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a b s t r a c t

Quantile regression is a powerful tool for learning the relationship between a response
variable and a multivariate predictor while exploring heterogeneous effects. This paper
focuses on statistical inference for quantile regression in the ‘‘increasing dimension"
regime. We provide a comprehensive analysis of a convolution smoothed approach that
achieves adequate approximation to computation and inference for quantile regression.
This method, which we refer to as conquer, turns the non-differentiable check function
into a twice-differentiable, convex and locally strongly convex surrogate, which admits
fast and scalable gradient-based algorithms to perform optimization, and multiplier
bootstrap for statistical inference. Theoretically, we establish explicit non-asymptotic
bounds on estimation and Bahadur–Kiefer linearization errors, from which we show that
the asymptotic normality of the conquer estimator holds under a weaker requirement
on dimensionality than needed for conventional quantile regression. The validity of mul-
tiplier bootstrap is also provided. Numerical studies confirm conquer as a practical and
reliable approach to large-scale inference for quantile regression. Software implementing
the methodology is available in the R package conquer.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

Quantile regression (QR) is a useful statistical tool for modeling and inferring the relationship between a scalar response
y and a p-dimensional predictor x (Koenker and Bassett, 1978). Compared to the least squares regression that focuses on
modeling the conditional mean of y given x, QR allows modeling of the entire conditional distribution of y given x, and thus
provides valuable insights into heterogeneity in the relationship between x and y. Moreover, quantile regression is robust
against outliers and can be performed for skewed or heavy-tailed response distributions without correct specification of
the likelihood. These advantages make QR an appealing method to explore data features that are invisible to the least
squares regression. We refer to Koenker (2005) and Koenker et al. (2017) for an extensive overview of QR from methods,
theory, computation, to various extensions under complex data structures.

Quantile regression involves a convex optimization problem with a piecewise linear loss function, also known as the
check function. One can reformulate the QR problem as a linear program (LP), solvable by the Frisch–Newton algorithm
with an average-case computational complexity that grows as a cubic function of p, i.e., OP(n1+αp3 log n) for some constant
α ∈ (0, 1/2) (Portnoy and Koenker, 1997), where n is the sample size and p is the parametric dimension. However, when
applied to large-scale problems—both n and p are large, QR computation via LP reformulation tends to be slow or too
memory-intensive. To better appreciate such a challenge, we take the empirical study of U.S. equities from Gu et al.
2020) as an example. The dataset consists of monthly total individual equity returns, which begins in March 1957 and
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nds in December 2016, from CRSP for all firms listed in the NYSE, AMEX, and NASDAQ. Within this span of 60 years,
he average number of stocks considered is around 6200 per month. After processing, the number of observations (over
0 years) in the entire panel exceeds 4 million, and the number of stock-level covariates is 920. Using half of the data
1957–1986) as the training sample, the training sample size is still as large as 2 million. Even with preprocessing, the
nterior point QR solver in R (Koenker, 2019) may either run out of memory or take too much time on a personal computer.
his shortcoming arguably makes QR less attractive compared to various machine learning tools. We refer to Chapter 5
f Koenker et al. (2017) for an overview of the prevailing computational methods for quantile regression, such as simplex-
ased algorithms (Barrodale and Roberts, 1974; Koenker and d’Orey, 1987), interior point methods (Portnoy and Koenker,

1997), and alternating direction method of multipliers, among other first-order proximal methods (Parikh and Boyd, 2014).
We consider conducting large-scale inference for quantile regression under the ‘‘increasing dimension’’ regime, namely,

the dimension p = pn is subject to the growth condition p ≍ na for some a ∈ (0, 1). Two general principles have been
idely used to suit this purpose. The first uses a nonparametric estimate of the asymptotic variance (Gutenbrunner and

urečková, 1992) that involves the conditional density of the response given the covariates, yet such an estimate can be
airly unstable. Even if the asymptotic variance is well estimated, its approximation accuracy to the finite-sample variance
epends on the design matrix and the quantile level. Resampling methods, on the other hand, provide a more reliable
pproach to inference for QR under a wide variety of settings (Parzen et al., 1994; He and Hu, 2002; Kocherginsky et al.,
005; Feng et al., 2011). Inevitably, the resampling approach requires repeatedly computing QR estimates up to thousands
f times, and therefore is unduly expensive for large-scale data.
Theoretically, valid statistical inference is often justified by asymptotic normal approximations to QR estimators. The

ahadur–Kiefer representation of the nonlinear QR estimators are essential to this end, as shown in Arcones (1996) and He
nd Shao (1996). In large-p (non)asymptotic settings in which the parametric dimension p may tend to infinity with the

sample size, we refer to Welsh (1989), He and Shao (2000), Belloni et al. (2019), and Pan and Zhou (2020) for normal
approximation results of the QR estimators under fixed and random designs. The question of how large p can be relative
to n to ensure asymptotic normality has been addressed by those authors. It is now recognized that we may have to pay
a price here as compared to M-estimators with smooth loss functions that are at least twice continuously differentiable.

To circumvent the non-differentiability of the QR loss function, Horowitz (1998) proposed to smooth the indicator
part of the check function via the survival function of a kernel. This smoothing method, which we refer to as Horowitz’s
smoothing throughout, has been widely used for various QR-related problems with complex data (Wang et al., 2012a;
Wu et al., 2015; Galvao and Kato, 2016; de Castro et al., 2019; Chen et al., 2019). However, Horowitz’s smoothing gains
smoothness at the cost of convexity, which inevitably raises optimization-related issues. In general, computing a global
minimum of a non-convex function is intractable: finding an ϵ-suboptimal point for a k-times continuously differentiable
function f : Rp

→ R requires at least as many as (1/ϵ)p/k evaluations of the function and its first k derivatives (Nemirovski
and Yudin, 1983). As we shall see from the numerical studies in Section 5, the convergence of gradient-based algorithms
can be relatively slow for high and low quantile levels. To address the aforementioned issue, Fernandes et al. (2021)
roposed a convolution-type smoothing method that yields a convex and twice differentiable loss function, and studied
he asymptotic properties of the smoothed estimator when p is fixed. To distinguish this approach from Horowitz’s
moothing, we adopt the term conquer for convolution-type smoothed quantile regression.
In this paper, we first provide an in-depth statistical analysis of conquer under various nonstandard asymptotics

ettings in which p increases with n. Our results reveal a key feature of the smoothing parameter, often referred to
as the bandwidth: the bandwidth adapts to both the sample size n and dimensionality p, so as to achieve a tradeoff
etween statistical accuracy and computational stability. Since the convolution smoothed loss function is globally convex
nd locally strongly convex, we propose an efficient gradient descent algorithm with the Barzilai–Borwein stepsize and
Huber-type initialization. The proposed algorithm is implemented via RcppArmadillo (Eddelbuettel and Sanderson,
014) in the R package conquer. We next focus on large-scale statistical inference (hypothesis testing and confidence
stimation) with large p and larger n. We propose a bootstrapped conquer method that has reduced computational
omplexity when the conquer estimator is used as initialization. Under appropriate restrictions on dimension, we establish
he consistency (or concentration), Bahadur representation, asymptotic normality of the conquer estimator as well as the
alidity of the bootstrap approximation. In the following, we provide more details on the computational and statistical
ontributions of this paper.
Theoretically, by allowing p to grow with n, the ‘complexity’ of the function classes that we come across in the analysis

lso increases with n. Conventional asymptotic tools for proving the bootstrap validity are based on weak convergence
rguments (van der Vaart and Wellner, 1996), which are not directly applicable in the increasing dimension setting,
specially with a non-differentiable loss. In this paper we turn to a more refined and self-contained analysis, and prove
new local restricted strong convexity (RSC) property for the empirical smoothed quantile loss. This validates the key
erit of convolution-type smoothing, i.e., local strong convexity. The smoothing method involves a bandwidth, denoted
y h. Theoretically, we show that with sub-exponential random covariates (relaxing the bounded covariates assumption
n Fernandes et al., 2021), conquer exhibits an ℓ2-error of order

√
(p+ t)/n+ h2 with probability at least 1− 2e−t . When

is of order {(p+ log n)/n}γ for any γ ∈ [1/4, 1/2], the conquer estimation is first-order equivalent to QR. Under slightly
ore stringent sub-Gaussian condition on the covariates, we show that the Bahadur–Kiefer linearization error of conquer

s of order (p + t)/(nh1/2) + h3/2√(p+ t)/n + h4 with probability at least 1 − 3e−t . Based on such a representation, we
stablish a Berry–Esseen bound for linear functionals of conquer, which lays the theoretical foundation for testing general
2



ECONOM: 5168

X. He, X. Pan, K.M. Tan et al. Journal of Econometrics xxx (xxxx) xxx

(
v

l 1
I 2
p 3
P 4
u 5

6
7
8
9

10
11
12
13
14
15
16
17
18
19

a 20
i 21
c 22
i 23
o 24

N 25
v 26
d 27
l 28
∥ 29
b 30
a 31
a 32
a 33
Fig. 1. A numerical comparison between conquer and QR. The latter is implemented by the R package quantreg using the ‘‘pfn’’ method. Panels
a) and (b) display, respectively, the ‘‘estimation error and its standard deviation versus sample size’’ and ‘‘elapsed time and its standard deviation
ersus sample size’’ as the size of the problem increases.

inear hypotheses, encompassing covariate-effect analysis, analysis of variance, and model comparisons, to name a few.
t is worth noting that with a properly chosen h, the linear functional of conquer is asymptotically normal as long as
8/3/n → 0, which improves the best known growth condition on p for standard QR (Welsh, 1989; He and Shao, 2000;
an and Zhou, 2020). We attribute this gain to the effect of smoothing. Under similar conditions, we further establish
pper bounds on both estimation and Bahadur–Kiefer linearization errors for the bootstrapped conquer estimator.
To better appreciate the computational feasibility of conquer for large-scale problems, we compare it with standard

QR on large synthetic datasets, where the latter is implemented by the R package quantreg (Koenker, 2019) using the
Frisch–Newton approach after preprocessing ‘‘pfn’’. We generate independent data vectors {yi, xi}ni=1 from a linear model
yi = β∗0 + xT

i β
∗
+ εi, where (β∗0 ,β

∗T)T = (1, . . . , 1)T ∈ Rp+1, xi ∼ Np(0, I) and εi ∼ t2. We report the estimation error
and elapsed time for increasing sample sizes n ∈ {1000, 5000, 10000, . . . , 100000} and dimension p = ⌊n1/2

⌋, the largest
integer that is less than or equal to n1/2. Fig. 1 displays the average estimation error, average elapsed time and their
standard deviations based on 100 Monte Carlo samples. This experiment shows promise of conquer as a practically useful
tool for large-scale quantile regression analysis. More empirical evidence will be given in the latter section.

