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Plant stomata are emerging as important
mediators of interactions between plants
and herbivores.

Several components in the oral secre-
tions of herbivores, such as enzymes
and phytohormones, that can trigger
herbivory-induced stomatal closure have
been identified.

Recent evidence suggests that herbivory-
induced stomatal changes play important
roles in mediating interactions among
plants, herbivores, pathogens, and the
Stomata play a central role in plant responses to abiotic and biotic stresses.
Existing knowledge regarding the roles of stomata in plant stress is centered
on abiotic stresses and plant–pathogen interactions, but how stomata influence
plant–herbivore interactions remains largely unclear. Here, we summarize the
functions of stomata in plant–insect interactions and highlight recent discoveries
of how herbivores manipulate plant stomata. Because stomata are linked to
interrelated physiological processes in plants, herbivory-induced changes in
stomatal dynamics might have cellular, organismic, and/or even community-
level impacts. We summarize our current understanding of how stomatamediate
plant responses to herbivory and environmental stimuli, propose how herbivores
may influence these responses, and identify key knowledge gaps in plant–herbivore
interactions.
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State of the art: stomata in abiotic and biotic interactions
Stomata are some of the most important structures in land plants. They are microscopic gates
formed between two guard cells that create a passage for the exchange of carbon dioxide
(CO2) and water vapor (H2O) between plants and the atmosphere [1]. The stomatal aperture
is adjusted by shape changes in guard cells and sometimes subsidiary cells (supporting
surrounding cells of guard cells) after the plant senses environmental cues, such as humidity,
CO2 concentration, and light. Owing to their ability to control gas exchange, stomata are essential
regulators of photosynthesis [2] and transpiration. The detailed signaling pathways – including
hormonal regulations involved in stomatal sensing and responses to environmental cues – are
well summarized in a previous review [3].

In addition to their roles in plant responses to the abiotic environment, stomata also function in
biotic interactions [4]. Many microorganisms exploit stomata to gain access to plant nutrients
[5–8]. Pathogens have evolved various strategies to manipulate stomata and allow for easier
invasion. The pathogenic bacterium Pseudomonas syringae produces a toxin, coronatine, that
prevents stomatal closure in a COI-dependent manner (COI, coronatine insensitive 1, a subunit
of an E3 ubiquitin ligase) [6]. Xanthomonas campestris also produces compounds that manipu-
late plant stomata [8], and a fungal pathogen of almond and peach, Fusicoccum amygdali, is well
known for its production of fusicoccin, a toxin that causes stomatal opening by activating proton
pumps in guard cells [9]. Another fungal pathogen, Plasmopara viticola, exhibits a similar strategy
on plants of the family Vitaceae by inducing stomatal opening to facilitate invasion [7]. Oxalic acid
produced bymany pathogenic fungi is associatedwith stomatal opening andwilting symptoms in
infected plants [5]. Different mechanisms have also evolved in plants to induce stomatal closure
as a defense against pathogen invasion. To prevent the entry of pathogenic endophytes,
Arabidopsis thaliana rapidly closes its stomata after perceiving bacterial molecules via the FLS2
(flagellin sensing 2) receptor [6]. Application of either of two elicitors associated with fungal
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invasion, oligogalacturonic acid or chitosan, induces stomatal closure in tomato (Solanum
lycopersicum) and Asiatic dayflower (Commelina communis) [10], and a bacterial phytotoxin,
syringomycin, induces stomatal closure in broad bean (Vicia faba) [11]. The phytohormone
salicylic acid (SA), which is a central regulator of plant antimicrobial defenses, is essential for
stomatal closure upon pathogen attack [12]. These findings highlight the adaptive importance
of stomata in interactions between plants and pathogens, leading to the evolution of mechanisms
that regulate the stomatal aperture in both plants and pathogens (for a detailed review see [13]).
Although the responses of stomata to microorganisms are well studied, our knowledge of the
involvement of stomata in interactions between plants and insect herbivores remains extremely
limited.

Stomatal closure is known to be a typical response of plants under herbivory. Herbivory can lead
to water loss by creating open wounds that increase transpiration (chewing herbivores), removal
of liquid from vascular tissues (piercing-sucking herbivores), or damaging root systems [14–16].
Water limitation triggers stomatal closure via the accumulation of the drought-associated
phytohormone abscisic acid (ABA) [17]. Physical damage also induces the accumulation of the
phytohormone jasmonic acid (JA), that triggers stomatal closure, but it is also observed that
methyl jasmonate, other jasmonates, and coronatine (JA mimic) can trigger stomatal opening
instead of closure [18]. While the link between stomata and herbivores could be incidental due
to responses induced by herbivory, recent discoveries have suggested a key role for stomata
in plant–herbivore interactions. Here, we propose that stomata function in specific interactions
between plants and insects.

