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A unit disk graph G on a given set P of points in the plane is a geometric graph where an
edge exists between two points p,q € P if and only if |pq| < 1. A spanning subgraph G’ of
G is a k-hop spanner if and only if for every edge pq € G, there is a path between p,q in
G’ with at most k edges. We obtain the following results for unit disk graphs in the plane.

O]

(ii)

(iii)

(iv)

v)
(vi)

Every n-vertex unit disk graph has a 5-hop spanner with at most 5.5n edges. We
analyze the family of spanners constructed by Biniaz (2020) and improve the upper
bound on the number of edges from 9n to 5.5n.

Using a new construction, we show that every n-vertex unit disk graph has a 3-hop
spanner with at most 11n edges.

Every n-vertex unit disk graph has a 2-hop spanner with O (nlogn) edges. This is the
first nontrivial construction of 2-hop spanners.

For every sufficiently large positive integer n, there exists a set P of n points on
a circle, such that every plane hop spanner on P has hop stretch factor at least 4.
Previously, no lower bound greater than 2 was known.

For every finite point set on a circle, there exists a plane (i.e., crossing-free) 4-hop
spanner. As such, this provides a tight bound for points on a circle.

The maximum degree of k-hop spanners cannot be bounded from above by a
function of k for any positive integer k.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

A k-hop spanner of a connected graph G = (V, E) is a subgraph G’ = (V, E’), where E’ C E, with the additional property
that the distance between any two vertices in G’ is at most k times the distance in G [25,39], where the distance between
two vertices is the number of edges on a shortest path between them. The graph G itself is a 1-hop spanner. The minimum
k for which a subgraph G’ is a k-hop spanner of G is referred to as the hop stretch factor (or hop number) of G’. An alternative
characterization of k-hop spanners is given in the following lemma.
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Table 1
A summary of results on constructions of hop spanners for unit disk graphs in the plane.
Reference k |E'| Guaranteed to be plane?
Catusse, Chepoi, and Vaxes (2010) [11] 5 <10n X
Catusse, Chepoi, and Vaxés (2010) [11] 449 <3n v
Biniaz (2020) [6] 5 <9n X
Biniaz (2020) [6] 341 <3n v
This paper 5 <5.5n X
This paper 3 <11n X
This paper 2 0(nlogn) X

Lemma 1 (Peleg and Schdffer [39]). The subgraph G’ = (V, E’) is a k-hop spanner of the graph G = (V, E) if and only if the distance
between u and v in G’ is at most k for every edge uv € E.

If the subgraph G’ has only O(|V|) edges, then G’ is called a sparse spanner. In this paper we are concerned with
constructing sparse k-hop spanners (with small k) for unit disk graphs in the plane. Given a set P of n points p1,..., py in
the plane, the unit disk graph (UDG) is a geometric graph G = G(P) on the vertex set P whose edges connect points that are
at most unit distance apart. A spanner of a point set P is a spanner of its UDG.

Recognizing UDGs was shown to be NP-Hard by Breu and Kirkpatrick [9]. Unit disk graphs are commonly used to model
network topology in ad hoc wireless networks and sensor networks. They are also used in multi-robot systems for practical
purposes such as planning, routing, power assignment, search-and-rescue, information collection, and patrolling; refer to [2,
19,24,29,35] for some applications of UDGs. For packet routing and other applications, a bounded-degree plane geometric
spanner of the wireless network is often desired but not always feasible [7]. Since a UDG on n points can have a quadratic
number of edges, a common desideratum is finding sparse subgraphs that approximate the respective UDG with respect to
various criteria. Plane spanners, in which no two edges cross, are desirable for applications where edge crossings may cause
interference.

Obviously, for every k > 1, every graph G = (V, E) on n vertices has a k-hop spanner with |E| = 0 (n?) edges. If G is
the complete graph, a star rooted at any vertex is a 2-hop spanner with n — 1 edges. However, the O (n?) bound on the
size of a 2-hop spanner cannot be improved; a classic example [25] is that of a complete bipartite graph with n/2 vertices
on each side. In general, if G has girth k + 2 or higher, then its only k-hop spanner is G itself. According to Erdos’ girth
conjecture [22], the maximum size of a graph with n vertices and girth k+ 2 is @(n!*+1/[¥/21y for k > 2. (The girth of a graph
is the length of a shortest cycle contained in the graph.) The conjecture has been confirmed for some small values of k,
but remains open for k > 9. For any graph G with n vertices, a k-hop spanner with O (n!*1/1%/21) edges can be constructed
in linear time [4,5]. We show that for unit disk graphs, we can do much better in terms of the number of edges for every
k> 2.

Spanners in general and unit disk graph spanners in particular are used to reduce the size of a network and the amount
of routing information. They are also used for maintaining network connectivity, improving throughput, and optimizing
network lifetime [6,23,24,28,40].

Spanners for UDGs with hop stretch factors bounded by a constant were introduced by Catusse, Chepoi, and Vaxés
in [11]. They constructed (i) 5-hop spanners with at most 10n edges for n-vertex UDGs; and (ii) plane 449-hop spanners
with less than 3n edges. Recently, Biniaz [6] improved both these results and showed that for every n-vertex unit disk graph
there exists (i) a 5-hop spanner with at most 9n edges, and (ii) a plane 341-hop spanner. The algorithms presented in [6,11]
run in time that is polynomial in n. A summary of these results and our new results is included in Table 1.

Our results. The following are shown for unit disk graphs.

(i) Every n-vertex unit disk graph has a 5-hop spanner with at most 5.5n edges (Theorem 1 in Section 2). We carefully
analyze the construction proposed by Biniaz [6] and improve the upper bound on the number of edges from 9n to
5.5n.

(ii) Using a new construction, we show that every n-vertex unit disk graph has a 3-hop spanner with at most 11n edges
(Theorem 2 in Section 2). Previously, no 3-hop spanner construction algorithm was known.

(iii) Every n-vertex unit disk graph has a 2-hop spanner with O (nlogn) edges. This is the first construction with a sub-
quadratic number of edges (Theorem 3 in Section 3) and our main result.

(iv) For every n > 8, there exists an n-element point set P such that every plane hop spanner on P has hop stretch factor
at least 3. If n is sufficiently large, the lower bound can be raised to 4 (Theorems 4 and 5 in Section 4). A trivial lower
bound of 2 can be easily obtained by placing four points at the four corners of a square of side-length 1/2.

