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ABSTRACT

We study theta-joins in general and join predicates with conjunc-
tions and disjunctions of inequalities in particular, focusing on
ranked enumeration where the answers are returned incrementally
in an order dictated by a given ranking function. Our approach
achieves strong time and space complexity properties: with n denot-
ing the number of tuples in the database, we guarantee for acyclic
full join queries with inequality conditions that for every value of k,
the k top-ranked answers are returned in O(npolylogn + k log k)
time. This is within a polylogarithmic factor of O(n + klogk), i.e.,
the best known complexity for equi-joins, and even of O(n + k),
i.e., the time it takes to look at the input and return k answers in
any order. Our guarantees extend to join queries with selections
and many types of projections (namely those called “free-connex”
queries and those that use bag semantics). Remarkably, they hold
even when the number of join results is n’ for a join of ¢ relations.
The key ingredient is a novel O(n polylog n)-size factorized repre-
sentation of the query output, which is constructed on-the-fly for
a given query and database. In addition to providing the first non-
trivial theoretical guarantees beyond equi-joins, we show in an
experimental study that our ranked-enumeration approach is also
memory-efficient and fast in practice, beating the running time of
state-of-the-art database systems by orders of magnitude.
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1 INTRODUCTION

Join processing is one of the most fundamental topics in database
research, with recent work aiming at strong asymptotic guarantees
[47, 58, 61, 62]. Work on constant-delay (unranked) enumeration
[10, 19, 42, 74] strives to pre-process the database for a given query
on-the-fly so that the first answer is returned in linear time (in
database size), followed by all other answers with constant delay
(i.e., independent of database size) between them. Together, linear
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pre-processing and constant delay guarantee that all answers are
returned in time linear in input and output size, which is optimal.

Ranked enumeration. Ranked enumeration [78] generalizes
the heavily studied top-k paradigm [35, 45] by continuously return-
ing join answers in ranking order. This enables the output consumer
to select the cut-off k on-the-fly while observing the answers. For
top-k, the value of k must be chosen in advance, before seeing any
query answer. Unfortunately, non-trivial complexity guarantees
of previous top-k techniques, including the celebrated Threshold
Algorithm [35], are limited to the “middleware” cost model, which
only accounts for the number of distinct data items accessed [78].
While some of those top-k algorithms can be applied to joins with
general predicates, they do not provide non-trivial guarantees in
the standard RAM model of computation, and their time complexity
for a join of ¢ relations can be O(nf).

The goal of this paper is to design ranked-enumeration algorithms
for general theta joins with strong space and time guarantees in the
standard RAM model of computation. Tight upper complexity bounds
are essential for ensuring predictable performance, no matter the
given database instance (e.g., in terms of data skew) or the query’s
total output size. Notice that it already takes O(n+k) time to simply
look at n input tuples as well as create and return k output tuples.
Since polylogarithmic factors are generally considered small or
even negligible for asymptotic analysis [5, 27], we aim for time
bounds that are within such polylogarithmic factors of O(n + k).
At the same time, we want space complexity to be reasonable; e.g.,
for small k to be within a polylogarithmic factor of O(n), which is
the required space to hold the input.

While state-of-the-art commercial and open-source DBMSs do
not yet support ranked enumeration, it is worth taking a closer look
at their implementation of top-k join queries. (Here k is specified
in a SQL clause like FETCH FIRST or LIMIT.) While we tried a
large variety of inputs, indexes on the input relations, join queries,
and values of k, the optimizer of PostgreSQL and two other widely
used commercial DBMSs always chose to execute the join before
applying the ranking and top-k condition on the join results.! This
implies that their overall time complexity to return even the top-1
result cannot be better than the worst-case join output size, which
can be O(n®) for a join of ¢ relations.

Beyond equi-joins. Recent work on ranked enumeration [30,
32,77, 78, 86, 87] achieves much stronger worst-case guarantees,
but only considers equi-joins. However, big-data analysis often also
requires other join conditions [31, 34, 48, 52] such as inequalities
(e.g.,S.age < T.age), non-equalities (e.g., S.id # T.id), and band
predicates (e.g., |S.time - T.time| < ¢). For these joins, two

!For non-trivial ranking functions, or when the attributes used for joining differ from
those used for ranking, the DBMS cannot determine if a subset of the join output so
far produced already contains all k top-ranked answers. This applies to general theta
joins as well as equi-joins.
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major challenges must be addressed. First, the join itself must be
computed efficiently in the presence of complex conditions, possi-
bly consisting of conjunctions and disjunctions of such predicates.
Second, to avoid having to produce the entire output, ranking has
to be pushed deep into the join itself.

ExAMPLE 1. A concrete application of ranked enumeration for
inequality joins concerns graph-based approaches for detecting “lat-
eral movement” between infected computers in a network [53]. By
modeling computers as nodes and connections as timestamped edges,
these approaches search for anomalous access patterns that take
the form of paths (or more general subgraphs) ranked by the prob-
ability of occurrence according to historical data. The inequalities
arise from a time constraint: the timestamps of two consecutive
edges need to be in ascending order. Concretely, consider the relation
G(From,To,Time,Prob). Valid 2-hop paths can be computed with
a self-join (where G1, Gy are aliases of G) where the join condition is
an equality G1.To = Gp.From and an inequality G1.Time < Gy.Time,
while the score of a path is G;.Prob - Ga.Prob. Existing approaches
are severely limited computationally in terms of the length of the
pattern, since the number of paths in a graph can be extremely large.
Thus, they usually resort to a search over very small paths (e.g.,
only 2-hop). With the techniques developed in this paper, patterns of
much larger size can be retrieved efficiently in ranked order without
considering all possible instantiations of the pattern.

Main contributions. We provide the first comprehensive study
on ranked enumeration for joins with conditions other than equal-
ity, notably general theta-joins and conjunctions and disjunctions
of inequalities and equalities. While such joins are expensive to
compute [48, 52], we show that for many of them the top-ranked
answers can always be found in time complexity that only slightly
exceeds the complexity of sorting the input. This is remarkable,
given that the input may be heavily skewed and the output size
of a join of ¢ relations is O(n’). We achieve this with a carefully
designed factorized representation of the join output that can be
constructed in relatively small time and space. Then the ranking
function determines the traversal order on this representation.

Recall that ranked-enumeration algorithms must continuously
output answer tuples in order and the goal is to achieve non-trivial
complexity guarantees no matter at which value of k the algorithm
is stopped. Hence we express algorithm complexity as a function of
k: TT(k) and MEM(k) denote the algorithm’s time and space com-
plexity, respectively, until the moment it returns the k-th answer
in ranking order. Our main contributions (see also Figure 1) are:

(1) We generalize an equi-join-specific ranked-enumeration con-
struction [77] by representing the overall join structure as a tree of
joining relations and then introducing a join-condition-sensitive
abstraction between each pair of adjacent relations in the tree. For
the latter, we propose the “Tuple-Level Factorization Graph” (TLFG,
Section 3), a novel factorized representation for any theta-join be-
tween two relations, and show how its size and depth affect the
complexity of ranked enumeration. Interestingly, some TLFGs can
be used to transform a given theta-join to an equi-join, a property
we leverage for ranked enumeration for cyclic join queries.

(2) For join conditions that are a DNF of inequalities (Sec-
tion 4), we propose concrete TLFGs with space and construction-
time complexity O(npolylog n). Using them for acyclic joins, our
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Join Condition Example Time P (n) Space S(n)
(C) Theta booleanUDF(S. A, T.C) O(n*) 0(n?)
(C1) Inequality S.A<T.B
(C2) Non-equality S.A#T.B O(nlogn) O(nloglogn)
(C3) Band [S.A-T.B[<e¢
(C(IC)‘?)(CDSI,:(OC%) (S.Af/'(l'él.SA/;ST../T);T.C) O (npolylogn) | O(npolylog n)

Figure 1: Preprocessing time $(n) and space complexity
S(n) of our approach for various join conditions. Our novel
factorized representation allows ranked enumeration to re-
turn the k top-ranked results in time (“Time-To”) TT(k) =
O(P(n) + klogk), using MEM(k) = O(S(n) + k) space.

algorithm guarantees TT(k) = O(npolylogn + klogk), which
is within a polylogarithmic factor of the equi-join case, where
TT(k) = O(n+klogk) [77], and even the lower bound of O(n + k).

