing M , v(t0, x) ≥ v(t0, x) for all x ≥ 1. This yields Proposi-
tion 3.3.(ii).

The proof of Proposition 3.3.(iii) follows similarly, using Lemma 3.9 in addition. We
omit the details.

Finally, we consider Proposition 3.3.(iv). If x ≥
√
t, we have

v(t, x) ≤M
(
t

t0

)α
2

‖ζ̃‖L∞(R+×R+),

which is less than (1+x)α, finishing the proof in this case. If x ≤
√
t, we apply Lemma 3.9

to find

v(t, x) ≤M
(
t

t0

)α
2 (

Q(x/
√
t) + Cε1/8e−βτ

)
≤M

(
t

t0

)α
2
(

1

Z

(
x√
t

)α
+ Cε1/8e−βτ

)
.
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The conclusion follows from the above. The proof is finished. �

4. The case r ∈ (1, 3): Theorem 1.2.(iii)

To begin, we give a brief (heuristic) description of the proof, and, along the way, define
the key concepts that we rely on in the sequel. Two important constants in our analysis
are

γ =
2

1 + r
and β =

3− r
1 + r

.

We begin by changing variables to the moving frame and removing an exponential
factor; that is, we let u(t, x+ 2t− s(t)) = νe−xv(t, x). Then

(4.1) vt + ṡ(t)(vx − v) = vxx −A(x+ log(1/v))−(r−1)v.

From [11], we know understand that the correct length scale to look on is x ∼ tγ . Hence,
let

(4.2) ϕ(τ, y) = −1

τ
log v(τ1/β, yτγ/β).

Note very importantly the large deviations flavour of this ansatz: this is where the mixing
of scales appears and where γ > 1

2 plays a role. The correct length scale to look is larger
than the diffusive one. Nevertheless, this can be connected to the standard diffusive
change of variables used in the cases r ≥ 3 in the following way: an equivalent (but
computationally more complicated) change of variables is τ = 1

β

[
(1 + t)β − 1

]
and y =

x
(1+t)γ , which yields the diffusive variables in the limit r → 3.

Recall from [11] that the delay should be O(tβ). Set (again, heuristically) s(t) = θtβ,
where the goal is to determine θ so that w = O(1) near the origin (since we expect u to
be O(1) near the front). This requires ϕ(τ, 0) = O(1/τ) and gives the following

(4.3) βτϕτ −γyϕy +βϕ+θβ
(
τ−

r−1
3−rϕy + 1

)
= τ−1ϕyy−|ϕy|2 +A

(
y + τ−

r−1
3−rϕ

)−(r−1)
.

Formally taking τ → ∞ (and assuming that τϕτ → 0 since we expect equilibrium dy-
namics), we obtain the limit equation

(4.4)
|ϕy|2 − γyϕy − (Ay1−r − β(θ + ϕ)) = 0 in (0,∞),

ϕ(0) = 0.

We now explain how to guess the correct value of θ. This comes by comparing the
asymptotics of the solutions of such an ODE to the expected asymptotics of w.

One solution of this quadratic polynomial in (4.4) is as follows. Let

(4.5) Γ(y) =
γ2y2

4β
+
Ay1−r

β
for all y > 0,

and define φθ (subscript often omitted later for legibility) via

φy(y) =
γy

2
−
√
β(Γ− φ), y > 0,

φ(0) = θ.
(4.6)

Observe that with such a definition, φ−θ solves (4.4). We note a subtle notational choice
here: ϕ refers to the (expected) limiting solution, while φ refers to any of the solutions to
the shifted family of initial value problems (4.6).

The global existence of such a φ on R+ as a function of the initial data θ, is discussed
in 4.1. If we expect convergence of u to a traveling wave in the moving frame, it is then

natural in view of Theorem 1.1 to expect that v(t, x) ∼ exp
{

2A
1
2

3−r x
3−r

2

}
close to zero.

This fits exactly with the asymptotics of φ near y = 0 for any compatible value of θ. We
make two observations from this. First, since this works for all θ, θ cannot be defined
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at this stage. Second, we arrived at (4.6) from (4.4) via the quadratic formula, which
involves choosing a root. Had we chosen the other root, the traveling wave asymptotics
would not hold, allowing us to conclude that we have chosen the correct root for small y.

