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What is the simplest smooth simply connected 4-manifold embedded inCP
3 homologous

to a degree d hypersurface Vd? A version of this question associated with Thom asks

if Vd has the smallest b2 among all such manifolds. While this is true for degree at

most 4, we show that for all d ≥ 5, there is a manifold Md in this homology class with

b2(Md) < b2(Vd). This contrasts with the Kronheimer–Mrowka solution of the Thom

conjecture about surfaces in CP
2 and is similar to results of Freedman for 2n-manifolds

in CP
n+1 with n odd and greater than 1.

1 Introduction

A conjecture attributed to René Thom states that a nonsingular algebraic hypersurface

Vd of degree d in CP
n+1 is the “simplest” representative of its homology class. The notion

of complexity of a (real) submanifold M of dimension 2n in CP
n+1 is motivated by the

Lefschetz hyperplane theorem, which implies that the homology and homotopy groups

of Vd are determined by the ambient manifold CP
n+1 below the middle dimension n. We

are looking for manifolds that closely resemble the behavior of algebraic hypersurfaces,

so the appropriate class of submanifolds within which to look for least complexity
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2 D. Ruberman et al.

representatives of a given codimension-2 homology class in CP
n+1 is the class of

manifolds M for which the relative (homology and) homotopy groups of the pair

(CPn+1,M) are trivial up to the middle dimension. The free parameter is therefore the

middle dimensional Betti number, bn(M).

The conjecture is true for n = 1, so in CP
2, which was proved by Kronheimer and

Mrowka using Seiberg–Witten theory.

Theorem 1.1 (Kronheimer–Mrowka [9]). A nonsingular algebraic curve of degree d ∈ N

is a minimal genus smooth surface representing d[CP1] ∈ H2(CP
2;Z); the 1st Betti

number of such a surface is d2 − 3d + 2.

For larger odd n the conjecture is false as was shown by Freedman [4]. The idea

of the proof is to perform ambient surgery on Vd to reduce the middle Betti number.

For technical reasons it is necessary to replace the condition that the relative homotopy

groups vanish up to the middle dimension with a stronger condition πk(C, ∂C) = 0 for

k ≤ n, where C is the closed complement of a regular neighborhood of a submanifold

M2n ⊂ N2n+2. When this condition holds for the pair (N,M), we say that M is a taut

submanifold of N. Such embeddings were studied by Thomas and Wood [14] who, in

particular, showed that Vd are taut and also established lower bounds for bn(M) for

a taut representative M of the class of Vd. For Vd ⊂ CP
2m these lower bounds come

from the G-signature theorem, are smaller than bn(Vd), and are almost attained by

Freedman’s taut manifolds (moreover, he shows they can be realized by rationally taut

submanifolds, which satisfy the same bounds).

Theorem 1.2 (Freedman [4]). For any m ≥ 2, Vd is not minimal taut in CP
2m for prime

d, where d �= 2, 3 for m = 2 and d �= 2 for m = 3.

This leaves open the case of Vd in CP
2m+1 with m ≥ 1. It seems likely that an

adaptation of Freedman’s method would establish a result analogous to Theorem 1.2

when m > 1, so we concentrate on m = 1. Thus, for any positive integer d we

study smooth simply connected 4-dimensional submanifolds M of CP
3 representing

the homology class d[CP2], which also carry the class of [CP1] in H2(CP
3). We show

that, analogous to the higher-dimensional cases, one can find such manifolds M with

b2(M) < b2(Vd), hence the conjecture does not hold inCP
3. Although we also use ambient

surgery we do not need tautness of the embedding due to the special geometric situation

in which we perform the construction.
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Recall that for a nonsingular Vd the following hold (∼ indicates asymptotic

behavior for large d):

• Vd is simply connected;

• b2(Vd) = d3 − 4d2 + 6d − 2 ∼ d3;

• σ(Vd) = −d(d2 − 4)/3 ∼ −d3/3;

• Vd is even (spin) for d even, odd for d odd.

