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Abstract The cyanobacterial enzyme CylK assembles the cylindrocyclophane natural products by 
performing two unusual alkylation reactions, forming new carbon–carbon bonds between aromatic 
rings and secondary alkyl halide substrates. This transformation is unprecedented in biology, and 
the structure and mechanism of CylK are unknown. Here, we report X-ray crystal structures of CylK, 
revealing a distinctive fusion of a Ca2+-binding domain and a β-propeller fold. We use a mutagenic 
screening approach to locate CylK’s active site at its domain interface, identifying two residues, 
Arg105 and Tyr473, that are required for catalysis. Anomalous diffraction datasets collected with 
bound bromide ions, a product analog, suggest that these residues interact with the alkyl halide 
electrophile. Additional mutagenesis and molecular dynamics simulations implicate Asp440 in acti-
vating the nucleophilic aromatic ring. Bioinformatic analysis of CylK homologs from other cyanobac-
teria establishes that they conserve these key catalytic amino acids, but they are likely associated 
with divergent reactivity and altered secondary metabolism. By gaining a molecular understanding 
of this unusual biosynthetic transformation, this work fills a gap in our understanding of how alkyl 
halides are activated and used by enzymes as biosynthetic intermediates, informing enzyme engi-
neering, catalyst design, and natural product discovery.

Editor's evaluation
This work has revealed an unexpected mechanism by which enzyme-catalyzed alkylation occurs. 
The results presented here will be broadly relevant to those pursuing enzyme engineering as well as 
efforts aimed toward developing small molecule inhibitors of this unusual enzyme transformation.

Introduction
Chemists utilize alkyl halides (molecules with sp3 C–X bonds, X = F, Cl, Br, or I) as key synthetic reagents 
because of their accessibility and favorable reactivity (Rudolph and Lautens, 2009); however, exam-
ples of their use as intermediates in biological systems are rare (Adak and Moore, 2021). A few 
characterized natural product biosynthetic pathways generate transiently halogenated intermediates 
that facilitate downstream chemical reactions in a strategy known as ‘cryptic halogenation’ (Vaillan-
court et al., 2005). This biosynthetic logic requires two partner enzymes: a halogenase, which intro-
duces the alkyl halide substituent, and a second enzyme that utilizes the halogenated intermediate 
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as a substrate, leveraging its increased reactivity and releasing the corresponding halide anion as 
a side product. Multiple classes of halogenases have been structurally and mechanistically charac-
terized (Neumann et al., 2008), but the cognate halide-utilizing enzymes in pathways that employ 
cryptic halogenation remain underexplored. In particular, the structures and biochemical mechanisms 
for enzymatically engaging and activating alkyl halide substrates as intermediates in natural product 
biosynthesis are unknown.

Interrogating cylindrocyclophane biosynthesis by the cyanobacterium Cylindrospermum licheni-
forme ATCC 29412 presents an exciting opportunity to study alkyl halide utilization in biological 
systems. In this organism, the putative diiron carboxylate halogenase CylC generates an alkyl chlo-
ride intermediate, which is further elaborated to produce resorcinol-containing alkyl chloride 1. Two 
molecules of 1 are then dimerized by an alkyl chloride-utilizing enzyme, CylK, via the formation of two 
new carbon–carbon (C–C) bonds to construct a paracyclophane ring system (Figure 1A; Nakamura 
et al., 2017). CylK is annotated as a fusion of a Ca2+-binding domain and a β-propeller fold, but the 
roles of these predicted protein domains in catalysis are unknown. Initial biochemical studies revealed 
that this transformation involves two stereoselective alkylation events that occur in a stepwise fashion, 
with inversion of configuration at the alkyl chloride stereocenter (Nakamura et al., 2017). CylK is 
the only enzyme known to catalyze aromatic ring alkylation with an alkyl halide electrophile, a reac-
tion that mirrors a classical nonenzymatic reaction known as the Friedel–Crafts alkylation, which is an 
important transformation in organic synthesis. The traditional nonenzymatic Friedel–Crafts reaction 
suffers from a lack of stereo- and regiocontrol, unwanted overalkylation events, and the generation 
of carbocationic intermediates that can undergo unproductive rearrangements (Friedel and Crafts, 
1877; Roberts and Khalaf, 1984).

In contrast, the CylK-catalyzed Friedel–Crafts alkylation overcomes these limitations, likely by tightly 
controlling reactivity within the enzyme active site. This enzymatic transformation holds promise for 
biocatalytic applications, and we have recently demonstrated CylK’s ability to accept multiple discrete 
resorcinol nucleophiles and alkyl halide electrophiles with varying substitution and electronic char-
acter (Schultz et al., 2019). Moreover, uncharacterized enzymes with homology to CylK are found in 
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Figure 1. CylK and related enzymes use alkyl chloride substrates as biosynthetic intermediates. (A) The halogenase CylC generates an alkyl chloride 
substrate for CylK, which catalyzes two stepwise Friedel–Crafts alkylations to construct a paracyclophane macrocycle in cylindrocyclophane biosynthesis. 
This involves an intermolecular reaction between two resorcinol-containing alkyl chloride substrates (1) to generate intermediate (2), followed by an 
intramolecular alkylation to afford cylindrocyclophane F. (B) The related enzyme BrtB (30% amino acid identity, 46% similarity) catalyzes an analogous but 
chemically distinct C–O bond-forming event between chlorinated bartolosides and fatty acid nucleophiles.
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numerous cyanobacteria, one of which (BrtB) was recently revealed to catalyze carbon–oxygen (C–O) 
bond formation between the carboxylate groups of fatty acids and bartoloside A, an alkyl chloride-
containing natural product (Figure 1B; Reis et al., 2020). This suggests that the mechanism by which 
CylK binds and activates alkyl chlorides might be shared with this and other homologs that use diverse 
nucleophilic substrates.

Despite the intriguing reactivity and potential applications of CylK and related alkyl halide acti-
vating enzymes, our knowledge of its structure and mechanism is limited. In this work, we present a 
crystal structure of CylK, identify critical active site residues, provide experimental and bioinformatic 
support for their roles in catalysis, and propose a mechanism by which alkyl chloride substrates are 
activated for stereospecific nucleophilic substitution. In determining how CylK performs this Friedel–
Crafts alkylation, we have enhanced our fundamental understanding of how enzymes engage alkyl 
halide substrates. Our structural information and mechanistic model will guide future enzyme engi-
neering efforts, inform the design of nonenzymatic catalysts, and enable genome mining to uncover 
new natural products constructed by related biosynthetic strategies.

Results
CylK is a distinctive fusion of two protein domains
CylK crystallized in the C2221 space group with a single monomer in the asymmetric unit (Table 1). 
Suitable molecular replacement (MR) models for phasing could not be identified. Phase information 
was obtained by partial substitution of native Ca2+-binding sites in CylK with Tb3+, followed by collec-
tion of X-ray diffraction datasets at the Tb X-ray absorption peak energy. The structure of CylK was 
solved to 1.68 Å resolution via a combined MR and single-wavelength anomalous diffraction (SAD) 
approach, with the MR search model generated from a poly-alanine seven-bladed β-propeller. The 
structure reveals an unprecedented fusion of two protein folds, an N-terminal Ca2+-binding domain 
and a C-terminal β-propeller domain (Figure 2A).

The N-terminal domain of CylK contains a short helical component that packs against a β-roll core 
(Figure 2B, Figure 2—figure supplement 1). The core fold is structurally similar to repeat-in-toxin 
(RTX) motifs, found in diverse bacterial extracellular proteins (Linhartová et al., 2010). A search of 
the PDB for structural relatives of the CylK N-terminal domain reveals similarity to the C-terminal RTX 
domains of secreted toxins (Motlova et al., 2020), such as the adenylate cyclase toxin of Bordetella 
pertussis, and bacterial surface-layer proteins (von Kügelgen et al., 2020), such as the RsaA protein of 
Caulobacter crescentus (Table 2). In these systems, the RTX domain facilitates Ca2+-dependent folding 
or assembly in the calcium-rich environment outside the cell but not in the calcium-depleted cytosol. 
The CylK N-terminal domain also resembles RTX domains fused to catalytic domains of extracellular 
hydrolases and epimerases from Gram-negative bacteria (Figure 2—figure supplement 2; Tanaka 
et al., 2007; Buchinger et al., 2014; Meier et al., 2007). In these systems, the RTX unit is attached 
to the C-terminus of the catalytic domain to facilitate extracellular secretion and Ca2+-dependent 
folding. The RTX component of these characterized proteins is functionally modular, with no obvious 
direct connection to the active site, although in some systems that target large biopolymer substrates, 
the RTX domain may help anchor the substrate via electrostatic interactions (Buchinger et al., 2014).

