
Beyond Equi-joins: Ranking, Enumeration and Factorization
Nikolaos Tziavelis
Northeastern University

Boston, Massachusetts, USA
tziavelis.n@northeastern.edu

Wolfgang Gatterbauer
Northeastern University

Boston, Massachusetts, USA
w.gatterbauer@northeastern.edu

Mirek Riedewald
Northeastern University

Boston, Massachusetts, USA
m.riedewald@northeastern.edu

ABSTRACT
We study theta-joins in general and join predicates with conjunc-
tions and disjunctions of inequalities in particular, focusing on
ranked enumeration where the answers are returned incrementally
in an order dictated by a given ranking function. Our approach
achieves strong time and space complexity properties: with = denot-
ing the number of tuples in the database, we guarantee for acyclic
full join queries with inequality conditions that for every value of : ,
the : top-ranked answers are returned in O(= polylog= + : log:)
time. This is within a polylogarithmic factor of O(= + : log:), i.e.,
the best known complexity for equi-joins, and even of O(= + :),
i.e., the time it takes to look at the input and return : answers in
any order. Our guarantees extend to join queries with selections
and many types of projections (namely those called “free-connex”
queries and those that use bag semantics). Remarkably, they hold
even when the number of join results is =✓ for a join of ✓ relations.
The key ingredient is a novel O(= polylog=)-size factorized repre-
sentation of the query output, which is constructed on-the-�y for
a given query and database. In addition to providing the �rst non-
trivial theoretical guarantees beyond equi-joins, we show in an
experimental study that our ranked-enumeration approach is also
memory-e�cient and fast in practice, beating the running time of
state-of-the-art database systems by orders of magnitude.

PVLDB Reference Format:
Nikolaos Tziavelis, Wolfgang Gatterbauer, and Mirek Riedewald. Beyond
Equi-joins: Ranking, Enumeration and Factorization. PVLDB, 14(11):
2599-2612, 2021.
doi:10.14778/3476249.3476306

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/northeastern-datalab/anyk-code.

1 INTRODUCTION
Join processing is one of the most fundamental topics in database
research, with recent work aiming at strong asymptotic guarantees
[47, 58, 61, 62]. Work on constant-delay (unranked) enumeration
[10, 19, 42, 74] strives to pre-process the database for a given query
on-the-�y so that the �rst answer is returned in linear time (in
database size), followed by all other answers with constant delay
(i.e., independent of database size) between them. Together, linear

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 14, No. 11 ISSN 2150-8097.
doi:10.14778/3476249.3476306

pre-processing and constant delay guarantee that all answers are
returned in time linear in input and output size, which is optimal.

Ranked enumeration. Ranked enumeration [78] generalizes
the heavily studied top-: paradigm [35, 45] by continuously return-
ing join answers in ranking order. This enables the output consumer
to select the cut-o� : on-the-�y while observing the answers. For
top-: , the value of : must be chosen in advance, before seeing any
query answer. Unfortunately, non-trivial complexity guarantees
of previous top-: techniques, including the celebrated Threshold
Algorithm [35], are limited to the “middleware” cost model, which
only accounts for the number of distinct data items accessed [78].
While some of those top-: algorithms can be applied to joins with
general predicates, they do not provide non-trivial guarantees in
the standard RAMmodel of computation, and their time complexity
for a join of ✓ relations can be O(=✓).

The goal of this paper is to design ranked-enumeration algorithms
for general theta joins with strong space and time guarantees in the
standard RAMmodel of computation. Tight upper complexity bounds
are essential for ensuring predictable performance, no matter the
given database instance (e.g., in terms of data skew) or the query’s
total output size. Notice that it already takes O(=+:) time to simply
look at = input tuples as well as create and return : output tuples.
Since polylogarithmic factors are generally considered small or
even negligible for asymptotic analysis [5, 27], we aim for time
bounds that are within such polylogarithmic factors of O(= + :).
At the same time, we want space complexity to be reasonable; e.g.,
for small : to be within a polylogarithmic factor of O(=), which is
the required space to hold the input.

While state-of-the-art commercial and open-source DBMSs do
not yet support ranked enumeration, it is worth taking a closer look
at their implementation of top-: join queries. (Here : is speci�ed
in a SQL clause like FETCH FIRST or LIMIT.) While we tried a
large variety of inputs, indexes on the input relations, join queries,
and values of : , the optimizer of PostgreSQL and two other widely
used commercial DBMSs always chose to execute the join before
applying the ranking and top-: condition on the join results.1 This
implies that their overall time complexity to return even the top-1
result cannot be better than the worst-case join output size, which
can be O(=✓) for a join of ✓ relations.

Beyond equi-joins. Recent work on ranked enumeration [30,
32, 77, 78, 86, 87] achieves much stronger worst-case guarantees,
but only considers equi-joins. However, big-data analysis often also
requires other join conditions [31, 34, 48, 52] such as inequalities
(e.g., S.age < T.age), non-equalities (e.g., S.id < T.id), and band
predicates (e.g., |S.time - T.time| < Y). For these joins, two

1For non-trivial ranking functions, or when the attributes used for joining di�er from
those used for ranking, the DBMS cannot determine if a subset of the join output so
far produced already contains all : top-ranked answers. This applies to general theta
joins as well as equi-joins.

2599

https://orcid.org/0000-0001-8342-2177
https://orcid.org/0000-0002-9614-0504
https://orcid.org/0000-0002-6102-7472
https://doi.org/10.14778/3476249.3476306
https://github.com/northeastern-datalab/anyk-code
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3476249.3476306

major challenges must be addressed. First, the join itself must be
computed e�ciently in the presence of complex conditions, possi-
bly consisting of conjunctions and disjunctions of such predicates.
Second, to avoid having to produce the entire output, ranking has
to be pushed deep into the join itself.

E������ 1. A concrete application of ranked enumeration for
inequality joins concerns graph-based approaches for detecting “lat-
eral movement” between infected computers in a network [53]. By
modeling computers as nodes and connections as timestamped edges,
these approaches search for anomalous access patterns that take
the form of paths (or more general subgraphs) ranked by the prob-
ability of occurrence according to historical data. The inequalities
arise from a time constraint: the timestamps of two consecutive
edges need to be in ascending order. Concretely, consider the relation
G(From,To,Time,Prob). Valid 2-hop paths can be computed with
a self-join (where⌧1,⌧2 are aliases of⌧) where the join condition is
an equality G1 .To = G2 .From and an inequality G1 .Time < G2 .Time,
while the score of a path is G1 .Prob · G2 .Prob. Existing approaches
are severely limited computationally in terms of the length of the
pattern, since the number of paths in a graph can be extremely large.
Thus, they usually resort to a search over very small paths (e.g.,
only 2-hop). With the techniques developed in this paper, patterns of
much larger size can be retrieved e�ciently in ranked order without
considering all possible instantiations of the pattern.

Main contributions.We provide the �rst comprehensive study
on ranked enumeration for joins with conditions other than equal-
ity, notably general theta-joins and conjunctions and disjunctions
of inequalities and equalities. While such joins are expensive to
compute [48, 52], we show that for many of them the top-ranked
answers can always be found in time complexity that only slightly
exceeds the complexity of sorting the input. This is remarkable,
given that the input may be heavily skewed and the output size
of a join of ✓ relations is O(=✓). We achieve this with a carefully
designed factorized representation of the join output that can be
constructed in relatively small time and space. Then the ranking
function determines the traversal order on this representation.

Recall that ranked-enumeration algorithms must continuously
output answer tuples in order and the goal is to achieve non-trivial
complexity guarantees no matter at which value of : the algorithm
is stopped. Hence we express algorithm complexity as a function of
: : TT(:) and MEM(:) denote the algorithm’s time and space com-
plexity, respectively, until the moment it returns the :-th answer
in ranking order. Our main contributions (see also Figure 1) are:

(1) We generalize an equi-join-speci�c ranked-enumeration con-
struction [77] by representing the overall join structure as a tree of
joining relations and then introducing a join-condition-sensitive
abstraction between each pair of adjacent relations in the tree. For
the latter, we propose the “Tuple-Level Factorization Graph” (TLFG,
Section 3), a novel factorized representation for any theta-join be-
tween two relations, and show how its size and depth a�ect the
complexity of ranked enumeration. Interestingly, some TLFGs can
be used to transform a given theta-join to an equi-join, a property
we leverage for ranked enumeration for cyclic join queries.

(2) For join conditions that are a DNF of inequalities (Sec-
tion 4), we propose concrete TLFGs with space and construction-
time complexity O(= polylog=). Using them for acyclic joins, our

Join Condition Example Time P(=) Space S(=)
(⇠) Theta booleanUDF(S.A, T.C) O(=2) O (=2)

(⇠1) Inequality S.A < T.B

(⇠2) Non-equality S.A < T.B O(= log=) O (= log log=)
(⇠3) Band |S.A � T.B | < Y
(⇠4) DNF of

(⇠1), (⇠2), (⇠3)
(S.A<T.B ^ S.A<T.C)

_(S.A<T.D)
O (= polylog=) O (= polylog=)

Figure 1: Preprocessing time P(=) and space complexity
S(=) of our approach for various join conditions. Our novel
factorized representation allows ranked enumeration to re-
turn the : top-ranked results in time (“Time-To”) TT(:) =
O(P(=) + : log:), usingMEM(:) = O(S(=) + :) space.

algorithm guarantees TT(:) = O(= polylog= + : log:), which
is within a polylogarithmic factor of the equi-join case, where
TT(:) = O(= +: log:) [77], and even the lower bound of O(= +:).

(3) Our experiments (Section 6) on synthetic and real datasets
show orders-of-magnitude improvements over highly optimized
top-: implementations in state-of-the-art DBMSs, as well as over
an idealized competitor that is not charged for any join-related cost.

Due to space constraints, formal proofs and several details of im-
provements to our core techniques (Section 5) are in the full version
of this paper [79]. Our project website contains more information in-
cluding source code: https://northeastern-datalab.github.io/anyk/.

2 PRELIMINARIES
2.1 Queries
Let [<] denote the set of integers {1, . . . ,<}. A theta-join query in
Datalog notation is a formula of the type

& (Z) :�'1 (X1), . . . ,'✓ (X✓), \1 (Y1), . . . , \@ (Y@)

where '8 are relational symbols, X8 are lists of variables (or at-
tributes), Z,Y8 are subsets of X =

–
X8 , 8 2 [✓], 9 2 [@], and \ 9

are Boolean formulas called join predicates. The terms '8 (X8)
are called the atoms of the query. Equality predicates are encoded
by repeat occurrences of the same variable in di�erent atoms; all
other join predicates are encoded in the corresponding \ 9 . If no
predicates \ 9 are present, then & is an equi-join. The size |& | of the
query is equal to the number of symbols in the formula.

Query semantics. Join queries are evaluated over a database
that associates with each '8 a �nite relation (or table) that draws
values from a domain that we assume to be R for simplicity.2 With-
out loss of generality, we assume that relational symbols in di�erent
atoms are distinct since self-joins can be handled with linear over-
head by copying a relation to a new one. The maximum number of
tuples in an input relation is denoted by =. We write '.� for an at-
tribute� of relation ' and A .� for the value of� in tuple A 2 '8 . The
semantics of a theta-join query is to (8) create the Cartesian product
of the ✓ relations, (88) select the tuples that satisfy the equi-join
conditions and \ 9 predicates, and (888) project on the Z attributes.
Consequently, each individual query answer can be represented as
a combination of joining input tuples, one from each table '8 .

Projections. In this paper, we focus on full queries, i.e., join
queries without projections (Z = X).While our approach can handle
2Our approach naturally extends to other domains such as strings or vectors, as long
as the corresponding join predicates are well-de�ned and computable in O(1) for a
pair of input tuples.

2600

https://northeastern-datalab.github.io/anyk/

projections by applying them in the end, the strong asymptotic
TT(:) guarantees may not hold any more. The reason is that a
projection could map multiple distinct output tuples to the same
projected answer. In the strict relational model where relations are
sets, those “duplicates” would have to be eliminated, creating larger
gaps between consecutive answers returned to the user. Fortunately,
our strong guarantees still hold for arbitrary projections in the
presence of bag semantics, which is what DBMSs use when the SQL
query has a SELECT clause instead of SELECT DISTINCT. Even for
set semantics and SELECT DISTINCT queries, it is straightforward
to extend our strong guarantees to non-full queries that are free-
connex [10, 13, 17, 43].

