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ABSTRACT: The addition of alkyl fragments to aliphatic aldehydes is a highly desirable transformation for fragment couplings, yet 
existing methods come with operational challenges related to the basicity and instability of the nucleophilic reagents commonly 
employed. We report herein that nickel catalysis using a readily available bioxazoline (BiOx) ligand can catalyze the reductive cou-
pling of redox-active esters with aliphatic aldehydes using zinc metal as the reducing agent to deliver silyl-protected secondary 
alcohols. This protocol is operationally simple, proceeds under mild conditions, and tolerates a variety of functional groups. Initial 
mechanistic studies suggest a radical chain pathway. Additionally, alkyl tosylates and epoxides are suitable alkyl precursors to this 
transformation providing a versatile suite of catalytic reactions for the functionalization of aliphatic aldehydes. 

Cross-coupling reactions have revolutionized the landscape 
of carbon–carbon bond construction, with extensive applica-
tion in the synthesis of natural products, pharmaceuticals, ag-
rochemicals, and functionalized polymers.1 Coupling of Gri-
gnard or organolithium reagents with carbonyl compounds re-
mains among the most frequently used synthetic reactions 
(Scheme 1A),2 although limitations exist due to the instability, 
basicity, and lack of functional group compatibility of the req-
uisite highly nucleophilic reagents. Barbier-type reactions3 and 
Nozaki-Hiyama-Kishi (NHK)4 couplings are attractive as they 
avoid the handling of air- and moisture-sensitive organometal-
lic reagents, and have been employed in many complex set-
tings,5 although the reaction scope is often limited in cases 
where sp3 alkyl fragments are added to aliphatic enolizable al-
dehydes. 

An attractive approach to deliver organohalide feedstocks to 
carbonyl compounds that obviates the need for preformed or-
ganometallic reagents are transition-metal-catalyzed reduc-
tive coupling reactions.6 To date, the coupling of aldehydes 
with organohalides using a stoichiometric reducing agent can 
be catalyzed by Cr,7 Rh,8 Co,9 and Ni,10 but current systems are 
often restricted to aryl, allylic or propargylic halides and aro-
matic aldehydes. The catalytic transformation of aliphatic al-
dehydes with less-activated sp3 counterparts remains a syn-
thetic challenge.7c-e,11 Aliphatic aldehydes often exhibit attenu-
ated reactivity, and competing enolization reactions lead to 
side product formation.10d Additionally, compared with sp2-hy-
bridized halides, unactivated alkyl halides are less suitable cou-
pling partners due to lower reactivity and undesirable side 
pathways such as homocoupling or competing b–H elimina-
tions of reactive intermediates.12 

The wide availability of alkyl carboxylic acids makes this sub-
strate class an attractive coupling partner for processes of this 
type.13 In recent studies, Baran, Weix, and others have exten-
sively explored the utility of redox-active esters (RAEs), as a 

carboxylic acid-derived radical precursors in a variety of car-
bon–carbon and carbon–heteroatom bond forming reac-
tions.14 While the specific combination of aliphatic, enolizable 
aldehydes with sp3 alkyl fragments are largely excluded from 
past work, Reisman, Blackmond, and Baran recently reported 
an attractive electrochemical Cr-catalyzed cross-coupling of al-
dehydes with redox-active esters including two examples of 
this combination with primary RAEs (Scheme 1B),11b but no 
general approach to the catalytic union of aliphatic aldehydes 
with simple sp3 alkyl fragments has been described. 

Scheme 1. Background and Focus of this Work. 
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In order to address this gap in the field, our lab recently de-
scribed a catalytic process involving the reductive coupling of 
aliphatic aldehydes with alkyl bromides in a pathway proposed 
to proceed through the intermediacy of a-silyloxyalkylnickel 
intermediates derived from aldehydes, silyl chlorides, and low-
valent nickel (Scheme 1B).15 In order to address limitations of 
that protocol, including substrate access, scope, and yield, we 
have now explored the utility of more broadly available sub-
strate classes in catalytic couplings with aliphatic aldehydes 
(Scheme 1C). The main focus of this study is the coupling of 
aliphatic aldehydes with redox-active esters, providing access 
to numerous product types derived from simple carboxylic acid 
precursors. Additionally, preliminary examples of reductive 
couplings between aldehydes and alkyl tosylates or epox-
ides14w,16 are described. This combination of procedures pro-
vides strategies where alkyl fragments are derived from car-
boxylic acids, alcohols, or alkenes, thus greatly expanding the 
range of precursors available for aldehyde functionalization 
processes. 

