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STRATISFIMAL LAYOUT: A modular optimization model for laying
out layered node-link network visualizations

Sara Di Bartolomeo , Mirek Riedewald , Wolfgang Gatterbauer , and Cody Dunne

Fig. 1: Our goal is to make complicated networks easier to read. We achieve this by formulating readability criteria as a constrained
optimization problem. Our optimization model for laying out layered node-link visualizations includes several modular, customizable
components. Each addresses a different readability criteria or network feature — hence the building blocks metaphor. This modularity
allows the layout to be tailored for diverse use cases. Here we illustrate some of the features of our Integer Linear Programming
(ILP) formulation, which we call STRATISFIMAL LAYOUT— combining the words stratified (arranged in layers) and optimal.

Abstract—Node-link visualizations are a familiar and powerful tool for displaying the relationships in a network. The readability of these
visualizations highly depends on the spatial layout used for the nodes. In this paper, we focus on computing layered layouts, in which
nodes are aligned on a set of parallel axes to better expose hierarchical or sequential relationships. Heuristic-based layouts are widely
used as they scale well to larger networks and usually create readable, albeit sub-optimal, visualizations. We instead use a layout
optimization model that prioritizes optimality — as compared to scalability — because an optimal solution not only represents the best
attainable result, but can also serve as a baseline to evaluate the effectiveness of layout heuristics. We take an important step towards
powerful and flexible network visualization by proposing STRATISFIMAL LAYOUT, a modular integer-linear-programming formulation that
can consider several important readability criteria simultaneously — crossing reduction, edge bendiness, and nested and multi-layer
groups. The layout can be adapted to diverse use cases through its modularity. Individual features can be enabled and customized
depending on the application. We provide open-source and documented implementations of the layout, both for web-based and desktop
visualizations. As a proof-of-concept, we apply it to the problem of visualizing complicated SQL queries, which have features that we
believe cannot be addressed by existing layout optimization models. We also include a benchmark network generator and the results of
an empirical evaluation to assess the performance trade-offs of our design choices. A full version of this paper with all appendices,
data, and source code is available at osf.io/qdyt9 with live examples at https://visdunneright.github.io/stratisfimal/.

Index Terms—Layered node-link visualization, integer linear programming, crossing reduction, bendiness reduction, nested groups.

1 INTRODUCTION

Networks are widely used across many disciplines to model entities and
the relationships between them [37]. Specifically, a network consists of
a finite set of nodes and a finite set of edges, each connecting two nodes.
Node-link visualizations are a familiar and powerful tool for exposing
the network topology (e.g., paths between nodes and highly-connected
clusters) by drawing nodes as point marks and edges as connecting line
marks [58]. To better show the topology, nodes can be assigned spatial
coordinates based on the relationship structure.

We may wish to expose hierarchical or sequential relationships in a
network. These can be displayed in a layered node-link visualization,
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where each node is assigned to exactly one layer (rank) [73]. This
layer assignment can be given a priori or obtained algorithmically. The
visualization arranges the nodes in a layer along a linear axis and the
axes in parallel. Here we use vertical lines for axes, but our methods
work horizontally as well. The edges then fall into three categories:
same-layer edges between nodes that share a layer, 2-layer edges that
connect nodes in adjacent layers, and 333+++-layer edges which cross at
least one intermediate layer between the incident nodes. In this context,
we define groups as sets of nodes that must be placed adjacent to each
other, both within the same layer and across consecutive layers. Each
pair of groups must be either disjoint or one is a subset of the other.

For both general and layered node-link visualizations, assigning
spatial coordinates to nodes is key for creating a readable visualiza-
tion [4, 22, 73]. Optimally creating this assignment, called a visu-
alization layout, based on readability criteria remains an open chal-
lenge. Just determining the minimal number of edge crossings is NP-
complete [29]. The field of graph drawing focuses on this and other
network visualization problems. Researchers have proposed many lay-
out approaches — see overviews in [3, 4, 21, 31, 73] — but most are
heuristics that prioritize scalability over optimality.

There are two main reasons, though, to search for an optimal solu-
tion: (1) An optimal layout can be used as a baseline against which
heuristics can be compared, making it possible to quantify the trade-
off between increased scalability and worse readability. (2) There are
numerous “small” networks in practice where maximal readability is
paramount. For such applications, the extra compute time to create an
optimal layout to improve readability is worth the wait.

One such example is a metro map, which has few nodes and edges,
but needs to be easily and quickly readable. The up-front layout com-
putation time is negligible compared to the possible human and capital
expense to deploy a new map.