Join trees for equi-joins. An equi-join query is (alpha-)acyclic
[39, 75, 89] if it admits a join tree. A join tree is a tree with the atoms
(relations) as the nodes where for every attribute � appearing in an
atom, all nodes containing � form a connected subtree. The GYO
reduction [89] computes such a join tree for equi-joins.

Atomic join predicates.We de�ne the following types of pred-
icates between attributes (.� and) .⌫: an inequality is (.� <) .⌫,
(.� >) .⌫, (.� ) .⌫, or (.� �) .⌫, a non-equality is (.� <) .⌫ and
a band is |(.��) .⌫ | < Y for some Y > 0. Our approach also supports
numerical expressions over input tuples, e.g., 5 ((.�1, (.�2, . . .) <
6() .⌫1,) .⌫2, . . .), with 5 and 6 arbitrary O(1)-time computable
functions that map to R. The join predicates \ 9 are built with con-
junctions and disjunctions of such atomic predicates. We assume
there are no predicates on individual relations since they can be
removed in linear time by �ltering the corresponding input tables.

2.2 Ranked Enumeration
Ranked enumeration [78] returns distinct join answers one-at-a-
time, in the order dictated by a given ranking function on the
output tuples. Since this paradigm generalizes top-: (top-: for “any
:” value, or “anytime top-:”), it is also called any-: [77, 86]. An
obvious solution is to compute the entire join output, and then
either batch-sort it or insert it into a heap data structure. Our goal
is to �nd more e�cient solutions for appropriate ranking functions.

For simplicity, in this paper we only discuss ranking by increas-
ing sum-of-weights, where each input tuple has a real-valued weight
and the weight of an output tuple is the sum of the weights of the
input tuples that were joined to derive it. Ranked enumeration
returns the join answers in increasing order of output-tuple weight.
It is straightforward to generalize our approach to any ranking
function that can be interpreted as a selective dioid [77]. Intuitively,
a selective dioid [37] is a semiring that also establishes a total order
on the domain. It has two operators (min and + for sum-of-weights)
where one distributes over the other (+ distributes overmin). These
structures include even less obvious cases such as lexicographic
ordering by relation attributes.

2.3 Complexity Measures
We consider in-memory computation and analyze all algorithms in
the standard Random Access Machine (RAM) model with uniform
cost measure. Following common practice, we treat query size
|& |—intuitively, the length of the SQL string—as a constant. This
corresponds to the classic notion of data complexity [80], where

one is interested in scalability in the size of the input data, and not
of the query (because users do not write arbitrarily large queries).

In line with previous work [15, 22, 38], we assume that it is
possible to create in linear time an index that supports tuple lookups
in constant time. In practice, hashing achieves those guarantees in
an expected, amortized sense. We include all index construction
times and index sizes in our analysis.

For the time complexity of enumeration algorithms, we measure
the time until the :th result is returned (TT(:)) for all values of : . In
the full version [79], we further discuss the relationship of TT(:) to
enumeration delay as complexity measures. Since we do not assume
any given indexes, a trivial lower bound is TT(:) = O(= + :):
the time to inspect each input tuple at least once and to return
: output tuples. Our algorithms achieve that lower bound up to a
polylogarithmic factor. For space complexity, we use MEM(:) to
denote the required memory until the :th result is returned.

3 GRAPH FRAMEWORK FOR JOINS
We summarize our recent work on ranked enumeration for equi-
joins, then show our novel generalization to theta-joins.

3.1 Previous Work: Any-: for Equi-joins
Any-: algorithms [77] for acyclic equi-joins reduce ranked enumer-
ation to the problem of �nding the :th-lightest trees in a layered
DAG, which we call the enumeration graph. Its structure depends
on the join tree of the given query; an example is depicted in Fig. 2a.
The enumeration graph is a layered DAG in the sense that we as-
sociate it with a particular topological sort: (1) Conceptually, each
node is labeled with a layer ID (not shown in the �gure to avoid
clutter). A layer is a set of nodes that share the same layer ID
(depicted with rounded rectangles). (2) Each edge is directed, going
from lower to higher layer ID. (3) All tuples from an input relation
appear as (black-shaded) nodes in the same layer, called a relation
layer. Each relation layer has a unique ID and for each join-tree edge
((,)), (has a lower layer ID than) . (4) If and only if two relations
are adjacent in the join tree, then their layers are connected via
a connection layer that contains (blue-shaded) nodes representing
their join-attribute values. (5) The edges from a relation layer to
a connection layer connect the tuples with their corresponding
join-attribute values and vice-versa.

The enumeration graph is constructed on-the-�y and bottom-up,
according to a join tree of the query (starting from* and) in the
example). This phase essentially performs a bottom-up semi-join
reduction that also creates the edges and join-attribute-value nodes.
A tree solution is a tree that starts from the root layer and contains
exactly 1 node from each relation layer. By construction, every tree
solution corresponds to a query answer, and vice versa.

The any-: algorithm then goes through two phases on the enu-
meration graph. The �rst is a Dynamic Programming computation,
where every graph node records for each of its outgoing edges the
lowest weight among all subtrees that contain 1 node from each re-
lation layer below. The minimum-subtree and input-tuple weights
are not shown in Figure 2a to avoid clutter. For instance, the outgo-
ing edge for '-node (2, 3) would store the smaller of the weights
of * -tuples (2, 1) and (2, 2). Similarly, the left edge from (-node
(2, 1) would store the sum of the weight of '-tuple (2, 3) and the

2601

1,1 2,1 3,2S 4,3 5,3 6,3

1,1 2,1 2,2U 4,1

1

1,1 2,1 3,2T 4,3 5,3 6,31,1 1,2 2,3R 4,5

S(A, B)

R(A, C) T(D, B)

U(A, E)

Join Tree

2 4 1 2 3

1 2 4

(a) Equi-join enumeration graph [77].

1,1 2,1 3,2S 4,3 5,3 6,3

1,1 2,2 3,3U 4,4

1,1 2,1 3,2T 4,3 5,3 6,3

1,1 2,1 3,2R 4,3

S(A, D)

R(D, E) T(B, C)

U(D, F)

Theta-join Tree

A < BA > E

E < F

v1 v2 v3 v4 v5

vx

(b) Theta-join enumeration graph and abstraction proposed in this paper. (c) Reduction to equi-join.

Figure 2: Overview of our approach.We generalize the equi-join-speci�c construction to theta-joins by introducing an abstrac-
tion (blue clouds) that factorizes binary joins. Some factorizations can also be used to reduce theta-joins to equi-joins.

minimum subtree weight from '-node (2, 3). The minimum-subtree
weight for a node’s outgoing edge is obtained at a constant cost
by pushing the minimum weight over all outgoing edges up to the
node’s parent. Afterwards, enumeration is done in a second phase,
where the enumeration graph is traversed top-down (from (in the
example), with the traversal order determined by the layer IDs and
minimum-subtree weights on a node’s outgoing edges.

The size of the enumeration graph and its number of layers
determine space and time complexity of the any-: algorithm. The
following lemma summarizes the main result from our previous
work [77]. We restate it here in terms of data complexity (where
query size ✓ is a constant) and using _ for the number of layers.3

L���� 2 ([77]). Given an enumeration graph with |⇢ | edges and
_ layers, ranked enumeration of the :-lightest tree solutions can be
performed with TT(:) = O(|⇢ | + : log: + :_) and MEM(:) =
O(|⇢ | + :_).

To extend the any-: framework beyond equi-joins, we generalize
�rst the de�nition of a join tree and then the enumeration graph
with an abstraction that is sensitive to the join conditions.

3.2 Theta-Join Tree
The join tree is essential for generating the enumeration graph.
In contrast to equi-joins, for general join conditions there is no
established methodology for how to de�ne or �nd a join tree. We
generalize the join tree de�nition as follows:

D��������� 3 (T��������� T���). A theta-join tree for a theta-
join query & is a join tree for the equi-join & 0 that has all the \ 9
predicates of & removed, and every \ 9 is assigned to an edge ((,)) of
the tree such that (and) contain all the attributes referenced in \ 9 .

We call a theta-join query acyclic if it admits a theta-join tree. In
the theta-join tree, edge ((,)) represents the join (ùû\) , where
join condition \ is the conjunction of all predicates \ 9 assigned to
the edge, as well as the equality predicates (.� =) .� for every
attribute � that appears in both (and) .

3Due to the speci�c construction for equi-joins [77], there _ was linear in query size ✓
and hence ✓ and _ were used interchangeably. In our generalization this may not be
the case, therefore we use the more precise parameter _ here.

E������ 4. Consider & (�,⌫,⇠,⇡, ⇢, �) :�'(⇡, ⇢), ((�,⇡),
) (⌫,⇠),* (⇡, �), (� < ⌫), (� > ⇢), (⇢ < �).a This query
is acyclic since we can construct the theta-join tree shown in
Fig. 2b. Notice that all nodes containing attribute ⇡ are connected
and each inequality is assigned to an edge whose adjacent
nodes together contain all referenced attributes. For example,
� < ⌫ is assigned to ((,)) ((contains � and) contains ⌫).
The join-tree edges represent join predicates \1 = (.� <) .⌫
(edge ((,))), \2 = (.� > '.⇢ ^ (.⇡ =) .⇡ (edge ((,')), and
\3 = '.⇢ < * .� ^ '.⇡ = * .⇡ (edge (',*)).
aSELECT * FROM R, S, T, U WHERE

R.D = S.D AND R.D = U.D AND S.A < T.B AND S.A > R.E AND R.E < U.F

We can construct the theta-join tree by �rst removing all \ 9
predicates from the given query & , turning it into an equi-join & 0.
Then an algorithm like the GYO reduction can be used to �nd a join
tree for & 0. For the query in Example 4, this join tree looks like the
one in Figure 2b, but without the edge labels. Finally, we attempt
to add each \ 9 predicate to a join-tree edge: \ 9 can be assigned to
any edge where the two adjacent nodes contain all the attributes
referenced in it. Note that there may exist di�erent join trees for& 0,
and we may have to try all possible options to obtain a theta-join
tree. Fortunately, this computation depends only on the query, thus
takes O(1) space and time in data complexity. If either the GYO
algorithm fails to �nd a join tree for & 0 or no join tree allows us to
assign the \ 9 predicates to tree edges, then the query is cyclic and
can be handled as discussed in Section 5.3. We discuss next how to
create the enumeration graph for a given theta-join tree.

3.3 Factorized Join Representation
By relying on a join tree similar in structure to the equi-join case,
we can establish a similar layered structure for the enumeration
graph. In particular, each input relation appears in a separate layer
and each join-tree edge is mapped to a subgraph implementing
the join condition between the corresponding relation layers. This
is visualized by the blue clouds in Figure 2b. In contrast to the
equi-joins, we allow more general connection layers, possibly a
single layer with a more complex connection pattern (like the (-
to-) connection in the example) or even multiple layers (like the
connection between '-node (2, 1) and* -node (2, 2)).

2602

To be able to apply our any-k algorithms [77] to this generalized
enumeration graph wemust ensure that (1) each “blue cloud” can be
mapped to a layered graph and (2) each tree solution corresponds to
a join answer, and vice versa (like the one highlighted in Figure 2b
which corresponds to joining input tuples B = (3, 2), C = (4, 3),
A = (2, 1), and D = (2, 2)). For (2) it is su�cient to ensure for each
adjacent parent-child pair of relations in the theta-join tree that
there exists a path from a node in the parent-relation layer to a node
in the child-relation layer i� the corresponding input tuples join.
In the example, there is a path from (-node (3, 2) via E3 to) -node
(4, 3), because the two tuples satisfy � = 3 < ⌫ = 4. Similarly,
since B 0 = (5, 3) and C = (4, 3) violate � < ⌫, there is no path from
the former to the latter. For (1), it is su�cient to ensure that the
“blue cloud” is a DAG with parent-relation nodes only having edges
going into the cloud, while all child-relation edges must point out
of the cloud. We formalize these properties with the notion of a
Tuple-Level Factorization Graph (TLFG).

