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ABSTRACT
With the trend to deploy Deep Neural Network (DNN) inference
models on edge devices with limited resources, quantization tech-
niques have been widely used to reduce on-chip storage and im-
prove computation throughput. However, existing DNN quantiza-
tion work deploying quantization below 8-bit may be either suf-
fering from evident accuracy loss or facing a big gap between the
theoretical improvement of computation throughput and the prac-
tical inference speedup.

In this work, we propose a general framework, called FILM-QNN,
to quantize and accelerate multiple DNNmodels across different em-
bedded FPGA devices. First, we propose the novel intra-layer, mixed-
precision quantization algorithm that assigns different precisions
onto the filters of each layer. The candidate precision levels and
assignment granularity are determined from our empirical study
with the capability of preserving accuracy and improving hardware
parallelism. Second, we apply multiple optimization techniques for
the FPGA accelerator architecture in support of quantized computa-
tions, including DSP packing, weight reordering, and data packing,
to enhance the overall throughput with the available resources.
Moreover, a comprehensive resource model is developed to balance
the allocation of FPGA computation resources (LUTs and DSPs)
as well as data transfer and on-chip storage resources (BRAMs) to
accelerate the computations in mixed precisions within each layer.
Finally, to improve the portability of FILM-QNN, we implement
it using Vivado High-Level Synthesis (HLS) on Xilinx PYNQ-Z2
and ZCU102 FPGA boards. Our experimental results of ResNet-18,
ResNet-50, and MobileNet-V2 demonstrate that the implementa-
tions with intra-layer, mixed-precision (95% of 4-bit weights and 5%
of 8-bit weights, and all 5-bit activations) can achieve comparable
accuracy (70.47%, 77.25%, and 65.67% for the three models) as the
8-bit (and 32-bit) versions and comparable throughput (214.8 FPS,
109.1 FPS, and 537.9 FPS on ZCU102) as the 4-bit designs.
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1 INTRODUCTION
As DNNs have achieved a great success in various domains, they
are increasingly deployed for inference on edge devices such as
embedded FPGAs and ASICs. The growing amount of parame-
ters and computations with complicated DNN architectures makes
model compression an essential procedure for DNN acceleration on
these edge devices, where the computation and storage resources
are scarce. As one type of the key model compression techniques,
model quantization has been broadly investigated at both algorithm-
level [2–4, 6–10, 12, 17, 18, 22–26, 29, 34, 36, 39, 40, 44, 45, 49, 51, 54–
56] and hardware-level [5, 14–16, 20, 28, 30–32, 35, 42, 43, 48, 52]
to improve the inference throughput with the available resources.

Unfortunately, few studies have concentrated on both main-
taining the model accuracy and enhancing the hardware com-
putation throughput simultaneously. On one hand, many prior
studies [6, 7, 18, 24, 25, 36, 56] achieve high throughput with low-
precision (below 8-bit) quantization like binary, ternary, and 4-
bit fixed-point quantization. However, the loss in their model ac-
curacy becomes non-negligible. On the other hand, several stud-
ies [7, 20, 24, 36, 56] attempt to mitigate the accuracy loss by adopt-
ing inter-layer, mixed-precision quantization, i.e., assigning differ-
ent precisions for different layers. This nonetheless leads to low
hardware efficiency, since different layers of the inference now
utilize different types of resources and they execute sequentially
layer by layer. For example, on an FPGA platform, the first and last
DNN layers with higher precision would mainly consume DSPs
whereas middle DNN layers with lower precision would rely on
look-up tables (LUTs). As a result, during the execution of one DNN
layer, either DSPs or LUTs remain almost idle.
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To achieve both high inference throughput and high model accu-
racy, we design and implement FILM-QNN, a general and resource-
efficient FPGA acceleration framework for Intra-Layer, Mixed-
Precision Quantized DNNs. This is based on the observation that
intra-layer, mixed-precision quantization, i.e., mixing higher preci-
sion and lower precision within each layer, has the potential to not
only preserve the model accuracy but also better utilize all types of
FPGA resources for concurrent computations, since computations
with different precisions within a layer run simultaneously.

In FILM-QNN,we first propose a novel intra-layer, mixed-precision
quantization algorithm that combines a majority of low precision
(e.g., 95% of 4-bit) weights with a minority of high precision (e.g.,
5% of 8-bit) weights within each layer, together with moderate
precision (e.g., 5-bit) activations. To provide enough hardware par-
allelism, during the DNN training, we assign different precisions
to the weights at the filter granularity, where weights potentially
leading to high quantization errors are assigned with high pre-
cision. Second, for the FPGA accelerator design, we pipeline the
accelerator with parallelization along the input channel and output
filter dimensions, and employ multiple optimization techniques for
quantized computations to improve the computation throughput.
These optimizations include 1) DSP packing that efficiently packs
multiple low-precision operations to share a single DSP, 2) weight
reordering that arranges weights with the same precision together
in each tile to eliminate the indexing overhead, and 3) data packing
that packs multiple low-precision weights (or activations) to widen
their data width, and so to save the on-chip storage and improve the
data access parallelism. Finally, we build a comprehensive model
to explore the FPGA resource allocation—including computation
resources such as DSPs and LUTs, and on-chip memory such as
Block RAMs (BRAMs)—to accelerate the computations with differ-
ent precisions concurrently for an optimized overall throughput.

To demonstrate the portability of FILM-QNN, we have developed
it with Xilinx Vivado High-Level Synthesis (HLS), and evaluated
ResNet-18, ResNet-50, and MobileNet-V2 models on two embed-
ded FPGA boards, Xilinx PYNQ-Z2 and ZCU102. Our optimized
implementations—with 95% 4-bit and 5% 8-bit intra-layer, mixed-
precision quantization—achieve comparable accuracy (70.47%, 77.25%,
and 65.67% for the three models, respectively) to the pure 8-bit pre-
cision and original 32-bit full-precision designs, and comparable
throughput (27.8 FPS (frames per second), 13.3 FPS, and 132.3 FPS
on PYNQ-Z2, and 214.8 FPS, 109.1 FPS, and 537.9 FPS on ZCU102)
to the pure 4-bit precision designs.

2 RELATEDWORK
2.1 DNN Model Quantization
Model quantization is a crucial technique for DNN inference acceler-
ation on edge devices such as embedded FPGAs and ASICs. Indeed,
industry has already widely adopted the 8-bit quantization that
can achieve almost the same inference accuracy of 32-bit floating-
point based DNN models. Here we mainly discuss quantization
techniques that use lower than 8-bit precision.

2.1.1 Uniform Extreme Low-Precision Quantization. Uniform ex-
treme low-precision quantizationmainly includes binary and ternary
quantization, where each network value only takes one or two bits.

Binary quantization maps values to {−1, +1} represented using a
single bit. Representative works include Binaryconnect [6], Bina-
rized Neural Network (BNN) [7], XNOR-net [36], and ABC-Net [25].
On the other hand, ternary quantization in TWN [24], TTQ [56],
and [18] uses zero as one more quantization level than the binary
quantization, using two bits to represent values {−1, 0, +1}. How-
ever, the drawback of these uniform low-precision quantization
methods is that they suffer from big accuracy loss at > 5% and
2%–3% for the binary quantization and ternary quantization.

2.1.2 Inter-Layer, Mixed-Precision Quantization. In previous work
with low-precision quantization, a common practice to maintain
the model accuracy is leaving the first and last layer unquantized,
or quantizing them with no fewer than 8 bits [6, 17, 18, 37]. Later
work [8, 9, 39, 40, 44, 45, 49] explored inter-layer, mixed-precision
quantization methods to improve the quantization accuracy, which
assign different precisions to different network layers. Different
methods/algorithms have been utilized to explore the vast search
space generated by layer-wise precision assignment of weights
and activations, such as HAQ [44], DNAS [45], Mixed Precision
DNNs [40]. Furthermore, HAWQ [9], HAWQ-V2 [8], PyHessian [49]
and Q-BERT [39] solve Hessian matrices to find the optimized bit-
width assignment of each layer, adding more bits to layers sensi-
tive to the quantization errors. One major issue with inter-layer,
mixed-precision quantization is that it could lead to low hardware
efficiency, as explained in Section 1 and evaluated in Section 4.