However, we expect v(t, x) ∼ e−
x2

4t very far ahead of the front. This corresponds to
ϕ ∼ y2/4 when y � 1. Unfortunately, if θ � 1 then φ cannot be extended as a solution
to large y, and, even for those θ for which it can, φ does not grow quadratically. Thus
this φ cannot the expected ϕ when τ goes to infinity. We now explain how to solve this
issue and this will give the value of θ to be chosen.

Using φ, we define

(4.7) Θ = sup
{
θ ∈ R : φθ < Γ(y) for all y ≥ 0

}
,

where the curve Γ is given by (4.5). It is clear that if θ < Θ then φ exists on [0,∞). The
positivity and finiteness of Θ is shown in Section 4.1.

By a continuity argument, if θ = Θ, φ touches the curve Γ “tangentially”. In the
sequel, we show that there is only one touching point ȳ. Thus, when θ = Θ, we construct
the C1 globally defined solution Φ which is equal to φ to the left of ȳ and solves

Φy(y) =
γ

2
y +

√
β(Γ− Φ) in (ȳ,∞).(4.8)

With this definition, Φ solves (4.4), Φ ∼ Θ − 2
√
A

3−r y
3−r

2 when y ∼ 0, and Φ ∼ y2/4 when

y � 1. Hence Φ is the solution of (4.4) that should arise from ϕ when taking τ → ∞,
above. Making this precise choice θ = Θ is the only way to make this happen.

It is now heuristically clear that θ = Θ is the correct choice of the shift. Before
continuing, we simply note that Θ = ΘrA

γ for Θr independent of A due to a simple scaling
argument. We stress, though, that A may not be scaled out of the original equation (1.1);
it is a feature of our reduced characterization of the delay coefficient above that the scaling
in A may be removed.

The remaining part of this section will construct rigorously φ and Φ and provide some
qualitative properties that are needed later on to construct sub- and super- solutions in
the shifted frame.

4.1. Construction of Θ and behaviors of φ and Φ. In this section, we let ȳ =

(1 + r)γA
γ
2 , which plays a special role in the analysis. Indeed, it is where φΘ and Γ touch

(see Proposition 4.1).

4.1.1. Existence and qualitative properties of φ. For the proof of the upper bound on the
front location, it is enough to work only with φ. Despite the fact that Φ is expected to
provide the asymptotics of ϕ as τ →∞, it is somewhat easier to work with φ as its growth
as y → ∞ is slower, and thus, it is easier to “fit” a supersolution built from e−φ over u.
The requisite bounds are below. Hence we obtain bounds of φ on all of (0,∞) instead of
simply on (0, ȳ).

Proposition 4.1. The constant Θ is positive and finite. The solution φ = φΘ is defined
on all of R+, is strictly less than Γ on R+ \ {y}, and, at y, touches Γ tangentially; that
is, Γ(y) = φ(y) and φ′(y) = Γ′(y). In addition, φ satisfies:

(1) C−1 ≤ φ ≤ Cy
1+r

2 1[C−1,∞] + C1[0,C−1]

(2) −Cy
1−r

2 1[0,C] ≤ φy ≤ −C−1y
1−r

2 1[0,C−1],

(3) −C1[C−1,∞] + C−1y−
1+r

2 1[0,C−1] ≤ φyy ≤ Cy−
1+r

2 .
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Remark 4.2. Proposition 4.1 yields the characterization of Θ in Theorem 1.2.(iii); that
is, Θ = φ(0) where φ solves the terminal value problem

φ′(y) =
γ

2
y −

√
β(Γ− φ), y ∈ (0, ȳ),

φ(ȳ) = Γ(ȳ).

The uniqueness of such a solution is somewhat subtle but follows from the fact that such
a solution necessarily has φ′(y) > 0. We omit the details.

Proof of Proposition 4.1. For any θ ∈ R, there exists a solution φ = φθ of the Cauchy
problem (4.6) by Carathéodory’s theorem on some interval [0, yθ]. We note that the
standard Cauchy-Lipschitz theorem does not apply at y = 0 due to the singularity in Γ.
It is easy to check that this is unique due to the fact that the singularity at y = 0 is

integrable; indeed, the right hand side of (4.6) is ∼
√
−Ay

1−r
2 near y = 0. Finally, we

note that, by the standard Cauchy-Lipschitz theorem, yθ can be increased for as long as
φ < Γ.

We now justify that Θ is positive and finite. First, if θ = 0, the phase portrait shows
that φ is then decreasing, thus always negative. As a result, φ is defined on R+. By
continuity with respect to initial conditions, if 0 < θ � 1, then φ eventually becomes
negative and, thus, exists for all y. We conclude that Θ > 0.