D��������� 5 (TLFG). A Tuple-Level Factorization Graph of a
theta-join (ùû\) of relation (, called the source, and) , called the
target, is a directed acyclic graph ⌧ (+ , ⇢) where:

(1) + contains a distinct source node EB for each tuple B 2 (, a
distinct target node EC for each tuple C 2) , and possibly other
intermediate nodes,

(2) each source node EB has only outgoing edges and each target
node EC has only incoming edges, and

(3) for each B 2 (, C 2) , there exists a path from EB to EC in ⌧ if
and only if B and C satisfy join condition \ .

The size of a TLFG ⌧ (+ , ⇢) is |+ | + |⇢ | and its depth 3 is the
maximum length of any path in ⌧ . The graphs depicted in Fig. 4a
and Fig. 4b are valid TLFGs for equi-joins.

It is easy to see that any TLFG is a layered graph: Assign w.l.o.g.
layer ID 0 to all source nodes EB ; each intermediate node E is as-
signed layer ID 8 , where 8 is the length of the longest path (mea-
sured in number of edges) from any source node to E . Here 8 is
well-de�ned due to the TLFG’s acyclicity. All target-relation nodes
are assigned to layer 3 , which is the maximum layer ID assigned to
any intermediate node, plus 1. In the example in Figure 4d, node E3
is in layer 3, because the longest path from any (-node to E3 has 3
edges (from (1, 1) in the example). All) -nodes are in layer 6.

Since the entire generalized enumeration graph consists of ✓
relation layers and ✓ � 1 TLFGs (one for each edge of the theta-join
tree), using Lemma 2 we can show:

T������ 6. Given a theta-join & of ✓ = O(1) relations, a theta-
join tree, and the corresponding enumeration graph ⌧& , where for
each edge of the theta-join tree the corresponding TLFG has O(|⇢ |)
size and O(3) depth, then ranked enumeration of the :-lightest tree
solutions can be performed with TT(:) = O(|⇢ | + : log: + :3) and
MEM(:) = O(|⇢ | + :3).

The theorem states that worst-case size and depth of the TLFG
determine the time and space complexity of enumerating the theta-
join answers in weight order. Hence the main challenge is to encode
join condition with the smallest and most shallow TLFG possible.

Direct TLFGs. For any theta-join, a naive way to construct a
TLFG is to directly connect each source node with all the target
nodes it joins with. This results in |⇢ | = O(=2) and 3 = 1, thus

Figure 3: We propose 4 di�erent TLFGs for a single inequal-
ity. These trade o� size with depth and 2 of them (in blue)
achieve the equi-join guarantee up to a logarithmic factor.

TT(:) = O(=2 + : log:) and MEM(:) = O(=2 + :), respectively.
Hence even the top-ranked result requires quadratic time and space.
To improve this complexity, we must �nd a TLFG with a smaller
number of edges, while keeping the depth low. Our results are
summarized in Figure 3, with details discussed in later sections.

Output duplicates. A subtle issue with Theorem 6 is that two
non-isomorphic tree solutions of the enumeration graph may con-
tain the exact same input tuples (the relation-layer nodes), caus-
ing duplicate query answers. This happens if and only if a TLFG
has multiple paths between the same source and destination node.
While one would like to avoid this, it may not be possible to �nd a
TLFG that is both e�cient in terms of size and depth, and also free
of duplicate paths. Among the inequality conditions studied in this
paper, this only happens for disjunctions (Section 4.3).

Since duplicate join answers must be removed, the time to re-
turn the : top-ranked answers may increase. Fortunately, for our
disjunction construction it is easy to show that the number of dupli-
cates per output tuple is O(1), i.e., it does not depend on input size
=. This implies that we can �lter the duplicates on-the-�y without
increasing the complexity of TT(:) (orMEM(:), for that matter):
We maintain the top-: join answers returned so far in a lookup
structure and, before outputting the next join answer, we check in
O(1) time if the same output had been returned before.4

To prove that the number of duplicates per join answer is inde-
pendent of input size, it is su�cient to show that for each TLFG the
maximum number of paths from any source node EB to any target
node EC , which we will call the duplication factor, is independent of
input size. We show this to be the case for the only TLFG construc-
tion that could introduce duplicate paths: disjunctions (Section 4.3).
A duplicate-free TLFG has a duplication factor equal to 1 (which is
the case for most TLFGs we discuss).

3.4 Theta-join to Equi-join Reduction
The factorized representation of the output of a theta-join as an enu-
meration graph (using TLFGs to connect adjacent relation layers)
enables a novel reduction from complex theta-joins to equi-joins.

T������ 7. Let ⌧ = (+ , ⇢) be a TLFG of depth 3 for a theta-
join (ùû\) of relations (,) and - be the union of their attributes.
For 0 < 8  3 , let ⇢8 be the set of edges from layer 8 � 1 to 8 . If

4As an optimization, we can clear this lookup structure whenever the weight of an
answer is greater than the previous, since all duplicates share the same weight. While
this does not impact worst-case complexity, it can greatly reduce computation cost in
practice whenever output tuples have diverse sum-of-weight values.

2603

⇢ =
–
8 ⇢8 , i.e., every edge connects nodes in adjacent layers, then

(ùû\) = c- ((ùû ⇢1 ùû · · · ùû ⇢3 ùû)) where c- is an - -projection.

Intuitively, the theorem states that if no edge in the TLFG skips
a layer, then the theta-join (ùû\) can equivalently be computed as
an equi-join between (,) , and 3 auxiliary relations. Each of those
relations is the set of edges between adjacent layers of the TLFG.

The theorem is easy to prove by construction, which we explain
using the example in Figure 2b. Consider the TLFG for (and)
and notice that all edges are between adjacent layers and 3 = 2. In
Figure 2c, the �rst tuple (1, 1, E1) 2 ⇢1 represents the edge from
(-node (1, 1) to intermediate node E1. (The tuple is obtained as
the Cartesian product of the edge’s endpoints.) Similarly, the �rst
tuple in ⇢2 represents the edge from E1 to) -node (2, 1). It is easy
to verify that ((�,⇡) ùû�<⌫) (⌫,⇠) = c�⇡⌫⇠ ((ùû ⇢1 ùû ⇢2 ùû)).
The corresponding branch of the join tree is shown in Figure 2c.
Compared to the theta-join tree in Figure 2b, the inequality con-
dition disappeared from the edge and is replaced by new nodes
⇢1 (�,⇡,+1) and ⇢2 (+1,⌫,⇠).

���E�� for direct TLFGs. Recall that any theta-join (ùû\)
between relations of sizeO(=) can be represented by a 1-layer TLFG
that directly connects the joining (- and) -nodes. Since this TLFG
satis�es the condition of Theorem 7, it can be reduced to equi-join
(ùû ⇢ ùû) , where |⇢ | = O(=2). We refer to the algorithm that
�rst applies this construction to each edge of the theta-join tree
(and thus reducing the entire theta-join query between ✓ relations
to an equi-join) and then uses the equi-join ranked-enumeration
algorithm [77] as���E��.

Below we will show that better constructions with smaller aux-
iliary relations ⇢8 can be found for any join condition that is a
DNF of inequalities. In particular, such joins can be expressed as
(ùû ⇢1 ùû ⇢2 ùû) where ⇢1, ⇢2 are of size O(= polylog=). Figure 2c
shows a concrete instance. However, note that not all TLFGs satisfy
the condition of Theorem 7. For example, Fig. 4d shows a TLFG
which cannot be reduced to an equi-join with our theorem.

4 FACTORIZATION OF INEQUALITIES
We now show how to construct TLFGs of size O(= polylog=) and
depth O(1) when the join condition \ in a join (ùû\) is a DNF5 of
inequalities (and equalities). Starting with a single inequality, we
then generalize to conjunctions and �nally to DNF. Non-equalities
and bands will be discussed in Section 5.

4.1 Single Inequality Condition
E�cient TLFGs for equi-joins exploit that equality conditions group
input tuples into disjoint equivalence classes (Fig. 4b). For inequali-
ties, this is generally not possible and therefore we need a di�erent
approach to leverage their structural properties (see Fig. 4c).

Binary partitioning. Our binary-partitioning based TLFG is
inspired by quicksort [40]. Consider condition (.� <) .⌫ and a
pivot value E . We partition relations (and) s.t. B .� < E for B 2 (1
and B .� � E for B 2 (2, and similarly C .⌫ < E for C 2)1 and C .⌫ � E
for C 2)2. This guarantees that all �-values in (1 are strictly less
than all ⌫-values in)2. Instead of representing this with |(1 | · |)2 |

5Converting an arbitrary formula to DNF may increase query size exponentially. This
does not a�ect data complexity, because query size is still a constant.

direct edges (B8 2 (1, C 9 2)2), we introduce an intermediate “pivot
node” E and use only |(1 | + |)2 | edges (B8 2 (1, E) and (E, C 9 2)2).

Then we continue recursively with the remaining partition pairs
((1,)1) and ((2,)2). (Note that ((2,)1) cannot contain joining tu-
ples by construction.) Each recursive step will create a new inter-
mediate node connecting a set of source and target nodes, therefore
the TLFG has depth 2.

As the pivot, we use the median of the distinct join-attribute
values appearing in the tuples in both input partitions. E.g., for
multiset {1, 1, 1, 1, 2, 3, 3} the set of distinct values is {1, 2, 3} and
hence the median is 2. This pivot is easy to �nd in O(=) time if
the relations have been sorted on the join attributes beforehand.
Since each partition step cuts the number of distinct values per
partition in half, it takes O(log=) steps until we reach the base case
where all input tuples in a partition share the same join-attribute
value and the recursion terminates. Overall, the algorithm takes
time O(= log=) to construct a TLFG of size O(= log=) and depth 2.
It is easy to see that there is exactly one path from each source to
joining target node, hence the TLFG is duplicate-free.

E������ 8. Figure 4e illustrates the approach, with dotted lines
showing how the relations are partitioned. Initially, we create parti-
tions containing the values {1, 2, 3} and {4, 5, 6} respectively. The
source nodes containing �-values of the �rst partition are connected
to target nodes containing ⌫-values of the second partition via the
intermediate node E3. The �rst partition is then recursively split into
{1} and {2, 3}. Even though these new partitions are uneven with 2
and 4 nodes respectively, they contain roughly the same number of
distinct values (plus or minus one).

Other inequality types. The construction for greater-than (>)
is symmetric, connecting (2 to)1 instead of (1 to)2. For  and �,
we only need to modify handling of the base case of the recursion:
instead of simply returning from the last call (when all tuples in a
partition have the same join-attribute value), the algorithm connects
the corresponding source and target nodes via an intermediate node
(like for equality predicates).

L���� 9. Let \ be an inequality predicate for relations (,) of
total size =. A duplicate-free TLFG of (ùû\) of size O(= log=) and
depth 2 can be constructed in O(= log=) time.

4.2 Conjunctions
TLFG construction for conjunctions can be integrated elegantly
into the recursive binary partitioning.

E������ 10. Consider join condition (.� <) .⇠ ^ (.⌫ >) .⇡
for relations ((�,⌫),) (⇠,⇡) as shown in Fig. 5a. The algorithm
initially considers the �rst inequality (.� <) .⇠ , splitting the rela-
tions into (1,)1, (2,)2 as per the binary partitioning method (see
Section 4.1). All pairs (B8 2 (1, C 9 2)2) satisfy (.� <) .⇠ , but not
all of them satisfy the other conjunct (.⌫ >) .⇡ . To correctly con-
nect the source and target nodes, we therefore run the same binary
partitioning algorithm on input partitions (1 and)2, but now with
predicate (.⌫ >) .⇡ as illustrated by the diagonal blue edge in
Fig. 5a; the resulting graph structure is shown in Fig. 5b. For the
remaining partition pairs ((1,)1) and ((2,)2), the recursive call still
needs to enforce both conjuncts as illustrated by the orange edges in
Fig. 5a.

2604

1,1

2,1

3,2

4,3

5,3

1,1

2,1

3,2

4,3

5,3

6,3 6,3

S.B = T.B
S(A, B) T(D, B)

(a) Equality: naive construc-
tion with edges between all
joining pairs. O(=2) size,
O(1) depth.

v1

v2

v3

=1

=2

=3

1,1

2,1

3,2

4,3

5,3

1,1

2,1

3,2

4,3

5,3

6,3 6,3

S.B = T.B
S(A, B) T(D, B)

(b) Equality: grouping
tuples with common join
values together. O(=) size,
O(1) depth.

