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A unit disk graph G on a given set P of points in the plane is a geometric graph where an 
edge exists between two points p, q ∈ P if and only if |pq| ≤ 1. A spanning subgraph G ′ of 
G is a k-hop spanner if and only if for every edge pq ∈ G , there is a path between p, q in 
G ′ with at most k edges. We obtain the following results for unit disk graphs in the plane.

(i) Every n-vertex unit disk graph has a 5-hop spanner with at most 5.5n edges. We 
analyze the family of spanners constructed by Biniaz (2020) and improve the upper 
bound on the number of edges from 9n to 5.5n.

(ii) Using a new construction, we show that every n-vertex unit disk graph has a 3-hop 
spanner with at most 11n edges.

(iii) Every n-vertex unit disk graph has a 2-hop spanner with O (n log n) edges. This is the 
first nontrivial construction of 2-hop spanners.

(iv) For every sufficiently large positive integer n, there exists a set P of n points on 
a circle, such that every plane hop spanner on P has hop stretch factor at least 4. 
Previously, no lower bound greater than 2 was known.

(v) For every finite point set on a circle, there exists a plane (i.e., crossing-free) 4-hop 
spanner. As such, this provides a tight bound for points on a circle.

(vi) The maximum degree of k-hop spanners cannot be bounded from above by a 
function of k for any positive integer k.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

A k-hop spanner of a connected graph G = (V , E) is a subgraph G ′ = (V , E ′), where E ′ ⊆ E , with the additional property 
that the distance between any two vertices in G ′ is at most k times the distance in G [25,39], where the distance between 
two vertices is the number of edges on a shortest path between them. The graph G itself is a 1-hop spanner. The minimum 
k for which a subgraph G ′ is a k-hop spanner of G is referred to as the hop stretch factor (or hop number) of G ′ . An alternative 
characterization of k-hop spanners is given in the following lemma.

✩ A preliminary version of this paper appears in the Proceedings of the 31st International Symposium on Algorithms and Computation (ISAAC 2020), 
LIPIcs, vol. 181, Schloss Dagstuhl, 2020, pp. 57:1–57:17.
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Table 1
A summary of results on constructions of hop spanners for unit disk graphs in the plane.

Reference k |E ′| Guaranteed to be plane?

Catusse, Chepoi, and Vaxès (2010) [11] 5 ≤ 10n ✗
Catusse, Chepoi, and Vaxès (2010) [11] 449 ≤ 3n ✔

Biniaz (2020) [6] 5 ≤ 9n ✗
Biniaz (2020) [6] 341 ≤ 3n ✔

This paper 5 ≤ 5.5n ✗
This paper 3 ≤ 11n ✗
This paper 2 O (n log n) ✗

Lemma 1 (Peleg and Schäffer [39]). The subgraph G ′ = (V , E ′) is a k-hop spanner of the graph G = (V , E) if and only if the distance 
between u and v in G ′ is at most k for every edge uv ∈ E.

If the subgraph G ′ has only O (|V |) edges, then G ′ is called a sparse spanner. In this paper we are concerned with 
constructing sparse k-hop spanners (with small k) for unit disk graphs in the plane. Given a set P of n points p1, . . . , pn in 
the plane, the unit disk graph (UDG) is a geometric graph G = G(P ) on the vertex set P whose edges connect points that are 
at most unit distance apart. A spanner of a point set P is a spanner of its UDG.

Recognizing UDGs was shown to be NP-Hard by Breu and Kirkpatrick [9]. Unit disk graphs are commonly used to model 
network topology in ad hoc wireless networks and sensor networks. They are also used in multi-robot systems for practical 
purposes such as planning, routing, power assignment, search-and-rescue, information collection, and patrolling; refer to [2,
19,24,29,35] for some applications of UDGs. For packet routing and other applications, a bounded-degree plane geometric 
spanner of the wireless network is often desired but not always feasible [7]. Since a UDG on n points can have a quadratic 
number of edges, a common desideratum is finding sparse subgraphs that approximate the respective UDG with respect to 
various criteria. Plane spanners, in which no two edges cross, are desirable for applications where edge crossings may cause 
interference.

Obviously, for every k ≥ 1, every graph G = (V , E) on n vertices has a k-hop spanner with |E| = O (n2) edges. If G is 
the complete graph, a star rooted at any vertex is a 2-hop spanner with n − 1 edges. However, the O (n2) bound on the 
size of a 2-hop spanner cannot be improved; a classic example [25] is that of a complete bipartite graph with n/2 vertices 
on each side. In general, if G has girth k + 2 or higher, then its only k-hop spanner is G itself. According to Erdős’ girth 
conjecture [22], the maximum size of a graph with n vertices and girth k + 2 is �(n1+1/�k/2	) for k ≥ 2. (The girth of a graph 
is the length of a shortest cycle contained in the graph.) The conjecture has been confirmed for some small values of k, 
but remains open for k > 9. For any graph G with n vertices, a k-hop spanner with O (n1+1/�k/2	) edges can be constructed 
in linear time [4,5]. We show that for unit disk graphs, we can do much better in terms of the number of edges for every 
k ≥ 2.

Spanners in general and unit disk graph spanners in particular are used to reduce the size of a network and the amount 
of routing information. They are also used for maintaining network connectivity, improving throughput, and optimizing 
network lifetime [6,23,24,28,40].

Spanners for UDGs with hop stretch factors bounded by a constant were introduced by Catusse, Chepoi, and Vaxès 
in [11]. They constructed (i) 5-hop spanners with at most 10n edges for n-vertex UDGs; and (ii) plane 449-hop spanners 
with less than 3n edges. Recently, Biniaz [6] improved both these results and showed that for every n-vertex unit disk graph 
there exists (i) a 5-hop spanner with at most 9n edges, and (ii) a plane 341-hop spanner. The algorithms presented in [6,11]
run in time that is polynomial in n. A summary of these results and our new results is included in Table 1.

Our results. The following are shown for unit disk graphs.

(i) Every n-vertex unit disk graph has a 5-hop spanner with at most 5.5n edges (Theorem 1 in Section 2). We carefully 
analyze the construction proposed by Biniaz [6] and improve the upper bound on the number of edges from 9n to 
5.5n.

(ii) Using a new construction, we show that every n-vertex unit disk graph has a 3-hop spanner with at most 11n edges 
(Theorem 2 in Section 2). Previously, no 3-hop spanner construction algorithm was known.

(iii) Every n-vertex unit disk graph has a 2-hop spanner with O (n logn) edges. This is the first construction with a sub-
quadratic number of edges (Theorem 3 in Section 3) and our main result.

(iv) For every n ≥ 8, there exists an n-element point set P such that every plane hop spanner on P has hop stretch factor 
at least 3. If n is sufficiently large, the lower bound can be raised to 4 (Theorems 4 and 5 in Section 4). A trivial lower 
bound of 2 can be easily obtained by placing four points at the four corners of a square of side-length 1/2.

(v) For every finite point set P on a circle C , there exists a plane 4-hop spanner (Theorem 6 in Section 5). The lower 
bound of 4 holds for some point-set on a circle.

(vi) For every pair of integers k ≥ 2 and � ≥ 2, there exists a set P of n = O (�k) points in the plane such that the unit 
disk graph G = (P , E) on P has no k-hop spanner whose maximum degree is at most � (Theorem 7 in Section 6). An 
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extension to dense graphs is given by Theorem 8 in Section 6. In contrast, Kanj and Perković [24] showed that UDGs 
admit bounded-degree geometric spanners (defined below).