(v) For every finite point set P on a circle C, there exists a plane 4-hop spanner (Theorem 6 in Section 5). The lower
bound of 4 holds for some point-set on a circle.

(vi) For every pair of integers k > 2 and A > 2, there exists a set P of n = 0(A¥) points in the plane such that the unit
disk graph G = (P, E) on P has no k-hop spanner whose maximum degree is at most A (Theorem 7 in Section 6). An
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extension to dense graphs is given by Theorem 8 in Section 6. In contrast, Kanj and Perkovi¢ [24] showed that UDGs
admit bounded-degree geometric spanners (defined below).

Related work. Peleg and Schaffer [39] have shown that for a given graph G (not necessarily a UDG) and a positive integer
m, it is NP-complete to decide whether there exists a 2-hop spanner of G with at most m edges. They also showed that for
every graph on n vertices, a (4k+ 1)-hop spanner with 0 (n'*1/%) edges can be constructed in polynomial time. In particular,
every graph on n vertices has a O(logn)-hop spanner with O(n) edges. Their result was improved by Althofer et al. [1],
who showed that a (2k — 1)-hop spanner with O (n't'/%) edges can be constructed in polynomial time; the run-time was
later improved to linear [4,8]. Kortsarz and Peleg obtained approximation algorithms for the problem of finding, in a given
graph, a 2-hop spanner of minimum size [25] or minimum maximum degree [26].

In the geometric setting, where the vertices are embedded in a metric space, spanners have been studied in [3,10,12,
14,27,29] and many other papers. In particular, plane geometric spanners were studied in [7,8,17,18]. The reader is also
referred to the surveys [8,21,31] and the monograph [34] dedicated to this subject.

Notation and terminology. For two points p,q € R?, we denote the Euclidean distance by d(p, q) or sometimes by |pq|. The
distance between two sets, A, B C R2, is defined by d(A, B) =inf{d(a,b) :a € A, b € B}. The diameter of a set A, denoted
diam(A), is defined by diam(A) = sup{d(a,b) : a,b € A}. For a set A, its boundary and interior are denoted by dA and
int(A), respectively.

A geometric graph G = (P, E) is a geometric t-spanner, for some t > 1, if for every pair of vertices u, v € P, the Euclidean
length of a shortest path ¢ (u, v) between u and v in G is at most t times |uv|, i.e, Yu,v € V, |7¢(u, v)| < tluv|. When
there is no need to specify t, we simply use the term geometric spanner.

Given a graph G = (V,E) and a vertex u € V, the neighborhood N(u) is the set of vertices adjacent to u. For brevity, a
hop spanner for a point set P  R? is a hop spanner for the UDG on P. Assume we are given a subgraph G’ = (P, E’) of the
UDG for a point set P. For p,q € P, let p(p,q) denote a shortest path in G’, i.e., a path containing the fewest edges; and
h(p, q) denote the corresponding hop distance (number of edges).

A geometric graph is plane if any two distinct edges are either disjoint or only share a common endpoint. Whenever we
discuss plane graphs (plane spanners in particular), we assume that the points (vertices) are in general position, i.e., no three
points are collinear.

A unit disk (resp., circle) is a disk (resp., circle) of unit radius. The complete bipartite graph with parts of size m and n is
denoted by Kp, n; in particular, K, is a star on n + 1 vertices. We use the shorthand notation [n] for the set {1,2,...,n}.

2. Sparse (possibly nonplane) hop spanners

In this section we construct hop spanners with a linear number of edges that provide trade-offs between the two
parameters of interest: hop stretch factor and total number of edges.

2.1. Construction of 5-hop spanners

We start with a brief summary of the 5-hop spanner construction by Biniaz [6, Theorem 3]. It is based on a regular
hexagonal tiling of the plane with cells of unit diameter. Hence the UDG of a finite point set P c R? contains every edge
between points in the same cell. In every nonempty cell, a star rooted at an arbitrarily chosen point in the cell is created.
Then, for every pair of cells, exactly one edge of the UDG is chosen, if such an edge exists. Biniaz showed that the resulting
graph G’ is a 5-hop spanner with at most 9n edges.

We next provide a more detailed description and an improved analysis of the construction. Consider a regular hexagonal
tiling 7 in the plane with cells of unit diameter; refer to Fig. 1(left). Let P be a finite set of points in the plane. We may
assume that no point in P lies on a cell boundary. Every point in P lies in the interior of some cell of 7 (and so the
distance between any two points in a cell is less than 1). Let p € P be a point in a cell o. Denote by Hy, ..., Hg the six
cells adjacent to o in counterclockwise order; these cells form the first layer around o. Let H7,..., Hig be the twelve cells
at distance two from o in counterclockwise order, forming the second layer around o, such that H7 is adjacent to only Hq
in the first layer.

For every two distinct cells o, T € T, take an arbitrary edge pq € E, p € 0, q € 7, if such an edge exists; we call such an
edge a bridge. Each cell o can have bridges to at most 18 other cells, namely those in the two layers around o. A bridge is
short if it connects points in adjacent cells and long otherwise.

Lemma 2. Let p € P be a point that lies in cell o. The unit disk D centered at p intersects at most five cells from the second layer
around o.

Proof. Let A be the center of o (see Fig. 1(right)). Subdivide o into six regular triangles incident to A. By symmetry, we
may assume that p lies in the regular triangle AABC, where BC =0 N Hj.
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Fig. 1. Left: A regular hexagonal tiling with cells of unit diameter; the figure shows the two layers of cells around o. Right: The unit disk centered at p
intersects 11 cells Hq, ..., Hyo, H1g.

Note that d(AABC, H;) > 1 for i € {13,14, 15,16, 17}, and D is disjoint from the five cells H13, H14, Hi5, Hig, and Hq7.
Now, observe that d(H7 U Hqg, H11 U H12) = 2. Hence, D intersects at most one of H; U Hig and Hi; U Hq,. Consequently,
D intersects at most 12 —5 — 2 =5 cells from the second layer around o. O

Obviously, any two points in a cell o are at most unit distance apart. Further, observe that the unit disk D centered at p
intersects all six cells Hq, ..., Hg.
Let P be a set of n points and G = (P, E) be the corresponding UDG. Lemma 2 immediately yields the following.