S.A < T.B
S(A, D) T(B, C)
1,1

2,1

3,2

4,3

5,3

1,1

2,1

3,2

4,3

5,3

6,3 6,3
(c) Inequality: naive
construction with edges
between all joining pairs.
O(=2) size, O(1) depth.

v1

v2

v3

v4

v5

<2

<3

<4

<5

<6

1,1

2,1

3,2

4,3

5,3

1,1

2,1

3,2

4,3

5,3

6,3 6,3

S.A < T.B
S(A, D) T(B, C)

(d) Inequality: shared
ranges. Middle nodes
indicate a range. O(=) size,
O(=) depth.

v2

v1

v3

v5

v4

(1)

(2)

(2)

(3)

(3)

1,1

2,1

3,2

4,3

5,3

1,1

2,1

3,2

4,3

5,3

6,3 6,3

S.A < T.B
S(A, D) T(B, C)

(e) Inequality: binary partition-
ing. Dotted lines indicate par-
titioning steps. O(= log=) size,
O(1) depth.

Figure 4: Factorization of Equality and Inequality conditions with our TLFGs. The S and T node labels indicate the values of
the joining attributes. All TLFGs shown here have O(1) depth.

1,7

2,5

3,6

7,7

8,9

4,2

5,4

6,1

7,3

8,6

9,8 9,5

S1

S2

T1

T2

[S.A < T.C,
S.B > T.D]

[S.B>T.D]

[S.A < T.C,
S.B > T.D]

S.A < T.C
S(A, B) T(C, D)

(a) Binary partitioning and recursions.

2,5

3,6

1,7

7,3

9,5

8,6

v1

v2

(1)

(2)

S.B > T.D
S(A, B) T(C, D)

(b) Handling the next predicate.

Figure 5: Example 10: Steps of the conjunction algorithm for
two inequality predicates on ((�,⌫),) (⇠,⇡). Node labels de-
pict �,⌫ values (left) or ⇠,⇡ values (right).

Strict inequalities. The example generalizes in a straightfor-
ward way to the conjunction of any number of strict inequalities
as shown in Algorithm 1. We note that the order in which the pred-
icates are handled does not impact the asymptotic analysis, but in
practice, handling the most selective predicates �rst is bound to
give better performance. Whenever two partitions are guaranteed
to satisfy a conjunct, that conjunct is removed from consideration
in the next recursive call (Line 19). An intermediate node for the
pivot and the corresponding edges connecting it to source and tar-
get nodes are only added to the TLFG when no predicates remain
(Lines 14 to 16). Overall, we perform two recursions simultaneously.
In one direction, we make recursive calls on smaller partitions of
the data and the same set of predicates (Lines 21 and 22). In the
other direction, when the current predicate is satis�ed for a parti-
tion pair, nextPredicate() is called with one less predicate (Line 19).
The recursion stops either when we are left with 1 join value (base
case for binary partitioning) or we exhaust the predicate list (base
case for conjunction). Finally, notice that each time a new predicate
is processed by a recursive call, the join-attribute values in the
corresponding partitions are sorted according to the new attributes
(Line 6) to �nd the pivot.

Non-strict inequalities. Like for a single predicate, we only
need to modify handling of the base case when all join-attribute
values in a partition are the same. While a strict inequality is not

Algorithm 1: Factorizing a conjunction of ? strict inequalities

1 Input: Relations (,) , nodes EB , EC for B 2 (, C 2) ,
2 Conjunction \ =

”?
8=1 \8 , where \1 = (.� <) .⌫

3 Output: A TLFG of the join (ùû\)
4 Call nextPredicate ((,) ,\)
5 Procedure nextPredicate((,) , ((.� <) .⌫) ^

”?
8=2 \8)

6 (0,) 0 = (,) sorted by attributes � and ⌫, respectively
7 partIneqBinary ((0,) 0, ((.� <) .⌫) ^

”?
8=2 \8)

8 Procedure partIneqBinary((,) , ((.� <) .⌫) ^
”?

8=2 \8)
9 X = vals(S.A [T.B) // Number of distinct A, B values
10 if X == 1 then return // Base case for binary partitioning
11 Partition (,) into ((1,(2), ()1,)2) with median distinct value

as pivot
12 if ? == 1 then
13 // Base case for #predicates: connect (1 to)2
14 Materialize intermediate node G
15 foreach B in (1 do Create edge EB �! G
16 foreach C in)2 do Create edge G �! EC
17 else
18 // Check (1 !)2 against the rest of the predicates
19 nextPredicate ((1,)2,

”?
8=2 \8)

20 // Recursive calls on horizontal partitions, same predicates
21 partIneqBinary ((1,)1, ((.� <) .⌫) ^

”?
8=2 \8)

22 partIneqBinary ((2,)2, ((.� <) .⌫) ^
”?

8=2 \8)

satis�ed and thus no edges are added to the TLFG, the non-strict one
is satis�ed for all pairs of source and target nodes in the partition.
Hence instead of exiting the recursive call (Line 10), the partition
pair is treated like the ((1,)2) case (Lines 14 to 19).

Equalities. If the conjunction contains both equality and in-
equality predicates, then we reduce the problem to an inequality-
only conjunction by �rst partitioning the inputs into equivalence
classes according to all equality predicates (see Fig. 4b). Then the
inequality-only algorithm introduced above is executed on each
of these partitions. Since the equality-based partitioning takes lin-
ear time and space, complexity is determined by the inequality
predicates.

L���� 11. Let \ be a conjunction of ? inequality and any number
of equality predicates for relations (,) of total size =. A duplicate-free

2605

TLFG of (ùû\) of size O(= log? =) and depth 2 can be constructed
in O(= log? =) time.

4.3 Disjunctions
Given a join condition that can be expressed as a disjunction % =‘
8 %8 where ⌧8 is the TLFG for %8 , we construct the TLFG⌧ for %

by simply “unioning” the ⌧8 , i.e., ⌧ ’s set of nodes and edges are
the unions of the node and edge sets of the ⌧8 , respectively. Note
that the auxiliary “pivot” nodes added by the binary partitioning
algorithm to the ⌧8 are all distinct. Hence if there is a path from
source B to target C in 9 of the individual ⌧8 , then there are exactly
9 di�erent paths from B to C in⌧ . This creates duplicate join results
when traversing⌧ during the enumeration phase. Fortunately, since
the number of “duplicate” paths depends only on the number of
terms in % and hence query size (not input size), the number of
duplicates per join output tuple is constant.

L���� 12. Let \ be a disjunction of predicates \1, . . . , \? for re-
lations (,) . If for each \8 , 8 2 [?] we can construct a duplicate-free
TLFG of (ùû\8) of size O(S8) and depth 38 in O(T8) time, then we
can construct a TLFG of (ùû\) of size O(

Õ
8 S8) and depth max8 38

in O(
Õ
8 O(T8)) time. The duplication factor of the latter is at most ? .

We can now factorize any DNF of equality and inequality predi-
cates by applying the conjunction construction to each conjunct,
and then the union construction for their disjunction.

5 IMPROVEMENTS AND EXTENSIONS
Wepropose improvements that lead to ourmain result: strongworst-
case guarantees forTT(:) andMEM(:) for acyclic join queries with
inequalities, which we then extend to cyclic joins.

5.1 Improved Factorization Methods
We explore how to reduce the size of the TLFG for inequalities.

Multiway partitioning. When the join predicate on an edge
of the theta-join tree is a simple inequality like (.� <) .⌫, we
can split the set of input tuples into O(

p
=) partitions per step—

instead of 2 partitions for binary partitioning (Section 4.1)—hence
the name multiway partitioning. This results in a smaller TLFG
of size O(= log log=) (vs. O(= log=) for binary partitioning) and
depth 3 (vs. 2). Unfortunately, it is unclear how to generalize this
idea to a conjunction of inequalities.

Shared ranges. A simple inequality can be encoded even more
compactly with O(=) edges by exploiting the transitivity of “<”
as illustrated in Figure 4d. Intuitively, our shared ranges method
creates a hierarchy of intermediate nodes, each one representing
a range of values. Each range is entirely contained in all those
that are higher in the hierarchy, thus we connect the intermediate
nodes in a chain. The resulting TLFG has size and depth O(=). The
latter causes a high delay between consecutive join answers. From
Theorem 6 and the fact that we need to sort to construct the TLFG,
we obtain TT(:) = O(= log= + = + : log: + :=) = O(= log= +

:=) and MEM(:) = O(= + :=) = O(:=). Compared to binary
partitioning’s O(= log= + : log:) and O(= log= + :) (Theorem 6,
Lemma 9), respectively, space complexity is reduced by about a
factor log=, and without a�ecting time complexity, only for small
: , i.e., : = o(log=). For larger : = ⌦(=) both space and time

complexity are worse by (almost) a factor =. (Recall that : = O(=✓)
for a join of ✓ relations.) Moreover, like for multiway partitioning,
it is not clear how to generalize this construction to conjunctions
of inequalities.

Non-Equality and Band Predicates.A non-equality predicate
can be expressed as a disjunction of 2 inequalities; a band predicate
as a conjunction of 2 inequalities. Hence both can be handled by the
techniques discussed in Section 4, at the cost of increasing query
size by up to a constant factor. This can be avoided by a specialized
construction that leverages the structure of these predicates. It
is similar to the binary partitioning for an inequality (and hence
omitted due to space constraints) and achieves the same size and
depth guarantees for the TLFG.

5.2 Putting Everything Together
Using multiway partitioning and the specialized techniques for
non-equality and band predicates yields:

L���� 13. Let \ be a simple inequality, non-equality, or band
predicate for relations (,) of size O(=). A duplicate-free TLFG for
(ùû\) of size O(= log log=) and depth 3 can be constructed in
O(= log=) time.

Applying the approach for a DNF of inequalities (Section 4), but
using the specialized TLFGs for non-equality and band predicates
and multiway partitioning for the base case of the conjunction
construction (when only one predicate remains), we obtain:

T������ 14 (M��� R�����). Let & be a full acyclic theta-join
query over a database ⇡ of size = where all the join conditions
are DNF formulas of equality, inequality, non-equality, and band
predicates. Let ? be the maximum number of predicates, excluding
equalities, in a conjunction of a DNF on any edge of the theta-join
tree. Ranked enumeration of the answers to & over ⇡ can be per-
formed with TT(:) = O(= log? = + : log:). The space requirement
is MEM(:) = O(= log?�1 = · log log= + :).

5.3 Cyclic Queries
So far, we have focused only on acyclic queries, but our techniques
are also applicable to cyclic queries with some modi�cations. Re-
call that acyclic queries admit a theta-join tree, which is found by
assigning predicates to the edges of a join tree. If this procedure
fails, we can handle the query as follows:

Post-processing�lter.An common practical solution for cyclic
queries is to ignore some predicates during join processing, then
apply them as a �lter on the output. Speci�cally, we can remove \ 9
predicates and equality conditions encoded by the same variable
names until the query admits a theta-join tree, then apply our
technique to the resulting acyclic query, and �nally use the removed
predicates as a �lter. While this approach is simple to implement,
it can su�er from large intermediate results. In the worst case, all
answers to the acyclic join except the last one may be discarded,
giving us TT(:) = O(=✓ log=) for an ✓-relation cyclic join.

Transformation to equi-join. An alternative approach with
non-trivial guarantees is to apply our equi-join transformation to
the cyclic query, and then use existing algorithms for ranked enu-
meration of cyclic equi-joins [77]. We deal with the case where

2606

each \ 9 predicate is covered by at most 2 input relations; the gen-
eral case is left for future work. To handle that case, we add edges
to the join tree as needed (creating a cyclic theta-join graph) and
assign predicates to covering edges. To achieve the equi-join trans-
formation, we consider all pairs of connected relations in the join
graph, build a TLFG according to the join condition, and then ma-
terialize relations “in the middle” as illustrated in Section 3.4. The
resulting query contains only equality predicates, hence is a cyclic
equi-join. Ranked enumeration for cyclic equi-joins is possible with
guarantees that depend on a width measure of the query [77].

E������ 15 (I�������� C����). The following triangle query
variant joins three relations with inequalities in a cyclic way:
& (�,⌫,⇠,⇡, ⇢, �) :�'(�,⌫), ((⇠,⇡),) (⇢, �), (⌫ < ⇠), (⇡ <
⇢), (� < �). Notice that there is no way to organize the relations in
a tree with the inequalities over parent-child pairs. However, if we
remove the last inequality (� < �), the query becomes acyclic and
a generalized join tree can be constructed. Thus, we can apply our
techniques on that query and �lter the answers with the selection
condition (� < �).