The N-terminal domain of CylK differs from typical RTX motifs in several important ways. Canon-
ical RTX motifs have an extended compact oval structure shaped by tight turns between subsequent 
β-strands that are stabilized by stacked metal-binding motifs on both sides of the core fold (Linhar-
tová et al., 2010). The metal-binding sites are formed by a repeating GXXGXD motif in the tight turn. 
Vertically stacked pairs of these repeats yield hexacoordinate Ca2+-binding sites with four carbonyl 
ligands and two carboxylates provided by the conserved Asp side chains. CylK adopts a more asym-
metric version of this fold and contains just a single copy of the consensus Ca2+-binding motif. The 
modified β-roll structure in CylK contains three vertically aligned Ca2+ ions on one side of the core 
fold. The other side lacks the metal-binding sites found in other RTX proteins. Additionally, while 
the first two turns of the β-roll in CylK form tight junctions near the Ca2+ ions, all of the subsequent 
turns contain long extensions (Figure  2—figure supplement 1), some of which facilitate integra-
tion with the C-terminal domain. Interestingly, the section of the β-roll motif that conserves the Ca2+ 
sites packs closely into the center of the C-terminal domain. Although the CylK N-terminal domain is 

https://doi.org/10.7554/eLife.75761
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topologically distinct from other β-roll motifs, CylK shares with these systems a functional requirement 
for Ca2+ (Nakamura et al., 2017).

The C-terminal domain of CylK adopts a seven-bladed β-propeller fold (Figure 2C, Figure 2—
figure supplement 3), a widespread structural motif found in both eukaryotic and prokaryotic protein 

Table 1. Data collection and refinement statistics for Tb-soaked C. licheniforme CylK structures.

Tb anomalous Native (final model)

Data collection  �   �

Space group C 2 2 21 C 2 2 21

Wavelength (Å) 1.6314 0.97872

Cell dimensions  �   �

 � a, b, c (Å) 94.265, 139.286, 100.381 93.667, 138.613, 99.438

 � α, β, γ (°) 90.0, 90.0, 90.0 90.0, 90.0, 90.0

Resolution (Å) 50–2.38 (2.42–2.38) 50.0–1.68 (1.71–1.68)

Rmerge 0.218 (0.670) 0.101 (1.326)

Rpim 0.041 (0.192) 0.026 (0.346)

I / σI 25.2 (3.8) 29.3 (2.15)

CC1/2 1.010 (0.906) 0.999 (0.780)

Completeness (%) 99.5 (99.9) 99.8 (99.3)

Redundancy 29.5 (11.4) 14.8 (14.3)

Refinement  �   �

Resolution (Å)  �  42.41–1.68

No. reflections  �  68,476

Rwork/Rfree  �  0.1556/0.1894

No. atoms  �  5,292

 � Protein  �  4,903

 � Ligand/ion  �  50

 � Water  �  339

B-factors (Å2)  �   �

 � Protein  �  18.20

 � Ligand/ion  �  28.54

 � Water  �  25.82

RMS deviations  �   �

 � Bond lengths (Å)  �  0.016

 � Bond angles (°)  �  1.921

Molprobity clashscore  �  2.29 (99th percentile)

Rotamer outliers (%)  �  0.78

Ramachandran favored (%)  �  96.33

Ramachandran allowed (%)  �  3.51

Ramachandran outlier *(%)  �  0.16

PDB accession code  �  7RON

*Values in parentheses are for highest-resolution shell.

https://doi.org/10.7554/eLife.75761
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Figure 2. The CylK X-ray crystal structure reveals a distinct arrangement of two protein domains. (A) An overall view of the structure of CylK. In this 
image and throughout, calcium ions are shown as blue spheres, magnesium ions as dark gray spheres, and chloride ions as green spheres. The N-
terminal domain is depicted as a light gray ribbon diagram, and the C-terminal domain is shown as a pink ribbon diagram. (B) The N-terminal domain 
contains a right-handed parallel β-roll stabilized by three Ca2+ ions. The structure is capped by a three-strand antiparallel β-sheet and buttressed by 
additional helical secondary structures. Insets show the Ca2+ ion coordination environment within the β-roll. (C) A top-down view of the seven-bladed 
β-propeller C-terminal domain. The propeller blades are numbered from the N-terminal end of the domain and colored by blade. The inset shows a 
representative view of the Ca2+ coordination environment. A similar binding site exists at each blade junction. (D) Cavity mapping analysis (Ho and 
Gruswitz, 2008) of CylK reveals two cavities large enough to accommodate the alkyl resorcinol substrates.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Topology diagram of the N-terminal CylK β-roll domain, residues 7–251.

Figure 2 continued on next page

https://doi.org/10.7554/eLife.75761
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structures (Chen et al., 2011). In eukaryotes, this flat, cylindrically shaped fold facilitates protein–pro-
tein interactions (Schapira et al., 2017) via the same interface (top face) that interacts with the N-ter-
minal domain in CylK. In prokaryotes and some eukaryotes (plants), β-propeller folds can be used 
in catalysis (Chen et al., 2011). Comparison of the CylK β-propeller domain to other examples of 
this fold in bacterial enzymes reveals several structural differences unique to CylK (Figure 2—figure 
supplement 4). In all β-propellers, adjacent four-stranded ‘blades’ are connected back-to-front by 
loops on the top face of the domain. The top face of the fold also consists of loops that link the 
internal β-strands of each propeller blade. In CylK, these internal loops are unusually long and folded 
back over the outside of the central propeller fold. Also, the loops that connect subsequent blades 
contain unique blade-bridging Ca2+-binding sites, suggesting a shared role for this divalent metal in 
structural stabilization of both domains of CylK.

CylK is structurally similar to a class of single-domain bacterial β-propeller enzymes implicated in 
streptogramin antibiotic resistance that includes virginiamycin B lyase (Vgb) (Table  3; Korczynska 
et al., 2007; Lipka et al., 2008). These enzymes share with CylK an ability to interface with macrocy-
clic substrates or products, but they perform a distinct chemical transformation. While CylK forms two 
C–C bonds to generate a cyclic product, the streptogramin resistance proteins linearize cyclic peptide 
substrates by cleaving a C–O bond. X-ray crystal structures of an inactive variant of Vgb bound to a 
substrate analog provide insight into the location of the active site and mechanism of macrocycle 
opening (Korczynska et al., 2007). In Vgb, the substrate analog and an Mg2+ ion necessary for catal-
ysis bind near conserved polar side chains in blades 6 and 7 of the propeller fold (Figure 2—figure 
supplement 4B). In CylK, these sites are substituted for hydrophobic side chains, suggesting that, 
despite the similarities to streptogramin lyases, the substrates of CylK likely bind in a different location 
and are transformed by a distinct mechanism.

The CylK active site is located at the domain interface
To identify CylK’s active site, we focused on two solvent-accessible cavities (Figure  2D). Cavity 1 
is lined by the top face of the β-propeller domain and the N-terminal domain, forming a solvent-
accessible tunnel that is  ~18  Å deep and 15  Å wide at its largest point. The walls of this cavity 
contain both charged/polar residues and hydrophobic patches, ideal for interaction with the amphi-
pathic resorcinol substrates (Figure 2—figure supplement 5). We also interrogated a second central 
channel located exclusively within the C-terminal domain and opening to the opposite (bottom face) 
side of the propeller motif (cavity 2). To identify the active site, we individually mutagenized 17 polar 
residues spanning the two cavities (Figure 3A) that are conserved in putative CylK homologs from 
cyanobacteria known to produce structurally related natural products (Figure 3—figure supplement 

Figure supplement 2. Comparison of the N-terminal CylK β-roll domain to similar C-terminal repeat-in-toxin (RTX) domains in other enzymes.

Figure supplement 3. Topological and structural features of the C-terminal CylK β-propeller domain.

Figure supplement 4. Comparison of the proposed CylK active site location to those of other characterized seven-bladed β-propeller enzymes.

Figure supplement 5. Solvent accessibility and properties of the cavity located in between the C-terminal β-propeller domain and the N-terminal 
domain in CylK.

Figure supplement 6. A comparison of the overall structures of CylK and selected seven-bladed β-propeller enzymes.

Figure 2 continued

Table 2. Selected structural homologs of the N-terminal domain of CylK obtained by a structural 
comparison to other proteins in the PDB (Gáspári, 2020).

Rank PDB ID Functional description Z-score RMSD
No. residues 
aligned

Total 
residues

1 1OMJ-A
Psychrophilic alkaline metalloprotease (PAP); serralysin 
family 11.2 6.8 135 456

2 2Z8Z-A MIS38 lipase 11.1 8.5 116 616

3 6SUS-A RTX domain of blocks IV and V of adenylate cyclase toxin 11.0 3.1 120 258

4 2QUA-A LipA, extracellular lipase from Serratia marcescens 10.6 2.3 110 615

5 2ML1-A AlgE6R1, Mannuronan C5-epimerase 10.6 3.0 122 153

https://doi.org/10.7554/eLife.75761
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Table 3. Selected structural homologs of the C-terminal domain of CylK obtained by a structural 
comparison to other proteins in the PDB (Gáspári, 2020).