Corollary 1. For every point p € P N o, every neighbor of p in G lies in o or one of at most 11 cells around o.
The main result regarding 5-hop spanners is given below.
Theorem 1. The (possibly nonplane) 5-hop spanner G’ constructed by Biniaz [6, Theorem 3] has at most 5.5n edges.

Proof. Let o € 7 be a nonempty hexagonal cell, and let x = |P N o| be the number of points in the cell. The graph G’
contains a star induced by P No with x — 1 inner edges, and at most 18 outer edges (i.e., bridges) connecting points in o
with points in other cells. We analyze the number of bridges depending on x.

If x =1, there are no inner edges and at most 11 outer edges by Corollary 1. As such, the degree of the (unique) point
in o is at most 11 in G’.

If x =2, there is one inner edge and at most 16 outer edges. Indeed, by Lemma 2, each point p € P N o has neighbors
in G in at most five cells from the second layer around o (besides points in P in the six cells in the first layer). Two points
in PNo can jointly have neighbors in G in at most 6 + 5 + 5 = 16 other cells. As such, the average degree of points in o
is at most (2+16)/2=9 in G'.

If x > 3, there are x — 1 inner edges and at most 18 outer edges. As such, the average degree in G’ of all points in o is
at most

2x—1)+18  2x+16 - 22
X T ox T 37
Summation over all cells implies that the average degree in the resulting 5-hop spanner G’ is at most 11, thus G’ has at
most 5.5n edges. O

2.2. Construction of 3-hop spanners

Here we show that every point set in the plane has a 3-hop spanner of linear size. This brings down the hop-stretch
factor of Biniaz's construction from 5 to 3 at the expense of increasing the number of edges (from 5.5n to 11n).

Theorem 2. Every n-vertex unit disk graph has a (possibly nonplane) 3-hop spanner with at most 11n edges.
Proof. Let P be a set of n points in the plane, and let G = (P, E) be the UDG of P. Let G’ be the 5-hop spanner described
in Section 2.1, based on a hexagonal tiling 7 with cells of unit diameter. We construct a new graph G” that consists of all

bridges from G’ and, for each nonempty cell o € T, a spanning star of the points in ¢ defined as follows.
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Fig. 2. Three points in P, p; € 0, pj € 0}, and py € o where p;pj, pipx € E. Edge pq is a short bridge connecting o; and o;. Edge rs is a long bridge
connecting o; and oy.

For every nonempty cell o € 7 and every p; € PN o, we add edges incident to p; as follows. For every cell 7 € 7 in the
two layers around o, if d(p;, 7) <1 and G’ contains a bridge pq such that p € o, p; # p, and q € 7, then we add the edge
pip to G”. Since diam(o) =1, if pq is a short bridge, then p is the center of a spanning star on P N¢ in G’. In addition, if
no short bridge is incident to any point in o, then we add a spanning star of P No to G” (centered at an arbitrary point in
o if no point in P No is incident to a long bridge, otherwise the star is centered at the endpoint of any long bridge).

It is easy to see that the hop distance between any two points within a cell is at most 2. Indeed, by construction,
the points in each nonempty cell are connected by a spanning star. Consider now an edge p;p; € E of the UDG, where
pi € PNoj, pj e PNoj for i # j. Then, by Biniaz's construction, there is a unique bridge pq € G’ C G” between some points
p e PnNo;jand g€ P Noj. By our construction, we have either p = p; or the edge p;p is in G”, and similarly either pj =q
or the edge pjq is in G”. As such, G” contains a 3-hop path p;, p, q, pj between p; and p;. Refer to Fig. 2 for an illustration.

We derive an upper bound for the average degree of the points in o as follows. Let 0 € 7 be a nonempty hexagonal
cell, and let x=|P No| be the number of points in the cell. By Corollary 1, the neighbors of each point p; € o lie in o and
at most 11 cells around o. If p; is not incident to any bridge, we add at most 11 edges between p; and other points in o;
these edges increase the sum of degrees in o by 2-11 = 22. Otherwise assume that p; is incident to b; bridges, for some
1 <b; <11. Then we add edges from p; to at most 11 — b; other points in o. The b; bridges each have only one endpoint
in o. Overall, these edges contribute 2(11 — b;) + b; =22 — b; < 22 to the sum of degrees in o.

If no short bridge has an endpoint in o, then by Lemma 2 we add at most 5 edges between each point p; € o and
endpoints of long bridges; these edges increase the sum of degrees in o by 2 -5 = 10. However, we also add a spanning
star that contributes 2(x — 1) to the same sum. Overall, the sum of degrees in o is bounded from above by

2-11x =22x, if some short bridge has an endpoint in o
2(x—1)+10x < 12x, otherwise.

Thus, the average vertex degree is at most 22 in all o € 7. Consequently, the 3-hop spanner G” has at most 11n edges. O

Remark. It is natural to ponder whether the UDG on any n points in the plane has a subgraph with O(n) edges that is
a k-hop spanner (for small k) and also a geometric spanner of G. Such subgraphs of UDGs can find practical uses in the
real-world. Interestingly, the answer is yes. It is shown by Kanj and Perkovi¢ [24] that the UDG of a point set P has a
subgraph G; = (P, E1) with O(n) edges that is a geometric t-spanner for some constant t. Let G, = (P, E3) be the 3-hop
spanner generated by the construction in Theorem 2. Clearly, the graph G’ := (P, E1 U E3) is a subgraph of the UDG, it has
O (n) edges, and it is both a 3-hop spanner for the UDG of P and a geometric t-spanner for P with a constant t.

3. Construction of 2-hop spanners

In this section, we construct a 2-hop spanner with O (nlogn) edges for a set P of n points in the plane. We begin with
a construction in a bipartite setting (cf. Lemma 6), and then extend it to the general setup.