Another example, which we use as a motivating case study, is helping
users interpret database queries. SQL has been the standard language
for writing database queries for decades [11], but it has been repeatedly
criticized for its complexity and for the time it takes to read a query.
Indeed, a query can have a number of nested subqueries, involve many
tables in the database, or contain complex joins — all of which make
keeping a mental map of the intermediate results of the operations
contained in it a very difficult task [9]. Query visualizations, such as
the recently-proposed QueryVis diagrams [17, 48], expose the logical
structure of SQL queries using layered node-link visualizations. The
size of the network QueryVis produces to model a complicated query
is small, generally consisting of fewer than 30 nodes. Since one of the
uses of QueryVis is to help students learn SQL, unnecessary readabil-
ity issues should be eliminated as much as possible. Moreover, as a
complicated query can take several minutes to understand, the layout
computation time is negligible if it stays within a few seconds.

This paper focuses on the use of Integer Linear Programming
(ILP) to create optimal layouts for layered node-link visualizations.
ILP is a method to achieve the optimal solution for a mathematical
model within the boundaries established by linear constraints. An ILP
formulation is comprised by an objective function, which describes the
goal, and a set of constraints. The fundamental challenge of solving a
problem through ILP is figuring out a smart way to define these two
components, which, together, describe a problem. While ILP is NP-
complete, solvers have made tremendous advances over the years to a
degree where many practical problems can be solved efficiently. Recent
progress on solvers, together with a natural problem-size limit estab-
lished by human ability to “consume” a network visualization, have
renewed interest in finding exact criteria for optimal layout algorithms.

ILP formulations have already been explored for creating optimal
layouts for node-link visualizations based on readability criteria [22,71],
including minimizing edge crossings [34, 35, 60, 81], minimizing edge
bendiness [28], and contiguously grouping nodes within a single layer
[81]. However, existing approaches do not handle same-layer edges,
groups that span many layers, or nested groups — nor can these criteria
be solved simultaneously.

Our goal is to provide a set of more expressive and modular formulas
for readability optimizations that can be “cherry-picked” and flexibly
composed like building blocks, depending on the target application and
the reader’s needs. Figure 1 illustrates several of our modules and how
they can be composed into an overall layout optimization model.

Contributions and Supplemental Materials
In this paper, we contribute:
1. STRATISFIMAL LAYOUT, an optimization model for laying out

layered node-link visualizations. The model translates important
readability criteria into a modular ILP formulation and layout algo-
rithm. It includes:

(a) Edge crossing reduction for 2-layer and 3+-layer edges as per
Zarate et al. [81] and, for the first time, for same-layer edges.

(b) Edge bendiness reduction, extending Gansner et al.’s formula-
tion [28] to support modular composition with other criteria.

(c) Contiguous grouping of nodes enclosed by concave or convex
shapes. We improve efficiency vs. Zarate et al. [81] for groups
within a single layer and, novelly, support groups that span many
layers and nested groups.

Our modular, customizable ILP formulation enables tailoring
the layout to diverse use cases. Each module is presented with
an in-depth explanation and application example to illustrate the
reasoning and trade-offs for including each feature.

2. Open-source and documented layout implementations, both as
a web-based JavaScript library and for desktop computation via
Gurobi [33]. Our model can serve as a layout algorithm directly or
an optimal baseline for evaluating fast layout heuristics.

3. A case study demonstrating the utility of the layout for improv-
ing the readability of logical diagrams of SQL queries.

4. A benchmark network generator with parameters to control cru-
cial network properties, including groups of nodes, and the results
of an empirical evaluation on these networks that illustrate the
performance trade-offs of our design choices.

A full version of this paper with all appendices, data, and
source code is available at osf.io/qdyt9 with live examples at
https://visdunneright.github.io/stratisfimal/.

2 MOTIVATING CASE STUDY: INTERPRETING SQL QUERIES

We introduce STRATISFIMAL LAYOUT in the context of a motivating
case study on visualizing the logical structure of SQL queries. The goal
is to improve the layout of QueryVis diagrams [48], which incorporate
layered node-link visualizations and hierarchical grouping of nodes
within and across layers. This application was our original motiva-
tion, as we know of no existing heuristic or optimization-based layout
algorithm that can address all the necessary constraints simultaneously.