Assume by contradiction that Θ is infinite. This means that for all θ ∈ R, the solution of
the ODE is globally defined. Let Ψ : R→ C1([0,∞)) be defined by Ψ(θ) = φθ; that is, the
solution of (4.6) with φθ(0) = θ. Since solutions cannot cross, Ψ is increasing. Moreover,
it is then direct from the definition of φθ that for all y ∈ R+, one has Γ − φθ ≥ 0. As a
consequence, the sequence of functions, defined on R∗+, θ 7→ φθ(·) is convergent. However,
g := ∂θφθ satisfies

gy(y) =
2β

1
2

√
Γ− φ

g(y) and g(0) = 1,

so that

g(y) = exp

{ˆ y

0

2β
1
2√

Γ(z)− φ(z)
dz

}
≥ 1.

This is a contradiction with the convergence of the sequence.
In order to construct φΘ, we use a limiting procedure as follows. If θ < Θ, then

φθ < Γ by the definition of Θ. The equation yields that φθ is C
1,1/2
loc with bounds that

are uniform in θ. We may thus take θ ↗ Θ to obtain a function φΘ that is C
1,1/2
loc . Using

the expansion φθ ∼ θ − 2
3−ry

3−r
2 , we see that φΘ(0) = Θ and φΘ is continuous up to 0.

Hence, φΘ satisfies (4.6).
If φΘ does not touch Γ then we can further increase θ, contradicting the choice of Θ.

By continuity, φΘ must touch Γ tangentially, in which case the two curves necessarily
touch at y since this is the only solution to φ′Θ(y) = Γ′(y).

Finally, we analyze bounds on φ′′ = φ′′Θ. Those bounds away from ȳ are simple to
establish and so we omit them. We focus instead on a uniform bound on φ′′ away from
y = 0; indeed, we establish a bound on (ȳ/2,∞). To do this, we work with φ = φθ for
θ < Θ. A limiting argument then yields the bound for φΘ.

Since θ < Θ, φ is smooth and we differentiate (4.6) to find

(4.9) φ′′ =
γ − β

2
− β

1
2

2

Γ′ − γ
2y√

Γ− φ
.
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Clearly, we need only consider the case when Γ − φ � 1 and we need only examine the
extrema of the second term, which occur when

2 (Γ− φ)
(

Γ′′ − γ

2

)
=
(

Γ′ − γy

2

) (
Γ′ − φ′

)
.

Re-writing this using the form of φ′, letting Z = Γ − φ, and letting Y = Γ′ − γy/2, we
find, at the extremum,

Z =
Y

2
(
Γ′′ − γ

2

) (Y +

√
β

2

√
Z

)
.

As we are only considering the domain (ȳ/2,∞), Γ′′ − γ/2 is bounded above and below
by a constant. In addition, we are considering only the case where Z � 1. Hence, the
above can only hold for Y satisfying

(4.10) |Y | ≤ C
√
Z

for a constant C depending only r. We conclude, from (4.10) that∣∣∣∣Γ′ − γ
2y√

Γ− φ

∣∣∣∣ ≤ C.
The desired bound on φ′′ follows from this and (4.9), thus concluding the proof. �

4.1.2. The construction of Φ. In order to establish the lower bound on the front, we
construct Φ and establish the requisite bounds.

Proposition 4.3. The function Φ : [0,∞)→ R, defined by Φ = φΘ on [0, ȳ] and solving

(4.11) Φ′ =
γ

2
y +

√
β(Γ− Φ) on (ȳ,∞)

solves (4.4), is in C1
loc(0,∞) ∩W 2,∞

loc (0,∞), and satisfies the bounds

−Cy−
r−1

2 ≤ Φ′(y) ≤ Cy1[C−1,∞) − C−1y−
r−1

2 and 0 ≤ Φ′′(y) ≤ C
(

1 + y−
1+r

2

)
.

In addition, for y ≥ ȳ, we have

y2

4
≤ Φ(y) ≤ y2

4
+ C.

Proof. The construction of Φ on (ȳ,∞) can be done using standard methods2. We note
that C2 bounds on Φ away from 0 and∞ can be established exactly as in Proposition 4.1.
The convexity follows from the fact that

(4.12)

Φ′′θ =
γ − β

2
− β

1
2

2

Γ′ − γ
2y√

Γ− Φθ
in (0, ȳ),

Φ′′θ =
γ − β

2
+
β

1
2

2

Γ′ − γ
2y√

Γ− Φθ
in (ȳ,∞).

and that Γ′ − γy/2 is negative in (0, ȳ) and positive in (ȳ,∞).
The bounds on Φ′ are clear from (4.11), and the upper bound on Φ′′ near y = 0 follows

from Proposition 4.1. Hence, we need only establish behavior of Φ and Φ′′ when y � 1.