2.1.3 Intra-Layer, Mixed-Precision Quantization. To further elabo-
rate on the concept of mixed-precision quantization, several stud-
ies [26, 34] explore intra-layer, mixed-precision quantization to
enable different precisions or schemes within each layer. For ex-
ample, RVQuant [34] proposes value-aware quantization, which
only applies low precision quantization to small data in weights
and activations and achieves better model accuracy. However, it
cannot reach remarkable inference speedups compared with the
uniform low-precision quantization. AutoQ [26] utilizes reinforce-
ment learning to determine the quantization precisionwithin kernel
level, which is computationally expensive.

In this paper, we focus on the intra-layer, mixed-precision quan-
tization and further explore its potential to improve the hardware
efficiency. Unlike prior studies, our goal is to both preserve the
model accuracy and improve the inference throughput.

2.2 FPGA Acceleration of Quantized DNNs
In ASIC designs, dynamic quantization with bit fusion [38] and
stripes bit-serial units [21] improve the bit-level flexibility by match-
ing different bit-widths across DNN layers. Likewise, model quan-
tization has been widely adopted into DNN implementations on
FPGAs [14]. Most of existing studies focus on binary quantization,
executing computations of binarized weights and activations with
XNOR gates [16, 30, 31, 41, 53]. The work in [20] utilizes a two-
stage arithmetic unit realized by LUTs for 2-bit quantization, while
preserving 8-bit data for the first convolutional layer. Power-of-
two (PoT) quantized model deployment is investigated in [28] with
LUTs for shift-accumulation operations.

More approaches have been explored for fixed-point quantiza-
tion, such as mixed-precision quantization in [43] for inter-layer



mixed weight bit-widths (1, 2, 4, or 8 bits), software-hardware co-
design for 1-bit weights and 4-bit activations in [48], greedy solution
in [15] to determine the radix position of each layer, and automatic
generation of RTL DNN components in [52] for higher precision
(8 and 16 bits). The OpenCL-based deep learning accelerator in [5]
can accommodate DNNs with a wide range of bit-widths.

Unlike these prior studies, our work focuses on the FPGA acceler-
ation of DNNs using the intra-layer, mixed-precision quantization,
with the goal to accelerate the inference throughput and preserve
the model accuracy. This is essential considering that it is often not
possible to map the entire model (i.e., all layers) of large DNNs for
on-chip processing simultaneously. The closest work to ours is the
one in [2], which uses mixed quantization schemes (fixed-point and
power-of-two quantizations) whereas we use mixed-precision (high
and low bit-width) quantization within each layer. Moreover, we
apply multiple optimization techniques for low-precision computa-
tions on FPGAs and develop a comprehensive model to balance the
FPGA resource allocation in this work. A quantitative comparison
to [2] will be presented in Section 4.4.

In close association with model quantization, a balanced re-
source utilization is also indispensable for FPGA implementations
to achieve high computation throughput. For example, a design
space exploration framework presented in [35] investigates archi-
tectural choices with various resource allocation of DSPs, on-chip
memory and off-chip bandwidth to maximize the performance for
DNN designs with 16-bit fixed-point precision. However, it lacks
analysis for the LUT usage; as such, the computation for quan-
tization bit-width below 11 is always implemented in LUTs. For
quantization models with low precision (i.e., less than 8-bit), this
approach would result in under utilization of DSPs on FPGAs. In
our work, we model the computation using both LUTs and DSPs
(as well as on-chip memory and off-chip bandwidth), with the goal
to balance the resource allocation between different precisions and
utilize all tyes of resources simultaneously. Moreover, we also apply
the DSP packing technique as described in [32, 42, 46, 47] to fully
utilize DSPs for efficient computation of low-precision operands.

3 PROPOSED FILM-QNN FRAMEWORK
3.1 Accurate and Hardware-Friendly

Intra-Layer, Mixed-Precision Quantization
Mixed-precision quantization has been extensively explored for
preserving the accuracy of quantized models, while reducing the
computation amount to accelerate inference. However, the existing
inter-layer approaches [8, 9, 39, 40, 44, 45, 49] assign different pre-
cisions onto the layers of a DNN, and therefore are not compatible
with the layer-by-layer inference execution on hardware platforms.
On the other hand, the existing intra-layer approaches [26, 34] use a
much finer granularity for precision assignment within layers, and
also incur execution overhead for DNN inference. Therefore, there
exists a big gap between the (theoretical) reduction of computation
amount and the (practical) inference speedup.

Our intra-layer, mixed-precision quantization is motivated from
the following observations: 1) It is well known that the 8-bit quan-
tized inference models can easily preserve the accuracy as the
full-precision models [13]. 2) The accuracy drop caused by a low
bit-width quantization can be mitigated when mixing with a high

bit-width quantization in a certain ratio. Here, 8-bit quantization
can serve as the high bit-width one, due to its superior accuracy
performance. This is why even in uniform low bit-width quantiza-
tion approaches [3, 4, 10, 12, 17, 22, 55], the first and last layers are
quantized into no fewer than 8-bit or even left without quantization.

Spurred by the above observations, we propose our novel intra-
layer, mixed-precision quantization. Specifically, we propose to
combine the low and high bit-width quantization within layers and
in a proper granularity to preserve accuracy as well as to reduce
execution overhead during the layer-by-layer inference computa-
tions. Note that it is often not possible to map the entire model of
large DNNs onto an FPGA and execute all layers simultaneously.
We set the granularity of intra-layer quantization assignment down
to the filter level to ensure hardware parallelism. Additionally, we
use a moderate bit-width quantization for all the activations in the
whole DNN model as a proper choice for preserving accuracy.

In summary, according to our empirical study (with results pre-
sented in Section 4.2), we adopt a total of three precision levels in
our intra-layer, mixed-precision quantization approach: (I) a low
bit-width (4-bit) for majority of the filters in a layer, (II) a high bit-
width (8-bit) for 𝑅 = 5% of the filters in a layer, and (III) a moderate
bit-width (5-bit) for all the activations throughout the model, to
preserve accuracy and to reduce execution overhead for inference
acceleration. In Section 4.2, we will explore the impact of different 𝑅
values (i.e., the percentage of high bit-width filters) on the accuracy.

Algorithm 1 shows our novel intra-layer, mixed-precision quan-
tization approach for quantizing the model to satisfy the above-
mentioned three bit-width constraints (I), (II), and (III). Specifically,
to determine the precision assignment for the filters (rows) in the
weight tensor (matrix) of each convolutional (fully-connected) layer,
we propose to calculate the quantization error E. In Algorithm 1,
the proposed precision assignment process is integrated with the
Straight Through Estimator (STE) [1, 2, 55], a quantization-aware
training method. Details of our approach are provided as follows.

Consider an 𝐿-layer DNN with both convolutional and fully-
connected layers. The weight tensor (matrix) of the 𝑙-th layer is
denoted asW𝑙 . The activation of the 𝑙-th layer is denoted by A𝑙 . We
useW𝑘

𝑙
to denote the 𝑘-th filter (row) in the weight tensor (matrix)

W𝑙 . With𝑚-bit fixed-point quantization, the quantized weight and
activation values are derived from

V(𝑚) = ±𝛼 × {0, 1
2𝑚−1 − 1 ,

2
2𝑚−1 − 1 , . . . , 1}, (1)

where 𝛼 is the scaling factor. For weight quatization, 𝛼 is calculated
as the maximum absolute value of all weights in each layer, while
for activation quantization, 𝛼 is a fixed value related to the dataset.
Then the quantizer function from a original floating-point value 𝑥
to an𝑚-bit fixed-point value 𝑥 is expressed as

𝑥 = Q𝑚b (𝑥) = 𝛼 · ℎ−1
(

1
2𝑚 − 1 · round

(
(2𝑚 − 1) · ℎ

(
⌈𝑥, 𝛼 ⌋

) ) )
, (2)

where ℎ(·) shifts a value within [−1, +1] into the range of [0, 1]
(e.g., ℎ(𝑥) = 𝑥/2 + 0.5), and ⌈𝑥, 𝛼⌋ clips 𝑥 by

⌈𝑥, 𝛼⌋ =


−1, 𝑥 < −𝛼
𝑥/𝛼, −𝛼 ≤ 𝑥 ≤ 𝛼
1, 𝑥 > 𝛼

. (3)