(3) Our experiments (Section 6) on synthetic and real datasets
show orders-of-magnitude improvements over highly optimized
top-k implementations in state-of-the-art DBMSs, as well as over
an idealized competitor that is not charged for any join-related cost.

Due to space constraints, formal proofs and several details of im-
provements to our core techniques (Section 5) are in the full version
of this paper [79]. Our project website contains more information in-
cluding source code: https://northeastern-datalab.github.io/anyk/.

2 PRELIMINARIES

2.1 Queries

Let [m] denote the set of integers {1, ..., m}. A theta-join query in
Datalog notation is a formula of the type

Q(Z) = Ri(Xy), ..., Re(Xp), 01(Y1),...,0¢(Yq)

where R; are relational symbols, X; are lists of variables (or at-
tributes), Z,Y; are subsets of X = (JX;, i € [f], j € [q], and 0;
are Boolean formulas called join predicates. The terms R;(X;)
are called the atoms of the query. Equality predicates are encoded
by repeat occurrences of the same variable in different atoms; all
other join predicates are encoded in the corresponding 0;. If no
predicates 6 are present, then Q is an equi-join. The size |Q| of the
query is equal to the number of symbols in the formula.

Query semantics. Join queries are evaluated over a database
that associates with each R; a finite relation (or table) that draws
values from a domain that we assume to be R for simplicity.? With-
out loss of generality, we assume that relational symbols in different
atoms are distinct since self-joins can be handled with linear over-
head by copying a relation to a new one. The maximum number of
tuples in an input relation is denoted by n. We write R.A for an at-
tribute A of relation R and r.A for the value of A in tuple r € R;. The
semantics of a theta-join query is to (i) create the Cartesian product
of the ¢ relations, (ii) select the tuples that satisfy the equi-join
conditions and 6; predicates, and (iii) project on the Z attributes.
Consequently, each individual query answer can be represented as
a combination of joining input tuples, one from each table R;.

Projections. In this paper, we focus on full queries, i.e., join
queries without projections (Z = X). While our approach can handle

20ur approach naturally extends to other domains such as strings or vectors, as long
as the corresponding join predicates are well-defined and computable in O(1) for a
pair of input tuples.
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projections by applying them in the end, the strong asymptotic
TT(k) guarantees may not hold any more. The reason is that a
projection could map multiple distinct output tuples to the same
projected answer. In the strict relational model where relations are
sets, those “duplicates” would have to be eliminated, creating larger
gaps between consecutive answers returned to the user. Fortunately,
our strong guarantees still hold for arbitrary projections in the
presence of bag semantics, which is what DBMSs use when the SQL
query has a SELECT clause instead of SELECT DISTINCT. Even for
set semantics and SELECT DISTINCT queries, it is straightforward
to extend our strong guarantees to non-full queries that are free-
connex [10, 13, 17, 43].

Join trees for equi-joins. An equi-join query is (alpha-)acyclic
[39, 75, 89] if it admits a join tree. A join tree is a tree with the atoms
(relations) as the nodes where for every attribute A appearing in an
atom, all nodes containing A form a connected subtree. The GYO
reduction [89] computes such a join tree for equi-joins.

Atomic join predicates. We define the following types of pred-
icates between attributes S.A and T.B: an inequality is S.A < T.B,
S.A>TB,S.A<TB,orS.A > T.B,anon-equalityis S.A # T.Band
a bandis |S.A—T.B| < ¢ for some ¢ > 0. Our approach also supports
numerical expressions over input tuples, e.g., f(S.A1,5.42,...) <
9g(T.B1,T.By,...), with f and g arbitrary O(1)-time computable
functions that map to R. The join predicates 0; are built with con-
junctions and disjunctions of such atomic predicates. We assume
there are no predicates on individual relations since they can be
removed in linear time by filtering the corresponding input tables.

2.2 Ranked Enumeration

Ranked enumeration [78] returns distinct join answers one-at-a-
time, in the order dictated by a given ranking function on the
output tuples. Since this paradigm generalizes top-k (top-k for “any
k” value, or “anytime top-k”), it is also called any-k [77, 86]. An
obvious solution is to compute the entire join output, and then
either batch-sort it or insert it into a heap data structure. Our goal
is to find more efficient solutions for appropriate ranking functions.

For simplicity, in this paper we only discuss ranking by increas-
ing sum-of-weights, where each input tuple has a real-valued weight
and the weight of an output tuple is the sum of the weights of the
input tuples that were joined to derive it. Ranked enumeration
returns the join answers in increasing order of output-tuple weight.
It is straightforward to generalize our approach to any ranking
function that can be interpreted as a selective dioid [77]. Intuitively,
a selective dioid [37] is a semiring that also establishes a total order
on the domain. It has two operators (min and + for sum-of-weights)
where one distributes over the other (+ distributes over min). These
structures include even less obvious cases such as lexicographic
ordering by relation attributes.

2.3 Complexity Measures

We consider in-memory computation and analyze all algorithms in
the standard Random Access Machine (RAM) model with uniform
cost measure. Following common practice, we treat query size
|Q|—intuitively, the length of the SQL string—as a constant. This
corresponds to the classic notion of data complexity [80], where
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one is interested in scalability in the size of the input data, and not
of the query (because users do not write arbitrarily large queries).

In line with previous work [15, 22, 38], we assume that it is
possible to create in linear time an index that supports tuple lookups
in constant time. In practice, hashing achieves those guarantees in
an expected, amortized sense. We include all index construction
times and index sizes in our analysis.

For the time complexity of enumeration algorithms, we measure
the time until the k™ result is returned (TT(k)) for all values of k. In
the full version [79], we further discuss the relationship of TT(k) to
enumeration delay as complexity measures. Since we do not assume
any given indexes, a trivial lower bound is TT(k) = O(n + k):
the time to inspect each input tuple at least once and to return
k output tuples. Our algorithms achieve that lower bound up to a
polylogarithmic factor. For space complexity, we use MEM(k) to
denote the required memory until the k™ result is returned.

3 GRAPH FRAMEWORK FOR JOINS

We summarize our recent work on ranked enumeration for equi-
joins, then show our novel generalization to theta-joins.

3.1 Previous Work: Any-k for Equi-joins

Any-k algorithms [77] for acyclic equi-joins reduce ranked enumer-
ation to the problem of finding the k'M-lightest trees in a layered
DAG, which we call the enumeration graph. Its structure depends
on the join tree of the given query; an example is depicted in Fig. 2a.
The enumeration graph is a layered DAG in the sense that we as-
sociate it with a particular topological sort: (1) Conceptually, each
node is labeled with a layer ID (not shown in the figure to avoid
clutter). A layer is a set of nodes that share the same layer ID
(depicted with rounded rectangles). (2) Each edge is directed, going
from lower to higher layer ID. (3) All tuples from an input relation
appear as (black-shaded) nodes in the same layer, called a relation
layer. Each relation layer has a unique ID and for each join-tree edge
(S, T), S has a lower layer ID than T. (4) If and only if two relations
are adjacent in the join tree, then their layers are connected via
a connection layer that contains (blue-shaded) nodes representing
their join-attribute values. (5) The edges from a relation layer to
a connection layer connect the tuples with their corresponding
join-attribute values and vice-versa.

The enumeration graph is constructed on-the-fly and bottom-up,
according to a join tree of the query (starting from U and T in the
example). This phase essentially performs a bottom-up semi-join
reduction that also creates the edges and join-attribute-value nodes.
A tree solution is a tree that starts from the root layer and contains
exactly 1 node from each relation layer. By construction, every tree
solution corresponds to a query answer, and vice versa.