The rest of the paper is organized as follows. We start with a brief review of linear quantile regression and the
convolution-type smoothing method in Section 2. Explicit forms of the smoothed check functions are provided for
several representative kernel functions in nonparametric statistics. We introduce the multiplier bootstrap for statistical
inference in Section 2.3. In Section 4, we provide a comprehensive theoretical study of conquer from a non-asymptotic
viewpoint, which directly leads to array asymptotic results. Specifically, the bias incurred by smoothing the quantile
loss is characterized in Section 4.1. In Section 4.2, we establish the rate of convergence, Bahadur–Kiefer representation,
nd Berry–Esseen bound for conquer in a large-p and larger-n regime. Results for its bootstrap counterpart are provided
n Section 4.3. A Barzilai–Borwein gradient-based algorithm with a Huber-type warm start is detailed in Section 3. We
onclude the paper with an extensive numerical study in Section 5 to illustrate the finite-sample performance of conquer
n large-scale quantile regression analysis. We defer the proofs of all theoretical results as well as the full details of the
ne-step conquer to online supplementary materials.

otation. For every integer k ≥ 1, we use Rk to denote the k-dimensional Euclidean space. The inner product of any two
ectors u = (u1, . . . , uk)T, v = (v1, . . . , vk)T ∈ Rk is defined by uTv = ⟨u, v⟩ =

∑k
i=1 uivi. We use ∥ · ∥p (1 ≤ p ≤ ∞) to

enote the ℓp-norm in Rk: ∥u∥p = (
∑k

i=1 |ui|
p)1/p and ∥u∥∞ = max1≤i≤k |ui|. Throughout this paper, we use bold capital

etters to represent matrices. For k ≥ 2, Ik represents the identity matrix of size k. For any k×k symmetric matrix A ∈ Rk×k,
A∥2 denotes the operator norm of A. If A is positive semidefinite, we use ∥·∥A to denote the vector norm linked to A given
y ∥u∥A = ∥A1/2u∥2, u ∈ Rk. For r ≥ 0, define the Euclidean ball and unit sphere in Rk as Bk(r) = {u ∈ Rk

: ∥u∥2 ≤ r}
nd Sk−1

= ∂Bk(1) = {u ∈ Rk
: ∥u∥2 = 1}, respectively. For two sequences of non-negative numbers {an}n≥1 and {bn}n≥1,

n ≲ bn indicates that there exists a constant C > 0 independent of n such that an ≤ Cbn; an ≳ bn is equivalent to bn ≲ an;
n ≍ bn is equivalent to an ≲ bn and bn ≲ an.
3
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. Smoothed quantile regression

.1. The linear quantile regression model

Given a univariate response variable y ∈ R and a p-dimensional covariate vector x = (x1, . . . , xp)T ∈ Rp with x1 ≡ 1,
the primary goal here is to learn the effect of x on the distribution of y. Let Fy|x(·) be the conditional distribution function
of y given x. The dependence between y and x is then fully characterized by the conditional quantile functions of y given
x, denoted as F−1y|x (τ ), for 0 < τ < 1. We consider a linear quantile regression model at a given τ ∈ (0, 1), that is, the τ th
conditional quantile function is

F−1y|x (τ ) = ⟨x,β
∗(τ )⟩, (2.1)

where β∗(τ ) = (β∗1 (τ ), . . . , β
∗
p (τ ))

T
∈ Rp is the true quantile regression coefficient.

Let {(yi, xi)}ni=1 be a random sample from (y, x). The standard quantile regression estimator (Koenker and Bassett, 1978)
s then given as

β̂(τ ) ∈ min
β∈Rp

Q̂ (β) = min
β∈Rp

1
n

n∑
i=1

ρτ (yi − ⟨xi,β⟩), (2.2)

here ρτ (u) = u{τ −1(u < 0)} is the τ -quantile loss function, also referred to as the check function. Statistical properties
f β̂(τ ) have been extensively studied. We refer the reader to Koenker (2005) and Koenker et al. (2017) for more details.

.2. Smoothed estimation equation and convolution-type smoothing

Let Q (β) = E{Q̂ (β)} be the population quantile loss function. Under mild conditions, Q (·) is twice differentiable and
trongly convex in a neighborhood of β∗ with Hessian matrix J := ∇2Q (β∗) = E{fε|x(0)xxT

}, where ε = y − ⟨x,β∗(τ )⟩
is the random noise and fε|x(·) is the conditional density of ε given x. In contrast, the empirical quantile loss Q̂ (·) is
ot differentiable at β∗, and its ‘‘curvature energy’’ is concentrated at a single point. This is substantially different from
ther widely used loss functions that are at least locally strongly convex, such as the squared or logistic loss. The non-
moothness property not only brings challenge to theoretical analysis, but more importantly, also prevents gradient-based
ptimization methods from being efficient. In his seminal work, Horowitz (1998) proposed to directly smooth the check

function ρτ (·) to obtain

ℓHoroh (u) = u
{
τ − G(−u/h)

}
, (2.3)

where G(·) is a smooth function that takes values between 0 and 1, and h > 0 is a smoothing parameter/bandwidth.
However, Horowitz’s smoothing gains smoothness at the cost of convexity, which inevitably raises optimization issues
especially when p is large. On the other hand, by the first-order condition, the population parameter β∗ satisfies the
moment condition

∇Q (β∗) = E
[{

1(y < xTβ)− τ
}
x
] ⏐⏐⏐

β=β∗
= 0.

This property motivates a smoothed estimating equation (SEE) estimator (Whang, 2006; Kaplan and Sun, 2017), defined
as the solution to the smoothed moment condition

1
n

n∑
i=1

[
G
{
(⟨xi,β⟩ − yi)/h

}
− τ

]
xi = 0. (2.4)

Let K (·) be a kernel function that integrates to one, and h > 0 be a bandwidth. Throughout the paper, we write

Kh(u) = h−1K (u/h), Kh(u) = K(u/h) and K(u) =
∫ u

−∞

K (v) dv, u ∈ R. (2.5)

rom an M-estimation viewpoint, the aforementioned SEE estimator can be equivalently defined as a minimizer of the
mpirical smoothed loss function

Q̂h(β) =
1
n

n∑
i=1

ℓh(yi − ⟨xi,β⟩) with ℓh(u) = (ρτ ∗ Kh)(u) =
∫
∞

−∞

ρτ (v)Kh(v − u) dv, (2.6)

here ∗ denotes the convolution operator. Therefore, as stated in the Introduction, we refer to the aforementioned
moothing method as conquer. The ensuing conquer estimator is given by

β̂h = β̂h(τ ) ∈ argmin
β∈Rp

Q̂h(β). (2.7)

he key difference between the conquer loss (2.6) and Horowitz’s loss (2.3) is that the former is globally convex, while

orowitz’s loss is not. This is illustrated in Fig. 2.

4
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Fig. 2. Visualization of the quantile loss in (2.2), conquer loss (2.6), and Horowitz’s smoothed loss (2.3) with Gaussian and uniform kernels,
respectively.

As we shall see later, the ideal choice of bandwidth should adapt to the sample size n and dimension p, since the
uantile level τ is prespecified and fixed. Thus, the dependence of β̂h and Q̂h(·) on τ will be assumed without display.
ommonly used kernel functions include: (a) uniform kernel K (u) = (1/2)1(|u| ≤ 1), (b) Gaussian kernel K (u) = φ(u) :=
2π )−1/2e−u

2/2, (c) logistic kernel K (u) = e−u/(1+ e−u)2, (d) Epanechnikov kernel K (u) = (3/4)(1− u2)1(|u| ≤ 1), and (e)
riangular kernel K (u) = (1−|u|)1(|u| ≤ 1). Explicit expressions of the corresponding smoothed loss function ρτ ∗Kh will
e given in Section 3.
The convolution-type kernel smoothing yields an objective function β ↦→ Q̂h(β) that is twice continuously differentiable

ith gradient and hessian matrix

∇Q̂h(β) =
1
n

n∑
i=1

{
Kh
(
⟨xi,β⟩ − yi

)
− τ

}
xi and ∇2Q̂h(β) =

1
n

n∑
i=1

Kh(yi − ⟨xi,β⟩)xixT
i , (2.8)

espectively, where Kh(·) = K(·/h) is defined in (2.5). Provided that K is non-negative, Q̂h(·) is a convex function for any
> 0, and β̂h = β̂h(τ ) satisfies the first-order condition ∇Q̂h (̂βh) = 0. This reveals the connection between the SEE and

he conquer methods. Together, the smoothness and convexity of Q̂h(·) warrant the superior computation efficiency of
irst-order gradient based algorithms for solving large-scale smoothed quantile regressions. The computational aspect of
onquer will be discussed in Section 3.
When the dimension p is fixed, asymptotic properties of the SEE or conquer estimator have been studied by Kaplan and

Sun (2017) and Fernandes et al. (2021). The former used a higher-order kernel to deal with the instrumental variables QR
problem (see Section 2.4 for further discussions), and the latter showed that the conquer estimator has a lower asymptotic
ean squared error than Horowitz’s smoothed estimator, and also has a smaller Bahadur linearization error than the
tandard QR in the almost sure sense. The optimal order of the bandwidth based on the asymptotic mean squared error
s unveiled as a function of n. In Section 4, we will establish exponential concentration inequalities and non-asymptotic
ahadur representation for the conquer estimator, while allowing the dimension p to grow with the sample size n. Our
esults reveal a key feature of the smoothing parameter: the bandwidth should adapt to both the sample size n and
imensionality p, so as to achieve a tradeoff between statistical accuracy and computational stability.

emark 2.1. As discussed in Fernandes et al. (2021), another advantage of convolution smoothing is that it facilitates
onditional density estimation for the quantile regression process. Assume Qy(τ |x) = F−1y|x (τ ) = ⟨x,β

∗(τ )⟩ for all
∈ [τL, τU ] ⊆ (0, 1). Under mild regularity conditions, qy(τ |x) := ∂Qy(τ |x)/∂τ = 1/fy|x(⟨x,β∗(τ )⟩) exists. The inverse

onditional density function plays an important role in, for example, the study of quantile treatment effects through
odeling inverse propensity scores (Firpo, 2007; Chen et al., 2008). By the linear conditional quantile model assumption,
Qy(τ |x)/∂τ = ⟨x, ∂β∗(τ )/∂τ ⟩ for τ ∈ (τL, τU ). Recall that the conquer estimator β̂h = β̂h(τ ) satisfies the first-order
ondition ∇Q̂h (̂βh(τ )) = 0. Taking the partial derivative with respect to τ on both sides, it follows from (2.8) and the
hain rule that

∂β̂h(τ )
∂τ

=
{
∇

2Q̂h
(̂
βh(τ )

)}−1 1
n

n∑
i=1

xi =

{
1
n

n∑
i=1

Kh
(
yi − xT

i β̂h(τ )
)
xixT

i

}−1
1
n

n∑
i=1

xi.

onsequently, the inverse densities 1/fyi|xi (x
T
i β
∗(τ )) can be directly estimated by xT

i
∂β̂h(τ )
∂τ

. This bypasses the use of any
onparametric method for density estimation with fitted residuals.
5
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.3. Multiplier bootstrap inference

In this section, we consider a multiplier bootstrap procedure to construct confidence intervals for conquer. Independent
f the observed sample Xn = {(yi, xi)}ni=1, let {wi}

n
i=1 be independent and identically distributed random variables with

(wi) = 1 and var(wi) = 1. Recall that β̂h = β̂h(τ ) = minβ∈Rp Q̂h(β) is the conquer estimator. If the minimizer is not
nique, we take any of the minima as β̂h = (̂βh,1, . . . , β̂h,p)T.
The proposed bootstrap method, which dates back to Dudewicz (1992) and Barbe and Bertail (1995), is based on

eweighting the summands of Q̂h(·) with random weights wi. More specifically, define the weighted quantile loss Q̂ ♭

h :
p
→ R as

Q̂ ♭

h (β) =
1
n

n∑
i=1

wiℓh(yi − ⟨xi,β⟩), (2.9)

where ℓh(u) = (ρτ ∗ Kh)(u) is as in (2.6). The ensuing multiplier bootstrap statistic is then given by

β̂
♭

h = β̂
♭

h(τ ) ∈ argmin
β∈Θ

Q̂ ♭

h (β), (2.10)

whereΘ is a predetermined subset of Rp. If the randomweights are allowed to take negative values, the weighted quantile
loss may be non-convex. We therefore take Θ as a compact subset, such as Θ = {β ∈ Rp

: ∥β − β̂h∥2 ≤ R} for some
R ≥ 1, in order to guarantee the existence of local/global optima.

