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ABSTRACT
We propose a sparse reduced rank Huber regression for analyzing large and complex high-dimensional
data with heavy-tailed random noise. The proposed method is based on a convex relaxation of a rank-
and sparsity-constrained nonconvex optimization problem, which is then solved using a block coordinate
descent and an alternating direction method of multipliers algorithm. We establish nonasymptotic esti-
mation error bounds under both Frobenius and nuclear norms in the high-dimensional setting. This is a
major contribution over existing results in reduced rank regression, which mainly focus on rank selection
and prediction consistency. Our theoretical results quantify the tradeoff between heavy-tailedness of the
random noise and statistical bias. For random noise with bounded (1 + δ)th moment with δ ∈ (0, 1),
the rate of convergence is a function of δ, and is slower than the sub-Gaussian-type deviation bounds; for
random noise with bounded second moment, we obtain a rate of convergence as if sub-Gaussian noise
were assumed. We illustrate the performance of the proposedmethod via extensive numerical studies and
a data application. Supplementary materials for this article are available online.
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1. Introduction

Low rank matrix approximation methods have enjoyed suc-
cesses in modeling and extracting information from large and
complex data across various scientific disciplines. However,
large-scale datasets are often accompanied by outliers due to
possible measurement error, or because the population exhibits
a leptokurtic distribution. As shown in She and Chen (2017),
one single outlier can have a devastating effect on low rank
matrix estimation. Consequently, nonrobust procedures for low
rank matrix estimation could lead to inferior estimates and
spurious scientific conclusions. For instance, in the context of
financial data, it is evident that asset prices follow heavy-tailed
distributions: if the heavy-tailedness is not accounted for in
statistically modeling, then the recovery of common market
behaviors and asset return forecasting may be jeopardized
(Müller, Dacorogna, and Pictet 1998; Cont 2001).

In the context of reduced rank regression, She and Chen
(2017) addressed this challenge by explicitly modeling the out-
liers with a sparsemean shiftmatrix of parameters. Similar ideas
have been considered in the context of robust linear regression
(She and Owen 2011) and robust clustering (Liu et al. 2012;
Wang et al. 2016). In many statistical applications, the outliers
themselves are not of interest. Rather than introducing addi-
tional parameters to model the outliers, it is more natural to
develop robust statistical methods that are less sensitive to out-
liers. There is limited work along these lines in low rank matrix
approximation problems. In fact, She and Chen (2017) pointed
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out that in the context of reduced rank regression, directly
applying a robust loss function that down-weights the outliers,
such as the Huber loss, may result in nontrivial computational
and theoretical challenges due to the low rank constraint. So a
natural question arises: can we develop a computationally effi-
cient robust sparse low rank matrix approximation procedure
that is less sensitive to outliers and yet has sound statistical
guarantees?

In this article, we propose a novel method for fitting robust
sparse reduced rank regression in the high-dimensional setting.
We propose to minimize the Huber loss function subject to
both sparsity and rank constraints. This leads to a nonconvex
optimization problem, and is thus, computational intractable.
To address this challenge, we consider a convex relaxation for
both the sparsity and rank constraints, which can be solved
efficiently. A similar convex relaxation has also been considered
in Chen and Huang (2012) and Richard, Savalle, and Vayatis
(2012) under the least squares loss. We note that Bunea, She,
andWegkamp (2012) proposed a group-lasso type penalty with
a rank constraint to encourage the solution to be group-wise
sparse and low rank under the least squares loss.

Most of the existing theoretical analysis of reduced rank
regression focuses on rank selection consistency and prediction
consistency (Bunea, She, and Wegkamp 2011; Mukherjee and
Zhu 2011; Bunea, She, and Wegkamp 2012; Chen, Dong, and
Chan 2013; Luo and Qi 2017; She 2017). Moreover, as shown
by several authors, in order to achieve consistency, the number
of covariates and the number of responses need to be much

© 2022 American Statistical Association
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smaller than the sample size (Candes et al. 2011; She 2017).
This motivates the use of sparsity penalty to accommodate
possible high-dimensional covariates and responses. However,
in the high-dimensional setting, nonasymptotic analysis of the
estimation error is not well established, even in the context of
reduced rank regression.1 To bridge this gap in the literature, we
provide nonasymptotic analysis of the estimation error under
both Frobenius and nuclear norms for robust sparse reduced
rank regression with the Huber loss.

The Huber loss has a robustification parameter that trades
bias for robustness. In past work, the robustification parameter
is usually fixed using the 95%-efficiency rule (among others,
Huber 1964, 1973; Portnoy 1985; Mammen 1989; He and Shao
1996). Therefore, estimators obtained underHuber loss are typi-
cally biased. To achieve asymptotic unbiasedness and robustness
simultaneously, within the context of robust linear regression,
Sun, Zhou, and Fan (2018) showed that the robustification
parameter has to adapt to the sample size, dimensionality, and
moments of the random noise. Motivated by Sun, Zhou, and
Fan (2018), we will establish theoretical results for the proposed
method by allowing the robustification parameter to diverge.

The robustness of our proposed estimator is evidenced by
its finite sample performance in the presence of heavy-tailed
data, that is, data for which high-order moments are not finite.
When the sampling distribution is heavy-tailed, there is a
higher chance that some data are sampled far away from their
mean. We refer to these outlying data as heavy-tailed outliers.
Theoretically, we establish nonasymptotic results that quantify
the tradeoff between heavy-tailedness of the random noise
and statistical bias: for random noise with bounded (1 + δ)th
moment, the rate of convergence, depending on δ, is slower
than the sub-Gaussian-type deviation bounds; for randomnoise
with bounded second moment, we recover results as if sub-
Gaussian errors were assumed; and the transition between the
two regimes is smooth.

Notation: For any vector u = (u1, . . . , up)T ∈ R
p and q ≥ 1,

let ||u||q = ( ∑p
j=1 |uj|q

)1/q denote the �q norm. Let ||u||0 =∑p
j=1 1(uj �=0) denote the number of nonzero entries of u, and

let ||u||∞ = max1≤j≤p |uj|. For any two vectors u, v ∈ R
p, let

〈u, v〉 = uTv. Moreover, for two sequences of real numbers
{an}n≥1 and {bn}n≥1, an � bn signifies that an ≤ Cbn for
some constant C > 0 that is independent of n, an � bn if
bn � an, and an 	 bn signifies that an � bn and bn � an.
If A is an m × n matrix, we use ||A||q to denote its order-q
operator norm, defined by ||A||q = maxu∈Rn ||Au||q/||u||q.
We define the (p, q)-norm of a m × n matrix A as the usual
�q norm of the vector of row-wise �p norms of A:

∥∥A∥∥
p,q ≡∥∥(||A1·||p, . . . , ||Am·||p)

∥∥
q, whereAj· is the jth row ofA. We use

||A||∗ = ∑min{m,n}
k=1 λk to denote the nuclear norm of A, where

λk is the kth singular value of A. Let ||A||F =
√∑m

i=1
∑n

j=1 A2
ij

be the Frobenius norm ofA. Finally, let vec(A) be the vectoriza-
tion of the matrix A, obtained by concatenating the columns of
A into a vector.