A few studies indicate direct interactions between herbivores and stomata. The authors of [19]
found that phytophagous mites of the genus Raoiella feed on leaf mesophyll by inserting their
stylets into stomata, avoiding penetrating the leaf cuticle and epidermis. Spruce aphids
(Elatobium abietinum) also feed exclusively through the stomata of their host plants [20], and
lace bugs (Stephanitis pyrioides and Stephanitis typica) feed similarly [21,22]. Besides direct
herbivory via stomata, the gall midge (Cystiphora sonchi) lays its eggs in the stomata of host
plants [23].

Beyond direct interactions between herbivores and stomata, there is evidence suggesting that
herbivory indirectly affects stomata in nearby undamaged tissues (Table 1). Mechanical damage
to leaves in soybean reduces stomatal conductance, but feeding by Japanese beetles (Popillia
japonica) does not affect this conductance [24]. Feeding by caterpillars such as Spodoptera
littoralis and Manduca sexta reduces stomatal conductance in cotton (Gossypium L) and
tobacco (Nicotiana attenuata), respectively [25,26]. Damage by phytophagous mites or leaf
miners causes systemic stomatal closure in plants [25,27,28], but the mechanisms mediating
stomatal closure upon herbivory have not been reported. Due to the lack of comparison between
mechanical wounding and herbivore-inflicted damage, it is unclear whether stomatal closure is a
generic response to wounding or triggered by specific herbivore-associated molecular patterns
(HAMPs).

Stomata-mediated changes in temperature and water availability upon herbivory
Stomatal closure can be potentially beneficial to insect herbivores by increasing the temperature
and water content of plant tissues. Leaf damage often leads to a higher rate of transpiration
through wounds [24]. Inducing stomatal closure to maintain leaf water content after damage
would be beneficial to herbivores [29,30]. Besides herbivores that consume leaf tissues, feeding
by piercing-sucking insects, such as aphids, induces stomatal closure, which in turn decreases
transpiration and maintains leaf water potential. These changes lead to longer feeding times,
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Table 1. Effect of herbivory on plant stomata and photosynthesis

Damage type Herbivore species Plant family Plant species Photosynthesis Stomatal response Refs

Artificial naa Fabaceae Glycine max cv. Steele Decrease na [106]

Artificial na Fabaceae Medicago sativa
Medicago scutellate
Medicago truncatula
Melilotus officinalis
Trifolium hybridum
Trifolium pratense

No effect No effect [124]

Artificial na Fagaceae Quercus rubra Decrease Closure [125]

Artificial na Poaceae Lolium multiflorum Decrease Closure [107]

Artificial na Poaceae Agropyron smithii Decrease na [108]

Artificial na Poaceae Bouteloua gracilis Decrease/increase na [109]

Artificial na Rosaceae Malus domestica cv. Holiday Decrease na [105]

Artificial na Sapindaceae Acer saccharum Decrease Closure [125]

Chewing Helicoverpa zea Fabaceae Glycine max cv. Pioneer 93B15 No effect na [24]

Chewing Helicoverpa zea Fabaceae Glycine max No effect Closure [54]

Chewing Helicoverpa zea Fabaceae Solanum lycopersicum cv. Better Boy No effect Closure [54]

Chewing Lymantrria dispar Fagaceae Quercus robur Decrease Closure [126]

Chewing Manduca sexta Solanaceae Solanum lycopersicum Decrease Decrease [127]

Chewing Manduca sexta Solanaceae Nicotiana attenuata Decrease No effect [128]

Chewing Manduca sexta Solanaceae Nicotiana attenuata Decrease Closure [26]

Chewing Manduca sexta Solanaceae Nicotiana attenuata Decrease Closure [74]

Chewing Operophtera brumata Fabaceae Quercus robur Decrease Closure [73]

Chewing Phyllonorycter blancardella Rosaceae Malus communis na Closure [28]

Chewing Pieris brassicae Brassicaceae Brassica nigra No effect Closure [129]

Chewing Popillia japonica Fabaceae Glycine max cv. Pioneer 93B15 No effect No effect [24]

Chewing Spodoptera littoralis Malvaceae Gossypium hirsutum No effect closure [25]

Chewing Trichoplusia ni Apiaceae Pastinaca satica Decrease na [110]

Piercing sucking Stephanitis pyrioides Ericaceae Rhododendron mucronatum Decrease closure [21]

Piercing sucking Tetranychus urticae Malvaceae Gossypium hirsutum No effect closure [25]

Piercing sucking Tetranychus urticae Rosaceae Fragaria × ananassa cv. Tufts na closure [27]

Piercing sucking Tetranychus urticae Rosaceae Fragaria × ananassa cv. Tufts Decrease closure [130]

Piercing sucking Tupiocoris notatus Solanaceae Nicotiana attenuata Increase No effect [128]

ana, the response was not measured in the selected reference.
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and increased aphid abundance [16]. Stomatal closure also regulates the leaf microclimate.
Transpiration is one of the main processes that regulates plant temperature; closure of stomata
reduces transpiration and elevates leaf temperature [31,32], which could benefit herbivores
directly by accelerating their growth [33], shortening vulnerable life stages [34], and reducing
the risk of predation from size-limited predators [35] while decreasing spatial overlap between
predator and prey [36]. It is important to note that most of these arguments have some support
from the literature but remain speculative and are novel hypotheses to be tested.

