D. BCD (2021) “On the Thom Conjecture in cp3,”
International Mathematics Research Notices, Vol. 00, No. O, pp. 1-14
https://doi.org/10.1093/imrn/rnab343

On the Thom Conjecture in CP3

Daniel Ruberman'-*, Marko Slapar??“ and Saso Strle®*

'Department of Mathematics, MS 050, Brandeis University, Waltham,
MA 02454, USA, *Faculty of Education, University of Ljubljana,
Kardeljeva ploscad 16, 1000 Ljubljana, Slovenia, 3 IMFM, Jadranska 19,
1000 Ljubljana, Slovenia, and *Faculty of Mathematics and Physics,
University of Ljubljana, Jadranska 19, 1000 Ljubljana, Slovenia

*Correspondence to be sent to: e-mail: ruberman@brandeis.edu

What is the simplest smooth simply connected 4-manifold embedded in CP2 homologous
to a degree d hypersurface V;? A version of this question associated with Thom asks
if V; has the smallest b, among all such manifolds. While this is true for degree at
most 4, we show that for all d > 5, there is a manifold M, in this homology class with
b,(M;) < by(V,;). This contrasts with the Kronheimer—-Mrowka solution of the Thom
conjecture about surfaces in CP? and is similar to results of Freedman for 2n-manifolds
in CP"*! with n odd and greater than 1.

1 Introduction

A conjecture attributed to René Thom states that a nonsingular algebraic hypersurface
V,; of degree d in CP"**! is the “simplest” representative of its homology class. The notion
of complexity of a (real) submanifold M of dimension 2n in CP"*! is motivated by the
Lefschetz hyperplane theorem, which implies that the homology and homotopy groups
of V,; are determined by the ambient manifold CP"*! below the middle dimension n. We
are looking for manifolds that closely resemble the behavior of algebraic hypersurfaces,

so the appropriate class of submanifolds within which to look for least complexity
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representatives of a given codimension-2 homology class in CP"*! is the class of
manifolds M for which the relative (homology and) homotopy groups of the pair
(CP™*1, M) are trivial up to the middle dimension. The free parameter is therefore the
middle dimensional Betti number, b,,(M).

The conjecture is true for n = 1, so in CP?, which was proved by Kronheimer and

Mrowka using Seiberg-Witten theory.

Theorem 1.1 (Kronheimer-Mrowka [9]). A nonsingular algebraic curve of degree d € N
is a minimal genus smooth surface representing d[CP'] € H,(CP? Z); the 1st Betti

number of such a surface is d? — 3d + 2.

For larger odd n the conjecture is false as was shown by Freedman [4]. The idea
of the proof is to perform ambient surgery on V,; to reduce the middle Betti number.
For technical reasons it is necessary to replace the condition that the relative homotopy
groups vanish up to the middle dimension with a stronger condition 7;(C,9C) = 0 for
k < n, where C is the closed complement of a regular neighborhood of a submanifold
M?" c N?"+2_ When this condition holds for the pair (N, M), we say that M is a taut
submanifold of N. Such embeddings were studied by Thomas and Wood [14] who, in
particular, showed that V,; are taut and also established lower bounds for b, (M) for
a taut representative M of the class of V. For V; C CP?™ these lower bounds come
from the G-signature theorem, are smaller than b,(V,;), and are almost attained by
Freedman's taut manifolds (moreover, he shows they can be realized by rationally taut

submanifolds, which satisfy the same bounds).

Theorem 1.2 (Freedman [4]). For any m > 2, V; is not minimal taut in CP?™ for prime
d, where d # 2,3 for m = 2 and d # 2 for m = 3.

This leaves open the case of V; in CP?m+! with m > 1. It seems likely that an
adaptation of Freedman's method would establish a result analogous to Theorem 1.2
when m > 1, so we concentrate on m = 1. Thus, for any positive integer d we
study smooth simply connected 4-dimensional submanifolds M of CP? representing
the homology class d[CP?], which also carry the class of [CP!] in H,(CP%). We show
that, analogous to the higher-dimensional cases, one can find such manifolds M with
b,(M) < b,(V,), hence the conjecture does not hold in CP3. Although we also use ambient
surgery we do not need tautness of the embedding due to the special geometric situation

in which we perform the construction.
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On the Thom Conjecture in CP? 3

Recall that for a nonsingular V,; the following hold (~ indicates asymptotic
behavior for large d):

e V,is simply connected;

o by(Vy)=d®—4d?+6d—-2~d?

o o(Vy) =—d(d?—-4)/3~-d%/3;

e V,is even (spin) for d even, odd for d odd.