The any-k algorithm then goes through two phases on the enu-
meration graph. The first is a Dynamic Programming computation,
where every graph node records for each of its outgoing edges the
lowest weight among all subtrees that contain 1 node from each re-
lation layer below. The minimum-subtree and input-tuple weights
are not shown in Figure 2a to avoid clutter. For instance, the outgo-
ing edge for R-node (2, 3) would store the smaller of the weights
of U-tuples (2,1) and (2, 2). Similarly, the left edge from S-node
(2,1) would store the sum of the weight of R-tuple (2,3) and the
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(a) Equi-join enumeration graph [77].

(b) Theta-join enumeration graph and abstraction proposed in this paper.

(c) Reduction to equi-join.

Figure 2: Overview of our approach. We generalize the equi-join-specific construction to theta-joins by introducing an abstrac-
tion (blue clouds) that factorizes binary joins. Some factorizations can also be used to reduce theta-joins to equi-joins.

minimum subtree weight from R-node (2, 3). The minimum-subtree
weight for a node’s outgoing edge is obtained at a constant cost
by pushing the minimum weight over all outgoing edges up to the
node’s parent. Afterwards, enumeration is done in a second phase,
where the enumeration graph is traversed top-down (from S in the
example), with the traversal order determined by the layer IDs and
minimum-subtree weights on a node’s outgoing edges.

The size of the enumeration graph and its number of layers
determine space and time complexity of the any-k algorithm. The
following lemma summarizes the main result from our previous
work [77]. We restate it here in terms of data complexity (where
query size £ is a constant) and using A for the number of layers.>

LEmMA 2 ([77]). Given an enumeration graph with |E| edges and
A layers, ranked enumeration of the k-lightest tree solutions can be
performed with TT(k) = O(|E| + klogk + kA) and MEM(k) =
O(|E| + kA).

To extend the any-k framework beyond equi-joins, we generalize
first the definition of a join tree and then the enumeration graph
with an abstraction that is sensitive to the join conditions.

3.2 Theta-Join Tree

The join tree is essential for generating the enumeration graph.
In contrast to equi-joins, for general join conditions there is no
established methodology for how to define or find a join tree. We
generalize the join tree definition as follows:

DEFINITION 3 (THETA-JOIN TREE). A theta-join tree for a theta-
join query Q is a join tree for the equi-join Q' that has all the 0;
predicates of Q removed, and every 0; is assigned to an edge (S,T) of
the tree such that S and T contain all the attributes referenced in 0;.

We call a theta-join query acyclic if it admits a theta-join tree. In
the theta-join tree, edge (S, T) represents the join S >y T, where
join condition 8 is the conjunction of all predicates 6; assigned to
the edge, as well as the equality predicates S.A = T.A for every
attribute A that appears in both S and T.

3Due to the specific construction for equi-joins [77], there A was linear in query size £
and hence ¢ and A were used interchangeably. In our generalization this may not be
the case, therefore we use the more precise parameter A here.
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ExampLE 4. Consider Q(A,B,C,D,E,F):—R(D,E),S(A D),
T(B,C),U(D,F),(A < B),(A > E),(E < F).% This query
is acyclic since we can construct the theta-join tree shown in
Fig. 2b. Notice that all nodes containing attribute D are connected
and each inequality is assigned to an edge whose adjacent
nodes together contain all referenced attributes. For example,
A < B is assigned to (S,T) (S contains A and T contains B).
The join-tree edges represent join predicates 1 = S.A < T.B
(edge (S,T)), 62 = SSA > REAS.D = T.D (edge (S,R)), and
03 =R.E <U.F AR.D =U.D (edge (R,U)).

“SELECT * FROMR, S, T, U WHERE
RD=SDANDRD =UD AND S.A < T.B AND S.A > RE AND RE < UF

We can construct the theta-join tree by first removing all 6;
predicates from the given query Q, turning it into an equi-join Q’.
Then an algorithm like the GYO reduction can be used to find a join
tree for Q’. For the query in Example 4, this join tree looks like the
one in Figure 2b, but without the edge labels. Finally, we attempt
to add each 6 predicate to a join-tree edge: 0; can be assigned to
any edge where the two adjacent nodes contain all the attributes
referenced in it. Note that there may exist different join trees for Q”,
and we may have to try all possible options to obtain a theta-join
tree. Fortunately, this computation depends only on the query, thus
takes O(1) space and time in data complexity. If either the GYO
algorithm fails to find a join tree for Q’ or no join tree allows us to
assign the 0; predicates to tree edges, then the query is cyclic and
can be handled as discussed in Section 5.3. We discuss next how to
create the enumeration graph for a given theta-join tree.

3.3 Factorized Join Representation

By relying on a join tree similar in structure to the equi-join case,
we can establish a similar layered structure for the enumeration
graph. In particular, each input relation appears in a separate layer
and each join-tree edge is mapped to a subgraph implementing
the join condition between the corresponding relation layers. This
is visualized by the blue clouds in Figure 2b. In contrast to the
equi-joins, we allow more general connection layers, possibly a
single layer with a more complex connection pattern (like the S-
to-T connection in the example) or even multiple layers (like the
connection between R-node (2, 1) and U-node (2, 2)).



To be able to apply our any-k algorithms [77] to this generalized
enumeration graph we must ensure that (1) each “blue cloud” can be
mapped to a layered graph and (2) each tree solution corresponds to
a join answer, and vice versa (like the one highlighted in Figure 2b
which corresponds to joining input tuples s = (3,2), t = (4,3),
r=1(2,1),and u = (2,2)). For (2) it is sufficient to ensure for each
adjacent parent-child pair of relations in the theta-join tree that
there exists a path from a node in the parent-relation layer to a node
in the child-relation layer iff the corresponding input tuples join.
In the example, there is a path from S-node (3, 2) via v3 to T-node
(4,3), because the two tuples satisfy A = 3 < B = 4. Similarly,
since s’ = (5,3) and t = (4, 3) violate A < B, there is no path from
the former to the latter. For (1), it is sufficient to ensure that the
“blue cloud” is a DAG with parent-relation nodes only having edges
going into the cloud, while all child-relation edges must point out
of the cloud. We formalize these properties with the notion of a
Tuple-Level Factorization Graph (TLFG).

DEFINITION 5 (TLFG). A Tuple-Level Factorization Graph of a
theta-join S v<g T of relation S, called the source, and T, called the
target, is a directed acyclic graph G(V, E) where:

(1) V contains a distinct source node vg for each tuples € S, a
distinct target node v; for each tuple t € T, and possibly other
intermediate nodes,

(2) each source node vg has only outgoing edges and each target
node v; has only incoming edges, and

(3) foreachs € S,t € T, there exists a path from vs tov; in G if
and only if s and t satisfy join condition 0.

The size of a TLFG G(V,E) is |V| + |E| and its depth d is the
maximum length of any path in G. The graphs depicted in Fig. 4a
and Fig. 4b are valid TLFGs for equi-joins.

It is easy to see that any TLFG is a layered graph: Assign w.l.o.g.
layer ID 0 to all source nodes vs; each intermediate node v is as-
signed layer ID i, where i is the length of the longest path (mea-
sured in number of edges) from any source node to v. Here i is
well-defined due to the TLFG’s acyclicity. All target-relation nodes
are assigned to layer d, which is the maximum layer ID assigned to
any intermediate node, plus 1. In the example in Figure 4d, node v3
is in layer 3, because the longest path from any S-node to v3 has 3
edges (from (1, 1) in the example). All T-nodes are in layer 6.

Since the entire generalized enumeration graph consists of ¢
relation layers and ¢ — 1 TLFGs (one for each edge of the theta-join
tree), using Lemma 2 we can show:

THEOREM 6. Given a theta-join Q of ¢ = O(1) relations, a theta-
Jjoin tree, and the corresponding enumeration graph Gg, where for
each edge of the theta-join tree the corresponding TLFG has O(|E|)
size and O(d) depth, then ranked enumeration of the k-lightest tree
solutions can be performed with TT(k) = O(|E| + klog k + kd) and
MEM(k) = O(|E| + kd).