Related work. Peleg and Schäffer [39] have shown that for a given graph G (not necessarily a UDG) and a positive integer 
m, it is NP-complete to decide whether there exists a 2-hop spanner of G with at most m edges. They also showed that for 
every graph on n vertices, a (4k +1)-hop spanner with O (n1+1/k) edges can be constructed in polynomial time. In particular, 
every graph on n vertices has a O (log n)-hop spanner with O (n) edges. Their result was improved by Althöfer et al. [1], 
who showed that a (2k − 1)-hop spanner with O (n1+1/k) edges can be constructed in polynomial time; the run-time was 
later improved to linear [4,8]. Kortsarz and Peleg obtained approximation algorithms for the problem of finding, in a given 
graph, a 2-hop spanner of minimum size [25] or minimum maximum degree [26].

In the geometric setting, where the vertices are embedded in a metric space, spanners have been studied in [3,10,12,
14,27,29] and many other papers. In particular, plane geometric spanners were studied in [7,8,17,18]. The reader is also 
referred to the surveys [8,21,31] and the monograph [34] dedicated to this subject.

Notation and terminology. For two points p, q ∈R2, we denote the Euclidean distance by d(p, q) or sometimes by |pq|. The 
distance between two sets, A, B ⊂ R2, is defined by d(A, B) = inf{d(a, b) : a ∈ A, b ∈ B}. The diameter of a set A, denoted 
diam(A), is defined by diam(A) = sup{d(a, b) : a, b ∈ A}. For a set A, its boundary and interior are denoted by ∂ A and 
int(A), respectively.

A geometric graph G = (P , E) is a geometric t-spanner, for some t ≥ 1, if for every pair of vertices u, v ∈ P , the Euclidean 
length of a shortest path πG (u, v) between u and v in G is at most t times |uv|, i.e., ∀u, v ∈ V , |πG(u, v)| ≤ t|uv|. When 
there is no need to specify t , we simply use the term geometric spanner.

Given a graph G = (V , E) and a vertex u ∈ V , the neighborhood N(u) is the set of vertices adjacent to u. For brevity, a 
hop spanner for a point set P ⊂R2 is a hop spanner for the UDG on P . Assume we are given a subgraph G ′ = (P , E ′) of the 
UDG for a point set P . For p, q ∈ P , let ρ(p, q) denote a shortest path in G ′ , i.e., a path containing the fewest edges; and 
h(p, q) denote the corresponding hop distance (number of edges).

A geometric graph is plane if any two distinct edges are either disjoint or only share a common endpoint. Whenever we 
discuss plane graphs (plane spanners in particular), we assume that the points (vertices) are in general position, i.e., no three 
points are collinear.

A unit disk (resp., circle) is a disk (resp., circle) of unit radius. The complete bipartite graph with parts of size m and n is 
denoted by Km,n; in particular, K1,n is a star on n + 1 vertices. We use the shorthand notation [n] for the set {1, 2, . . . , n}.

2. Sparse (possibly nonplane) hop spanners

In this section we construct hop spanners with a linear number of edges that provide trade-offs between the two 
parameters of interest: hop stretch factor and total number of edges.

2.1. Construction of 5-hop spanners

We start with a brief summary of the 5-hop spanner construction by Biniaz [6, Theorem 3]. It is based on a regular 
hexagonal tiling of the plane with cells of unit diameter. Hence the UDG of a finite point set P ⊂ R2 contains every edge 
between points in the same cell. In every nonempty cell, a star rooted at an arbitrarily chosen point in the cell is created. 
Then, for every pair of cells, exactly one edge of the UDG is chosen, if such an edge exists. Biniaz showed that the resulting 
graph G ′ is a 5-hop spanner with at most 9n edges.

We next provide a more detailed description and an improved analysis of the construction. Consider a regular hexagonal 
tiling T in the plane with cells of unit diameter; refer to Fig. 1 (left). Let P be a finite set of points in the plane. We may 
assume that no point in P lies on a cell boundary. Every point in P lies in the interior of some cell of T (and so the 
distance between any two points in a cell is less than 1). Let p ∈ P be a point in a cell σ . Denote by H1, . . . , H6 the six 
cells adjacent to σ in counterclockwise order; these cells form the first layer around σ . Let H7, . . . , H18 be the twelve cells 
at distance two from σ in counterclockwise order, forming the second layer around σ , such that H7 is adjacent to only H1
in the first layer.

For every two distinct cells σ , τ ∈ T , take an arbitrary edge pq ∈ E , p ∈ σ , q ∈ τ , if such an edge exists; we call such an 
edge a bridge. Each cell σ can have bridges to at most 18 other cells, namely those in the two layers around σ . A bridge is 
short if it connects points in adjacent cells and long otherwise.

Lemma 2. Let p ∈ P be a point that lies in cell σ . The unit disk D centered at p intersects at most five cells from the second layer 
around σ .

Proof. Let A be the center of σ (see Fig. 1 (right)). Subdivide σ into six regular triangles incident to A. By symmetry, we 
may assume that p lies in the regular triangle �ABC , where BC = σ ∩ H2.
3
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Fig. 1. Left: A regular hexagonal tiling with cells of unit diameter; the figure shows the two layers of cells around σ . Right: The unit disk centered at p
intersects 11 cells H1, . . . , H10, H18.

Note that d(�ABC , Hi) > 1 for i ∈ {13, 14, 15, 16, 17}, and D is disjoint from the five cells H13, H14, H15, H16, and H17. 
Now, observe that d(H7 ∪ H18, H11 ∪ H12) = 2. Hence, D intersects at most one of H7 ∪ H18 and H11 ∪ H12. Consequently, 
D intersects at most 12 − 5 − 2 = 5 cells from the second layer around σ . �

Obviously, any two points in a cell σ are at most unit distance apart. Further, observe that the unit disk D centered at p
intersects all six cells H1, . . . , H6.

Let P be a set of n points and G = (P , E) be the corresponding UDG. Lemma 2 immediately yields the following.

Corollary 1. For every point p ∈ P ∩ σ , every neighbor of p in G lies in σ or one of at most 11 cells around σ .

The main result regarding 5-hop spanners is given below.

Theorem 1. The (possibly nonplane) 5-hop spanner G ′ constructed by Biniaz [6, Theorem 3] has at most 5.5n edges.

Proof. Let σ ∈ T be a nonempty hexagonal cell, and let x = |P ∩ σ | be the number of points in the cell. The graph G ′
contains a star induced by P ∩ σ with x − 1 inner edges, and at most 18 outer edges (i.e., bridges) connecting points in σ
with points in other cells. We analyze the number of bridges depending on x.

If x = 1, there are no inner edges and at most 11 outer edges by Corollary 1. As such, the degree of the (unique) point 
in σ is at most 11 in G ′ .

If x = 2, there is one inner edge and at most 16 outer edges. Indeed, by Lemma 2, each point p ∈ P ∩ σ has neighbors 
in G in at most five cells from the second layer around σ (besides points in P in the six cells in the first layer). Two points 
in P ∩ σ can jointly have neighbors in G in at most 6 + 5 + 5 = 16 other cells. As such, the average degree of points in σ
is at most (2 + 16)/2 = 9 in G ′ .

If x ≥ 3, there are x − 1 inner edges and at most 18 outer edges. As such, the average degree in G ′ of all points in σ is 
at most

2(x − 1) + 18

x
= 2x + 16

x
≤ 22

3
.

Summation over all cells implies that the average degree in the resulting 5-hop spanner G ′ is at most 11, thus G ′ has at 
most 5.5n edges. �
2.2. Construction of 3-hop spanners

Here we show that every point set in the plane has a 3-hop spanner of linear size. This brings down the hop-stretch 
factor of Biniaz’s construction from 5 to 3 at the expense of increasing the number of edges (from 5.5n to 11n).