1Wenote that theprediction error bound canbeused toderive an estimation
error bound under some further incoherence condition on the design
matrix.

2. Robust Sparse Reduced Rank Regression

2.1. Formulation

Suppose we observe n independent samples of q-dimensional
response variables and p-dimensional covariates. Let Y ∈ R

n×q

be the observed response and let X ∈ R
n×p be the observed

covariates. We consider the matrix regression model

Y = XA∗ + E, (1)

where A∗ ∈ R
p×q is the underlying regression coefficient

matrix and E ∈ R
n×q is an error matrix. Each row of E is

an independentmean-zero and potentially heavy-tailed random
noise vector.

Reduced rank regression seeks to characterize the relation-
ships between Y andX in a parsimonious way by restricting the
rank ofA∗ (Izenman 1975). An estimator ofA∗ can be obtained
by solving the optimization problem

minimize
A∈Rp×q

tr
{
(Y − XA)T(Y − XA)

}
, subject to rank(A) ≤ r,

(2)
where r is typically much smaller than min{n, p, q}. Due to the
rank constraint on A, (2) is nonconvex: nonetheless, the global
solution of (2) has a closed form solution (Izenman 1975).

It is well-known that squared error loss is sensitive to outliers
or heavy-tailed random error (Huber 1973). To address this
issue, it is natural to substitute the squared error loss with a loss
function that is robust against outliers. We propose to estimate
A∗ under the Huber loss function, formally defined as follows.

Definition 1 (Huber Loss and Robustification Parameter). The
Huber loss �τ (·) is defined as

�τ (z) =
{ 1

2z
2, if |z| ≤ τ ,

τ |z| − 1
2τ

2, if |z| > τ ,

where τ > 0 is referred to as the robustification parameter that
trades bias for robustness.

The Huber loss function blends the squared error loss (|z| ≤
τ ) and the absolute deviation loss (|z| > τ ), as determined
by the robustification parameter τ . Compared to the squared
error loss, large values of z are down-weighted under the Huber
loss, thereby resulting in robustness. Generally, an estimator
obtained from minimizing the Huber loss is biased. The robus-
tification parameter τ quantifies the tradeoff between bias and
robustness: a smaller value of τ introduces more bias but also
encourages the estimator to be more robust to outliers. We will
provide guidelines for selecting τ based on the sample size and
the dimensions of A∗ in later sections. Throughout the article,
for M ∈ R

p×q, we write �τ (M) = ∑p
i=1

∑q
j=1 �τ (Mij) for

notational convenience.
In the high-dimensional setting in which n < p or n < q, it is

theoretically challenging to estimateA∗ accurately with only the
low rank assumption. To address this challenge, Chen, Chan,
and Stenseth (2012) and Chen and Huang (2012) proposed
methods for simultaneous dimension reduction and variable
selection. In particular, they decomposedA∗ into the product of
its singular vectors, and imposed sparsity-inducing penalty on
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the left and right singular vectors. Thus, their proposed meth-
ods involve solving optimization problems with nonconvex
objective.

Given that the goal is to estimate A∗ rather than its singular
vectors, we propose to estimate A∗ directly. Under the Huber
loss, a robust and sparse estimate of A∗ can be obtained by
solving the optimization problem:

minimize
A∈Rp×q

{
1
n
�τ (Y − XA)

}
, subject to rank(A) ≤ r

and card(A) ≤ k, (3)
where card(A) is the number of nonzero elements in A. Opti-
mization problem (3) is nonconvex due to the rank and cardi-
nality constraints on A. We instead propose to estimate A∗ by
solving the following convex relaxation:

minimize
A∈Rp×q

{
1
n
�τ (Y − XA) + λ

(||A||∗ + γ ||A||1,1
) }

, (4)

where λ and γ are nonnegative tuning parameters, || · ||∗ is the
nuclear norm that encourages the solution to be low rank, and
||·||1,1 is the entry-wise �1-norm that encourages the solution to
be sparse. The nuclear norm and the �1,1 norm constraints are
the tightest convex relaxations of the rank and cardinality con-
straints, respectively (Recht, Fazel, and Parrilo 2010; Jojic, Saria,
and Koller 2011). A similar convex relaxation has also been
considered in Chen andHuang (2012) and Richard, Savalle, and
Vayatis (2012) under the least squares loss.

We now discuss the close connection between our proposed
method and that of She and Chen (2017). As shown by Lemma
2 of She and Chen (2017), (4) is equivalent to

minimize
A,C

1
2
||Y − XA − C||2F +λ(||A||∗ +γ ||A||1,1)+τ ||C||1,1,

(5)
where C ∈ R

p×q is a matrix of augmented parameters that
models the outliers. Optimization problem (5) is motivated by
the mean shift model Y = XA∗ + C∗ + E, where A∗ ∈ R

p×q

is a matrix of regression coefficients, C∗ is a sparse matrix that
models the outliers, and E is a matrix of sub-Gaussian random
noise with some abuse of notation.

Let Â be a solution obtained from solving (4) or (5). The
primary advantage of studying the estimator Â using the pro-
posed framework in (4) is that it allows us to study the estimator
Â under a different perspective than that of the mean shift
model (She and Chen 2017). We derive the theoretical results
under the model Y = XA∗ + E, where E are the random
noise with bounded (1 + δ)th moment condition. In other
words, we consider the case when the outliers are modeled as
heavy-tailed random noise rather than a mean shift parameter.
Under the boundedmoment condition, we show that the rate of
convergence for Â undergoes a phase transition as a function of
δ in Theorem 1. Our results complement that of the theoretical
results derived under the mean shift model in She and Chen
(2017) and offer a different perspective to Â, illustrating the
power of Huber loss under the setting when the random noise
is heavy-tailed.

Remark 1. Since optimization problems (4) and (5) are equiva-
lent in that they yield the exact same solution Â, results such as
those of She and Chen (2017) can be obtained by analyzing the
solution Â under (5). We leave this for future work.

2.2. Algorithm

In this section, we provide an efficient algorithm to obtain
the proposed estimator Â. Due to the equivalence between (4)
and (5), we start with deriving a block coordinate descent type
algorithm for solving (5). One advantage of solving (5) is that
the estimated augmented matrix Ĉ for modeling outliers is out-
putted as a by-product, which may be of interest to practition-
ers. We note that optimization problem (4) can also be solved
directly using an alternating direction method of multipliers
(ADMM) algorithm, which we provide in Section A of the
online supplementary materials for completeness.