SQL (Structured Query Language) has been the standard query
language for relational databases for decades [11]. Formulating or
interpreting a non-trivial query can be challenging and time consuming,
even for experts. SQL queries can be verbose, deeply nested, and
involve complex logical constructs. Several attempts have been made to
improve query readability, either by mapping SQL to natural language
[43] or through visual query languages [10, 30, 38]. QueryVis [17, 48],
the subject of our case study, focuses on displaying the underlying logic
behind an SQL query. A controlled experiment found that existing SQL
users were faster at correctly interpreting queries with QueryVis than
with SQL alone, even after only a brief exposure to the visual language.

QueryVis models an SQL query as a network (see Figure 2, Middle).
Nodes represent attributes, and edges represent relationships between
them (e.g., joins). Each node belongs to a group for its database table;
these groups are disjoint sets. Additional groups are used to show
any hierarchical nesting of subqueries. This enables modeling query
nesting and logical quantifiers (e.g., NOT EXISTS). This network is
then displayed using a layered node-link visualization.

Optimal layouts for readability. The visualizations produced by
QueryVis may still be challenging to interpret, even for well-trained
users, and despite being comparatively easier to read than the original
SQL queries. This is a consequence of the logic behind SQL, which
may take long to understand for complicated queries (e.g., see the
unique beer taste query in Figure 2, Left). In many cases, running
a misinterpreted query can incur hours or even days of delay for the
user. Making interpretation of a visualization as easy as possible is
imperative in this situation.

For that reason, we would like to find an optimal layout (subject to
the constraints imposed by the query logic). QueryVis originally used a
heuristic-based layout: GraphViz’s dot [27], which is based on Gansner
et al.’s edge crossing reduction algorithm for layered networks [28]. The
latter is fast but does not guarantee minimal edge crossings, a widely
accepted readability criteria. (See, e.g., Figure 5 and our appendix
at osf.io/qdyt9). It also does not support groups, a key aspect of
QueryVis, but dot can lay out groups by treating them as subproblems.
This further compromises readability, especially as it does not reduce
crossings of edges within a layer. The network for a complicated SQL
query generally consists of fewer than 30 nodes. In this case, spending
the time to compute an optimal layout for the visualization is clearly
warranted.

Another case study based on StoryLines [32, 50] is in our appendix
at osf.io/qdyt9.
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Fig. 2: Visualizing an SQL query (adapted from QueryVis, Fig. 1 [48]). Left: The SQL query for “find drinkers that like a unique set of beers.”
Middle: The same query shown using QueryVis. Each table used is represented by a rectangle, subdivided vertically to show the title (black
background) and relevant attributes (white background). The SELECT statement is similarly displayed, just with a gray background for the title.
Curves show relationships between attributes (e.g., joins) and may be labeled with comparison operators (e.g., <>). NOT EXISTS statements are
shown as dashed lines surrounding hierarchically-nested groups for subqueries. Layers are arranged left-to-right to show depth from the SELECT
statement, and the contained nodes are aligned to a vertical line. Right: An abstract representation of the QueryVis network, simplified by omitting
any layout-irrelevant information (e.g., title nodes). The layout is optimized for readability using our method, with circles for nodes/attributes and
nested convex hulls for groups. We illustrate which building blocks are used in the layout formulation (their arrangement is arbitrary).

3 BACKGROUND AND RELATED WORK

Node-link visualization of networks. Networks are used to represent
data in an innumerable amount of contexts, among which linguistics
[12], cartography [2,54,79], computer networks [5], and social network
analysis [16,56,70] are just a few examples [37]. Effectively visualizing
a network can help a reader better understand relationships between
elements in the data, find insights [36], and discover patterns and
outliers [63]. Research on how to best represent a network as a node-
link visualization started as early as 1934 with Moreno [56]. The
discipline of representing networks visually is called graph drawing [4],
though in this context we use the terminology of networks, node-link
visualizations, and layouts of them.

Scientists have developed several readability criteria for visualiza-
tions [22, 66], and algorithms to implement those criteria in prac-
tice [22, 45]. Computational layout approaches began appearing in
the 1960s [41, 75, 76]. Though most layout algorithm research has
focused on heuristics (relevant examples: [28, 72]), there have been
efforts at using neural networks [14, 46, 53] and Integer Linear Pro-
gramming (ILP). The problem is still open and the general agreement is
that there is no universal layout solution that embraces all the possible
applications and use cases [6, 31].