Theorem 2. Every n-vertex unit disk graph has a (possibly nonplane) 3-hop spanner with at most 11n edges.

Proof. Let P be a set of n points in the plane, and let G = (P , E) be the UDG of P . Let G ′ be the 5-hop spanner described 
in Section 2.1, based on a hexagonal tiling T with cells of unit diameter. We construct a new graph G ′′ that consists of all 
bridges from G ′ and, for each nonempty cell σ ∈ T , a spanning star of the points in σ defined as follows.
4
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Fig. 2. Three points in P , pi ∈ σi , p j ∈ σ j , and pk ∈ σk where pi p j , pi pk ∈ E . Edge pq is a short bridge connecting σi and σ j . Edge rs is a long bridge 
connecting σi and σk .

For every nonempty cell σ ∈ T and every pi ∈ P ∩σ , we add edges incident to pi as follows. For every cell τ ∈ T in the 
two layers around σ , if d(pi, τ ) ≤ 1 and G ′ contains a bridge pq such that p ∈ σ , pi �= p, and q ∈ τ , then we add the edge 
pi p to G ′′ . Since diam(σ ) = 1, if pq is a short bridge, then p is the center of a spanning star on P ∩ σ in G ′ . In addition, if 
no short bridge is incident to any point in σ , then we add a spanning star of P ∩ σ to G ′′ (centered at an arbitrary point in 
σ if no point in P ∩ σ is incident to a long bridge, otherwise the star is centered at the endpoint of any long bridge).

It is easy to see that the hop distance between any two points within a cell is at most 2. Indeed, by construction, 
the points in each nonempty cell are connected by a spanning star. Consider now an edge pi p j ∈ E of the UDG, where 
pi ∈ P ∩σi , p j ∈ P ∩σ j for i �= j. Then, by Biniaz’s construction, there is a unique bridge pq ∈ G ′ ⊂ G ′′ between some points 
p ∈ P ∩ σi and q ∈ P ∩ σ j . By our construction, we have either p = pi or the edge pi p is in G ′′ , and similarly either p j = q
or the edge p jq is in G ′′ . As such, G ′′ contains a 3-hop path pi, p, q, p j between pi and p j . Refer to Fig. 2 for an illustration.

We derive an upper bound for the average degree of the points in σ as follows. Let σ ∈ T be a nonempty hexagonal 
cell, and let x = |P ∩ σ | be the number of points in the cell. By Corollary 1, the neighbors of each point pi ∈ σ lie in σ and 
at most 11 cells around σ . If pi is not incident to any bridge, we add at most 11 edges between pi and other points in σ ; 
these edges increase the sum of degrees in σ by 2 · 11 = 22. Otherwise assume that pi is incident to bi bridges, for some 
1 ≤ bi ≤ 11. Then we add edges from pi to at most 11 − bi other points in σ . The bi bridges each have only one endpoint 
in σ . Overall, these edges contribute 2(11 − bi) + bi = 22 − bi < 22 to the sum of degrees in σ .

If no short bridge has an endpoint in σ , then by Lemma 2 we add at most 5 edges between each point pi ∈ σ and 
endpoints of long bridges; these edges increase the sum of degrees in σ by 2 · 5 = 10. However, we also add a spanning 
star that contributes 2(x − 1) to the same sum. Overall, the sum of degrees in σ is bounded from above by{

2 · 11x = 22x, if some short bridge has an endpoint in σ

2(x − 1) + 10x < 12x, otherwise.

Thus, the average vertex degree is at most 22 in all σ ∈ T . Consequently, the 3-hop spanner G ′′ has at most 11n edges. �
Remark. It is natural to ponder whether the UDG on any n points in the plane has a subgraph with O (n) edges that is 
a k-hop spanner (for small k) and also a geometric spanner of G . Such subgraphs of UDGs can find practical uses in the 
real-world. Interestingly, the answer is yes. It is shown by Kanj and Perković [24] that the UDG of a point set P has a 
subgraph G1 = (P , E1) with O (n) edges that is a geometric t-spanner for some constant t . Let G2 = (P , E2) be the 3-hop 
spanner generated by the construction in Theorem 2. Clearly, the graph G ′ := (P , E1 ∪ E2) is a subgraph of the UDG, it has 
O (n) edges, and it is both a 3-hop spanner for the UDG of P and a geometric t-spanner for P with a constant t .

3. Construction of 2-hop spanners

In this section, we construct a 2-hop spanner with O (n log n) edges for a set P of n points in the plane. We begin with 
a construction in a bipartite setting (cf. Lemma 6), and then extend it to the general setup.

We briefly review the concept of ε-nets [33], which is crucial for our construction. Let (P , R) be a set system (a.k.a. 
range space), where P is a finite set in an ambient space and R is a collection of subsets of that space (called ranges). For 
ε > 0, an ε-net for (P , R) is a set N ⊂ P such that for every R ∈ R, |P ∩ R| ≥ ε · |P | implies N ∩ R �= ∅. When the ambient 
space is Rd for some d ∈N , and R is a collection of semi-algebraic sets, there exists an ε-net of size O ( d

ε log d
ε ), and this 

bound is best possible in many cases [37]. However, for some geometric set systems, ε-nets of size O ( 1 ) are possible. For 
ε

5
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Fig. 3. A set A of 16 points above the x-axis, W (A), and hull(A). The boundary ∂hull(A) is an x-monotone curve, which consists of horizontal segments 
and arcs of unit circles centered on or below the x-axis (the centers are marked with crosses).

example, if P is a finite set of points in the plane and R consists of halfplanes, then there exists an ε-net of size O ( 1
ε ) [38]. 

We adapt this result to unit disks in a somewhat stronger form (cf. Lemma 5).

Alpha-shapes. As a generalization of convex hulls of a set of points, Edelsbrunner, Kirkpatrick, and Seidel [20] introduced 
α-shapes, using balls of radius 1/α instead of halfplanes. We introduce a similar concept, in a bipartite setting, as follows; 
see Fig. 3 for an illustration. We consider the set system (A, D), where A is a finite set of points in the plane above the 
x-axis and D is the set of all unit disks centered on or below the x-axis. Let W (A) be the union of all unit disks D ∈ D
such that A ∩ int(D) = ∅; and let hull(A) =R2 \ int(W (A)).

The following easy observation shows that disks in D, restricted to the upper halfplane {(x, y) ∈ R2 : y > 0}, behave 
similarly to halfplanes in R2.

Lemma 3. For any two points p1, p2 ∈R2 above the x-axis, there is at most one unit circle centered at a point on or below the x-axis 
that is incident to both p1 and p2 . Consequently, for any two unit disks D1, D2 ∈ D, at most one point in ∂ D1 ∩ ∂ D2 lies above the 
x-axis.

Proof. Suppose that two unit circles, c1 and c2, are incident to both p1 and p2. Then the centers of c1 and c2 are on the 
orthogonal bisector of segment p1 p2, on opposite sides of the line through p1 p2. Hence one of the circle centers is above 
the x-axis, which is a contradiction. Therefore at most one of the circles is centered at a point on or below the x-axis. �

We continue with a few basic properties of the boundary of hull(A), which exhibits the same behavior as convex hulls 
with respect to lines in the plane.

Lemma 4. The set system (A, D) defined above has the following properties:

1. ∂hull(A) lies above the x-axis;
2. every vertical line intersects ∂hull(A) in one point, thus ∂hull(A) is an x-monotone curve;
3. for every unit disk D ∈D, the intersection D ∩ (∂hull(A)) is connected (possibly empty);
4. for every unit disk D ∈D, if A ∩ D �= ∅, then A ∩ D contains a point in ∂hull(A).

