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Computing-In-Memory (CIM) techniques which incorporate analog computing inside 
memory macros have shown significant advantages in computing efficiency for deep 
learning applications. While earlier CIM macros were limited by lower bit precision, e.g. 
binary weight in [1], recent works have shown 4-to-8b precision for the weights/inputs 
and up to 20b for the output values [2, 3]. Sparsity and application features have also 
been exploited at the system level to further improve the computation efficiency [4, 5]. 
To enable higher precision, bit-wise operations were commonly utilized [3, 4]. However, 
there are limitations in existing solutions using the bit-wise operations with SRAM cells. 
Fig. 15.3.1 shows the summary of challenges and solutions in this work. First, all existing 
solutions utilize 6T/8T/10T SRAM as a CIM cell, which fundamentally limits the size of 
the CIM array. In this work, we replace the commonly used SRAM cell with a 3-transistor 
(3T) analog memory cell, referred as dynamic-analog-RAM (DARAM) which represents 
a 4b weight value as an analog voltage. This leads to ~10× reduction in transistor count 
and achieves an effective CIM single-bit area smaller than the foundry-supplied 6T SRAM 
cell. Secondly, as no bit-wise calculation is needed in this work, only single-phase MAC 
operation are performed, removing the throughput degradation associated with previous 
multi-phase approaches and digital accumulation in [3, 4]. Furthermore, analog linearity 
issues are mitigated by highly linear time-based activation, removal of matching 
requirements for critical multi-bit caps [4, 6], and a special read current compensation 
technique. Thirdly, to mitigate the power bottleneck of ADC or SA, this work applies 
analog sparsity-based low-power methods, which include a compute-adaptive ADC 
skipping operation when the analog MAC value is small (or “sparse”) and a special 
weight-shifting technique, leading to an additional ~2× reduction in CIM-macro power. 
We demonstrate the proposed techniques using a 65nm CIM-based CNN accelerator 
showing state-of-art energy efficiency.  
 
Figure 15.3.2 shows the 3T dynamic-analog-RAM (DARAM). Similar to a conventional 
CIM bit cell, the charge drawn to BL_R is proportional to the multiplication of read 
current Imem from the read-access transistor M1 and the time-pulse duration of RE 
through switch M2. A 4b weight is stored as an analog voltage on the internal “MEM” 
node generating a read current proportional to the weight value. Due to the 4b lumped 
analog weight, a 4b MAC operation is realized by a single read of the DARAM, which is 
considerably simpler than prior bit-wise operation approaches. Designed with regular 
logic transistors, the critical read-access transistor M1 is sized with larger W and L to 
reduce device variation. The DARAM cell has an area 1.9× larger than a previous 8T CIM 
cell and 3× larger than a foundry 6T SRAM cell leading to an effective bit area of 47% 
of the 8T CIM cell and 75% of the foundry 6T SRAM cell [3]. During write, write-access 
transistor M3 is used to write the analog voltage from BL_W to the “MEM” node from 
a column-wise DAC with an adjustable voltage range from 0.45-1V. Each write can be 
finished within one clock cycle with a total of 64 clock cycles to write the entire CIM 
macro. Subthreshold and gate leakage are minimized to maintain a constant analog 
voltage during the life cycle of stationary weights for the CNN operation. As shown in 
Fig. 15.3.1, the weight stationary cycles of CNN models (e.g. VGG16 or ResNet18) vary 
from tens of cycles to thousands of cycles for a single image and increase proportionally 
with the batch size, driving the retention requirements for the analog voltage. A special 
3D inter-layer and inter-digit metal capacitor using M1 to M5 interleaving MEM and GND 
nodes vertically and horizontally is added inside each DARAM cell to enhance the storage 
capacitance by 3×. As shown in Fig. 15.3.2, during CNN inference, separate biasing of 
BL_W at 0.8V leads to about a 20× reduction in subthreshold leakage current. This 
allows a retention time of ~41k cycles (for a voltage drift less than half of a single bit) at 
typical corner and more than 5k cycles at a fast corner. As a result, a batch size of 5-to-
40 images can be processed without a rewrite (refresh) operation with negligible 
accuracy loss. For a larger batch size, a 64-cycle DARAM refresh operation is needed at 
every 5.5-to-41k cycles, leading to a throughput overhead of less than 1.2% or a CIM 
macro energy overhead of less than 0.4%. Note for a smaller batch size or CNN layers 
with less stationary weights, refresh is not needed.  
 