For small values of d this yields the following:

d b2(Vd) σ (Vd) Vd

1 1 1 CP
2

2 2 0 S2 × S2

3 7 −5 CP
2#6CP2

4 22 −16 K3

5 53 −35 quintic

We show in Proposition 2.1 that the signature and the parity of its intersection

form for a 4-dimensional submanifold of interest in CP
3 are determined by the class

it represents and that its b+
2 is at least 1. Inspecting the list above it is then clear that

one cannot reduce b2 in any class with d ≤ 3. For d = 4 the same conclusion follows

from the 10/8 Theorem of Furuta [7] and in fact from Donaldson’s Theorems B and C [2].

Theorem A. Vd is not minimal in its homology class for d ≥ 5. There exist simply

connected smooth submanifolds Md of CP
3 homologous to Vd with b2(Md) < b2(Vd).

Moreover, for large d we can choose Md so that b2(Md) grows as 3d3/4.

Using our construction we can reduce b2(V5) by 8, so we obtain a M5 with

b2(M5) = 45. The smallest b2(Md) our method could possibly produce is ∼ d3/2, which

yields b2/|σ | ∼ 3/2. In contrast to Freedman’s work, which is restricted to prime degrees,

our results work for arbitrary d ≥ 5.

As in the work of Freedman and Matsumoto, the proof of the theorem relies

on ambient surgery to reduce the 2nd Betti number of the manifold. However, we do not

know how to directly implement the approach in [4, 10], so we take a somewhat different

route. Using the results of Baader et al. [1] we identify a large subgroup of H2(Vd)

on which the intersection pairing is hyperbolic. If these classes were represented by

smoothly embedded spheres, then they would be candidates for performing surgery on

Vd to reduce b2. However, it follows from Donaldson’s work (see [6, Corollary 6.4.2]) that
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4 D. Ruberman et al.

no (non-trivial) homology class of self-intersection 0 in Vd is represented by a smoothly

embedded sphere. On the other hand, Wall [15, 16] showed that these classes can be

represented by spheres after stabilization. Using this, we can perform ambient surgery

to remove a part of the 2nd homology while preserving the characteristic properties of

the submanifold. If in place of smooth embeddings one was content with a topologically

locally flat embedding of Md in CP
3, the proof is somewhat simpler. See the remarks on

the proof at the conclusion of the paper.

2 Basic Properties

Proposition 2.1. Let d be a positive integer and M ⊂ CP
3 be a smooth simply

connected 4-dimensional submanifold representing the homology class d[CP2] and such

that H2(M) → H2(CP
3) is onto. Then σ(M) = −d(d2 − 4)/3, M is spin iff d is even, and

b+
2 (M) ≥ 1.

Proof. By the signature theorem, the signature of M is determined by its 1st

Pontryagin class. This, in turn, is determined by the ambient manifold CP
3 and the

homology class of M, so it agrees with the signature of Vd.

The 2nd Stiefel–Whitney class of the normal bundle of M in CP
3 factors through

H2(CP3;Z/2) and hence is equal to dx, where x is the image of the generator of

H2(CP3;Z/2) in H2(M;Z/2). Since CP
3 is spin, it follows that w2(M) = dx.

Because the class of M is a positive multiple of [CP2] and the inclusion of M into

CP
3 induces a surjection on H2, H2(M) contains a class of positive square. �

3 A Model Manifold

We first choose a smooth algebraic hypersurface Vd of degree d in CP
3 that intersects

a 6-ball in a submanifold carrying a large part of the 2nd homology. Recall we are only

interested in d > 4.

Proposition 3.1. Vd can be chosen so that its intersection Fd with a 6-ball B can be

isotoped (rel boundary) to the boundary of B. Moreover, Fd is the d-fold branched cover

of the 4-ball branched along a pushed-in Seifert surface �d for the (d − 1,d) torus knot

and b2(Vd) = b2(Fd) + d.