Proof. Let h be the minimum of the y-coordinates of the points in A. If h ≥ 1, then W (A) = {(x, y) : y ≤ 1} is a halfplane 
bounded by the line y = 1, so the lemma trivially holds. In the remainder of the proof, assume that 0 < h < 1.
(1) Since 0 < h < 1, the halfplane below the horizontal line y = h lies in the interior of W (A) (as every point below this 
line is in the interior of a unit disk whose center is below the x-axis and whose interior is disjoint from A). Property 1 
follows.
(2) Let p ∈ ∂hull(A). Then p lies on the boundary of a unit disk D p whose center is below the x-axis (and whose interior 
is disjoint from A). In particular D p ⊂ W (A). The vertical line segment from p to the x-axis lies in D p , hence in W (A). 
Consequently, W (A) contains the vertical downward ray emanating from p. Property 2 follows.
(3) Let D ∈D. Suppose, to the contrary, that the intersection D ∩(∂hull(A)) has two or more components. By property 2, the 
x-coordinates of the components form disjoint intervals, and the components have a natural left-to-right ordering. Let p1 be 
the rightmost point in the first component, and let p2 be the leftmost point in the second component. Clearly p1, p2 ∈ ∂ D . 
Let q be an arbitrary point in ∂hull(A) between p1 and p2. Then q lies on the boundary of a unit disk Dq whose center 
is below the x-axis (and whose interior is disjoint from A). Since Dq ⊂ W (A), neither p1 nor p2 is in the interior of Dq . 
Since the center of Dq is below the x-axis, ∂ Dq contains two interior-disjoint circular arcs between q and the x-axis; and 
both arcs must cross ∂ D . We have found two intersection points in ∂ D ∩ ∂ Dq above the x-axis, contradicting Lemma 3. This 
completes the proof of Property 3.
6
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Fig. 4. Illustration for the proof of Lemma 5(iv) with i = 2 and j = 4. A unit disk D with D ∩ N = {v2, v3, v4, v5, v6}, and a unit disk D4 with v4 ∈ D4 and 
v3, v5 /∈ D4. A hypothetical unit disk D ′

4 (dashed) such that v4 ∈ D ′
4, and ∂D ′

4 ∩ hull(A) crosses ∂D ∩ hull(A).

(4) Let D ∈ D such that A ∩ D �= ∅. By continuously translating D vertically down until its interior is disjoint from A, we 
obtain a unit disk D ′ such that A ∩ int(D ′) = ∅ but A ∩ ∂ D ′ �= ∅. Since the center of D ′ is vertically below the center of D , 
we have A ∩ ∂ D ′ ⊂ A ∩ D and D ′ ⊂ W (A). This implies that A ∩ ∂ D ′ ⊂ ∂hull(A), as required. �
Lemma 5. Consider the set system (A, D) defined above. For every ε ∈ (0, 1), we can construct an ε-net N = {v1, . . . , vk} ⊂ A, labeled 
by increasing x-coordinates, such that

(i) |N| ≤ �2/ε�;
(ii) N ⊂ ∂hull(A);

(iii) for every D ∈D, the points in D ∩ N are consecutive in N; and
(iv) for every D ∈D, |N ∩ D| ≥ 5 implies |A ∩ D| ≥ 2ε|A|.

Proof. Let M = A ∩∂hull(A) be the set of points in A lying on the boundary of hull(A). By Lemma 4(4), if a unit disk D ∈ D
contains any point in A, it contains a point from M . Consequently M is an ε-net for (A, D) for every ε > 0. For a given 
ε > 0, let N = Nε be a minimal subset of M that is an ε-net for (A, D) (obtained, for example, by successively deleting 
points from M while we maintain an ε-net).

Let N = {v1, . . . , vk}, where we label the elements in N by increasing x-coordinates. For notational convenience, we 
introduce a point v0 ∈ ∂hull(A) on a vertical line one unit left of v1, and vk+1 ∈ ∂hull(A) on a vertical line one unit right 
of vk . For i = 1, . . .k, the minimality of N implies that N \ {vi} is not an ε-net, and so there exists a unit disk D ∈ D such 
that |A ∩ D| ≥ ε|A| and D ∩ N = {vi}. Let Di ∈ D be such a disk, with |A ∩ Di | ≥ ε|A| and Di ∩ N = {vi}. By Lemma 4(3), 
Di contains a connected arc of the x-monotone curve ∂hull(A), but Di contains neither vi−1 nor vi+1. In particular, the 
x-coordinate of every point in A ∩ Di lies between that of vi−1 and vi+1. Consequently, every point in A lies in at most two 
disks Di , 1 ≤ i ≤ k. It follows that

k · ε|A| =
k∑

i=1

ε|A| ≤
k∑

i=1

|A ∩ Di | ≤ 2|A|,

hence k ≤ �2/ε�. This proves (i).
By construction, we have N ⊂ M ⊂ ∂hull(A), which confirms (ii), and (iii) follows from Lemma 4(3). It remains to prove 

(iv); refer to Fig. 4. Assume that D ∈ D and |N ∩ D| ≥ 5. By (iii), we may assume that D contains five consecutive points in 
N , say, vi, . . . , vi+4. For j ∈ {i +1, i +2, i +3}, consider the disk D j ∈D defined above, where v j ∈ D j but v j−1, v j+1 /∈ D j . In 
particular, D j ∩ (∂hull(A)) lies between v j−1 and v j+1. By Lemma 3, the circular arcs ∂ D ∩ hull(A) and ∂ D j ∩ hull(A) cross 
at most once. However, if they cross once, then D j contains one of the endpoints of D ∩ (∂hull(A)), and by Lemma 4(3) 
it contains {vi, . . . , v j} or {v j, . . . , vi+4}, which is a contradiction. We conclude that ∂ D ∩ hull(A) and ∂ D j ∩ hull(A) do 
not cross. Consequently, D j ∩ hull(A) ⊂ D ∩ hull(A), hence A ∩ D j ⊂ A ∩ D . As noted above, |A ∩ D j | ≥ ε|A|. Furthermore, 
A ∩ Di+1 and A ∩ Di+3 are disjoint as they are on opposite sides of the vertical line passing through vi+2. Thus we obtain 
|A ∩ D| ≥ |A ∩ (Di+1 ∪ Di+3)| ≥ |A ∩ Di+1| + |A ∩ Di+3| ≥ 2ε|A|, as claimed. �

Let A and B be two disjoint point sets above and below the x-axis, respectively. Denote by U (A, B) the unit disk graph 
on A ∪ B and by G(A, B) the bipartite subgraph of U (A, B) consisting of all edges between A and B .

Lemma 6. Let P = A ∪ B be a set of n points in the plane such that diam(A) ≤ 1, diam(B) ≤ 1, and A (resp., B) is above (resp., 
below) the x-axis. Then there is a subgraph H of U (A, B) with O (n logn) edges such that for every edge ab of G(A, B), H contains a 
path of length at most 2 between a and b.
7
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Fig. 5. Set A (resp., B) is above (resp., below) the x-axis. The points in an εi -net Ni = {v1 . . . , v5} are marked with hollow dots. The graph Hi is a union of 
stars centered at v1, . . . , v5. (To avoid clutter, the depicted point set does not meet conditions diam(A) ≤ 1 and diam(B) ≤ 1 of Lemma 6.)

Proof. Our proof is constructive. For every point b ∈ B , let Db be the unit disk centered at b. Consider the set system (A, B), 
where B = {Db : b ∈ B}. We partition the set of disks B into O (log n) subsets based on the number of points of A contained 
in the disks. For every i = 1, . . . , �log n	, let

Bi =
{

D ∈ B : |A|
2i

≤ |A ∩ D| < |A|
2i−1

}
, and εi = 1

2i
.