Alternatively, we can factorize the pairs of relations using our
TLFGs, to obtain a cyclic equi-join. If we use binary partitioning, this
introduces three new attributes +1,+2,+3 and six new O(= log=)-
size relations: ⇢1 (�,⌫,+1), ⇢2 (+1,⇠,⇡), ⇢3 (⇠,⇡,+2), ⇢4 (+2, ⇢, �),
⇢5 (⇢, � ,+3), ⇢6 (+3,�,⌫). The transformed query can be shown to
have a submodular width [5, 56] of 5/3, making ranked enumeration
possible with TT(:) = O((= log=)5/3 + : log:).

6 EXPERIMENTS
We demonstrate the superiority of our approach for ranked enu-
meration against existing DBMSs, and even idealized competitors
that receive the join output “for free" as an (unordered) array.

Algorithms.We compare 5 algorithms: 1 F��������� is our
proposed approach. 2 ���E�� is an idealized version of the
fairly straightforward reduction to equi-joins described in Sec-
tion 3.4, which for each edge ((,)) of the theta-join tree uses the
direct TLFG (no intermediate nodes) to convert (ùû\) to equi-
join (ùû ⇢ ùû) via the edge set ⇢ of the TLFG. Then previous
ranked-enumeration techniques for equi-joins [77] can be applied
directly. To avoid any concerns regarding the choice of technique
for generating ⇢, we provide it “for free.” Hence the algorithm is
not charged for essentially executing theta-joins between all pairs
of adjacent relations in the theta-join tree, meaning the ���E�
�� numbers reported here represent a lower bound of real-world
running time. 3 B���� is an idealized version of the approach
taken by state-of-the-art DBMSs. It computes the entire join output
and puts it into a heap for ranked enumeration. To avoid concerns
about the most e�cient join implementation, we give B���� the
entire join output “for free” as an in-memory array. It simply needs
to read those output tuples (instead of having to execute the actual
join) to rank them, therefore the numbers reported constitute a
lower bound of real-world running time. We note that for a join of
only ✓ = 2 relations, there is no di�erence between ���E�� and
B���� since they both receive all the query results; we thus omit
���E�� for binary joins. 4 PSQL is the open-source PostgreSQL
system. 5 S����� X is a commercial database system that is highly
optimized for in-memory computation.

We also compare our factorization methods 1a B����� P�����
�������, 1b M������� P�����������, and 1c S����� R�����
against each other. Recall that the latter two can only be applied
to single-inequality type join conditions. Unless speci�ed other-
wise, F��������� is set to 1b M������� P����������� for the
single-predicate cases and 1a B����� P����������� for all others.

Data. S Our synthetic data generator creates relations
(8 (�8 ,�8+1,,8), 8 � 1 by drawing �8 ,�8+1 from integers in
[0 . . . 104�1] uniformly at randomwith replacement, discarding du-
plicate tuples. The weights,8 are real numbers drawn from [0, 104).
T We also use the LINEITEM relation of the TPC-H benchmark
[2], keeping the schema Item(OrderKey, PartKey, Suppkey,

LineNumber, Quantity, Price, ShipDate, CommitDate,

ReceiptDate).
R For real data, we use a temporal graph R�����T����� [51]

whose 286: edges represent posts from a source community to
a target community identi�ed by a hyperlink in the post title.
The schema is Reddit(From, To, Timestamp, Sentiment,

Readability). B O������B���� [1] reports bird observations
from Oceania with schema Birds(ID, Latitude, Longitude,

Count). We keep only the 452: observations with a non-empty
Count attribute.

Queries. We test queries with various join conditions and sizes.
Figure 6 gives the Datalog notation and the ranking function. Some
of the queries have the number of relations ✓ as a parameter; for
those we only write the join conditions between the 8th and (8 +1)st
relations, with the rest similarly organized in a chain. In the full
version [79] we give the equivalent SQL queries.

On our synthetic data, &(1 is a single inequality join, while &(2
has a more complicated join condition that is a conjunction of a
band and a non-equality. On TPC-H, &) �nds a sequence of items
sold by the same supplier with the quantity increasing over time,
ranked by the price. To test disjunctions, we run query&)⇡ , which
puts the increasing time constraint on either of the three possible
dates. Query &'1 computes temporal paths [84] on R�����T�����,
and ranks them by a measure of sentiment such that sequences
of negative posts are retrieved �rst. Query &'2 uses instead the
sentiment in the join condition, keeping only paths along which
the negative sentiment increases. For ranking, we use readability
to focus on posts of higher quality. Last, &⌫ is a spatial band join
on O������B���� that �nds pairs of high-count bird sightings that
are close based on proximity.

Details. Our algorithms are implemented in Java 8 and executed
on an Intel Xeon E5-2643 CPU running Ubuntu Linux. Queries
execute in memory on a Java VM with 100GB of RAM. If that is
exceeded, we report an Out-Of-Memory (OOM) error. The any-k al-
gorithm used by F��������� and���E�� is L��� [23, 77] which
was found to outperform others in previous work. The version
of PostgreSQL is 9.5.25. We set its parameters such that it is opti-
mized for main-memory execution and system overhead related
to logging or concurrency is minimized, as it is standard in the
literature [12, 77]. To enable input caching for PSQL and S�����
X, each execution is performed twice and we only measure the
second one. Additionally, we create B-tree or hash indexes for each
attribute of the input relations, while our methods do not receive
these indexes. Even though the task is ranked enumeration, we still

2607

Query Ranking
&(1 (. . .) :�(1 (�1,�2),(2 (�3,�4), . . . ,(✓ (�2✓�1,�2✓), (�28 < �28+1) min(,1 +,2 + . . .)
&(2 (. . .) :�(1 (�1,�2),(2 (�3,�4), . . . ,(✓ (�2✓�1,�2✓), (|�28 ��28+1 | < 50), (�28�1 < �28+2) min(,1 +,2 + . . .)
&) (. . .) :� Item($1,% 1,(,!1,&1,%1,(1,⇠1,'1), Item($2,% 2,(,!2,&2, %2,(2,⇠2,'2), . . . , (&8 < &8+1), ((8 < (8+1) min(%1 + %2 + . . .)
&)⇡ (. . .) :� Item($1,% 1,(,!1,&1,%1,(1,⇠1,'1), Item($2,% 2,(,!2,&2, %2,(2,⇠2,'2), . . . , (&8 < &8+1), ((8 < (8+1 _⇠8 < ⇠8+1 _ '8 < '8+1) min(%1 + %2 + . . .)
&'1 (. . .) :�Reddit(#1,#2,)1,(1,'1), Reddit(#2,#3,)2,(2,'2), . . . , ()8 <)8+1) min((1 + (2 + . . .)
&'2 (. . .) :�Reddit(#1,#2,)1,(1,'1), Reddit(#2,#3,)2,(2,'2), . . . , ()8 <)8+1), ((8 > (8+1) max('1 + '2 + . . .)
&⌫ (. . .) :�Birds(�1,!�1,!$1,⇠1), Birds(�2,!�2,!$2,⇠2) (|!�1 � !�2 | < Y), (|!$1 � !$2 | < Y) max(⇠1 +⇠2)

Figure 6: Queries used in our experiments expressed in Datalog. The head always contains all body variables (no projections).
Length ✓ of queries range from 2 to 10. Indices 8 range from 1 to ✓ � 1.

give the database systems a LIMIT clause whenever we measure
a speci�c TT(:), and thus allow them to leverage the : value. All
data points we show are the median of 5 measurements. We timeout
any execution that does not �nish within 2 hours.

6.1 Comparison Against Alternatives
We will show that our approach has a signi�cant advantage over
the competition when the size of the output is su�ciently large. We
test three distinct scenarios for which large output can occur: (1)
the size of the database grows, (2) the length of the query increases,
and (3) the parameter of a band join increases.

Summary. 1 F��������� is superior when the total output size is
large, even when compared against a lower bound of the running
time of the other methods. 2 Q���E��� and 3 B���� require
signi�cantly more memory and are infeasible for many queries.
4 PSQL and 5 S����� X, similarly to B����, must produce the
entire output, which is very costly. While S����� X is clearly faster
than PSQL, it can be several orders of magnitude slower than our
F���������, and is outperformed across all tested queries.

6.1.1 E�ect of Data Size. We run queries &(1,&(2 for di�erent
input sizes = and two distinct query lengths. Figure 7 depicts the
time to return the top : = 103 results. We also plot how the size
of the output grows with increasing = on a secondary y-axis. Even
though���E�� and B���� are given precomputed join results
for free and do not even have to resolve complicated join predicates,
they still require a large amount of memory to store those. Thus,
they quickly run out of memory even for relatively small inputs
(Figure 7b). PSQL does not face a memory problem because it can
resort to secondary storage, yet becomes unacceptably slow. The in-
memory optimized S����� X is 10 times faster than PSQL, but still
follows the same trend because it is materializing the entire output.
In contrast, our F��������� approach scales smoothly across all
tests and requires much less memory. For instance, in Figure 7b
���E�� fails after 8: input size, while we can easily handle 2" .
For very small input, the idealized methods ���E�� and B����
are sometimes faster, but their real running time would be much
higher if join computation was accounted for. &(2 has more join
predicates and thus smaller output size (Figures 7c and 7d). Our
advantage is smaller in this case, yet still signi�cant for large =.

We similarly run queries &) (Figure 8a) and &)⇡ (Figure 8b) for
✓ = 3 with an increasing scale factor (which determines data size).
Here, the equi-join condition on the supplier severely limits the
blowup of the output compared to the input. Still, F��������� is
again superior. Disjunctions in &)⇡ increase the running time of
our technique only slightly by a small constant factor.

6.1.2 E�ect of �ery Length. Next, we test the e�ect of query
length on R�����T�����. We plot TT(:) for three values (: =
1, 103, 106) when the length is small (✓ = 2, 3) and one value (: = 103)
for longer queries. Note that for : = 1, the time of F��������� is
essentially the time required for building our TLFGs, and doing
a bottom-up Dynamic Programming pass [77]. Figure 9 depicts
our results for queries &'1,&'2. Increasing the value of : does not
have a serious impact for most of the approaches except for S�����
X, which for : = 106 is not able to provide the same optimized
execution. For binary-join &'1, our F��������� is faster than the
B���� lower bound (Figure 9a), and its advantage increases for
longer queries, since the output also grows (Figure 9c). B���� runs
out of memory for ✓ = 3, PSQL times out, while ���E�� and
S����� X are more than 100 times slower (Figure 9b). Query &'2
has an additional join predicate, hence its output size is smaller.
Thus, the B���� lower bound is slightly better than our approach
for ✓ = 2 (Figure 9e), but we expect it to be signi�cantly slower if
the cost of computing and materializing the output was taken into
account. Either way, for ✓ � 3 (Figure 9g), our approach dominates
even when compared against the lower bounds. PSQL again times
out for ✓ = 3 (Figure 9f), and the highly optimized S����� X is
outclassed by our approach.

6.1.3 E�ect of Band Parameter. We now test the band-join &⌫ on
the O������B���� dataset with various band widths Y. Figure 9d
shows that F��������� is superior for all tested: values for Y = 0.01.
Increasing the band width yields more joining pairs and causes the
size of the output to grow (Figure 9h). Hence, B���� consumes
more memory and cannot handle Y � 0.16. On the other hand, the
performance of F��������� is mildly a�ected by increasing Y. PSQL
and S����� Xwere not able to terminate within the time limit even
for the smallest Y because they use only one of the indexes (for
Longitude), searching over a huge number of possible results.

6.2 Comparison of our Variants
We now compare our 3 factorization methods 1a , 1b , 1c .

6.2.1 Delay and TT(:). Since only B����� P����������� is ap-
plicable to all types of join conditions considered, we compare the
di�erent methods on&(1, which has only one inequality-type pred-
icate. Figure 10a depicts TT(:) for : = 1, 104, 2 ·104, 3 ·104. Even
though S����� R����� starts returning results faster because its
TLFG is constructed in a single pass (after sorting), it su�ers from
a high enumeration delay (linear in data size), and quickly dete-
riorates as : increases. The delay is also depicted in Figure 10b,
where we observe that B����� P����������� returns results with
lower delay thanM������� P����������� (recall thatM�������
P����������� has a depth of 3 vs B����� P�����������’s 2). These

2608

(a) Query&(1, ✓ = 2. (b) Query&(1, ✓ = 4. (c) Query&(2, ✓ = 2. (d) Query&(2, ✓ = 4.
Figure 7: Section 6.1.1: Synthetic data with a growing database size =. While all four alternative methods either run out of
memory (“OOM”) or exceed a reasonable running time our method scales quasilinearly (O(= polylog=)) with =.