2The fact that the right hand side of (4.11) is not Lipschitz in Φ is not used in the existence portion
of standard well-posedness proofs; hence, the standard fixed point proof suffices for our setting. While we
do not require uniqueness of the solution on (ȳ,∞), this can be established, although with slightly more
difficulty than the usual method. Hence, we omit it.
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To this end, observe that Φinf(y) ≡ y2/4 is a sub-solution of (4.11) on (y,∞). Indeed,

Φ(y) = Γ(y) ≥ Φinf(y), and since
√
γ2 − β = 1− γ,

Φ′inf(y) =
y

2
=
(
γ +

√
γ2 − β

) y
2
≤ γ

2
y +

√
β

(
γ2y2

4β
− y2

4

)
≤ γ

2
y +

√
β(Γ− Φinf).

Hence, Φinf ≤ Φ, by the comparison principle.

Observe that Φsup(y) ≡ y2/4 + Ay1−r

β is a super-solution of (4.11) on (y,∞). Indeed,

Φ(y) = Γ(y) ≤ Φsup(y) for d large, and since
√
γ2 − β = 1− γ,

Φ′inf(y) =
y

2
=
(
γ +

√
γ2 − β

) y
2

=
γ

2
y +

√
β

(
Γ(y)− Ay1−r

β
− y2

4

)

≥ γ

2
y +

√
β

(
Γ(y)− Ay1−r

β
− y2

4

)
≥ γ

2
y +

√
β(Γ− Φinf).

Hence, Φ ≤ Φsup, by the comparison principle. Using these upper bounds in (4.12) yields
the bounds on Φ′′ when y � 1. This concludes the proof. �

4.2. An upper bound on the front location. The first step to proving the upper
bound in Theorem 1.2.(iii) is to build a supersolution of (1.1) with φ, which was con-
structed in Section 4.1. We work in the shifted frame with an increasing delay s(t) to be
determined. Writing

u(t, x+ 2t− s(t)) = νe−xw(t, x),

we see that
wt + ṡ(wx − w) = wxx −Aw(x+ log(1/w))−(r−1).

We use the natural change of variables discussed above (τ = tβ and y = x
tγ ), and define

(4.13) v(τ, y) = w(τ1/β, yτγ/β) and S(τ) = s(τ1/β),

The new function v satisfies

(4.14) βvτ = τ−2vyy + βṠv − βṠτ−
γ
β vy + γτ−1yvy −A(y + τ

− γ
β log(1/v))−(r−1)v.

Finding a supersolution of (4.14) yields an upper bound of u. We set

S(τ) = Θτ −R(τ),

with Θ defined in (4.7) and R chosen in Lemma 4.4.

Lemma 4.4. Fix φ solving (4.6) with θ = Θ and let R0 be any constant. There exists a
C1

loc increasing function R : (0,∞)→ R that is independent of R0, such that R(τ)/τ → 0
as τ →∞, R ≥ 0 on [1,∞), and the function

v(τ, y) = exp {R0 + τ(Θ− φ(y))}
is a supersolution of (4.14) on the domain {(τ, y) : y ≥ 0, τ ≥ 1}.
Proof. We leave R arbitrary and choose it in the sequel. Using (4.6), we compute that

βvτ − τ−2vyy − βṠv + βṠτ
− γ
β vy − γτ−1yvy +A(y + τ

− γ
β log(1/v))−(r−1)v

=
(
βΘ− βφ− |φy|2 + τ−1φyy − βṠ − βṠτ1− γ

β φy + γyφy +A(y + τ
− γ
β log(1/v))−(r−1)

)
v

=
(
βṘ+ τ−1φyy − βṠτ1− γ

β φy +A(y + τ
− γ
β (−R0 − τΘ + τφ))−(r−1) −Ay−(r−1)

)
v.