We briefly review the concept of ¢-nets [33], which is crucial for our construction. Let (P,R) be a set system (a.k.a.
range space), where P is a finite set in an ambient space and R is a collection of subsets of that space (called ranges). For
& >0, an ¢-net for (P, R) is a set N C P such that for every R € R, |PNR| > ¢ - |P| implies N N R # (). When the ambient
space is R? for some d € N, and R is a collection of semi-algebraic sets, there exists an s-net of size O(‘g’ log g), and this

bound is best possible in many cases [37]. However, for some geometric set systems, -nets of size O(%) are possible. For
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Fig. 3. A set A of 16 points above the x-axis, W (A), and hull(A). The boundary dhull(A) is an x-monotone curve, which consists of horizontal segments
and arcs of unit circles centered on or below the x-axis (the centers are marked with crosses).
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example, if P is a finite set of points in the plane and R consists of halfplanes, then there exists an -net of size O(%) [38].
We adapt this result to unit disks in a somewhat stronger form (cf. Lemma 5).

Alpha-shapes. As a generalization of convex hulls of a set of points, Edelsbrunner, Kirkpatrick, and Seidel [20] introduced
«-shapes, using balls of radius 1/« instead of halfplanes. We introduce a similar concept, in a bipartite setting, as follows;
see Fig. 3 for an illustration. We consider the set system (A, D), where A is a finite set of points in the plane above the
x-axis and D is the set of all unit disks centered on or below the x-axis. Let W (A) be the union of all unit disks D € D
such that A Nint(D) = @; and let hull(A) = R? \ int(W (A)).

The following easy observation shows that disks in D, restricted to the upper halfplane {(x,y) € R?:y > 0}, behave
similarly to halfplanes in R2.

Lemma 3. For any two points p1, pa € R? above the x-axis, there is at most one unit circle centered at a point on or below the x-axis
that is incident to both py and p,. Consequently, for any two unit disks D1, D, € D, at most one point in D1 N d D, lies above the
X-axis.

Proof. Suppose that two unit circles, c; and cp, are incident to both p; and p,. Then the centers of c; and ¢y are on the
orthogonal bisector of segment pip;, on opposite sides of the line through p{p,. Hence one of the circle centers is above
the x-axis, which is a contradiction. Therefore at most one of the circles is centered at a point on or below the x-axis. O

We continue with a few basic properties of the boundary of hull(A), which exhibits the same behavior as convex hulls
with respect to lines in the plane.

Lemma 4. The set system (A, D) defined above has the following properties:

1. dhull(A) lies above the x-axis;

2. every vertical line intersects dhull(A) in one point, thus dhull(A) is an x-monotone curve;
3. for every unit disk D € D, the intersection D N (dhull(A)) is connected (possibly empty);
4. for every unit disk D € D, if AN D # (4, then AN D contains a point in dhull(A).

Proof. Let h be the minimum of the y-coordinates of the points in A. If h > 1, then W (A) ={(x,y) : y <1} is a halfplane
bounded by the line y =1, so the lemma trivially holds. In the remainder of the proof, assume that 0 < h < 1.

(1) Since 0 < h < 1, the halfplane below the horizontal line y = h lies in the interior of W (A) (as every point below this
line is in the interior of a unit disk whose center is below the x-axis and whose interior is disjoint from A). Property 1
follows.

(2) Let p € dhull(A). Then p lies on the boundary of a unit disk D, whose center is below the x-axis (and whose interior
is disjoint from A). In particular D, C W (A). The vertical line segment from p to the x-axis lies in Dp, hence in W (A).
Consequently, W (A) contains the vertical downward ray emanating from p. Property 2 follows.

(3) Let D € D. Suppose, to the contrary, that the intersection D N (dhull(A)) has two or more components. By property 2, the
x-coordinates of the components form disjoint intervals, and the components have a natural left-to-right ordering. Let p1 be
the rightmost point in the first component, and let p, be the leftmost point in the second component. Clearly pq, p2 € dD.
Let g be an arbitrary point in dhull(A) between p; and p». Then g lies on the boundary of a unit disk Dy whose center
is below the x-axis (and whose interior is disjoint from A). Since Dq C W (A), neither p; nor p; is in the interior of Dg.
Since the center of Dg is below the x-axis, dDg contains two interior-disjoint circular arcs between q and the x-axis; and
both arcs must cross 3D. We have found two intersection points in 9D N 9D, above the x-axis, contradicting Lemma 3. This
completes the proof of Property 3.
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Fig. 4. lllustration for the proof of Lemma 5(iv) with i =2 and j =4. A unit disk D with D NN = {v3, v3, v4, v5, v}, and a unit disk D4 with v4 € D4 and
v3, vs ¢ Dy4. A hypothetical unit disk D), (dashed) such that v4 € D);, and 9D, N hull(A) crosses 9D N hull(A).

(4) Let D € D such that AN D # {. By continuously translating D vertically down until its interior is disjoint from A, we
obtain a unit disk D’ such that ANint(D") =@ but AN D’ # . Since the center of D’ is vertically below the center of D,
we have AN3dD’ C AND and D’ C W (A). This implies that AN oD’ C dhull(A), as required. O

Lemma 5. Consider the set system (A, D) defined above. For every € € (0, 1), we can construct an e-net N = {v1, ..., vy} C A, labeled
by increasing x-coordinates, such that

() INI = 12/¢);

(ii) N C dhull(A);
(iii) for every D € D, the points in D N N are consecutive in N; and
(iv) forevery D € D, |N N D| > 5 implies |A N D| > 2¢|A|.

Proof. Let M = ANohull(A) be the set of points in A lying on the boundary of hull(A). By Lemma 4(4), if a unit disk D € D
contains any point in A, it contains a point from M. Consequently M is an ¢-net for (A, D) for every € > 0. For a given
e >0, let N=N; be a minimal subset of M that is an ¢-net for (A, D) (obtained, for example, by successively deleting
points from M while we maintain an &-net).

Let N ={vq,..., v}, where we label the elements in N by increasing x-coordinates. For notational convenience, we
introduce a point vg € dhull(A) on a vertical line one unit left of v{, and vy, € dhull(A) on a vertical line one unit right
of vi. For i =1, ...k, the minimality of N implies that N \ {v;} is not an &-net, and so there exists a unit disk D € D such
that |JAND| > ¢|A| and D NN = {v;}. Let D; € D be such a disk, with |A N D;| > ¢|A| and D; " N = {v;}. By Lemma 4(3),
D; contains a connected arc of the x-monotone curve dhull(A), but D; contains neither v;_1 nor v;;+q. In particular, the
x-coordinate of every point in AN D; lies between that of v;_; and v;;;. Consequently, every point in A lies in at most two
disks Dj, 1 <i <k. It follows that

k

k
k-g|lAl=> elA| <) |AND;| <2|A,

i=1 i=1

hence k < |2/¢]. This proves (i).