Integer Linear Programming (ILP). Our STRATISFIMAL LAY-
OUT approach uses ILP to find an optimal layout based on readability
criteria, rather than layout heuristics. ILP [18] is a generic optimization
technique that can solve a wide range of combinatorial optimization
problems. In order to use ILP for laying out a node-link visualization,
a composition of a set of readability criteria needs to be translated
into a quantitative objective function, such as minimizing the number
of edge crossings, minimizing edge bendiness, and creating uniform
edge length. Additional constraints may be specified in the formulation.
The formulation can then be fed to an ILP solver, e.g., GLPK.js1 or
Gurobi [33], in order to find the optimal solution.

We integrate a discussion of the literature most relevant to our op-
timization model formulation as part of Section 5, but here mention a
closely-related problem: metro map layouts. Nöllenburg and Wolff [62]
used a mixed-integer linear program to lay out a metro map, optimizing
for uniform edge length and avoiding bends. They proposed constraints
that enforce that the solution keeps the original topology intact, so
that readers can easily trace back the network topology to the actual
geography of the represented region. Metro maps have been a popular
subject for this kind of approach, e.g., [2, 54, 79].

Crossing reduction: Minimizing edge crossings is one of the best
known and important optimization criteria for node-link visualization

1https://github.com/hgourvest/glpk.js

layout algorithms, as crossings clearly affect network readability for
path-following tasks [66]. Buchheim et al. first proposed a branch-
and-cut approach [8] to reduce the number of variables involved in an
integer-linear-programming problem for crossing-restricted networks
(networks that allow at most one intersection between two edges) by
dividing the network into smaller subproblems. A similar approach
is also used in [40]. Chimani et al. later worked on improving the
efficiency of a similar method based on column generation [13]. The
crossing minimization problem has also been reduced to a planarization
problem [59], at first with two layers [60], then on k-level networks
[34, 35]. Gange et al. [26] use ILP to obtain crossing reduction and
minimal edge deletion for planarization including an optimization based
on K2,2 graphs [44]. Alternatively, we consider the entire graph for the
layout as well as edge bendiness and groups. An extensive survey on
crossing minimization in node-link visualizations can be found in [73].

The most relevant approach to discuss is Zarate et al.’s optimization
model for layered node-link visualizations [81], which can minimize
crossings of 2-layer and 3+-layer edges. Similar to Zarate et al. and
without loss of generality, we assume that all edges are same-layer or
2-layer — we show in Section 5.1.6 how to “break up” 3+-layer edges
using dummy anchor nodes to satisfy this condition. We based our
initial formulation for minimizing edge crossings on Zarate et al.’s, but
further extend it to support same-layer edges.

Bendiness reduction: Edge bendiness is another important layout
optimization criteria for node-link visualizations. That is to say, having
predominantly straight edges versus edges that have bends, curves, or
have to be drawn diagonally. Low edge bendiness is important for
users performing path-following tasks [66]. Consistent with previous
work on layered networks with vertically aligned layer axes, we define
an edge to be “bent” if and only if it is not horizontal, i.e., its ends
have different y coordinates. The first optimization model solution
by Sugiyama et al. [72] formalized the optimization objective using
the squared difference in vertical coordinates between the two end
nodes of an edge: (yu1 − yw1)

2. This quadratic formulation makes the
optimization expensive. Gansner et al. [28] simplified the optimization
objective into a linear function, though they also added a new variable
and two constraints for each edge. Both Sugiyama et al. and Gansner
et al. counterbalance the costliness of their solutions by additionally
providing a heuristic-based layout algorithm as an alternative. There
are also several other heuristic-based approaches for optimizing edge
bendiness [7,24,69]. Our formulation here extends Gansner et al.’s [28]
approach to support modular composition with other readability criteria.
Optimizing for horizontal edges requires modifications to the objective
function and introduction of variables that capture the vertical position
(i.e., the y coordinate) of a node and the resulting bendiness of an edge.

This paper generalizes several previous optimization model ap-
proaches by defining a modular mathematical framework that allows
for combining and optimizing several readability criteria simultane-
ously — minimizing edge crossings, minimizing edge bendiness, and
contiguously grouping nodes. These criteria can be mixed and matched
to adapt to different use cases. Moreover, we contribute extensions to
previous ILP-based approaches [28, 81] to novelly support minimizing
edge crossings for same-layer edges, add support for groups that span
multiple layers, and add support for nested groups.

4 READABILITY OBJECTIVES AND CONSTRAINTS

Based on an analysis of previous work (e.g., [22, 66, 67, 71]) and our
motivating case study on QueryVis (Section 2), we identified the fol-
lowing objectives and constraints necessary for creating an optimal,
readable layout for a layered node-link visualization.