Algorithm 1: The proposed novel intra-layer, mixed-
precision quantization
input :A DNN modelM in 32-bit floating-point, with the 𝑙-th

layer weight tensorW𝑙 (1 ≤ 𝑙 ≤ 𝐿) ;
The target ratio 𝑅 for High bit-width weights;

output :The quantized model M̂, where each layer has 1 − 𝑅 of the
filters in Low bit-width quantization QLb and 𝑅 of the
filters in High bit-width quantization QHb, and all the
activations are in Moderate bit-width quantization QMb;

1 foreach epoch do
2 foreach batch do

// forward propagation

3 foreach layer 𝑙 do
// calculate quantization error for each

filter in Low bit-width quantization at
first batch of every epoch

4 foreach filter W𝑘
𝑙
in W𝑙 do

5 quan_error𝑘 ← E(W𝑘
𝑙
, Ŵ𝑘

𝑙
) in QLb;

// assign quantization precision for each

filter in the layer

6 foreach filter W𝑘
𝑙
in W𝑙 do

7 Ŵ𝑘
𝑙
← QHb (W𝑘

𝑙
) if quan_error𝑘 belongs to the

top 𝑅 (5%) group;
8 Ŵ𝑘

𝑙
← QLb (W𝑘

𝑙
) otherwise;

9 A𝑙 ← Ŵ𝑙 · Â𝑙−1;
// activations are quantized in Moderate

bit-width

10 Â𝑙 ← QMb (A𝑙 ) ;
// backward propagation

11 foreach layer 𝑙 (reverse order) do
12 𝜕𝐿𝑜𝑠𝑠

𝜕W𝑙
← 𝜕𝐿𝑜𝑠𝑠

Ŵ𝑙
;

13 𝜕𝐿𝑜𝑠𝑠
𝜕𝑖𝑛𝑝𝑢𝑡𝑙

← 𝜕𝐿𝑜𝑠𝑠

Â𝑙−1
;

14 Return M̂ ← M{Ŵ}.

We propose the quantization error of a filterW𝑘
𝑙
as:

E
(
W𝑘

𝑙
, Ŵ𝑘

𝑙

)
= ∥W𝑘

𝑙
· Â𝑙−1 − Ŵ𝑘

𝑙
· Â𝑙−1 ∥2 (4)

where ∥ · ∥2 means the 𝐿2 norm. The quantization error measures
the difference between output feature maps generated by the full-
precision filter and those by the quantized filter. To assign precision
for each filter in a layer, we calculate their quantization errors as if
they are quantized in Low bit-width (line# 4−5). If the quantization
error of a filter belongs to the top 𝑅 (e.g., 5%) group, this filter should
be quantized in High bit-width; otherwise, it should be quantized
in Low bit-width (line# 6− 8). As seen in Algorithm 1, our precision
assignment process (line# 4 − 8) is nested within the STE method,
which uses roundedweights/activations in the forward propagation,
and solves the unavailable gradient issue during the backward
propagation by setting the derivative of rounding function as 1.

3.2 FPGA Accelerator Design and Optimization
Our base FPGA accelerator design is similar to [50] with the sup-
port of various types of DNN layers including convolutional layer,
fully-connected layer, batch normalization layer, activation (ReLU)
layer, and pooling layer, as well as skip connection (namely identity

Algorithm 2: Tiled convolution accelerator
input : Input tile 𝐼 with size of𝑇𝑛 ×𝑇 𝑖𝑛

𝑟 ×𝑇 𝑖𝑛
𝑐

Weight tile𝑊 with size of𝑇𝑚 ×𝑇𝑛 ×𝐾𝑟 ×𝐾𝑐
output :Output tile𝑂 with size of𝑇𝑚 ×𝑇𝑟 ×𝑇𝑐
// Notations of 𝑇𝑚 (𝑇𝑛), 𝑇𝑟 (𝑇𝑐), 𝑇

𝑖𝑛
𝑟 (𝑇 𝑖𝑛

𝑐 ), 𝐾𝑟 (𝐾𝑐),

and 𝑆𝑟 (𝑆𝑐) are defined in Table 1.

// Input tile 𝐼 and output tile 𝑂 are obtained from

activations 𝐴𝑙−1 and 𝐴𝑙, respectively.

1 Convolution(𝐼 ,𝑊 ,𝑂) {
2 for (𝑘𝑟 = 1 : 𝐾𝑟 , 𝑘𝑐 = 1 : 𝐾𝑐 ) // kernel

3 L1: for (𝑡𝑟 = 1 : 𝑇𝑟 , 𝑡𝑐 = 1 : 𝑇𝑐 ) { // feature map

4 #PIPELINE II=1
5 L2: for (𝑡𝑚 = 1 : 𝑇𝑚 ) { // filter

6 #UNROLL
7 L3: for (𝑡𝑛 = 1 : 𝑇𝑛 ) { // input channel

8 #UNROLL
9 𝑂 [𝑡𝑚 ] [𝑡𝑟 ] [𝑡𝑐 ] + =

10 𝑊 [𝑡𝑚 ] [𝑡𝑛 ] [𝑘𝑟 ] [𝑘𝑐 ] × 𝐼 [𝑡𝑛 ] [𝑡𝑟 ×𝑆𝑟 +𝑘𝑟 ] [𝑡𝑐 ×𝑆𝑐 +𝑘𝑐 ];
11 }}}}

shortcut connection). For FILM-QNN, we introduce the extra opti-
mizations for quantized computations in this subsection, including
DSP packing, weight reordering, and data packing.

Base FPGA Accelerator. Without loss of generality, we use the
most computation-intensive convolutional layer to demonstrate
our FPGA design details. Given the limited FPGA resources, we
apply the commonly used tiling technique in the accelerator imple-
mentation, where the accelerator only computes for a single tile of
input feature maps, weight kernels, and output feature maps from
a layer at a time. Algorithm 2 provides the pseudo code of the tiled
convolution accelerator design. Details are explained as follows.

We use 𝑇𝑚 (𝑇𝑛), 𝑇𝑟 (𝑇𝑐 ), 𝑇 𝑖𝑛𝑟 (𝑇 𝑖𝑛𝑐 ), 𝐾𝑟 (𝐾𝑐 ) and 𝑆𝑟 (𝑆𝑐 ) to denote
the dimensionalities of the tiled convolution procedure with expla-
nations provided in Table 1. The tiles of input feature maps and
weights are loaded from off-chip memory to on-chip Block RAM
(BRAM) buffers in a burst mode, and then processed by the tiled
convolution procedure (Algorithm 2), which computes the tile of
corresponding output feature maps. Lastly, the output tile data on
BRAM is written back to the off-chip memory in a burst mode.

Inside the tiled convolution procedure (Algorithm 2), Loop L1
is pipelined with initial interval (II) of 1 to achieve computation
parallelism of 𝑇𝑚 × 𝑇𝑛 in Loops L2 (filter, or output channel di-
mension) and L3 (input channel dimension). The buffered tiles (in
BRAMs) are partitioned in the corresponding dimensions to sup-
port the parallelism: the input tile 𝐼 is completely partitioned along
the first dimension (input channel dimension), the output tile 𝑂 is
completely partitioned along the first dimension (filter dimension),
and the weight tile 𝐼 is completely partitioned along the first and
second dimensions (both filter and input channel dimensions). In
addition, double buffering is applied to pipelining the following
stages: loading input and weight tiles, computing the convolution,
and storing the output tile.

3.2.1 DSP Packing for Multiple Quantized Multiplications. To fully
exploit the potential of DSP resources on FPGAs, we pack multiple
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Figure 1: Multiple quantized multiplications supported on a single DSP48E1. (a) The 25 × 18-bit multiplication supported on
DSP48E1; (b) Two 8 × 5-bit multiplications packed on DSP48E1; and (c) Four 4 × 5-bit multiplications packed on DSP48E1.