The theorem states that worst-case size and depth of the TLFG
determine the time and space complexity of enumerating the theta-
join answers in weight order. Hence the main challenge is to encode
join condition with the smallest and most shallow TLFG possible.

Direct TLFGs. For any theta-join, a naive way to construct a
TLFG is to directly connect each source node with all the target
nodes it joins with. This results in |[E| = O(n?) and d = 1, thus
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Figure 3: We propose 4 different TLFGs for a single inequal-
ity. These trade off size with depth and 2 of them (in blue)
achieve the equi-join guarantee up to a logarithmic factor.

TT(k) = O(n? + klogk) and MEM(k) = O(n? + k), respectively.
Hence even the top-ranked result requires quadratic time and space.
To improve this complexity, we must find a TLFG with a smaller
number of edges, while keeping the depth low. Our results are
summarized in Figure 3, with details discussed in later sections.

Output duplicates. A subtle issue with Theorem 6 is that two
non-isomorphic tree solutions of the enumeration graph may con-
tain the exact same input tuples (the relation-layer nodes), caus-
ing duplicate query answers. This happens if and only if a TLFG
has multiple paths between the same source and destination node.
While one would like to avoid this, it may not be possible to find a
TLFG that is both efficient in terms of size and depth, and also free
of duplicate paths. Among the inequality conditions studied in this
paper, this only happens for disjunctions (Section 4.3).

Since duplicate join answers must be removed, the time to re-
turn the k top-ranked answers may increase. Fortunately, for our
disjunction construction it is easy to show that the number of dupli-
cates per output tuple is O(1), i.e., it does not depend on input size
n. This implies that we can filter the duplicates on-the-fly without
increasing the complexity of TT(k) (or MEM(k), for that matter):
We maintain the top-k join answers returned so far in a lookup
structure and, before outputting the next join answer, we check in
O(1) time if the same output had been returned before.*

To prove that the number of duplicates per join answer is inde-
pendent of input size, it is sufficient to show that for each TLFG the
maximum number of paths from any source node v to any target
node v;, which we will call the duplication factor, is independent of
input size. We show this to be the case for the only TLFG construc-
tion that could introduce duplicate paths: disjunctions (Section 4.3).
A duplicate-free TLFG has a duplication factor equal to 1 (which is
the case for most TLFGs we discuss).

3.4 Theta-join to Equi-join Reduction

The factorized representation of the output of a theta-join as an enu-
meration graph (using TLFGs to connect adjacent relation layers)
enables a novel reduction from complex theta-joins to equi-joins.

THEOREM 7. Let G = (V,E) be a TLFG of depth d for a theta-
join S vy T of relations S, T and X be the union of their attributes.
For 0 < i < d, let E; be the set of edges from layer i — 1 to i. If

4 As an optimization, we can clear this lookup structure whenever the weight of an
answer is greater than the previous, since all duplicates share the same weight. While
this does not impact worst-case complexity, it can greatly reduce computation cost in
practice whenever output tuples have diverse sum-of-weight values.



E = \U; Ei, i.e, every edge connects nodes in adjacent layers, then
Swvag T = mx(S>a Ey > --- »a Eg > T) where 1y is an X -projection.

Intuitively, the theorem states that if no edge in the TLFG skips
a layer, then the theta-join S >y T can equivalently be computed as
an equi-join between S, T, and d auxiliary relations. Each of those
relations is the set of edges between adjacent layers of the TLFG.

The theorem is easy to prove by construction, which we explain
using the example in Figure 2b. Consider the TLFG for S and T
and notice that all edges are between adjacent layers and d = 2. In
Figure 2c, the first tuple (1,1,01) € E; represents the edge from
S-node (1,1) to intermediate node v;. (The tuple is obtained as
the Cartesian product of the edge’s endpoints.) Similarly, the first
tuple in Ej represents the edge from v; to T-node (2, 1). It is easy
to verify that S(A, D) »<4<p T(B,C) = mappc(S < E1 p< Ey > T).
The corresponding branch of the join tree is shown in Figure 2c.
Compared to the theta-join tree in Figure 2b, the inequality con-
dition disappeared from the edge and is replaced by new nodes
El (A, D, Vl) and Ez(Vl, B, C)

QuabEqui for direct TLFGs. Recall that any theta-join S »<g T
between relations of size O(n) can be represented by a 1-layer TLFG
that directly connects the joining S- and T-nodes. Since this TLFG
satisfies the condition of Theorem 7, it can be reduced to equi-join
S >« E »a T, where |E| = O(n?). We refer to the algorithm that
first applies this construction to each edge of the theta-join tree
(and thus reducing the entire theta-join query between ¢ relations
to an equi-join) and then uses the equi-join ranked-enumeration
algorithm [77] as QuaDEQuI.

Below we will show that better constructions with smaller aux-
iliary relations E; can be found for any join condition that is a
DNF of inequalities. In particular, such joins can be expressed as
S < E1 »a Ep > T where Ej, E; are of size O(n polylog n). Figure 2c
shows a concrete instance. However, note that not all TLFGs satisfy
the condition of Theorem 7. For example, Fig. 4d shows a TLFG
which cannot be reduced to an equi-join with our theorem.

4 FACTORIZATION OF INEQUALITIES

We now show how to construct TLFGs of size O(n polylog n) and
depth O(1) when the join condition  in a join S »<g T is a DNF° of
inequalities (and equalities). Starting with a single inequality, we
then generalize to conjunctions and finally to DNF. Non-equalities
and bands will be discussed in Section 5.

4.1 Single Inequality Condition

Efficient TLFGs for equi-joins exploit that equality conditions group
input tuples into disjoint equivalence classes (Fig. 4b). For inequali-
ties, this is generally not possible and therefore we need a different
approach to leverage their structural properties (see Fig. 4c).
Binary partitioning. Our binary-partitioning based TLFG is
inspired by quicksort [40]. Consider condition S.A < T.B and a
pivot value v. We partition relations S and T s.t. s.A < v for s € §;
and s.A > v for s € Sy, and similarly t.B <ovfort € Ty andt.B > v
for t € T,. This guarantees that all A-values in S; are strictly less
than all B-values in T». Instead of representing this with |S| - |T2|

SConverting an arbitrary formula to DNF may increase query size exponentially. This
does not affect data complexity, because query size is still a constant.
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direct edges (s; € S1,t; € Tz), we introduce an intermediate “pivot
node” v and use only |S1| + |T2| edges (s; € S1,0) and (v, tj € T2).

Then we continue recursively with the remaining partition pairs
(S1,T1) and (S2, T2). (Note that (S2, T1) cannot contain joining tu-
ples by construction.) Each recursive step will create a new inter-
mediate node connecting a set of source and target nodes, therefore
the TLFG has depth 2.

As the pivot, we use the median of the distinct join-attribute
values appearing in the tuples in both input partitions. E.g., for
multiset {1, 1, 1, 1, 2, 3,3} the set of distinct values is {1, 2,3} and
hence the median is 2. This pivot is easy to find in O(n) time if
the relations have been sorted on the join attributes beforehand.
Since each partition step cuts the number of distinct values per
partition in half, it takes O (log n) steps until we reach the base case
where all input tuples in a partition share the same join-attribute
value and the recursion terminates. Overall, the algorithm takes
time O(nlogn) to construct a TLFG of size O(nlogn) and depth 2.
It is easy to see that there is exactly one path from each source to
joining target node, hence the TLFG is duplicate-free.

ExXAMPLE 8. Figure 4e illustrates the approach, with dotted lines
showing how the relations are partitioned. Initially, we create parti-
tions containing the values {1, 2,3} and {4,5, 6} respectively. The
source nodes containing A-values of the first partition are connected
to target nodes containing B-values of the second partition via the
intermediate node vs. The first partition is then recursively split into
{1} and {2, 3}. Even though these new partitions are uneven with 2
and 4 nodes respectively, they contain roughly the same number of
distinct values (plus or minus one).