For small values of d this yields the following:

d ba(Vg) o(Vq) Va

1 1 1 CP2

2 2 0 52 x 52
3 7 -5 CP2#6CP2
4 22 -16 K3

5 53 -35 quintic

We show in Proposition 2.1 that the signature and the parity of its intersection
form for a 4-dimensional submanifold of interest in CP?® are determined by the class
it represents and that its b;’ is at least 1. Inspecting the list above it is then clear that
one cannot reduce b, in any class with d < 3. For d = 4 the same conclusion follows

from the 10/8 Theorem of Furuta [7] and in fact from Donaldson’s Theorems B and C [2].

Theorem A. V, is not minimal in its homology class for d > 5. There exist simply
connected smooth submanifolds M, of CP? homologous to V; with by(My) < by(Vy).

Moreover, for large d we can choose M so that b,(M,) grows as 3d3/4.

Using our construction we can reduce b,(Vs) by 8, so we obtain a Mg with
b,(Ms) = 45. The smallest b, (M) our method could possibly produce is ~ d?/2, which
yields b,/|o| ~ 3/2. In contrast to Freedman's work, which is restricted to prime degrees,
our results work for arbitrary d > 5.

As in the work of Freedman and Matsumoto, the proof of the theorem relies
on ambient surgery to reduce the 2nd Betti number of the manifold. However, we do not
know how to directly implement the approach in [4, 10], so we take a somewhat different
route. Using the results of Baader et al. [1] we identify a large subgroup of H,(V,;)
on which the intersection pairing is hyperbolic. If these classes were represented by
smoothly embedded spheres, then they would be candidates for performing surgery on

V4 to reduce b,. However, it follows from Donaldson’s work (see [6, Corollary 6.4.2]) that
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no (non-trivial) homology class of self-intersection 0 in V; is represented by a smoothly
embedded sphere. On the other hand, Wall [15, 16] showed that these classes can be
represented by spheres after stabilization. Using this, we can perform ambient surgery
to remove a part of the 2nd homology while preserving the characteristic properties of
the submanifold. If in place of smooth embeddings one was content with a topologically
locally flat embedding of M, in CP3, the proof is somewhat simpler. See the remarks on

the proof at the conclusion of the paper.

2 Basic Properties

Proposition 2.1. Let d be a positive integer and M < CP? be a smooth simply
connected 4-dimensional submanifold representing the homology class d[CP?] and such
that H,(M) — H,(CP?) is onto. Then o (M) = —d(d? — 4)/3, M is spin iff d is even, and
bl (M) > 1.

Proof. By the signature theorem, the signature of M is determined by its 1st
Pontryagin class. This, in turn, is determined by the ambient manifold CP® and the
homology class of M, so it agrees with the signature of V.

The 2nd Stiefel-Whitney class of the normal bundle of M in CP? factors through
H?(CP3;,Z/2) and hence is equal to dx, where x is the image of the generator of
H?(CP3;Z/2) in H?(M; Z/2). Since CP? is spin, it follows that w,(M) = dx.

Because the class of M is a positive multiple of [CP?] and the inclusion of M into

CP® induces a surjection on H,, H,(M) contains a class of positive square. |

3 A Model Manifold

We first choose a smooth algebraic hypersurface V,; of degree d in CP? that intersects
a 6-ball in a submanifold carrying a large part of the 2nd homology. Recall we are only

interested in d > 4.

Proposition 3.1. V; can be chosen so that its intersection F; with a 6-ball B can be
isotoped (rel boundary) to the boundary of B. Moreover, F; is the d-fold branched cover
of the 4-ball branched along a pushed-in Seifert surface X; for the (d — 1, d) torus knot
and b, (V,) = by(Fy) +d.

Proof. Let W; be the singular variety representing the codimension-2 class of
multiplicity d in CP? given by the equation

zoz‘lil*1 + zg = zg.
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On the Thom Conjecture in CP? 5

Hence, [1 : 0 : 0 : 0] € W, is the unique singular point (for d > 2); let B be a small
ball about the singularity so that W; N B is the cone on W, N dB. Clearly, W, is the
d-fold branched cover of CP? with branch set a singular sphere with a unique singular
point whose link of singularity is the (d — 1,d) torus knot T;_; 4. To obtain a smooth
representative V; of the same homology class, we choose a nearby nonsingular surface,

for example, the one given by
zoz‘li_1 + zg = szg + zg

for a small enough ¢ # 0. In V,; the neighborhood of the singularity W; N B is replaced
by the Milnor fiber F,;, which can be thought of as the branched cover of B* with branch
set a pushed-in Seifert surface ¥; for T;_, 4. A Euler characteristic computation shows
that b,(V,;) = b,(F;)+d. Moreover, the Milnor fiber F; can be isotoped into the boundary
sphere of B while fixing its boundary. |