Table 1: Notations used in FILM-QNN

Notation Description

𝑇𝑚 (𝑇𝑛 ) Tiling size in output (input) channel dimension
𝑇𝑟 (𝑇𝑐 ) Tiling size in output feature height (width) dimension
𝑇 𝑖𝑛
𝑟 (𝑇 𝑖𝑛

𝑐 ) Tiling size in input feature height (width) dimension
𝐾𝑟 (𝐾𝑐 ) Kernel size in height (width) dimension
𝑆𝑟 (𝑆𝑐 ) Stride in height (width) dimension

𝐶
4×5,𝑑𝑠𝑝
𝑙𝑢𝑡

(𝐶8×5,𝑑𝑠𝑝
𝑙𝑢𝑡

)
Number of LUT used by a 4 × 5-bit (or 8 × 5-bit)
multiplication executed on DSPs

𝐶4×5
𝑑𝑠𝑝

(𝐶8×5
𝑙𝑢𝑡

) Number of DSP (LUT) used by multiplications
executed on DSPs (LUTs)

𝐺 Number of low-bit data packed together

𝑁 4×5
𝑑𝑠𝑝

(𝑁 8×5
𝑙𝑢𝑡

) Number 4 × 5-bit (8 × 5-bit) multiplications
executed on DSPs (LUTs)

𝑆𝑑𝑠𝑝 (𝑆𝑙𝑢𝑡 , 𝑆𝑏𝑟𝑎𝑚 ) Available number of DSPs (LUTs, BRAMs)
𝛾𝑑𝑠𝑝 (𝛾𝑙𝑢𝑡 ) DSP (LUT) utilization threshold
𝐵𝑖𝑛 (𝐵𝑜𝑢𝑡 , 𝐵𝑤𝑔𝑡 ) Number of BRAMs used by input (output, weight) tile

𝑝𝑖𝑛 (𝑝𝑜𝑢𝑡 , 𝑝𝑤𝑔𝑡 )
Number of AXI ports used for data transfer of
input (output, weight) tile

𝐶𝑐𝑚𝑝𝑡 (𝐶𝑤𝑔𝑡 ,𝐶𝑖𝑛 )
Number of computation (weight transfer, input
transfer) cycles for one group of tiles

𝑆𝑝𝑜𝑟𝑡 Size of one AXI port on FPGA

low-precision multiplications within each DSP following [46, 47].
Each DSP (DSP48E1) on the PYNQ-Z2 board can handle one 25×18-
bit multiplication (and one 25-bit addition), whereas each DSP
(DSP48E2) on the ZCU102 board could handle one 27 × 18-bit mul-
tiplication. We take the DSP48E1 (25 × 18-bit) as an example to
describe our DSP packing technique. In our FILM-QNN, we adopt
two precisions for weights, i.e., 4-bit and 8-bit, and one precision
for activations, i.e., 5-bit. Therefore, we need to support two types
of multiplications i.e., 4 × 5-bit and 8 × 5-bit. As shown in Fig. 1(a),
a DSP48E1 can support the computation of 𝑃 = (𝐴 +𝐷) × 𝐵, where
both𝐴 and𝐷 are 25-bit operands, 𝐵 is an 18-bit operand, and the 𝑃 is
the 43-bit output. As shown in Fig. 1(b) and Fig. 1(c), a DSP48E1 can
support two 8×5-bit multiplications or four 4×5-bit multiplications.

To pack two 8 × 5-bit multiplications in a DSP48E1, shown in
Fig. 1 (b), two 5-bit activations𝑋1 and𝑋2 are presented in the 25-bit

operand 𝐴, occupying the bits [4 : 0] and [18 : 14], and one 8-bit
signed weight𝑊 is presented in the 18-bit operand 𝐵 occupying
its bits [7 : 0], where [$] denotes the sign of the weight. The two
13-bit multiplication results can be extracted from the bits [12 : 0]
and [26 : 14], respectively, in the 43-bit product 𝑃 of the DSP. The
bit [13] in the product 𝑃 is reserved for overflow. To reduce the
LUT consumption for additions, only lower bits of these operands
and output are occupied.

To pack four 4 × 5 multiplications in a DSP48E1, shown in Fig. 1
(c), two 4-bit signed weights𝑊1 and𝑊2 are presented in the 25-bit
operands, occupying the bits [4 : 0] of operand 𝐴 and [23 : 20]
of operand 𝐷 to properly extend and carry the sign bits of the
weights, while two 5-bit activations 𝑋1 and 𝑋2 are presented in
the 18-bit operand 𝐵, occupying its bits [4 : 0] and [14 : 10]. Four
9-bit products are generated in the bits [8 : 0], [18 : 10], [28 : 20],
and [38 : 30] of the 43-bit product 𝑃 of the DSP. Similarly, a bit for
overflow is reserved between the generated four products.

While we illustrate the DSP packing on Xilinx FPGAs, similar
techniques can also be performed on Intel FPGAs that have 18× 18-
bit and 27 × 27-bit fixed-point DSPs [19].

3.2.2 Weight Reordering to Reduce Indexing Overhead. Our intra-
layer, mixed-precision quantization algorithm determines which
(output) filters in a layer to assign 8-bit quantization. However, the
𝑅 = 5% of High-bit (8-bit) filters may be distributed irregularly over
the whole layer, as shown in the left part of Fig. 2. Since the 4-bit
and 8-bit computations are processed separately (and concurrently)
by different compute engines, this could result in the (random)
indexing overhead to access these 8-bit and 4-bit filters in these
compute engines. To reduce such indexing overhead, we propose
the weight reordering technique as shown in Fig. 2. Suppose a layer
has a total of𝑀 filters, which are divided into multiple weight tiles,
each covering 𝑇𝑚 filters. For each weight tile, we reorganize the
filter ordering such that the first 𝑅 · 𝑇𝑚 filters are preserved for
8-bit quantized ones, and the rest filters in the tile are for 4-bit
quantized ones. Correspondingly, the parameters in the subsequent
batch normalization layer and the input channels in the next layer
are rearranged with the same order as the filters in this layer.
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Figure 2: Weight filter reordering after quantization. Each
filter (block in the figure) has three dimensions with total
size of 𝑇𝑛 × 𝐾𝑟 × 𝐾𝑐 .

This weight reordering technique is applied in compilation time
before running the DNN inference on hardware, which eliminates
the indexing overhead for layers that are sequentially connected.
A special case is for the layers with skip connections, where the
filters in the two skip-connected layers 𝑙𝑎 and 𝑙𝑏 might be reordered
differently. This could be handled by storing the filter order of
layer 𝑙𝑎 relative to that of reordered layer 𝑙𝑏 , and adjusting the
filter order when loading the activation outputs of layer 𝑙𝑎 for
addition operations with those of layer 𝑙𝑏 . Considering all filters
in all layers, our weight reordering technique could reduce the
indexing overhead from 67.97 kbit to 27.75 kbit (2.45×) for ResNet-
18, from 323.0 kbit to 198.8 kbit (1.62×) for ResNet-50, and from
211.6 kbit to 9.28 kbit (22.8×) for MobileNet-V2.

3.2.3 Data Packing to Reduce Storage and Improve Parallelism. The
low-precision data access in FILM-QNN (i.e., 4-bit and 8-bit for
weights, and 5-bit for activations) could lead to the under-utilization
of BRAM capacity and over-use of the BRAMbanks (for parallel port
access), since the bit-width of a BRAM bank (18k bits) is much wider.
To save the on-chip BRAM usage and improve the data access paral-
lelism on hardware, we apply the data packing optimization to pack
multiple low-precision data items into one wide data item. The data
packing size𝐺 is determined according to the available computation
and memory resources on a specific FPGA board. As a result, we
can save the BRAM usage and improve the on-chip bandwidth by𝐺
times when 𝐺 is no larger than 𝐵𝑅𝐴𝑀_𝑏𝑖𝑡_𝑤𝑖𝑑𝑡ℎ/𝑙𝑜𝑤_𝑏𝑖𝑡_𝑤𝑖𝑑𝑡ℎ.
In addition, this also improves the effective off-chip memory band-
width by 𝐺 times [27] since each off-chip memory access port is
64-bit wide on PYNQ-Z2 board and 128-bit wide on ZCU102 board.
Note this data packing can be applied to Intel FPGAs as well.

For the input and output tiles, 𝐺 channels of 5-bit activation
values are packed as one. For the input tile 𝐼 , the𝑇𝑛×𝑇 𝑖𝑛𝑟 ×𝑇 𝑖𝑛𝑐 values
in 5-bit representation are stored as𝑇𝑛/𝐺×𝑇 𝑖𝑛𝑟 ×𝑇 𝑖𝑛𝑐 data in 5 ·𝐺-bit
representation. Similarly, the output tile𝑂 have𝑇𝑚/𝐺 ×𝑇𝑟 ×𝑇𝑐 data
in 5·𝐺-bit. As for the weight tile𝑊 , the data packing is performed in
the input channel dimension. Combining every two 4-bit weights
into one 8-bit weight, the buffer stores 𝑇𝑤𝑔𝑡𝑚 × 𝑇𝑛/𝐺 × 𝐾𝑟 × 𝐾𝑐
data in 8-bit, where 𝑇𝑤𝑔𝑡𝑚 = 𝑇𝑚/2 · (1 + 𝑅). The required data in
computations are extracted through selecting the corresponding
range of packed data with shifting and AND operations.
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(a) 4 × 5-bit with DSPs.
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(b) 4 × 5-bit with LUTs.
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(c) 8 × 5-bit with DSPs.
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(d) 8 × 5-bit with LUTs.