The rest of the proof is the estimate of the last line. Using convexity, we find

Ay1−r
(

(1 + y−1τ
− γ
β (−R0 − τΘ + τφ(y)))−(r−1) − 1

)
≥ Ay1−r(r − 1)y−1τ

− γ
β (R0 + τΘ− τφ(y)) ≥ −A(r − 1)y−rτ

1− γ
β φ(y).
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Now, applying Proposition 4.1 and use that Ṡ = Θ + Ṙ ≥ Θ yields

τ−1φyy + βṠτ
1− γ

β φy − (r − 1)y−rτ
1− γ

β φ(y)

≥ τ−1
(
−C1[C−1,∞] + C−1y−

1+r
2 1[0,C−1]

)
−Θτ

1− γ
β y

1−r
2

− (r − 1)τ
1− γ

β

(
Cy

1−r
2 1[C−1,∞] + C−1y−r1[0,C−1]

)
≥ −C max

{
τ−1, τ

1− γ
β , τ−

(r−1)2

3−r
}
.

In the last step above, we used Young’s inequality with p = (1 + r)/(r− 1) to absorb the

negative y(1−r)/2 term for small y into the positive y−(1+r)/2 term.
Combining all above estimates, we conclude that

βṘ+ τ−1φyy − βṠτ1− γ
β φy +A(y + τ

− γ
β (−R0 − τΘ + τφ (y)))−(r−1) −Ay−(r−1)

≥ βṘ− C max{τ−1, τ
1− γ

β , τ−
(r−1)2

3−r }.

The proof is then finished by choosing R such that βṘ = C max{τ−1, τ
1− γ

β , τ−
(r−1)2

3−r }. �

We now use Lemma 4.4 to conclude the proof of the upper bound in Theorem 1.2.(iii).

Proof of (1.11). Let v̄ be the supersolution of (4.14) constructed in Lemma 4.4 with R0

to be determined.
First we show that v̄ ≥ v (recall the definition of v in (4.13)). By the comparison

principle, we have that this ordering holds as long as it holds on the parabolic boundary
of the domain P = [1,∞)× (0,∞). There are two components to this: B1 = {1}× (0,∞)
and B2 = [1,∞)× {0}.

We consider the case B1 first. By Lemma 3.1 and the change of variables defining v,
we find, for y ≥ 0,

v(1, y) = ν−1eyu(1, y + 2−Θ +R(1)) ≤ C

(y + 2−Θ +R(1))+ + 1
ey+1− (y+2−Θ−R(1))2

4 .

On the other hand, by Proposition 4.1, we have

v(1, y) = exp {R0 + Θ− φ(y)} ≥ exp
{
R0 + Θ− C − Cy

1+r
2

}
.

It is clear that we may choose R0 sufficiently large so that v(1, y) ≤ v(1, y) for all y ≥ 0.
Next, we consider the case B2. Since u ≤ 1, it follows that v(τ, 0) ≤ ν−1. On the

other hand, v(τ, 0) = eR0 . Hence, after increasing R0 so that eR0 > ν−1, we have
v(τ, 0) ≤ v(τ, 0).

The previous two paragraphs established that v ≤ v on the parabolic boundary of P,
which implies that v ≤ v on P. We now obtain the the bound on the front location using
this inequality.

Fix x0 > 0 to be chosen. We have

lim
t→∞

sup
x≥2t−s(t)+x0

u(t, x) = ν lim
t→∞

sup
x≥x0

e−xw(t, x)

= ν lim
τ→∞

sup

y≥x0τ
− γ
β

e−yτ
γ
β
w(τ

1
β , yτ

γ
β ) = ν lim

τ→∞
sup

y≥x0τ
− γ
β

e−yτ
γ
β
v(τ, y)

≤ ν lim
τ→∞

sup

y≥x0τ
− γ
β

e−yτ
γ
β
v(τ, y) = ν lim

τ→∞
sup

y≥x0τ
− γ
β

e−yτ
γ
β

exp {R0 + τ(Θ− φ(y))}

≤ ν lim
τ→∞

exp {R0 + τΘ} sup

y≥x0τ
− γ
β

e−yτ
γ
β −τφ(y).

(4.15)
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One can estimate

inf
y≥x0τ

− γ
β

(yτ
γ
β + τφ(y))

in the following way. Given that φ is increasing for large y, the infimum is either attained
at y = x0τ

−γ/β or it is attained at a finite value yτ > x0τ
−γ/β. We rule out the latter

now. Indeed, if attained at an interior point yτ , such a point necessarily satisfies φy(yτ ) =

−τ
γ
β
−1

. From (4.6), which implies

(4.16) φy(y) ∼ −
√
Ay

1−r
2 ,

we find yτ ∼ A
1
r−1 τ

− γ
β . Thus, choosing x0 ≥ 2A

1
r−1 , the infimum occurs at the boundary

x0τ
− γ
β as claimed above.