Stomatal control of plant volatile emissions
Stomata not only control the flow of CO2 and H2O but also the release of plant volatile organic
compounds (VOCs) [37]. Plant VOCs mediate multiple interactions between plants and their
Trends in Plant Science, March 2022, Vol. 27, No. 3 289
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environment. Enhanced volatile emissions often occur in response to abiotic stress, including
drought, heat, and ozone [38]. Biotic stresses such as pathogen infection or herbivory also
induce plant VOC emission [39–41]. Herbivore-induced plant volatiles (HIPVs) have received
significant research attention due to their prevalence in plants and potential value in agricultural
pest management. Many HIPVs attract natural enemies of herbivores [40,42], prime antiherbivore
defense [43,44], and function as informational chemicals for plant–plant communication [45].

The rate of VOC release is controlled by several physiological and physicochemical processes,
such as the rate of VOC production [46], the activity of associated enzymes in plants [47], the
volatility of the compounds [48], their ability to diffuse [49], and stomatal conductance [49,50].
Stomata can limit VOC emission if the decrease in stomatal conductance (g) is larger than the
increase in the VOC diffusion gradient ( P). The speed of changes in VOC concentration in the
intercellular air space controls changes in P. Therefore, whether stomatal conductance can
control VOC emissions depends largely on the kinetics of liquid and gaseous concentrations of
specific VOCs. The changing speed of P for each VOC depends on its gas–aqueous phase
partition coefficient, the Henry’s Law Constant (H). VOCs with low H tend to be more soluble in
water, and a larger increase in VOC liquid pool size is needed for an increase in VOC gaseous
pool size. These VOCs have a slower change in speed for P. Stomata can therefore exert better
control over the emission rate of VOCs with low H (for a detailed review see [37]). VOCs that have
low H, such as alcohols [e.g., (Z)-3-hexenol [51], 1.6 Pa m3/mol], carbonyls [e.g., (Z)-3-hexenyl
acetate [51], 0.036 Pa m3/mol; methyl salicylate [51], 0.38 Pa m3/mol], aldehydes, and oxygen-
ated monoterpenes, are more easily regulated by stomata (for a summary of H see [52]). VOCs
with high H tend to partition more into the gaseous phase. A small increase in VOC liquid pool
size will lead to large increases in VOC gaseous pool size and therefore a large rise in P.
Hence, stomatal conductance has less influence over the release of these VOCs. VOCs with
highH, such as monoterpenes (e.g., β-phellandrene [53], 5670 Pa m3/mol), cannot be controlled
effectively by stomata. Interestingly, althoughmany HIPVswith either high or lowH are both found
to be involved in plant direct/indirect defenses and plant–plant communications, some of
the most commonly emitted HIPVs, such as (Z)-3-hexenol, (Z)-3-hexenyl acetate, and methyl
salicylate, have a low H [40,42].

The link between the emission rate of the defense-related VOCs and stomatal conductance is an
important aspect that has been virtually overlooked. A recent study by our group on a polyphagous
caterpillar,Helicoverpa zea, revealed a role for salivary glucose oxidase (GOX) in triggering stomatal
closure and inhibiting the emissions of (Z)-3-hexenol, (Z)-3-hexenyl acetate, and (Z)-jasmone from
plants (VOCs collected from the entire plant) [54]. Although the mechanism underlying inhibition of
these volatiles remains hypothetical, the fact that GOX selectively inhibits the emission of HIPVs
with lowH suggests the likely involvement of stomatal closure. Stomatal closure can directly inhibit
the emission of HIPVs with low H for a short period [50], which might benefit herbivores by
preventing the attraction of natural enemies during feeding [55]. Close associations between
photosynthetic activity and VOC production also suggest that lower stomatal conductance can
indirectly inhibit the synthesis of plant VOCs [37].