Other inequality types. The construction for greater-than (>)
is symmetric, connecting Sz to Tj instead of S; to T5. For < and >,
we only need to modify handling of the base case of the recursion:
instead of simply returning from the last call (when all tuples in a
partition have the same join-attribute value), the algorithm connects
the corresponding source and target nodes via an intermediate node
(like for equality predicates).

LEMMA 9. Let 6 be an inequality predicate for relations S, T of
total size n. A duplicate-free TLFG of S >y T of size O(nlogn) and
depth 2 can be constructed in O(nlogn) time.

4.2 Conjunctions

TLFG construction for conjunctions can be integrated elegantly
into the recursive binary partitioning.

ExampLE 10. Consider join condition S.A < T.C AS.B > T.D
for relations S(A, B), T(C, D) as shown in Fig. 5a. The algorithm
initially considers the first inequality S.A < T.C, splitting the rela-
tions into S1, T1, Sz, Ta as per the binary partitioning method (see
Section 4.1). All pairs (s; € Sy,tj € Tp) satisfy S.A < T.C, but not
all of them satisfy the other conjunct S.B > T.D. To correctly con-
nect the source and target nodes, we therefore run the same binary
partitioning algorithm on input partitions S; and T, but now with
predicate S.B > T.D as illustrated by the diagonal blue edge in
Fig. 5a; the resulting graph structure is shown in Fig. 5b. For the
remaining partition pairs (S1, Ty) and (Sz, T2), the recursive call still
needs to enforce both conjuncts as illustrated by the orange edges in
Fig. 5a.



S.B=T.B S.B=T.B S.A<T.B S.A<TB
S(A, B) T(D, B) S(A, B) T(D, B) S(A, D) T(B, C) S(A, D) T(B, C) T(B, C)
1,1 1,1 1,1 =1 1,1 1,1 11 1,1 11 11
% > vy < \ <2 e D s (2)
2,1 2,1 2,1 S 2,1 2,1 2,1 2,1 \ v, —>21 2,1
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2 \ Ve ey A AN (2)
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<6
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(a) Equality: naive construc- (b) Equality: grouping (c) Inequality: naive (d) Inequality: shared (e) Inequality: binary partition-
tion with edges between all tuples with common join construction with edges ranges. Middle nodes ing. Dotted lines indicate par-
joining pairs. O(n?) size, values together. O(n) size, between all joining pairs. indicate a range. O(n) size, titioning steps. O(nlogn) size,
O(1) depth. O(1) depth. O(n?) size, O(1) depth. O(n) depth. O(1) depth.

Figure 4: Factorization of Equality and Inequality conditions with our TLFGs. The S and T node labels indicate the values of
the joining attributes. All TLFGs shown here have O(1) depth.

S.AA<T.C S.B>T.D
S(A, B) T(C,D) S(A, B) T(C, D)
1,7 4,2
51 2,5 . 5,4 T1
\>
3,6 \ 6,1
[ \. [ Vi
77 \ |@3 \ 73
\.
Sz 89 N 8,6 '|'2 v, \ 9,5
9,8 9,5 8,6

(a) Binary partitioning and recursions. (b) Handling the next predicate.

Figure 5: Example 10: Steps of the conjunction algorithm for
two inequality predicates on S(A, B), T(C, D). Node labels de-
pict A, B values (left) or C, D values (right).

Strict inequalities. The example generalizes in a straightfor-
ward way to the conjunction of any number of strict inequalities
as shown in Algorithm 1. We note that the order in which the pred-
icates are handled does not impact the asymptotic analysis, but in
practice, handling the most selective predicates first is bound to
give better performance. Whenever two partitions are guaranteed
to satisfy a conjunct, that conjunct is removed from consideration
in the next recursive call (Line 19). An intermediate node for the
pivot and the corresponding edges connecting it to source and tar-
get nodes are only added to the TLFG when no predicates remain
(Lines 14 to 16). Overall, we perform two recursions simultaneously.
In one direction, we make recursive calls on smaller partitions of
the data and the same set of predicates (Lines 21 and 22). In the
other direction, when the current predicate is satisfied for a parti-
tion pair, nextPredicate() is called with one less predicate (Line 19).
The recursion stops either when we are left with 1 join value (base
case for binary partitioning) or we exhaust the predicate list (base
case for conjunction). Finally, notice that each time a new predicate
is processed by a recursive call, the join-attribute values in the
corresponding partitions are sorted according to the new attributes
(Line 6) to find the pivot.

Non-strict inequalities. Like for a single predicate, we only
need to modify handling of the base case when all join-attribute
values in a partition are the same. While a strict inequality is not

Algorithm 1: Factorizing a conjunction of p strict inequalities
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1 Input: Relations S, T, nodes v, v; fors € S, ¢t € T,
2 Conjunction 6 = /\‘?=l 0;, where 6, =S. A< T.B
3 Output: A TLFG of the join S »<g T
4 Call nextPredicate (S, T, 6)
5 Procedure nextPredicate(S, T, (S.A < T.B) A AL, 6;)
6 S, T" = S, T sorted by attributes A and B, respectively
partInegBinary (S, T’, (S.A < T.B) A /\’f=2 0;)
Procedure partIneqBinary(S, T, (S.A < T.B) A AL, 6:)
& =vals(S.AU T.B) // Number of distinct A, B values
if 6 == 1 then return // Base case for binary partitioning
Partition S, T into (Si, S2), (T3, Tz) with median distinct value
as pivot
if p == 1 then
// Base case for #predicates: connect Sy to T
Materialize intermediate node x
foreach s in S; do Create edge vs — x
foreach t in T, do Create edge x — o,
else
// Check S; — T, against the rest of the predicates
nextPredicate (S;, Tp, /\’f:2 0;)
// Recursive calls on horizontal partitions, same predicates
partInegBinary (S1, Ti, (S.A < T.B) A /\f=z 0;)
partInegBinary (Sz, Tz, (S.A < T.B) A /\f:2 0;)

7

©

satisfied and thus no edges are added to the TLFG, the non-strict one
is satisfied for all pairs of source and target nodes in the partition.
Hence instead of exiting the recursive call (Line 10), the partition
pair is treated like the (S1, T2) case (Lines 14 to 19).

Equalities. If the conjunction contains both equality and in-
equality predicates, then we reduce the problem to an inequality-
only conjunction by first partitioning the inputs into equivalence
classes according to all equality predicates (see Fig. 4b). Then the
inequality-only algorithm introduced above is executed on each
of these partitions. Since the equality-based partitioning takes lin-
ear time and space, complexity is determined by the inequality
predicates.

LEmMMA 11. Let 0 be a conjunction of p inequality and any number
of equality predicates for relations S, T of total size n. A duplicate-free



TLFG of S g T of size O(nlogP n) and depth 2 can be constructed
in O(nlogP n) time.

4.3 Disjunctions

Given a join condition that can be expressed as a disjunction P =
\/; P; where G; is the TLFG for P;, we construct the TLFG G for P
by simply “unioning” the Gj, i.e., G’s set of nodes and edges are
the unions of the node and edge sets of the G;, respectively. Note
that the auxiliary “pivot” nodes added by the binary partitioning
algorithm to the G; are all distinct. Hence if there is a path from
source s to target t in j of the individual G;, then there are exactly
j different paths from s to ¢ in G. This creates duplicate join results
when traversing G during the enumeration phase. Fortunately, since
the number of “duplicate” paths depends only on the number of
terms in P and hence query size (not input size), the number of
duplicates per join output tuple is constant.

LEMMA 12. Let 0 be a disjunction of predicates 61, . .., 0, for re-
lations S, T. If for each 0;,i € [p] we can construct a duplicate-free
TLFG of S g, T of size O(S;) and depth d; in O(7;) time, then we
can construct a TLFG of S »<g T of size O(2; Si) and depth max; d;
inO(Y; O(T;)) time. The duplication factor of the latter is at most p.