Hence, (4.15) simplifies to:

lim sup
t→∞

sup
x≥2t−s(t)+x0

u(t, x) ≤ ν lim
τ→∞

exp
{
R0 − x0 + τΘ− τφ(x0τ

− γ
β )
}
.

Using again the asymptotics of φy (4.16) to yield φ(y) ∼ Θ− 2
√
Ax

3−r
2 /(3− r), we find

lim sup
t→∞

sup
x≥2t−s(t)+x0

u(t, x) ≤ ν exp

{
R0 − x0 +

2A
1
2

3− r
x

3−r
2

0

}
.

The right hand side clearly tends to zero as x0 →∞. Hence, recalling that Θ = ΘrA
γ by

scaling, the proof is finished.
�

4.3. A lower bound on the front location. We now complete the proof of Theo-
rem 1.2.(iii) by proving the lower bound (1.10). We do so by constructing an appropriate
subsolution of (1.1) using Φ, which was constructed in Section 4.1.

We work in the shifted frame and try to build a sub-solution. Write

u(t, x+ 2t) = νe−xw(t, x).

The function w then satisfies

(4.17) wt = wxx −A (x+ log(1/w))1−r w.

Lemma 4.5. There exists p > 0, ε0 > 0 and a decreasing C1
loc function h, such that

h(2−β) = 0 and, if ε ∈ (0, ε0) the function

w(t, x) = ε
( x
tγ

)p
exp

{
h
(
tβ
)
− tβΦ

(
xt−γ

)}
is a sub-solution of (4.17) on the domain {(t, x), t ≥ 1/2, x ≥ 0}. Further h(t)/t → 0 as
t→∞.

Proof. We use the same change of variables as in Lemma 4.4; that is, letting

z(τ, y) = w(τ1/β, yτγ/β) = εyp exp {h(τ)− τΦ(y)} .

it suffices to show that Lz ≤ 0 where

Lz = βzτ −
γ

τ
yzy −

1

τ2
zyy +A

(
y − τ−

γ
β log z

)1−r
z.
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We now compute L and use that −βΦ + γyΦy − |Φy|2 +Ay1−r = 0 to find

z−1L(z) = βh′(τ)− βΦ− γτ−1p+ γyΦy − τ−2 p(p− 1)

y2
+ 2τ−1 p

y
Φy

+ τ−1Φyy − |Φy|2 +A
(
y − (1 + βτ)

− γ
β [log(z)]

)1−r

= βh′(τ)− γpτ−1 − τ−2 p(p− 1)

y2
+ τ−1

[
2
p

y
Φy + Φyy

]
+A

(
y − τ−

γ
β log(z)

)1−r
−Ay1−r

= βh′(τ) +

[
2
p

y
Φy + Φyy − γp−

p(p− 1)

τy2

]
τ−1 +A

[(
y − τ−

γ
β log(z)

)1−r
− y1−r

]
.

(4.18)

The two bracketed terms in the last line of (4.18) require bounds.
We begin with the first bracketed term. Using Proposition 4.3, we find

2
p

y
Φy + Φyy ≤ −

p

C
y−

r+1
2 + Cp+ C

(
1 + y−

1+r
2

)
.

Choosing p sufficiently large, we find 2 pyΦy + Φyy ≤ C. Choosing h such that h(2−β) = 0

and βh′ = −C/τ yields

(4.19) βh′(τ) +

[
2
p

y
Φy + Φyy

]
τ−1 ≤ 0.

Next, we consider the second bracketed term. Notice that, for τ ≥ 2−β,

− log(z) = log(1/ε)− p log(y)− h(τ) + τΦ(y) ≥ 0.

The last inequality follows, after possibly decreasing ε, from Proposition 4.1 and Propo-
sition 4.3, which imply that Φ(y) ≥ min{C−1, y2/4}. Hence,

(4.20)
(
y − τ−

γ
β log(z)

)1−r
− y1−r ≤ 0.

Using the bound (4.19) and (4.20) in (4.18), we conclude that

z−1L(z) ≤ 0.

which concludes the proof. �

We now conclude the proof of the lower bound in Theorem 1.2.(iii) using Lemma 4.5.

Proof of (1.10). Let w be the function defined in Lemma 4.5 with ε to be determined.
We shift w, letting

wshift(t, x) = w(t− 1/2, x).