We hypothesize that the ability to manipulate plant stomata and VOC emission might be an
ecologically important trait of insect herbivores. As mentioned earlier, plant VOCs serve myriad
functions, including attracting insect natural enemies and triggering plant defense signaling.
Feeding is a particularly vulnerable time for herbivores [56]; short-term inhibition of HIPV emission
during herbivory reduces the likelihood of detection by natural enemies and subsequently
reduces the risk of predation or parasitism [57,58]. Inhibition of HIPV emission also reduces defense
elicitation within individual plants [59] and defense priming of neighboring plants [43,59]. Direct
290 Trends in Plant Science, March 2022, Vol. 27, No. 3
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evidence, however, remains limited, and future studies should investigate how common herbivory-
induced stomatal closure is and whether it can reduce HIPV emission or even the perception of
HIPVs by plants.

Stomata in competitive interactions between herbivores and plant pathogens
Herbivore-induced stomatal closure also potentially influences the competitive relationships
between insects and microorganisms. Many pathogens invade plant tissue through stomata
[4]. Although it has been shown that some insect herbivores introduce nonpathogenic microbes
which elicit SA defense responses and suppress JA defense responses of plants [60], infection
by a pathogen can lead to a loss of valuable plant resources for herbivores [61]. It is therefore
possible that insect herbivores evolved to reduce plant accessibility for plant pathogens. Salivary
GOX is commonly found in many insect herbivores [62–65] and was recently reported to trigger
stomatal closure [54]. The GOX in honeybees (Apis mellifera) is known to act as a preservative
that prevents microbial contamination via its H2O2-producing activity [66], similar to many fungi
that produce GOX to exclude microbial competitors [67]. Caterpillar salivary GOX may serve
similar functions either by directly inhibiting microbial growth by producing H2O2 and/or inducing
stomatal closure to prevent further infection by plant pathogens [54,68,69]. In contrast to
chewing herbivores, attack by piercing-sucking insects, such as aphids, usually induces SA
defense responses in plants similar to invasion by some microbes [70,71]. It is therefore likely
that the benefit of preventing microbial invasion depends on insect feeding guilds and microbial
types. Although there is evidence suggesting a role for stomatal closure in mediating herbivore–
microorganism interactions, we speculate that, in some cases, herbivores might also keep the
stomata open to facilitate pathogen infection due to the antagonistic nature of SA defense and
JA defense [72].

Evidence that insects manipulate plant stomata
There is growing evidence that insect herbivores manipulate stomata (Figure 1). Some studies
have shown that either perception of herbivory by plants or manipulation by herbivores leads
to altered stomatal responses compared with artificial wounding. Examples of this include
interactions between the winter moth larvae (Operophtera brumata) and pedunculate oak
(Quercus robur) and tobacco hornworm (M. sexta) and tobacco (N. attenuata) [73,74]. The oral
secretions of Pieris brassicae and Spodoptera littoralis larvae both attenuate wound-induced
leaf water loss, indicating further stomatal closure compared with mechanical wounding alone
[75]. Feeding by leaf miner moth larvae (Phyllonorycter blancardella) increases water use
efficiency of leaves by 200% compared with intact leaves. The presence of larvae in mined leaves
causes more stomatal closure than in mined leaves without larvae, suggesting active manipula-
tion of stomata [76]. These studies suggest that HAMPs induce stomatal closure, but the specific
HAMPs involved and the physiological mechanisms that drive closure remain unknown. A study
that investigated the function of an insect salivary protein has provided insights into one potential
mechanism underlying stomatal closure elicited by HAMPs. Lin et al. [54] identified a salivary GOX
of H. zea larvae that causes stomatal closure in tomato and soybean and determined the key role
of H2O2-producing GOX in inhibition of HIPV emissions (for the effect of exogenous H2O2 on
stomatal closure see [77,78]). It is noteworthy, however, that GOX-induced stomatal closure, in
this case, was observed only in tomato and soybean. Stomatal conductance in cotton was not
affected by GOX.