A block coordinate descent algorithm for solving (5) involves
updating the matrices A and C iteratively while holding the
other fixed until convergence. Given a fixed A, the update for
C can be obtained by solving

minimize
C

1
2
||Y − XA − C||2F + τ ||C||1,1,

which yields a closed-form solution of Ĉ = S(Y−XA, τ), where
S denote the soft-thresholding operator, applied element-wise to
a matrix, that is, S(Aij, b) = sign(Aij)max(|Aij| − b, 0). Given
C, the update for A can then be obtained by solving

minimize
A

1
2
||Y − XA − C||2F + λ(||A||∗ + γ ||A||1,1). (6)

Optimization problem (6) does not admit a closed-form solu-
tion. To this end, we derive an ADMM algorithm for solving (6)
(Eckstein and Bertsekas 1992; Boyd et al. 2010).

Specifically, we note that (6) is equivalent to

minimize
A,Z,W∈Rp×q

{
1
2 ||Y − XA − C||2F + λ

(||W||∗ + γ ||Z||1,1
) }

,

subject to W = A and Z = A.
(7)

The scaled augmented Lagrangian of (7) takes the form

Lρ(A,Z,W,M,N) = 1
2
||Y − XA − C||2F + λ (||W||∗

+ γ ||Z||1,1
) + ρ

2
||W − A + N||2F

+ ρ

2
||Z − A + M||2F,

where A,Z,W are the primal variables, and N and M are the
dual variables. Note that the ADMM algorithm is an iterative
algorithm. At the kth iteration, the ADMM algorithm requires
the following updates:

1. Ak+1 ← argmin
A

Lρ(A,Zk,Wk,Mk,Nk).

2. Zk+1 ← argmin
Z

Lρ(Ak+1,Z,Wk,Mk,Nk).

3. Wk+1 ← argmin
W

Lρ(Ak+1,Zk+1,W,Mk,Nk).

4. Nk+1 ← Nk + ρ(Ak+1 − Wk+1).
5. Mk+1 ← Mk + ρ(Ak+1 − Zk+1).

The derivation for the closed-form updates are standard for
least squares loss and are omitted. The details of the proposed
algorithm are summarized in Algorithm 1.

Note that the term (XTX+ 2ρI)−1 can be computed outside
of the loop. Thus, the computational bottleneck in each itera-
tion of Algorithm 1 is the singular value decomposition of a
p × q matrix with computational complexity O{p2q + q2p +
min(q3, p3)}.

https://doi.org/10.1080/01621459.2022.2050243
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Algorithm 1 A Block Coordinate Descent Algorithm for Solv-
ing (5).
1. Initialize the parameters:

(a) augmented variable C to the zero matrix.
(b) primal variables A,Z, andW to the zero matrix.
(c) dual variables BZ and BW to the zero matrix.
(d) constants ρ > 0, τ > 0, λ > 0, γ > 0, and ε > 0.

2. Iterate until the stopping criterion ||At+1 − At||2F/||At||2F ≤
ε ismet, whereAt is the value ofAobtained at the tth iteration
of the block coordinate descent algorithm.

(a) C = S(Y−XA, τ), where S denote the soft-thresholding
operator, applied element-wise to a matrix: S(Aij, b) =
sign(Aij)max(|Aij| − b, 0).

(b) Iterate the following until the stopping criterion ||At
k+1−

At
k||2F/||At

k||2F is met, whereAt
k is the value ofA obtained

at the kth iteration of the following ADMM algorithm:

i. A = (XTX+2ρI)−1{ρ(N+W+Z+M)+XT(Y−C)}.
ii. Z = S(A − M, λγ/ρ).
iii. W = ∑

jmax
(
ωj − λ/ρ, 0

)
ajbTj , where

∑
j ωjajbTj

is the singular value decomposition of A − N.
iv. M = M + Z − A.
v. N = N + W − A.

3. Statistical Theory

We study the theoretical properties of Â obtained from solv-
ing (4). Let Vp,q = {U ∈ R

p×q : UTU = Iq} be the
Stiefel manifold of p×q orthonormal matrices. Throughout the
theoretical analysis, we assume that A∗ can be decomposed as

A∗ = U∗
∗(V∗)T =
r∑

k=1
λ∗
ku

∗
k(v

∗
k)

T, (8)

where U∗ ∈ Vp,r , V∗ ∈ Vq,r , maxk ||u∗
k ||0 ≤ su, and

maxk ||v∗
k ||0 ≤ sv with su, sv 
 n, r 
 n, and rsusv 
 n.

Consequently, A∗ is sparse and low rank. Let S = supp(A∗) be
the support set of A∗ with cardinality |S| = s, that, S contains
indices for the nonzero elements in A∗. Note that s ≤ rsusv.

For simplicity, we consider the case of fixed design matrix
X and assume that the covariates are standardized such that
maxi,j |Xij| = 1. To characterize the heavy-tailed random noise,
we impose a bounded moment condition on the random noise.

Condition 1 (Bounded Moment Condition). Let δ > 0. Assume
that each entry of the random errormatrix E in (1) has bounded
(1 + δ)th moment, and let

vδ ≡ max
i,j

E
(|Eij|1+δ

)
< ∞.

Condition 1 is a relaxation of the commonly used sub-
Gaussian assumption to accommodate heavy-tailed random
noise. For instance, the t-distribution with degrees of freedom
larger than one can be accommodated by the bounded moment
condition. This condition has also been used in the context of
high-dimensional Huber linear regression (Sun, Zhou, and Fan
2018). Note that Condition 1 allows for heterogeneous random

noise as long as the random noise has at least bounded (1+δ)th
moment.

Let Hτ (A) be the Hessian matrix of the Huber loss function
�τ (Y − XA) /n in (3). In addition to the random noise, the
Hessianmatrix is a function of the parameterA, andHτ (A)may
equal zero for some A, because the Huber loss is linear at the
tails. To avoid singularity of Hτ (A), we will study the Hessian
matrix in a local neighborhood of A∗. To this end, we define
and impose conditions on the localized restricted eigenvalues
ofHτ (A).

Definition 2 (Localized Restricted Eigenvalues). The minimum
and maximum localized restricted eigenvalues for Hτ (A) are
defined as

κ−(Hτ (A), ξ , η) = inf
U,A

{
vec(U)THτ (A)vec(U)

||U||2F
: (A,U) ∈ C(m, ξ , η)

}
,

κ+(Hτ (A), ξ , η) = sup
U,A

{
vec(U)THτ (A)vec(U)

||U||2F
: (A,U) ∈ C(m, ξ , η)

}
,

where

C(m, ξ , η)={(A,U) ∈ R
p×q × R

p×q : U �= 0,S ⊆ J, |J| ≤ m,
||USc ||1,1 ≤ ξ ||US ||1,1, ||A − A∗||1,1 ≤ η}.

Condition 2. There exist constants 0 < κlower ≤ κupper < ∞
such that the localized restricted eigenvalues of Hτ are lower-
and upper-bounded by

κlower/2 ≤ κ−(Hτ (A), ξ , η) ≤ κ+(Hτ (A), ξ , η) ≤ κupper.