Let E∗ and P∗ be the conditional expectation and probability given the observed data Xn, respectively. Observe that
E∗{Q̂ ♭

h (β)} = Q̂h(β) for any β ∈ Rp. Consequently, we have

argmin
β∈Rp

E∗{Q̂ ♭

h (β)} = argmin
β∈Rp

Q̂h(β) = β̂h.

Intuitively, this means that β̂
♭

h is an M-estimator of β̂h in the bootstrap world. Since β̂h is also an (approximate) M-
estimator of β∗, we expect that the distribution of β̂h − β∗ can be well approximated with high probability by the
conditional distribution of β̂

♭

h − β̂h. We will establish the validity of this approximation with explicit rates in Section 4.3.
We refer to Chatterjee and Bose (2005) for a general asymptotic theory for weighted bootstrap for estimating equations,
where a class of bootstrap weights is considered. Extensions to semiparametric M-estimation can be found in Ma and
Kosorok (2005) and Cheng and Huang (2010).

To retain convexity of the loss function, non-negative random weights are preferred, such as wi ∼ Exp(1), i.e., expo-
nential distribution with rate 1, and wi = 1 + ei, where ei are independent Rademacher random variables. To compute
he bootstrap estimate β̂

♭

h, we use the same gradient-based algorithm described in Section 3, which will have a faster
onvergence rate thanks to the (provably) good initialization β̂h and the strong convexity of the smoothed loss in a
eighborhood of β̂h.
We can construct confidence intervals based on the bootstrap estimates using one of the three classical methods,

he percentile method, the pivotal method, and the normal-based method. To be specific, for each q ∈ (0, 1) and
≤ j ≤ p, define the (conditional) q-quantile of β̂♭h,j – the jth coordinate of β̂

♭

h ∈ Rp – given the observed data as
♭

j (q) = inf{t ∈ R : P∗ (̂β♭h,j ≤ t) ≥ q}. Then, for a prespecified nominal level α ∈ (0, 1), the corresponding 1− α bootstrap
ercentile and pivotal confidence intervals (CIs) for β∗j (j = 1, . . . , p) are, respectively,[

c♭j (α/2), c
♭

j (1− α/2)
]

and
[
2β̂h,j − c♭j (1− α/2), 2β̂h,j − c♭j (α/2)

]
.

umerically, c♭j (q) (q ∈ {α, 1 − α/2}) can be calculated with any specified precision by the simulation. In the R package
onquer, the default number of bootstrap replications is set as B = 1000.
In the next section, we will present a finite-sample theoretical framework for convolution-type smoothed quantile

egression, including the concentration inequality and non-asymptotic Bahadur representation for both the conquer
stimator (2.7) and its bootstrap counterpart (2.10) using Rademacher multipliers. As a by-product, a Berry–Esseen-type
nequality (see Theorem 4.3) states that, under certain constraints on the (growing) dimensionality and bandwidth, the
istribution of any linear projection of β̂h converges to a normal distribution as the sample size increases to infinity.
nformally, for any given deterministic vector a ∈ Rp, the scaled statistic n1/2

⟨a, β̂h − β∗⟩ is asymptotically normally
istributed with asymptotic variance σ 2

0 (a) := τ (1 − τ ) aTJ−1Σ J−1a, where Σ is the population covariance matrix of
the covariates x. Another interesting implication from our theoretical analysis is that the unit variance requirement
var(wi) = 1 for the random weight is not necessary to ensure (asymptotically) valid bootstrap inference after a proper
variance adjustment. See Remark 4.7 for more details.

To make inference based on such asymptotic results, we need to consistently estimate the asymptotic variance.
Fernandes et al. (2021) suggested the following estimators

Ĵh := ∇2Q̂h (̂βh) =
1
nh

n∑
K (̂εi/h) · xxT

i and V̂h :=
1
n

n∑{
Kh(−̂εi)− τ

}2xixT
i (2.11)
i=1 i=1

6
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f J and τ (1 − τ )Σ , respectively, where ε̂i = yi − ⟨xi, β̂h⟩ are fitted residuals. The ensuing 1 − α normal-based CIs are
iven by β̂h,j ±Φ

−1(1− α/2) · n−1/2 (̂J−1h V̂ĥJ−1h )1/2jj , j = 1, . . . , p. The normal approximations to the CI may suffer from the
ensitivity to the smoothing needed to estimate the conditional densities, namely, the matrix J = E{fε|x(0)xxT

}. When p is
large, inverting the estimated density matrix Ĵh may be numerically unstable. This is typically true when τ is in the upper
or lower tail. See Section 5.3 for a numerical comparison between normal approximation and bootstrap calibration for
confidence construction at high and low quantile levels. As we shall see, the normal-based CIs can be exceedingly wide
and thus inaccurate under this scenario.

2.4. Connections to instrumental variable quantile regression

This work focuses on large-scale estimation and inference for linear quantile regression with many exogenous
covariates. However, in many economic applications, some regressors of interest (e.g., education, prices) are endogenous,
making conventional quantile regression inconsistent for estimating causal quantile effects. To address this problem, Cher-
ozhukov and Hansen (2005) proposed an instrumental variable quantile regression (IVQR) model, which has become a
opular tool for estimating quantile effects with endogenous covariates. Due to the non-convex and non-smooth nature of
he problem, there is a burgeoning literature on estimation and inference of IVQR models and the related computational
ssues, dating back to Chen et al. (2003) and Chernozhukov and Hansen (2006). We refer to Chernozhukov et al. (2020) –
hapter 9 of Koenker et al. (2017) – for an overview of IVQR modeling, from identification conditions to estimation and
nference. More specifically, see Horowitz and Lee (2007) and Chen and Pouzo (2009) for non- and semi-parametric IVQR
stimation; Kaplan and Sun (2017) and de Castro et al. (2019) for smoothed methods; and Chen and Lee (2018) and Zhu
2018) for methods based on reformulation as mixed integer optimization (MIO), Machado and Santos Silva (2018) for
oment-based estimators, and Kaido and Wüthrich (2021) for a decentralization approach which decomposes the IVQR
stimation problem into a set of conventional QR sub-problems.
The convolution smoothing method studied in this paper can be directly linked to the SEE approach in Kaplan and

un (2017). The latter addressed the more challenging IVQR problem, and derived both asymptotic mean squared error
nd normality for the SEE estimator when the dimension is fixed. Our study complements that of Kaplan and Sun (2017)
n two ways. First, we provide a systematic analysis for smoothed (conventional) QR from an M-estimation viewpoint
nder the growing dimension setting. Our results provide explicit finite-sample bounds for the estimation error, Bahadur
inearization error as long as their (multiplier) bootstrap counterparts. Asymptotic validity of the multiplier bootstrap is
lso rigorously established. Secondly, we propose tailored computational methods for smoothed QR computation, which
ely on the use of non-negative kernels and the resulting local strong convexity. Compared with generic optimization
oolboxes for solving linear programs, the computational efficiency of the gradient-based algorithm for conquer is
onsiderably improved, especially for large-scale problems with many (exogenous) regressors and massive sample size. A
otential application is empirical asset pricing via quantile regression, extending the existing machine learning tools for
verage return forecasting (Gu et al., 2020).
In the presence of both exogenous and endogenous covariates, the advantage of smoothing is diluted because the non-

onvexity issue prevails. The MIO-based IVQR estimation procedure can be implemented by the Gurobi commercial MIO
olver, which is free for academic use. The MIO solver converges fast when the number of endogenous covariates varies
n the range of 5 and 20 (Zhu, 2018). The MIO solver in moderate dimensions typically takes much longer to complete
he optimization: optimal solutions may be found in a few seconds, but it can take much longer to certify optimality via
he lower bounds (Bertsimas et al., 2016).1

Recently, Kaido and Wüthrich (2021) proposed a ‘‘decentralized’’ approach for IVQR estimation. The idea is to
ecompose the non-convex program into pd + 1 conventional (weighted) quantile regression sub-problems. The IVQR
stimator is then characterized as a fixed point of such sub-problems. Since pd – the number of endogenous variables
is typically small, the overall computational complexity depends primarily on the QR fitting step. When the number
f exogenous variables, px, is large in the range of hundreds to thousands, the proposed framework in this paper, along
ith the accompanying software conquer, provides a viable option to further reduce the computational cost of the above

VQR estimation method. We leave a rigorous theoretical investigation (when pd is fixed, px = px(n)→∞ and px/n→ 0
s n→∞) as well as empirical applications with many (exogenous) regressors to future work.

. Computational methods for conquer

To solve optimization problems (2.7) and (2.10) with non-negative weights, arguably the simplest algorithm is a
anilla gradient descent algorithm (GD). For a prespecified τ ∈ (0, 1) and bandwidth h > 0, recall that Q̂h(β) =
1/n)

∑n
i=1 ℓh(yi − ⟨xi,β⟩). Starting with an initial value β0

∈ Rp, at iteration t = 0, 1, 2, . . ., GD computes

βt+1
= βt

− ηt · ∇Q̂h(βt ) = βt
−
ηt

n

n∑
i=1

{
Kh(⟨xi,βt

⟩ − yi)− τ
}
xi, (3.1)

1 MIO solvers provide both feasible solutions and lower bounds to the optimal value. As the MIO solver progresses toward the optimal solution,

the lower bounds improve and provide an increasingly better guarantee of suboptimality. It is the lower bounds that take so long to converge.
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here ηt > 0 is the stepsize. In the classical GD method, the stepsize is usually obtained by employing line search
echniques. However, line search is computationally intensive for large-scale settings. One of the most important issues
n GD is to determine a proper update step ηt decay schedule. A common practice in the literature is to use a
iminishing stepsize or a best-tuned fixed stepsize. Neither of these two approaches can be efficient, at least compared
o the Newton–Frisch algorithm with preprocessing (Portnoy and Koenker, 1997). Recall that the smoothed loss Q̂h(·)
is twice differentiable with Hessian ∇2Q̂h(β) = (1/n)

∑n
i=1 Kh(yi − ⟨xi,β⟩)xixT

i . It is therefore natural to employ the
ewton–Raphson method, which at iteration t would read

βt+1
= βt

+ dt with dt
:= −

{
∇

2Q̂h(βt )
}−1
∇Q̂h(βt ). (3.2)

n practice, the Newton method is often paired with Armoji stepsize: choose a stepsize λt = max{1, 1/2, 1/4, . . .} such
hat Q̂h(βt )− Q̂h(βt

+ λtdt ) ≥ −cλt∇Q̂h(βt )dt , where c ∈ (0, 1/2). Then redefine the current iterate as βt+1
= βt
+ λtdt .

ince such a backtracking line search requires evaluations of the loss function itself, in the following remark we present
he explicit expressions of the convolution smoothed check function for several commonly used kernels.

emark 3.1. Recall that the check function can be written as ρτ (u) = |u|/2 + (τ − 1/2)u, which, after convolution
moothing, becomes ℓh(u) = (1/2)

∫
∞

−∞
|u+ hv|K (v) dv + (τ − 1/2)u.