Lemma 5 yields an εi -net Ni ⊂ A of size at most �2/εi� = 2i+1 for the set system (A, D). Since Bi ⊂ D, it follows that 
Ni ⊂ A is also an εi -net for the set system (A, Bi).

We construct a graph H as a union of stars; see Fig. 5 for an illustration. For every i = 1, . . . , �log n	 and every v ∈ Ni , we 
create a star centered at v as follows. Let Bi(v) be the set of points b ∈ B such that Db ∈ Bi , v ∈ Db , and v is the leftmost 
point in Ni ∩ Db . Let Ai(v) be the set of points a ∈ A such that a ∈ Db for some b ∈ Bi(v). Note that v ∈ Ai(v). Let Si(v) be 
the spanning star on the point set Ai(v) ∪ Bi(v) centered at v . By assumption, we have diam(A) ≤ 1, and by the definition 
above, every point in Bi(v) is at distance at most 1 from v . This implies that Si(v) is a subgraph of U (A, B). Let Hi be the 
union of stars Si(v) for all v ∈ Ni ; and let H be the union of the graphs Hi for i = 1, . . . , �log n	. Note that H is a union of 
stars in U (A, B), and so it is a subgraph of U (A, B).

To prove that H is a 2-hop spanner for G(A, B), consider an edge ab of G(A, B) with a ∈ A, b ∈ B . Since ab is an edge of 
G(A, B), we have |ab| ≤ 1 hence a ∈ Db . There exists an index i ∈ {1, . . . , �log n	} for which Db ∈ Bi . As |A ∩ Db| ≥ |A|/2i =
εi |A|, and Ni is an εi -net for (A, Bi), we have Db ∩ Ni �= ∅. Let v be the leftmost point in Db ∩ Ni . Then by construction 
a ∈ Ai(v) and b ∈ Bi(v). If a = v , then the star Si(v) contains the edge ab, otherwise Si(v) contains the path a, v, b of 
length 2.

It remains to derive an upper bound on the number of edges in H . We claim that Hi has O (n) edges for all i =
1, . . . , �log n	, which implies that H has O (n log n) edges overall.

Let b ∈ B . There is a unique index i such that |A|/2i ≤ |A ∩ Db| < |A|/2i−1; and there is a unique leftmost point v in 
Ni ∩ Db . Therefore, b is a leaf of a star Si(v) for at most one vertex v ∈ A, and so the degree of b is at most 1 in Hi , hence 
in H . Overall, H contains at most |B| edges incident to B . We still need to bound the number of edges induced by A in H .

Let i ∈ {1, . . . , �log n	}. Assume that Ni = {v1, . . . , vk} is sorted by increasing x-coordinates. We also introduce points v0
and vk+1 on ∂hull(A) as specified previously.

Let a ∈ A; refer to Fig. 5. Assume that a is in a star Si(v j) for some v j ∈ Ni . Assume further that the x-coordinate of a is 
between that of v�−1 and v� for some � ∈ {1, . . . , k + 1}. Since a is in Si(v j), then a ∈ Ai(v j) and there exists a point b ∈ B
such that a ∈ Db , Db ∈ Bi , and v j is the leftmost point in Db ∩ Ni . Since Db ∈ Bi , we have |A ∩ Db| < 2εi |A|.

By Lemma 5(iv), Db contains at most 4 points in the net Ni . In particular, the unit circle ∂ Db intersects ∂hull(A) in two 
points: once between v j−1 and v j , and once between v j and v j+4. Consequently, 0 ≤ � − j ≤ 4, thus a is in at most 5 
possible stars Si(v j), v j ∈ Ni . It follows that Hi has at most 5|A| + |B| ≤ 5n edges, as required. �

We now consider the general case.

Theorem 3. Every n-vertex unit disk graph has a (possibly nonplane) 2-hop spanner with O (n logn) edges.

Proof. Let P be a set of n points in the plane and let G denote the corresponding UDG. Consider a tiling of the plane with 
regular hexagons of unit diameter; and assume that no point in P lies on the boundary of any hexagon. Let T be the set 
of nonempty hexagons. Then P is partitioned into O (n) sets {P ∩σ : σ ∈ T }. As noted in Section 2.1, for every σ ∈ T , there 
are 18 other cells within unit distance; see Fig. 1 (left).

For each cell σ ∈ T , choose an arbitrary vertex vσ ∈ P ∩ σ , and create a star Sσ centered at vσ on the vertex set P ∩ σ . 
Since the stars are disjoint, they form a forest with n − |T | trees, thus the overall number of edges in all stars Sσ , σ ∈ T , 
is n − |T | ≤ n.
8
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For every pair of cells σi, σ j ∈ T , where d(σi, σ j) ≤ 1, consider the bipartite subgraph of G: Gi, j = G(P ∩ σi, P ∩ σ j). By 
Lemma 6, there is a subgraph Hi, j of Gi, j of size

O
(
(|P ∩ σi| + |P ∩ σ j|) log(|P ∩ σi| + |P ∩ σ j|)

) ⊆ O
(
(|P ∩ σi| + |P ∩ σ j|) log n

)
.

Since every vertex appears in at most 18 such bipartite graphs, the total number of edges in these graphs is at most 
O  

(∑
σ∈T |P ∩ σ | log n

) = O (n log n).
We show that the union of the stars Sσ , σ ∈ T , and the graphs Hi, j is a 2-hop spanner. Let ab be an edge of the unit 

disk graph. If both a and b are in the same cell, say σ ∈ T , then ab is an edge in the star or the star Sσ contains the path 
a, vσ , b. Otherwise, a and b lie in two distinct cells, say σi, σ j ∈ T , such that d(σi, σ j) ≤ |ab| ≤ 1. By Lemma 6 (where the 
role of the x-axis is taken by any separating line), Hi, j contains a path of length at most 2 between a and b, as required. �
4. Lower bounds for plane hop spanners

A trivial lower bound of 2 for the hop stretch factor of plane subgraphs of UDGs can be easily obtained by taking the 
four corners of a square of side-length 1

2 . In this case, the UDG is the complete graph but a plane subgraph cannot contain 
both diagonals of the square. Our main result in this section is a lower bound of 4 for sufficiently large n (cf. Theorem 5). 
We begin with a lower bound of 3 that holds already for n = 8.

Theorem 4. For every n ≥ 8, there exists an n-element point set S on a circle such that every plane hop spanner on S has hop stretch 
factor at least 3.

Proof. Let P = {p1, . . . , p8} be a set of 8 successive points on a circle of radius r ≥ 1, so that p1 p8 is a horizontal chord, 
|p2 p3| = |p3 p4| = |p4 p5| = |p5 p6| = |p6 p7|, |p1 p2| = |p7 p8| = 1.1|p2 p3|, |p1 p4| < 1, and |p2 p6| = |p3 p7| = 1. The UDG of 
P is shown in Fig. 6 (left). Note that |p1 p5| = |p4 p8| > 1; and that the orthogonal bisector of p1 p8 is a vertical axis of 
symmetry. Since P is in convex position we may assume that pi pi+1 ∈ E ′ for i = 1, . . . , 7. Suppose that G ′ = (P , E ′) is a 
plane hop spanner with hop stretch factor 2. Define the span of an edge pi p j (i < j), as j − i. We distinguish between two 
cases depending on whether E ′ contains at least one edge of span 2 whose endpoints are in {p2, . . . , p7}.