A similar type of localized condition was proposed in Fan
et al. (2018) for general loss functions and in Sun, Zhou, and
Fan (2018) for the analysis of robust linear regression in high
dimensions. In what follows, we justify Condition 2 by showing
that it is implied by the restricted eigenvalue condition on the
empirical Gram matrix S = XTX/n. To this end, we define the
restricted eigenvalues of a matrix and then place a condition on
the restricted eigenvalues of S.

Definition 3 (Restricted Eigenvalues of a Matrix). Given ξ > 1,
the minimum and maximum restricted eigenvalues of S are
defined as

ρ−(S, ξ ,m) = inf
U

{
tr(UTSU)

||U||21,2
: U ∈ R

p×q,U �= 0,S ⊆ J,

|J| ≤ m, ||UJc ||1,1 ≤ ξ ||UJ ||1,1
}
,

ρ+(S, ξ ,m) = sup
U

{
tr(UTSU)

||U||21,2
: U ∈ R

p×q,U �= 0,S ⊆ J,

|J| ≤ m, ||UJc ||1,1 ≤ ξ ||UJ ||1,1
}
,

respectively.

Condition 3. There exist constants 0 < κlower ≤ κupper < ∞
such that the restricted eigenvalues of S are lower- and upper-
bounded by

κlower ≤ ρ−(S, ξ ,m) ≤ ρ+(S, ξ ,m) ≤ κupper.
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Condition 3 is a variant of the restricted eigenvalue condi-
tion that is commonly used in high-dimensional nonasymptotic
analysis. It can be shown that Condition 3 holds with high
probability if each row of X is a sub-Gaussian random vector.

Under Condition 3, we now show that the localized restricted
eigenvalues for the Hessianmatrix are bounded with high prob-
ability under conditions on the robustification parameter τ and
the sample size n. That is, we prove that the localized restricted
eigenvalues condition in Condition 2 holds with high probabil-
ity under Condition 3. The result is summarized in the following
lemma.

Lemma 1. Consider A ∈ C(m, ξ , η) where C(m, ξ , η) is as
defined in Definition 2. Let τ ≥ max(8η,C · (mνδ)

1/(1+δ)) and
let n > C′ ·m2 log(pq) for sufficiently large constants C,C′ > 0.
Under Conditions 1 and 3, there exists constants κlower and
κupper such that the localized restricted eigenvalues of Hτ (A)

satisfy

0 < κlower/2 ≤ κ−(Hτ (A), ξ , η) ≤ κ+(Hτ (A), ξ , η) ≤ κupper < ∞
with probability at least 1 − (pq)−1.

Lemma 1 shows that Condition 2 holds with high probability,
as long as Condition 3 on the empirical Gram matrix S holds.
Note that the constants κlower and κupper also appear in Condi-
tion 3.

We now present our main results on the estimation error of
Â under the Frobenius norm and nuclear norm in the following
theorem. For simplicity, we will present our main results condi-
tioned on the event that Conditions 1–2 hold.

Theorem 1. Let Â be a solution to (4) with tuning parameters

τ �
(

nvδ

log(pq)

)1/min{(1+δ),2}
,

λ � v1/min(1+δ,2)
δ

(
log(pq)

n

)min{δ/(1+δ),1/2}

and γ > 2.5. Suppose that Conditions 1–2 hold with ξ = (2γ +
5)/(2γ − 5), κlower > 0 and η � κ−1

lowerλr(su + sv). Assume
that n > C(rsusv)2 log(pq) for some sufficiently large universal
constant C > 0. Then, with probability at least 1 − (pq)−1, we
have∥∥Â − A∗∥∥

F � κ−1
lowerv

1/min{1+δ,2}
δ

√
rsusv

{
log(pq)

n

}min{δ/(1+δ),1/2}
,

∥∥Â − A∗∥∥∗ � κ−1
lowerv

1/min{1+δ,2}
δ rsusv

{
log(pq)

n

}min{δ/(1+δ),1/2}
.

Theorem 1 establishes the nonasymptotic convergence rates
of our proposed estimator under both Frobenius and nuclear
norms in the high-dimensional setting. To the best of our
knowledge, we are the first to establish such results on the
estimation error for robust sparse reduced rank regression
under heavy-tailed random noise. By contrast, most of the
existing work on reduced rank regression focuses on rank
selection consistency and prediction consistency (Bunea, She,
and Wegkamp 2011, 2012). Moreover, in order to achieve
consistency, the number of covariates and the number of
responses need to bemuch smaller than the sample size (Candes
et al. 2011; She 2017). This motivates the use of the sparsity

inducing penalty to reduced rank regression to accommodate
high-dimensional covariates and responses. When the random
noise has second or higher moments, that is, δ ≥ 1, our
proposed estimator achieves a parameteric rate of convergence
as if sub-Gaussian random noise were assumed. It achieves
a slower rate of convergence only when the random noise is
extremely heavy-tailed, that is, 0 < δ < 1.

Remark 2. As pointed out by the referees and the associate
editor, several authors have considered sparse reduced rank
regression using row-wise sparsity inducing penalty with low
rank constraint or the nuclear norm penalty (Chen and Huang
2012; Bunea, She, and Wegkamp 2012; She 2017). We want to
emphasize that our proposed method considers response selec-
tion while row-wise sparsity penalty does not. Consequently, we
can relax the dependence of our result on q, by only involving
the logarithmic of q. Because of this, it is difficult to compare the
convergence rate between the two approaches directly.

Remark 3. The restricted eigenvalue type conditions are needed
for establishing the estimation error of Â. From Theorem 1,
a prediction error bound for ||X(Â − A∗)||2F can be obtained
directly. On the other hand, if the risk excess error is of interest,
then the restricted eigenvalue type conditions can be removed.

Intuitively, one might expect the optimal rate of convergence
under the Frobenius norm to have the form

∥∥Â − A∗∥∥
F �√

r(su+sv) {log(pq)/n}min{δ/(1+δ),1/2}, since there are a total of
roughly r(su + sv) nonzero parameters to be estimated in A∗
as defined in (8). To validate the aforementioned intuition, we
provide the minimax lower bound for sparse and low rank
estimation under the Gaussian random noise in Theorem 2.
The minimax lower bound under random noise with (1 + δ)th
bounded moment remains an open problem and we leave it for
futurework.We consider the following family of all rank r sparse
matrices:

F =
{
A = U
VT ∈ R

p×q : rank(A) ≤ r, λ1(A)

≥ · · · ≥ λr(A) ≥ 0, λk(A) = 0, r < k ≤ max(p, q),

max1≤k≤r ||uk||0 ≤ su, max1≤k≤r ||vk||0 ≤ sv
}
,

(9)
where λk(A) be the kth largest singular value of A.