• (Gaussian kernel K (u) = (2π )−1/2e−u
2/2): ℓh(u) = (h/2)ℓG(u/h)+ (τ − 1/2)u, where ℓG(u) := (2/π )1/2e−u

2/2
+ u{1−

2Φ(−u)}.
• (Logistic kernel2 K (u) = e−u/(1+ e−u)2): ℓh(u) = (h/2)ℓL(u/h)+ (τ − 1/2)u, where ℓL(u) := u+ 2 log(1+ e−u).
• (Uniform kernel K (u) = (1/2)1(|u| ≤ 1)): ℓh(u) = (h/2)ℓU(u/h) + (τ − 1/2)u, where ℓU(u) := (u2/2 + 1/2)1(|u| ≤

1)+ |u|1(|u| > 1) is a shifted Huber loss (Huber, 1973).
• (Epanechnikov kernel K (u) = (3/4)(1 − u2)1(|u| ≤ 1)): ℓh(u) = (h/2)ℓE(u/h) + (τ − 1/2)u, where ℓE(u) :=

(3u2/4− u4/8+ 3/8)1(|u| ≤ 1)+ |u|1(|u| > 1).
• (Triangular kernel K (u) = (1 − |u|)1(|u| ≤ 1)): ℓh(u) = (h/2)ℓT(u/h) + (τ − 1/2)u, where ℓT(u) := (u2

− |u|3/3 +
1/3)1(|u| ≤ 1)+ |u|1(|u| > 1).

.1. The Barzilai–Borwein stepsize

In this section, we propose to solve conquer by means of the gradient descent with a Barzilai–Borwein update
tep (Barzilai and Borwein, 1988), which we refer to as the GD-BB algorithm. Motivated by quasi-Newton methods, the
B method has been proven to be very successful in solving nonlinear optimization problems.
Computing the inverse of the Hessian when p is large is an expensive operation at each Newton step (3.2). Moreover,

n circumstances where h is small or τ is very close to 0 or 1, ∇2Q̂h(·) may have a large condition number, thus leading
o slow convergence. For this reason, many quasi-Newton methods seek a simple approximation of the inverse Hessian
atrix, say (Jt )−1, satisfying the secant equation Jtδt = g t , where

δt = βt
− βt−1 and g t

= ∇Q̂h(βt )−∇Q̂h(βt−1), t = 1, 2, . . . . (3.3)

o mitigate the computational cost of inverting a large matrix, the BB method chooses η so that η∇Q̂h(βt ) =
η−1Ip)−1∇Q̂h(βt ) ‘‘approximates’’ (Jt )−1∇Q̂h(βt ). Since Jt satisfies Jtδt = g t , it is more practical to choose η such that
1/η)δt ≈ g t or δt ≈ ηg t . Via least squares approximations, one may use η−11,t = argminα ∥αδt − g t

∥
2
2 or η2,t =

rgminη ∥δ
t
− ηg t

∥
2
2. The BB step sizes are then defined as

η1,t =
⟨δt , δt⟩

⟨δt , g t⟩
and η2,t =

⟨δt , g t
⟩

⟨g t , g t⟩
. (3.4)

onsequently, the BB iteration takes the form

βt+1
= βt

− ηℓ,t∇Q̂h(βt ), ℓ = 1 or 2. (3.5)

Note that the BB step starts at iteration 1, while at iteration 0, we compute β1 using standard gradient descent with an
initial estimate β0. The procedure is summarized in Algorithm 1. Based on extensive numerical studies, we find that at
a fixed τ , the number of iterations is insensitive to varying (n, p) combinations. Moreover, as h increases, the number
of iterations declines because the loss function is ‘‘more convex’’ for larger h. In Algorithm 1, the quantity δ > 0 is a
respecified tolerance level, ensuring that the final iterate βT satisfies ∥∇Q̂h(βT )∥2 ≤ δ. Provided that δ ≲

√
p/n, the

tatistical theory developed in Section 4 prevails. In our R package conquer, we set δ = 10−4 as the default value; this
alue can also be specified by the user.
As τ approaches 0 or 1, the Hessian matrix becomes more ill-conditioned. As a result, the step sizes computed in GD-BB

ay sometimes fluctuate drastically, causing instability of the algorithm. Therefore, in practice, we set an upper bound

2 Logistic kernel smoothed approximation of the check function dates back to Amemiya, 1982, which is used as a technical device to simplify

he analysis of the asymptotic behavior of a two-stage median regression estimator.
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Algorithm 1 Gradient descent with Barzilai–Borwein stepsize (GD-BB) for solving conquer.

Input: data vectors {(yi, xi)}ni=1, τ ∈ (0, 1), bandwidth h ∈ (0, 1), initialization β0, and gradient tolerance
.
1: Compute β1

← β0
−∇Q̂h(β0)

2: for t = 1, 2 . . . do
3: δt ← βt

− βt−1, g t
← ∇Q̂h(βt )−∇Q̂h(βt−1)

4: η1,t ← ⟨δ
t , δt⟩/⟨δt , g t

⟩, η2,t ← ⟨δt , g t
⟩/⟨g t , g t

⟩

5: ηt ← min{η1,t , η2,t , 100} if η1,t > 0 and ηt ← 1 otherwise
6: βt+1

← βt
− ηt∇Q̂h(βt )

7: end for when ∥∇Q̂h(βt )∥2 ≤ δ

for the step sizes by taking ηt = min{η1,t , η2,t , 100}, for t = 1, 2, . . .. Another case of an ill-conditioned Hessian arises
hen we have covariates with very different scales. In this case, the stepsize should be different for each covariate, and
constant stepsize will be either too small or too large for one or more covariates, which leads to slow convergence. To
ddress this issue, we scale the covariate inputs to have zero mean and unit variance before applying gradient descent.

.2. Warm start via asymmetric Huber regression

A good initialization helps reduce the number of iterations for GD, and hence facilitates fast convergence. Recall from
Remark 3.1 that with a uniform kernel, the smoothed check function is proximal to a Huber loss (Huber, 1973). Motivated
y this subtle proximity, we propose using the asymmetric Huber M-estimator as an initial estimate, and then proceed
y iteratively applying gradient descent with BB update step.
Let Hτ ,γ (u) = |τ − 1(u < 0)| · {(u2/2)1(|u| ≤ γ )+ γ (|u|− γ /2)1(|u| > γ )} be the asymmetric Huber loss parametrized

y γ > 0. The asymmetric Huber M-estimator is then defined as

β̃γ ∈ argmin
β∈Rp

L̂γ (β), where L̂γ (β) =
1
n

n∑
i=1

Hτ ,γ (yi − ⟨xi,β⟩). (3.6)

he quantity γ is a shape parameter that controls the amount of robustness. The main reason for choosing a fixed (neither
iminishing nor diverging) tuning parameter γ in Huber (1981) is to guarantee robustness toward arbitrary contamination

in a neighborhood of the model. This is at the core of the robust statistics idiosyncrasy. In particular, Huber (1981)
roposed γ = 1.35σ to gain as much robustness as possible while retaining 95% asymptotic efficiency for normally
istributed data, where σ > 0 is the standard deviation of the random noise. We estimate σ using the median absolute
eviation of the residuals at each iteration, i.e., MAD({r ti }

n
i=1) = median(|r ti −median(r ti )|).

Noting that the asymmetric Huber loss is twice continuously differentiable, convex, and locally strongly convex, we
use the GD-BB method described in the previous section to solve the optimization problem (3.6). Starting at iteration 0
with β0,0

= 0, at iteration t = 0, 1, 2, . . ., we compute

β0,t+1
= β0,t

− ηt∇L̂γ (β0,t ) = β0,t
+
ηt

n

n∑
i=1

ψτ ,γ (yi − ⟨xi,β0,t
⟩)xi (3.7)

with ηt > 0 automatically obtained by the BB method, where ψτ ,γ (u) = |τ − 1(u < 0)| · H ′τ ,γ (u) = |τ − 1(u < 0)| ·
in{max(−γ , u), γ }. The final iterate β0,T ′ for some T ′ > 1 will be used as the initial value in Section 3.1. We summarize

he details in Algorithm 2.

emark 3.2. The asymmetric Huber loss Hτ ,γ (·) approximates the check function ρτ (·) as γ → 0. Therefore, an alternative
ethod for QR computing is to solve asymmetric Huber regression via gradient descent with a shrinking gamma. To
valuate its performance, we implement the above idea by setting γ t

= c · γ t−1 for some c ∈ (0, 1) at the tth iteration.
We found that the aforementioned idea is not numerically stable across several simulated datasets, unless one controls
the minimal magnitude of γ very carefully. Furthermore, the obtained solution has a higher estimation error than that of
conventional QR and conquer.

. Statistical analysis

Under the linear quantile regression model in (2.1), we write, for convenience, the generic data vector (y, x) in a linear
odel form: given a quantile level τ ∈ (0, 1) of interest,

y = ⟨x,β∗(τ )⟩ + ε(τ ), (4.1)
 35
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Algorithm 2 GD-BB method for solving (3.6).

Input: {(yi, xi)}ni=1 and convergence criterion δ.
1: Initialize β0,0

= 0
2: Compute γ 0

= 1.35 · MAD({r0i }
n
i=1), where r0i ← yi − ⟨xi,β0,0

⟩, i = 1, . . . , n, where MAD(·) is the median absolute
deviation

3: β0,1
← β0,0

−∇L̂γ 0 (β0,0)
4: for t = 1, 2 . . . do
5: γ t

= 1.35 ·MAD({r ti }
n
i=1), where r ti ← yi − ⟨xi,β0,t

⟩, i = 1, . . . , n
6: δt ← β0,t

− β0,t−1, g t
← ∇L̂γ t (β0,t )−∇L̂γ t (β0,t−1)

7: η1,t ← ⟨δ
t , δt⟩/⟨δt , g t

⟩, η2,t ← ⟨δt , g t
⟩/⟨g t , g t

⟩.
8: ηt ← min{η1,t , η2,t , 100} if η1,t > 0 and ηt ← 1 otherwise
9: β0,t+1

← β0,t
− ηt∇L̂γ t (β0,t )

10: end for when ∥∇L̂γ t (β0,t )∥2 ≤ δ

where the random variable ε(τ ) satisfies P{ε(τ ) ≤ 0|x} = τ . Let fε|x(·) be the conditional density function of the regression
error ε = ε(τ ) given x = (x1, . . . , xp)T (p ≥ 2). We first derive upper bounds for the smoothing bias under mild regularity
onditions on the conditional density fε|x and the kernel function. For any vector u ∈ Rp, we write u− ∈ Rp−1 as the sub-
vector of u with its first component removed. Recall that x1 ≡ 1, and x− = (x2, . . . , xp)T ∈ Rp−1 is assumed to be random.
Without loss of generality, we assume µ− := E(x−) = 0 throughout this section; otherwise, set x̃ = (1, (x− − µ−)T)T, so
that model (4.1) can be written as y = ⟨̃x, β̃∗⟩ + ε, where β̃

∗
= (̃β∗1 , β

∗

2 , . . . , β
∗
p )

T with β̃∗1 = β
∗

1 + ⟨µ−,β
∗

−
⟩. The analysis

then applies to {(yi, x̃i)}ni=1, and the probabilistic bounds for β̃
∗
naturally lead to those for β∗.

4.1. Smoothing bias

Condition 4.1 (Kernel Function). Let K (·) be a symmetric and non-negative function that integrates to one, that is,
K (u) = K (−u), K (u) ≥ 0 for all u ∈ R and

∫
∞

−∞
K (u) du = 1. Moreover, K (·) is bounded with κu := supu∈R K (u) <∞.