Rank PDB ID Functional description Z-score RMSD
No. residues 
aligned Total residues

1 1SQ9-A Antiviral protein Ski8 31.2 2.4 286 378

2 4H5J-B Guanine nucleotide-exchange factor 
Sec12

31.1 2.9 300 347

3 5TF2-A Prolactin regulatory element-binding 
protein

31.0 2.7 291 338

4 4J0X-B Ribosomal RNA-processing protein 9 30.9 2.4 290 366

5 2Z2O-C Virginiamycin B lyase 30.5 2.4 286 299

BA

C

    
    

    
  (–

)
D96

A
K78

E
R10

5A
Y47

3A
S26

5A
S26

6A
T26

7A
S32

4A
T37

9A
K37

7A
D50

2A
E50

4A
L55

8A
D55

9A
D56

2A
T61

6A
T61

8A WT
0

1 106

2 106

3 106

4 106

Pr
od

uc
t 5

(Io
n 

C
ou

nt
s)

Mutant Screen

CylK

A

R105

Y473

K78

D96

L558

D502

K337

D559

T618
S265

S266

T267 T618

S324

D562

E504T379

cavity 1 cavity 2

Tris pH 8
37°C, 20 h

OHHO
HO OH

Cl

SNAc

O

SNAc

O

3

4

5

Figure 3. The active site of CylK is located at the domain interface. (A) Selected amino acids in CylK near cavities 1 and 2 subjected to mutant scanning 
are shown in stick format. Side chains shown in yellow near cavity 1 correspond to sites found to be essential for activity. (B) Non-native substrate pair 
used in CylK activity assays and product of the alkylation reaction (SNAc = N-acetylcysteamine). (C) Screen of mutant activity to locate the CylK active 
site. Product formation was measured by liquid chromatography-mass spectrometry (LC-MS), error bars represent the standard deviation from the mean 
of three biological replicates.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Structurally related, cylindrocyclophane-like natural products produced by cyanobacteria with related biosynthetic gene 
clusters and CylK homologs, namely, merocyclophanes (Nostoc sp. UIC 10110, MerH), cylindrofridins (Cylindrospermum stagnale PCC 7417, CylK), and 
carbamidocyclophanes (Nostoc sp. CAVN2, CabK).

https://doi.org/10.7554/eLife.75761
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1, Table 4; Preisitsch et al., 2015; May et al., 2017; Preisitsch et al., 2016; Leão et al., 2015). To 
rapidly test variant proteins for activity, we designed a plate-based lysate activity assay using non-
native substrate pair 3 + 4 (Figure 3B), which was previously demonstrated to be accepted by CylK 
(Schultz et al., 2019). All variants associated with the central/bottom channel of the C-terminal β-pro-
peller retained full alkylation activity (Figure 3C). Strikingly, substitution of two residues located at 
the domain interface between the top face of the β-propeller and the N-terminal domain, Arg105 
and Tyr473, completely abolished all activity on substrate pair 3 + 4 (Figure 3C). Notably, although 
located in close proximity, Arg105 is supplied by the N-terminal domain, while Tyr473 is from the 
C-terminal β-propeller, suggesting that both domains play an essential role in catalysis. These data 
preliminarily supported the location of the active site as the cleft formed between the two domains 
of CylK (cavity 1).

In parallel, we hypothesized that the alkyl chloride moiety may be an important substrate-binding 
determinant based on our inability to obtain a full occupancy complex of resorcinol 3 in CylK crystals. 
Although 3 was required for CylK crystallization, we could not model the alkyl resorcinol substrate 
in the resulting structure. To visualize locations within CylK capable of binding an alkyl halide or free 
halide, we soaked CylK crystals with NaBr solutions. The Br– ions are surrogates for the native Cl– 
side product and are generated in reactions with alkyl bromide electrophiles, which CylK was previ-
ously shown to accept with similar efficiency to alkyl chlorides (Schultz et al., 2019). Bromine X-ray 
absorption energies can be easily accessed at a conventional synchrotron X-ray source for anomalous 

Table 4. Conservation of CylK residues selected for mutagenesis experiments.

Position

Residue
(CylK, C. 
licheniforme) Mutant Residue (CabK)

Residue
(CylK, C. stagnale)

Residue
(MerH)

Residue
(BrtB)

78 Lys Glu Lys Lys Lys Lys

96 Asp Ala Asp Asp Asp Asp

105 Arg Ala, Lys Arg Arg Arg Arg

473 Tyr Ala, Tyr Tyr Tyr Tyr

265 Ser Ala Ser Ser Ala Ala

266 Ser Ala Ser Ser Ser Thr

267 Thr Ala Thr Thr Thr Ala

324 Ser Ala Ser Ser Ser Ser

377 Lys Ala Arg Lys Arg Gly

379 Thr Ala Thr Thr Thr Ala

502 Asp Ala Asp Asp Asp Asp

504 Glu Ala Glu Glu Glu Ala

558 Leu Ala Leu Leu Leu Met

559 Asp Ala Asp Asp Asp Gly

562 Asp Ala His Asp Glu Val

616 Thr Ala Thr Thr Thr Gly

618 Thr Ala Thr Thr Ser Ser

374 Glu Ala Glu Glu Glu Arg

438 Leu Ala Leu Leu Leu Leu

440 Asp Ala, Asn Asp Asp Asp Glu

499 Phe Ala Phe Phe Phe Tyr

318 Ser Ala Ser Ser Thr Ile

334 Asn Ala Asn Asn Asn Trp

https://doi.org/10.7554/eLife.75761
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diffraction experiments, allowing us to pinpoint the location of the halide in the structure. Initial refine-
ments identified two strong positive peaks located ~15 Å apart in Fo−Fc electron density maps of 
the interdomain cavity (cavity 1). Anomalous diffraction datasets collected at the absorption edge of 
bromine confirmed assignment of these peaks as Br– ions (Figure 4A, Table 5). Anomalous peaks were 
not found in the central channel of the β-propeller domain (cavity 2).

The bromide peak of highest intensity (~33 σ) in the anomalous difference electron density map, 
Br1, is located just inside the opening to the interdomain cavity (Figure 4B). Br1 is modeled at nearly 
full (85%) occupancy and appears to make hydrogen-bonding contacts with the side chains of Arg105 
from the N-terminal domain and Tyr473 from the C-terminal domain, both residues identified in our 
mutagenesis scan. Notably, the apo CylK model also contained a positive Fo−Fc electron density peak 
at the Br1 site. Given the presence of chloride salts in the protein storage buffer, we modeled this site 
as a chloride ion in the apo model (Figure 2B). Br1 resides within 8 Å of the calcium-binding sites in 
the N-terminal domain, and the backbone carbonyl of Arg105 coordinates the central Ca2+ ion (Ca2) 
in the β-roll motif of the N-terminal domain. This observation further supports an active role for both 
domains in the CylK-catalyzed reaction. Br1 is located within 5–6 Å of other side chains that form 
a portion of the solvent accessible channel nearest to the protein surface (Figure 4B), including a 
number of polar residues that could be implicated in activation of the resorcinol nucleophile and/or 
the alkyl chloride electrophile. Two residues, Asp440 and Leu438, undergo a rotamer change upon 
bromide binding. A second bromide peak, Br2, modeled at 48% occupancy, is located deep within 
the interdomain cavity. This ion makes contact with Ser318, Asn334, and Trp320, all contributed by 
the C-terminal domain. While residues surrounding both bromides are generally conserved in closely 
related CylK homologs, those associated with Br2 are not conserved in the C–O bond-forming family 
member BrtB (Table  4). This observation suggests that while Br2 residues might be relevant for 
paracyclophane-forming enzymes, they may not be necessary for all family members.

Key catalytic residues are located at Br1 within the active site cleft
Having discovered that the CylK active site cleft has two potential alkyl halide-binding/-activating 
regions, we wondered if the two discrete native alkylation reactions catalyzed by CylK occurred at one 
or both bromide-binding sites. If only a single bromide site is catalytically active, we speculate that 
the monoalkylated intermediate 2 is likely released, rotates 180°, and must rebind the active site for 
the second alkylation event to occur (Figure 4C). To test this proposal, we individually mutagenized 
several residues closely associated with or appearing to directly bind either bromide, and examined 
their ability to perform the first and second alkylation reactions with native substrates 1 and 2. Consid-
ering that the first alkylation is effectively faster than the second (Nakamura et al., 2017), likely due 
to substrate and/or product inhibition, we monitored the first alkylation by interrogating the 1 hr time 
point of the native reaction, when wild-type enzyme has fully transformed both equivalents of 1 to 
intermediate 2 (>99% conversion). Notably, substitution of the residues that comprise the Br1-binding 
site (Arg105, Tyr473) abolished CylK activity toward 1 at 1 hr, while mutations that disrupt Br2 (Ser318, 
Asn334) had no apparent effect (Figure 4D), retaining wild-type levels of activity. Variants targeting 
three additional residues located between the two bromide sites (Glu374, Leu438, Asp440) had very 
low or no activity and stood out as potential candidates for substrate binding or nucleophile activation 
due to their side chain functionalities and vicinity to Br1 on the cleft surface. Mutating Phe499 to Ala 
did not significantly reduce conversion.