Figure 15.3.3 shows the architecture of the CNN accelerator with 4 CIM macros. Each 
CIM macro contains a 64×32 DARAM array. A row-wise digital-time-converter (DTC) is 
used to convert a 4b activation into a time pulse with 50ps resolution. A 5b SAR ADC 
and a 4b current DAC are implemented at each column to provide MAC read-out and 
analog write-in. The design natively supports 4b/4b input/weight operation and can also 
support 8b/8b by combining two DARAM cells and operating in successive two cycles. 
Similar to prior schemes, global SRAMs are used to store weight and input/output 
activation data before being fetched into CIM macro. An ASIC core is used to manage 

data sequencing and pre/post-processing including (a) offsetting of data values due to 
the non-2’s complementary format of weights in comparison with the support of both 
non-2’s and 2’s complement formats in prior works [3, 4]. The offset calculation has 
negligible overhead as it is commonly shared by all the columns; (b) 4-to-8b conversion 
if needed; (c) accumulation at the inter-macro loop similar to [4]. An additional three 
features are introduced in this work: (1) An input-stationary operation mode is 
supported, which is more efficient for later layers in VGG/ResNet. (2) A special analog 
weight shifting technique is introduced where the weights are shifted down whenever 
the weight range in a column is not fully utilized, thereby reducing MAC energy 
consumption which favors lower weight values. The shifted weights are pre-determined 
off-chip according to the weights being used and the associated MAC offsets are added 
back in the ASIC to restore the values. As shown in Fig. 15.3.3, an average of 3b weight 
shifting is achieved, providing a 1.5× energy reduction for MAC operations. (3) Input 
sparsity is leveraged by detecting zero inputs from the ASIC and disabling row-wise DTC 
and the associated MAC operations in the CIM macro.   
 
Figure 15.3.4 presents the ADC skipping technique exploiting “analog sparsity” in MAC 
operations to save the dominant ADC power in the CIM macro. As shown in the 
histogram of the bitline voltage drop, i.e. the analog MAC value, based on the VGG model, 
over 60% of the cases have a bitline voltage drop less than 27% of full swing leading to 
the possibility of merging two or more MAC accumulations without activating the ADC 
and bitline precharge with small accuracy degradation of 0.1-0.4% arising from 
occasional overflow. This differs from [2] which only reduces the ADC conversion steps 
at low MAC values. This work skips the entire ADC operations leading to higher energy 
savings: an average ADC power reduction of 2.4×. In addition, we invoke early 
termination of a MAC operation based on the ReLU function, i.e. the accumulation has 
become negative enough that the sign of accumulation results cannot be flipped by the 
remaining MAC operations. The detection is performed in the ASIC according to a preset 
negative threshold. Combining both approaches, an average of about 2.9× savings can 
be achieved in ADC energy consumption. Figure 15.3.4 also shows a nonlinearity 
compensation scheme, where the nonlinear relationship between the bitline current and 
MEM voltage from the read transistor M1 is compensated by a non-linear analog voltage 
generated from the DAC. As a result, a highly linear Imem vs. weight is achieved. 
 
A 65nm CMOS test chip was fabricated to demonstrate the DARAM in a CNN accelerator 
running at 105MHz at 1V. Calibration was performed to remove variation impacts, e.g. 
ADC, DAC offset, etc. by adding small offsets in the ASIC. As shown in the measurement 
results in Fig. 15.3.5, a retention time of up to 0.36ms (38k cycles) without refresh was 
observed with negligible accuracy degradation supporting a batch size of 37 images in 
VGG16. With larger batch size, the refresh operations incurred up to 0.17% throughput 
overhead. The ADC skipping scheme brings a 65% saving of ADC energy with less than 
0.4% accuracy impact using a 27% of the bitline full swing as the skipping threshold. 
Combining all sparsity features, the macro power was reduced by 2.1×, on average, for 
the VGG16 model. The CNN accelerator was measured from 1.1V down to 0.85V 
showing a system efficiency from 29TOPS/W to 37TOPS/W without sparsity 
enhancement. A comparison with prior work is shown in Fig. 15.3.6. Compared to the 
closest system implementation in [4], at 4b weight/input operation, an 8× system energy 
efficiency improvement at 44.7TOPS/W is achieved along with 3× area reduction in 
macro size. Overall, this work achieves a macro efficiency of 217TOPS/W at 4b, which 
is 3× higher than those reported in closer technologies and is only 32% lower than that 
reported in a recent 7nm technology. In addition, the effective bit cell area is smaller 
than the foundry-supplied 6T SRAM. Figure 15.3.7 shows the die photo and additional 
information. 
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Figure 15.3.1: Challenges of existing computing-in-memory designs and proposed 
area and energy-efficient solutions using 3T dynamic analog RAM.

Figure 15.3.2: Design of 3T dynamic analog memory cell with internal 3D metal 
capacitor, area comparison with prior CIM cell and simulated leakage/retention 
performance versus write bitline bias.

Figure 15.3.3: CIM macro design and CNN accelerator architecture with sparsity 
management.

Figure 15.3.5: Measurements results on memory retention time, weight refresh 
overhead, power improvements through sparsity techniques, ADC skipping Vth 
impact, voltage-frequency scaling, and MAC linearity. Figure 15.3.6: Comparison table.

Figure 15.3.4: Compute-adaptive ADC skipping techniques and nonlinearity 
compensation using non-linear analog memory voltages.
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Figure 15.3.7: Die micrograph.