Proof. Let Wd be the singular variety representing the codimension-2 class of

multiplicity d in CP
3 given by the equation

z0z
d−1
1 + zd2 = zd3 .
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Hence, [1 : 0 : 0 : 0] ∈ Wd is the unique singular point (for d > 2); let B be a small

ball about the singularity so that Wd ∩ B is the cone on Wd ∩ ∂B. Clearly, Wd is the

d-fold branched cover of CP2 with branch set a singular sphere with a unique singular

point whose link of singularity is the (d − 1,d) torus knot Td−1,d. To obtain a smooth

representative Vd of the same homology class, we choose a nearby nonsingular surface,

for example, the one given by

z0z
d−1
1 + zd2 = εzd0 + zd3

for a small enough ε �= 0. In Vd the neighborhood of the singularity Wd ∩ B is replaced

by the Milnor fiber Fd, which can be thought of as the branched cover of B4 with branch

set a pushed-in Seifert surface �d for Td−1,d. A Euler characteristic computation shows

that b2(Vd) = b2(Fd)+d. Moreover, the Milnor fiber Fd can be isotoped into the boundary

sphere of B while fixing its boundary. �

Next we show there exists a large subgroup of H2(Fd) (all homology groups from

now on have integer coefficients) on which the intersection pairing is hyperbolic. The

intersection form of Fd is determined by the Seifert form θd of the Seifert surface �d.

Moreover, θd also determines the linking form �d on H2(Fd) ∼= H1(�g) ⊗ Z
d−1 for the

embedding of Fd into ∂B = S5; indeed, �d = θd ⊗ 	d−1 [3], where 	k is the k × k matrix

of the form

	k =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −1 0 · · · 0

0 1 −1 · · · 0
...

...
...

...
...

0 · · · 0 1 −1

0 · · · 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Even though the smooth slice genus of a torus knot is equal to its genus, the

same is not true of its topological (locally flat) slice genus as was first demonstrated by

Rudolph [12]. The main tool in the construction is Freedman’s result that an Alexander

polynomial 1 knot is topologically slice. A systematic study of the topological slice

genus of torus knots was conducted by Baader et al. [1]. They construct subsurfaces

of Seifert surfaces whose boundaries are Alexander polynomial 1 knots. We only need

the following property of the Seifert form.

Theorem 3.2 ([1]). H1(�d) contains a subgroup Gd of rank 2rd ∼ d2/4 such that the

restriction of the Seifert form θd to Gd is of the following form, consisting of four rd ×rd
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6 D. Ruberman et al.

blocks:

[
0 I + Ud

Ld ∗

]
,

where Ud and Ld are strictly upper- and lower-triangular matrices, respectively.

Corollary 3.3. The restriction of the Seifert form �d for Fd to the subgroup

Ĝd = Gd ⊗ Z
d−1 of H2(Fd) has the same form as θd in the previous theorem with

the blocks of size r̂d = rd(d − 1). Hence, the restriction of the intersection form of Fd to

Ĝd is equivalent to ⊕̂rdH, where H =
[
0 1

1 0

]
denotes the hyperbolic form. The rank of

Ĝd for large d behaves as d3/4.

Proof. Let (xi)i be the generators of Ĝd corresponding to the first half of the generators

for Gd relative to which the Seifert form is given by the matrix in the above theorem and

let (x′
i)i be the generators corresponding to the second half. It follows from the structure

of the matrix 	d−1 that �d has the same form as θd so it, in particular, vanishes on the

subgroup generated by the (xi)i. Since the intersection form of Fd is given by �d +��
d , it

follows that xi · xj = 0 and xi · x′
i = 1 for all i and j. To make all the other pairings vanish

we inductively change the basis elements (x′
i) by adding to them linear combinations of

xj for j ≤ i and x′
j for j < i. �

4 Spherical Classes

In order to reduce the rank of H2(Fd), we would like to show that some set of generators

for the subgroup Ĝd of H2(Fd) can be represented by embedded spheres in Vd and

that in fact a regular neighborhood of representatives for a pair of generators giving

an H summand as above is diffeomorphic to a punctured S2 × S2 and the spheres

corresponding to different H summands are disjoint. In general the classes in Ĝd may

not be represented by embedded spheres (though they are of course spherical) but by

Wall’s stable diffeomorphism results they are after stabilizing.