There is indirect evidence suggesting the broad-scale occurrence of herbivory-induced stomatal
closure. For example, GOX activity is commonly found in many caterpillar species (Lepidoptera),
and there is a correlation between higher GOX activity and a broader host range [62]. Generalist
caterpillars are commonly known to have higher mobility, which exposes them to higher
Trends in Plant Science, March 2022, Vol. 27, No. 3 291
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Figure 1. Potential responses of plant stomata to herbivore-associated molecular patterns (HAMPs). Oral
secretion (OS) of insect herbivores consists of regurgitant (from the alimentary canal, green texts) and saliva (from salivary
gland, red texts). OS components on the left (e.g., ABA, JA, SA, BA, GOX, GHD, apyrase, PLC, microbes) potentially trigger
stomatal closure. Phytohormones such as ABA and SA may lead to stomatal closures. Enzymes may produce signaling
molecules that trigger stomatal closure, such as H2O2 generated by GOX and IP3 generated by PLC. Enzymes may deplete
molecules that facilitate stomatal opening. For example, GOX and GHD remove glucose, apyrase removes ATP. Additionally,
bacteria from the regurgitant of herbivores may trigger stomatal closure. OS components on the right (e.g., CK and catalase)
potentially trigger stomatal opening. Phytohormone CK facilitates stomatal opening. Enzymes (e.g., catalase) may remove
molecules (e.g., ROS) that trigger stomatal closure. Abbreviations: A–, anion; ABA, abscisic acid; BA, benzoic acid; CK, cy-
tokinin; GHD, glucose dehydrogenase; GOX, glucose oxidase; IP3, inositol trisphosphate; JA, jasmonic acid; PLC, phospho-
lipase C; ROS, reactive oxygen species; SA, salicylic acid.
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predation risk [55,56]. Therefore, species with a broader host range likely benefit from higher GOX
activity that induces stomatal closure and inhibits the emission of HIPVs that attract natural
enemies. For example, Heliothis virescens larvae that have salivary GOX were reported to reduce
HIPV emissions in their host plant Nicotiana tabacum [79]. Studies of other generalist caterpillars
also revealed their ability to regulate the emission of HIPVs via chemical modulation of plant VOCs
[80]. The links between broader host range and the ability to modulate HIPVs indicate that
inhibiting HIPV emission might be a common strategy of generalist insect herbivores, but the
frequency of occurrence and mechanisms underlying the strategy remain to be investigated.

Damage by specialist herbivores (e.g., M. sexta) also triggers stomatal closure and potentially
reduces HIPVs that attract natural enemies. However, evidence showing the ability of specialists
to trigger stomatal closure remains scarce and its ecological roles remain unclear. In addition to
potential inhibition of HIPVs, stomatal closure has been linked to a reduced translocation of
secondary metabolites such as nicotine, which is synthesized in roots and transported to leaves
in tobacco (N. tabacum) [81]. Salivary GOX in H. zea larvae and oral secretions inM. sexta larvae
have been reported to reduce both the stomatal aperture (or conductance) and the concentration
of nicotine in plant leaves [54,74,82,83]. One possible explanation for this correlation is reduced
water transport that inhibits nicotine translocation from roots to leaves via the xylem.
292 Trends in Plant Science, March 2022, Vol. 27, No. 3
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It is noteworthy that most of the evidence showing the ability of herbivores to manipulate plant
stomata focuses on local (e.g., leaf) responses [54,73,75,76]. Only two studies showed evidence
for systemic stomatal closure [74] and systemic reduction in specific HIPV emissions [54]. It
would be an important future goal to distinguish between local and systemic responses of
stomata to herbivory because the ecological impacts of HAMP-induced stomatal changes may
depend largely on the response scale. For example, local stomatal closure may inhibit VOC
release, but if stomatal closure remains local, plants may still emit enough HIPVs to attract natural
enemies at a whole-plant level. We speculate that plants may attenuate the impacts of HAMP-
induced stomatal closure by eliciting specific systemic responses. We also hypothesize that
specific behaviors of insect herbivores may involve maximizing the effect of HAMP-induced
stomatal closure. In the case of H. zea, larvae tend to create holes throughout host plants,
supposedlymaximizing the amount and distribution of oral secretions [54]. Most of these hypotheses,
however, remain to be tested.

Many compounds in insect oral secretions are potential modulators of plant stomatal dynamics
(Figure 1 and Table 2). Phytohormones such as ABA, SA, and JA function in guard-cell signaling
[84], and all three phytohormones have been detected in the saliva of Spodoptera frugiperda
caterpillars [85]. The presence of phytohormones in insect saliva is not limited to the order of
Lepidoptera, they are also present in the orders Hemiptera [86], Hymenoptera [87], and Diptera
[88], suggesting that the ability to manipulate plant stomata might be widespread. Phosphatidic
acid and/or inositol 1,4,5-trisphosphate produced by phospholipase C (PLC), which is also found
in caterpillar saliva [89], is associated with the inhibition of stomatal opening by ABA [90,91].
Additionally, extracellular ATP (eATP), found in the apoplasts of plant cells, modulates stomatal
opening in a concentration-dependent manner in which low concentrations (5–15 μM) induce
stomatal opening, whereas higher concentrations (150–250 μM) induce closure [92,93].
Apyrases regulate levels of eATP, and application of exogenous apyrase can prevent stomatal
opening [92]. ATPases and apyrases are also found in herbivore saliva and thus could help to
regulate stomatal opening [94]. Glucose dehydrogenase is commonly found in the saliva of insect
herbivores [63,65,95–101] and it oxidizes and reduces the concentration of glucose, an impor-
tant carbon source that facilitates stomatal opening [102]. Other enzymes that potentially affect
stomatal behavior are summarized in Table 2. Although the examples of HAMP-induced stomatal
closure remain scarce, we propose that modulation of stomatal behavior by herbivores is much
more common than previously recognized. In addition to being a potential adaptive phenotype
of herbivores, the possibility that HAMP-induced stomatal closure is an adaptive response of
plants should not be disregarded. Closure of stomata could be a response to alleviate the
damage by herbivory (e.g., preventing water loss) or even serve as a signal itself that induces
antiherbivore defenses by limiting photosynthesis [103]. However, evidence supporting these
speculations remains scarce and further investigation is needed to explore the adaptive roles of
HAMP-induced stomatal closure.