Theorem 2. Assume that each entry of the random noise Eij are
independent and identically distributed from a standard normal
distribution. Suppose that 2(r − 1)max(su, sv) ≤ min(p, q).
Then, we have

inf
Â

sup
A∗∈F

E||Â − A∗||2F ≥ C1
(
r(su+sv)

n + rsu
n log ep

su + rsv
n log eq

sv

)
,

inf
Â

sup
A∗∈F

E||Â − A∗||2∗ ≥ C1
(
r2(su+sv)
n log r + r2su

n log ep
su + r2sv

n log eq
sv

)
,

where C1 is a constant depending only on κupper. Moreover,
under the scaling condition {max(su, sv)}3pq � min(p3, q3), we
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have

inf
Â

sup
A∗∈F

E||Â − A∗||2F ≥ C2
(
r(su+sv)

n + r(su+sv)
n log(pq)

)
,

inf
Â

sup
A∗∈F

E||Â − A∗||2∗ ≥ C2
(
r2(su+sv)
n log r + r2(su+sv)

n log(pq)
)
,

(10)
where C2 is a constant depending only on κupper.

If we assume that the random noise has at least a bounded
second moment, that is, δ ≥ 1, then the rate of convergence in
Theorem 1 reduces to the following:∥∥Â − A∗∥∥2

F � κ−2
lowervδrsusv log(pq)

n ,∥∥Â − A∗∥∥2∗ � κ−2
lowervδr2s2us2v

log(pq)
n .

(11)

Comparing (11) and (10), we see that under the Frobenius
norm, the rate of convergence for our proposed method is
slower than that of the minimax optimal rate by a scaling factor
of

√
susv/(su + sv). The lost of the scaling factor is due to the

convex relaxation (4) where we estimate A directly rather than
estimating the sparse singular vectors uk and vk separately.
Finally, we note that the above results also illustrate the power
of Huber loss: the rate of convergence of the proposed method
under bounded secondmoment condition on the random noise
matches that of the optimal rate derived under Gaussian error
up to a scaling factor.

Remark 4. The class F defined in (9) is a sub-class of rsusv-
sparse and r-rank matrices. Thus, the derived lower bound in
Theorem 2 is also a lower bound for element-wise sparse and
low-rank matrices. Here we use F instead of a class of sparse
and low rankmatrices because it is needed to obtain the nuclear
norm convergence rate. Moreover, as the sparse singular value
decomposition structure in F naturally gives a low rank and
sparse A with at most rsusv nonzeros, we are able to obtain the
convergence rate under the Frobenius norm.We emphasize that
rsusv is a tight upper bound for the number of nonzeros inA. To
see this, considering the case where r = sv = 1, then rsusv = su
and the coefficient matrix A has exactly su nonzeros.

4. Numerical Studies

We perform extensive numerical studies to evaluate the perfor-
mance of our proposal for robust sparse reduced rank regres-
sion. Seven approaches are compared in our numerical stud-
ies: classical reduced rank regression, classical; our pro-
posal with Huber loss, hubersrrr; our proposal with squared
error loss (with τ → ∞), srrr; signal extraction approach
for sparse multivariate response (Luo and Qi 2017), SiER;
robust reduced rank regression with an additional mean param-
eter that models element-wise outliers (She and Chen 2017),
r4; penalized reduced rank regression via an adaptive nuclear
norm (Chen, Dong, and Chan 2013), rrr; and the penalized
reduced rank regression via a ridge penalty (Mukherjee and
Zhu 2011), rrridge. The proposals classical, rrridge,
rrr, and r4 do not assume sparsity on the regression coeffi-
cients. Among the seven proposals, only hubersrrr and r4
are robust against outliers.

For all of our numerical studies, we generate each row of X
from a multivariate normal distribution with mean zero and
covariance matrix �, where �ij = 0.5|i−j| for 1 ≤ i, j ≤ p.
Then, all elements of X are divided by the maximum absolute
value of X such that maxi,j |Xij| = 1. The response matrix Y
is then generated according to Y = XA∗ + E. We consider
two different types of outliers: (a) heavy-tailed random noise E,
and (b) contamination of some percentage of the elements of
Y. We simulate data with sparse and nonsparse low rank matrix
A∗. The details for the different scenarios will be specified in
Section 4.1.

Our proposal hubersrrr involves three tuning param-
eters. We select the tuning parameters using 5-fold cross-
validation with the absolute median loss as the criterion: we
vary λ across a fine grid of values, consider four values of
γ = {2.5, 3, 3.5, 4} as suggested by Theorem 1, and considered
a range of the robustification parameter τ = c{n/ log(pq)}1/2,
where c = {0.4, 0.45, . . . , 1.45, 1.5}. The tuning parameters for
srrr are selected in a similar fashion with τ → ∞. We note
that the tuning parameters can also be selected using a calibrated
structured cross-validation proposed in She and Tran (2019).
For scenarios with nonsparse regression coefficients, we simply
set γ = 0 for hubersrrr and srrr for fair comparison
against other approaches that do not assume sparsity. For r3,
we select the tuning parameter using five different information
criteria implemented in the R package rrpack (Chen, Dong,
and Chan 2013), and report the best result. For rrridge, we
specify the correct rank forA∗ and consider a fine grid of tuning
parameters for the ridge penalty and report the best result. For
classical, we specify the correct rank forA∗.We implement
SiER using the default option in the R package SiER. The
method r4 has two tuning parameters that control the sparsity
of the mean shift parameter for modeling outliers and the rank
of A∗. We implement r4 by specifying the correct rank of A∗,
and choose the sparsity tuning parameter according to 5-fold
cross-validation. Since r4 is nonconvex, the final solution may
depend on the initialization of the parameter of interest. We
input the true regression coefficients A∗ as an initial estimator
for r4. In other words, we give a major advantage to rrridge,
r4, and classical in that we provide the rank of A∗ as an
input as well as A∗ as an initializer.

To evaluate the performance across different methods, we
calculate the difference between the estimated regression coeffi-
cients Â and the true coefficientsA∗ under the Frobenius norm.
In addition, for scenarioswith inwhichA∗ is sparse, we calculate
the true and false positive rates (TPR and FPR), defined as the
proportion of correctly estimated nonzeros in the true parame-
ter, and the proportion of zeros that are incorrectly estimated to
be nonzero in the true parameter, respectively. Since some exist-
ing approaches are not applicable in the high-dimensional set-
ting, we perform numerical studies under the low-dimensional
setting in which n ≥ p in Section 4.1. We then illustrate
the performance of our proposed methods, hubersrrr and
srrr, compared to SiER and r4, in the high-dimensional
setting in Section 4.2. In Section 4.3, we illustrate the phase
transition phenomenon in Theorem 1 via numerical studies.
In Section 4.4, we assess whether the proposed estimator esti-
mates the rank accurately by plotting the top ten singular values
of Â.
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Table 1. The mean (and standrard error) of the difference between the estimated regression coefficients and the true regression coefficients under the Frobenius norm,
averaged over 100 datasets, in the setting where A∗ is not sparse, with n = 200, p = 50, and q = 10.