We can now factorize any DNF of equality and inequality predi-
cates by applying the conjunction construction to each conjunct,
and then the union construction for their disjunction.

5 IMPROVEMENTS AND EXTENSIONS

We propose improvements that lead to our main result: strong worst-
case guarantees for TT(k) and MEM(k) for acyclic join queries with
inequalities, which we then extend to cyclic joins.

5.1 Improved Factorization Methods

We explore how to reduce the size of the TLFG for inequalities.

Multiway partitioning. When the join predicate on an edge
of the theta-join tree is a simple inequality like S.A < T.B, we
can split the set of input tuples into O(+/n) partitions per step—
instead of 2 partitions for binary partitioning (Section 4.1)—hence
the name multiway partitioning. This results in a smaller TLFG
of size O(nloglogn) (vs. O(nlogn) for binary partitioning) and
depth 3 (vs. 2). Unfortunately, it is unclear how to generalize this
idea to a conjunction of inequalities.

Shared ranges. A simple inequality can be encoded even more
compactly with O(n) edges by exploiting the transitivity of “<”
as illustrated in Figure 4d. Intuitively, our shared ranges method
creates a hierarchy of intermediate nodes, each one representing
a range of values. Each range is entirely contained in all those
that are higher in the hierarchy, thus we connect the intermediate
nodes in a chain. The resulting TLFG has size and depth O(n). The
latter causes a high delay between consecutive join answers. From
Theorem 6 and the fact that we need to sort to construct the TLFG,
we obtain TT(k) = O(nlogn + n+ klogk + kn) = O(nlogn +
kn) and MEM(k) = O(n + kn) = O(kn). Compared to binary
partitioning’s O(nlogn + klog k) and O(nlogn + k) (Theorem 6,
Lemma 9), respectively, space complexity is reduced by about a
factor log n, and without affecting time complexity, only for small
k, ie., k = o(logn). For larger k = Q(n) both space and time
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complexity are worse by (almost) a factor n. (Recall that k = O(nf)
for a join of ¢ relations.) Moreover, like for multiway partitioning,
it is not clear how to generalize this construction to conjunctions
of inequalities.

Non-Equality and Band Predicates. A non-equality predicate
can be expressed as a disjunction of 2 inequalities; a band predicate
as a conjunction of 2 inequalities. Hence both can be handled by the
techniques discussed in Section 4, at the cost of increasing query
size by up to a constant factor. This can be avoided by a specialized
construction that leverages the structure of these predicates. It
is similar to the binary partitioning for an inequality (and hence
omitted due to space constraints) and achieves the same size and
depth guarantees for the TLFG.

5.2 Putting Everything Together

Using multiway partitioning and the specialized techniques for
non-equality and band predicates yields:

LEMMA 13. Let 0 be a simple inequality, non-equality, or band
predicate for relations S, T of size O(n). A duplicate-free TLFG for
S vag T of size O(nloglogn) and depth 3 can be constructed in
O(nlogn) time.

Applying the approach for a DNF of inequalities (Section 4), but
using the specialized TLFGs for non-equality and band predicates
and multiway partitioning for the base case of the conjunction
construction (when only one predicate remains), we obtain:

THEOREM 14 (MAIN REsurT). Let Q be a full acyclic theta-join
query over a database D of size n where all the join conditions
are DNF formulas of equality, inequality, non-equality, and band
predicates. Let p be the maximum number of predicates, excluding
equalities, in a conjunction of a DNF on any edge of the theta-join
tree. Ranked enumeration of the answers to Q over D can be per-
formed with TT(k) = O(nlogP n + klog k). The space requirement
is MEM(k) = O(nlogP™' n -loglogn + k).

5.3 Cyclic Queries

So far, we have focused only on acyclic queries, but our techniques
are also applicable to cyclic queries with some modifications. Re-
call that acyclic queries admit a theta-join tree, which is found by
assigning predicates to the edges of a join tree. If this procedure
fails, we can handle the query as follows:

Post-processing filter. An common practical solution for cyclic
queries is to ignore some predicates during join processing, then
apply them as a filter on the output. Specifically, we can remove 0;
predicates and equality conditions encoded by the same variable
names until the query admits a theta-join tree, then apply our
technique to the resulting acyclic query, and finally use the removed
predicates as a filter. While this approach is simple to implement,
it can suffer from large intermediate results. In the worst case, all
answers to the acyclic join except the last one may be discarded,
giving us TT(k) = O(nf log n) for an ¢-relation cyclic join.

Transformation to equi-join. An alternative approach with
non-trivial guarantees is to apply our equi-join transformation to
the cyclic query, and then use existing algorithms for ranked enu-
meration of cyclic equi-joins [77]. We deal with the case where



each 0; predicate is covered by at most 2 input relations; the gen-
eral case is left for future work. To handle that case, we add edges
to the join tree as needed (creating a cyclic theta-join graph) and
assign predicates to covering edges. To achieve the equi-join trans-
formation, we consider all pairs of connected relations in the join
graph, build a TLFG according to the join condition, and then ma-
terialize relations “in the middle” as illustrated in Section 3.4. The
resulting query contains only equality predicates, hence is a cyclic
equi-join. Ranked enumeration for cyclic equi-joins is possible with
guarantees that depend on a width measure of the query [77].

ExampLE 15 (INEQUALITY CYCLE). The following triangle query
variant joins three relations with inequalities in a cyclic way:
Q(A,B,C,D,E,F) —R(A,B),S(C,D),T(E,F),(B < C),(D <
E), (F < A). Notice that there is no way to organize the relations in
a tree with the inequalities over parent-child pairs. However, if we
remove the last inequality (F < A), the query becomes acyclic and
a generalized join tree can be constructed. Thus, we can apply our
techniques on that query and filter the answers with the selection
condition (F < A).

Alternatively, we can factorize the pairs of relations using our
TLFGs, to obtain a cyclic equi-join. If we use binary partitioning, this
introduces three new attributes Vi, V2, V3 and six new O (nlogn)-
size relations: E1(A, B, V1), E2(V1,C, D), E3s(C, D, V3), E4(V3, E, F),
Es(E, F,V3), E¢(V3, A, B). The transformed query can be shown to
have a submodular width [5, 56] of 5/3, making ranked enumeration
possible with TT(k) = O((nlog n)>3 + k logk).

6 EXPERIMENTS

We demonstrate the superiority of our approach for ranked enu-
meration against existing DBMSs, and even idealized competitors
that receive the join output “for free" as an (unordered) array.

Algorithms. We compare 5 algorithms: (1) FACTORIZED is our
proposed approach. (2) QUADEQuI is an idealized version of the
fairly straightforward reduction to equi-joins described in Sec-
tion 3.4, which for each edge (S, T) of the theta-join tree uses the
direct TLFG (no intermediate nodes) to convert S »<y T to equi-
join S >« E p< T via the edge set E of the TLFG. Then previous
ranked-enumeration techniques for equi-joins [77] can be applied
directly. To avoid any concerns regarding the choice of technique
for generating E, we provide it “for free.” Hence the algorithm is
not charged for essentially executing theta-joins between all pairs
of adjacent relations in the theta-join tree, meaning the QUADE-
Qul numbers reported here represent a lower bound of real-world
running time. (3) BATCH is an idealized version of the approach
taken by state-of-the-art DBMSs. It computes the entire join output
and puts it into a heap for ranked enumeration. To avoid concerns
about the most efficient join implementation, we give BATcH the
entire join output “for free” as an in-memory array. It simply needs
to read those output tuples (instead of having to execute the actual
join) to rank them, therefore the numbers reported constitute a
lower bound of real-world running time. We note that for a join of
only ¢ = 2 relations, there is no difference between QUADEQUI and
BaTcH since they both receive all the query results; we thus omit
QuaDpEqui for binary joins. (4) PSQL is the open-source PostgreSQL
system. (5) SysTEM X is a commercial database system that is highly
optimized for in-memory computation.