We then examined the second alkylation reaction using a mixture of intermediate 2 containing a 
small amount of cylindrocyclophane F (~18%) as the substrate. Consistent with the results obtained for 
the first alkylation reaction, variants that disrupted Br1 did not have appreciable activity on interme-
diate 2, while substitution of residues comprising Br2 maintained near wild-type activity (Figure 4E). 
Mutating Glu374, Leu438, and Asp440 also resulted in no significant activity toward 2 after 22 hr, 
while the Phe499 to Ala mutant retained appreciable activity as before. Of note, mutating Arg105 to 
Lys, and Asp440 to Asn resulted in no activity for either alkylation, suggesting that the size, hydrogen-
bonding capacity, and/or pKa of these residues might be important for catalysis (Figure 4—figure 
supplement 1). However, mutating Tyr473 to Phe only moderately reduced activity and might suggest 
that the aromatic nature and/or size of this residue is critical for alkylation. Based on these results, 
we propose that Br1 is the site of alkyl chloride binding and both aromatic ring alkylation events. 
Additional work is required to determine if the residues that comprise Br2 assist in substrate binding, 

https://doi.org/10.7554/eLife.75761
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Figure 4. NaBr soak and mutagenesis of bromide-binding residues suggest a single site for catalysis. (A) A soak of NaBr into CylK crystals reveals two 
strong peaks in the anomalous difference electron density map (cyan mesh, contoured at 5.0 σ) within cavity 1. Bromide ion 1 (Br1) and 2 (Br2) are shown 
as teal spheres, and selected amino acids in the vicinity of each site are shown in stick format. The C-terminal domain is colored white, and the N-
terminal domain is colored pink. (B) Alternate view of Br1 with anomalous difference electron density map, polar contacts shown as black dashed lines, 
and other distances shown as gray lines. All distances measured in angstroms. (C) Proposed alkylation scheme with potential roles for two bromide-
binding sites in paracyclophane formation, or invoking release and rebinding of monoalkylated intermediate 2 for alkylation at a single bromide site. 
(D) End point activity at 1 hr of select mutants performing the native reaction with substrate 1, highlighting the residues associated with Br1 or Br2. 
Product formation was quantified by high-performance liquid chromatography (HPLC), error bars represent the standard deviation from the mean of two 
biological replicates. (E) End point activity at 22 hr of select mutants performing the second alkylation reaction with intermediate 2.

Figure 4 continued on next page
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but it is clear from these data that they are not essential for catalysis. Furthermore, the site of catal-
ysis at Br1 is located near the outermost portion of the solvent-exposed interdomain cavity; this is in 
agreement with previous work that demonstrated CylK’s ability to accept non-native substrates with 
rigid substitutions on the resorcinol ring nucleophile (Schultz et al., 2019), which would necessitate 
a flexible or open active site.

Molecular dynamics simulations suggest mode of substrate binding and 
activation
Having identified the site of alkylation and potential key residues, we sought to determine the specific 
mode of substrate binding and assess the relative contributions of specific side chains toward nucleo-
phile (resorcinol) versus electrophile (alkyl chloride) activation. We began by computationally docking 
two equivalents of native substrate 1 into the active site of CylK (Figure 5A). The initial complexes 
were generated manually using the Br1 site to anchor the electrophilic alkyl chloride substituent of one 
equivalent of 1. Previous DFT calculations performed on a model alkyl resorcinol substrate suggested 
that interaction between a resorcinol phenol substituent and a carboxylate hydrogen bond acceptor 
would enhance nucleophilicity of the aromatic ring (Schultz et al., 2019). Accordingly, potential inter-
actions with key carboxylate residues Asp440 and Glu374 guided the placement of the nucleophilic 
resorcinol of the other equivalent of substrate 1. Additionally, we oriented the nucleophilic and elec-
trophilic carbon centers at an appropriate distance (<4 Å) and arrangement to accommodate the 
known stereochemical inversion of the substitution reaction. Two docked initial complexes were used, 
and both were run as restrained and unrestrained simulations. Restrained simulations included 1 kcal/
mol·Å2 restraints on all protein atoms to allow substrates to search the active site. All simulations 
consistently demonstrated that the active site cleft can accommodate two equivalents of substrate 
1, and furthermore, Asp440 and Glu374 maintained H-bonding contacts with the resorcinol nucle-
ophile (Figure 5B). For the majority of the simulation time, the chloride-binding pocket formed by 
Arg105 and Tyr473 (Br1) maintained contact with the alkyl chloride electrophile (Figure 5—figure 
supplement 1, Figure 5—figure supplement 2). We conclude that Asp440 and Glu374 are likely 
resorcinol nucleophile-interacting residues, while Arg105 and Tyr473 bind and activate the alkyl chlo-
ride electrophile with hydrogen-bonding interactions. Furthermore, the source of CylK’s exquisite 
regio- and stereoselectivity can be explained by the orientation in which the resorcinol nucleophile is 
held in close proximity to the backside of the carbon–chlorine (C–Cl) bond. Based on these results, 
we can propose a mechanism of alkylation that is distinct from chemical and enzymatic precedent 
(Figure 5C). Simulations of intermediate 2, positioned for the second alkylation reaction, maintained 
similar alkyl chloride electrophile interactions; however, the resorcinol nucleophile did not remain at 
an appropriate distance or orientation for the reaction (Figure 5—figure supplement 3). More work is 
required to accurately model the second alkylation step; however, it is clear from our mutagenic work 
that the same residues are essential for both alkylation events.

Bioinformatic analysis supports proposed residues implicated in alkyl 
chloride activation
We next sought to apply the functional insights gained from our structural analysis of CylK to improve 
our understanding of less closely related family members. Previously, bioinformatically identifying 
CylK-like enzymes was challenging because proteins encoding β-propeller motifs are common in 
publicly available protein databases, making it unclear which hits were true family members. With the 

The online version of this article includes the following source data and figure supplement(s) for figure 4:

Source data 1. Western blot of Strep-tagged CylK mutants (from left to right): R105A, R105K, S318A, N334A, E374A, L438A; and serial dilutions of 
purified wild-type CylK: 2.0, 0.5, and 0.1 µM.

Source data 2. Western blot of Strep-tagged CylK mutants (from left to right): D440A, D440N, Y473A, Y473F, F499A, wild-type; and serial dilutions of 
purified wild-type CylK: 2.0, 0.5, and 0.1 µM.

Figure supplement 1. Mutagenesis of active site cleft.

Figure supplement 2. Western blotting of Strep-tagged CylK mutants from soluble lysate with anti-Strep-horseradish peroxidase (HRP, IBA) in order to 
ensure mutant enzyme expression and solubility.

Figure 4 continued
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Table 5. Data collection and refinement statistics for Br-soaked C. licheniforme CylK structures.

Native Br anomalous

Data collection

Space group C 2 2 21 C 2 2 21

Wavelength (Å) 0.97872 0.9184

Cell dimensions

 � a, b, c (Å) 93.470, 138.656, 99.511 93.557, 138.726, 99.706

 � α, β, γ (°) 90.0, 90.0, 90.0 90.0, 90.0, 90.0

Resolution (Å) 50.0–1.52 (1.55–1.52) 50–1.54 (1.57–1.54)

Rmerge 0.076 (0.703) 0.725 (4.755)

Rpim 0.029 (0.295) 0.149 (1.140)

I / σI 23.3 (2.14) 24.0 (2.06)

CC1/2 0.990 (0.843) 0.978 (0.124)

Completeness (%) 99.7 (98.9) 100.0 (100.0)

Redundancy 7.0 (5.5) 24.2 (16.9)

 �

Refinement

Resolution (Å) 46.78–1.52

No. reflections 89,122

Rwork / Rfree 0.1693/0.1978

No. atoms 5437

 � Protein 4989

 � Ligand/ion 45

 � Water 403

B-factors (Å2)

 � Protein 16.68

 � Ligand/ion 23.03

 � Water 23.77

RMS deviations

 � Bond lengths (Å) 0.013

 � Bond angles (°) 1.823

Molprobity clashscore 1.64 (99th percentile)

Rotamer outliers (%) 0.76

Ramachandran favored (%) 96.41

Ramachandran allowed (%) 3.59

Ramachandran outlier (%) 0.00

PDB accession code 7ROO

*Values in parentheses are for highest-resolution shell.

https://doi.org/10.7554/eLife.75761


 Research article﻿﻿﻿﻿﻿﻿ Biochemistry and Chemical Biology | Structural Biology and Molecular Biophysics

Braffman, Ruskoski, et al. eLife 2022;0:e75761. DOI: https://doi.org/10.7554/eLife.75761 � 13 of 25

knowledge that both protein domains of CylK are necessary for catalysis, we could now accurately 
locate CylK-like enzymes encoded in sequenced genomes. From a BLAST search, we identified over 
700 proteins with >24% amino acid identity to CylK or BrtB (Supplementary file 1). That group was 
pared down to 286 unique enzyme sequences containing both N- and C-terminal domains found in 
CylK, and their relationship was assessed by constructing a maximum-likelihood phylogenetic tree 
(Figure 6).