Rank of A∗ Random noise Data contamination

Methods Normal t Log-normal 0% 5% 10%

classical 6.36(0.08) 69.97(12.90) 16.44(0.71) 6.36(0.08) 13.55(0.24) 21.30(0.40)
rrr 5.80(0.07) 21.64(4.84) 10.71(0.19) 5.80(0.07) 10.25(0.14) 12.25(0.12)
rrridge 5.42(0.06) 14.64(0.99) 9.22(0.17) 5.42(0.06) 9.04(0.10) 10.87(0.12)

1 SiER 6.48(0.09) 35.20(6.18) 12.70(0.26) 6.48(0.09) 11.98(0.13) 14.13(0.16)
r4 6.65(0.08) 4.65(0.07) 8.38(0.15) 6.65(0.08) 6.93(0.09) 7.35(0.08)
srrr 7.13(0.08) 37.32(12.00) 10.37(0.13) 7.13(0.08) 10.44(0.09) 11.66(0.09)
hubersrrr 7.17(0.08) 6.57(0.09) 6.70(0.08) 7.17(0.08) 7.72(0.08) 8.16(0.08)
classical 10.34(0.12) 61.59(5.70) 21.83(0.56) 10.34(0.12) 20.90(0.24) 28.15(0.28)
rrr 6.09(0.09) 25.89(1.88) 12.08(0.32) 6.09(0.09) 12.20(0.17) 16.81(0.23)
rrridge 9.16(0.09) 21.71(0.53) 15.16(0.20) 9.16(0.09) 15.25(0.12) 18.27(0.13)

2 SiER 6.29(0.10) 32.89(2.66) 12.86(0.40) 7.19(0.08) 12.71(0.20) 17.20(0.25)
r4 10.59(0.11) 7.36(0.09) 12.66(0.16) 11.63(0.13) 11.23(0.12) 11.94(0.12)
srrr 8.65(0.11) 31.32(4.57) 14.11(0.23) 8.69(0.11) 14.70(0.16) 17.84(0.17)
hubersrrr 8.67(0.11) 7.61(0.11) 7.81(0.11) 8.70(0.11) 9.57(0.12) 10.33(0.13)

NOTE: Three distributions of random noise are considered: normal, t, and log-normal. We also considered contaminating 5% or 10% of the elements of Y.

4.1. Low-Dimensional Settingwith n ≥ p

In this section, we perform numerical studies with n = 200,
p = 50, and q = 10. We first consider two cases in which A∗
has low rank but is not sparse:

1. Rank onematrix:A∗ = u1vT1 , where each element of u1 ∈ R
p

and v1 ∈ R
q is generated from a uniform distribution on the

interval [−1,−0.5] ∪ [0.5, 1].
2. Rank two matrix: A∗ = u1vT1 + u2vT2 , where each element

of u1,u2 ∈ R
p and v1, v2 ∈ R

q is generated from a uniform
distribution on the interval [−1,−0.5] ∪ [0.5, 1].

We then generate random noise E ∈ R
n×q from three different

distributions: (a) the normal distribution N(0, 4), (b) the t-
distribution with degrees of freedom 1.5, and (c) the log-normal
distribution logN(0, 1.22). Moreover, we consider a contamina-
tion scenario in which we generate each element of E from the
N(0, 4) distribution, and then randomly contaminate 5% and
10% of the elements in Y by replacing them with random values
generated from a uniform distribution on the interval [10, 20].
The estimation error for each method under the Frobenius
norm, averaged over 100 datasets, is reported in Table 1.

From Table 1, we see that rrr and rrridge outperform
all other methods when A∗ is rank one under Gaussian
noise. This is not surprising, since rrr and rrridge are
tailored for reduced rank regression without outliers. We
see that hubersrrr has similar performance to srrr,
suggesting that there is no loss of efficiency for hubersrrr
even when there are no outliers. When the random noise is
generated from the t-distribution, r4 has the best performance,
followed by hubersrrr. Note that r4 is nonconvex and we
provide the true regression coefficients A∗ as an initializer.
The estimation errors for methods that do not model the
outliers are substantially higher. For log-normal random noise,
hubersrrr outperforms r4. Under the data contamination
model, r4 and hubersrrr perform similarly, and both
outperform all of the other methods. These results corroborate
the observation in She and Chen (2017) that the estimation
of low rank matrices is extremely sensitive to outliers. As
we increase the contamination percentage of the observed
outcomes, we see that the performance of the nonrobust

methods deteriorates. Similar results are observed for the case
when A∗ has rank two.

Next, we consider two cases in which A∗ is both sparse and
low rank:

1. Sparse rank one matrix: A∗ = u1vT1 with u1 = (1T4 , 0Tp−4)
T

and v1 = (1T4 , 0Tq−4)
T;

2. Sparse rank two matrix: A∗ = u1vT1 + u2vT2 with u1 =
(1T4 , 0Tp−4)

T, v1 = (1T4 , 0Tq−4)
T, u2 = (0T2 , 1T4 , 0Tp−6)

T, and
v2 = (0T2 , 1T4 , 0Tq−6)

T.

The heavy-tailed random noise and data contamination sce-
narios are as described earlier. The results, averaged over 100
datasets, are reported in Table 2.

When A∗ is sparse, SiER, hubersrrr and srrr outper-
form all of the methods that do not assume sparsity. In particu-
lar, we see that r4 has the worst performance when the random
noise is normal or log-normal, or when the data are contam-
inated. The method rrr has an MSE of 5.00 when the data
are contaminated, due to the fact that the information criteria
always select models with the regression coefficients estimated
to be zero. Under the Gaussian error without any outliers, SiER
has a lower MSE than our proposed method when the rank
of A∗ is one. In summary, our proposal hubersrrr has the
best performance across most scenarios and is robust against
different types of outliers.

4.2. High-Dimensional Settingwith p > n

In this section, we assess the performance of our proposed
method in the high-dimensional setting, when the matrix A∗
is sparse. To this end, we perform numerical studies with q =
10, p = 200, and n = 150. The methods classical,
rrr, and rrridge do not assume sparsity and do not model
outliers, therefore, their results are omitted. We consider low
rank and sparse matrices A∗ described in Section 4.1. Similarly,
two types of outliers are considered: heavy-tailed random noise
and data contamination. The TPR, FPR, and estimation error
under Frobenius norm for both types of scenarios, averaged over
100 datasets, are summarized in Tables 3 and 4, respectively.
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Table 2. Results for the case where A∗ is sparse, with n = 200, p = 50, and q = 10.