Figure 3: Number of utilized LUTs vs. parallelism on ZCU102
FPGA for (a) 4 × 5-bit multiplications on DSPs, (b) 4 × 5-bit
multiplications on LUTs, (c) 8×5-bit multiplications on DSPs,
and (d) 8 × 5-bit multiplications on LUTs.

3.2.4 Processing of Other Layers. The convolutional and fully-
connected layers in DNNs could share the same computing kernel
for matrix multiplication operations in the hardware implementa-
tion. Compared with matrix multiplication operations, the batch
normalization, activation (ReLU), pooling, and skip connection (ad-
dition operations) in DNNs cost much fewer computation resources.
These operations are executed before storing the results of the out-
put buffers with negligible impact on the overall latency. For batch
normalization layers, the parameters are kept with floating-point
precision during model quantization. In the hardware implementa-
tion, the running mean and running variance parameters are fused
into the weights and biases in batch normalization. The scaling
factor 𝛼 in each convolutional layer, mentioned in equation (1), is
further fused into the weights and biases in the corresponding batch
normalization layer, and these fused parameters are represented
with sufficiently high precision (8-bit or 16-bit) to preserve the
model accuracy. If there exists a skip connection, the results from
this batch normalization layer and those from a previous ReLU layer
would be added together. The activation values are quantized after
each ReLU layer that performs comparison operations, followed by
a pooling layer if exists. For this reason, representing the activation
values with 5-bit numbers incurs negligible accuracy loss.

3.3 FPGA Resource Allocation Modeling
With our base FPGA accelerator design for quantized DNN mod-
els, we need to further improve the computation parallelism with
the available computing resources (i.e., DSPs and LUTs), on-chip
memory (i.e., BRAM), and memory bandwidth. However, we find
it is difficult to estimate the LUT cost for given computation type
(i.e., 4 × 5-bit or 8 × 5-bit multiplication) and even with specified
computing resources (i.e., DSPs or LUTs). Therefore, we need to



first characterize the LUT consumption for the four cases in Fig. 3,
i.e., (a) 4× 5-bit multiplications executed on DSPs, (b) 4× 5-bit mul-
tiplications executed on LUTs, (c) 8× 5-bit multiplications executed
on DSPs, and (d) 8 × 5-bit multiplications executed on LUTs. Based
on this, we can use the slopes of the fitted lines as the LUT cost for
a 4 × 5-bit multiplication executed on DSPs or LUTs, denoted by
𝐶
4×5,𝑑𝑠𝑝
𝑙𝑢𝑡

or 𝐶4×5
𝑙𝑢𝑡

. Similarly, we also derive 𝐶8×5,𝑑𝑠𝑝
𝑙𝑢𝑡

, and 𝐶8×5
𝑙𝑢𝑡

. It is
worth noting that employing DSPs for quantized multiplications
consumes LUTs as well, resulting from data packing and operations
like accumulation. Next, we use a convolutional layer to show the
details of our FPGA resource modeling and optimization, including
the analysis on computing resources as well as off-chip data transfer
and on-chip memory.

3.3.1 Computation Resource Analysis. From the computation re-
source utilization perspective, we would like to maximize the total
number of concurrent 8×5-bit and 4×5-bit multiplications on both
DSPs and LUTs as

maximize
{
𝑁 8×5
𝑑𝑠𝑝
+ 𝑁 8×5

𝑙𝑢𝑡
+ 𝑁 4×5

𝑑𝑠𝑝
+ 𝑁 4×5

𝑙𝑢𝑡

}
(5)

where𝑁 8×5
𝑑𝑠𝑝

denotes the number of 8×5-bit multiplications executed
by DSPs, and descriptions for 𝑁 8×5

𝑙𝑢𝑡
, 𝑁 4×5

𝑑𝑠𝑝
, and 𝑁 4×5

𝑙𝑢𝑡
are in Table 1.

We need to satisfy the following computation resource constraints

𝑁 8×5
𝑑𝑠𝑝
· 𝐶8×5

𝑑𝑠𝑝
+ 𝑁 4×5

𝑑𝑠𝑝
· 𝐶4×5

𝑑𝑠𝑝
≤ 𝑆𝑑𝑠𝑝 · 𝛾𝑑𝑠𝑝 (6)

𝑁 8×5
𝑙𝑢𝑡
· 𝐶8×5

𝑙𝑢𝑡
+ 𝑁 4×5

𝑙𝑢𝑡
· 𝐶4×5

𝑙𝑢𝑡
+

𝑁 8×5
𝑑𝑠𝑝
· 𝐶8×5,𝑑𝑠𝑝

𝑙𝑢𝑡
+ 𝑁 4×5

𝑑𝑠𝑝
· 𝐶4×5,𝑑𝑠𝑝

𝑙𝑢𝑡
≤ 𝑆𝑙𝑢𝑡 · 𝛾𝑙𝑢𝑡

(7)

𝑁 8×5
𝑑𝑠𝑝
+ 𝑁 8×5

𝑙𝑢𝑡

𝑁 8×5
𝑑𝑠𝑝
+ 𝑁 8×5

𝑙𝑢𝑡
+ 𝑁 4×5

𝑑𝑠𝑝
+ 𝑁 4×5

𝑙𝑢𝑡

≥ 𝑅. (8)

The above constraints (6) and (7) ensure the DSP and LUT uti-
lization is under the allowable threshold, i.e., 𝛾𝑑𝑠𝑝 and 𝛾𝑙𝑢𝑡 with
the total resource amounts denoted by 𝑆𝑑𝑠𝑝 and 𝑆𝑙𝑢𝑡 . And the con-
straint (8) makes sure we have no less than 𝑅 = 5% for 8 × 5-bit
multiplications. Depending on the characteristics of the target FPGA
device, the final solution may converge to one of the four boundary
conditions, which is determined by the output combination of two
factors: 1) whether the 8 × 5-bit multiplications can be more effi-
ciently processed on DSPs or LUTs on FPGAs; and 2) whether the
available DSP (or LUT) resources are sufficient to handle those 8 ×
5-bit multiplications. For each of these four boundary conditions,
the situation is described when one of the four parameters (𝑁 8×5

𝑑𝑠𝑝
,

𝑁 4×5
𝑑𝑠𝑝

, 𝑁 8×5
𝑙𝑢𝑡

, and 𝑁 4×5
𝑙𝑢𝑡

) is zero. The solution process for these four
boundary conditions is similar. Due to space limitation, here we
only present the solution for the case where the 8 × 5-bit multi-
plication is more efficiently processed on LUTs than on DSPs, and
the available LUT resources are sufficient to handle those 8 × 5-bit
multiplications, i.e.,