(a) Query&) , ✓ = 3. (b) Query&)⇡ , ✓ = 3.

Figure 8: Section 6.1.1: TPC-H data with increasing scale fac-
tor. Disjunctions do not a�ect the scaling of our algorithm.

results are a consequence of the size-depth tradeo� of the TLFGs
(Fig. 3). Note that the higher delay observed in the beginning is
due to lazy initialization of data structures needed by the any-:
algorithm.

6.2.2 Join Representation. We show the sizes of the constructed
representation in Figure 10c, using an implementation-agnostic
measure. As = increases there is an asymptotic di�erence between
the three methods (O(= log=) vs O(= log log=) vs O(=)) that mani-
fests in our experiment. To see how the presence of the same domain
values could a�ect the construction of the TLFG, we also measure
the time to the �rst result for di�erent domain sizes (Figure 10d).
All three of our methods become faster when the domain is small
and multiple occurrences of the same value are more likely. This is
expected since the intermediate nodes of our TLFG essentially rep-
resent ranges in the domain and they are more compact for smaller
domains. Domain size does not signi�cantly impact running time
once it exceeds sample size (around = = 216) and the probability of
sampling duplicate domain values approaches zero.

7 RELATEDWORK
Enumeration for equi-joins. Unranked enumeration for equi-
joins has been explored in various contexts [13, 14, 19, 20, 33, 74],
with a landmark result showing for self-join-free equi-joins that
linear preprocessing and constant delay are possible if and only if
the query is free-connex acyclic [10, 16]. For the more demanding
task of ranked enumeration, a logarithmic delay is unavoidable
[18, 30]. Our recently proposed any-: algorithms represent the
state of the art for ranked enumeration for equi-joins [77]. Other
work in this space focuses on practical implementations [32] and
direct access [21, 22] to output tuples.

Non-Equality (<) and inequality (<) joins. Techniques for
batch-computation of the entire output for joins with non-equality

(also called inequality [49] or disequality [10]) predicates mainly
rely on variations of color coding [8, 49, 71]. The same core idea
is leveraged by the unranked enumeration algorithm of Bagan et
al. [10]. Queries with negation can be answered by rewriting them
with not-all-equal-predicates [46], a generalization of non-equality.

Khayatt et al. [48] provide optimized and distributed batch algo-
rithms for up to two inequalities per join. Aggregate computation
[3] and Unranked enumeration under updates [43] have been stud-
ied for inequality predicates by using appropriate index structures.

We are the �rst to consider ranked enumeration for non-equality
and inequality predicates, including DNF conditions containing
both types, and to prove strong worst-case guarantees for a large
class of these queries.

Orthogonal range search. Our binary partitioning method
shares a similar intuition with index structures that have been
devised for orthogonal range search [6, 25]. For unranked enumer-
ation, it has been shown [7, 82, 83] how, for two relations, a range
tree [29] can be used to identify pairs of matching tuple sets. This
gives an alternative method to construct our depth-2 TLFGs because
a pair of matching tuple sets can be connected via one intermediate
node. Our approach supports ranking and it is simpler since it does
not require building a range tree. Our TLFG abstraction is also more
general: our other representations (such as multiway partitioning)
do not have any obvious representation as range trees.

Factorized databases. Factorized representations of query re-
sults [11, 66] have been proposed for equi-joins in the context of
enumeration [68, 69], aggregate computation [11], provenance man-
agement [54, 67, 68] and machine learning [4, 50, 65, 70, 73]. Our
novel TLFG approach to factorization complements this line of re-
search and extends the fundamental idea of factorization to ranked
enumeration for theta-joins. For probabilistic databases, factoriza-
tion of non-equalities [63] and inequalities [64] is possible with
OBDDs. Although these are for a di�erent purpose, we note that the
latter exploits the transitivity of inequality, as our S����� R�����
(Figure 4d) and other approaches for aggregates do [26].

Top-: queries. Top-: queries [72] are a special case of ranked
enumeration where the value of : is given in advance and its knowl-
edge can be exploited. Fagin et al. [35] present the Threshold Algo-
rithm, which is instance-optimal under a “middleware” cost model
for a restricted class of 1-to-1 joins. Follow-up work generalizes the
idea to more general joins [36, 44, 55, 85], including theta-joins [57].
Since all these approaches focus on the middleware cost model,
they do not provide non-trivial worst-case guarantees when the
join cost is taken into account [78]. Ilyas et al. [45] survey some of

2609

(a) Query&'1, ✓ = 2. (b) Query&'1, ✓ = 3. (c) Query&'1, di�erent lengths ✓ . (d) Query&⌫ , �xed Y = 0.01.

(e) Query&'2, ✓ = 2. (f) Query&'2, ✓ = 3. (g) Query&'2, di�erent lengths ✓ . (h) Query&⌫ , di�erent bands Y.
Figure 9: Section 6.1.2: a,b,c,e,f,g: Section 6.1.3: d, h: Temporal paths of di�erent lengths on R�����T����� (left), and spatial
band-join on O������B���� (right). Our method is robust to increasing query sizes and band-join ranges.

(a) TT(:) for = = 216. After preprocess-
ing (no pattern), each bar represents
104 results (alternating pattern).

(b) Delay between the �rst = consecu-
tive results for = = 216. The delay is av-
eraged in a window of size 103.

(c) Size of the constructed TLFG for in-
creasing =. Measured as the total num-
ber of nodes and edges in the graph.

(d) Time to the �rst result for = = 216
and di�erent domain sizes. The tuple
values are sampled randomly.

Figure 10: Section 6.2: Comparing di�erent aspects of our factorization methods on query &(1, ✓ = 2.

these approaches, along with some related ones such as building
top-: indexes [24, 76] or views [28, 41].

Optimal batch algorithms for joins. Acyclic equi-joins are
evaluated optimally in O(= + |out|) by the Yannakakis algo-
rithm [88], where |out| is the output size. This bound is unattain-
able for cyclic queries [61], thus worst-case optimal join algorithms
[58, 61, 62, 81] settle for the AGM bound [9], i.e., the worst-case
output size. (Hyper)tree decomposition methods [5, 38, 56] can im-
prove over these guarantees, while a geometric perspective has led
to even stronger notions of optimality [47, 60]. Ngo [59] recounts
the development of these ideas. That line of work focuses on batch-
computation, i.e., on producing all the query results, or on Boolean
queries, while we explore ranked enumeration.

8 CONCLUSIONS AND FUTUREWORK
Theta- and inequality-joins of multiple relations are generally con-
sidered “hard” and even state-of-the-art commercial DBMSs strug-
gle with their e�cient computation. We developed the �rst ranked-
enumeration techniques that achieve non-trivial worst-case guar-
antees for a large class of these joins: For small : , returning the :

top-ranked join answers for full acyclic queries takes only slightly-
more-than-linear time and space (O(= polylog=)) for any DNF of
inequality predicates. For general theta-joins, time and space com-
plexity are quadratic in input size. These are strong worst-case guar-
antees, close to the lower time bound of O(=) and much lower than
the O(=✓) size of intermediate or �nal results traditional join algo-
rithms may have to deal with. Our results apply to many cyclic joins
(modulo higher pre-processing cost depending on query width) and
all acyclic joins, even those with selections and many types of pro-
jections. In the future, we will study parallel computation and more
general cyclic joins and projections.

ACKNOWLEDGMENTS
This work was supported in part by the National Institutes of Health
(NIH) under award number R01 NS091421 and by the National Sci-
ence Foundation (NSF) under award numbers CAREER IIS-1762268
and IIS-1956096.

REFERENCES
[1] 2020. Bird Occurrences in Oceania. https://doi.org/10.15468/dl.d6u6tj From

https://www.gbif.org/.
[2] 2021. TPC Benchmark H (Decision Support) Revision 3.0.0. http://tpc.org/tpch/

2610

https://doi.org/10.15468/dl.d6u6tj
https://www.gbif.org/
http://tpc.org/tpch/

[3] Mahmoud Abo Khamis, Ryan R. Curtin, Benjamin Moseley, Hung Q. Ngo,
XuanLong Nguyen, Dan Olteanu, and Maximilian Schleich. 2019. On Func-
tional Aggregate Queries with Additive Inequalities. In PODS. 414–431. https:
//doi.org/10.1145/3294052.3319694

[4] Mahmoud Abo Khamis, Hung Q Ngo, XuanLong Nguyen, Dan Olteanu, and
Maximilian Schleich. 2018. In-database learning with sparse tensors. In PODS.
325–340. https://doi.org/10.1145/3196959.3196960

[5] Mahmoud Abo Khamis, Hung Q Ngo, and Dan Suciu. 2017. What do Shannon-
type Inequalities, Submodular Width, and Disjunctive Datalog have to do with
one another?. In PODS. 429–444. https://doi.org/10.1145/3034786.3056105

[6] Pankaj K. Agarwal. 2017. Range Searching. In Handbook of Discrete and Com-
putational Geometry, Third Edition, Jacob E. Goodman, Joseph O’Rourke, and
Csaba D. Tóth (Eds.). Chapman and Hall/CRC, 1057–1092. https://doi.org/10.
1201/9781315119601

[7] Pankaj K Agarwal, Xiao Hu, Stavros Sintos, and Jun Yang. 2021. Dynamic
Enumeration of Similarity Joins. CoRR (2021). arXiv:2105.01818

[8] Noga Alon, Raphael Yuster, and Uri Zwick. 1995. Color-coding. J. ACM 42, 4
(1995), 844–856. https://doi.org/10.1145/210332.210337

[9] Albert Atserias, Martin Grohe, and Dániel Marx. 2013. Size Bounds and Query
Plans for Relational Joins. SIAM J. Comput. 42, 4 (2013), 1737–1767. https:
//doi.org/10.1137/110859440

[10] Guillaume Bagan, Arnaud Durand, and Etienne Grandjean. 2007. On acyclic
conjunctive queries and constant delay enumeration. In International Workshop
on Computer Science Logic (CSL). 208–222. https://doi.org/10.1007/978-3-540-
74915-8_18

[11] Nurzhan Bakibayev, Tomáš Kočiský, Dan Olteanu, and Jakub Závodný. 2013.
Aggregation and Ordering in Factorised Databases. PVLDB 6, 14 (2013), 1990–
2001. https://doi.org/10.14778/2556549.2556579

[12] Nurzhan Bakibayev, Dan Olteanu, and Jakub Závodný. 2012. FDB: A Query
Engine for Factorised Relational Databases. PVLDB 5, 11 (2012), 1232–1243.
https://doi.org/10.14778/2350229.2350242

[13] Christoph Berkholz, Fabian Gerhardt, and Nicole Schweikardt. 2020. Constant
Delay Enumeration for Conjunctive Queries: A Tutorial. ACM SIGLOG News 7, 1
(2020), 4–33. https://doi.org/10.1145/3385634.3385636

[14] Christoph Berkholz, Jens Keppeler, and Nicole Schweikardt. 2017. Answering
Conjunctive Queries Under Updates. In PODS. 303–318. https://doi.org/10.1145/
3034786.3034789

[15] Christoph Berkholz and Nicole Schweikardt. 2019. Constant Delay Enumeration
with FPT-Preprocessing for Conjunctive Queries of Bounded Submodular Width.
In 44th International Symposium onMathematical Foundations of Computer Science
(MFCS) (LIPIcs), Vol. 138. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 58:1–
58:15. https://doi.org/10.4230/LIPIcs.MFCS.2019.58

[16] Johann Brault-Baron. 2013. De la pertinence de l’énumération: complexité en
logiques propositionnelle et du premier ordre. Ph.D. Dissertation. Université de
Caen. https://hal.archives-ouvertes.fr/tel-01081392

[17] Johann Brault-Baron. 2016. Hypergraph Acyclicity Revisited. ACM Comput. Surv.
49, 3, Article 54 (Dec. 2016), 26 pages. https://doi.org/10.1145/2983573