We further analyzed these data by looking for the presence or absence of a partner CylC haloge-
nase encoded in the same genome. A subset of CylK homologs that are mostly clustered together on 
the phylogenetic tree are found in organisms that also have a putative CylC halogenase. Of these CylK 
and CylC enzyme pairs, ~80% are co-localized in their respective genomes, hinting that they might 
work together within a biosynthetic pathway (Supplementary file 2). We found very few other types 
of halogenases co-localized with CylK homologs; those identified were of the iron(II) 2-(oxo)-glutarate 
(FeII/2OG)-dependent enzyme family but were also clustered with CylC halogenases. We examined 
each putative CylK sequence for the presence of the proposed alkyl chloride-activating residues 
Arg105 and Tyr473. Intriguingly, nearly all of the candidate CylK enzymes containing both key resi-
dues were from organisms that also encode a CylC halogenase (42 of 53 organisms), suggesting that 
they are likely using halogenated substrates and that Arg105 and Tyr473 are indeed important for 
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Figure 5. Molecular dynamics simulations reveal roles for key catalytic residues and enable a mechanistic proposal. (A) An energy-minimized docking 
model of CylK in complex with two chlorinated alkylresorcinol molecules in cavity 1 before and (B) after unrestrained molecular dynamics simulation. 
This analysis shows that both substrates can be accommodated while maintaining contact with one another and essential catalytic residues. Substrate 
molecules and selected amino acid side chains shown in stick format. (C) Proposed mechanism for a single cycle of the CylK-catalyzed Friedel–Crafts 
alkylation with key residues illustrated.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Molecular dynamics simulations of enzyme–substrate complexes manually docked into interdomain cavity support active site 
assignment in this region of CylK.

Figure supplement 2. Molecular dynamics simulations of intermediate product 2 complexes manually docked into interdomain cavity reveal a halide-
binding pocket involving R105 and Y473.

Figure supplement 3. Molecular dynamics simulations of monoalkylated intermediate 2 positioned for the second alkylation reaction.

Figure supplement 4. Comparison of bound alkyl halides and their respective enzyme active sites.

https://doi.org/10.7554/eLife.75761


 Research article﻿﻿﻿﻿﻿﻿ Biochemistry and Chemical Biology | Structural Biology and Molecular Biophysics

Braffman, Ruskoski, et al. eLife 2022;0:e75761. DOI: https://doi.org/10.7554/eLife.75761 � 14 of 25

alkyl chloride activation. This subset of CylK homologs was aligned and visualized (Figure 6—figure 
supplement 1), which revealed that, while the resorcinol nucleophile-activating residue Asp440 was 
also highly conserved, Leu438, Glu374, and other active site residues are not highly prevalent within 
this subset. This demonstrates that the correlation between Arg105, Tyr473, and the presence of a 
CylC halogenase is not simply due to the overall similarity of this subset of enzymes.

Inspired by the biosynthetic logic of the cyl pathway, we also looked for co-localized monoal-
kylresorcinol (MAR)-forming enzymes encoded near putative CylK homologs in order to ascertain if 
resorcinols are likely to serve as their native nucleophilic substrates. To our knowledge, biosyntheses 
of MARs only involve type III PKS enzymes such as CylI (Martins et al., 2019). Surprisingly, we found 
only 10 CylI homologs clustered with CylK homologs, representing just 19% of the candidate enzymes 
that have Arg105 and Tyr473 residues and are expected to have alkyl chloride-activating activity. 
This observation suggests that a broader diversity of nucleophilic substrates might be used by these 
uncharacterized alkyl chloride-activating enzymes. Of note, dialkylresorcinol-forming enzymes such 
as those involved in bartoloside biosynthesis were not found in CylK-encoding gene clusters beyond 
the bartoloside gene cluster. The observation that the majority of CylK homologs do not have the 
proposed alkyl chloride-activating residues, partner halogenases, nor resorcinol forming enzymes, 
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Figure 6. CylK homologs with partner CylC halogenases contain the proposed alkyl chloride-activating residues. Maximum-likelihood phylogenetic 
tree of protein sequences homologous to CylK and BrtB that contain both N- and C-terminal domains (>24% amino acid identity), highlighting the key 
conserved catalytic residues, clustered halogenases, and associated monoalkylresorcinol-forming enzymes. Dialkylresorcinol-forming enzymes (DarA/B-
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shaded based on the legend. Natural products associated with select CylK homologs are displayed; the bonds highlighted in blue are constructed by 
their respective CylK.

The online version of this article includes the following figure supplement(s) for figure 6:

Figure supplement 1. Conservation mapping analysis of functionally annotated CylK homologs.

https://doi.org/10.7554/eLife.75761
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indicates that this enzyme family may catalyze other reactions not involving alkyl halides or resorcinols. 
This information will enable future studies by prioritizing organisms that might produce more distantly 
related natural products and/or CylK-like enzymes with alternate substrate scopes.

Discussion
Our results provide a structural basis for understanding the unusual enzymatic Friedel–Crafts alkyla-
tion catalyzed by CylK in cylindrocyclophane biosynthesis. This structural model, together with 
supporting biochemical experiments and bioinformatic analyses, has provided fundamental insight 
into this intriguing reaction that represents the only known example of aromatic ring alkylation with 
an alkyl halide electrophile. The molecular knowledge we have gained may be applied to access and 
engineer novel biocatalysts, design chemocatalysts, and discover new natural products that may be 
candidate therapeutics and/or play important physiological roles in cyanobacteria. We note that a 
recently published paper also described the structure of CylK and reached similar conclusions (Wang 
et al., 2022).

We identified the active site of CylK at the interface of its N- and C-terminal domains. Together 
with previously characterized enzymes, our results show how structurally related β-propeller enzymes 
have divergently adapted this fold for catalytic function. In two metalloenzymes, carotenoid cleavage 
dioxygenase (CCD) (Messing et  al., 2010) and nitrous oxide reductase (NOR) (Pomowski et  al., 
2011), an active site metallocofactor is lodged on the top face of the propeller and coordinated by 
His side chains from inner β-strands of the fold (Figure 2—figure supplement 4). Like CylK, both of 
these enzymes have a capping motif on the top face of the propeller. CCD contains more extensive 
internal loops than CylK, and these adopt structured helix-loop motifs that bury the top face of the 
propeller. NOR is a di-domain dimeric enzyme that employs an electron transfer domain from an adja-
cent monomer to shield the catalytic metallocofactor in the β-propeller motif. In both, these domain 
arrangements create a favorable environment for substrate binding and catalysis, as we observe in 
CylK (Figure 2—figure supplement 6).

Both domains of CylK have several bound calcium ions, a row of which is near the proposed alkyl 
chloride-binding site. However, the closest Ca2+ ion is approximately 8 Å from this pocket. Although 
we have previously demonstrated a functional requirement for calcium (Nakamura et al., 2017), our 
structural work suggests that a direct role in catalysis is unlikely. Removing calcium might cause a 
significant conformational change that precludes access to or alters the architecture of the active site 
as the treatment of CylK with ethylenediaminetetraacetic acid (EDTA) was observed to cause a shift in 
oligomeric state from monomer to a dimer. This might be indicative of larger structural changes within 
each unit of CylK that are incompatible with catalysis. It is unknown if calcium plays a regulatory role 
in vivo, although it is a component of the cyanobacterial BG-11 growth medium.

We propose a plausible mechanism for CylK catalysis that invokes positioning the reactive partners 
in close proximity for a concerted SN2-like reaction, consistent with the known inversion of configura-
tion at the alkyl chloride stereocenter upon substitution (Figure 5C). In particular, we suggest that the 
side chain carboxylates of Asp440 and Glu374 hydrogen bond with the two phenol substituents of 
the resorcinol nucleophile. By deprotonating one phenol, the essential residue Asp440 could enhance 
the nucleophilicity of the reactive carbon. Analogous deprotonation of a resorcinol has been invoked 
as a critical step in an enzymatic Friedel–Crafts acylation reaction with acetyl arene electrophiles, 
lending support to our proposal (Pavkov‐Keller et al., 2018). Simultaneously, we hypothesize that 
Arg105, Tyr473, Phe499, and the hydrophobic portion of Thr84 form an alkyl chloride-binding pocket 
as observed in the bromide-soaked CylK structure. Hydrogen-bonding interactions between the polar 
residues and the alkyl chloride could weaken the C–Cl bond, reducing the overall activation energy 
barrier for substitution. Interestingly, mutating Tyr473 to Phe only slightly reduces alkylation activity, 
which suggests that the alkyl chloride Tyr473 interaction might resemble an anion–pi interaction 
(Schottel et al., 2008; Garau et al., 2003). While there is precedent for alkyl halide–arene interac-
tions (Parisini et al., 2011), they are less thoroughly studied than anion–pi interactions. Alternatively, 
if Tyr473 provides a key hydrogen bond, the Phe mutant may partially compensate by forming an 
alkyl halide–pi interaction. In either case, this alkyl chloride-binding pocket is reminiscent of the active 
sites of the S-adenosylmethionine (SAM)-dependent chlorinase (Eustáquio et  al., 2008) and fluo-
rinase (Dong et  al., 2004) enzymes. In these structures, similar ensembles of polar and aliphatic 
residues bind and stabilize a halide anion as it reacts with SAM in a SN2 substitution reaction that 
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resembles the reverse of the transformation catalyzed by CylK (Figure 5—figure supplement 4A 
and B). Interestingly, our proposed CylK alkyl chloride-binding mode is distinct from that of the well-
studied haloalkane dehalogenase enzyme, which primarily uses the indole N–H bonds of adjacent 
Trp residues to activate a primary alkyl chloride for substitution by the side chain carboxylate of an 
active site Asp via hydrogen bonding (Figure 5—figure supplement 4C; Verschueren et al., 1993). 
We speculate that the differences between these two enzymes arise from their distinct evolutionary 
histories as well as the decreased hydrophobicity and increased reactivity of a primary alkyl chloride 
substrate. Following alkylation, the chloride anion product diffuses out of the active site, and the 
aromaticity of the resorcinol is restored upon proton transfer to water, perhaps via His391. Finally, 
intermediate 2 is released from the active site, must reorient 180°, and rebind for the second intramo-
lecular alkylation to occur in the same fashion. This reorientation likely requires significant energy to 
disrupt protein–substrate interactions and might suggest active site conformational changes occur to 
accommodate intermediate 2 in the catalytically competent orientation; however, this warrants further 
investigation. Although we cannot rule out a radical mechanism, the architecture of the active site and 
lack of radical initiation sources suggests that one-electron processes are unlikely.