Stomata as modulators of plant growth and defense
Evidence of direct regulation of stomatal behavior by herbivores remains scarce, but many
studies have reported that herbivory influences photosynthesis (Table 1), in part by modulating
stomatal responses. Herbivory can inhibit photosynthesis directly through the removal of photo-
synthetic tissues and indirectly by disturbing vasculature and inducing defense responses [104].
Artificial simulations of chewing damage cause a rapid reduction in photosynthetic activity
[105–109]. Feeding by Trichloplusia ni caterpillars not only reduces photosynthetic activity by
removing leaf tissue but also reduces photosynthesis efficiency in nearby tissues [110]. Feeding
bywinter moth larvae (O. brumata) leads to a significant reduction in photosynthesis in pedunculate
oak (Quercus robur) comparedwith undamaged plants andmechanically wounded plants: indirect
Trends in Plant Science, March 2022, Vol. 27, No. 3 293
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Table 2. Components in herbivore oral secretion that potentially modulate plant stomata dynamics

Component in oral secretions Herbivore type Herbivore species Potential impact on stomata Refs

Amylase Piercing sucking Empoasca fabae Starch degradation by amylase is essential for
stomatal opening

[131–133]

Chewing Trichoplusia ni

Apyrase/atpase Piercing sucking Lygus lineolaris Regulate extracellular ATP and prevent stomatal
opening

[64,92,94,134,135]

Chewing Helicoverpa zea

Chewing Spodoptera exigua

Chewing Bombyx mori

Ascorbate oxidase Piercing sucking Diuraphis noxia Overexpressing ascorbate oxidase reduces
stomatal conductance

[136,137]

Piercing sucking Rhopalosiphum padi

Beta-glucanase Piercing sucking Empoasca fabae Beta-1-3-glucanase degrades callose and inhibits
opening or closing of stomata

[101,132,138]

Chewing Spodoptera frugiperda

Calreticulin Chewing Bombyx mori Calreticulin interacts with ABA signaling and Ca2+

which are important regulators of the stomatal
response

[134,135,139]

Chewing Spodoptera exigua

Catalase Piercing sucking Bemisia tabaci Catalase prevents stomatal closure [96,132,133,136,
140,141]

Piercing sucking Diuraphis noxia

Piercing sucking Empoasca fabae

Piercing sucking Rhopalosiphum padi

Chewing Trichoplusia ni

Chewing Vanessa cardui

Glucose dehydrogenase Piercing sucking Acyrthosiphon pisum Deplete glucose, facilitating stomatal opening and
slowing down of dawn stomatal opening

[63,65,95–102,142]

Piercing sucking Bemisia tabaci

Piercing sucking Diaphorina citri

Piercing sucking Frankliniella occidentalis

Piercing sucking Lygus hesperus

Piercing sucking Megoura viciae

Piercing sucking Metopolophium dirhodum

Piercing sucking Myzus persicae

Piercing sucking Sitobion avenae

Chewing Spodoptera frugiperda

Glucose oxidase Piercing sucking Frankliniella occidentalis (i). The enzyme produces H2O2 that may lead to
stomatal closure
(ii). Acidification by gluconic acid may lead to
stomatal closure
(iii). Deplete glucose that facilitates stomatal
opening and slows down stomatal opening at
dawn

[54,63–65,75,89,
102,142–148]

Chewing Helicoverpa armigera

Chewing Helicoverpa zea

Piercing sucking Lygus lineolaris

Piercing sucking Myzus persicae

Chewing Ostrinia nubilalis

Chewing Spodo ptera exigua

Chewing Spodoptera frugiperda

Chewing Spodoptera littoralis

Glutathione peroxidase Piercing sucking Acyrthosiphon pisum Overexpression of glutathione peroxidase reduces
transpiration

[95,133,149]

Chewing Trichoplusia ni

Glutathione-S-transferase Chewing Bombyx mori Antioxidant enzyme that potentially affects
stomatal responses

[135,150]

HARP1 Chewing Helicoverpa armigera HARP1 inhibits JA-regulated responses, potentially
interfering with JA-regulated stomatal closure

[151,152]

Trends in Plant Science
OPEN ACCESS

294 Trends in Plant Science, March 2022, Vol. 27, No. 3

CellPress logo


Table 2. (continued)