Next we show there exists a large subgroup of H,(F;) (all homology groups from
now on have integer coefficients) on which the intersection pairing is hyperbolic. The
intersection form of F,; is determined by the Seifert form 6, of the Seifert surface ;.
Moreover, 6 also determines the linking form ©,; on Hy(Fy) = H; (%) ® 791 for the
embedding of F; into 9B = S°; indeed, ©,4 = 6; ® Ag4_, [3], where A is the k x k matrix

of the form

Even though the smooth slice genus of a torus knot is equal to its genus, the
same is not true of its topological (locally flat) slice genus as was first demonstrated by
Rudolph [12]. The main tool in the construction is Freedman's result that an Alexander
polynomial 1 knot is topologically slice. A systematic study of the topological slice
genus of torus knots was conducted by Baader et al. [1]. They construct subsurfaces
of Seifert surfaces whose boundaries are Alexander polynomial 1 knots. We only need

the following property of the Seifert form.

Theorem 3.2 ([1]). H,(X,) contains a subgroup G, of rank 2r; ~ d?/4 such that the

restriction of the Seifert form 6,; to G is of the following form, consisting of four r; x ry
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6 D. Ruberman et al.

blocks:

0 I+U
Ld % '

where U, and L, are strictly upper- and lower-triangular matrices, respectively.

Corollary 3.3. The restriction of the Seifert form ©, for F; to the subgroup
Gy = Gy ® 7971 of H,(F,;) has the same form as 6, in the previous theorem with

the blocks of size 7; = r (d — 1). Hence, the restriction of the intersection form of F, to
~ N 0 1 .
G, is equivalent to @7 H, where H = |:1 0:| denotes the hyperbolic form. The rank of

@d for large d behaves as d®/4.

Proof. Let (x;); be the generators of @d corresponding to the first half of the generators
for G, relative to which the Seifert form is given by the matrix in the above theorem and
let (x}); be the generators corresponding to the second half. It follows from the structure
of the matrix A,_; that ®, has the same form as 6,; so it, in particular, vanishes on the
subgroup generated by the (x;);. Since the intersection form of F; is given by ®; + @5, it
follows that x; - x; = 0 and x; - x; = 1 for all i and j. To make all the other pairings vanish
we inductively change the basis elements (x}) by adding to them linear combinations of

Xjforjfiandxj/.forj<i. n

4 Spherical Classes

In order to reduce the rank of H,(F,), we would like to show that some set of generators
for the subgroup E;d of H,(F;) can be represented by embedded spheres in V; and
that in fact a regular neighborhood of representatives for a pair of generators giving
an H summand as above is diffeomorphic to a punctured S? x S? and the spheres
corresponding to different H summands are disjoint. In general the classes in @d may
not be represented by embedded spheres (though they are of course spherical) but by

Wall's stable diffeomorphism results they are after stabilizing.

Theorem 4.1 (Wall [15, 16]). Let M and N be smooth simply connected closed 4-
manifolds with isomorphic intersection forms. Then the following hold:

(1) for all large enough ¢ > 0, the stabilized manifolds M#¢(S? x S?) and
N#0(S? x S?) are diffeomorphic;

1202 Joquiedaq G| U0 188nb AQ 62EZ99/SFEGRUI/UIWISE0 L 0 L /I0p/3|01B-00UBAPER/UIWI/WO0D dNo dIWapeae//:sd)y Wol) PaPEOjUMO(]



On the Thom Conjecture in CP? 7
(2) if the intersection form of M is indefinite, any automorphism of the
intersection form of M#S? x S? is induced by a diffeomorphism.

Choose a standard model manifold realizing the intersection form of V:

b -
M, = %52 x S2#|o| CP2 for d > 1 odd,

a7 16

S% x Sz#% K3 for d even,

where b, = b,(V,) and 0 = o(V,). Fix £ so that V; and M,; become diffeomorphic after
¢ stabilizations. We can realize this stabilization of V; in CP? by internal connected
sum of F; with ¢ trivial copies of S? x S? C S® = 3B (each contained in its own 5-disk);
denote the stabilized F; and V,; by F} and V}, respectively. We add to G, the stabilization
classes thus obtaining G < H,(V3) with HZ(Vfi)/@fi = Hz(Vd)/ﬁd.