Our initial investigation geared towards developing the cat-
alytic reductive coupling of aldehydes 1a with the N-hydroxy-
phthalimide (NHPI) ester 2a (Table 1). Systematic investigation 
of the reaction parameters showed that the desired product 
3a was isolated in good yield (91%) with a combination of 
Ni(cod)2 and bioxazoline (BiOx). Control experiments indicated 
that a nickel catalyst was necessary for the reaction to pro-
ceed, and other nickel sources only led to moderate yield (Ta-
ble 1, entries 2, 11 and 12). The ligand (BiOx), reductant (na-
nopower Zn), 1,5-hexadiene and LiCl also played a crucial role 
in successful transformation (entries 3-6).17 A ligand screen re-
vealed that BiOx is uniquely effective when compared with 
other common ligands (entries 13-14). Of note, olefin additives 
can dramatically improve the efficiency, with 1,5-hexadiene 
proving the most effective (entries 5, 8-10). Furthermore, the 
particle size of Zn is critical, with the use of nanopowder Zn 
(40-60 nm) enhancing the yield (entry 7). Yields were lowered 
when catalyst loading was reduced (entry 15). 

With optimal conditions in hand, we sought to define the re-
action scope (Table 2A). Various 1o and 2o carboxylic acids were 
converted to the corresponding NHPI-esters and coupled effi-
ciently with aldehyde 1a. A range of functional groups were 
well tolerated including ketones (3h, 3i, 3ab), esters (3j, 3x), N-
Boc (3y), N-tosyl (3z), and alkenes (3g, 3v, 3ac, 3ad). A simple 
methyl group can also be added effectively using the RAE 3c 
derived from acetic acid. Notably, some potentially reactive 
functional groups, including alkyl chloride 3k and aryl bromide 
3l were left intact under current conditions, offering opportu-
nities for subsequent cross-coupling. Protected alcohols (3f, 
3ac) and ethers (3m, 3t, 3u) were also competent coupling 
partners, allowing for the construction of polyol motifs. More-
over, heterocycles including pyridine (3o), and indole (3p) 
were also readily accommodated as were a series of secondary 

redox-active esters (3q-3z). The protocol was scalable to 5 
mmol, obtaining the desired product 3a in 81% isolated yield. 

After defining the scope of RAEs, attention then turned to 
the scope of the aliphatic aldehyde component (Table 2B). Ste-
rically encumbered aldehydes with b–branching, such as isova-
leraldehyde (3af) and citronellal (3ag) were competent cou-
pling partners. a–Branched aldehydes (3as-3au)  

Table 1. Optimization of Reaction Conditionsa 

  
aYields were determined by GC with n-tridecane as the internal 

standard. Isolated yield is given in parentheses (0.2 mmol scale). TES = 
triethylsilyl. 

also delivered the desired products without diminished effi-
ciency. Benzyl ethers (3ah), silyl ethers (3ai), acetals (3aj), al-
kynes (3ak), and phthalimide groups (3ar) were also tolerated. 
Substrates with functional groups known to engage in transi-
tion-metal-catalyzed transformations such as aryl chlorides 
(3al), aryl bromides (3am) and aryl boronate esters (3an), de-
livered the desired product smoothly without competing reac-
tivity. Notably, heterocycle substrates, such as indole (3aq), 
was likewise suitable for this chemistry. The scope and 
chemoselectivity of this method in activating aldehydes in the 
presence of a wide array of reactive functional groups includ-
ing ketones is thus quite broad, addressing an important limi-
tation of classical methods for carbonyl additions. 

While this method demonstrates considerable scope with 
carboxylic acid-derived RAEs, we considered that utilizing alkyl 
precursors derived from simple alcohols and alkenes would 
further extend the utility and scope of the strategy (Table 3). 
To enable the use of alcohol precursors, we explored the use 
of alkyl tosylates as the coupling partner.18 With simple modi-
fication of the reaction conditions (see SI), our catalytic system 
can activate the C-O bond of tosylates, delivering the desired 
product in good yield (Table 3) with attractive functional group 
compatibility including esters (5b), ethers (5c), and furans (5d). 

With an eye towards utilizing alkene feedstocks, we then 
considered the use of epoxides as the alkyl precursor (Table 
3).19 After extensive investigation of reaction parameters 
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Table 2. Scope of Catalytic Couplings of Aldehydes and Redox-Active Esters.a 

 
aReactions run on 0.20 mmol scale unless otherwise noted. Yields are for isolated material. Diastereomeric ratios were determined by 1H NMR analysis. 

TES = triethylsilyl. Ts = p-toluenesulfonyl. 

 

(see SI), an effective method was realized, obtaining the de-
sired silyl-protected 1,3-diols in good yield, tolerating a range 
of functional groups, such as furans (7c), ethers (7d), aryl bro-
mides (7e), and alkynes (7f). This approach further diversifies 
the range of product types accessible by this method, with 1,3-
diols being obtained in the epoxide-based procedure.20 

A cyclopropane-containing RAE 8 afforded a 92:8 ratio of 
ring-opened product 3g and compound 9 with the cyclopro-
pane ring intact (Scheme 2A). Additionally, in an experiment 

involving hexenyl transfer, a direct linear dependence of the 
ratio of 11/12 on the catalyst loading was observed (Scheme 
2B). These experiments are consistent with a mechanism in-
volving free-radical intermediates, in analogy to prior studies 
on nickel-catalyzed processes with both alkyl halides or redox-
active esters.14v,21 Similarly, ring opening was observed in cou-
plings of cyclopropanecarboxaldehyde (13) leading to product 
14 exclusively as the Z-isomer (Scheme 2C). In this case, we at-
tribute ring-opening of the cyclopropane unit to a nickel-  
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Table 3. Catalytic Couplings of Aldehydes with Alkyl Tosylates 
or Epoxides.a 

aReactions run on 0.20 mmol scale unless otherwise noted. Yields are for 
isolated material. Diastereomeric ratios were determined by 1H NMR 
analysis. TES = triethylsilyl. 