We also compare our factorization methods BINARY PARTI-

TIONING, MULTIWAY PARTITIONING, and @ SHARED RANGES
against each other. Recall that the latter two can only be applied
to single-inequality type join conditions. Unless specified other-

wise, FACTORIZED is set to @ MULTIWAY PARTITIONING for the
single-predicate cases and . BINARY PARTITIONING for all others.

Data. (S) Our synthetic data generator creates relations
Si(Ai, Aix1, Wi), i > 1 by drawing A;, Aj41 from integers in
[0...10%~1] uniformly at random with replacement, discarding du-
plicate tuples. The weights W; are real numbers drawn from [0, 10%).
(T) We also use the LINEITEM relation of the TPC-H benchmark
[2], keeping the schema Item(OrderKey, PartKey, Suppkey,
LineNumber, Quantity, Price, ShipDate, CommitDate,
ReceiptDate).

(R) For real data, we use a temporal graph REDDITTITLES [51]
whose 286k edges represent posts from a source community to
a target community identified by a hyperlink in the post title.
The schema is Reddit(From, To, Timestamp, Sentiment,
Readability). OCEANIABIRDS [1] reports bird observations
from Oceania with schema Birds(ID, Latitude, Longitude,
Count). We keep only the 452k observations with a non-empty
Count attribute.

Queries. We test queries with various join conditions and sizes.
Figure 6 gives the Datalog notation and the ranking function. Some
of the queries have the number of relations ¢ as a parameter; for
those we only write the join conditions between the i and (i +1)st
relations, with the rest similarly organized in a chain. In the full
version [79] we give the equivalent SQL queries.

On our synthetic data, Qg is a single inequality join, while Qg;
has a more complicated join condition that is a conjunction of a
band and a non-equality. On TPC-H, Qr finds a sequence of items
sold by the same supplier with the quantity increasing over time,
ranked by the price. To test disjunctions, we run query Qrp, which
puts the increasing time constraint on either of the three possible
dates. Query Qr; computes temporal paths [84] on REDDITTITLES,
and ranks them by a measure of sentiment such that sequences
of negative posts are retrieved first. Query Qr, uses instead the
sentiment in the join condition, keeping only paths along which
the negative sentiment increases. For ranking, we use readability
to focus on posts of higher quality. Last, Qp is a spatial band join
on OCEANIABIRDS that finds pairs of high-count bird sightings that
are close based on proximity.

Details. Our algorithms are implemented in Java 8 and executed
on an Intel Xeon E5-2643 CPU running Ubuntu Linux. Queries
execute in memory on a Java VM with 100GB of RAM. If that is
exceeded, we report an Out-Of-Memory (OOM) error. The any-k al-
gorithm used by FAcToRIZED and QUADEQUT is Lazy [23, 77] which
was found to outperform others in previous work. The version
of PostgreSQL is 9.5.25. We set its parameters such that it is opti-
mized for main-memory execution and system overhead related
to logging or concurrency is minimized, as it is standard in the
literature [12, 77]. To enable input caching for PSQL and SYSTEM
X, each execution is performed twice and we only measure the
second one. Additionally, we create B-tree or hash indexes for each
attribute of the input relations, while our methods do not receive
these indexes. Even though the task is ranked enumeration, we still
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Query

Ranking

Os1(...) = S1(A1, A2), S2(A3, Adg), . . ., Se(Aze-1, Aze), (Azi < Aziv1)

min(Wy; + Wz +...)

Os2(...) = S1(A1, A2), S2(A3, Ag), . . ., Se (Age—1, Aze), (1A2i — Agina] < 50), (Azi-1 # Azira)

min(W) + Wz +...)

Q7 (...)—Item(Oy, PKy, SK, L1, Q1, P1, S1,C1, Ry), Item(O,, PK3, SK, Ly, Q2, P, S5, C2, Ry), . . ., (Qi < Qi11), (Si < Sit1)

min(P; + P, +...)

Orp(...) =Item(Oy, PKy, SK, L1, Q1, P1, S1, C1, R1), Item (O3, PK3, SK, Ly, Q3, P2, S, Co, Ry), - . ., (Qi < Qi1), (Si < Siy1 V.Ci < Ciy1 VR; < Rjpp) [ min(Pi+ Py +...)

min(S; + Sy +...)

max(R; + Ry +...)

O5(...) —Birds(ly, LAy, LOy, C1), Birds (I, LAy, LO5, C) (ILA; = LA, [ < ¢), ILO; —LO;[ < &)

max(Cy + Cy)

Figure 6: Queries used in our experiments expressed in Datalog. The head always contains all body variables (no projections).
Length ¢ of queries range from 2 to 10. Indices i range from 1 to £ — 1.

give the database systems a LIMIT clause whenever we measure
a specific TT(k), and thus allow them to leverage the k value. All
data points we show are the median of 5 measurements. We timeout
any execution that does not finish within 2 hours.

6.1 Comparison Against Alternatives

We will show that our approach has a significant advantage over
the competition when the size of the output is sufficiently large. We
test three distinct scenarios for which large output can occur: (1)
the size of the database grows, (2) the length of the query increases,
and (3) the parameter of a band join increases.

Summary. (1) FACTORIZED is superior when the total output size is
large, even when compared against a lower bound of the running
time of the other methods. (2) QuaDEQuI and (3) BATCH require
significantly more memory and are infeasible for many queries.
(@ PSQL and (3) System X, similarly to BATCH, must produce the
entire output, which is very costly. While System X is clearly faster
than PSQL, it can be several orders of magnitude slower than our
FAcTORIZED, and is outperformed across all tested queries.

6.1.1 Effect of Data Size. We run queries Qsy, Qs for different
input sizes n and two distinct query lengths. Figure 7 depicts the
time to return the top k = 103 results. We also plot how the size
of the output grows with increasing n on a secondary y-axis. Even
though QuapEQut and BATcH are given precomputed join results
for free and do not even have to resolve complicated join predicates,
they still require a large amount of memory to store those. Thus,
they quickly run out of memory even for relatively small inputs
(Figure 7b). PSQL does not face a memory problem because it can
resort to secondary storage, yet becomes unacceptably slow. The in-
memory optimized SysTEM X is 10 times faster than PSQL, but still
follows the same trend because it is materializing the entire output.
In contrast, our FACTORIZED approach scales smoothly across all
tests and requires much less memory. For instance, in Figure 7b
QuaDEquit fails after 8k input size, while we can easily handle 2M.
For very small input, the idealized methods QuapEqur and BAaTcH
are sometimes faster, but their real running time would be much
higher if join computation was accounted for. Qs, has more join
predicates and thus smaller output size (Figures 7c and 7d). Our
advantage is smaller in this case, yet still significant for large n.

We similarly run queries Qr (Figure 8a) and Qrp (Figure 8b) for
¢ = 3 with an increasing scale factor (which determines data size).
Here, the equi-join condition on the supplier severely limits the
blowup of the output compared to the input. Still, FACTORIZED is
again superior. Disjunctions in Qrp increase the running time of
our technique only slightly by a small constant factor.
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6.1.2  Effect of Query Length. Next, we test the effect of query
length on ReppITTITLES. We plot TT(k) for three values (k =
1,103, 10%) when the length is small (¢ = 2, 3) and one value (k = 10°)
for longer queries. Note that for k = 1, the time of FACTORIZED is
essentially the time required for building our TLFGs, and doing
a bottom-up Dynamic Programming pass [77]. Figure 9 depicts
our results for queries Qry, Qrz. Increasing the value of k does not
have a serious impact for most of the approaches except for SYSTEM
X, which for k = 10° is not able to provide the same optimized
execution. For binary-join Qg;, our FACTORIZED is faster than the
BarcH lower bound (Figure 9a), and its advantage increases for
longer queries, since the output also grows (Figure 9c). BATCH runs
out of memory for £ = 3, PSQL times out, while QuapEqur and
SysTEM X are more than 100 times slower (Figure 9b). Query Qro
has an additional join predicate, hence its output size is smaller.
Thus, the BaTcH lower bound is slightly better than our approach
for ¢ = 2 (Figure 9e), but we expect it to be significantly slower if
the cost of computing and materializing the output was taken into
account. Either way, for £ > 3 (Figure 9g), our approach dominates
even when compared against the lower bounds. PSQL again times
out for £ = 3 (Figure 9f), and the highly optimized SysTem X is
outclassed by our approach.