Component in oral secretions Herbivore type Herbivore species Potential impact on stomata Refs

Malate dehydrogenase Piercing sucking Nephotettix cincticeps Malate dehydrogenase oxidizes malate which is
essential for stomatal opening

[153,154]

NADH dehydrogenase Piercing sucking Myzus persicae Cytosolic NADH promotes malate formation and
stomatal opening

[65,155]

Peroxidase Piercing sucking Diuraphis noxia Inhibition of peroxidase was linked to inhibition of
stomatal closure

[101,136,156,157]

Piercing sucking Helopeltis theivora

Piercing sucking Rhopalosiphum padi

Chewing Spodoptera frugiperda

Phospholipase C Chewing Spodoptera frugiperda Inositol 1,4,5-trisphosphate produced by
phospholipase C is associated with the inhibition of
stomatal opening

[89,91]

Polygalacturonase Piercing sucking Lygus Hesperus Overexpression of polygalacturonase accelerates
stomata opening

[64,98,158]

Piercing sucking Lygus lineolaris

Cytokinin Galling Pachypsylla celtidis High activity of cytokinin increases stomatal
openness

[159–161]

Leaf mining Phyllonorycter blancardella

Piercing sucking Tupiocoris notatus

Abscisic acid Chewing Spodoptera frugiperda ABA is a main regulator of stomatal closure [85,161,162]

Galling Pachypsylla celtidis

Benzoic acid Chewing Spodoptera frugiperda Application of benzoic acid leads to lower stomatal
conductance

[85,163]

Jasmonic acid Chewing Spodoptera frugiperda Jasmonic acid regulates stomatal closure [85,151]

Salicylic acid Chewing Spodoptera frugiperda Salicylic acid regulates stomatal closure [85,141]

Pseudomonas sp. Chewing Leptinotarsa decemlineata Perception of Pseudomonas syringae can lead to
rapid stomatal closure

[6,60]
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inhibition of photosynthesis (40%) was estimated to be higher than the direct effect of leaf area loss
(6%) [73]. A similar reduction in photosynthesis upon herbivory was also reported in theM. sexta–
N. attenuata system [74].

Stomatal closure is likely one of the main causes of herbivore-induced photosynthetic inhibition
[26,73,74] and might be part of the antiherbivore defense signaling in plants. Although photosyn-
thesis provides essential molecules for the synthesis of defense-related compounds [111–113],
inhibition of growth and photosynthesis usually leads to enhancement in defense [114]. The
trade-offs between growth and defense have long been recognized as the result of reallocating
resources [115], but recent evidence has suggested that JA-associated signaling networks
play a major part in determining this trade-off [116]. Part of the defense signaling network likely
involves sensing reductions in carbon assimilation. It was found that higher levels of leaf damage
led to enhanced defense responses in tobacco, and it was proposed that plants detect the level
of damage by sensing the level of carbon source limitation [103]. Whether herbivory-induced
stomatal closure that indirectly reduces carbon assimilation is one of the damage signals/
responses that regulates the growth–defense balance requires further investigation.

In contrast to the rapid reduction in stomatal aperture and photosynthesis following herbivory,
increases in photosynthetic activity per unit leaf area have also been reported after an attack by
chewing insect herbivores [117]. It is noteworthy that the context of each study heavily influences
the conclusions of how herbivory affects photosynthesis as many studies have taken measure-
ments of remaining undamaged tissues or regenerated tissue several days after initial attacks
Trends in Plant Science, March 2022, Vol. 27, No. 3 295
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Outstanding questions
Plant stomatal responses affect
photosynthesis and are closely linked
to plant growth and defense.
Herbivory can alter stomatal apertures
and responses to environmental
stimuli, but how stomatal responses
are incorporated into growth-defense
systems in plants is unclear. The adap-
tive roles of changes in stomatal
behavior following herbivory are also
unclear.

Although the ability of herbivores to
actively modulate plant stomata has
been demonstrated in some cases,
the frequency of this phenomenon,
and its ecological and evolutionary
implications, remain unknown.

Herbivory-induced stomatal closure
may prevent plant pathogens from
invading plant tissues. However, the
roles of stomata in competitive interac-
tions between herbivores and plant
pathogens have been understudied.