Fig. 6. Left: the 8-element point set P and its UDG. Right: a 3-hop plane spanner of P ; for the hop distance between the two red points, p4 and p7, is 3. 
(For interpretation of the colors in the figures, the reader is referred to the web version of this article.)

Case 1: E ′ contains at least one edge of span 2 whose endpoints are in {p2, . . . , p7}. Assume first that p3 p5 ∈ E ′ or p4 p6 ∈ E ′ . 
Assume w.l.o.g. that p3 p5 ∈ E ′ . Since h(p1, p4) ≤ 2, we have p1 p3 ∈ E ′ . Since h(p2, p6) ≤ 2, we have p3 p6 ∈ E ′ . Since 
h(p4, p7) ≤ 2, we have p3 p7 ∈ E ′ . Then ρ(p5, p8) has at least 3 hops, a contradiction.

We can subsequently assume that p3 p5, p4 p6 /∈ E ′ . Assume next that p2 p4 ∈ E ′ or p5 p7 ∈ E ′ . Assume w.l.o.g. that p2 p4 ∈
E ′ . Since h(p3, p6) ≤ 2, we have p2 p6 ∈ E ′ . Then ρ(p4, p7) has at least 3 hops, a contradiction.

Case 2: E ′ contains no edge of span 2 whose endpoints are in {p2, . . . , p7}. Since h(p3, p6) ≤ 2, we have p3 p6 ∈ E ′ , p2 p6 ∈ E ′ , 
or p3 p7 ∈ E ′ . If p3 p6 ∈ E ′ , then ρ(p2, p5) has at least 3 hops, a contradiction. Assume w.l.o.g. that p2 p6 ∈ E ′ . Then ρ(p1, p4)

has at least 3 hops, a contradiction.

Thus, we have shown that every plane hop spanner on P has hop stretch factor of at least 3. For every n ≥ 8, we can 
add n − 8 points on the circle beyond p8 such that every plane hop spanner on the resulting set S of n points has hop 
stretch factor of at least 3. �

We next derive a better bound assuming that n is sufficiently large.

Theorem 5. For every sufficiently large n, there exists an n-element point set P on a circle such that every plane hop spanner on P has 
hop stretch factor at least 4.

Proof. Consider a set P of n points that form the vertices of regular n-gon R inscribed in a circle C , where the circle is just 
a bit larger than the circumscribed circle of an equilateral triangle of unit edge length. Formally, for a given ε ∈ (0, 1/50), 
set n = �2ε−1	 and choose the radius of C such that every sequence of 

( 1
3 − ε

)
n consecutive points from P makes a subset 

of diameter at most 1; and any larger sequence makes a subset of diameter larger than 1. Note that εn ≥ 2. (We may set 
ε = 0.02, which yields n = 100.)

The short circular arc between two consecutive vertices of R is referred to as an elementary arc. (Its center angle is 
2π/n.) If A is a set of elementary arcs, X(A) denotes its set of endpoints; obviously |X(A)| ≥ |A|, with equality when A
covers the entire circle C .
9
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Fig. 7. The partition induced by the blocks for n = 19 and k = 4. The edges pi pi+1 are maximal edges of G ′ and �pi pi+1qi is the unique triangle adjacent 
to pi pi+1 in the triangulation of the ith block. Since n = 19 is small, the figure only illustrates the notation used in the proof of Theorem 5; |A1| = 2, 
|B1| = 3, |A2| = 1, |B2| = 4, etc.

Suppose, for the sake of contradiction, that the unit disk graph G has a plane subgraph G ′ with hop number at most 3. 
First, augment G ′ to a maximal noncrossing subgraph of G , by successively adding edges from G \ G ′ that do not introduce 
crossings. Adding edges does not increase the hop number of G ′ , which remains at most 3.

We define maximal edges in G ′ as follows. Associate every edge of G ′ with the shorter circular arc between its endpoints. 
Observe that containment between arcs is a partial order (poset). An edge of G ′ is maximal if the associated arc is maximal 
in this poset. Due to planarity, if two arcs overlap, then one of the arcs contains the other. Hence the maximal edges cor-
respond to nonoverlapping arcs. As such, the maximal edges form a convex cycle, i.e., a convex polygon Q = p1, p2, . . . , pk . 
Refer to Fig. 7. By the choice of C , we have k ≥ 4. Each edge of the polygon Q determines a set of points, called block, that 
lie on the associated circular arc (both endpoints of the edge are included). Since the length of each edge of Q is at most 
1, the restriction of G ′ to the vertices in a block is a triangulation.

Let Ai ∪ Bi be the sets of elementary arcs in counterclockwise order covering the ith block such that Ai and Bi are 
separated by a common vertex qi , where the triangle �pi pi+1qi is the (unique) triangle adjacent to the chord pi pi+1 in 
the triangulation of the ith block (where addition is modulo k, so that k + 1 = 1). In particular, qi is the last endpoint of an 
elementary arc in Ai and the first endpoint of an elementary arc in Bi , in counterclockwise order. As such, we have

k∑
i=1

(|Ai| + |Bi|) = n. (1)

By definition, we have

|Ai | + |Bi | ≤
(

1

3
− ε

)
n, for i = 1, . . . ,k. (2)

By the maximality of the blocks in G ′ , we have

(|Ai | + |Bi|) + (|Ai+1| + |Bi+1|) ≥
(

1

3
− ε

)
n, for i = 1, . . . ,k. (3)

By the maximality of G ′ , we also have k ≤ 6, since otherwise an averaging argument would yield two adjacent blocks, 
say, i and i + 1, that can be merged by adding one chord of length at most 1 and so that the merged sequence of points 
has size at most

|Ai | + |Bi | + |Ai+1| + |Bi+1| ≤ 2n

7
<

(
1

3
− ε

)
n,

which would be a contradiction. We next prove the following inequality:

|Bi | + |Ai+1| >
(

1

3
− 3ε

)
n, for i = 1, . . . ,k. (4)

Suppose for contradiction that |Bi | + |Ai+1| ≤
( 1

3 − 3ε
)

n holds for some i. Consider the εn elementary arcs preceding 
the arcs in Bi and the εn elementary arcs following the arcs in Ai+1, in counterclockwise order. Denote these sets of arcs 
by Ui and V i , respectively (|Ui | = |V i | = εn). Recall that εn ≥ 2 and thus |X(Ui)|, |X(V i)| ≥ |Ui | = εn ≥ 2.
10
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We claim that there exist u ∈ X(Ui) and v ∈ X(V i) such that |uv| ≤ 1 and h(u, v) ≥ 4. Indeed, diam(X(Ui ∪ Bi ∪ Ai+1 ∪
V i)) ≤ 1 since X(Ui ∪ Bi ∪ Ai+1 ∪ V i) contains at most(

1

3
− 3ε

)
n + 2εn ≤

(
1

3
− ε

)
n

consecutive points. This proves the first part of the claim for any u ∈ X(Ui) and v ∈ X(V i). For the second part, we can 
take u as one of the two vertices preceding qi that is not pi , and similarly we can take v as one of the two vertices 
following qi+1 that is not pi+2. With this choice, we have h(u, pi+1) ≥ 2 and h(pi+1, v) ≥ 2, and ρ(u, v) passes through 
pi+1. Consequently,

h(u, v) ≥ h(u, pi+1) + h(pi+1, v) ≥ 2 + 2 = 4.

We have reached a contradiction, which proves (4). The summation of (4) over all i = 1, . . . , k, in combination with (1) and 
the inequality k ≥ 4 yields

n =
k∑

i=1

(|Ai | + |Bi|) =
k∑

i=1

(|Bi | + |Ai+1|) ≥ k

(
1

3
− 3ε

)
n ≥ 0.27 kn ≥ 1.08 n.