[18] David Bremner, Timothy M Chan, Erik D Demaine, Je� Erickson, Ferran Hurtado,
John Iacono, Stefan Langerman, and Perouz Taslakian. 2006. Necklaces, con-
volutions, and X+ Y. In European Symposium on Algorithms. Springer, 160–171.
https://doi.org/10.1007/s00453-012-9734-3

[19] Nofar Carmeli and Markus Kröll. 2019. On the Enumeration Complexity of
Unions of Conjunctive Queries. In PODS. 134–148. https://doi.org/10.1145/
3294052.3319700

[20] Nofar Carmeli and Markus Kröll. 2020. Enumeration Complexity of Conjunctive
Queries with Functional Dependencies. Theory Comput. Syst. 64, 5 (2020), 828–860.
https://doi.org/10.1007/s00224-019-09937-9

[21] Nofar Carmeli, Nikolaos Tziavelis, Wolfgang Gatterbauer, Benny Kimelfeld, and
Mirek Riedewald. 2021. Tractable Orders for Direct Access to Ranked Answers of
Conjunctive Queries. In PODS. 325–341. https://doi.org/10.1145/3452021.3458331

[22] Nofar Carmeli, Shai Zeevi, Christoph Berkholz, Benny Kimelfeld, and Nicole
Schweikardt. 2020. Answering (Unions of) Conjunctive Queries Using Random
Access and Random-Order Enumeration. In PODS. 393–409. https://doi.org/10.
1145/3375395.3387662

[23] Lijun Chang, Xuemin Lin, Wenjie Zhang, Je�rey Xu Yu, Ying Zhang, and Lu Qin.
2015. Optimal enumeration: E�cient top-: tree matching. PVLDB 8, 5 (2015),
533–544. https://doi.org/10.14778/2735479.2735486

[24] Yuan-Chi Chang, Lawrence Bergman, Vittorio Castelli, Chung-Sheng Li, Ming-
Ling Lo, and John R Smith. 2000. The onion technique: indexing for linear
optimization queries. In SIGMOD. 391–402. https://doi.org/10.1145/342009.335433

[25] Bernard Chazelle. 1988. Functional approach to data structures and its use in
multidimensional searching. SIAM J. Comput. 17, 3 (1988), 427–462. https:
//doi.org/10.1137/0217026

[26] Sophie Cluet and Guido Moerkotte. 1995. E�cient evaluation of aggregates
on bulk types. In Proceedings of the Fifth International Workshop on Database
Programming Languages 5. 1–10. https://doi.org/10.14236/ewic/DBPL1995.6

[27] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Cli�ord Stein.
2009. Introduction to Algorithms (3rd ed.). The MIT Press. https://dl.acm.org/

doi/book/10.5555/1614191
[28] Gautam Das, Dimitrios Gunopulos, Nick Koudas, and Dimitris Tsirogiannis. 2006.

Answering top-k queries using views. In VLDB. 451–462. https://dl.acm.org/doi/
10.5555/1182635.1164167

[29] Mark De Berg, Marc Van Kreveld, Mark Overmars, and Otfried Schwarzkopf.
1997. Computational geometry. In Computational geometry. Springer, 1–17.
https://doi.org/10.1007/978-3-540-77974-2

[30] Shaleen Deep and Paraschos Koutris. 2021. Ranked Enumeration of Conjunctive
Query Results. In ICDT, Vol. 186. 5:1–5:19. https://doi.org/10.4230/LIPIcs.ICDT.
2021.5

[31] David J. DeWitt, Je�rey F. Naughton, and Donovan A. Schneider. 1991. An
Evaluation of Non-Equijoin Algorithms. In VLDB. 443–452. https://dl.acm.org/
doi/10.5555/645917.672320

[32] Mengsu Ding, Shimin Chen, Nantia Makrynioti, and Stefan Manegold. 2021.
Progressive Join Algorithms Considering User Preference. In CIDR. https://ir.
cwi.nl/pub/30501/30501.pdf

[33] Arnaud Durand. 2020. Fine-Grained Complexity Analysis of Queries: From
Decision to Counting and Enumeration. In PODS. 331–346. https://doi.org/10.
1145/3375395.3389130

[34] Jost Enderle, Matthias Hampel, and Thomas Seidl. 2004. Joining Interval Data
in Relational Databases. In SIGMOD. 683–694. https://doi.org/10.1145/1007568.
1007645

[35] Ronald Fagin, Amnon Lotem, and Moni Naor. 2003. Optimal aggregation al-
gorithms for middleware. J. Comput. System Sci. 66, 4 (2003), 614–656. https:
//doi.org/10.1016/S0022-0000(03)00026-6

[36] Jonathan Finger and Neoklis Polyzotis. 2009. Robust and e�cient algorithms
for rank join evaluation. In SIGMOD. 415–428. https://doi.org/10.1145/1559845.
1559890

[37] Michel Gondran and Michel Minoux. 2008. Graphs, Dioids and Semirings: New
Models and Algorithms (Operations Research/Computer Science Interfaces Series).
Springer. https://doi.org/10.1007/978-0-387-75450-5

[38] Georg Gottlob, Gianluigi Greco, Nicola Leone, and Francesco Scarcello. 2016.
Hypertree Decompositions: Questions and Answers. In PODS. 57–74. https:
//doi.org/10.1145/2902251.2902309

[39] M.H. Graham. 1979. On the universal relation. Technical Report. Univ. of Toronto.
[40] C. A. R. Hoare. 1962. Quicksort. Comput. J. 5, 1 (01 1962), 10–16. https:

//doi.org/10.1093/comjnl/5.1.10
[41] Vagelis Hristidis, Nick Koudas, and Yannis Papakonstantinou. 2001. PREFER: A

system for the e�cient execution of multi-parametric ranked queries. SIGMOD
Record 30, 2 (2001), 259–270. https://doi.org/10.1145/375663.375690

[42] Muhammad Idris, Martín Ugarte, Stijn Vansummeren, Hannes Voigt, and Wolf-
gang Lehner. 2019. E�cient Query Processing for Dynamically Changing
Datasets. SIGMOD Record 48, 1 (2019), 33–40. https://doi.org/10.1145/3371316.
3371325

[43] Muhammad Idris, Martín Ugarte, Stijn Vansummeren, Hannes Voigt, and Wolf-
gang Lehner. 2020. General dynamic Yannakakis: conjunctive queries with theta
joins under updates. VLDB J. 29 (2020), 619–653. https://doi.org/10.1007/s00778-
019-00590-9

[44] Ihab F Ilyas, Walid G Aref, and Ahmed K Elmagarmid. 2004. Supporting top-
: join queries in relational databases. VLDB J. 13, 3 (2004), 207–221. https:
//doi.org/10.1007/s00778-004-0128-2

[45] Ihab F Ilyas, George Beskales, and Mohamed A Soliman. 2008. A survey of top-:
query processing techniques in relational database systems. Comput. Surveys 40,
4 (2008), 11. https://doi.org/10.1145/1391729.1391730

[46] Mahmoud Abo Khamis, Hung Q. Ngo, Dan Olteanu, and Dan Suciu. 2019. Boolean
Tensor Decomposition for Conjunctive Queries with Negation. In ICDT. 21:1–
21:19. https://doi.org/10.4230/LIPIcs.ICDT.2019.21

[47] Mahmoud Abo Khamis, Hung Q. Ngo, Christopher Ré, and Atri Rudra. 2016.
Joins via Geometric Resolutions: Worst Case and Beyond. TODS 41, 4, Article 22
(2016), 45 pages. https://doi.org/10.1145/2967101

[48] Zuhair Khayyat, William Lucia, Meghna Singh, Mourad Ouzzani, Paolo Papotti,
Jorge-Arnulfo Quiané-Ruiz, Nan Tang, and Panos Kalnis. 2017. Fast and scalable
inequality joins. VLDB J. 26, 1 (2017), 125–150. https://doi.org/10.1007/s00778-
016-0441-6

[49] Paraschos Koutris, Tova Milo, Sudeepa Roy, and Dan Suciu. 2017. Answering
Conjunctive Queries with Inequalities. Theory of Computing Systems 61, 1 (2017),
2–30. https://doi.org/10.1007/s00224-016-9684-2

[50] Arun Kumar, Je�rey Naughton, and Jignesh M Patel. 2015. Learning generalized
linear models over normalized data. In SIGMOD. 1969–1984. https://doi.org/10.
1145/2723372.2723713

[51] Srijan Kumar, William L Hamilton, Jure Leskovec, and Dan Jurafsky. 2018. Com-
munity interaction and con�ict on the web. https://snap.stanford.edu/data/soc-
RedditHyperlinks.html. In WWW. 933–943.

[52] Rundong Li, Wolfgang Gatterbauer, and Mirek Riedewald. 2020. Near-Optimal
Distributed Band-Joins through Recursive Partitioning. In SIGMOD. 2375–2390.
https://doi.org/10.1145/3318464.3389750

[53] Qingyun Liu, Jack W. Stokes, Rob Mead, Tim Burrell, Ian Hellen, John Lambert,
Andrey Marochko, and Weidong Cui. 2018. Latte: Large-Scale Lateral Movement

2611

https://doi.org/10.1145/3294052.3319694
https://doi.org/10.1145/3294052.3319694
https://doi.org/10.1145/3196959.3196960
https://doi.org/10.1145/3034786.3056105
https://doi.org/10.1201/9781315119601
https://doi.org/10.1201/9781315119601
https://arxiv.org/abs/2105.01818
https://doi.org/10.1145/210332.210337
https://doi.org/10.1137/110859440
https://doi.org/10.1137/110859440
https://doi.org/10.1007/978-3-540-74915-8_18
https://doi.org/10.1007/978-3-540-74915-8_18
https://doi.org/10.14778/2556549.2556579
https://doi.org/10.14778/2350229.2350242
https://doi.org/10.1145/3385634.3385636
https://doi.org/10.1145/3034786.3034789
https://doi.org/10.1145/3034786.3034789
https://doi.org/10.4230/LIPIcs.MFCS.2019.58
https://hal.archives-ouvertes.fr/tel-01081392
https://doi.org/10.1145/2983573
https://doi.org/10.1007/s00453-012-9734-3
https://doi.org/10.1145/3294052.3319700
https://doi.org/10.1145/3294052.3319700
https://doi.org/10.1007/s00224-019-09937-9
https://doi.org/10.1145/3452021.3458331
https://doi.org/10.1145/3375395.3387662
https://doi.org/10.1145/3375395.3387662
https://doi.org/10.14778/2735479.2735486
https://doi.org/10.1145/342009.335433
https://doi.org/10.1137/0217026
https://doi.org/10.1137/0217026
https://doi.org/10.14236/ewic/DBPL1995.6
https://dl.acm.org/doi/book/10.5555/1614191
https://dl.acm.org/doi/book/10.5555/1614191
https://dl.acm.org/doi/10.5555/1182635.1164167
https://dl.acm.org/doi/10.5555/1182635.1164167
https://doi.org/10.1007/978-3-540-77974-2
https://doi.org/10.4230/LIPIcs.ICDT.2021.5
https://doi.org/10.4230/LIPIcs.ICDT.2021.5
https://dl.acm.org/doi/10.5555/645917.672320
https://dl.acm.org/doi/10.5555/645917.672320
https://ir.cwi.nl/pub/30501/30501.pdf
https://ir.cwi.nl/pub/30501/30501.pdf
https://doi.org/10.1145/3375395.3389130
https://doi.org/10.1145/3375395.3389130
https://doi.org/10.1145/1007568.1007645
https://doi.org/10.1145/1007568.1007645
https://doi.org/10.1016/S0022-0000(03)00026-6
https://doi.org/10.1016/S0022-0000(03)00026-6
https://doi.org/10.1145/1559845.1559890
https://doi.org/10.1145/1559845.1559890
https://doi.org/10.1007/978-0-387-75450-5
https://doi.org/10.1145/2902251.2902309
https://doi.org/10.1145/2902251.2902309
https://doi.org/10.1093/comjnl/5.1.10
https://doi.org/10.1093/comjnl/5.1.10
https://doi.org/10.1145/375663.375690
https://doi.org/10.1145/3371316.3371325
https://doi.org/10.1145/3371316.3371325
https://doi.org/10.1007/s00778-019-00590-9
https://doi.org/10.1007/s00778-019-00590-9
https://doi.org/10.1007/s00778-004-0128-2
https://doi.org/10.1007/s00778-004-0128-2
https://doi.org/10.1145/1391729.1391730
https://doi.org/10.4230/LIPIcs.ICDT.2019.21
https://doi.org/10.1145/2967101
https://doi.org/10.1007/s00778-016-0441-6
https://doi.org/10.1007/s00778-016-0441-6
https://doi.org/10.1007/s00224-016-9684-2
https://doi.org/10.1145/2723372.2723713
https://doi.org/10.1145/2723372.2723713
https://snap.stanford.edu/data/soc-RedditHyperlinks.html
https://snap.stanford.edu/data/soc-RedditHyperlinks.html
https://doi.org/10.1145/3318464.3389750