Optimization objectives: These are the metrics we aim to optimize.
• Minimize edge crossings [22, 66]: In a 1997 study [66], Purchase

found that crossing edges are the main characteristic negatively
affecting network readability. Placing nodes so that the number of
crossings is minimized is thus given the highest priority

• Minimize edge bendiness [22, 66]: Edge bendiness is considered
a criterion negatively affecting readability as well. In a layered
node-link visualization with parallel layers, we define an edge to be
“bent” if its points do not lie on a line perpendicular to the layers.

Hard constraints: These conditions must be valid in any context.
• No node-node or node-edge overlaps [22]: Nodes cannot be

drawn on top of each other and no edge can lie over a node.
• Groups cannot enclose non-member nodes: Only nodes that are

members of a group can be drawn within the area enclosed by the
group’s mark.

Soft constraints: Nice-to-have features, but not strictly necessary.
• Rectangular groups [77, 80]: Groups can be constrained to fit in

a rectangular area.
• Minimize group area: The area enclosed by a group should be as

small as possible, given any necessary whitespace padding.

5 THE STRATISFIMAL LAYOUT OPTIMIZATION MODEL

We now discuss how to formalize all these varied optimization objec-
tives and constraints for laying out a layered node-link visualization.
Our optimization model formulation uses Integer Linear Programming
(ILP) and is modular — depending on the desired visualization prop-
erties, the reader can combine the corresponding features. An exten-
sive demonstration of our approach on real networks can be found at
https://visdunneright.github.io/stratisfimal/proofs.html.

How to read this section: Each subsection will detail a feature
using a modular ILP formulation, which the reader can simply add
to the overall layout optimization model. The actual formulation is
marked by an image of a building block. Relevant information about
the formulation is shown in an accompanying gray box. The Intuition
behind the constraints explains the idea more plainly (but imprecisely).
The Number of constraints generated provides some indication of
how computationally expensive it would be to add the feature to the
optimization model. Finally, for cases where constraints build atop each
other, all the Prerequisites from other subsections are shown. Please
refer to Figure 3 for an explanation of the notation we use.

Preprocessing: Our method assumes an already-established and
immutable layer assignment for the nodes of the input network. Layer
assignment may be given a priori, such as the query depth in our mo-
tivating case study (Section 2). Alternatively, layers can be assigned
algorithmically based on network topology, e.g., using approach de-
tailed by Gansner et al. [28], Rüegg et al.’s extension of it [68], or the
ILP formulation by Tang & Hu [74].

5.1 Crossing reduction
5.1.1 Objective function for crossing reduction
Crossings can only occur between edges in the set Ek. The following
formula minimizes the number edge crossings:

Definitions:
G = {N,E} The network (graph) consists of a set of nodes

N and edges E.
Nk The nodes in layer k.

E=
k Same-layer edges with both ends in layer k.

E<
k 2-layer edges with one end in layer k and the

other in layer k+1.
Ek = E=

k ∪E<
k 2-layer edges (layer k to k+1) and same-layer

edges (only layer k).
L = {1,2, . . . ,!} The set of ! layers in G.

u1w1 An edge between nodes u1 and w1.
Γ The set of groups in G.

g1 A group; g1 ∈ Γ.
Lg1 Set of layers in which g1 has at least one node.

Decision variables:
xu1,u2 The relative vertical order of nodes. Boolean

equal to 1 if u1 is above u2, 0 otherwise.
cu1w1,u2w2 Indicates if edges u1w1 and u2w2 cross. Boolean

equal to 1 if they cross, 0 otherwise.
yu1 Vertical coordinate of node u1.

bu1w1 Bendiness of edge u1w1, defined as |yu1 − yw1 |.
yT

g1
Topmost boundary of group g1

yB
g1

Bottommost boundary of group g1

Parameters:
m Greatest allowed absolute vertical distance between

the topmost and bottommost nodes in a layer. De-
fault: 50, but depends on implementation details.

γ1,γ2 Weights for the two parts of the objective function.
Default: γ1 (crossings) = 10,γ2 (bendiness) = 1.

Fig. 3: The notation used in this paper.