By construction, we have N ¢ M C dhull(A), which confirms (ii), and (iii) follows from Lemma 4(3). It remains to prove
(iv); refer to Fig. 4. Assume that D € D and |[N N D| > 5. By (iii), we may assume that D contains five consecutive points in
N, say, vi,..., Viya. For je{i+1,i42,i+3}, consider the disk D € D defined above, where vj e D; but vj_1,vj1 ¢ Dj. In
particular, Dj N (dhull(A)) lies between v;_q and v ;1. By Lemma 3, the circular arcs 3D Nhull(A) and dD; Nhull(A) cross
at most once. However, if they cross once, then D; contains one of the endpoints of D N (dhull(A)), and by Lemma 4(3)
it contains {v;,...,v;} or {vj,...,viya}, which is a contradiction. We conclude that 9D N hull(A) and dD; N hull(A) do
not cross. Consequently, D; Nhull(A) C D Nhull(A), hence AND; C AN D. As noted above, |A N Dj| > £|A|. Furthermore,
ANDj;y1 and AN Dj,3 are disjoint as they are on opposite sides of the vertical line passing through v;,;. Thus we obtain
|[AND|>|AN(Djt1UDiy3)| > |ANDit1|+ |AN Dit3| > 2¢|A|, as claimed. O

Let A and B be two disjoint point sets above and below the x-axis, respectively. Denote by U (A, B) the unit disk graph
on AU B and by G(A, B) the bipartite subgraph of U(A, B) consisting of all edges between A and B.

Lemma 6. Let P = A U B be a set of n points in the plane such that diam(A) <1, diam(B) < 1, and A (resp., B) is above (resp.,
below) the x-axis. Then there is a subgraph H of U (A, B) with O (nlogn) edges such that for every edge ab of G(A, B), H contains a
path of length at most 2 between a and b.
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YA A hull(A)

ohull(4) | ° . e ¢ ° . dhull(A4)

Fig. 5. Set A (resp., B) is above (resp., below) the x-axis. The points in an g;-net N; = {vq..., vs} are marked with hollow dots. The graph H; is a union of
stars centered at vq,..., vs. (To avoid clutter, the depicted point set does not meet conditions diam(A) <1 and diam(B) <1 of Lemma 6.)

Proof. Our proof is constructive. For every point b € B, let D;, be the unit disk centered at b. Consider the set system (A, B),
where B ={Dj : b € B}. We partition the set of disks 5 into O (logn) subsets based on the number of points of A contained
in the disks. For every i =1, ..., [logn], let

B}_{D 1Al |A|} 1
i = eB:— <|AND|<——t,and & = —.
21 2i—1 2i
Lemma 5 yields an &;-net N; C A of size at most |2/e;] = 2i*1 for the set system (A, D). Since B; C D, it follows that
N; C A is also an g;-net for the set system (A, B;).

We construct a graph H as a union of stars; see Fig. 5 for an illustration. For every i =1, ..., [logn] and every v € N;, we
create a star centered at v as follows. Let B;(v) be the set of points b € B such that D, € B;, v € Dp, and v is the leftmost
point in N; N Dy. Let A;(v) be the set of points a € A such that a € Dy, for some b € B;(v). Note that v € A;(v). Let S;(v) be
the spanning star on the point set A;(v) U B;j(v) centered at v. By assumption, we have diam(A) <1, and by the definition
above, every point in B;(v) is at distance at most 1 from v. This implies that S;(v) is a subgraph of U(A, B). Let H; be the
union of stars S;(v) for all v € N;; and let H be the union of the graphs H; for i =1,..., [logn]. Note that H is a union of
stars in U(A, B), and so it is a subgraph of U(A, B).

To prove that H is a 2-hop spanner for G(A, B), consider an edge ab of G(A, B) with a € A, b € B. Since ab is an edge of
G(A, B), we have |ab| <1 hence a € Dy,. There exists an index i € {1, ..., [logn]} for which D, € Bi. As |[AN Dy| > |A|/2! =
gilA|, and N;j is an g;j-net for (A, B;), we have D, N N; # @. Let v be the leftmost point in D, N N;. Then by construction
a € Aj(v) and b € B;(v). If a = v, then the star Sj(v) contains the edge ab, otherwise S;(v) contains the path a,v,b of
length 2.

It remains to derive an upper bound on the number of edges in H. We claim that H; has O(n) edges for all i =
1,..., [logn], which implies that H has O(nlogn) edges overall.

Let b € B. There is a unique index i such that |A|/2! < |A N Dy| < |A|/2=1; and there is a unique leftmost point v in
N; N Dyp. Therefore, b is a leaf of a star S;(v) for at most one vertex v € A, and so the degree of b is at most 1 in H;, hence
in H. Overall, H contains at most |B| edges incident to B. We still need to bound the number of edges induced by A in H.

Let i € {1,..., [logn]}. Assume that N; = {v1,..., v¢} is sorted by increasing x-coordinates. We also introduce points vg
and vi4q on dhull(A) as specified previously.

Let a € A; refer to Fig. 5. Assume that a is in a star S;(v;) for some v; € N;. Assume further that the x-coordinate of a is
between that of v¢_1 and v, for some ¢ € {1, ...,k +1}. Since a is in S;(v;), then a € A;(v;) and there exists a point b € B
such that a € Dy, Dy, € B;, and v; is the leftmost point in D, N N;. Since Dy € B;, we have |A N Dy| < 2¢;|A|.

By Lemma 5(iv), Dj contains at most 4 points in the net Nj. In particular, the unit circle dDj, intersects dhull(A) in two
points: once between v;_; and v;j, and once between v; and vj,4. Consequently, 0 < ¢ — j <4, thus a is in at most 5
possible stars S;(vj), vj € N;. It follows that H; has at most 5|A| + |B| < 5n edges, as required. O

We now consider the general case.
Theorem 3. Every n-vertex unit disk graph has a (possibly nonplane) 2-hop spanner with O (nlogn) edges.