Theorem 4.1 (Wall [15, 16]). Let M and N be smooth simply connected closed 4-

manifolds with isomorphic intersection forms. Then the following hold:

(1) for all large enough 
 > 0, the stabilized manifolds M#
(S2 × S2) and

N#
(S2 × S2) are diffeomorphic;
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(2) if the intersection form of M is indefinite, any automorphism of the

intersection form of M#S2 × S2 is induced by a diffeomorphism.

Choose a standard model manifold realizing the intersection form of Vd:

Md = b2 + σ

2
S2 × S2#|σ |CP2 for d > 1 odd,

Md = 8b2 + 11σ

16
S2 × S2#

|σ |
16

K3 for d even,

where b2 = b2(Vd) and σ = σ(Vd). Fix 
 so that Vd and Md become diffeomorphic after


 stabilizations. We can realize this stabilization of Vd in CP
3 by internal connected

sum of Fd with 
 trivial copies of S2 × S2 ⊂ S5 = ∂B (each contained in its own 5-disk);

denote the stabilized Fd and Vd by Fs
d and Vs

d, respectively. We add to Ĝd the stabilization

classes thus obtaining Ĝs
d ≤ H2(V

s
d) with H2(V

s
d)/Ĝs

d
∼= H2(Vd)/Ĝd.

Denote by hd the number of S2 × S2 summands in Md. Note that hd for d odd

grows as d3/3 whereas for d even as 13d3/48, so in any case faster than r̂d ∼ d3/8. The

comparison for small values of d is given in the table below where the data for rd comes

from [1, Table 1].

d 5 6 7 8 9

rd 1 2 4 [5, 6] [6, 9]

r̂d 4 10 24 [35, 42] [48, 72]

hd 9 9 41 41 113

We will assume in what follows that r̂d ≤ hd, which is clearly true for large d.

For those small values of d for which this is not the case we replace Ĝd by one of its

subgroups satisfying the condition.

Proposition 4.2. The restriction of the intersection pairing of Vs
d to Ĝs

d is equivalent

to the sum of hyperbolic forms H. The classes in Ĝs
d can be represented by smoothly

embedded spheres in Vs
d so that for each summand H the corresponding representatives

intersect geometrically once and the spheres corresponding to different H summands

are disjoint.

Proof. The first claim follows from the construction. By the choice of 
, Vs
d =

Vd#
(S2×S2) is diffeomorphic to the stabilizationMs
d = Md#
(S2×S2). We can choose an
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8 D. Ruberman et al.

isomorphism between the intersection pairings of Vs
d and Ms

d that maps the generators

of the subgroup Ĝs into the generators of the subgroup supported by the sum of S2×S2’s.

Since this isomorphism is by Theorem 4.1 induced by a diffeomorphism, the second

claim follows. �

5 Ambient Surgery

In order to reduce the 2nd Betti number of Vs
d we wish to perform ambient surgery

along the spheres guaranteed by Proposition 4.2. Let �i be the spheres representing the

first half of the generators of Ĝs on which the linking pairing �s
d vanishes identically

(so this collection of spheres contains a representative for one of the generators for

each H summand of the restriction of the intersection form to Ĝs). If �i is contained

in Fs
d ⊂ ∂B, then it bounds an embedded disk Di in the 6-ball B and the normal disk

bundle of Di contains an embedded 5-dimensional 3-handle with core Di. The vanishing

of the linking pairing guarantees that these handles may be chosen to be disjoint. Since

we do not have the control over the action of the diffeomorphism in Wall’s stabilization

theorem, the spheres might not be contained in Fd. Our main lemma shows that we can

arrive at the same conclusion.