catalyzed process involving the intermediacy of 15, potentially 
involving the initial oxidative addition of a low-valent nickel 
species to the aldehyde, promoted by Et3SiCl.15,22 An experi-
ment employing stoichiometric Ni(cod)2 but lacking the zinc re-
ductant resulted in the formation of product 3a in high yield, 
suggesting that key organonickel intermediates involved in 
product formation do not require reduction at the nickel cen-
ter, but rather that the zinc reductant is involved in catalyst 
regeneration (Scheme 2D). 

Based on these experiments and insights from prior studies, 
we propose a mechanistic picture consistent with the above 
findings (Scheme 3). Oxidative addition of aldehyde 1 and silyl 
chloride to Ni(0) generates Ni(II) silyloxyalkyl complex II. Spe-
cies related to II have been previously described,23 and our 
prior studies of aldehyde – alkyl halide couplings illustrated 
characteristic byproducts that are best explained by the in-
volvement of II. Addition of free radical VI to II affords Ni(III) 
species III, which undergoes rapid reductive elimination to 
form product 3 and Ni(I) species IV. Combination of IV with the 
RAE 2 results in V and the free radical VI that recombines with 
species II. The above steps are consistent with the observation 
that Ni(0) undergoes product formation in the absence of zinc, 
illustrating that reduction of intermediate II to the correspond-
ing Ni(I) complex is not strictly required for turnover. Addition-
ally, the above evidence (Scheme 2A-B) for free radical inter-
mediates derived from the RAE 2 are consistent with this pro-
posed mechanistic pathway. 

Scheme 2. Mechanistic Experiments 

 
The conversion of Ni(II) complex V to the Ni(II) silyloxyalkyl 

nickel intermediate II requires a net two-electron reduction by 
zinc and oxidative addition of the aldehyde and silyl chloride. 
The commonly invoked reduction of nickel complex V to Ni(0) 
complex I completes the catalytic cycle, although this possibil-
ity must be viewed within the context of recent work from Diao 
that illustrates that Ni(II) BiOx complexes are more resistant to 
reduction compared with the corresponding Ni(II) complexes 
of other commonly employed pyridyl-based ligands.24 The 
presence of the phthalimido substituent in V and the interac-
tion of V with the aldehyde and silyl chloride may affect the 
facility of this reduction by nanopowder zinc. Given these com-
plexities, the precise nature of the conversion of V to II will re-
quire further investigation. 

The generation of free radical VI from RAE 2 is depicted 
(Scheme 3) as involving Ni(I) species IV in analogy to studies 
from Baran in the coupling of anhydrides with redox-active es-
ters.11a The efficiency of product formation in the absence of 
zinc (Scheme 2D) illustrates that the nickel catalyst is compe-
tent in mediating the decomposition of redox-active esters. 
We observed that zinc and Et3SiCl rapidly promotes the decom-
position of RAE 2, however, the presence of the nickel catalyst 
has a protective effect as previously described by Baran, slow-
ing the rate of consumption of 2 compared to control experi-
ments where the nickel catalyst is omitted (see SI). Recent 
studies from Rousseaux have provided evidence in reductive 
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arylation reactions that TMSCl and Zn promote the formation 
of free radicals.25 Our studies, which potentially involve effects 
of the silyl chloride in several steps including aldehyde activa-
tion and/or redox-active ester decomposition, have not clearly 
elucidated the active agent in mediating radical formation 
from the redox-active ester, although the need for relatively 
high nickel catalyst loadings likely originates from the protec-
tive effect of nickel in slowing the competing Zn/R3SiCl-medi-
ated RAE decomposition. The 1,5-hexadiene additive likely 
prevents catalyst decomposition and/or inhibits competing 
side reactions that lie off the productive catalytic pathway.17 

Scheme 3. Proposed Mechanism 

 
In conclusion, a highly effective decarboxylative alkylation of 

aliphatic aldehydes with redox-active esters has been devel-
oped.25 The procedure is broad in scope, tolerant of a wide ar-
ray of functional groups, high-yielding, experimentally simply, 
and scalable. This process was extended to include the reduc-
tive cross-coupling of alkyl tosylates or epoxides with aliphatic 
aldehydes, thus providing a broad range of precursors derived 
from carboxylic acids, alcohols, or alkenes. Preliminary mech-
anistic experiments on this aldehyde – redox-active ester cou-
pling are consistent with initial aldehyde activation to produce 
a-silyloxyalkylnickel species as a key intermediate that is cap-
tured by free radicals generated from the redox-active ester. 
Future work will include efforts to further study the mecha-
nism of these transformations, expand the scope in increas-
ingly complex applications, and develop effective enantiose-
lective versions. 
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