Minimize : ∑
k∈L

∑
u1w1,u2w2∈Ek

u1w1 $=u2w2

cu1w1,u2w2 (1)

5.1.2 Transitivity constraints
Laying out nodes in a layer establishes a total order of nodes within it.
We enforce that the ILP solution is consistent with such per-layer orders
by defining transitivity constraints for each triplet of nodes in a layer.
The idea is that if node u1 is above node u2 and node u2 is above node
u3, then node u1 must be above node u3. The opposite must also be true.
We can write this as xu1,u2 ∧ xu2,u3 ⇒ xu1,u3 and ¬xu1,u2 ∧¬xu2,u3 ⇒
¬xu1,u3 . These formulas, translated to ILP constraints, are written thus:

xu1,u2 + xu2,u3 − xu1,u3 ≥ 0
−xu1,u2 − xu2,u3 + xu1,u3 ≥−1

(2)

(∀k ∈ L : ∀u1,u2,u3 ∈ Nk, where u1 $= u2 $= u3 $= u1)

Intuition: If u1 is above u2, and u2 is above u3, then u1 must be
above u3.
Number of constraints generated: O(|N|3)

Note that, in any one of the constraints, xu1,u2 can always be written
as 1− xu2,u1 . This reduces the number of variables needed in a model.

5.1.3 2-layer edge crossings
Crossing indicators c are computed by comparing position indicators
x for each pair of 2-layer edges in a layer. There are 4 possible cases,
captured by the visualization and formulas below.
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Fig. 2: Visualizing an SQL query (adapted from QueryVis, Fig. 1 [48]). Left: The SQL query for “find drinkers that like a unique set of beers.”
Middle: The same query shown using QueryVis. Each table used is represented by a rectangle, subdivided vertically to show the title (black
background) and relevant attributes (white background). The SELECT statement is similarly displayed, just with a gray background for the title.
Curves show relationships between attributes (e.g., joins) and may be labeled with comparison operators (e.g., <>). NOT EXISTS statements are
shown as dashed lines surrounding hierarchically-nested groups for subqueries. Layers are arranged left-to-right to show depth from the SELECT
statement, and the contained nodes are aligned to a vertical line. Right: An abstract representation of the QueryVis network, simplified by omitting
any layout-irrelevant information (e.g., title nodes). The layout is optimized for readability using our method, with circles for nodes/attributes and
nested convex hulls for groups. We illustrate which building blocks are used in the layout formulation (their arrangement is arbitrary).

3 BACKGROUND AND RELATED WORK

Node-link visualization of networks. Networks are used to represent
data in an innumerable amount of contexts, among which linguistics
[12], cartography [2,54,79], computer networks [5], and social network
analysis [16,56,70] are just a few examples [37]. Effectively visualizing
a network can help a reader better understand relationships between
elements in the data, find insights [36], and discover patterns and
outliers [63]. Research on how to best represent a network as a node-
link visualization started as early as 1934 with Moreno [56]. The
discipline of representing networks visually is called graph drawing [4],
though in this context we use the terminology of networks, node-link
visualizations, and layouts of them.

Scientists have developed several readability criteria for visualiza-
tions [22, 66], and algorithms to implement those criteria in prac-
tice [22, 45]. Computational layout approaches began appearing in
the 1960s [41, 75, 76]. Though most layout algorithm research has
focused on heuristics (relevant examples: [28, 72]), there have been
efforts at using neural networks [14, 46, 53] and Integer Linear Pro-
gramming (ILP). The problem is still open and the general agreement is
that there is no universal layout solution that embraces all the possible
applications and use cases [6, 31].

Integer Linear Programming (ILP). Our STRATISFIMAL LAY-
OUT approach uses ILP to find an optimal layout based on readability
criteria, rather than layout heuristics. ILP [18] is a generic optimization
technique that can solve a wide range of combinatorial optimization
problems. In order to use ILP for laying out a node-link visualization,
a composition of a set of readability criteria needs to be translated
into a quantitative objective function, such as minimizing the number
of edge crossings, minimizing edge bendiness, and creating uniform
edge length. Additional constraints may be specified in the formulation.
The formulation can then be fed to an ILP solver, e.g., GLPK.js1 or
Gurobi [33], in order to find the optimal solution.

We integrate a discussion of the literature most relevant to our op-
timization model formulation as part of Section 5, but here mention a
closely-related problem: metro map layouts. Nöllenburg and Wolff [62]
used a mixed-integer linear program to lay out a metro map, optimizing
for uniform edge length and avoiding bends. They proposed constraints
that enforce that the solution keeps the original topology intact, so
that readers can easily trace back the network topology to the actual
geography of the represented region. Metro maps have been a popular
subject for this kind of approach, e.g., [2, 54, 79].