Rank of A∗ Random noise Data contamination

Methods Normal t-dist Log-normal 0% 5% 10%

classical 6.27(0.09) 52.85(4.06) 17.95(0.60) 6.27(0.09) 15.23(0.23) 22.34(0.29)
rrr 4.65(0.04) 6.97(0.89) 4.98(0.01) 4.65(0.04) 4.99(0.01) 5.00(0.01)
rrridge 2.73(0.03) 7.35(0.35) 4.17(0.08) 2.73(0.03) 4.00(0.05) 4.60(0.05)

1 SiER 2.16(0.06) 24.42(1.81) 6.46(0.36) 2.16(0.06) 5.62(0.17) 8.67(0.23)
r4 4.86(0.07) 3.73(0.05) 8.76(0.17) 4.86(0.07) 5.03(0.07) 5.36(0.09)
srrr 2.57(0.05) 4.95(0.24) 4.43(0.05) 2.57(0.05) 4.30(0.05) 4.78(0.03)
hubersrrr 2.57(0.04) 2.19(0.04) 2.44(0.05) 2.57(0.04) 2.80(0.05) 3.02(0.05)
classical 10.04(0.12) 59.51(4.10) 22.20(0.57) 10.04(0.12) 20.89(0.24) 29.08(0.31)
rrr 5.25(0.04) 10.07(0.83) 8.18(0.03) 5.25(0.04) 8.20(0.02) 8.24(0.01)
rrridge 4.36(0.03) 8.92(0.35) 6.00(0.05) 4.36(0.03) 6.08(0.04) 6.82(0.04)

2 SiER 3.39(0.04) 22.68(1.94) 5.45(0.28) 3.39(0.04) 5.14(0.10) 6.83(0.14)
r4 8.71(0.10) 6.42(0.07) 11.31(0.15) 8.71(0.10) 9.07(0.11) 9.61(0.11)
srrr 3.27(0.04) 7.74(0.09) 5.72(0.10) 3.27(0.04) 5.62(0.06) 6.73(0.07)
hubersrrr 3.27(0.04) 2.88(0.04) 3.13(0.05) 3.27(0.04) 3.59(0.04) 3.83(0.05)

NOTE: Other details are as in Table 1.

Table 3. Results for the case when A∗ is sparse and rank one in the high-dimensional setting with n = 150, p = 200, and q = 10.

Rank of A∗ Random noise Data contamination

Methods Normal t-dist Log-normal 0% 5% 10%

r4 Frobenius 19.74(0.28) 15.03(0.77) 27.07(0.42) 19.74(0.28) 21.41(0.33) 25.69(0.67)
Frobenius 2.95(0.09) 47.02(9.48) 12.84(0.62) 2.95(0.09) 9.64(0.22) 13.08(0.20)

SiER TPR 0.99(0.01) 0.20(0.02) 0.42(0.04) 0.99(0.01) 0.50(0.04) 0.30(0.03)
FPR 0.05(0.01) 0.10(0.01) 0.09(0.01) 0.05(0.01) 0.08(0.01) 0.08(0.01)
Frobenius 3.77(0.05) 6.23(1.23) 4.98(0.01) 3.77(0.05) 4.98(0.16) 5.00(0.01)

srrr TPR 0.95(0.01) 0.01(0.01) 0.10(0.02) 0.95(0.01) 0.14(0.02) 0.04(0.01)
FPR 0.12(0.01) 0.01(0.01) 0.01(0.01) 0.12(0.01) 0.02(0.01) 0.01(0.01)
Frobenius 3.78(0.05) 3.17(0.06) 3.58(0.06) 3.78(0.05) 4.05(0.05) 4.23(0.05)

hubersrrr TPR 0.95(0.01) 0.99(0.01) 0.97(0.01) 0.95(0.01) 0.90(0.02) 0.82(0.03)
FPR 0.13(0.01) 0.11(0.01) 0.15(0.01) 0.13(0.01) 0.13(0.01) 0.12(0.01)

NOTE: Three distributions of random noise are considered: normal, t, and log-normal. We also considered contaminating 5% or 10% of the elements of Y. We report the
mean (and standard error) of the true and false positive rates, and the difference between Â and A∗ under Frobenius norm, averaged over 100 datasets.

Table 4. Results for the case when A∗ is sparse and rank two in the high-dimensional setting with n = 150, p = 200, and q = 10.

Rank of A∗ Random noise Data contamination

Methods Normal t-dist Log-normal 0% 5% 10%

r4 Frobenius 28.83(0.28) 24.13(0.79) 31.32(0.42) 28.83(0.28) 32.58(0.46) 40.96(0.88)
Frobenius 3.98(0.06) 45.53(9.54) 10.00(0.71) 3.98(0.06) 6.79(0.19) 10.29(0.34)

SiER TPR 0.93(0.01) 0.35(0.09) 0.69(0.03) 0.93(0.01) 0.79(0.02) 0.64(0.03)
FPR 0.05(0.01) 0.09(0.01) 0.06(0.01) 0.05(0.01) 0.05(0.01) 0.07(0.01)
Frobenius 4.66(0.05) 9.37(1.21) 7.47(0.09) 4.66(0.05) 7.32(0.06) 7.92(0.05)

srrr TPR 0.96(0.01) 0.06(0.02) 0.42(0.03) 0.96(0.01) 0.54(0.02) 0.25(0.02)
FPR 0.16(0.01) 0.01(0.01) 0.04(0.01) 0.16(0.01) 0.07(0.01) 0.03(0.01)
Frobenius 4.67(0.05) 4.02(0.06) 4.43(0.07) 4.67(0.05) 5.02(0.06) 5.32(0.06)

hubersrrr TPR 0.96(0.01) 0.99(0.01) 0.97(0.01) 0.96(0.01) 0.94(0.01) 0.93(0.01)
FPR 0.16(0.01) 0.16(0.01) 0.18(0.01) 0.16(0.01) 0.16(0.01) 0.16(0.01)

NOTE: Other details are as in Table 3.

We see that for Gaussian random noise, SiER has the lowest
estimation error, followed by hubersrrr and srrr. We note
that hubersrrr and srrr have similar results, indicating
that there is little loss of efficiency when there are no outliers.
However, in scenarios in which the random noise is heavy-
tailed, hubersrrr has high TPR, low FPR, and low Frobenius
norm compared to all of the other methods. In fact, we see that
when the random noise is heavy-tailed, the TPR and FPR of
srrr and SiER are very low. We see similar performance for
the casewhen the data are contaminated inTable 4. These results
suggest that hubersrrr should be preferred in all scenarios
since it allows accurate estimation ofA∗ when the randomnoise
are heavy-tailed, or under data contamination. Moreover, there

is little loss of efficiency compared to srrr and SiER when
there are no outliers.

4.3. Phase Transition Phenomenon

Similar to Section 4.2, we generate the response matrix Y =
XA∗+Ewith a sparse rank twomatrixA∗ = u1vT1 +u2vT2 , where
u1 = (1.5T4 , 0Tp−4)

T, v1 = (1.5T4 , 0Tq−4)
T, u2 = (0T2 , 1.5T4 , 0Tp−6)

T,
and v2 = (0T2 , 1.5T4 , 0Tq−6)

T. To validate the phase transition
behavior, we generate each element of the randomnoiseE froma
tdf distribution with degrees of freedom df. The tdf distribution
has a finite (1 + δ)th moment provided that the degrees of
freedom is larger than 1+δ.We take df = {1.5, 1.6, . . . , 3.5}. The
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Figure 1. Estimation error for Â under the Frobenius and nuclear norm across a range of δ, averaged over 200 datasets. The black solid line is the estimation error for Â and
the gray dash line is the theoretical bound.