We will use the notation κk =
∫
∞

−∞
|u|kK (u) du for k ≥ 1. Furthermore, we define the population smoothed loss function

h(β) = E{Q̂h(β)}, β ∈ Rp and the pseudo parameter

β∗h(τ ) ∈ argmin
β∈Rp

Qh(β), (4.2)

hich is the population minimizer under the smoothed quantile loss. For simplicity, we write β∗ = β∗(τ ) and β∗h = β∗h(τ )
ereinafter. In general, β∗h differs from β∗, and we refer to ∥β∗h − β∗∥2 as the approximation error or smoothing bias.

ondition 4.2 (Conditional Density). There exists f > 0 such that fε|x(0) ≥ f almost surely (for all x). Moreover, there
exists a constant l0 > 0 such that |fε|x(u)− fε|x(v)| ≤ l0|u− v| for all u, v ∈ R almost surely (over x).

Condition 4.3 (Random Design: Moments). The (random) vector x ∈ Rp of covariates satisfies m3 :=

supu∈Sp−1 E(|⟨u,Σ
−1/2x⟩|3) <∞, where Σ = E(xxT) is positive definite.

Condition 4.3 requires that all the one-dimensional marginals of Σ−1/2x have bounded third absolute moments. When
x− follows a multivariate normal distribution, Condition 4.3 holds trivially. We refer to Remarks 4.1 and 4.2 below for
more examples. The following result characterizes the smoothing bias from a non-asymptotic viewpoint.

Proposition 4.1. Assume Conditions 4.1–4.3 hold, and let the bandwidth satisfy 0 < h < 1
l0{κ1+(m3κ2)1/2}

f . Then, β∗h is the
nique minimizer of β ↦→ Qh(β) and satisfies

δh := ∥β
∗

h − β∗∥Σ <
l0κ2h2

f − l0κ1h
. (4.3)

n addition, assume fε|x(·) is continuously differentiable and satisfies almost surely (over x) that |f ′ε|x(u)− f ′ε|x(0)| ≤ l1|u| for
ome constant l1 > 0. ThenΣ−1/2J(β∗h − β∗)+

1
2
κ2h2
·Σ−1/2E

{
f ′ε|x(0)x

}
2
≤

1
6
l1κ3h3

+
1
2
l0m3δ

2
h + l0κ1hδh, (4.4)

T
here J = E{fε|x(0)xx }.

10
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To better understand the bounds (4.3) and (4.4), note that ∥β∗h − β∗∥2Σ = E⟨x,β∗h − β∗⟩2 is the average prediction
moothing error. Interestingly, the upper bound on the right-hand side is dimension-free given h as long as the uniform
hird moment m3 in Condition 4.3 is dimension-free. See Remarks 4.1 and 4.2 for examples of multivariate distributions
n Rp that have dimension-free uniform moment parameter. Another interesting implication is that, when both fε|x(0)
nd f ′ε|x(0) are independent of x, i.e., fε|x(0) = fε(0) and f ′ε|x(0) = f ′ε (0), the leading term in the bias simplifies to

1
2
κ2h2
· J−1E

{
f ′ε|x(0)x

}
=

f ′ε (0)
2fε(0)

κ2h2
·Σ−1E(x) =

f ′ε (0)
2fε(0)

κ2h2
·

[
1

0p−1

]
.

In other words, the smoothing bias is concentrated primarily on the intercept. In the asymptotic setting where p is fixed,
and h = o(1) as n→∞, we refer to Theorem 1 in Fernandes et al. (2021) for the expression of asymptotic bias.

.2. Finite sample theory

In this section, we provide two non-asymptotic results, the concentration inequality and the Bahadur–Kiefer represen-
tation, for the conquer estimator under random design.

ondition 4.4 (Random Design: Sub-Exponential Case). The predictor x = (x1, . . . , xp)T ∈ Rp is sub-exponential with x1 ≡ 1
and E(xj) = 0 for j = 2, . . . , p. That is, there exists υ0 > 0 such that P{|⟨u,w⟩| ≥ υ0t} ≤ e−t for all u ∈ Sp−1 and t ≥ 0,
where w = Σ−1/2x with Σ = E(xxT) being positive definite.

Condition 4.4 asserts that the distribution of the covariates is sub-exponential, which encompasses the bounded case
considered by Fernandes et al. (2021). For the standardized predictor w = Σ−1/2x, we define the uniform moment
parameters (including m3 that first occurred in Condition 4.3)

mk = sup
u∈Sp−1

E|⟨u,w⟩|k, k = 1, 2, . . . , (4.5)

with m2 = 1. In particular, m4 can be viewed as the uniform kurtosis parameter. Under Condition 4.4, a straightforward
calculation shows that mk ≤ υ

k
0k!, valid for all k ≥ 1.

Remark 4.1. The parameter υ0 is often referred to as the sub-exponential parameter, which along with the sub-Gaussian
parameter υ1 defined in Condition 4.5 below, plays an important role in non-asymptotic analysis of statistical models
with growing dimensions (Vershynin, 2018; Wainwright, 2019). For many ‘‘nice’’ distributions on Rp, both υ0 and υ1 are
bsolute constants and thus are dimension-free. In the following, we list several p-dimensional multivariate distributions,
ll of which have a dimension-free sub-exponential parameter υ0.

(i) (Multivariate normal). Let x ∼ N (0,Σ ) for some positive definite matrix Σ ∈ Rp×p.
(ii) (Multivariate symmetric Bernoulli). Let x = (x1, . . . , xp)T ∼ Unif({−1, 1}n). That is, x1, . . . , xp are independent, and

satisfy P(xj = 1) = P(xj = −1) = 1/2.
(iii) (Uniform distribution on the sphere). Let x = (x1, . . . , xp)T be a random vector uniformly distributed on the

Euclidean sphere in Rp with center at the origin and radius p1/2.
(iv) (Uniform distribution on the Euclidean ball). Let x = (x1, . . . , xp)T be a random vector uniformly distributed on the

Euclidean ball Bp(p1/2) in Rp.
(v) (Uniform distribution on the unit cube). Let x = (x1, . . . , xp)T be a random vector uniformly distributed on the unit

cube [−1, 1]p. That is, x1, . . . , xp are independent from Unif [−1, 1].
(vi) (Uniform distribution on the ℓ1-ball). Let x = (x1, . . . , xp)T be a random vector uniformly distributed on the ℓ1-ball
{u ∈ Rp

: ∥u∥1 ≤ r} for r ≍ p.

he multivariate distributions from examples (i)–(v) are all sub-Gaussian with a constant parameter, and hence are also
ub-exponential. The distribution from the last example is not sub-Gaussian, but is sub-exponential with a constant
arameter. We refer to Section 3.4 in Vershynin (2018) for a detailed introduction of sub-exponential and sub-Gaussian
andom vectors, including examples for which the sub-Gaussian parameter does depend on and grow with p.

emark 4.2. Another important multivariate distribution is the elliptical distribution (Fang et al., 1990). We say a random
ector x ∈ Rp follows an elliptical distribution, denoted by x ∼ ED(µ,Σ , ξ ), if it has a stochastic representation

d
= µ + ξAU, where ξ is a random scalar, U is a random vector uniformly distributed on the unit sphere Sp−1 and is

ndependent of ξ , and A is a deterministic matrix satisfying Σ = AAT. Assume x ∼ ED(0,Σ , ξ ) for some Σ ∈ Rp×p

nd a random variable ξ ∈ R. With slight abuse of notation, write x = ξAU. Then, for any unit vector u ∈ Sp−1,
⟨u,Σ−1/2x⟩| = |⟨ATΣ−1/2u,U⟩| · |ξ | ≤ ∥ATΣ−1/2u∥2 · |ξ | ≤ |ξ |. This implies that (i) if E|ξ |3 < ∞, Condition 4.3 holds,
(ii) if ξ is sub-exponential, Condition 4.4 holds with a dimension-free υ0, and (iii) if ξ is sub-Gaussian, Condition 4.5 is
atisfied with a dimension-free υ .
1
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heorem 4.1. Assume Conditions 4.1, 4.2 and 4.4 hold. For any t > 0, the smoothed quantile regression estimator β̂h with
−1m1/2

3 υ0
√
(p+ t)/n ≲ h ≲ f m−1/23 satisfies the bound

∥̂βh − β∗∥Σ ≤
C
f

{
υ0

√
log2(1/h)+ p+ t

n
+ l0κ2h2

}
, (4.6)

with probability at least 1− 2e−t , where C > 0 is an absolute constant, and log2(x) := log log(x ∨ 1).

With high probability, the estimation error in (4.6) is upper bounded by two terms, f −1l0κ2h2 and f −1υ0
√
(p+ t)/n,

which can be interpreted as the bias and statistical rate of convergence, respectively. The parameter t ≥ 0 controls
the confidence level through 1 − 2e−t . The additional factor log2(1/h) in the upper bound is a consequence of the
peeling argument, which can be removed via a more refined analysis yet under slightly stronger technical conditions;
see Section C.3 in the supplement for details. Adjusting the proof by changing high probability bounds to OP statements,
it can be shown that ∥̂βh − β∗∥Σ = OP(

√
p/n) under the condition h = O((p/n)1/4) and

√
p/n = O(h). Next we explain

he bandwidth constraint
√
p/n ≲ h ≲ 1 required in Theorem 4.1 and all the other results below. On the one side, the

moothing parameter should be sufficiently small, typically h = hn → 0, so that the smoothing bias is negligible and does
ot change the target parameter to be estimated. On the other side, the bandwidth cannot be too small in the sense that we
eed h ≳

√
p/n. Intuitively, this is because the main motivation for smoothed QR is to seek a tradeoff between statistical

rate of convergence and computational precision (unless the data is noiseless). The standard QR estimator β̂ = β̂(τ ) has
convergence rate ∥̂β − β∗∥2 = OP(

√
p/n) under the growth condition p supx∈X ∥x∥22 · (log n)

2
= o(n); see Theorem 1

in Belloni et al. (2019). Here X ⊆ Rp is the support of the covariate vector x ∈ Rp. Therefore, smoothing will become
edundant if the bandwidth is set at a level below the best possible statistical convergence radius.

Our results provide non-asymptotic bounds via high probability statements, which complement the classical Big OP
OP) and little op (oP) statements frequently used in statistics and econometrics. Probabilistic bounds of this kind can also
e extended to analyze high-dimensional models (Belloni and Chernozhukov, 2011; Wang et al., 2012b) or nonparametric
ethods (Belloni et al., 2019).
Next, we establish a Bahadur representation for the conquer estimator, which lays the theoretical foundation for the

nsuing statistical inference. To this end, we impose a slightly more stringent sub-Gaussian condition on the covariates.

ondition 4.5 (Random Design: Sub-Gaussian Case). The predictor x = (x1, . . . , xp)T ∈ Rp is sub-Gaussian with x1 ≡ 1 and
(xj) = 0 for j = 2, . . . , p. That is, there exists υ1 > 0 such that P{|⟨u,w⟩| ≥ υ1t} ≤ 2e−t

2/2 for all u ∈ Sp−1 and t ≥ 0,
here w = Σ−1/2x.

We are primarily concerned with the cases where υ1 is a dimension-free constant; see Remarks 4.1 and 4.2.

heorem 4.2. In addition to Conditions 4.1, 4.2 and 4.5, assume supu∈R fε|x(u) ≤ f̄ almost surely. Let t > 0, and suppose the
ample size n and bandwidth h satisfy f −1m1/2

3 υ1
√
(p+ t)/n ≲ h ≲ f m−1/23 . Then, with probability at least 1− 3e−t ,Σ−1/2Jh (̂βh − β∗)−

1
n

n∑
i=1

{
τ − Kh(−εi)

}
Σ−1/2xi


2

≤ C

(
p+ t
nh1/2 + h3/2

√
p+ t
n
+ h4

)
, (4.7)

here Jh = ∇2Qh(β∗) = E
{
Kh(ε)xxT

}
, Kh(u) =

∫ u/h
−∞

K (v) dv, and C > 0 is a constant depending only on (υ1, κ2, κu, l0, f̄ , f ).
hen Jh on the left-hand side of (4.7) is replaced by J = E{fε|x(0)xxT

}, the upper bound is of order (p + t)/(nh1/2) +
h
√
(p+ t)/n+ h3.