Crossing reduction: Minimizing edge crossings is one of the best
known and important optimization criteria for node-link visualization

1https://github.com/hgourvest/glpk.js

layout algorithms, as crossings clearly affect network readability for
path-following tasks [66]. Buchheim et al. first proposed a branch-
and-cut approach [8] to reduce the number of variables involved in an
integer-linear-programming problem for crossing-restricted networks
(networks that allow at most one intersection between two edges) by
dividing the network into smaller subproblems. A similar approach
is also used in [40]. Chimani et al. later worked on improving the
efficiency of a similar method based on column generation [13]. The
crossing minimization problem has also been reduced to a planarization
problem [59], at first with two layers [60], then on k-level networks
[34, 35]. Gange et al. [26] use ILP to obtain crossing reduction and
minimal edge deletion for planarization including an optimization based
on K2,2 graphs [44]. Alternatively, we consider the entire graph for the
layout as well as edge bendiness and groups. An extensive survey on
crossing minimization in node-link visualizations can be found in [73].

The most relevant approach to discuss is Zarate et al.’s optimization
model for layered node-link visualizations [81], which can minimize
crossings of 2-layer and 3+-layer edges. Similar to Zarate et al. and
without loss of generality, we assume that all edges are same-layer or
2-layer — we show in Section 5.1.6 how to “break up” 3+-layer edges
using dummy anchor nodes to satisfy this condition. We based our
initial formulation for minimizing edge crossings on Zarate et al.’s, but
further extend it to support same-layer edges.

Bendiness reduction: Edge bendiness is another important layout
optimization criteria for node-link visualizations. That is to say, having
predominantly straight edges versus edges that have bends, curves, or
have to be drawn diagonally. Low edge bendiness is important for
users performing path-following tasks [66]. Consistent with previous
work on layered networks with vertically aligned layer axes, we define
an edge to be “bent” if and only if it is not horizontal, i.e., its ends
have different y coordinates. The first optimization model solution
by Sugiyama et al. [72] formalized the optimization objective using
the squared difference in vertical coordinates between the two end
nodes of an edge: (yu1 − yw1)

2. This quadratic formulation makes the
optimization expensive. Gansner et al. [28] simplified the optimization
objective into a linear function, though they also added a new variable
and two constraints for each edge. Both Sugiyama et al. and Gansner
et al. counterbalance the costliness of their solutions by additionally
providing a heuristic-based layout algorithm as an alternative. There
are also several other heuristic-based approaches for optimizing edge
bendiness [7,24,69]. Our formulation here extends Gansner et al.’s [28]
approach to support modular composition with other readability criteria.
Optimizing for horizontal edges requires modifications to the objective
function and introduction of variables that capture the vertical position
(i.e., the y coordinate) of a node and the resulting bendiness of an edge.

This paper generalizes several previous optimization model ap-
proaches by defining a modular mathematical framework that allows
for combining and optimizing several readability criteria simultane-
ously — minimizing edge crossings, minimizing edge bendiness, and
contiguously grouping nodes. These criteria can be mixed and matched
to adapt to different use cases. Moreover, we contribute extensions to
previous ILP-based approaches [28, 81] to novelly support minimizing
edge crossings for same-layer edges, add support for groups that span
multiple layers, and add support for nested groups.

4 READABILITY OBJECTIVES AND CONSTRAINTS

Based on an analysis of previous work (e.g., [22, 66, 67, 71]) and our
motivating case study on QueryVis (Section 2), we identified the fol-
lowing objectives and constraints necessary for creating an optimal,
readable layout for a layered node-link visualization.

Optimization objectives: These are the metrics we aim to optimize.
• Minimize edge crossings [22, 66]: In a 1997 study [66], Purchase

found that crossing edges are the main characteristic negatively
affecting network readability. Placing nodes so that the number of
crossings is minimized is thus given the highest priority

• Minimize edge bendiness [22, 66]: Edge bendiness is considered
a criterion negatively affecting readability as well. In a layered
node-link visualization with parallel layers, we define an edge to be
“bent” if its points do not lie on a line perpendicular to the layers.

Hard constraints: These conditions must be valid in any context.
• No node-node or node-edge overlaps [22]: Nodes cannot be

drawn on top of each other and no edge can lie over a node.
• Groups cannot enclose non-member nodes: Only nodes that are

members of a group can be drawn within the area enclosed by the
group’s mark.

Soft constraints: Nice-to-have features, but not strictly necessary.
• Rectangular groups [77, 80]: Groups can be constrained to fit in

a rectangular area.
• Minimize group area: The area enclosed by a group should be as

small as possible, given any necessary whitespace padding.