𝐶4×5
𝑑𝑠𝑝

𝐶8×5
𝑑𝑠𝑝

≤
𝐶4×5
𝑙𝑢𝑡
−𝐶4×5,𝑑𝑠𝑝

𝑙𝑢𝑡

𝐶8×5
𝑙𝑢𝑡
−𝐶8×5,𝑑𝑠𝑝

𝑙𝑢𝑡

𝑆𝑑𝑠𝑝 · 𝛾𝑑𝑠𝑝
𝑞 · 𝑆𝑙𝑢𝑡 · 𝛾𝑙𝑢𝑡

≤
𝐶4×5
𝑑𝑠𝑝

𝑞 · 𝐶4×5,𝑑𝑠𝑝
𝑙𝑢𝑡

+𝐶8×5
𝑙𝑢𝑡

(9)

where 𝑞 = (1 − 𝑅)/𝑅. The solution is then expressed as



𝑁 8×5
𝑑𝑠𝑝

= 0

𝑁 4×5
𝑑𝑠𝑝

=
𝑆𝑑𝑠𝑝𝛾𝑑𝑠𝑝

𝐶4×5
𝑑𝑠𝑝

𝑁 8×5
𝑙𝑢𝑡

=
(𝐶4×5

𝑙𝑢𝑡
−𝐶4×5,𝑑𝑠𝑝

𝑙𝑢𝑡
)𝑆𝑑𝑠𝑝𝛾𝑑𝑠𝑝 +𝐶4×5

𝑑𝑠𝑝
𝑆𝑙𝑢𝑡𝛾𝑙𝑢𝑡

𝑞𝐶4×5
𝑙𝑢𝑡
𝐶4×5
𝑑𝑠𝑝
+𝐶4×5

𝑑𝑠𝑝
𝐶8×5
𝑙𝑢𝑡

𝑁 4×5
𝑙𝑢𝑡

=
𝑞𝐶4×5

𝑑𝑠𝑝
𝑆𝑙𝑢𝑡𝛾𝑙𝑢𝑡 − (𝑞𝐶

4×5,𝑑𝑠𝑝
𝑙𝑢𝑡

+𝐶8×5
𝑙𝑢𝑡
)𝑆𝑑𝑠𝑝𝛾𝑑𝑠𝑝

𝑞𝐶4×5
𝑙𝑢𝑡
𝐶4×5
𝑑𝑠𝑝
+𝐶8×5

𝑙𝑢𝑡
𝐶4×5
𝑑𝑠𝑝

.

(10)

3.3.2 Off-chip Data Transfer and On-chip Memory Analysis. During
the inference execution of the FPGA accelerator, weight tiles need
to be transferred through burst access from the off-chip DRAM
memory to the on-chip BRAM buffers. The transferred tiles include
input tile with size𝑇𝑛 ×𝑇 𝑖𝑛𝑟 ×𝑇 𝑖𝑛𝑐 , output tile with size𝑇𝑚 ×𝑇𝑟 ×𝑇𝑐 ,
andweight tile with size𝑇𝑚×𝑇𝑛×𝐾𝑟×𝐾𝑐 asmentioned in Section 3.2.
Here, we would like to maximize the hardware parallelism from
the data access perspective, i.e.,

maximize
𝑇𝑚 ,𝑇𝑛 ,𝑝𝑖𝑛 ,𝑝𝑤𝑔𝑡

𝑇𝑚 ×𝑇𝑛 (11)

where 𝑝𝑤𝑔𝑡 and 𝑝𝑖𝑛 are the numbers of ports used for loading
weight and input buffers. This optimization problem subjects to the
following constraints:

2 · (𝐵𝑜𝑢𝑡 + 𝐵𝑖𝑛 + 𝐵𝑤𝑔𝑡 ) ≤ 𝑆𝐵𝑅𝐴𝑀 (12)

max{𝐶𝑖𝑛,𝐶𝑤𝑔𝑡 } ≤ 𝐶𝑐𝑚𝑝𝑡 (13)
Constraint (12) ensures sufficient on-chip memory storage with

double buffering, where 𝐵𝑖𝑛 , 𝐵𝑜𝑢𝑡 and 𝐵𝑤𝑔𝑡 respectively denote the
number of BRAMs used by input, output and weight tiles, and can
be calculated by

𝐵𝑖𝑛 =𝑇𝑛/𝐺 · ⌈𝑇 𝑖𝑛
𝑟 · 𝑇 𝑖𝑛

𝑐 · 5 ·𝐺/18k⌉
𝐵𝑜𝑢𝑡 =𝑇𝑚/𝐺 · ⌈𝑇𝑟 · 𝑇𝑐 · 5 ·𝐺/18k⌉
𝐵𝑤𝑔𝑡 =𝑇𝑚/2 · (1 + 𝑅) · 𝑇𝑛/𝐺 · ⌈𝐾𝑟 · 𝐾𝑐 · 8 ·𝐺/18k⌉

(14)

where the BRAM block size of 18Kb is used and the BRAM usage for
each buffer rounds up to the nearest whole number (⌈·⌉). Also note
that the double buffering technique is used to overlap computations
with off-chip memory accesses.

Constraint (13) is on off-chip data transfer, where 𝐶𝑐𝑚𝑝𝑡 , 𝐶𝑤𝑔𝑡
and 𝐶𝑖𝑛 are the number of computation cycles, weight transfer
cycles, and input transfer cycles for one group of tiles, respectively.
The output buffer transfer cycles are negligible and thus not in-
cluded. 𝐶𝑐𝑚𝑝𝑡 , 𝐶𝑤𝑔𝑡 and 𝐶𝑖𝑛 are obtained as

𝐶𝑐𝑚𝑝𝑡 = 𝐾𝑟 · 𝐾𝑐 · 𝑇𝑟 · 𝑇𝑐

𝐶𝑤𝑔𝑡 =
𝑇𝑚 · 𝑇𝑛 · 𝐾𝑟 · 𝐾𝑐 · (8 · 𝑅 + 4 · (1 − 𝑅))

𝑝𝑤𝑔𝑡 · 𝑆𝑝𝑜𝑟𝑡

𝐶𝑖𝑛 =
𝑇𝑛 · 𝑇 𝑖𝑛

𝑟 · 𝑇 𝑖𝑛
𝑐 · 5

𝑝𝑖𝑛 · 𝑆𝑝𝑜𝑟𝑡

(15)

where 𝑆𝑝𝑜𝑟𝑡 denotes the bit-width of one AXI port.

3.3.3 Summary. Ideally, we need to jointly solve both problems
(5) and (11) for optimized FPGA resource allocation. In fact, we
find that we only need to solve problem (5) and then check with
the constraints of problem (11), because problem (11) generally
provides a higher parallelism result for most of FPGAs. That is, the
achievable parallelism degree in our quantized DNNs is generally
bounded by the available computation resources on FPGAs, not the
off-chip data transfer or on-chip memory resources.



4 EVALUATION
4.1 Experimental Setup
Our experiments include model quantization and hardware im-
plementations for DNN models of different sizes, namely ResNet-
18, ResNet-50 and MobileNet-V2. The baseline models with 32-bit
floating-point (FP32) precision are downloaded from the TorchVi-
sion library [11] and we also retrain them with FP32 to get higher
accuracy. Then we quantize them with intra-layer, mixed-precision
for weights, where we explore different bits for the weights (4 and 8
bits) and activations (3 to 6 bits), and different ratios of 8-bit weight
values (R = 0%, 3%, 5%, 10%, 20%, 100%). The 5% 8-bit filters are
determined in the first 100 epochs, and the model parameters are
finetuned in the remaining 50 epochs with the precision fixed.

The initial learning rate is 1.024 for ResNet-50, and 0.512 for
ResNet-18 and MobileNet-V2. The batch size is set as 1024 for
ResNet-50 and 512 for the other two models. The SGD optimizer is
used with momentum as 0.875 and weight decay as 1/32768 to train
the models. As for training tricks to improve accuracy, 8 epochs
of warmup training are performed at the beginning of the quanti-
zation and label smoothing is applied with a factor of 0.1. These
are the image classification training parameters recommended by
NVIDIA [33]. The model quantization process is conducted on
8 GeForce RTX 2080 Ti GPUs with CUDA 10.2 and PyTorch 1.5
frameworks on the Ubuntu 18.04 operating system.

The quantized models are then evaluated on two embedded
FPGA platforms, Xilinx PYNQ-Z2 (i.e., XC7Z020) and ZCU102, to
demonstrate the generality of our framework to different types of
FPGA boards. The PYNQ-Z2 board contains only 220 DSPs and 53.2k
LUTs, while the ZCU102 board has 2520 DSPs and 274.1k LUTs.
To maximize the computation efficiency of the designs without
timing violation, the working frequency of PYNQ-Z2 is set to 100
MHz for all DNN models, and that of ZCU102 is 150 MHz for all
models. The data packing size is set as 𝐺 = 6 on PYNQ-Z2 and
𝐺 = 8 on ZCU102. The hardware designs are implemented through
high-level synthesis of Xilinx Vivado 2020.1.

4.2 Accuracy Results
To justify the empirical findings that we mentioned in Section 3.1,
we conduct verification experiments on ResNet-18 as shown in
Table 2 and Table 3. The accuracy of unquantized baseline model
from the TorchVision library [11] is listed in the first row in the table.
Since the training parameters that we use may be different with the
officially provided model, we fine-tune it with full precision to use
as a comparison point shown in the last row, which can achieve
70.78% and 89.94% in top-1 and top-5 accuracy, respectively.