This last contradiction completes the proof of the theorem. �
5. An upper bound for points on a circle

For many problems dealing with finite point configurations in the plane, points in convex position or on a circle may 
allow for tighter bounds; see, e.g., [15,16,32,41]. We show that the lower bound of 4 for points on a circle is tight in this 
case.

Theorem 6. For every finite point set S on a circle C , there exists a plane 4-hop spanner.

Proof. Let C be a circle with center o ∈ R2 and radius r > 0. Let S be a set of n points on C , and let G = G(S) be the 
corresponding UDG. We may assume w.l.o.g. that G is connected. If r ≤ 1/2, then G = Kn , we set G ′ = K1,n−1, i.e., a star 
centered at an arbitrary point. This yields h(s, s′) ≤ 2 for every s, s′ ∈ S . We therefore subsequently assume that r > 1/2; 
this implies that no edge of G passes through o.

Let γ ⊂ C be a shortest arc of C covering the points in S; and let S = {s1, s2, . . . , sn} be a counterclockwise labeling of 
these points on γ . We claim that |si si+1| ≤ 1, for i = 1, . . . , n − 1. Indeed, let 1 ≤ i ≤ n − 1 be the smallest index such that 
|si si+1| > 1. Then |s1sn| ≥ |si si+1| > 1 and therefore {s1, . . . , si} and {si+1, . . . , sn} are disconnected in G , a contradiction. We 
construct a plane subgraph G ′ = (S, E ′) of G in two phases, and then show the G ′ is a 4-hop spanner for S .

In the first phase, we incrementally construct a polygonal chain Q = p1, p2, . . . , pk , on a subset of k elements of S with 
the vertices chosen counterclockwise by a greedy algorithm starting with p1 = s1 (k is determined by the algorithm). The 
polygon Q will be part of the plane graph G ′; the following properties will be satisfied.

• pi ∈ S , for i = 1, . . . , k,
• |pi pi+1| ≤ 1, i = 1, . . . , k − 1.

In the current step, assume that pi has already been selected; here pi precedes sn . The algorithm checks subsequent 
points counterclockwise on C , say s j, s j+1, . . . . As noted above, since G is connected, we have |pi s j | ≤ 1. The algorithm 
selects pi+1 = s j+h , where h ≥ 0 is the largest index such that |pi s j+h′ | ≤ 1 for h′ = 0, 1, . . . , h, i.e., for all successive points 
until s j+h; or pi+1 = sn , if the last point is reached. If pi+1 precedes sn , the algorithm updates i ← i + 1 and continues with 
the next iteration; if pi+1 = sn , we set k := i. When this process terminates, k is set.

If |pk p1| ≤ 1, the edge pk p1 is added to close the chain, i.e., Q is a convex polygon whose k edges belong to E , in 
particular, pk p1 ∈ E; note that there may be points of S on the arc >pk p1. It is possible that |pk p1| > 1, in which case 
Q = p1, . . . , pk is an open chain with k − 1 edges. In this case there are no other points of S on the arc >pk p1. Each edge of 
the chain Q determines a set of points called block (endpoints of the edge are included). Depending on whether the chain 
Q is open or closed, there are either k − 1 blocks or k blocks.

In the second phase, for every edge pi pi+1 ∈ E (with wrap around), we connect pi with all other points (if any) in that 
block (i.e., create a star whose apex is pi ); refer to Fig. 8 for an example. This completes the construction of the plane graph 
G ′ = (S, E ′).

It remains to analyze its hop factor of G ′ . Let uv ∈ E be any edge of G; we may assume w.l.o.g. that uv is horizontal and 
lies below the center o. Refer to Fig. 9 (right). We show that uv can have at most one edge of Q strictly below it. Suppose 
that e = pi pi+1 ∈ E ′ is an edge of the polygon Q that lies strictly below uv . We claim that i = k, i.e., e = pk p1 and so this 
edge is unique if this occurs. Note that if e = pk p1 ∈ E , then the chain Q is closed.
11
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Fig. 8. An example of the 4-hop spanner constructed by the greedy algorithm; P = p1, . . . , p7 is a closed chain. The two red points are at hop distance 4.

Fig. 9. Left: the path connecting u and v is upi−1 pi pi+1 v . Right: the path connecting u and v is upi−1 pi v .

Assume that i �= k. Since uv is below the horizontal diameter of C , we have |pi pi+1| < |pi v| < |uv| ≤ 1, and thus the 
greedy algorithm would have chosen v or another vertex beyond v counterclockwise, instead of pi+1 as the other endpoint 
of the edge incident to pi , a contradiction. This proves the claim.

By the claim, the endpoints of every edge uv ∈ E lie either in the same block, in two adjacent blocks, or in two 
blocks that are separated by exactly one other block. Consequently, uv can be connected by a h-hop path, for some h ≤ 4. 
Fig. 9 (left) shows the case when the endpoints u, v belong to two blocks that are separated by exactly one other block: the 
connecting path is upi−1 pi pi+1 v . Fig. 9 (right) shows the case when the endpoints u, v belong to two adjacent blocks: the 
connecting path is upi−1 pi v . When both u and v belong to the same block of the chain, they are connected either directly 
or by a path of length 2 via the center of the corresponding star. �
6. The maximum degree of hop spanners cannot be bounded

It is not difficult to see that dense (abstract) graphs do not admit bounded degree hop spanners (irrespective of pla-
narity). We start with an observation regarding the complete UDG Kn and then extend it and show that the maximum 
degree of hop spanners of sparse UDGs is also unbounded.

We use the fact that graphs of small diameter and maximum degree must be small. Indeed, a connected graph with 
diameter at most D and maximum degree is at most � ≥ 3 has fewer than �

�−2 · (� − 1)D vertices [13, Proposition 1.3.3]; 
and a connected graph with diameter at most D and maximum degree is at most 2 has fewer than 2D + 2 vertices. As such, 
a connected graph with diameter at most D and maximum degree at most � ≥ 2 has fewer than 2�D vertices.

Theorem 7. For every pair of integers k ≥ 2 and � ≥ 2, there exists a set S of n ≤ 2�k points such that the unit disk graph G = (S, E)

on S has no k-hop spanner whose maximum degree is at most �.

Proof. Let S be a set of n points in a unit disk. Then the UDG G of S is the complete graph Kn . Suppose, to the contrary, that 
G ′ = (S, E ′) is a k-hop spanner for G with maximum degree at most �. Then h(p, q) ≤ k for all p, q ∈ S , hence the diameter 
of G ′ is at most k. By the above observation we have n < 2�k , thus we obtain a contradiction if we set n = 2�k . �
12
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Theorem 8. Let t : N →N , t(n) ≤ n, be an integer function that tends to ∞ with n. For every pair of integers k ≥ 2 and � ≥ 2, there 
exists n0 ∈N such that for every n ≥ n0 , there is a set S of n points in the plane such that

(i) the unit disk graph G = (S, E) on S has �(n · t(n)) edges, and
(ii) G has no k-hop spanner whose maximum degree is at most �.

Proof. For a given t , partition n points into 
⌊n

t

⌋
groups of size t and a remaining group (if any) of size n − ⌊n

t

⌋
t . Place the 

groups in disjoint disks of unit diameter in the plane, so that the UDG of each group is a complete graph; and arrange the 
disks along a line such that the UDG G has exactly one edge between any two consecutive groups. Each group of size t
induces 

(t
2

) = �(t2) edges, hence G has �(n
t · t2 + t) = �(nt) edges.