This shift allows us to more easily “fit” wshift under w at time t = 1.
We aim to use the comparison principle to show that wshift ≤ w as long as ε is sufficiently

small. Since (4.17) is autonomous, we have that wshift is a subsolution of (4.17) on
P = {(t, x) : t > 1, x > 0}. Hence, we need only check the ordering of wshift and w on the
parabolic boundary of P.

Since u, and thus w, is positive for any positive time, the ordering at x = 0 is straight-
forward for any t ≥ 1. Hence, we need only check the portion of the parabolic boundary
when t = 1. Using Lemma 3.1, we find

w(1, x) = ν−1exu(1, x+ 2) ≥ 1

νC(x+ 3)
ex−

(x+2)2

4
−C(x+2) ≥ 1

νC(x+ 3)
e−

x2

4
−Cx.

On the other hand, we have, using Proposition 4.3,

wshift(1, x) = w(1/2, x) = 2γpεxpe−2−βΦ(x2γ) ≥ 2γpεxpe−2−β (x2γ )2

4 = 2γpεxpe−
x2

2 .
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It follows that, up to decreasing ε, we have wshift ≤ w at t = 1. We conclude that
wshift ≤ w on P from the comparison principle.

This yields a decaying bound beyond the front, so in order to obtain a bound near the
front, we “trace back” with a traveling wave as we did in the proof of (1.8) (see also [27,
Section 3]). As such, we provide only a brief outline.

Fix any ε̄ ∈ (0, 1) and any Θ > Θ. Define Uε̄ analogously as in (3.6) but with −2
replaced by 1− r. Let L > 0 be a constant to be chosen and

u(t, x) = U(x− 2t+ Θtβ + L).

As in the proof of (1.8), u is a subsolution of (1.1) on [t0,∞)× R for some t0 ≥ 1.
Let `(t) be a C1

loc function to be chosen such that `(t) → 0 and `(t)tγ is increasing to
infinity as t → ∞. We show that u ≤ u on P = {(t, x) : t > t0, x < 2t + `(t)tγ} by the
comparison principle. To achieve this, we need only check that u ≤ u on the parabolic
boundary of P. We check this now.

First, we examine the portion of the parabolic boundary of P where t = t0. By
construction lim infx→−∞ Uε̄(x) < 1. Hence, up to increasing t0, we have that

lim inf
x→−∞

u(t0, x) > lim inf
x→−∞

Uε̄(x).

After possibly increasing L, which “shifts” Uε̄ to the left, we find that u(t0, ·) ≤ u(t0, ·)
on (−∞, 2t0 + `(t0)tγ0), as desired.

Next, we check the portion of the parabolic boundary where x = 2t0 + `(t0). Using
Theorem 1.1 and possibly increasing L, we find

u(t, 2t+ `(t)tγ) = Uε̄(`(t)t
γ + Θtβ + L)

≤ exp

{
−`(t)tγ −Θtβ − L+

4

3− r
√
A
(
`(t)tγ + Θtβ + L

) 3−r
2

}
.

(4.21)

On the other hand, using (3.6) and that h is decreasing, we have, for all t ≥ t0,

u(t,2t+ `(t)tγ) = νe−`(t)t
γ
w(t, `(t)tγ) ≥ νe−`(t)tγwshift(t, `(t)t

γ)

= ν

(
`(t)tγ

(t− 1/2)γ

)p
exp

{
−`(t)tγ + h

(
(t− 1/2)β

)
− (t− 1/2)βΦ

(
`(t)tγ

(t− 1/2)γ

)}
≥ 1

C
(`(t))p exp

{
−`(t)tγ + h(tβ)−Θtβ +

1

3− r
√
A`(t)

3−r
2 tβ

}

(4.22)

The last inequality holds as long as `(t0), and thus `(t), is sufficiently small that the
asymptotics of (3.6) hold. Hence, after rearranging (4.21) and (4.22), we have u(t, 2t +
`(t)) ≤ u(t, 2t+ `(t)) as long as

−Θtβ − L+
4

3− r
√
A
(
`(t)tγ + Θtβ + L

) 3−r
2

≤ − log(C)− p log(1/`(t)) + h(tβ)− tβΘ +
1

3− r
√
A`(t)

3−r
2 ,

which, rearranged, is equivalent to

p log(1/`(t))− h(tβ)

tβ
+

√
A

3− r

4

(
`(t) +

Θtβ + L

tγ

) 3−r
2

− `(t)
3−r

2

 ≤ (Θ−Θ
)
+
L− log(C)

tβ
.