With growing dimensions (many regressors), Theorem 4.2 is directly comparable to and complements Theorem 2
in Belloni et al. (2019), although the latter concerns the linear approximation of the quantile regression process. To see
the connection, we write n1/2 (̂βh−β∗) = J−1h U h+rh, where U h = n−1/2

∑n
i=1(1−E){τ−Kh(−εi)}xi is a zero-mean random

vector, and the remainder rh is such that ∥rh∥2 ≲ (p+t)/(nh)1/2+n1/2h2 with high probability. Minimizing the right-hand
side over h in terms of order leads to a convergence rate p4/5/n3/10. For standard QR with fixed design, Theorem 2 in Belloni
et al. (2019) implies n1/2 (̂β−β∗) = J−1U+r , where U = n−1/2

∑n
i=1{τ−1(εi ≤ 0)}xi, and ∥r∥2 = OP(p3/4ζp(log n)1/2n−1/4),

where ζp = supx∈X ∥x∥2. From an asymptotic perspective, the QR estimator has the advantage of being (conditionally)
pivotal asymptotically. However, possibly due to the non-smoothness of the check function, the linear approximation
error has a slower rate of convergence (p5/n)1/4 even for bounded design, i.e., ζp ≤ Bp1/2 for some constant B > 0. For
the conquer estimator, although the linear term U h is not pivotal, we will show that Rademacher multiplier bootstrap
provides accurate approximations both theoretically and numerically.

The Bahadur representation can be used to establish the limiting distribution of the estimator or its functionals. Here
we consider a fundamental statistical inference problem for testing the linear hypothesis H0 : ⟨a,β∗⟩ = 0, where a ∈ Rp

is a deterministic vector that defines a linear functional of interest. It is then natural to consider a test statistic that
depends on n1/2

⟨a, β̂h⟩. Based on the non-asymptotic result in Theorem 4.2, we establish a Berry–Esseen bound for the
inear projection of the conquer estimator.
12
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heorem 4.3. Assume that the conditions in Theorem 4.2 hold, and
√
(p+ log n)/n ≲ h ≲ 1. Then,

∆n,p(h) := sup
x∈R, a∈Rp

⏐⏐P(n1/2σ−1h ⟨a, β̂h − β∗⟩ ≤ x
)
−Φ(x)

⏐⏐ ≲ p+ log n
(nh)1/2

+ n1/2h2, (4.8)

here σ 2
h = σ

2
h (a) = aTJ−1h E

[
{Kh(−ε)−τ }2xxT

]
J−1h a, whereΦ(·) denotes the standard normal distribution function. Moreover,

sup
a∈Rp

⏐⏐⏐⏐⏐ σ 2
h (a)

aTJ−1h Σ J−1h a
− τ (1− τ )

⏐⏐⏐⏐⏐ = O(h) as h→ 0.

If, in addition, that fε|x(·) is twice continuously differentiable and satisfies |f ′′ε|x(u)− f ′′ε|x(v)| ≤ l2(x)|u− v| for all u, v ∈ R and
x ∈ Rp, and l2 : Rp

→ R+ is such that E{l22(x)} ≤ C for some C > 0. Then,

sup
x∈R, a∈Rp

⏐⏐P(n1/2σ−1h ⟨a, β̂h − β∗ + 0.5κ2h2J−1h E{f ′ε|x(0)x}⟩ ≤ x
)
−Φ(x)

⏐⏐
≲

p+ log n
(nh)1/2

+ (p+ log n)1/2h3/2
+ n1/2h4. (4.9)

Theorem 4.3 shows that for certain choice of bandwidth h = hn → 0, all the linear functionals of β̂h, after properly
tandardization, are asymptotically normal as n, p → ∞ subject to some conditions. For example, if h satisfies h =
(n−1/4), then the smoothing bias does not affect the asymptotic distribution. The Berry–Esseen bound (4.8) immediately
ields a large-p asymptotic result. Taking h = hn = {(p + log n)/n}2/5 therein, the Gaussian approximation error
n,p(h) is of order (p + log n)4/5n−3/10. Consequently, n1/2

⟨a, β̂h − β∗⟩, for any given (deterministic) vector a ∈ Rp, is
symptotically normally distributed as long as p8/3/n → 0, which improves the best known growth condition on p for
uantile regression (Welsh, 1989).

emark 4.3 (Optimal Bandwidth Under AMSE). From the refined Berry–Esseen bound (4.9) under an additional smoothness
ondition on fε|x(·), we can characterize more precisely the asymptotic bias and variance–covariance matrix of n1/2 (̂βh −
∗), thus leading to the asymptotic mean squared error (AMSE). In fact, the asymptotic distribution of n1/2 (̂βh − β∗) can
e approximated by that of

gh
d
= N

(
1
2
κ2n1/2h2J−1h E{f ′ε|x(0)x}, J

−1
h E

[
{Kh(−ε)− τ }2xxT

]
J−1h

)
.

fter some calculations (see Section A in the Appendix), we show that the AMSE of n1/2 (̂βh − β∗) is determined by

J−1h Σ 1/2

[
τ (1− τ )Ip − 2κ̄1hH+

κ2
2

4
nh4E(b)E(bT)

]
Σ 1/2J−1h , (4.10)

where b = f ′ε|x(0)w = f ′ε|x(0)Σ
−1/2x, H = E{fε|x(0)wwT

}, and κ̄1 =
∫
∞

−∞
uK (u)K(u)du > 0. Kaplan and Sun (2017) proposed

to choose the bandwidth h by minimizing the trace of AMSE of the smoothed estimator. In this case, it is

h∗ = argmin
h>0

tr
{
0.25κ2

2nh
4E(b)E(bT)− 2κ̄1hH

}
=

{
2κ̄1E{fε|x(0)wTw}

κ2
2n · E(b

T)E(b)

}1/3

. (4.11)

Since x = (1, xT
−
)T has 1 as its first component, we have Σ−1E(x) = (1, 0T

p−1)
T. As a result, in the special case where εi

and xi are independent, the above AMSE-optimal h∗ can be reduced to

h⋆ =

[
2κ̄1fε|x(0)
{κ2f ′ε|x(0)}2

p
n

]1/3

. (4.12)

hen K (·) is the Gaussian kernel, κ2 = E(g2) = 1 and κ̄1 = E{gΦ(g)}, where g ∼ N (0, 1) and Φ(·) is the standard normal
CDF. The Monte Carlo method computes κ̄1 ≈ 0.282. When K (·) is the logistic kernel (see Remark 3.1), we have κ2 = π2/3
and κ̄1 = 1/2. Although both h∗ and h⋆ depend on fε|x(0) and f ′ε|x(0), which can only be estimated by nonparametric
estimators with a rule-of-thumb bandwidth, they provide a benchmark bandwidth choice in simulation studies.

Remark 4.4. As previously noted, normal approximation result in the form of (4.8) is useful for testing linear hypothesis
H0 : ⟨a,β∗⟩ = 0, where a ∈ Rp is a predetermined vector. For testing the global hypothesis H0 : β

∗
= b0 with a given

vector b0, Kaplan and Sun (2017) proposed a chi-square test based on a quadratic form of ∇Q̂h(b0). Using Edgeworth
expansion, they showed that the bandwidth that minimizes the approximate type I error of the chi-square test coincides
with h⋆ in (4.12); see Theorem 3 therein for a chi-square approximation result via Edgeworth expansion. Instead, the

2/5
choice h ≍ {(p+log n)/n} is obtained by minimizing the Berry–Esseen bound (4.8), which consists of two terms, Bahadur 34
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Table 1
Summary of scaling conditions required for normal approximation under various loss functions.
Loss function Design Scaling condition

Huber loss (Huber, 1973) Fixed design p3 = o(n)
Four times differentiable loss (Portnoy, 1985) Fixed design (with symmetric error) (p log n)3/2 = o(n)
Four times differentiable loss (Mammen, 1989) Fixed design p3/2 log n = o(n)
Huber loss (He and Shao, 2000) Fixed design p2 log p = o(n)
Huber loss (Chen and Zhou, 2020) Sub-Gaussian p2 = o(n)
Quantile loss (Welsh, 1989; He and Shao, 2000) Fixed design p3(log n)2 = o(n)
Quantile loss (Pan and Zhou, 2020) Sub-Gaussian p3(log n)2 = o(n)
Convolution smoothed quantile loss Sub-Gaussian p8/3 = o(n)

linearization error and smoothing bias. To better understand this discrepancy, one may need to incorporate Edgeworth
expansion techniques in the growing-p regime so as to characterize higher-order normal and chi-square approximation
rrors that cannot be seen from Berry–Esseen-type bounds. This poses additional technical challenges and warrants further
nvestigation.

emark 4.5 (Large-p Asymptotics). A broader view of classical asymptotics recognizes that the parametric dimension of
ppropriate model sequences may tend to infinity with the sample size; that is p = pn → ∞ as n → ∞. Results with
ncreasing p are available in Welsh (1989), He and Shao (2000) and Belloni et al. (2019) when p = o(n), and in Belloni et al.
2019), Wang et al. (2012b) and Koenker et al. (2017) for regularized quantile regression when p≫ n. In the large-p and
arger-n setting—‘‘p→∞ and p/n→ 0’’, Welsh (1989) shows that p3(log n)2/n→ 0 suffices for a normal approximation.
his growth condition remains the best known one although under weaker assumptions on the (fixed) design (He and
hao, 2000; Belloni et al., 2019). To our knowledge, the weakest fixed design assumption is max1≤i≤n ∥xi∥22 = O(p).
For smooth robust regression estimators, asymptotic normality can be proven under less restrictive conditions on p.

Huber (1973) showed that if the loss is twice differentiable, the asymptotic normality for ⟨a, β̂⟩, where a ∈ Rp, holds
f p3/n → 0 as n increases. Portnoy (1985) and Mammen (1989) weakened this condition to (p log n)3/2/n → 0 and
3/2 log(n)/n → 0, respectively, when the loss function is four times differentiable. For Huber loss that has a Lipschitz
ontinuous derivative, He and Shao (2000) obtained the scaling p2 log p = o(n) that ensures the asymptotic normality of
arbitrary linear combinations of β̂. Table 1 summarizes our discussion here and shows that the smoothing for conquer
helps ensure asymptotic normality of the estimator under weaker conditions on p than what we need for the usual
quantile regression estimator.

Remark 4.6. In this paper, we show that the accuracy of conquer-based inference via the Bahadur representation (and
normal approximations) has an error of rate faster than n−1/4 yet slower than n−1/2; see Theorems 4.2 and 4.3. For standard
egression quantiles, Portnoy (2012) proposed an alternative expansion for the quantile process using the ‘‘Hungarian’’
onstruction of Komlós, Major and Tusnády. This stochastic approximation yields an error of order n−1/2 (up to a factor
f log n), and hence provides a theoretical justification for accurate approximations for inference in regression quantile
odels.