Proof. Let P be a set of n points in the plane and let G denote the corresponding UDG. Consider a tiling of the plane with
regular hexagons of unit diameter; and assume that no point in P lies on the boundary of any hexagon. Let 7 be the set
of nonempty hexagons. Then P is partitioned into O (n) sets {P No : o € T}. As noted in Section 2.1, for every o € T, there
are 18 other cells within unit distance; see Fig. 1 (left).

For each cell o € 7, choose an arbitrary vertex v, € PN o, and create a star S, centered at v, on the vertex set PNo.
Since the stars are disjoint, they form a forest with n — | 7| trees, thus the overall number of edges in all stars Sy, 0 € T,
isn—|7|<n.
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For every pair of cells 0j, 0 € T, where d(oy, 0j) <1, consider the bipartite subgraph of G: G; j = G(P Noj, PNoj). By
Lemma 6, there is a subgraph H; j of G; j of size

O((IPNoil+IPNajhlog(P Noil +|PNaj])) S O((IP Nail + P Naj|)logn).

Since every vertex appears in at most 18 such bipartite graphs, the total number of edges in these graphs is at most
0 (X yer |PNollogn) = 0(nlogn).

We show that the union of the stars S, o € T, and the graphs H; j is a 2-hop spanner. Let ab be an edge of the unit
disk graph. If both a and b are in the same cell, say o € T, then ab is an edge in the star or the star S, contains the path
a,vq,b. Otherwise, a and b lie in two distinct cells, say oj, 0 € T, such that d(oj, 0j) <|ab| <1. By Lemma 6 (where the
role of the x-axis is taken by any separating line), H; ; contains a path of length at most 2 between a and b, as required. O

4. Lower bounds for plane hop spanners

A trivial lower bound of 2 for the hop stretch factor of plane subgraphs of UDGs can be easily obtained by taking the
four corners of a square of side-length % In this case, the UDG is the complete graph but a plane subgraph cannot contain
both diagonals of the square. Our main result in this section is a lower bound of 4 for sufficiently large n (cf. Theorem 5).
We begin with a lower bound of 3 that holds already for n = 8.

Theorem 4. For every n > 8, there exists an n-element point set S on a circle such that every plane hop spanner on S has hop stretch
factor at least 3.

Proof. Let P = {p1,..., pg} be a set of 8 successive points on a circle of radius r > 1, so that pjpg is a horizontal chord,

|p2p3l = |p3pal = |paps| = |pspel = Ipep7l, IP1p2| = [p7psl = 1.1Ip2p3l, Ip1p4l <1, and |p2pel = [p3p7| = 1. The UDG of
P is shown in Fig. 6 (left). Note that |pips| = |paps| > 1; and that the orthogonal bisector of pipg is a vertical axis of

symmetry. Since P is in convex position we may assume that p;pjy1 € E/ for i=1,...,7. Suppose that G’ = (P, E’) is a
plane hop spanner with hop stretch factor 2. Define the span of an edge p;p; (i < j), as j — i. We distinguish between two
cases depending on whether E’ contains at least one edge of span 2 whose endpoints are in {p2, ..., p7}.
D3 P4 D5 D6 D3 Ps D5 D6
= P2 p7
P1 yz D1 Yz

Fig. 6. Left: the 8-element point set P and its UDG. Right: a 3-hop plane spanner of P; for the hop distance between the two red points, p4 and p7, is 3.
(For interpretation of the colors in the figures, the reader is referred to the web version of this article.)

Case 1: E’ contains at least one edge of span 2 whose endpoints are in {p2, ..., p7}. Assume first that p3ps € E’ or psapes € E'.
Assume w.l.o.g. that p3ps € E’. Since h(p1, p4) < 2, we have pips3 € E’. Since h(p, pg) < 2, we have p3pg € E’. Since
h(pa4, p7) <2, we have p3p7 € E’. Then p(ps, pg) has at least 3 hops, a contradiction.

We can subsequently assume that p3ps, pape ¢ E’. Assume next that pop4 € E’ or psp7 € E’. Assume w.l.o.g. that pap4 €
E’. Since h(ps, pg) <2, we have pyps € E’. Then p(pa4, p7) has at least 3 hops, a contradiction.

Case 2: E’ contains no edge of span 2 whose endpoints are in {p3, ..., p7}. Since h(ps, ps) <2, we have p3pgs € E/, p2ps € E/,
or p3p7 € E'. If p3pe € E’, then p(p2, ps) has at least 3 hops, a contradiction. Assume w.l.o.g. that p,pg € E’. Then p(p1, pa)
has at least 3 hops, a contradiction.

Thus, we have shown that every plane hop spanner on P has hop stretch factor of at least 3. For every n > 8, we can
add n — 8 points on the circle beyond pg such that every plane hop spanner on the resulting set S of n points has hop
stretch factor of at least 3. O

We next derive a better bound assuming that n is sufficiently large.

Theorem 5. For every sufficiently large n, there exists an n-element point set P on a circle such that every plane hop spanner on P has
hop stretch factor at least 4.

Proof. Consider a set P of n points that form the vertices of regular n-gon R inscribed in a circle C, where the circle is just
a bit larger than the circumscribed circle of an equilateral triangle of unit edge length. Formally, for a given ¢ € (0, 1/50),
set n = [2¢~'7 and choose the radius of C such that every sequence of (% - 8) n consecutive points from P makes a subset
of diameter at most 1; and any larger sequence makes a subset of diameter larger than 1. Note that en > 2. (We may set
& =0.02, which yields n = 100.)

The short circular arc between two consecutive vertices of R is referred to as an elementary arc. (Its center angle is
2 /n.) If A is a set of elementary arcs, X(A) denotes its set of endpoints; obviously |X(A)| > |A|, with equality when A
covers the entire circle C.
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Fig. 7. The partition induced by the blocks for n =19 and k = 4. The edges p;p;+1 are maximal edges of G’ and Ap;pi;1q; is the unique triangle adjacent
to pipi+1 in the triangulation of the ith block. Since n =19 is small, the figure only illustrates the notation used in the proof of Theorem 5; |A1| =2,
[B1l=3, |A2] =1, |Bz| =4, etc.

Suppose, for the sake of contradiction, that the unit disk graph G has a plane subgraph G’ with hop number at most 3.
First, augment G’ to a maximal noncrossing subgraph of G, by successively adding edges from G \ G’ that do not introduce
crossings. Adding edges does not increase the hop number of G’, which remains at most 3.