Denote by h,; the number of S? x S? summands in M. Note that hy for d odd
grows as d°/3 whereas for d even as 13d3/48, so in any case faster than 7; ~ d3/8. The
comparison for small values of d is given in the table below where the data for r; comes
from [1, Table 1].

d |5 6 7 8 9

rq |1 2 4 [56] [69]
7y |4 10 24 [3542] [48,72]
hg|9 9 41 41 113

We will assume in what follows that 7; < h,, which is clearly true for large d.
For those small values of d for which this is not the case we replace @d by one of its

subgroups satisfying the condition.

Proposition 4.2.  The restriction of the intersection pairing of V} to @il is equivalent
to the sum of hyperbolic forms H. The classes in @3 can be represented by smoothly
embedded spheres in V3 so that for each summand H the corresponding representatives
intersect geometrically once and the spheres corresponding to different H summands

are disjoint.

Proof. The first claim follows from the construction. By the choice of ¢, Vfi =
V, #0(S? x S?) is diffeomorphic to the stabilization M5 = M #¢(S? x S?). We can choose an
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8 D. Ruberman et al.

isomorphism between the intersection pairings of V and M} that maps the generators
of the subgroup G into the generators of the subgroup supported by the sum of S? x S?'s.
Since this isomorphism is by Theorem 4.1 induced by a diffeomorphism, the second

claim follows. n

5 Ambient Surgery

In order to reduce the 2nd Betti number of V3 we wish to perform ambient surgery
along the spheres guaranteed by Proposition 4.2. Let X; be the spheres representing the
first half of the generators of G on which the linking pairing ®F vanishes identically
(so this collection of spheres contains a representative for one of the generators for
each H summand of the restriction of the intersection form to G*). If ¥; is contained
in Ffi C 9B, then it bounds an embedded disk D; in the 6-ball B and the normal disk
bundle of D; contains an embedded 5-dimensional 3-handle with core D;. The vanishing
of the linking pairing guarantees that these handles may be chosen to be disjoint. Since
we do not have the control over the action of the diffeomorphism in Wall’s stabilization
theorem, the spheres might not be contained in F,;. Our main lemma shows that we can

arrive at the same conclusion.

Lemma 5.1. Let X; C V} be the 2-spheres described above. Then there exist pairwise
disjoint smoothly embedded 3-disks D; C CP® with D; N V§ = %;. Moreover, the disks D;

are not tangent to V.

Proof. Denote by x; € H,(V)) the homology class of ¥;. Since this class comes from F}
it may be represented by an immersed sphere Eil C Fj with transverse double points.
Then Zil and %; = E? are homotopic in V3 (since it is simply connected). According to
[8, Theorem 8.3], this homotopy may be replaced by a smooth regular homotopy
@0 S? x I — V5 (i.e., a homotopy of immersions) if the normal bundle of the immersed
sphere Eil is trivial. Since the class x; has square 0, the latter condition is equivalent
to Eil having the same number of positive and negative (transverse) double points. This
condition can be satisfied since double points of either sign may be added locally to Eil
by replacing a disk with the trace of a homotopy of arcs in R obtained by the sequence
of a 1st Reidemeister move, followed by a crossing change and another 1st Reidemeister
move. (See [13, Figure 2] for a picture of this process.) We may further assume that the
regular homotopy is in general position, so it is a sequence of isotopies, finger moves,
and Whitney moves [5, §1.6]. The spheres Eit = ¢;(S? x {t}) for t € I then have transverse

double points with the exception of finitely many points; each of these is either the first
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On the Thom Conjecture in CP? 9

Fig. 1. Regular homotopy with separated stages and arcs of double points.

point of self-intersection for a finger move or the last point of self-intersection for a
Whitney move, where the sphere is tangent to itself. Let I'; be the set of double points of

immersed spheres for the map

;: SExI— VS xI, @;x,t) = (9;(x,1), ).

1

Note that T'; is the union of properly embedded arcs (with endpoints in Zil) and circles;
the preimage of I'; in S? x I consists of two copies of ';, written F; L I‘g/.