Lemma 5.1. Let �i ⊂ Vs
d be the 2-spheres described above. Then there exist pairwise

disjoint smoothly embedded 3-disks Di ⊂ CP
3 with Di ∩ Vs

d = �i. Moreover, the disks Di

are not tangent to Vs
d.

Proof. Denote by xi ∈ H2(V
s
d) the homology class of �i. Since this class comes from Fs

d

it may be represented by an immersed sphere �1
i ⊂ Fs

d with transverse double points.

Then �1
i and �i = �0

i are homotopic in Vs
d (since it is simply connected). According to

[8, Theorem 8.3], this homotopy may be replaced by a smooth regular homotopy

ϕi : S
2 × I → Vs

d (i.e., a homotopy of immersions) if the normal bundle of the immersed

sphere �1
i is trivial. Since the class xi has square 0, the latter condition is equivalent

to �1
i having the same number of positive and negative (transverse) double points. This

condition can be satisfied since double points of either sign may be added locally to �1
i

by replacing a disk with the trace of a homotopy of arcs in R
3 obtained by the sequence

of a 1st Reidemeister move, followed by a crossing change and another 1st Reidemeister

move. (See [13, Figure 2] for a picture of this process.) We may further assume that the

regular homotopy is in general position, so it is a sequence of isotopies, finger moves,

and Whitney moves [5, §1.6]. The spheres �t
i = ϕi(S

2 × {t}) for t ∈ I then have transverse

double points with the exception of finitely many points; each of these is either the first
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Fig. 1. Regular homotopy with separated stages and arcs of double points.

point of self-intersection for a finger move or the last point of self-intersection for a

Whitney move, where the sphere is tangent to itself. Let �i be the set of double points of

immersed spheres for the map


i : S
2 × I → Vs

d × I, 
i(x, t) = (ϕi(x, t), t).

Note that �i is the union of properly embedded arcs (with endpoints in �1
i ) and circles;

the preimage of �i in S2 × I consists of two copies of �i, written �′
i � �′′

i .

Further, we may assume that the regular homotopies corresponding to different

spheres are in general position. This implies that for any time t at most two of the

spheres �t
i intersect in the same point and this point is not a double point of one of

the spheres. The intersections of different spheres are transverse except at tangencies

corresponding to finger and Whitney moves. Then �ij, the intersection of the images

of 
i and 
j, is the union of properly embedded arcs (with endpoints in �1
i ∩ �1

j ) and

circles. The preimages �i
ij = 
−1

i (�ij) and �
j
ij = 
−1

j (�ij) ⊂ S2 × I are two copies of �ij.
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10 D. Ruberman et al.

We will push the traces of the homotopies ϕi into CP
3 (more precisely,

into a tubular neighborhood of Vs
d) separating their stages and resolving the

(self-)intersections of the immersed spheres thus obtaining disjoint embedded annuli

Wi connecting �0
i to a push-off of �1

i . Equip the normal bundle ν of Vs
d ⊂ CP

3 with a

Riemannian metric; we may assume that the metric over Fs
d is induced from the metric

on the 6-ball B, which we identify with the ball of radius 2 in R
6. By rescaling the metric

(by a constant factor) we may assume that the unit disk bundle of ν is identified with a

tubular neighborhood of Vs
d; we will use this identification implicitly in what follows.

We fix a trivialization of the pull-back of ν via ϕi. This bundle is the pull-back

of the trivial bundle over S2 × {1}, and there is a particular choice of trivialization over

this sphere given by the vector fields Ei
1, the pull-back of the inner normal to S5 in B6,

and Ei
2, the pull-back of the normal vector field to Fs

d in S5. Choosing a trivialization of

the bundle over S2 × I, we extend (Ei
1,E

i
2) to orthonormal trivializing sections (Ei

1,E
i
2) of

the whole bundle. Let λ : [0, 1] → [0, 1] be a smooth increasing surjective function that is

constant in some neighborhoods of the endpoints. Then ψi : S
2 × I → CP

3, given by

(x, t) �→ tEi
1(ϕi(x, λ(t))),

is an embedding of the image of 
i in CP
3 (with collars added at each end). Denote the

image of ψi by Zi. Note that ϕi factors through Zi, where Zi maps to Vs
d by the projection.