We have emphasized the distinction between the proposed resorcinol nucleophile-activating 
residues and those that likely activate the alkyl chloride electrophile in order to compare CylK with 
the divergent C–O bond-forming family member, BrtB (30% amino acid identity, 46% similarity). We 
hypothesize that both enzymes utilize a similar strategy to enhance the reactivity of their alkyl chlo-
ride substrates, although it remains to be determined if BrtB is similarly stereoinvertive. In agreement 
with this proposal, BrtB contains Arg105 and Tyr473 equivalents that may play a role in alkyl chloride 
activation. In place of the nucleophile-activating Asp440, BrtB contains a functionally similar Glu, 
and notably, Glu374 is substituted with a positively charged Arg. These two residues might interact 
with carboxylate nucleophiles, although the precise roles of these residues in BrtB’s distinct reactivity 
remain to be determined. Interestingly, a carboxylate nucleophile would be predominantly deproton-
ated at physiological pH, suggesting that nucleophile activation might be unnecessary in this enzyme. 
Regardless, the divergent reactivity of CylK and BrtB hints that other relatives might perform unique 
chemistry and may even be amenable to protein engineering efforts to alter their substrate scopes 
and reactivity.

The reaction catalyzed by CylK represents a unique approach for enzymatic C–C bond forma-
tion. Other biological strategies to form analogous arene–alkyl C–C bonds involve radical interme-
diates that must be precisely held and oriented in their enzyme active sites in order to prevent side 
reactions. Examples include the radical SAM and FeII/2OG enzymes involved in streptide (Schramma 
et al., 2015) and etoposide (Lau and Sattely, 2015) biosynthesis, respectively. In contrast to CylK, 
these enzymes form bonds between arenes and unactivated carbon centers. Because the target sp3 
coupling sites of their substrates are inherently unactivated, these alkylating enzymes must stringently 
discriminate between the alkyl C–H coupling site and its chemically equivalent neighbors. In contrast, 
the CylK-catalyzed reaction leverages the preinstalled alkyl chloride substituent in order to direct 
reactivity. Therefore, the cylindrocyclophane biosynthetic logic can be described as dividing the task 
of determining reaction specificity between CylK and its partner halogenase, CylC. This novel haloge-
nase family likely has strict requirements for substrate positioning (Matthews et al., 2009), although it 
remains to be seen if CylC is promiscuous. This feature of distributing selectivity and alkylation across 
two enzymes might rationalize why wild-type CylK can accept multiple non-native substrates, whereas 
active site specificity for unactivated coupling partners might be more stringent.

CylK performs a challenging chemical reaction without precedent in biology. By elucidating its 
structure, we have begun to unravel the molecular details underlying the use of alkyl halides as cryptic 
intermediates in natural product biosynthesis. This enzymatic Friedel–Crafts alkylation might also 
find application in constructing diverse alkyl–arene C–C bonds outside of natural pathways. With 
structural information about CylK, notably the identification of active site residues, efforts to further 
expand its substrate specificity and improve its stability via enzyme engineering can begin in earnest. 
In addition to its unique reactivity, the large size and solvent accessibility of CylK’s active site suggest 
that it might be engineered to accept diverse and bulky substrates. Furthermore, our structure and 
proposed mechanism have increased our fundamental understanding of enzymatic interactions with 
alkyl halides and may inspire the design of biomimetic chemocatalysts that engage secondary alkyl 
halides in substitution reactions (Park et al., 2017; Brak and Jacobsen, 2013). Finally, armed with the 
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ability to functionally annotate CylK-like genes, we can prioritize orphan biosynthetic gene clusters 
and producing organisms in order to discover additional structurally unique natural products.

Materials and methods

 Continued on next page

Key resources table 

Reagent type (species) or 
resource Designation Source or reference Identifiers Additional information

Gene (Cylindrospermum 
licheniforme ATCC 29412) CylK GenBank ARU81125.1

Strain, strain background 
(Escherichia coli) BL21(DE3) Invitrogen C6000-03

Strain, strain background (E. coli)
BL21 Gold CodonPlus (DE3) 
RIL Agilent 230245

Peptide, recombinant protein
Strep-Tactin HRP, anti-Strep-
HRP (Streptomyces avidinii) IBA Life Sciences 2-1502-001 (1:25,000)

Recombinant DNA reagent
pET-His6-Sumo-CylK-Strep 
(plasmid) Schultz et al., 2019

Recombinant DNA reagent pPR-IBA1-CylK (plasmid) Nakamura et al., 2017

Recombinant DNA reagent pPR-IBA1-CylK K78E (plasmid)
This work, constructed by 
GENEWIZ

Replaced AAG with GAG 
at position 232

Recombinant DNA reagent pPR-IBA1-CylK D96A (plasmid)
This work, constructed by 
GENEWIZ

Replaced GAT with GCT 
at position 286

Recombinant DNA reagent
pPR-IBA1-CylK R105A 
(plasmid)

This work, constructed by 
GENEWIZ

Replaced CGT with GCC 
at position 313

Recombinant DNA reagent
pPR-IBA1-CylK Y473A 
(plasmid)

This work, constructed by 
GENEWIZ

Replaced TAT with GCT 
at position 1,417

Recombinant DNA reagent pPR-IBA1-CylK S265A (plasmid)
This work, constructed by 
GENEWIZ

Replaced AGT with GCC 
at position 793

Recombinant DNA reagent pPR-IBA1-CylK S266A (plasmid)
This work, constructed by 
GENEWIZ

Replaced TCC with GCC 
at position 796

Recombinant DNA reagent
pPR-IBA1-CylK T267A 
(plasmid)

This work, constructed by 
GENEWIZ

Replaced ACC with GCT 
at position 799

Recombinant DNA reagent pPR-IBA1-CylK S324A (plasmid)
This work, constructed by 
GENEWIZ

Replaced AGT with GCT 
at position 970

Recombinant DNA reagent
pPR-IBA1-CylK K377A 
(plasmid)

This work, constructed by 
GENEWIZ

Replaced AAA with GCC 
at position 1129

Recombinant DNA reagent
pPR-IBA1-CylK T379A 
(plasmid)

This work, constructed by 
GENEWIZ

Replaced ACC with GCT 
at position 1135

Recombinant DNA reagent
pPR-IBA1-CylK D502A 
(plasmid)

This work, constructed by 
GENEWIZ

Replaced GAC with GCC 
at position 1504

Recombinant DNA reagent
pPR-IBA1-CylK E504A 
(plasmid)

This work, constructed by 
GENEWIZ

Replaced GAA with GCC 
at position 1510

Recombinant DNA reagent pPR-IBA1-CylK L558A (plasmid)
This work, constructed by 
GENEWIZ

Replaced TTA with GCT 
at position 1672

Recombinant DNA reagent
pPR-IBA1-CylK D559A 
(plasmid)

This work, constructed by 
GENEWIZ

Replaced GAT with GCT 
at position 1675

Recombinant DNA reagent
pPR-IBA1-CylK D562A 
(plasmid)

This work, constructed by 
GENEWIZ

Replaced GAT with GCC 
at position 1684

Recombinant DNA reagent
pPR-IBA1-CylK T616A 
(plasmid)

This work, constructed by 
GENEWIZ

Replaced ACG with GCT 
at position 1846

Recombinant DNA reagent
pPR-IBA1-CylK T618A 
(plasmid)

This work, constructed by 
GENEWIZ

Replaced ACT with GCT 
at position 1852

https://doi.org/10.7554/eLife.75761
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Reagent type (species) or 
resource Designation Source or reference Identifiers Additional information

Recombinant DNA reagent
pPR-IBA1-CylK D440A 
(plasmid)

This work, constructed by 
GENEWIZ

Replaced GAC with GCC 
at position 1318

Recombinant DNA reagent pPR-IBA1-CylK L438A (plasmid)
This work, constructed by 
GENEWIZ

Replaced CTT with GCT 
at position 1312

Recombinant DNA reagent
pPR-IBA1-CylK E374A 
(plasmid)

This work, constructed by 
GENEWIZ

Replaced GAA with GCT 
at position 1120

Recombinant DNA reagent pPR-IBA1-CylK F499A (plasmid)
This work, constructed by 
GENEWIZ

Replaced TTT with GCC 
at position 1495

Recombinant DNA reagent
pPR-IBA1-CylK N334A 
(plasmid)

This work, constructed by 
GENEWIZ

Replaced AAC with GCC 
at position 1000

Recombinant  
DNA reagent pPR-IBA1-CylK S318A (plasmid)