Figure 2. Singular values for Â averaged over 100 datasets. The left and right panels present results for simulation settings with rank(A∗) = 1 and rank(A∗) = 2,
respectively. The black, blue, and red lines correspond to the results for the case when p = 200 and n = {150, 500, 1000}, respectively.

differences between Â and A∗ under the Frobenius and nuclear
norm across different values of δ, averaged over 200 replications,
are reported in Figure 1 for the casewhen n = 400, p = 500, and
q = 10. We also calculate the theoretical bound as a function of
δ, that is, ν1/min(1+δ,2)

δ

{
log(pq)/n

}min{δ/(1+δ),1/2}, where we set
νδ = 20 to obtain the curves in Figure 1.

From Figure 1, we see that the curve obtained theoretically
matcheswith the estimation error of Âunder both the Frobenius
norm and nuclear norm, across a range of δ. In particular, we
observe that there is a phase transition phenomenon: when δ <

1, the estimation error decreases as δ increases; when δ ≥ 1, the
estimation error under both Frobenius and nuclear norms are
flat even when we increase δ.

4.4. Rank Selection Consistency

We consider the simulation setting in Section 4.2 with random
noise simulated from the t-distribution with degrees of freedom
1.5. The top 10 singular values for Âobtained fromour proposed
method with n = {150, 500, 1000} and p = 200 are plotted in

Figure 2. We see from the left panel of Figure 2 that the largest
singular value of Â is estimated to be large and the rest of the
singular values are approximately zero when rank(A∗) = 1.
On the other hand, when rank(A∗) = 2, our proposed method
estimates both the first and second largest singular value to be
significantly different from zero, while the rest of the singular
values are estimated to be approximately zero. These results
suggest that the proposed estimator can estimate the rank ofA∗
quite accurately.

5. Data Application

We apply the proposed robust sparse reduced rank regression
to the Arabidopsis thaliana dataset, which consists of gene
expression measurements for n = 118 samples (Rodrígues-
Concepción and Boronat 2002; Wille et al. 2004; Ma, Gong, and
Bohnert 2007; Tan, Witten, and Shojaie 2015; She and Chen
2017). It is known that isoprenoids play many important roles
in biochemical functions such as respiration, photosynthesis,
and regulation of growth in plants. Here, we explore the
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Figure 3. Scatterplots of the leading right singular vectors of X̂Ahubersrrr and X̂Asrrr .

connection between two isoprenoid biosynthesis pathways and
some downstream pathways.

Similar to She and Chen (2017), we treat the p = 39 genes
from two isoprenoid biosynthesis pathways as the predictors,
and treat the q = 795 genes from 56 downstream pathways
as the response. Thus, X ∈ R

118×39 and Y ∈ R
118×795, and

we are interested in fitting the model Y = XA + E. We scale
each element of X such that maxi,j |Xij| = 1, and standardize
each column of Y to have mean zero and standard deviation
one.

In Section 4.2, we illustratedwith numerical studies that if the
response variables are heavy-tailed, sparse reduced rank regres-
sion with squared error loss will lead to incorrect estimates. We
now illustrate the difference between solving (4) withHuber loss
and squared error loss. We set γ = 3, and pick λ such that there
are 1000 nonzeros in the estimated coefficient matrix. For the
robust method, we set the robustification parameter to equal
τ = 3 for simplicity. In principle, this quantity can be chosen
using cross-validation.

Let Âhubersrrr and Âsrrr be the estimated regression
coefficients for the robust and nonrobust methods, respectively.
To measure the difference between the two approaches in
terms of regression coefficients and prediction, we compute
the quantities ||Âhubersrrrst − Âsrrr||F/||Âhubersrrr||F ≈
37% and ||XÂhubersrrr − XÂsrrr||F/||XÂhubersrrr||F
≈ 35%.

Figure 3 displays scatterplots of the right singular vectors of
XÂsrrr against the right singular vectors of XÂhubersrrr. We
see that while the first singular vectors are similar between the
two methods, the second and third singular vectors are very
different. These results suggest that the regression coefficients
andmodel predictions can be quite different between robust and
nonrobust methods when there are outliers, and that care needs
to be taken during model fitting.

Next, we assess the prediction accuracy of our proposed
method under both Huber loss and squared error loss. Specif-
ically, we split the data into training set with ntrain = 100 and
test set with ntest = 18. Then, we fit the proposed method on
the training set with tuning parameters selected using cross-
validation similar to that of described in Section 4, and evaluate
the prediction accuracy on the test set.We repeat this procedure
1000 times. The prediction error under the Huber and squared
error loss are 8836 and 8907, with standard errors 63 and 64,

respectively. The improvement for using the Huber loss is mild
in this dataset,mainly due to the fact that the outliers themselves
are not very large. To further illustrate the advantage of the
Huber loss, we repeat the aforementioned analysis with one
entry of the response matrix perturbed with the number 50.
The prediction error are now 8837 and 9115 for the Huber
loss and squared error loss, with a standard error of 63 and 66,
respectively. In summary, we see that the prediction error under
the Huber loss does not change since it is robust to outliers,
whereas the prediction error under squared error loss increases
significantly.

6. Discussion

We propose robust sparse reduced rank regression for analyzing
large, complex, and possibly contaminated data. Our proposal
is based on a convex relaxation, and is thus, computationally
tractable. We show that our proposal is statistically consis-
tent under both Frobenius and nuclear norms in the high-
dimensional setting in which p > n. By contrast, most of the
existing literature in reduced rank regression focus on predic-
tion and rank selection consistency.

Specifically, we focus on quantifying the tradeoff between
heavy-tailness of the random noise and the statistical bias.
We show that the proposed robust estimator can achieve
exponential-type deviation errors only under bounded low-
order moments. Our work offers a different perspective to
studying robustness. In particular, our framework is differ-
ent from the conventional perspective on robust statistics
under the Huber’s ε-contamination model, which focuses
on developing robust procedures with a high breakdown
point (Huber 1964). The breakdown point of an estimator
is defined roughly as the proportion of arbitrary outliers an
estimator can tolerate before the estimator produces arbitrarily
large estimates, or breaks down (Hampel 1971). Under the
conventional perspective, the proposed method, similar to
that of the classical Huber regression, has a breakdown point
of 1/n, when both features and responses can be arbitrarily
contaminated. We leave the theoretical investigations of robust
sparse reduced rank regression with nonconvex truncated
losses, that may potentially have resistant estimation, for future
work.



JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION 11

Supplementary Materials

The online supplementary materials collect an ADMM algorithm, the
proofs for all the theoretical results.
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