We define maximal edges in G’ as follows. Associate every edge of G’ with the shorter circular arc between its endpoints.
Observe that containment between arcs is a partial order (poset). An edge of G’ is maximal if the associated arc is maximal
in this poset. Due to planarity, if two arcs overlap, then one of the arcs contains the other. Hence the maximal edges cor-
respond to nonoverlapping arcs. As such, the maximal edges form a convex cycle, i.e., a convex polygon Q = p1, p2, ..., Dk-
Refer to Fig. 7. By the choice of C, we have k > 4. Each edge of the polygon Q determines a set of points, called block, that
lie on the associated circular arc (both endpoints of the edge are included). Since the length of each edge of Q is at most
1, the restriction of G’ to the vertices in a block is a triangulation.

Let A; U B; be the sets of elementary arcs in counterclockwise order covering the ith block such that A; and B; are
separated by a common vertex q;, where the triangle Ap;p;y1q; is the (unique) triangle adjacent to the chord p;p;+1 in
the triangulation of the ith block (where addition is modulo k, so that k + 1 =1). In particular, g; is the last endpoint of an
elementary arc in A; and the first endpoint of an elementary arc in Bj, in counterclockwise order. As such, we have

k

> (Al +|Bi))=n. (1)
i=1

By definition, we have

|Ai|+|Bi|§<%—8>n, fori=1,...,k. )
By the maximality of the blocks in G’, we have

(1Ail + |BiD) + (|Ai+1] + |Bit1]) = (% —e) n, fori=1,... k. (3)

By the maximality of G’, we also have k < 6, since otherwise an averaging argument would yield two adjacent blocks,
say, i and i+ 1, that can be merged by adding one chord of length at most 1 and so that the merged sequence of points
has size at most

2n 1
[Ail + |Bil + |Air1] + [Biy1] < - < 3 —&n,

which would be a contradiction. We next prove the following inequality:
1
|Bi|+|Ai+1|><§—38>n, fori=1,...,k. (4)
Suppose for contradiction that |B;| + |Ajy+1] < (% — 38)1’1 holds for some i. Consider the en elementary arcs preceding
the arcs in B; and the en elementary arcs following the arcs in A;y1, in counterclockwise order. Denote these sets of arcs

by U; and V;, respectively (|U;| = |V;| = en). Recall that en > 2 and thus |X(U;)|, |X(V})| > |Uj| =¢en > 2.

10
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We claim that there exist u € X(U;) and v € X(V;) such that |uv| <1 and h(u, v) > 4. Indeed, diam(X(U; U B; U Aj41 U
Vi)) <1 since X(U; UB; U Aj+1 U V;) contains at most

1 1
——3¢g|n+2en<|-—¢|n
(5-3e)nram=(5-)

consecutive points. This proves the first part of the claim for any u € X(U;) and v € X(V;). For the second part, we can
take u as one of the two vertices preceding g; that is not p;, and similarly we can take v as one of the two vertices
following g;j;+1 that is not p;;,. With this choice, we have h(u, pi+1) > 2 and h(pi+1,v) > 2, and p(u, v) passes through
Di+1- Consequently,

h(u, v) = h(u, pis1) +h(pis1, v) =2 +2=4.

We have reached a contradiction, which proves (4). The summation of (4) over all i =1, ..., k, in combination with (1) and
the inequality k > 4 yields

k k

1
n:;(|A,-|+ |B,-|):§(|B,-|+ |Aiz1]) zk(§ —38)n20.27knz 1.08n.

This last contradiction completes the proof of the theorem. O

5. An upper bound for points on a circle

For many problems dealing with finite point configurations in the plane, points in convex position or on a circle may
allow for tighter bounds; see, e.g., [15,16,32,41]. We show that the lower bound of 4 for points on a circle is tight in this
case.

Theorem 6. For every finite point set S on a circle C, there exists a plane 4-hop spanner.

Proof. Let C be a circle with center o € R? and radius r > 0. Let S be a set of n points on C, and let G = G(S) be the
corresponding UDG. We may assume w.l.o.g. that G is connected. If r < 1/2, then G = Kp,, we set G’ = Ky 5—1, i.e., a star
centered at an arbitrary point. This yields h(s,s”) <2 for every s,s’ € S. We therefore subsequently assume that r > 1/2;
this implies that no edge of G passes through o.

Let ¥ C C be a shortest arc of C covering the points in S; and let S = {s1,52,...,5;} be a counterclockwise labeling of
these points on y. We claim that |s;s;11] <1, fori=1,...,n— 1. Indeed, let 1 <i <n — 1 be the smallest index such that
IsiSi+1| > 1. Then |s1sy| > |siSi+1]| > 1 and therefore {sq, ..., s;} and {sj+1,..., Sy} are disconnected in G, a contradiction. We
construct a plane subgraph G’ = (S, E’) of G in two phases, and then show the G’ is a 4-hop spanner for S.

In the first phase, we incrementally construct a polygonal chain Q = p1, p2, ..., Pk, on a subset of k elements of S with
the vertices chosen counterclockwise by a greedy algorithm starting with p; =s; (k is determined by the algorithm). The
polygon Q will be part of the plane graph G’; the following properties will be satisfied.

e pieS, fori=1,...,k,
o |pipip1l<1,i=1,.... k-1

In the current step, assume that p; has already been selected; here p; precedes s,. The algorithm checks subsequent
points counterclockwise on C, say sj,Sj41,.... As noted above, since G is connected, we have |p;s;| < 1. The algorithm
selects pjy1 = Sjn, where h > 0 is the largest index such that |p;sj | <1 for i’ =0,1,...,h, ie, for all successive points
until sjp; OF piyq = Sy, if the last point is reached. If p;,1 precedes sy, the algorithm updates i <—i+1 and continues with
the next iteration; if pjr1 =s,, we set k :=i. When this process terminates, k is set.

If |pkp1] <1, the edge pxp1 is added to close the chain, i.e., Q is a convex polygon whose k edges belong to E, in
particular, pyp1 € E; note that there may be points of S on the arc pyp;. It is possible that |pgp1| > 1, in which case
Q =p1,..., px is an open chain with k — 1 edges. In this case there are no other points of S on the arc pp;i. Each edge of
the chain Q determines a set of points called block (endpoints of the edge are included). Depending on whether the chain
Q is open or closed, there are either k — 1 blocks or k blocks.