Increasing evidence shows that
stomata modulate the release of plant
[117] – which is distinct from the studies described in the previous section. Increased photosyn-
thetic activity is likely caused by an increased demand for photosynthate in sink tissues due to
direct or indirect inhibition of carbon assimilation (limited source tissue) by herbivory and is associ-
atedwith plant tolerance and recovery from herbivory [104]. Additionally, increased photosynthesis
postherbivory may be a passive response of plants to higher systemic availability of nutrients that
limit photosynthesis, such as nitrogen [118], after defoliation, or to improved water status after
tissue loss that causes stomata to open and leads to greater photosynthetic activity [119].
Upregulation of photosynthesis could also be an adaptive response to compensate for fitness
costs incurred by herbivory and is linked to the plant tolerance of defoliation [120]. The close asso-
ciations between stomatal dynamics, photosynthesis, defense, and tolerance against herbivory
suggest the potential functions for stomata in regulating multiple responses to herbivory. So far,
the underlying physiological mechanisms that connect these processes remain unclear.

Concluding remarks and future directions
As sessile organisms, plants constantly face multiple environmental stresses. While many studies
have shown the roles of stomata in plant responses tomany environmental stresses, there is still a
surprisingly limited understanding of the role of stomata in plant–insect interactions. Wound-
induced stomatal closure is a commonly observed response in plants and is likely a passive
response due to water loss or other associated signaling events, such as the accumulation of
JA or SA. It is, however, also emerging that herbivores can directly and/or indirectly modulate
plant stomata, and we hypothesize that HAMP-induced stomatal closure serves important
ecological functions. Manipulating stomatal closure could have profound and robust benefits
for herbivores (Figure 2): (i) reduced water loss of plant tissues, which maintains levels of this
TrendsTrends inin PlantPlant ScienceScience

Figure 2. Potential ecological impacts of herbivory-induced stomatal closure. Herbivory-induced stomatal closure
may enhance water content of plant tissues and increase its nutritional quality to herbivores. Reduced transpiration by
stomatal closure also increases temperature, facilitating insect growth. Stomatal closure reduces feeding and oviposition
sites for herbivores that directly interact with stomata. Stomatal closure prevents invasion of plant pathogens and inhibits
emission of defense-related volatile organic compounds (VOCs) by plants, subsequently reducing negative species
interactions (e.g., competition, parasitism, and predation) to herbivores. Positive signs represent beneficial impacts on herbivores
Negative signs represent detrimental impacts on herbivores. Abbreviation: HIPVs, herbivore-induced plant volatiles.
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airborne defenses: stomatal closure
inhibits the release and uptake of
plant volatiles and potentially affects
plant–herbivore and plant–plant in-
teractions. However, the signaling/
biophysical mechanisms and ecologi-
cal impacts of stomatal behavior in rela-
tion to plant volatile release remain to be
investigated.

Herbivory-induced stomatal changes
potentially influence the responses of
plants to other environmental stresses,
such as drought, heat stress, and air
pollution. Herbivory may disrupt the
plant's ability to protect itself against
these stresses. Understanding plant
responses to varying combinations of
these stresses will be especially impor-
tant in the face of climate change.

Herbivory-induced stomatal changes
have been shown in above-ground
herbivory. How below-ground herbiv-
ory influences plant stomatal response
remains poorly understood. Root
damages influence water availability to
plants, which affects both below- and
above-ground interactions. Under-
standing how below-ground herbivory
influences stomatal response may
provide insight into the different eco-
logical impacts between local and
.

Image of Figure 2
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systemic stomatal responses induced
by herbivores.

The molecular and physiological
mechanisms leading to HAMP-induced
stomatal changes remain largely un-
known. Plant mutants with impaired
phytohormones (e.g., JA, ABA, SA,
ethylene), synthesis/sensing, or other
signaling components (e.g., H2O2,
eATP) may serve as excellent tools to
understand the proximate reasons for
HAMP-induced stomatal changes.
essential nutrient [29,30]; (ii) elevated leaf temperature, which accelerates the growth of poikilo-
thermic herbivores [33]; (iii) reduced competition by inhibiting infection by certain phytopatho-
genic bacteria; (iv) reduced release of herbivore-induced plant volatiles [121] that would allow
natural enemies to locate their herbivore prey/host; and (v) reduced potential for VOC/green
leaf volatiles (GLV)-mediated inter/intra-plant signaling/communication [39,122,123]. Although
most of these hypotheses remain to be tested they generate a wide range of questions underlying
a novel aspect of plant–insect interactions (see Outstanding questions). Stomatal response to
herbivory is an underappreciated aspect of plant–insect interactions. Due to the links between
stomata and multiple aspects of plant physiology, any manipulations, or changes of stomata due
to herbivory, can have molecular, individual, or even community-level impacts. Understanding
stomatal responses to herbivory and how herbivores manipulate stomata is an important step
towards more comprehensive knowledge of the functions of stomata in plants and their interac-
tions with the environment, which, in turn, could enable the development of pest control and
yield optimization strategies. Unveiling these interactions will advance our understanding of
stomata-mediated responses that affect plant performance under a changing environment,
which is especially important as climate change expands pest ranges and places additional
stresses on the plants upon which we rely for food, materials, and renewable energy.
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