6.1.3  Effect of Band Parameter. We now test the band-join Qg on
the OcEANIABIRDS dataset with various band widths . Figure 9d
shows that FACTORIZED is superior for all tested k values for ¢ = 0.01.
Increasing the band width yields more joining pairs and causes the
size of the output to grow (Figure 9h). Hence, BATCH consumes
more memory and cannot handle ¢ > 0.16. On the other hand, the
performance of FAcTORIZED is mildly affected by increasing e. PSQL
and SysTEM X were not able to terminate within the time limit even
for the smallest ¢ because they use only one of the indexes (for
Longitude), searching over a huge number of possible results.

6.2 Comparison of our Variants

We now compare our 3 factorization methods , , @

6.2.1 Delay and TT(k). Since only BINARY PARTITIONING is ap-
plicable to all types of join conditions considered, we compare the
different methods on Qg;, which has only one inequality-type pred-
icate. Figure 10a depicts TT(k) for k = 1, 104,2-10%,3-10%. Even
though SHARED RANGEs starts returning results faster because its
TLFG is constructed in a single pass (after sorting), it suffers from
a high enumeration delay (linear in data size), and quickly dete-
riorates as k increases. The delay is also depicted in Figure 10b,
where we observe that BINARY PARTITIONING returns results with
lower delay than MULTIWAY PARTITIONING (recall that MULTIWAY
PARTITIONING has a depth of 3 vs BINARY PARTITIONING’s 2). These
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results are a consequence of the size-depth tradeoff of the TLFGs
(Fig. 3). Note that the higher delay observed in the beginning is
due to lazy initialization of data structures needed by the any-k
algorithm.

6.2.2 Join Representation. We show the sizes of the constructed
representation in Figure 10c, using an implementation-agnostic
measure. As n increases there is an asymptotic difference between
the three methods (O (nlogn) vs O(nloglogn) vs O(n)) that mani-
fests in our experiment. To see how the presence of the same domain
values could affect the construction of the TLFG, we also measure
the time to the first result for different domain sizes (Figure 10d).
All three of our methods become faster when the domain is small
and multiple occurrences of the same value are more likely. This is
expected since the intermediate nodes of our TLFG essentially rep-
resent ranges in the domain and they are more compact for smaller
domains. Domain size does not significantly impact running time
once it exceeds sample size (around n = 219) and the probability of
sampling duplicate domain values approaches zero.

7 RELATED WORK

Enumeration for equi-joins. Unranked enumeration for equi-
joins has been explored in various contexts [13, 14, 19, 20, 33, 74],
with a landmark result showing for self-join-free equi-joins that
linear preprocessing and constant delay are possible if and only if
the query is free-connex acyclic [10, 16]. For the more demanding
task of ranked enumeration, a logarithmic delay is unavoidable
[18, 30]. Our recently proposed any-k algorithms represent the
state of the art for ranked enumeration for equi-joins [77]. Other
work in this space focuses on practical implementations [32] and
direct access [21, 22] to output tuples.

Non-Equality (#) and inequality (<) joins. Techniques for
batch-computation of the entire output for joins with non-equality
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Figure 7: Section 6.1.1: Synthetic data with a growing database size n. While all four alternative methods either run out of

our method scales quasilinearly (O(n polylog n)) with n.

(also called inequality [49] or disequality [10]) predicates mainly
rely on variations of color coding [8, 49, 71]. The same core idea
is leveraged by the unranked enumeration algorithm of Bagan et
al. [10]. Queries with negation can be answered by rewriting them
with not-all-equal-predicates [46], a generalization of non-equality.

Khayatt et al. [48] provide optimized and distributed batch algo-
rithms for up to two inequalities per join. Aggregate computation
[3] and Unranked enumeration under updates [43] have been stud-
ied for inequality predicates by using appropriate index structures.

We are the first to consider ranked enumeration for non-equality
and inequality predicates, including DNF conditions containing
both types, and to prove strong worst-case guarantees for a large
class of these queries.

Orthogonal range search. Our binary partitioning method
shares a similar intuition with index structures that have been
devised for orthogonal range search [6, 25]. For unranked enumer-
ation, it has been shown [7, 82, 83] how, for two relations, a range
tree [29] can be used to identify pairs of matching tuple sets. This
gives an alternative method to construct our depth-2 TLFGs because
a pair of matching tuple sets can be connected via one intermediate
node. Our approach supports ranking and it is simpler since it does
not require building a range tree. Our TLFG abstraction is also more
general: our other representations (such as multiway partitioning)
do not have any obvious representation as range trees.

Factorized databases. Factorized representations of query re-
sults [11, 66] have been proposed for equi-joins in the context of
enumeration [68, 69], aggregate computation [11], provenance man-
agement [54, 67, 68] and machine learning [4, 50, 65, 70, 73]. Our
novel TLFG approach to factorization complements this line of re-
search and extends the fundamental idea of factorization to ranked
enumeration for theta-joins. For probabilistic databases, factoriza-
tion of non-equalities [63] and inequalities [64] is possible with
OBDDs. Although these are for a different purpose, we note that the
latter exploits the transitivity of inequality, as our SHARED RANGES
(Figure 4d) and other approaches for aggregates do [26].

Top-k queries. Top-k queries [72] are a special case of ranked
enumeration where the value of k is given in advance and its knowl-
edge can be exploited. Fagin et al. [35] present the Threshold Algo-
rithm, which is instance-optimal under a “middleware” cost model
for a restricted class of 1-to-1 joins. Follow-up work generalizes the
idea to more general joins [36, 44, 55, 85], including theta-joins [57].
Since all these approaches focus on the middleware cost model,
they do not provide non-trivial worst-case guarantees when the
join cost is taken into account [78]. Ilyas et al. [45] survey some of
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Figure 10: Section 6.2: Comparing different aspects of our factorization methods on query Qg;, £ = 2.

these approaches, along with some related ones such as building
top-k indexes [24, 76] or views [28, 41].

Optimal batch algorithms for joins. Acyclic equi-joins are
evaluated optimally in O(n + |out|) by the Yannakakis algo-
rithm [88], where |out]| is the output size. This bound is unattain-
able for cyclic queries [61], thus worst-case optimal join algorithms
[58, 61, 62, 81] settle for the AGM bound [9], i.e., the worst-case
output size. (Hyper)tree decomposition methods [5, 38, 56] can im-
prove over these guarantees, while a geometric perspective has led
to even stronger notions of optimality [47, 60]. Ngo [59] recounts
the development of these ideas. That line of work focuses on batch-
computation, i.e., on producing all the query results, or on Boolean
queries, while we explore ranked enumeration.

8 CONCLUSIONS AND FUTURE WORK

Theta- and inequality-joins of multiple relations are generally con-
sidered “hard” and even state-of-the-art commercial DBMSs strug-
gle with their efficient computation. We developed the first ranked-
enumeration techniques that achieve non-trivial worst-case guar-
antees for a large class of these joins: For small k, returning the k

top-ranked join answers for full acyclic queries takes only slightly-
more-than-linear time and space (O (n polylog n)) for any DNF of
inequality predicates. For general theta-joins, time and space com-
plexity are quadratic in input size. These are strong worst-case guar-
antees, close to the lower time bound of O(n) and much lower than
the O(n®) size of intermediate or final results traditional join algo-
rithms may have to deal with. Our results apply to many cyclic joins
(modulo higher pre-processing cost depending on query width) and
all acyclic joins, even those with selections and many types of pro-
jections. In the future, we will study parallel computation and more
general cyclic joins and projections.
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