In particular, the pull-back of ν via ϕi factors through its pull-back to Zi. So for any

component γi of �i ⊂ Zi we may identify the pull-back of ν to γi with its pull-back to

either component γ ′
i ⊂ �′

i or γ ′′
i ⊂ �′′

i of its preimage.

In order to get embedded annuli Wi we first need to remove the double points

of immersed spheres. Note that over any corresponding pair of components γ ′
i � γ ′′

i in

�′
i � �′′

i ⊂ S2 × I that map to γi ⊂ �i ⊂ Zi, the two trivializations of the pull-back

of the normal bundle ν to γi determined by (Ei
1,E

i
2) restricted to either γ ′

i or γ ′′
i are

homotopic as any such component is null-homotopic in S2 × I. We now change Ei
1 over

γ ′′
i to agree with the restriction of Ei

1 to γ ′
i rotated by a small angle δ > 0 in the direction

of Ei
2|γ ′

i . Choose small pairwise disjoint compact regular neighborhoods Ki = K′
i � K′′

i

for �′
i � �′′

i and Liij � Ljij for �i
ij � �

j
ij. Using (Ei

1,E
i
2)|K′

i to trivialize the normal bundle

over Ki, we choose the fiberwise universal cover of the corresponding circle bundle

in which Ei
1|K′

i corresponds to the zero and Ei
2|K′

i to a positive angle. Then the lift of

Ei
1|K′′

i may be smoothly spliced with the constant section δ and then pushed down into

the circle bundle to give the new section Ei
1|K′′

i ; then rotating Ei
2|K′′

i appropriately we

obtain an orthonormal frame. In fact, when γi is an arc, we complete γ ′′
i to a circle by
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Fig. 2. Comparison of the two trivializations of the pull-back of ν to γi, given by the sections Ei
1|γ ′

i
(green) and Ei

1|γ ′′
i (red). In the picture, γi is assumed to be an arc and is completed to a circle by

an arc over which the two sections agree.

adding to it an arc in S2 × {1}. Since over S2 × {1} the section Ei
1 is determined as the

inner normal to the boundary of B, we choose the lift of Ei
1|K′′

i over this arc to be zero.

This shows that the double points of �1
i are removed by a small homotopy inside the

ball B.

To remove the intersections between different spheres we just repeat the same

procedure with any �ij, where we assume i < j, by changing the section Ej
1 over Ljij.

Denote the resulting embeddings obtained in this way from ψi by �i : S
2 × I → CP

3; then

one boundary component of Wi = �i(S
2 × I) is �i and the other is the push-in of �1

i ,

which we denote �̃i = �i(S
2 × {1}). Note that the spheres �̃i are essentially contained

in a 5-sphere S concentric with the boundary of the ball B; they only deviate from S in

small neighborhoods of double points and intersection points between different spheres

(more precisely, over the images of K′′
i ∩ �̃i, and over Ljij ∩ �̃j for i < j). But as noted

above, the removal of intersection points in �1
i is realized by a small homotopy. Hence,

the projection of �̃i into S along the normal vector field is a diffeomorphism and we

may and will assume that �̃i is contained in S. Then �̃i bounds a properly immersed

3-disk Di in the ball B′ bounded by S. Assuming Di is in general position, it may have

transverse self-intersections, but pairs of double points in Di of opposite sign can be

canceled using the Whitney trick. Note that the number of double points of either sign

may be increased by adding kinks (analogous to 1st Reidemeister move) into �̃i. Thus,

we may assume that Di is embedded.
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Since �s
d(�1

i ,�
1
j ) = 0 and �̃i is just a push-in of �1

i into a concentric sphere, the

linking number of �̃i and �̃j (where the latter can be considered as a perturbation of the

normal push-off of �1
j ) is trivial. Hence, the intersection number of Di and Dj is zero for

all i �= j, so we may assume that they are geometrically disjoint (by using the Whitney

trick). �

Theorem 5.2. The homology class of Vd in CP
3 is represented by a simply connected

manifold Nd with H2(Nd) ∼= H2(Vd)/Ĝ.