Detection. In MILCOM. 1–6. https://doi.org/10.1109/MILCOM.2018.8599748
[54] Neha Makhija and Wolfgang Gatterbauer. 2021. Towards a Dichotomy for Mini-

mally Factorizing the Provenance of Self-Join Free Conjunctive Queries. CoRR
abs/2105.14307 (2021). arXiv:2105.14307 https://arxiv.org/abs/2105.14307

[55] Nikos Mamoulis, Man Lung Yiu, Kit Hung Cheng, and David W Cheung. 2007.
E�cient top-: aggregation of ranked inputs. TODS 32, 3 (2007), 19. https:
//doi.org/10.1145/1272743.1272749

[56] Dániel Marx. 2013. Tractable Hypergraph Properties for Constraint Satisfaction
and Conjunctive Queries. J. ACM 60, 6, Article 42 (2013), 51 pages. https:
//doi.org/10.1145/2535926

[57] Apostol Natsev, Yuan-Chi Chang, John R Smith, Chung-Sheng Li, and Je�rey Scott
Vitter. 2001. Supporting incremental join queries on ranked inputs. In VLDB.
281–290. http://www.vldb.org/conf/2001/P281.pdf

[58] Gonzalo Navarro, Juan L. Reutter, and Javiel Rojas-Ledesma. 2020. Optimal
Joins Using Compact Data Structures. In ICDT, Vol. 155. 21:1–21:21. https:
//doi.org/10.4230/LIPIcs.ICDT.2020.21

[59] Hung Q Ngo. 2018. Worst-case optimal join algorithms: Techniques, results, and
open problems. In PODS. 111–124. https://doi.org/10.1145/3196959.3196990

[60] Hung Q Ngo, Dung T Nguyen, Christopher Re, and Atri Rudra. 2014. Beyond
worst-case analysis for joins with minesweeper. In PODS. 234–245. https://doi.
org/10.1145/2594538.2594547

[61] Hung Q Ngo, Ely Porat, Christopher Ré, and Atri Rudra. 2018. Worst-case optimal
join algorithms. J. ACM 65, 3 (2018), 16. https://doi.org/10.1145/3180143

[62] Hung Q Ngo, Christopher Ré, and Atri Rudra. 2014. Skew Strikes Back: New
Developments in the Theory of Join Algorithms. SIGMOD Record 42, 4 (Feb. 2014),
5–16. https://doi.org/10.1145/2590989.2590991

[63] DanOlteanu and JiewenHuang. 2008. Using OBDDs for e�cient query evaluation
on probabilistic databases. (2008), 326–340. https://doi.org/10.1007/978-3-540-
87993-0_26

[64] DanOlteanu and JiewenHuang. 2009. Secondary-storage con�dence computation
for conjunctive queries with inequalities. In SIGMOD. 389–402. https://doi.org/
10.1145/1559845.1559887

[65] Dan Olteanu andMaximilian Schleich. 2016. F: RegressionModels over Factorized
Views. PVLDB 9, 13 (2016), 1573–1576. https://doi.org/10.14778/3007263.3007312

[66] Dan Olteanu and Maximilian Schleich. 2016. Factorized databases. SIGMOD
Record 45, 2 (2016). https://doi.org/10.1145/3003665.3003667

[67] Dan Olteanu and Jakub Závodnỳ. 2011. On factorisation of provenance poly-
nomials. In TaPP. https://www.usenix.org/conference/tapp11/factorisation-
provenance-polynomials

[68] Dan Olteanu and Jakub Závodnỳ. 2012. Factorised representations of query
results: size bounds and readability. In ICDT. 285–298. https://doi.org/10.1145/
2274576.2274607

[69] Dan Olteanu and Jakub Závodnỳ. 2015. Size bounds for factorised representations
of query results. TODS 40, 1 (2015), 2. https://doi.org/10.1145/2656335

[70] Krishna Kumar P., Paul Langton, and Wolfgang Gatterbauer. 2020. Factorized
Graph Representations for Semi-Supervised Learning from Sparse Data. In SIG-
MOD. 1383–1398. https://doi.org/10.1145/3318464.3380577

[71] Christos H. Papadimitriou and Mihalis Yannakakis. 1999. On the complexity of
database queries. J. Comput. System Sci. 58, 3 (1999), 407–427. https://doi.org/10.
1006/jcss.1999.1626

[72] Saladi Rahul and Yufei Tao. 2019. A Guide to Designing Top-k Indexes. SIGMOD
Record 48, 2 (2019). https://doi.org/10.1145/3377330.3377332

[73] Maximilian Schleich, Dan Olteanu, and Radu Ciucanu. 2016. Learning linear
regression models over factorized joins. In SIGMOD. 3–18. https://doi.org/10.
1145/2882903.2882939

[74] Luc Segou�n. 2015. Constant Delay Enumeration for Conjunctive Queries. SIG-
MOD Record 44, 1 (2015), 10–17. https://doi.org/10.1145/2783888.2783894

[75] Robert E Tarjan and Mihalis Yannakakis. 1984. Simple linear-time algorithms to
test chordality of graphs, test acyclicity of hypergraphs, and selectively reduce
acyclic hypergraphs. SIAM J. Comput. 13, 3 (1984), 566–579. https://doi.org/10.
1137/0213035

[76] Panayiotis Tsaparas, Themistoklis Palpanas, Yannis Kotidis, Nick Koudas, and
Divesh Srivastava. 2003. Ranked join indices. In ICDE. IEEE, 277–288. https:
//doi.org/10.1109/ICDE.2003.1260799

[77] Nikolaos Tziavelis, Deepak Ajwani, Wolfgang Gatterbauer, Mirek Riedewald, and
Xiaofeng Yang. 2020. Optimal Algorithms for Ranked Enumeration of Answers
to Full Conjunctive Queries. PVLDB 13, 9 (2020), 1582–1597. https://doi.org/10.
14778/3397230.3397250

[78] Nikolaos Tziavelis, Wolfgang Gatterbauer, and Mirek Riedewald. 2020. Optimal
Join Algorithms Meet Top-k. In SIGMOD. 2659–2665. https://doi.org/10.1145/
3318464.3383132

[79] Nikolaos Tziavelis, Wolfgang Gatterbauer, and Mirek Riedewald. 2021. Beyond
Equi-joins: Ranking, Enumeration and Factorization. CoRR abs/2101.12158 (2021).
arXiv:2101.12158

[80] Moshe Y. Vardi. 1982. The Complexity of Relational Query Languages (Extended
Abstract). In STOC. 137–146. https://doi.org/10.1145/800070.802186

[81] Todd L. Veldhuizen. 2014. Triejoin: A Simple, Worst-Case Optimal Join Algorithm.
In ICDT. 96–106. https://doi.org/10.5441/002/icdt.2014.13

[82] Dan E. Willard. 1996. Applications of Range Query Theory to Relational Data
Base Join and Selection Operations. J. Comput. System Sci. 52, 1 (1996), 157–169.
https://doi.org/10.1006/jcss.1996.0012

[83] Dan E Willard. 2002. An algorithm for handling many relational calculus queries
e�ciently. J. Comput. System Sci. 65, 2 (2002), 295–331. https://doi.org/10.1006/
jcss.2002.1848

[84] Huanhuan Wu, James Cheng, Silu Huang, Yiping Ke, Yi Lu, and Yanyan Xu.
2014. Path Problems in Temporal Graphs. PVLDB 7, 9 (2014), 721–732. https:
//doi.org/10.14778/2732939.2732945

[85] Minji Wu, Laure Berti-Equille, Amélie Marian, Cecilia M Procopiuc, and Divesh
Srivastava. 2010. Processing top-k join queries. PVLDB 3, 1 (2010), 860–870.
https://doi.org/10.14778/1920841.1920951

[86] Xiaofeng Yang, Deepak Ajwani, Wolfgang Gatterbauer, Patrick K Nicholson,
Mirek Riedewald, and Alessandra Sala. 2018. Any-: : Anytime Top-: Tree Pattern
Retrieval in Labeled Graphs. InWWW. 489–498. https://doi.org/10.1145/3178876.
3186115

[87] Xiaofeng Yang, Mirek Riedewald, Rundong Li, and Wolfgang Gatterbauer. 2018.
Any-: Algorithms for Exploratory Analysis with Conjunctive Queries. In Inter-
national Workshop on Exploratory Search in Databases and the Web (ExploreDB).
1–3. https://doi.org/10.1145/3214708.3214711

[88] Mihalis Yannakakis. 1981. Algorithms for Acyclic Database Schemes. In VLDB.
82–94. https://dl.acm.org/doi/10.5555/1286831.1286840

[89] Clement Tak Yu and Meral Z Ozsoyoglu. 1979. An algorithm for tree-query
membership of a distributed query. In COMPSAC. IEEE, 306–312. https://doi.
org/10.1109/CMPSAC.1979.762509

2612

https://doi.org/10.1109/MILCOM.2018.8599748
https://arxiv.org/abs/2105.14307
https://arxiv.org/abs/2105.14307
https://doi.org/10.1145/1272743.1272749
https://doi.org/10.1145/1272743.1272749
https://doi.org/10.1145/2535926
https://doi.org/10.1145/2535926
http://www.vldb.org/conf/2001/P281.pdf
https://doi.org/10.4230/LIPIcs.ICDT.2020.21
https://doi.org/10.4230/LIPIcs.ICDT.2020.21
https://doi.org/10.1145/3196959.3196990
https://doi.org/10.1145/2594538.2594547
https://doi.org/10.1145/2594538.2594547
https://doi.org/10.1145/3180143
https://doi.org/10.1145/2590989.2590991
https://doi.org/10.1007/978-3-540-87993-0_26
https://doi.org/10.1007/978-3-540-87993-0_26
https://doi.org/10.1145/1559845.1559887
https://doi.org/10.1145/1559845.1559887
https://doi.org/10.14778/3007263.3007312
https://doi.org/10.1145/3003665.3003667
https://www.usenix.org/conference/tapp11/factorisation-provenance-polynomials
https://www.usenix.org/conference/tapp11/factorisation-provenance-polynomials
https://doi.org/10.1145/2274576.2274607
https://doi.org/10.1145/2274576.2274607
https://doi.org/10.1145/2656335
https://doi.org/10.1145/3318464.3380577
https://doi.org/10.1006/jcss.1999.1626
https://doi.org/10.1006/jcss.1999.1626
https://doi.org/10.1145/3377330.3377332
https://doi.org/10.1145/2882903.2882939
https://doi.org/10.1145/2882903.2882939
https://doi.org/10.1145/2783888.2783894
https://doi.org/10.1137/0213035
https://doi.org/10.1137/0213035
https://doi.org/10.1109/ICDE.2003.1260799
https://doi.org/10.1109/ICDE.2003.1260799
https://doi.org/10.14778/3397230.3397250
https://doi.org/10.14778/3397230.3397250
https://doi.org/10.1145/3318464.3383132
https://doi.org/10.1145/3318464.3383132
https://arxiv.org/abs/2101.12158
https://doi.org/10.1145/800070.802186
https://doi.org/10.5441/002/icdt.2014.13
https://doi.org/10.1006/jcss.1996.0012
https://doi.org/10.1006/jcss.2002.1848
https://doi.org/10.1006/jcss.2002.1848
https://doi.org/10.14778/2732939.2732945
https://doi.org/10.14778/2732939.2732945
https://doi.org/10.14778/1920841.1920951
https://doi.org/10.1145/3178876.3186115
https://doi.org/10.1145/3178876.3186115
https://doi.org/10.1145/3214708.3214711
https://dl.acm.org/doi/10.5555/1286831.1286840
https://doi.org/10.1109/CMPSAC.1979.762509
https://doi.org/10.1109/CMPSAC.1979.762509