.3. Theoretical guarantees for inference

We next investigate the statistical properties of the bootstrapped estimator defined in (2.10), with a particular focus on
he Rademacher multiplier bootstrap (RMB). To be specific, we use, in this section and the rest of the paper, the random
eights wi = 1+ ei for i = 1, . . . , n, where e1, . . . , en are independent Rademacher random variables, that is, symmetric
ign variables with P(ei = 1) = P(ei = −1) = 1/2. As before, we consider array (non)asymptotics, and the obtained
ootstrap approximation errors depend explicitly on (n, p) and h.

heorem 4.4. Assume Conditions 4.1, 4.2 and 4.5 hold. For any given t ≥ 0, let the sample size and bandwidth satisfy
−1m1/2

3 υ1
√
(p+ t)/n ≲ h ≲ f m−1/23 . Then, there exists some ‘‘good’’ event E(t) with P{E(t)} ≥ 1 − 3e−t such that, with

∗-probability at least 1− 2e−t conditioned on E(t),

∥̂β
♭

h − β∗∥Σ ≤
C ♭

f

{
υ1

√
log2(1/h)+ p+ t

n
+ l0κ2h2

}
, (4.13)

here C ♭ > 0 is a absolute constant.

Analogously to Theorem 4.2, we further provide a Bahadur representation result for the bootstrap estimator β̂
♭

h, which
aves the way for validating the conquer-RMB method.
14
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heorem 4.5. In addition to Conditions 4.1, 4.2 and 4.5, assume supu∈R fε|x(u) ≤ f̄ almost surely (in x) and K (·) is lK -Lipschitz
ontinuous. Suppose the sample size satisfies n ≳ q := p + log n, and set the bandwidth as h ≍ (q/n)2/5. Then, there exists a
equence of events {Fn} with P(Fn) ≥ 1− 6n−1 such that, with P∗-probability at least 1− 3n−1 conditioned on Fn,Σ−1/2Jh (̂β♭h − β̂h)−

1
n

n∑
i=1

ei
{
τ − Kh(−εi)

}
Σ−1/2xi


2

≲

(
q
n

)4/5⋁(
q
n

)3/5(p log n
n

)1/4⋁(
q
n

)3/5 p log n
n1/2 . (4.14)

As suggested by Theorem 4.3 and the discussion below, if we set the order of the bandwidth h as {(p + log n)/n}2/5,
the normal approximation to the conquer estimator is asymptotically accurate provided that p8/3 = o(n) as n→∞. For
the same h, the right-hand side of (4.14) is of order o(n−1/2) provided that p8/3(log n)5/3 = o(n). Putting these two parts
together, we have the following asymptotic bootstrap approximation result.

Corollary 4.1. Assume the same conditions of Theorem 4.5, and let the bandwidth be of order h ≍ {(p + log n)/n}2/5. If the
dimension p = pn is subject to p(log n)5/8 = o(n3/8), then for any deterministic vector a ∈ Rp,

sup
x∈R

⏐⏐P(n1/2
⟨a, β̂h − β∗⟩ ≤ x

)
− P∗

(
n1/2
⟨a, β̂♭h − β̂h⟩ ≤ x

)⏐⏐ P
→ 0 as n→∞. (4.15)

The proof of (4.15) follows the same argument as that in the proof of Theorem 4.3, and therefore is omitted. The
additional logarithmic factor in the scaling may be an artifact of the proof technique. For standard quantile regression, Feng
et al. (2011) established a fixed-p asymptotic bootstrap approximation result for wild bootstrap under fixed design.

Remark 4.7 (Multiplier Bootstrap with More General Weighting Schemes). By examining the proof of Theorem 4.5, we see
that the assumption E(e2i ) = 1 is not necessarily required for the bound (4.14) on bootstrap Bahadur linearization error. To
retain the convexity of the bootstrap loss Q̂ ♭

h (β) = (1/n)
∑n

i=1(1+ei)ℓh(yi−xT
i β), we restrict our attention to non-negative

multipliers 1+ ei ≥ 0. More generally, assume that e1, . . . , en are i.i.d. satisfying

E(ei) = 0, ei ≥ −1 and logEeλei ≤ λ2ν/2 for all λ ≥ 0 and some ν > 0. (4.16)

This means that ei has sub-Gaussian right tails. Typical examples satisfying (4.16) include: (i) uniform distribution on
[−1, 1], (ii) symmetric triangular distribution on [−1, 1], (iii) shifted folded normal distribution (π/2)1/2|g| − 1 where
g ∼ N (0, 1). The proof of the bound (4.14) under such a general scheme requires more involved argument; see, for
example, the proof of Theorem 2.3 in Chen and Zhou (2020) (the unit variance assumption therein can also be relaxed).
When κ2

:= E(e2i ) ̸= 1, although the bootstrap approximation result (4.15) will no longer hold, by a simple variance
adjustment it can be shown that

sup
x∈R

⏐⏐P(n1/2
⟨a, β̂h − β∗⟩ ≤ x

)
− P∗

{
(n/κ)1/2⟨a, β̂♭h − β̂h⟩ ≤ x

}⏐⏐ P
→ 0 as n→∞.

The pivotal bootstrap confidence intervals can thus be constructed by slightly adapting the method described in
Section 2.3.

The numerical performance of the Rademacher multiplier bootstrap inference for conquer will be examined in
Section 5.2. The main advantage of the multiplier bootstrap method is that it does not require estimating the variance–
covariance matrices in (2.11), which can be quite unstable and thus causes outliers when τ is close to 0 or 1; see Fig. 8
for a numerical comparison of the (multiplier) bootstrap percentile method and the normal-based method. When τ is
reasonably bounded away from 0 and 1, say between 0.25 and 0.75, normal calibration also performs well empirically,
and is computationally attractive because the estimator is only computed once.

The construction of normal-based confidence intervals is based on the estimated variances σ̂ 2
h (a) = aT̂J−1h V̂ĥJ−1h a for

a ∈ Rp, where Ĵh and V̂h are given in (2.11). In view of Theorem 4.3, the validity of normal calibration relies on the
consistency of Ĵh and V̂h. In the following, we provide the consistency of Ĵh and V̂h under the operator norm, again in the
regime ‘‘p/n→ 0 as p, n→∞’’.

Note that both Ĵh and V̂h depend on the conquer estimator, whose rate of convergence is already established in
Theorem 4.1. For δ ∈ Rp, define matrix-valued functions

Ĵh(δ) =
1
n

n∑
i=1

Kh(εi − ⟨xi, δ⟩)xixT
i and V̂h(δ) =

1
n

n∑
i=1

{Kh(⟨xi, δ⟩ − ε)− τ }2xixT
i , (4.17)

o that Ĵh = Ĵh (̂δ) and V̂h = V̂h (̂δ) with δ̂ = β̂h − β∗. Conditioned on the event {∥̂δ∥Σ ≤ r} for some prespecified r > 0
hich determines the convergence rate of β̂h, we have

∥̂Jh − Jh∥2 ≤ sup ∥̂Jh(δ)− Jh∥2 and ∥̂Vh − Vh∥2 ≤ sup ∥̂Vh(δ)− Vh∥2,

∥δ∥Σ≤r ∥δ∥Σ≤r
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here Vh := E
[
{Kh(−ε) − τ }2xxT

]
. The problem is thus reduced to controlling the above suprema over a local

eighborhood.

roposition 4.2. In addition to the conditions in Theorem 4.2, assume that the kernel K (·) is lK -Lipschitz continuous. For any
iven r ≥ 0,

sup
∥δ∥Σ≤r

∥Σ−1/2{̂Jh(δ)− Jh}Σ−1/2∥2 ≲

√
p log n+ t

nh
+ r (4.18)

olds with probability at least 1− e−t , provided that max{
√
(p+ t)/n, p log(n)/n} ≲ h ≲ 1. The same probabilistic bound also

pplies to sup∥δ∥Σ≤r ∥Σ
−1/2
{̂Vh(δ)− Vh}Σ

−1/2
∥2.

Following the discussions below Theorem 4.3, if we set the bandwidth as h ≍ {(p + log n)/n}2/5, ∥̂βh − β∗∥Σ =

P(
√
(p+ log n)/n) and n1/2aT (̂βh − β∗)/σh(a) → N (0, 1) in distribution uniformly over a ∈ Rp as n → ∞ under the

constraint p8/3 = o(n). With the same bandwidth, it follows from Proposition 4.2 that

max
(
∥̂Jh − Jh∥2, ∥̂Vh − Vh∥2

)
= OP

[{
(log n)1/2p3/10 + (log n)3/10p1/2

}
n−3/10

]
= oP(1).

his ensures the consistency of variance estimators, that is, |̂σ 2
h (a)/σ

2
h (a)− 1|

P
−→ 0.

5. Numerical studies

In this section, we assess the finite-sample performance of conquer via extensive numerical studies. We compare
conquer to standard QR (Koenker and Bassett, 1978) and Horowitz’s smoothed QR (Horowitz, 1998). Both the convolution-
ype and Horowitz’s smoothed methods involve a smoothing parameter h. In view of Theorem 4.3, we take h =
(p + log n)/n}2/5 in all of the numerical experiments. As we will see from Fig. 5, the proposed method is insensitive to
he choice of h. Therefore, we leave the fine tuning of h as an optional rather than imperative choice. In all the numerical
xperiments, the convergence criterion in Algorithms 1 and 2 is taken as δ = 10−4.
We first generate the covariates xi = (xi,1, . . . , xi,p)T from a multivariate uniform distribution on the cube 31/2

·[−1, 1]p
ith covariance matrix Σ = (0.7|j−k|)1≤j,k≤p using the R package MultiRNG (Falk, 1999). The random noise εi is generated

rom two different distributions: (i) Gaussian distribution, N (0, 4); and (ii) t distribution with two degrees of freedom,
2. Let β∗ = (1, . . . , 1)Tp, and β

∗

0 = 1. Given τ ∈ (0, 1), we then generate the response yi from the following homogeneous
nd heterogeneous models, all of which satisfy the Assumption (2.1):

1. Homogeneous model:

yi = β∗0 + ⟨xi,β
∗
⟩ + {εi − F−1εi (τ )}, i = 1, . . . , n; (5.1)

2. Linear heterogeneous model:

yi = β∗0 + ⟨xi,β
∗
⟩ + (0.5xi,p + 1){εi − F−1εi (τ )}, i = 1, . . . , n; (5.2)

3. Quadratic heterogeneous model:

yi = β∗0 + ⟨xi,β
∗
⟩ + 0.5{1+ (xi,p − 1)2}{εi − F−1εi (τ )}, i = 1, . . . , n. (5.3)

To evaluate the performance of different methods, we calculate the estimation error under the ℓ2-norm, i.e., ∥̂β−β∗∥2,
nd record the elapsed time. The details are in Section 5.1. In Section 5.2, we examine the finite-sample performance of the
ultiplier bootstrap method for constructing confidence intervals in terms of coverage probability, width of the interval,
nd computing time.

.1. Estimation

For all the numerical studies in this section, we consider a wide range of the sample size n, with the size-dimension
atio fixed at n/p = 20. That is, we allow the dimension p to increase as a function of n. We implement conquer with four
ifferent kernel functions as described in Remark 3.1: (i) Gaussian; (ii) uniform; (iii) Epanechnikov; and (iv) triangular.
he classical quantile regression is implemented via a modified version of the Barrodale and Roberts algorithm (Koenker
nd d’Orey, 1987, 1994) by setting method= ‘‘br’’ in the R package quantreg, which is recommended for problems with
p to several thousands of observations in Koenker (2019). For very large problems, the Frisch–Newton approach after
reprocessing ‘‘pfn’’ is preferred. Since the same size taken to be at most 5000 throughout this section, the two methods,
‘br’’ and ‘‘pfn’’, have nearly identical runtime behaviors. In some applications where there are a lot of discrete covariates, it
s advantageous to use method ‘‘sfn’’, a sparse version of Frisch–Newton algorithm that exploits sparse algebra to compute
terates (Koenker and Ng, 2003). Moreover, we implement Horowitz’s smoothed quantile regression using the Gaussian
ernel, and solve the resulting non-convex optimization via gradient descent with random initialization and stepsize
16
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Fig. 3. Estimation error under models (5.1)–(5.3) in Section 5 with N (0, 4) and t2 errors, τ = 0.9, averaged over 500 datasets for three different
ethods: (i) quantile regression qr, (ii) Horowitz’s method with Gaussian kernel Horowitz--Gauss, and (iii) the conquer method with four different
ernel functions conquer-trian, conquer-para, conquer-unif, and conquer-Gauss.

alibrated by backtracking line search (Section 9.3 of Boyd and Vandenberghe, 2004). The results, averaged over 500
eplications, are reported.