In the second phase, for every edge p;pi+1 € E (with wrap around), we connect p; with all other points (if any) in that
block (i.e., create a star whose apex is p;); refer to Fig. 8 for an example. This completes the construction of the plane graph
G = (S, E).

It remains to analyze its hop factor of G'. Let uv € E be any edge of G; we may assume w.l.o.g. that uv is horizontal and
lies below the center o. Refer to Fig. 9 (right). We show that uv can have at most one edge of Q strictly below it. Suppose
that e = p;pi;1 € E’ is an edge of the polygon Q that lies strictly below uv. We claim that i =k, i.e., e = pyp1 and so this
edge is unique if this occurs. Note that if e = pyp; € E, then the chain Q is closed.

11
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D2

Pe
Fig. 8. An example of the 4-hop spanner constructed by the greedy algorithm; P = p1,..., p7 is a closed chain. The two red points are at hop distance 4.
Pit2
o] o .
Di-1 Pi-1 Pit1
u v u v
Pi Pi

Pi+1

Fig. 9. Left: the path connecting u and v is up;_1p;pi+1v. Right: the path connecting u and v is up;_1p;v.

Assume that i # k. Since uv is below the horizontal diameter of C, we have |p;pi+1| < |piv| < |uv| <1, and thus the
greedy algorithm would have chosen v or another vertex beyond v counterclockwise, instead of p;1q as the other endpoint
of the edge incident to p;, a contradiction. This proves the claim.

By the claim, the endpoints of every edge uv € E lie either in the same block, in two adjacent blocks, or in two
blocks that are separated by exactly one other block. Consequently, uv can be connected by a h-hop path, for some h < 4.
Fig. 9 (left) shows the case when the endpoints u, v belong to two blocks that are separated by exactly one other block: the
connecting path is up;_1p;pi+1v. Fig. 9(right) shows the case when the endpoints u, v belong to two adjacent blocks: the
connecting path is up;_qp;v. When both u and v belong to the same block of the chain, they are connected either directly
or by a path of length 2 via the center of the corresponding star. O

6. The maximum degree of hop spanners cannot be bounded

It is not difficult to see that dense (abstract) graphs do not admit bounded degree hop spanners (irrespective of pla-
narity). We start with an observation regarding the complete UDG K, and then extend it and show that the maximum
degree of hop spanners of sparse UDGs is also unbounded.

We use the fact that graphs of small diameter and maximum degree must be small. Indeed, a connected graph with
diameter at most D and maximum degree is at most A > 3 has fewer than ﬁ - (A — 1)P vertices [13, Proposition 1.3.3];
and a connected graph with diameter at most D and maximum degree is at most 2 has fewer than 2D + 2 vertices. As such,

a connected graph with diameter at most D and maximum degree at most A > 2 has fewer than 2AP vertices.

Theorem 7. For every pair of integers k > 2 and A > 2, there exists a set S of n < 2AK points such that the unit disk graph G = (S, E)
on S has no k-hop spanner whose maximum degree is at most A.

Proof. Let S be a set of n points in a unit disk. Then the UDG G of S is the complete graph K;. Suppose, to the contrary, that
G’ = (S, E') is a k-hop spanner for G with maximum degree at most A. Then h(p, q) <k for all p,q € S, hence the diameter
of G’ is at most k. By the above observation we have n < 2AK, thus we obtain a contradiction if we set n=2A%. O

12
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Theorem 8. Let t: N — N, t(n) <n, be an integer function that tends to oo with n. For every pair of integers k > 2 and A > 2, there
exists ng € N such that for every n > ng, there is a set S of n points in the plane such that

(i) the unit disk graph G = (S, E) on S has ®(n - t(n)) edges, and
(ii) G has no k-hop spanner whose maximum degree is at most A.

Proof. For a given t, partition n points into |} | groups of size t and a remaining group (if any) of size n — | } | t. Place the

groups in disjoint disks of unit diameter in the plane, so that the UDG of each group is a complete graph; and arrange the
disks along a line such that the UDG G has exactly one edge between any two consecutive groups. Each group of size t
induces () = ©(t?) edges, hence G has ©(% - 2 +t) = O (nt) edges.

Suppose that G has a k-hop spanner G’ with maximum degree at most A. Then h(p,q) <k for all p,q € S within the
same group, hence each group induces a subgraph of G’ of diameter at most k. By the above observation we have t < 2Ak,
thus we obtain a contradiction if we choose ng such that t(n) > 2Ak for alln>ng. O

7. Conclusions

We have shown that the UDG of every set of n points in the plane admits a 5-hop spanner with at most 5.5n edges, a
3-hop spanner with at most 11n edges, and a 2-hop spanner with O (nlogn) edges. The third bound leaves an interesting
question: Are there n-element point sets for which every 2-hop spanner has w(n) edges? Recent results show that unit
disks may exhibit surprising behavior [30,36].

Finding nontrivial lower bounds for the size of k-hop spanners remains an open problem. We mention a few straightfor-
ward lower bounds. Observe that if the girth of an UDG G is k > 4, then the only (k — 2)-hop spanner of G is G itself. In
particular, for n points in a section of the square lattice Z2, the UDG has (2 — o(1))n edges, its girth is 4, and so the only
2-hop spanner of G is G itself. For n points in a section of a hexagonal lattice, the UDG has (% —o(1))n edges, its girth is

6, and so the only 3- or 4-hop spanner of G is G itself. Finally, for n points in Z? \ 2Z2, the UDG has (% —o(1))n edges, its
girth is 8, and so the only 5- or 6-hop spanner of G is G itself.

Biniaz [6] showed that the UDG of every point set admits a plane hop spanner with hop stretch factor at most 341. For
points on a circle, we have improved the upper bound to 4, and showed that this bound is the best possible. This is the
first nontrivial lower bound on the hop stretch factor of any plane hop spanner (Theorem 6). Are there point sets for which
every plane hop-spanner has hop stretch factor at least 5?

In this paper, we considered the UDG of a point set in terms of Euclidean distance (i.e., L-norm) in the plane. We
can define UDG over any other norm over R2, where the unit disks are translates of a centrally symmetric convex body.
Estimating the size of hop spanners over arbitrary normed spaces in R? is another problem for consideration.
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