4.2.1 Accuracy Results under Different Mixed Ratio 𝑅. In Table 2,
we compare the model accuracy under different mixed ratio 𝑅
with a constant activation bit-width of 5-bit. First, when 𝑅 = 0%,
i.e., all weights use 4-bit, the top-1 and top-5 model accuracy are
69.63% and 89.28%, respectively. That is, 4-bit quantization results
in more than 1% top-1 accuracy drop. Second, when 𝑅 reaches 100%,
i.e., all weights use 8-bit, the top-1/top-5 accuracy is raised up to
70.60%/89.83%, which is nearly the same with the fine-tuned full
precision model. Third, when 𝑅 reaches 3%, 5%, 10%, and 20%, the
model top-1 accuracy achieves 70.01%, 70.47%, 70.45%, and 70.56%,

Table 2: Comparisons of ResNet-18 model accuracy under
different percentages of 8-bit weights on ImageNet dataset

Quantization
Method

Weight
Bit-width

Activation
Bit-width

Top-1
Accuracy

Top-5
Accuracy

Baseline 32b 32b 69.57% 89.24%
Retrain 32b 32b 70.78% 89.94%
W4A5 4b 5b 69.63% 89.28%
Mixed 97% 4b + 3% 8b 5b 70.01% 89.33%
Mixed 95% 4b + 5% 8b 5b 70.47% 89.63%
Mixed 90% 4b + 10% 8b 5b 70.45% 89.55%
Mixed 80% 4b + 20% 8b 5b 70.56% 89.59%

Mixed (Inter) 4b + 8b 5b 69.92% 89.37%
W8A5 8b 5b 70.60% 89.83%

Table 3: Comparisons of ResNet-18 model accuracy under
different bit-widths of activations on ImageNet dataset

Quantization
Method

Weight
Bit-width

Activation
Bit-width

Top-1
Accuracy

Top-5
Accuracy

Baseline 32b 32b 69.57% 89.24%
Retrain 32b 32b 70.78% 89.94%
Mixed 95% 4b + 5% 8b 3b 68.91% 89.10%
Mixed 95% 4b + 5% 8b 4b 69.98% 89.38%
Mixed 95% 4b + 5% 8b 5b 70.47% 89.63%
Mixed 95% 4b + 5% 8b 6b 70.51% 89.64%

respectively, which indicates that 𝑅 = 5% can efficiently reap the
benefits from both higher accuracy and less weight bits. Increasing
𝑅 to a value higher than 5% does not achieve an obvious accuracy
improvement. Here we use the same 𝑅 = 5% value across all layers,
which already achieves a very good accuracy as shown in Table 2
and is friendly to design a single hardware accelerator that can be
reused by all layers. Tuning a different 𝑅 value for different layers
may achieve a slightly better accuracy, but will lead to inefficient
hardware implementation that is hard for reuse across layers.

4.2.2 Accuracy Results under Different Activation Bit-widths. We
explore the influence of activation bit-width as shown in Table 3.
With constant mixed weight precision 𝑅 = 5%, we test the model
accuracy under different activation bit-widths from 3-bit to 6-bit.
The result shows that the model accuracy improves as the activa-
tion bit-width increases, while the higher the activation bit-width
we have, the slower the improvement we obtain on the accuracy.
When activation bit-width reaches 5-bit, the top-1/top-5 accuracy
achieves 70.47%/89.63%, nearly the same as that of the 6-bit activa-
tion result. Therefore, we choose 5-bit as the activation bit-width
in our FPGA experiments, which is more hardware efficient than
6-bit activations.

Here, we just use the verification experiments to demonstrate “5-
bit activations and 𝑅 = 5% 8-bit weights mixed with 4-bit weight” is
an efficient combination. It does not mean that this one is the best to
all kinds of models. It is worth noting that our framework is general
to all kinds of weight/activation bit-widths. The change of the bit-
width combination does not affect the framework availability.

4.3 Overall Throughput and Resource Results
To better understand the performance of FILM-QNN, in Table 4, we
compare its peak throughput and overall resource utilization on



Table 4: Resource utilization and optimized computation throughput under different weight quantization precisions

Quantization
Precision

Computation
Resource

Implementation on ZCU102 (150 MHz) Implementation on PYNQ-Z2 (100 MHz)
Utilization W4A5 Opa W8A5 Op Peak Thrpt. Utilization W4A5 Op W8A5 Op Peak Thrpt.
LUT DSP LUT DSP LUT DSP (GOPS) LUT DSP LUT DSP LUT DSP (GOPS)

100% W4
LUT 78% 1% 10240 0 - - 1536 81% 13% 1728 0 - - 172.8
DSP 51% 82% 0 16384 - - 2458 56% 95% 0 1440 - - 144

LUT + DSP 68% 78% 2048 15360 - - 2611 77% 95% 576 1440 - - 201.6

100% W8
LUT 76% 1% - - 6656 0 998.4 75% 13% - - 1152 0 115.2
DSP 23% 82% - - 0 8192 1229 31% 95% - - 0 720 72

LUT + DSP 65% 83% - - 3072 8192 1690 75% 95% - - 576 720 129.6

95% W4
+ 5% W8

LUT 76% 2% 8192 0 1024 0 1382 81% 13% 1584 0 144 0 172.8
DSP 54% 83% 0 14336 0 1024 2304 49% 95% 0 1152 0 144 129.6

LUT + DSP 66% 83% 0 16384 1024 0 2611 78% 95% 720 1152 0 144 201.6
aThe number of operations per cycle for 4-bit weights (W4) and 5-bit activations (A5). W8 means 8-bit weights.

Table 5: Comparisons of DNN implementations between previous studies, inter-layer quantization, and intra-layer quantization
for ImageNet dataset on PYNQ-Z2 (XC7Z020) FPGA

Implementation VGG ResNet-18 MobileNet-V2 ResNet-18 ResNet-50 MobileNet-V2 ResNet-18 ResNet-50 MobileNet-V2
[15] [2] [2] (Inter-Layer) (Intra-Layer)

Bit-Width W8A8 W4A4 Middle W4A5, First & Last W8A5 95% W4A5 + 5% W8A5
Top-1 Accuracy 67.62% 70.27% 65.64% 69.92% 77.08% 64.38% 70.47% 77.25% 65.67%
Frequency (MHz) 214 100 100 100

kLUT 29.9 (56%) 28.3 (53%) 39.1 (74%) 41.3 (78%)
DSP 190 (86%) 220 (100%) 214 (97%) 208 (95%)

BRAM36 85.5 (61%) 56 (40%) 126.5 (90%) 123 (88%)
Power (W) 3.5 - - 3.0 3.5

Frame Rate (FPS) 2.72 21.3 120.7 12.9 7.8 49.2 27.8 13.3 132.3
Throughput (GOPS) 84.3 (CONV) 77.0 71.8 46.8 63.6 29.3 100.6 108.6 78.7

GOPS/kLUT 2.825 2.725 2.538 1.197 1.627 0.749 2.436 2.629 1.907
GOPS/DSP 0.444 0.350 0.326 0.219 0.297 0.137 0.484 0.522 0.379

Energy Efficiency (GOPS/W) 24.1 - - 15.6 21.2 9.8 28.7 31.0 22.5

PYNQ-Z2 and ZCU102 FPGA boards, under different quantization
precisions and resource allocation strategies. Note that based on our
modeling, FILM-QNN is not bounded by the on-chip and off-chip
memory capacity and bandwidth (also confirmed by the resource
utilization in Table 5), thanks to the data packing optimization
presented in Section 3.2.3. Therfore, we mainly consider the most
computation intensive operations in DNNs, namely the multiply-
accumulate (MAC) operations, each equivalent to two operations.
For each quantization precision (4-bit only, 8-bit only, and 95% 4-bit
and 5% 8-bit for the weights), we explore the computing capability
when 1) only using LUTs for MAC operations, 2) only using DSPs
for MAC operations, and 3) using both LUTs and DSPs.

The achievable parallelism degree on each type of FPGA compu-
tation resources, i.e., the number of operations processed by LUTs
or DSPs per cycle, is listed respectively for the operations with 4-bit
weights (W4A5 Op columns) and 8-bit weights (W8A5 Op columns).
Based on the total parallelism degree and working frequency of
each implementation, the peak throughput is calculated in Giga Op-
erations Per Second (GOPS). In the optimized implementations with
95% 4-bit and 5% 8-bit weight quantization, the peak throughput
could achieve 2611 GOPS on ZCU102 and 201.6 GOPS on PYNQ-Z2.