Recall that h(tβ)/tβ → 0 as t → ∞ by Lemma 4.5. Hence, such a condition holds if L
is chosen sufficiently large and `(t) is defined to be, say, tβ−γ . We conclude that u ≤ u
on the parabolic boundary of P, and, thus, we find that u ≤ u on P by the comparison
principle.
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We finish the proof by noting that:

lim inf
t→∞

inf
x≤2t−(Θ+2(Θ−Θ))tβ

u(t, x) = lim inf
t→∞

inf
x≤−(Θ−Θ)tβ

u(t, x+ 2t−Θtβ)

≥ lim inf
t→∞

inf
x≤−(Θ−Θ)tβ

u(t, x+ 2t−Θtβ) = lim inf
t→∞

inf
x≤−(Θ−Θ)tβ

Uε̄(x+ L)

= lim inf
t→∞

Uε̄

(
−(Θ−Θ)tβ + L

)
= lim

x→−∞
Uε̄(x).

The last line follows because Uε̄ is decreasing (see Theorem 1.1). The result follows from
the arbitrariness of ε̄, the fact that limx→−∞ Uε̄(x)→ 1 as ε̄→ 0, the arbitrariness of Θ,
and the fact that Θ = ΘrA

γ , observed above. �

5. A technical lemma: the weak small time bounds on u

Proof of Lemma 3.1. For both the upper and lower bounds, we require h satisfying ht =
hxx in (0,∞)× R with the initial data u(0, ·) = u0. We begin with the lower bound.

The lower bound. Let u = h. Clearly u is a subsolution of (3.1) since f ≥ 0. Hence,
by the comparison principle, u ≤ u. Using the heat kernel, we thus find, for any x,

u(t, x) ≥ u(t, x) =

ˆ
e−

(x−y)2

4t

√
4πt

u0(y)dy.

From (1.4), we have ε > 0 such that u0 ≥ ε1(−∞,−1/ε). Hence,

u(t, x) ≥ ε
ˆ −1/ε

−∞

e−
(x−y)2

4t

√
4πt

dy.

If x ≤
√
t, we find

u(t, x) ≥ ε
ˆ −√t− 1

ε

−∞

e−
y2

4t

√
4πt

dy = ε

ˆ −1− 1
ε
√
t

−∞

e−
y2

4

√
4π
dy ≥ ε

ˆ −1− 1
ε

−∞

e−
y2

4

√
4π
dy,

where we used that t ≥ 1. This yields the claim in this case by choosing C sufficiently
large.

If x >
√
t, we instead find

u(t, x) ≥ ε
ˆ ∞
x+1/ε

e−
y2

4t

√
4πt

dy = ε

ˆ ∞
x+1/ε√

t

e−
y2

4

√
4π
dy ≥ ε

ˆ x+1/ε√
t

+
√
t

x+1/ε

x+1/ε√
t

e−
y2

4

√
4π
dy

≥ ε
ˆ x+1/ε√

t
+
√
t

x+1/ε

x+1/ε√
t

e
− (x+1/ε)2

4t
− 1

2
−

√
t

4(x+1/ε)2

√
4π

dy ≥ εe−2

√
4π

√
t

x+ 1
ε

e−
(x+1/ε)2

4t .

The claim is then finished by choosing C sufficiently large depending on ε. This concludes
the proof of the lower bound.

The upper bound. The arguments for the upper bound are similar, except that we
have the upper bound on the initial data:

u0 ≤ 1(−∞,0).

When x ≤
√
t, we have u(t, x) ≤ 1, so we need only consider the case x ≥

√
t.

We construct a supersolution bounding u from above. Indeed, since f(s) ≤ s for
all s ∈ [0, 1], we note that u(t, x) = eth(t, x) is a supersolution of (3.1) as it satisfies
ut = uxx + u. Hence, u ≤ u. It follows that we need only bound u from above. In fact, it
is clear that we only require a bound on h since the integrating factor et is explicit.
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Arguing exactly as above, we find

h(t, x) ≤ 1

ε

ˆ − x√
t

−∞

e−
y2

4

√
4π
dy ≤ 1

ε

ˆ ∞
x√
t

e
− y

4
x√
t

√
4π

dy ≤ 1

ε
√

4π

√
t

x
e−

x2

4t ,

which concludes the proof. �
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