Proof. We first show that the disk Di may be thickened to a 5-dimensional 3-handle hi

in CP
3 with the attaching region contained in Vs

d and whose attaching sphere is equal

to �i. The normal bundle of �i in Vs
d is trivial, so its normal disk bundle in CP

3 admits

a splitting �i × B2 × B2, where the first B2 corresponds to the normal directions in Vs
d,

and the second corresponds to the restriction of the normal bundle ν of Vs
d ⊂ CP

3 to �i.

The latter is trivialized by (E1
i ,E

2
i ) and the normal disk bundle of Di over �i is given by

�i × B2 × B1E2
i . This trivialization extends over the normal bundle of Di in CP

3 since

π2(GL3R) is trivial. The required handle hi is Di × B2 × 0.

Using the handles hi we perform ambient surgery on Vs
d along the �i to obtain

a manifold Nd, homologous to Vs
d and hence to Vd. Clearly, H2(Nd) is isomorphic to

H2(V
s
d)/Ĝs ∼= H2(Vd)/Ĝ since surgery on �i kills also its dual class.

That Nd is simply connected follows since the fundamental group of the

complement of �i is normally generated by its meridian which is trivial in Nd, because

the dual class to �i is also represented by a sphere. �

The final question to address is whether the manifolds Nd are taut in CP
3. We

show below that πk(CP
3,Nd) is trivial for k ≤ 2. In fact, it also follows by general

position arguments that π1(C, ∂C) is trivial, where C is the closed complement of a

tubular neighborhood of Nd.

Proposition 5.3. The pair (CP3,Nd) is 2-connected.

Proof. SinceCP3 andNd are simply connected, we only need to verify that the inclusion

induced homomorphism is surjective on π2 or equivalently on H2. Since Vd is taut, so is

the stabilized manifold Vs
d (by the argument as in the previous sentence). Hence, the

generator x ∈ H2(CP
3) is the image of an element x̃ ∈ H2(V

s
d). Suppose now we do

the surgery on a sphere �i representing the class xi ∈ H2(V
s
d). Let yi ∈ H2(V

s
d) be the
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homology class of the dual sphere to �i. Then xi has trivial algebraic intersection with

the class

x̃′ := x̃ − (̃x · xi)yi.

Since yi is supported by the Milnor fiber Fd ⊂ B, it maps to the trivial class in H2(CP
3),

so the surgery preserves surjectivity. �

In general, the ambient surgery construction may destroy tautness, but based

on a theorem of Quinn [11] as quoted by Freedman [4, Theorem 2.5], it seems that one

can re-embed Nd as a taut submanifold.

Remarks on the proof. The overall strategy used to prove Theorem A is similar to

that in the work of Freedman and Matsumoto, but with an important difference. In

our work and also in [4, 10] an algebraic form on a subspace of the middle homology

is an obstruction to doing ambient surgery. (For us it is essentially the Seifert form,

whereas [4, 10] use a Wall-type form denoted (λ,μ).) However, the technique in [4, 10],

applied in our setting, would be to immerse a 3-disk with boundary on Vd, and use the

vanishing of (λ,μ) to push the singularities out to the boundary 2-spheres; these would,

in principle, be removed by an application of the Whitney trick. Since the Whitney trick

does not apply in dimension 4, we modified the procedure to get embedded 2-spheres

(after stabilization) and then remove the singularities of the 3-handles by the Whitney

trick in dimension 6.

In another direction, the topological version of Theorem A, in which one

demands only that Md have a locally flat topological embedding, follows directly from

the smooth case. On the other hand, the proof in the topological case is easier, as the

classes we want to surger would be represented by embedded spheres (with embedded

duals) in Fd. In this setting, the 5-dimensional 3-handles needed for the ambient

surgeries will lie in the 6-ball.
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