Further, we may assume that the regular homotopies corresponding to different
spheres are in general position. This implies that for any time ¢ at most two of the
spheres X! intersect in the same point and this point is not a double point of one of
the spheres. The intersections of different spheres are transverse except at tangencies

corresponding to finger and Whitney moves. Then A;;, the intersection of the images

ijr
of ®; and @, is the union of properly embedded arcs (with endpoints in Zil N E].l) and
circles. The preimages Aéj = @;I(Aij) and Ajij = d>j_1(Aij) C S% x I are two copies of Ajj.
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10 D. Ruberman et al.

We will push the traces of the homotopies ¢; into CP? (more precisely,
into a tubular neighborhood of V) separating their stages and resolving the
(self-)intersections of the immersed spheres thus obtaining disjoint embedded annuli
W; connecting %2 to a push-off of X!. Equip the normal bundle v of V5 c CP?® with a
Riemannian metric; we may assume that the metric over Fj is induced from the metric
on the 6-ball B, which we identify with the ball of radius 2 in R®. By rescaling the metric
(by a constant factor) we may assume that the unit disk bundle of v is identified with a
tubular neighborhood of V¥; we will use this identification implicitly in what follows.

We fix a trivialization of the pull-back of v via ¢;. This bundle is the pull-back
of the trivial bundle over S? x {1}, and there is a particular choice of trivialization over
this sphere given by the vector fields E, the pull-back of the inner normal to S° in BS,
and Eé, the pull-back of the normal vector field to F; in S%. Choosing a trivialization of
the bundle over S% x I, we extend (E! ,Eé) to orthonormal trivializing sections (Et ,Eé) of
the whole bundle. Let A: [0, 1] — [0, 1] be a smooth increasing surjective function that is

constant in some neighborhoods of the endpoints. Then y;: S? x I — CP3, given by
(X, 1) > tE} (¢;(%, 1(1))),

is an embedding of the image of ®; in CP? (with collars added at each end). Denote the
image of v; by Z;. Note that ¢; factors through Z;, where Z; maps to V, by the projection.
In particular, the pull-back of v via ¢; factors through its pull-back to Z;. So for any
component y; of I'; C Z; we may identify the pull-back of v to y; with its pull-back to
either component y/ C I'; or y/” C '/ of its preimage.

In order to get embedded annuli W; we first need to remove the double points
of immersed spheres. Note that over any corresponding pair of components y; L y/” in
IruT! c S* x I that map to y; C T; C Z;, the two trivializations of the pull-back
of the normal bundle v to y; determined by (Ei,Eé) restricted to either y; or y;” are
homotopic as any such component is null-homotopic in S? x I. We now change E{ over
y{' to agree with the restriction of Ei to y/ rotated by a small angle § > 0 in the direction
of Eélyi’. Choose small pairwise disjoint compact regular neighborhoods K; = K; U K/
for I'; T} and L;:j u LJU for Afj u A]L] Using (Ei,Eé)lKlf to trivialize the normal bundle
over K;, we choose the fiberwise universal cover of the corresponding circle bundle
in which E§|K{ corresponds to the zero and E§|K£ to a positive angle. Then the lift of
E{ |K! may be smoothly spliced with the constant section § and then pushed down into
the circle bundle to give the new section E§'|Klf’; then rotating E§'|K§/ appropriately we

obtain an orthonormal frame. In fact, when y; is an arc, we complete ;" to a circle by
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On the Thom Conjecture in CP3 11

Fig. 2. Comparison of the two trivializations of the pull-back of v to y;, given by the sections Ei |yl.’
(green) and Ei |yi” (red). In the picture, y; is assumed to be an arc and is completed to a circle by

an arc over which the two sections agree.

adding to it an arc in S? x {1}. Since over S? x {1} the section Ei is determined as the
inner normal to the boundary of B, we choose the lift of Ei |K;" over this arc to be zero.
This shows that the double points of Eil are removed by a small homotopy inside the
ball B.

To remove the intersections between different spheres we just repeat the same

procedure with any A, where we assume i < j, by changing the section E’1 over L.

ijr
Denote the resulting enibeddings obtained in this way from v, by ¥;: S? x I — CP?; then
one boundary component of W; = \lJi(S2 x I) is X; and the other is the push-in of Eil,
which we denote f)i = W,(S? x {1}). Note that the spheres f)i are essentially contained
in a 5-sphere S concentric with the boundary of the ball B; they only deviate from S in
small neighborhoods of double points and intersection points between different spheres
(more precisely, over the images of K} N f]i, and over L]U N f]j for i < j). But as noted
above, the removal of intersection points in Zil is realized by a small homotopy. Hence,
the projection of ¥; into S along the normal vector field is a diffeomorphism and we
may and will assume that fi is contained in S. Then ii bounds a properly immersed
3-disk D; in the ball B’ bounded by S. Assuming D; is in general position, it may have
transverse self-intersections, but pairs of double points in D; of opposite sign can be
canceled using the Whitney trick. Note that the number of double points of either sign
may be increased by adding kinks (analogous to 1st Reidemeister move) into ;. Thus,

we may assume that D, is embedded.
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12 D. Ruberman et al.