Within the 95% 4-bit and 5% 8-bit weight quantization, using both
LUTs and DSPs achieves 1.89× and 1.13× higher throughput than
using LUTs only and using DSPs only on ZCU102, respectively.

On PYNQ-Z2, these speedups are 1.17× and 1.56×, respectively.
Similarly, within the 4-bit only and 8-bit only weight quantization
precision, using both LUTs and DSPs achieves better throughput
than using only LUTs or DSPs. This is because both the LUT and
DSP utilization ratios in the mixed-precision implementations are
high and more balanced than those in the designs with only LUTs
or only DSPs for computations.

In general, we observe that it is better to first make full use
of the DSP resources on FPGAs to accommodate as many MAC
operations as possible, and then leverage the remaining LUTs to
process more MAC operations. Note that when using DSPs for MAC
operations, LUTs are also consumed due to data packing, and the
LUT consumption corresponding to each DSP for W4A5 operations
is about 2× higher than that for W8A5 operations, as one DSP
carries out fourW4A5 multiplications or twoW8A5multiplications.

Among different quantization precisions using both LUTs and
DSPs, our 95% 4-bit and 5% 8-bit weight quantization achieves the
highest peak throughput, which is the same as that of the 4-bit
only weight quantization on both PYNQ-Z2 and ZCU102. Com-
pared with the 8-bit only weight quantization, our mixed-precision
weight quantization achieves 1.56× higher throughput on PYNQ-Z2
and 1.54× higher throughput on ZCU102. The 4-bit only weight
quantization attains the same throughput as our mixed-precision



Table 6: Comparisons of DNN implementations between
inter-layer and intra-layer quantization for ImageNet dataset
on ZCU102 FPGA

Implementation
ResNet
-18

ResNet
-50

MobileNet
-V2

ResNet
-18

ResNet
-50

MobileNet
-V2

(Inter-Layer) (Intra-Layer)

Bit-Width Middle W4A5,
First & Last W8A5 95% W4A5 + 5% W8A5

Top-1 Accuracy 69.92% 77.08% 64.38% 70.47% 77.25% 65.67%
Frequency (MHz) 150 150

kLUT 174.5 (64%) 180.1 (66%)
DSP 2096 (83%) 2092 (83%)

BRAM36 439 (48%) 440.5 (48%)
Power (W) 13.4 12.9

Frame Rate (FPS) 72.8 47.4 190.1 214.8 109.1 537.9
Thrpt. (GOPS) 263.7 387.8 113.3 778.9 891.4 320.1
GOPS/kLUT 1.511 2.222 0.649 4.324 4.948 1.777
GOPS/DSP 0.126 0.185 0.054 0.372 0.426 0.153

Energy Efficiency
(GOPS/W) 19.7 28.9 8.5 60.4 69.1 24.8

quantization since the FPGA board could not accommodate more
computations due to the routing issue.
4.4 Comparison with Prior Studies and

Inter-Layer Quantization
Our implementations of FILM-QNN are further compared with
two recent studies, i.e., Angel-Eye [15] with 8-bit weight and 8-bit
activation quantization, and Mix-and-Match [2] with intra-layer
mixed-scheme quantization (fixed-point and power-of-two quanti-
zation for 4-bit weight and 4-bit activation). Both studies use the
PYNQ-Z2 (XC7Z020) FPGA platform. Table 5 shows their the top-1
accuracy, overall throughput (GOPS), frames per second (FPS), as
well as the throughput per DSP and per thousands of LUTs (kLUT).

In terms of the model top-1 accuracy, FILM-QNN performs
slightly better than Mix-and-Match [2] for both ResNet-18 and
MobileNet-V2. Additionally, the top-1 accuracy of ResNet-18 and
ResNet-50 achieved by FILM-QNN is much higher than that of VGG
in Angel-eye [15] with 8-bit quantization. As for the computation
throughput and frame rate, FILM-QNN achieves the best among the
implementations on the PYNQ-Z2 board, namely 1.31× higher for
ResNet-18 and 1.10× higher for MobileNet-V2 in throughput (and
FPS) compared to Mix-and-Match [2]. As for resource utilization,
since we prioritize the usage of DSPs, the throughput per DSP in
FILM-QNN for ResNet-18 and MobileNet-V2 outperforms that of
Mix-and-Match [2] on PYNQ-Z2. The throughput per thousands of
LUTs in FILM-QNN is relatively lower, since a significant portion
of LUTs are used to support the DSP computations (due to data
packing) instead of performing the actual multiply-accumulate op-
erations. In addition, the resource utilization results also confirm
the high utilization of both DSPs and LUTs in FILM-QNN.

The throughput improvement over Mix-and-Match [2] for the
MobileNet-V2 implementation is lower than that for the ResNet-18
implementation due to the small model size and depthwise convo-
lution layers of MobileNet-V2. The overall parallelism degree for
convolutional layers in our hardware implementations is mainly
achieved by unrolling the filter and input channel dimensions. In
MobileNet-V2, 31.5% of the layers have less than 128 filters, which

does not provide enough parallelism along the filter dimension.
Moreover, 31.5% of the layers apply only depthwise convolution
operations, which eliminates the parallelism opportunity along
the input channel dimension. In future work, we plan to further
optimize our accelerator design to exploit more parallelism along
other dimensions for such networks, which is orthogonal to demon-
strate the benefits of our novel, accurate, and hardware-friendly
intra-layer, mixed-precision quantization method.

We also compare between inter-layer and intra-layer quantiza-
tion methods in Table 5 and Table 6. For the inter-layer quantization
design, the computation resources are simultaneously allocated to
W8A5 precision for the first and last network layers and W4A5 for
other layers in a balanced way; however, they are not executing con-
currently. The throughput increase from inter-layer to intra-layer
quantization is 1.71× ∼ 2.69× on PYNQ-Z2, and 2.30× ∼ 2.95× on
ZCU102. Another strategy for the inter-layer quantization design is
to implement two FPGA bistreams respectively for pure W8A5 and
pure W4A5 designs, and switch from W8A5 to W4A5 after the first
layer and then from W4A5 to W8A5 before the last layer. Given
that the bitstream reconfiguration time is about 33ms for PYNQ-
Z2 and 213ms for ZCU102, the throughput improvement of intra-
layer quantization over this inter-layer quantization design reaches
1.85× ∼ 9.78× on PYNQ-Z2, and 47.6× ∼ 230.2× on ZCU102. Fi-
nally, our intra-layer quantization also achieves 0.17% ∼ 1.29%
higher accuracy over the inter-layer quantization.

In summary, our optimized intra-layer, mixed-precision imple-
mentations achieve comparable accuracy to the pure 8-bit precision
designs, namely 70.47%, 77.25%, and 65.67% for ResNet-18, ResNet-
50, and MobileNet-V2, respectively, and comparable throughput
to the pure 4-bit precision designs, namely 27.8 FPS, 13.3 FPS, and
132.3 FPS on PYNQ-Z2, and 214.8 FPS, 109.1 FPS, and 537.9 FPS on
ZCU102, for the three DNNs.

5 CONCLUSION
In this paper, we have designed and implemented a general frame-
work, called FILM-QNN, to quantize and accelerate DNNs on FPGAs.
To preserve the accuracy and hardware parallelism, we propose to
quantize each layer of a DNN with a majority of weight filters as
4-bit and a minority of weight filters as 8-bit. In our FPGA accel-
erator design, we apply optimization techniques for low-precision
computations, including DSP packing, weight reordering, and data
packing. Moreover, we build a comprehensive model to guide the
balanced allocation of FPGA resources to enable the concurrent
computations with different precisions. Finally, we have evalu-
ated FILM-QNN on three DNN models, i.e., ResNet-18, ResNet-50,
and MobileNet-V2, on two Xilinx FPGA platforms, PYNQ-Z2 and
ZCU102, using Vivado HLS. Our optimized mixed-precision im-
plementations achieve comparable accuracy (70.47%, 77.25%, and
65.67% for the three models) to the 8-bit precision designs and com-
parable throughput (214.8 FPS, 109.1 FPS, and 537.9 FPS on ZCU102)
to the 4-bit precision designs.
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