This work, constructed by 
GENEWIZ

Replaced AGC with GCC 
at position 952

Recombinant  
DNA reagent pPR-IBA1-CylK R105K (plasmid)

This work, constructed by 
GENEWIZ

Replaced CGT with AAG 
at position 313

Recombinant  
DNA reagent pPR-IBA1-CylK Y473F (plasmid)

This work, constructed by 
GENEWIZ

Replaced TAT with TTT 
at position 1417

Recombinant  
DNA reagent

pPR-IBA1-CylK D440N 
(plasmid)

This work, constructed by 
GENEWIZ

Replaced GAC with AAC 
at position 1318

Software,  
algorithm HKL2000 Otwinowski and Minor, 1997

http://www.hkl-xray.com/hkl-2000; 
RRID:SCR_015547

Software,  
algorithm Phaser McCoy et al., 2007

https://www.phenix-online. 
org/documentation/ 
reference/phaser.html; RRID:SCR_014219

Software,  
algorithm Phenix Liebschner et al., 2019

https://www.phenix- 
online.org/;  
RRID:SCR_014224

Software,  
algorithm Coot Emsley and Cowtan, 2004

http://www2.mrc-lmb.cam.ac. 
uk/personal/ 
pemsley/coot/;  
RRID:SCR_014222

Software,  
algorithm CCP4 (FFT, CAD) Winn et al., 2011

http://www.ccp4.ac.uk/;  
RRID:SCR_007255

Software,  
algorithm Refmac5 Vagin et al., 2004

http://www.ccp4.ac. 
uk/html/refmac5/ 
description.html;  
RRID:SCR_014225

Software,  
algorithm PyMOL

The PyMOL Molecular Graphics 
System, version 2.0 Schrödinger, 
LLC

http://www.pymol.org/;  
RRID:SCR_000305

 Continued

Protein expression and purification
CylK was expressed and purified for crystallographic characterization according to a modified litera-
ture method (Schultz et al., 2019). Following overexpression in Escherichia coli BL21(DE3) as a SUMO 
fusion construct, cell pellets were resuspended in lysis buffer (20 mM Tris pH 8.0, 500 mM NaCl, 
10 mM MgCl2, 10 mM CaCl2) supplemented with an EDTA-free Pierce Protease Inhibitor Tablet. Cells 
were lysed using a continuous-flow homogenizer (Avestin EmulsiFlex-C3). The pellet was collected by 
centrifugation (20,000 × g for 30 min) and resuspended in lysis buffer supplemented with 6 M urea 
and 5 mM imidazole. The denatured enzyme solution was clarified twice by centrifugation (20,000 × 
g for 15 min), and the supernatant was applied to 20 mL of Ni NTA resin. The column was washed 
with lysis buffer containing 6  M urea and 5  mM imidazole. Bound species were eluted with lysis 
buffer containing 6 M urea and 250 mM imidazole. All subsequent steps were carried out at 4°C. 
The enzyme was refolded by sequentially dialyzing this solution against buffer 1 (lysis buffer supple-
mented with 3 M urea) overnight, buffer 2 (lysis buffer lacking urea) for 4 hr, and buffer 3 (lysis buffer 
supplemented with 5% glycerol) for 4 hr. Following dialysis, the refolded enzyme solution was centri-
fuged (100,000 × g for 30 min), and the supernatant was collected and incubated overnight with ULP 
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Protease (1:25 w/w). Then, following a subtractive Ni NTA step, the enzyme was applied to a Superdex 
200 30/100 gel filtration column (GE Healthcare) equilibrated in protein storage buffer (20 mM HEPES 
pH 7.8, 50 mM NaCl, 10 mM MgCl2, 10 mM CaCl2, 10% glycerol). The fractions containing pure CylK 
were pooled, concentrated (500–700 µM, determined by extinction coefficient and absorbance at 
280 nm), and flash frozen in liquid nitrogen.

Crystallization and structure determination
Prior to crystallization trials, purified CylK protein in storage buffer was combined with 
5-undecylbenzene-1,3-diol 3, a substrate analog synthesized as described previously (Schultz et al., 
2019) and dissolved in protein storage buffer containing 22% DMSO. The final protein solution 
contained 10 mg/mL CylK and 1.66 mM of 3. Crystals were obtained by using the hanging drop vapor 
diffusion method in 2 μL drops mixed in 1:1 ratio with a precipitant solution of 1.8 M sodium malonate, 
pH 7.0. To aid in obtaining phase information, the native Ca(II) sites in CylK crystals were substituted 
with a lanthanide via soak in a solution of 2.0 M sodium malonate, 100 mM terbium(III) chloride for 
8 min at room temperature. The Tb-soaked crystals were transferred to a cryoprotectant solution 
containing 2.0 M sodium malonate supplemented with 20% ethylene glycol, mounted on rayon loops, 
and flash frozen by direct plunge into liquid nitrogen. Diffraction datasets were collected at 1.6314 Å 
(Tb anomalous) and 0. 97872  Å (native) on these crystals at beamlines 23-ID-B (General Medical 
Sciences and Cancer Institutes Collaborative Access Team [GM/CA-CAT], Advanced Photon Source 
[APS]) and 21-ID-F (Life Sciences Collaborative Access Team [LS-CAT], APS), respectively. Diffraction 
datasets were processed with the HKL2000 software package (Otwinowski and Minor, 1997). The 
structure was solved by using the MR-SAD method. PHASER-EP (McCoy et  al., 2007; Read and 
McCoy, 2011), as implemented within the PHENIX software package (Liebschner et al., 2019), was 
used to calculate initial phases. A polyalanine model generated from the core β-propeller domain of 
Staphylococcus cohnii streptogramin B lyase (PDB accession code 2QC5, with all loops and secondary 
structure connections truncated) (Lipka et al., 2008) was used as the initial search model for MR. 
PHENIX.autobuild generated an initial model containing 504 residues in 15 chain fragments with 
initial Rwork/Rfree values of 29.9%/37.4%. The model was iteratively improved via refinement in Refmac5 
against a native dataset and model building in Coot (Emsley and Cowtan, 2004), yielding Rwork/Rfree 
values of 16.4%/19.8% (Table 1). The final model contains residues 7–45, 49–392, and 413–662 with 
11 Ca2+ ions, 2 Mg2+ ions, 1 Cl- ion, and 339 water molecules. Tb ions were not modeled because 
they were not present at high occupancy. Ramachandran analysis (Liebschner et al., 2019) indicates 
a single outlier, Val620. Although 3 was required for CylK crystallization, and weak electron density 
resembling the compound could be found at several points near the surface of the protein, likely 
mediating crystal lattice contacts, we could not confidently model the alkyl resorcinol. No density for 
3 could be identified in cavity 1, the putative active site of CylK.

To identify possible alkyl chloride-binding sites within the protein, CylK crystals were soaked in 
2 M sodium malonate with 500 mM NaBr for up to 1 min. The Br-soaked crystals were transferred 
to a cryoprotectant solution consisting of the soak solution supplemented with 20% ethylene glycol. 
Diffraction datasets were collected at 0.9184 Å (Br anomalous) and 0.97872 Å (native) on these crys-
tals at beamlines 23-ID-B (GM/CA-CAT, APS) and 21-ID-F (LS-CAT, APS), respectively. Phase informa-
tion was obtained by MR using the CylK model as the initial search model in Phaser MR, implemented 
within CCP4. The model was iteratively built and refined in Coot and Refmac5, respectively, resulting 
in a Rwork/Rfree of 16.9%/19.8% (Table 5). The final model contains residues 7–393 and 410–667 with 10 
Ca2+ ions, 2 Mg2+ ions, 1 Na+ ion, 4 Br– ions, and 403 water molecules. Anomalous maps were gener-
ated using CAD and FFT programs implemented within CCP4. Figures were generated in PyMOL 
(Schrödinger, LLC). The information in Tables 1 and 5 was generated using HKL2000 (data collection 
statistics), Refmac5 (refinement statistics including resolution limits, Rwork/Rfree, rms deviations), the 
PBD validation server (no. of atoms), and PHENIX (B-factors, Molprobity clashscore, rotamer outliers, 
Ramachandran statistics) software packages.