Since ©%(3}, Ejl) =0 and ; is just a push-in of ¥} into a concentric sphere, the
linking number of ¥; and X; (where the latter can be considered as a perturbation of the
normal push-off of E].l) is trivial. Hence, the intersection number of D; and Dj is zero for
all i # j, so we may assume that they are geometrically disjoint (by using the Whitney
trick). |

Theorem 5.2. The homology class of V; in CP? is represented by a simply connected
manifold N, with H,(N,;) = H,(V,)/G.

Proof. We first show that the disk D; may be thickened to a 5-dimensional 3-handle h;
in CP® with the attaching region contained in V5 and whose attaching sphere is equal
to £;. The normal bundle of £; in V¥ is trivial, so its normal disk bundle in CP? admits
a splitting ¥; x B2 x B?, where the first B corresponds to the normal directions in VS,
and the second corresponds to the restriction of the normal bundle v of V5 c CP? to %;.
The latter is trivialized by (E}, E?) and the normal disk bundle of D; over X, is given by
¥; x B% x B'EZ. This trivialization extends over the normal bundle of D; in CP?® since
7,(GL4R) is trivial. The required handle h; is D; x BZ x 0.

Using the handles h; we perform ambient surgery on V} along the ¥; to obtain
a manifold N;, homologous to V5 and hence to V. Clearly, H,(N,) is isomorphic to
HZ(VCSi)/@S ~ H,(V,)/G since surgery on ¥, kills also its dual class.

That N,; is simply connected follows since the fundamental group of the
complement of X; is normally generated by its meridian which is trivial in N;, because

the dual class to X, is also represented by a sphere. |

The final question to address is whether the manifolds N, are taut in CP3. We
show below that nk(CIE”3,Nd) is trivial for k < 2. In fact, it also follows by general
position arguments that =,(C,3C) is trivial, where C is the closed complement of a

tubular neighborhood of N;.
Proposition 5.3. The pair ((CIP3,Nd) is 2-connected.

Proof. Since CP3 and NV, are simply connected, we only need to verify that the inclusion
induced homomorphism is surjective on n, or equivalently on H,. Since V is taut, so is
the stabilized manifold V} (by the argument as in the previous sentence). Hence, the
generator x € H,(CP3) is the image of an element X ¢ H,(V3). Suppose now we do

the surgery on a sphere ¥; representing the class x; € H,(V3). Let y; € Hy(V3) be the
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homology class of the dual sphere to X;. Then x; has trivial algebraic intersection with

the class

>/

X =x—x-x)y;

Since y; is supported by the Milnor fiber F; C B, it maps to the trivial class in H,(CP3),

so the surgery preserves surjectivity. |

In general, the ambient surgery construction may destroy tautness, but based
on a theorem of Quinn [11] as quoted by Freedman [4, Theorem 2.5], it seems that one

can re-embed N, as a taut submanifold.

Remarks on the proof. The overall strategy used to prove Theorem A is similar to
that in the work of Freedman and Matsumoto, but with an important difference. In
our work and also in [4, 10] an algebraic form on a subspace of the middle homology
is an obstruction to doing ambient surgery. (For us it is essentially the Seifert form,
whereas [4, 10] use a Wall-type form denoted (%, ©).) However, the technique in [4, 10],
applied in our setting, would be to immerse a 3-disk with boundary on V4, and use the
vanishing of (1, 1) to push the singularities out to the boundary 2-spheres; these would,
in principle, be removed by an application of the Whitney trick. Since the Whitney trick
does not apply in dimension 4, we modified the procedure to get embedded 2-spheres
(after stabilization) and then remove the singularities of the 3-handles by the Whitney
trick in dimension 6.

In another direction, the topological version of Theorem A, in which one
demands only that M, have a locally flat topological embedding, follows directly from
the smooth case. On the other hand, the proof in the topological case is easier, as the
classes we want to surger would be represented by embedded spheres (with embedded
duals) in F;. In this setting, the 5-dimensional 3-handles needed for the ambient

surgeries will lie in the 6-ball.
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