Fig. 3 depicts estimation error of the different methods under the simulation settings described in Section 5 with τ =
0.9. We see that conquer has a lower estimation error than the classical QR across all scenarios, indicating that smoothing
can improve estimation accuracy under the finite-sample setting. Moreover, compared to Horowitz’s smoothing, conquer
has a lower estimation error in most settings. Estimation error under various quantile levels τ ∈ {0.1, 0.3, 0.5, 0.7} with
the N (0, 4) and t2 random noise are also examined. The results are reported in Figs. E.1 and E.3 in Appendix E, from which
we observe evident advantages of conquer, especially at low and high quantile levels.

To assess the computational efficiency, we compute the elapsed time for fitting the different methods. Figs. 4, E.2 and
E.4 in Appendix E report the runtime for the different methods with growing sample size and dimension under the same
settings as in Figs. 3 E.1 and E.3, respectively. We observe that conquer is computationally efficient and stable across all
scenarios, and the runtime is insensitive to the choice of kernel functions. In contrast, the runtime for classical quantile
regression grows rapidly as the sample size and dimension increase. Figs. 4, E.2 and E.4 in Appendix E show that the
runtime of Horowitz’s smoothing method increases significantly at extreme quantile levels τ ∈ {0.1, 0.9}, possibly due to
the combination of its non-convex nature and flatter gradient. As suggested by a referee, another set of simulations with
covariates xi’s following multivariate normal distribution Np(0,Σ ) are also conducted, where Σ = (0.7|j−k|)1≤j,k≤p. When
the covariates are unbounded, the assumption (2.1) is violated under the model (5.2), thus we exclude this setting from our
experiments. The corresponding results of estimation and running time under t2 noise are presented in Figs. E.5 and E.6,
averaged over 500 datasets, and similar performance can be observed. In summary, we conclude that conquer significantly
improves computational efficiency while retaining high statistical accuracy for fitting large-scale linear quantile regression
models.

Next, we conduct a sensitivity analysis for conquer regarding the smoothing bandwidth h. We first set (n, p) =
(2000, 100) and consider the simulation settings (5.1)–(5.3) with N (0, 4) and t2 noise. We perform conquer with h taken
from a wide range, including the default value hde = {(p+log n)/n}2/5 = 0.3107 guided by Theorem 4.3, and the bandwidth
hAMSE determined by AMSE in (4.12), and compare the estimation error with that of QR in Fig. 5. For hAMSE, we directly
substitute in the oracle values of fε|x(0) and f ′ε|x(0) for illustration purpose, and in practice, estimating these two quantities
usually involves non-parametric techniques. We see that the estimation error of conquer is uniformly lower than that of
QR over a range of h, including our default choice, suggesting that conquer is insensitive to the choice of bandwidth h.
We then consider a growing-scale scenario under model (5.2) with t2 error, and compare conquer with QR in Fig. E.7. This
can be regarded as an extension of panel (e) in Fig. 5. We observe that the estimation error of conquer using our default
bandwidth is uniformly lower that of QR in various settings, and is comparable to that using AMSE-based bandwidth.
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Fig. 4. Elapsed time of standard QR, Horowitz’s smoothing, and conquer when τ = 0.9. The model settings are the same as those in Fig. 3.

Fig. 5. Sensitivity analysis of conquer with a range of bandwidth parameter h. Results for (n, p) = (2000, 100), averaged over 500 datasets, with
onquer implemented using a Gaussian kernel. The blue vertical dash line represents our default choice hde = {(p+ log n)/n}2/5 , the purple vertical
ash line refers to the choice hAMSE from (4.12) with some oracle knowledge, and the red horizontal dash line represents the estimation error of

standard QR. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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.2. Inference

In this section, we assess the performance of the multiplier bootstrap procedure for constructing confidence interval for
each of the regression coefficients obtained from conquer. We implement conquer using the Gaussian kernel, and construct
three types of confidence intervals: (i) the percentile mb-per; (ii) pivotal mb-piv; (iii) and regular mb-norm confidence
intervals, as described in Section 2.3. We also refer to the proposed multiplier bootstrap procedure as mb-conquer for
implicity. We compare the proposed method to several widely used inference methods for QR. In particular, we consider
onfidence intervals by inverting a rank score test, rank (Gutenbrunner and Jurečková, 1992; Section 3.5 of Koenker,
005); a bootstrap variant based on pivotal estimating functions, pwy (Parzen et al., 1994); and wild bootstrap with

Rademacher weights, wild (Feng et al., 2011). The three methods rank, pwy, and wild are implemented using the R
ackage quantreg. Note that rank is a non-resampling based procedure that relies on prior knowledge on the random
oise, i.e., a user needs to specify whether the random noise are independent and identically distributed. In our simulation
tudies, we provide rank an unfair advantage by specifying the correct random noise structure.
We set (n, p) = (800, 20), τ ∈ {0.5, 0.9}, and significance level α = 0.05. All of the resampling methods are

mplemented with B = 500 bootstrap samples. To measure the reliability, accuracy, and computational efficiency of
ifferent methods for constructing confidence intervals, we calculate the average empirical coverage probability, average
idth of confidence interval, and the average runtime. The average is taken over all regression coefficients without the

ntercept. Results based on 500 replications are reported in Fig. 6, and Figs. E.8–E.10 in Appendix E.
In Fig. 6, and Figs. E.8–E.10 in Appendix E, we use the rank-inversion method, rank, as a benchmark since we

mplement rank using information about the true underlying random noise, which is practically infeasible. In the case
f τ = 0.9, pwy is the most conservative as it produces the widest confidence intervals with slightly inflated coverage
robability, and wild gives the narrowest confidence intervals but at the cost of coverage probability. The proposed
ethods mb-per, mb-piv, and mb-norm achieve a good balance between reliability (high coverage probability) and
ccuracy (narrow CI width), and moreover, has the lowest runtime.
To further highlight the computational gain of the proposed method, we now perform numerical studies with larger n

nd p. In this case, the rank inversion method rank is computationally infeasible. For example, when (n, p) = (5000, 250),
ank inversion takes approximately 80 min while conquer with multiplier bootstrap takes 41 s for constructing confidence
ntervals. We therefore omit rank from the following comparison. We consider the quadratic heterogeneous model (5.3)
ith (n, p) = (4000, 100) and t2 noise. The results are reported in Fig. 7. We see that pwy and wild take up to 200 s
hile mb-conquer takes less than 10 s. In summary, mb-conquer leads to a huge computational gain without sacrificing
tatistical efficiency.

.3. Comparison between normal approximation and bootstrap calibration

Finally, we complement the above studies with a comparison between the normal approximation and bootstrap
alibration methods for confidence estimation. We consider model (5.1) with (n, p) = (2000, 10). We use the same β∗ ∈ Rp

nd β∗0 as before, and generate random covariates and noise from a multivariate uniform distribution and t1.5-distribution,
espectively. For each of the p regression coefficients, we apply the proposed bootstrap percentile method and the normal-
ased method (Fernandes et al., 2021) to construct pointwise confidence intervals at quantile indices close to 0 and 1,
hat is, τ ∈ {0.05, 0.1, 0.9, 0.95}. Boxplots of the empirical coverage and CI width for the two methods are reported in
ig. 8. Considering that extreme quantile regressions are notoriously hard to estimate, the bootstrap method can produce
uch more reliable (high coverage) and accurate (narrow width) confidence intervals than the normal-based counterpart.
herefore, for applications in which extreme quantiles are of particular interest, such as the problem of forecasting the
onditional value-at-risk of a financial institution (Chernozhukov and Umantsev, 2001), the bootstrap provides a more
eliable approach for quantifying the uncertainty of the estimates.

. Discussion

In this paper, we provide a comprehensive study on the statistical properties of conquer, namely, convolution-type
moothed quantile regression, under the non-asymptotic setting in which p is allowed to increase as a function of n while
/n being small. When a non-negative kernel is used, the smoothed objective function is convex, twice continuously
ifferentiable, and locally strongly convex in a neighborhood of β∗ (with high probability). An efficient gradient-based
lgorithm is proposed to compute the conquer estimator, which is scalable to very large-scale problems. For traditional
R computation with linear programming, interior point algorithms are typically used to get solutions with high precision
low duality gap) (Portnoy and Koenker, 1997). When applied to large-scale datasets, this may be inefficient for two
easons: (i) it takes a lot more time to reach a duality gap of the order of machine precision, and (ii) such a generic
lgorithm, which is less tailored to problem structure, tends to be very slow or even run out of memory (unless with a
igh performance computing cluster). In this regard, convolution smoothing offers a balanced tradeoff between statistical
ccuracy and computational complexity.
In the context of nonparametric density or regression estimation, it is known that when higher-order kernels are used

ν
and if the density or regression function has enough derivatives), the bias is proportional to h for some ν ≥ 4 which 56
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u

Fig. 6. Empirical coverage, confidence interval width, and elapsed time of six methods: rank, pwy, wild and three types of mb-conquer: mb-per,
mb-piv, and mb-norm under models (5.1)–(5.3) with t2 errors. For the running time, rank is not included since it is not a resampling-based method.
The quantile level τ is fixed to be 0.9, and the results are averaged over 500 datasets.

Fig. 7. Empirical coverage, confidence interval width and elapsed time of pwy, wild and 3 types of mb-conquer: mb-per, mb-piv, and mb-norm
nder quadratic heterogeneous model (5.3) with t2 errors. This figure extends the rightmost column of Fig. 6 to larger scale: (n, p) = (4000, 100).
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Fig. 8. Boxplots of the empirical coverage and CI width for the bootstrap percentile method and normal-based method under model (5.1)
ith t1.5 error.

s of better order than h2. Since a higher-order kernel has negative parts, the resulting smoothed loss is non-convex
and thus brings the computational issue once again. Motivated by the two-stage procedure proposed by Bickel (1975)
whose original idea is to improve an initial estimator that is already consistent but not efficient, we further propose
a one-step conquer estimator using higher-order kernels but without the need for solving a large-scale non-convex
optimization. With increasing degrees of smoothness, the one-step conquer is asymptotically normal under a milder
dimension constraint of roughly p2/n→ 0. Due to space limitations, the details of this method are relegated to Section B
in the supplementary material.

In high-dimensional settings in which p ≫ n, various authors have studied the regularized quantile regression
under the sparsity assumption that most of the regression coefficients are zero (Belloni and Chernozhukov, 2011; Wang
et al., 2012b; Zheng et al., 2015). Due to the vast literature in regularized quantile regression, we refer the reader
to Chapters 15–16 of Koenker et al. (2017) for an overview. The computation of ℓ1-penalized QR is based on either
reformulation as linear programs or alternating direction method of multiplier algorithms (Gu et al., 2018). Since the
conquer loss is convex and twice differentiable, we expect that gradient-based algorithms, such as coordinate gradient
descent or composite gradient descent, will enjoy superior computational efficiency for solving regularized conquer
without sacrificing statistical accuracy.
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