5 THE STRATISFIMAL LAYOUT OPTIMIZATION MODEL

We now discuss how to formalize all these varied optimization objec-
tives and constraints for laying out a layered node-link visualization.
Our optimization model formulation uses Integer Linear Programming
(ILP) and is modular — depending on the desired visualization prop-
erties, the reader can combine the corresponding features. An exten-
sive demonstration of our approach on real networks can be found at
https://visdunneright.github.io/stratisfimal/proofs.html.

How to read this section: Each subsection will detail a feature
using a modular ILP formulation, which the reader can simply add
to the overall layout optimization model. The actual formulation is
marked by an image of a building block. Relevant information about
the formulation is shown in an accompanying gray box. The Intuition
behind the constraints explains the idea more plainly (but imprecisely).
The Number of constraints generated provides some indication of
how computationally expensive it would be to add the feature to the
optimization model. Finally, for cases where constraints build atop each
other, all the Prerequisites from other subsections are shown. Please
refer to Figure 3 for an explanation of the notation we use.

Preprocessing: Our method assumes an already-established and
immutable layer assignment for the nodes of the input network. Layer
assignment may be given a priori, such as the query depth in our mo-
tivating case study (Section 2). Alternatively, layers can be assigned
algorithmically based on network topology, e.g., using approach de-
tailed by Gansner et al. [28], Rüegg et al.’s extension of it [68], or the
ILP formulation by Tang & Hu [74].

5.1 Crossing reduction
5.1.1 Objective function for crossing reduction
Crossings can only occur between edges in the set Ek. The following
formula minimizes the number edge crossings:

Definitions:
G = {N,E} The network (graph) consists of a set of nodes

N and edges E.
Nk The nodes in layer k.

E=
k Same-layer edges with both ends in layer k.

E<
k 2-layer edges with one end in layer k and the

other in layer k+1.
Ek = E=

k ∪E<
k 2-layer edges (layer k to k+1) and same-layer

edges (only layer k).
L = {1,2, . . . ,!} The set of ! layers in G.

u1w1 An edge between nodes u1 and w1.
Γ The set of groups in G.

g1 A group; g1 ∈ Γ.
Lg1 Set of layers in which g1 has at least one node.

Decision variables:
xu1,u2 The relative vertical order of nodes. Boolean

equal to 1 if u1 is above u2, 0 otherwise.
cu1w1,u2w2 Indicates if edges u1w1 and u2w2 cross. Boolean

equal to 1 if they cross, 0 otherwise.
yu1 Vertical coordinate of node u1.

bu1w1 Bendiness of edge u1w1, defined as |yu1 − yw1 |.
yT

g1
Topmost boundary of group g1

yB
g1

Bottommost boundary of group g1

Parameters:
m Greatest allowed absolute vertical distance between

the topmost and bottommost nodes in a layer. De-
fault: 50, but depends on implementation details.

γ1,γ2 Weights for the two parts of the objective function.
Default: γ1 (crossings) = 10,γ2 (bendiness) = 1.

Fig. 3: The notation used in this paper.

Minimize : ∑
k∈L

∑
u1w1,u2w2∈Ek

u1w1 $=u2w2

cu1w1,u2w2 (1)

5.1.2 Transitivity constraints
Laying out nodes in a layer establishes a total order of nodes within it.
We enforce that the ILP solution is consistent with such per-layer orders
by defining transitivity constraints for each triplet of nodes in a layer.
The idea is that if node u1 is above node u2 and node u2 is above node
u3, then node u1 must be above node u3. The opposite must also be true.
We can write this as xu1,u2 ∧ xu2,u3 ⇒ xu1,u3 and ¬xu1,u2 ∧¬xu2,u3 ⇒
¬xu1,u3 . These formulas, translated to ILP constraints, are written thus:

xu1,u2 + xu2,u3 − xu1,u3 ≥ 0
−xu1,u2 − xu2,u3 + xu1,u3 ≥−1

(2)

(∀k ∈ L : ∀u1,u2,u3 ∈ Nk, where u1 $= u2 $= u3 $= u1)

Intuition: If u1 is above u2, and u2 is above u3, then u1 must be
above u3.
Number of constraints generated: O(|N|3)

Note that, in any one of the constraints, xu1,u2 can always be written
as 1− xu2,u1 . This reduces the number of variables needed in a model.

5.1.3 2-layer edge crossings
Crossing indicators c are computed by comparing position indicators
x for each pair of 2-layer edges in a layer. There are 4 possible cases,
captured by the visualization and formulas below.
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