Mutant enzyme activity screening
CylK mutants were expressed and assayed for activity according to a modified literature method 
(Schultz et al., 2019). Point mutants in plasmid pPR-IBA1-CylK were synthesized and sequence veri-
fied by GENEWIZ, South Plainfield, NJ. Enzyme activity assays using substrate pair 3 + 4 were carried 
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out as follows. Chloro-SNAc electrophile 4 was accessed as described previously (Schultz et  al., 
2019). Respective mutant, wild-type, and negative control plasmids (Addgene #31122) were freshly 
transformed into electrocompetent E. coli BL21 Gold CodonPlus (DE3) RIL cells (Agilent), and an indi-
vidual colony was used to directly inoculate 1 mL cultures of LB medium supplemented with 100 μg/
mL ampicillin or carbenicillin and 34 μg/mL chloramphenicol in a 96 deep well plate (VWR); sterility 
was maintained with standard techniques and a gas-permeable rayon film (VWR). The liquid culture 
plate was incubated for 5 hr at 37°C and 250 rpm shaking. After 5 hr, and confirming visible growth 
in each well, the liquid culture plate was cooled to 15°C, maintaining shaking. Following an additional 
30–45 min of incubation, protein expression was induced with 250 μM IPTG. The cultures were incu-
bated for 4 hr at 15°C with 250 rpm shaking. Following expression, 10 μL of each culture was removed 
from each well and subcultured for liquid culture RCA-based DNA sequencing to confirm identity and 
rule out culture cross-contamination. The remaining cultures were concentrated ~10× by centrifuga-
tion (3220 × g for 10 min) and resuspended in ~200 μL of spent media supernatant. Reactions were 
initiated in opaque 96-well plates (Costar) by combining 100 μL of concentrated cell suspension with 
2 μL of lysozyme mix (9 mg lysozyme and 1 mg EDTA-free Pierce Protease Inhibitor Tablet per 500 μL 
of 500 mM Tris, 50 mM EDTA, pH 8.0) and monoalkylation substrates in DMSO for a final concentra-
tion of nucleophile 3 at 150 μM, electrophile 4 at 300 μM, and DMSO at 3.4%. Reaction plates were 
sealed with aluminum seals (VWR) and incubated at 37°C with 190 rpm shaking for 20 hr. Reactions 
were quenched with the addition of 1:1 methanol/acetonitrile (200 μL) and centrifuged (3220 × g for 
15 min). The supernatant was then subjected to liquid chromatography-mass spectrometry (LC-MS) to 
measure ion abundance of product 5 (C31H53ClNO4S [M + H+] = 536.3768 ± 5 ppm) and starting mate-
rial 4 (C14H26ClNO2S [M + H+] = 308.1446 ± 5 ppm). LC-MS conditions were as published previously 
(Schultz et al., 2019). Reactions were repeated in biological triplicate.

Enzyme activity on native substrates 1 or 2 was assayed as follows. Substrate 1 and intermediate 
2 were accessed chemoenzymatically as described previously (Nakamura et  al., 2017). Care was 
taken to minimize glycerol in substrate stocks because it was determined to inhibit CylK activity. 
Respective mutant and wild-type plasmids were freshly transformed into electrocompetent E. coli 
BL21 Gold CodonPlus (DE3) RIL cells (Agilent), and 5–10 colonies were used to directly inoculate 
100 mL cultures in LB medium supplemented with 100 μg/mL ampicillin or carbenicillin and 34 μg/mL 
chloramphenicol. The liquid cultures were incubated at 37°C and 190 rpm shaking. At OD400 = 0.4, 
the cultures were cooled to 15°C, maintaining shaking. Following an additional 1 hr, protein expres-
sion was induced with 250 μM IPTG. The cultures were then incubated for 4 hr at 15°C with 190 rpm 
shaking. Following expression, cell pellets were collected by centrifugation (3220 × g for 10 min) 
and resuspended in ~2 mL of assay buffer (20 mM HEPES pH 7.8, 100 mM NaCl, 10 mM MgCl2, 
5 mM CaCl2). Cell concentration was normalized across mutants by measuring OD600 and diluting 
with an appropriate amount of assay buffer. A 600 μL aliquot of each mutant was lysed by sonication 
(Branson, 25% amplitude, 1 min) on ice. The soluble fraction was collected by centrifugation (16,100 
× g for 20 min) and analyzed by anti-Strep-HRP (IBA) Western blotting to confirm mutant solubility 
and approximate protein concentration (Figure 4—figure supplement 2). Reactions were initiated 
by combining 4.3 μL of 1 or 2 with 25.7 μL of soluble lysate for a final concentration of 1 at 400 μM 
and 4% DMSO, and 2 at 200 μM and 2% DMSO. Reactions were sealed and incubated at 37°C for 1 
or 20 hr. Reactions were quenched with the addition of 1:1 methanol/acetonitrile (60 μL) and centri-
fuged (6000 × g for 15 min). The supernatant was then subjected to analytical high-performance liquid 
chromatography (HPLC) to determine percent conversion as described previously. Reactions were 
repeated in biological duplicate, and then repeated again on a second day to minimize any potential 
variation. Results were consistent on both days.

Molecular dynamics simulations
Coordinates for the native substrates 1 and 2 were prepared in ACEDRG (Long et al., 2017) from MOL 
file descriptions of the molecules generated in ChemDraw. Two substrate molecules were docked 
manually into cavity 1 of CylK using Br1 to place the alkyl chloride component and interactions with 
essential amino acids to guide placement of the second substrate. The resulting CylK complexes were 
prepared for molecular dynamics (MD) simulations using the Xleap module of AmberTools (Case, 
2020). Substrates were parameterized using Antechamber (Wang et al., 2001; Wang et al., 2004) in 
AmberTools, while the FF14SB forcefield (Maier et al., 2015) was used for protein atoms. Complexes 

https://doi.org/10.7554/eLife.75761


 Research article﻿﻿﻿﻿﻿﻿ Biochemistry and Chemical Biology | Structural Biology and Molecular Biophysics

Braffman, Ruskoski, et al. eLife 2022;0:e75761. DOI: https://doi.org/10.7554/eLife.75761 � 21 of 25

were solvated in a 10 Å octahedral box of TIP3P water (Jorgensen et al., 1983). Sodium and chlo-
ride ions were added to neutralize the complexes and achieve a final concentration of 150 mM NaCl. 
All minimizations and production runs were performed with Amber20 (Case, 2020). Minimization 
was performed using 5000 steps of steepest descent and 5000 steps of conjugate gradient. In the 
first round, 500 kcal/mol·Å2 restraints on all protein, ligand atoms, as well as the metal ion cofactors. 
Restraints were reduced to 100 kcal/mol·Å2 for an additional round of solvent minimization. Next, 
restraints retained only ligands and metal ions for a third round of minimization. Finally, all restraints 
were removed for the last stage of minimization. After minimization, a 100 ps run was used to heat 
complexes from 0 to 300 K using constant volume periodic boundaries with 10 kcal/mol·Å2 restraints 
on all solute atoms. Equilibration was performed using two 10 ns runs (10 kcal/mol·Å2 and 1 kcal/
mol·Å2 restraints) on protein, ligand, and metal ions. Following equilibration, simulations were run as 
either restrained or unrestrained. For restrained simulations, we obtained 100 ns trajectories with 1 
kcal/mol·Å2 restraints on protein atoms. Unrestrained simulations (100 ns) were run with all restraints 
removed.

Bioinformatic analysis
The CylK (GenBank: ARU81125.1) and BrtB (GenBank: AOH72618.1) protein sequences were inde-
pendently used in a Basic Local Alignment Search Tool (BLAST) search of the Joint Genome Institute-
Integrated Microbial Genomes & Microbiomes (IMG-JGI; Chen et al., 2021) database of all isolates, 
metagenome-assembled genomes (MAGs), and single-amplified genomes (SAGs). Each BLAST search 
resulted in 500 hits (>24% amino acid sequence identity) and were merged to form a nonredundant 
list of 715 enzyme candidates (Supplementary file 1). Parent enzyme sequences (CylK, BrtB) and 
likely CylK homologs (MerH, CabK, CylK from Cylindrospermum stagnale) were added to this dataset. 
A targeted BLAST search of the genomes from this list was performed to identify all putative haloge-
nases (CylC-like, FeII/2OG, SAM-dependent, flavin-dependent, and haloperoxidase) and resorcinol-
forming enzymes (CylI, BrtC, BrtD). All non-CylC halogenases were confirmed to contain key catalytic 
residues and examined for co-localization with CylK. All candidate CylC halogenases were included, 
although the overwhelming majority (63 of 78 enzymes) were fewer than 18 genes away from CylK 
(Supplementary file 2). CylC’s catalytic residues remain unknown. MAR-forming CylI homologs were 
included if clustered with CylK; 11 of 54 candidate enzymes were less than 12 genes away from 
CylK (Supplementary file 2). Next, candidate CylK enzymes were filtered by constructing an indi-
vidual MUSCLE alignment (Edgar, 2004) of each hit to the CylK parent sequence and identifying at 
least 135 amino acid residues before the C-terminal domain. Lys240 or its aligned equivalent was 
defined as the junction point between protein domains. This analysis resulted in 286 unique protein 
sequences (Supplementary file 2) that were aligned (MUSCLE, EMBL-EBI), sites containing gaps 
at ≥90% of sequences were removed, and a maximum-likelihood phylogenetic tree was constructed 
using IQ-TREE v1.6.12 (Nguyen et al., 2015) and visualized with FigTree v1.4.4. The best-fit model 
(VT + F + G4) was selected by ModelFinder (Kalyaanamoorthy et al., 2017). Bootstrap values were 
calculated using the UFBoot2 method (Hoang et al., 2018). These candidate enzymes were analyzed 
for the presence or absence of Arg105 and Tyr473 residues by constructing an individual MUSCLE 
alignment of each hit to the CylK parent sequence. The results were manually mapped onto the 
phylogenetic tree. The subset CylK homologs with both residues were MUSCLE aligned and visual-
ized with ConSurf (Ashkenazy et al., 2016). The code used to perform iterative MUSCLE alignments 
is available at https://github.com/nbraffman/CylK-homologs, (copy archived at swh:1:rev:732a38e-
f8ab73988203ea1933158238ea90361b0; Braffman, 2021).
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