Suppose that G has a k-hop spanner G ′ with maximum degree at most �. Then h(p, q) ≤ k for all p, q ∈ S within the 
same group, hence each group induces a subgraph of G ′ of diameter at most k. By the above observation we have t < 2�k , 
thus we obtain a contradiction if we choose n0 such that t(n) ≥ 2�k for all n ≥ n0. �
7. Conclusions

We have shown that the UDG of every set of n points in the plane admits a 5-hop spanner with at most 5.5n edges, a 
3-hop spanner with at most 11n edges, and a 2-hop spanner with O (n log n) edges. The third bound leaves an interesting 
question: Are there n-element point sets for which every 2-hop spanner has ω(n) edges? Recent results show that unit 
disks may exhibit surprising behavior [30,36].

Finding nontrivial lower bounds for the size of k-hop spanners remains an open problem. We mention a few straightfor-
ward lower bounds. Observe that if the girth of an UDG G is k ≥ 4, then the only (k − 2)-hop spanner of G is G itself. In 
particular, for n points in a section of the square lattice Z2, the UDG has (2 − o(1))n edges, its girth is 4, and so the only 
2-hop spanner of G is G itself. For n points in a section of a hexagonal lattice, the UDG has ( 3

2 − o(1))n edges, its girth is 
6, and so the only 3- or 4-hop spanner of G is G itself. Finally, for n points in Z2 \ 2Z2, the UDG has ( 4

3 − o(1))n edges, its 
girth is 8, and so the only 5- or 6-hop spanner of G is G itself.

Biniaz [6] showed that the UDG of every point set admits a plane hop spanner with hop stretch factor at most 341. For 
points on a circle, we have improved the upper bound to 4, and showed that this bound is the best possible. This is the 
first nontrivial lower bound on the hop stretch factor of any plane hop spanner (Theorem 6). Are there point sets for which 
every plane hop-spanner has hop stretch factor at least 5?

In this paper, we considered the UDG of a point set in terms of Euclidean distance (i.e., L2-norm) in the plane. We 
can define UDG over any other norm over R2, where the unit disks are translates of a centrally symmetric convex body. 
Estimating the size of hop spanners over arbitrary normed spaces in R2 is another problem for consideration.
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[10] G. Călinescu, S. Kapoor, M. Sarwat, Bounded-hops power assignment in ad hoc wireless networks, Discrete Appl. Math. 154 (9) (2006) 1358–1371.
[11] N. Catusse, V. Chepoi, Y. Vaxès, Planar hop spanners for unit disk graphs, in: Proc. 6th Workshop on Algorithms for Sensor Systems, Wireless Ad Hoc 

Networks, and Autonomous Mobile Entities (ALGOSENSORS), in: LNCS, vol. 6451, Springer, 2010, pp. 16–30.
[12] G. Das, D. Joseph, Which triangulations approximate the complete graph?, in: Proc. International Symposium on Optimal Algorithms, in: LNCS, vol. 401, 

Springer, 1989, pp. 168–192.
[13] R. Diestel, Graph Theory, 5th edition, Graduate Texts in Mathematics, vol. 173, Springer, 2017.
[14] D.P. Dobkin, S.J. Friedman, K.J. Supowit, Delaunay graphs are almost as good as complete graphs, Discrete Comput. Geom. 5 (1990) 399–407.
[15] D. Du, F.K. Hwang, S.C. Chao, Steiner minimal tree for points on a circle, Proc. Am. Math. Soc. 95 (4) (1985) 613–618.
[16] D. Du, F.K. Hwang, J.F. Weng, Steiner minimal trees for regular polygons, Discrete Comput. Geom. 2 (1987) 65–84.
[17] A. Dumitrescu, A. Ghosh, Lattice spanners of low degree, Discrete Math. Algorithms Appl. 8 (3) (2016) 1650051.
[18] A. Dumitrescu, A. Ghosh, Lower bounds on the dilation of plane spanners, Int. J. Comput. Geom. Appl. 26 (2) (2016) 89–110.
13

http://refhub.elsevier.com/S0925-7721(21)00064-X/bib14A41C13BFBD62264528416224E14EFFs1
http://refhub.elsevier.com/S0925-7721(21)00064-X/bib1D6680D7D0A3C80E223200AEACAECEE5s1
http://refhub.elsevier.com/S0925-7721(21)00064-X/bib1D6680D7D0A3C80E223200AEACAECEE5s1
http://refhub.elsevier.com/S0925-7721(21)00064-X/bib82B31D5B68B9CC940C11744C11837F01s1
http://refhub.elsevier.com/S0925-7721(21)00064-X/bib82B31D5B68B9CC940C11744C11837F01s1
http://refhub.elsevier.com/S0925-7721(21)00064-X/bib8EDDBE6C8C233202D2F27FC88EBD27BEs1
http://refhub.elsevier.com/S0925-7721(21)00064-X/bib8EDDBE6C8C233202D2F27FC88EBD27BEs1
http://refhub.elsevier.com/S0925-7721(21)00064-X/bib836069663F95CCF1A37610ED01F73DAFs1
http://refhub.elsevier.com/S0925-7721(21)00064-X/bib09CA989A023D39FDE7E53CA08794A0E5s1
http://refhub.elsevier.com/S0925-7721(21)00064-X/bib68641A2AAE15EC7DF10C7C4DF63AAF22s1
http://refhub.elsevier.com/S0925-7721(21)00064-X/bib49137D126A743162C1B9AC6BC54A987Fs1
http://refhub.elsevier.com/S0925-7721(21)00064-X/bib5A811DAD42BB80FDF69DB9C980D02226s1
http://refhub.elsevier.com/S0925-7721(21)00064-X/bib678E7074EE5D47B3BEA3EE482FDAFBF0s1
http://refhub.elsevier.com/S0925-7721(21)00064-X/bibCD35088630F202762B958026D63780A7s1
http://refhub.elsevier.com/S0925-7721(21)00064-X/bibCD35088630F202762B958026D63780A7s1
http://refhub.elsevier.com/S0925-7721(21)00064-X/bib75301277040BF76CEE60D47AF7405650s1
http://refhub.elsevier.com/S0925-7721(21)00064-X/bib75301277040BF76CEE60D47AF7405650s1
http://refhub.elsevier.com/S0925-7721(21)00064-X/bibD4C3950C841199F1A13BC20E4ED29F67s1
http://refhub.elsevier.com/S0925-7721(21)00064-X/bibEEDF38B5F0DF98918FA8DD23665E7850s1
http://refhub.elsevier.com/S0925-7721(21)00064-X/bib8AB58F3F25F842AB3E27EBB4C0C12D45s1
http://refhub.elsevier.com/S0925-7721(21)00064-X/bib00F92C52ED3C59FB3A34E0B2A7ABEFB0s1
http://refhub.elsevier.com/S0925-7721(21)00064-X/bib701D868FF8A853B520BC1EBDA7ED40B8s1
http://refhub.elsevier.com/S0925-7721(21)00064-X/bib8D78770A8DE978FB1B4E4C019DABBEAEs1


A. Dumitrescu, A. Ghosh and C.D. Tóth Computational Geometry: Theory and Applications 100 (2022) 101808
[19] A. Dutta, A. Ghosh, O.P. Kreidl, Multi-robot informative path planning with continuous connectivity constraints, in: Proc. IEEE International Conference 
on Robotics and Automation (ICRA), 2019, pp. 3245–3251.

[20] H. Edelsbrunner, D.G. Kirkpatrick, R. Seidel, On the shape of a set of points in the plane, IEEE Trans. Inf. Theory 29 (4) (1983) 551–558.
[21] D. Eppstein, Spanning trees and spanners, in: J. Sack, J. Urrutia (Eds.), Handbook of Computational Geometry, North Holland, 2000, pp. 425–461.
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