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Abstract Starting with an N body system describing a Bose gas at finite temperatures, we
derive a new model that contains a Gross–Pitaevskii equation of motion for the condensate
wave function and a quantum Boltzmann equation for the excitations. The model is valid
for a wide range of finite temperatures and approaches the standard ZNG model when the
temperature of the system T is close to the Bose–Einstein condensate (BEC) transition
temperature Tc.

1 Introduction

The realization of Bose–Einstein condensation (BEC) in trapped atomic vapors of 23Na [5],
87Rb [2] and 7Li [3] has initiated a period of intense theoretical and experimental research.
The experimental results need a theoretical support which takes into account the coupled
non-equilibrium dynamics of both the BEC and the thermal cloud of the Bose gas under
investigation. In the pioneering work [10–12], Kirkpatrick and Dorfman (KD) started to
develop such a theory, based on the Bogoliubov mean field approach. Their theory includes
a mean field kinetic equation for the thermal cloud that describes the relaxation in terms of
“collisions” between excitations. This theory was then extended by Zaremba et al. [23], in
which the full coupling system of a quantum Boltzmann equation for the density function
of the normal fluid/thermal cloud and a Gross–Pitaevskii equation for the wavefunction of
the BEC has been introduced. The model is named ZNG, after the authors. Independently,
the same mean field model was also derived by Pomeau et al. [22] (PBMR) by a different
method. Since our work is mainly focused on the mean field approach, we refer the readers
to the book [15] for further discussions on the other theories.

The ZNG model has been remarkably successful in describing a wide range of BEC
phenomena [6]. In the ZNG theory, there are two types of collisional processes: the 1 ↔ 2
interactions between the condensate and the excited atoms and the 2 ↔ 2 interactions
between the excited atoms themselves. A third, previously missing, collisional process, which
takes into account 1↔3 type collisions between the excitations, has been suggested by Gust
and Reichl [7,19].
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In the previous work [21], we have provided a mathematical justification of the new
collisional process as well as a unified framework to explain the origins of all the three
collision operators. The mathematical justification of [21] is based on a precise calculation of
all of commutators for the Bogoliubov excitations in the system, without dropping any terms.
In [21], it has also been shown that the 1↔3 collision operator indeed becomes important
at lower temperature ranges, while being negligible when T is closed to Tc. Experimental
evidence for this new collision operator has also been provided in [8,14,18].

The goal of our work is to mathematically derive a new mean field coupling system, with all
the three collision operators, at all finite temperature ranges, based on the framework provided
in [21]. This model becomes the standard ZNG model when the temperature of the system is
high enough. In our derivation, we have tried to rely on exact mathematical computations, in
which, most of the terms are kept and only a few approximations are employed. Before our
work, another lower temperature system, in which only the 1 ↔ 2 collision is included, was
also derived by Imamovic-Tomasovic and Griffin (IG) [9], motivated by the reason that the
ZNG model is based on particle-like Hatree-Fock excitations and ultimately breaks down at
low temperatures as its thermal excitations do not include the phonon part of the Bogoliubov
spectrum. Since in [9], the two collisional processes 2 ↔ 2 and 1 ↔ 3 are both missing, the
IG model does not approach the ZNG model when T ≈ T c.

The coupling system

We will now write our final system, that couples the generalized Gross–Pitaevskii and the
quantum Boltzmann equations, in the local rest frame. The derivation of this system will be
given in the next sections.

Denote by nc(x, t) and φ(x, t), the local density of particles in the condensate and the
condensate phase, and set

ϒ = n1/2
c exp(iφ). (1)

The generalized Gross–Pitaevskii equation

The generalized Gross–Pitaevskii equation reads

i h̄∂tϒ(x, t) =
[
− h̄2∇2

2m
+ g[nc(x, t) + 2ñ(x, t)]

+U (x) − i h̄

2nc

∫ ′
dpC12[ f ](x, p, t)

]
ϒ(x, t), (2)

where

ñ(x, t) =
∫ ′

dp f (x, p, t). (3)

In the above equations, f (x, p, t) is the solution of the quantum Boltzmann equation (5),
the operator C12 can be found in (5), h̄ is the reduced Planck constant, g is the interaction
coupling constant, U (x) is the confinement potential,

∫ ′ stands for
∫
R3\{O}, m is the mass of

the particles. The velocity of the condensate is

v(x, t) = h̄

m
∇φ(x, t). (4)
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The quantum Boltzmann equation

The quantum Boltzmann equation for the density f (x, p, t) of the non-condensate atoms
reads (

∂

∂t
+ 1

h̄
∇p(ωp + h̄ p · v) · ∇x − 1

h̄
∇x (ωp + h̄ p · v) · ∇p

)
f

= C12[ f ] + C22[ f ] + C31[ f ], (5)

where ωp is the Bogoliubov dispersion relation defined in (18) and the forms of C12, C22,
C31 are given explicitly below

C12[ f ](p) = 4πg2nc
h̄(2π)3

∫ ′ ∫ ′ ∫ ′
dp1dp2dp3δ(p1 − p2 − p3)

× (δ(p − p1) − δ(p − p2) − δ(p − p3))δ(ω1 − ω2 − ω3)

× (K 1,2
1,2,3)

2
[
f2 f3( f1 + 1) − f1( f2 + 1)( f3 + 1)

]
, (6)

C22[ f ](p) = πg2

h̄(2π)6

∫ ′ ∫ ′ ∫ ′ ∫ ′
dp1dp2dp3dp4

× (δ(p − p1) + δ(p − p2) − δ(p − p3) − δ(p − p4))

× δ(ω1 + ω2 − ω3 − ω4)δ(p1 + p2 − p3 − p4)(K
2,2
1,2,3,4)

2

×
[
f3 f4( f2 + 1)( f1 + 1) − f1 f2( f3 + 1)( f4 + 1)

]
, (7)

and

C31[ f ](t, p) = 3πg2

h̄(2π)6

∫ ′ ∫ ′ ∫ ′ ∫ ′
dp1dp2dp3dp4

× (δ(p − p1) − δ(p − p2) − δ(p − p3) − δ(p − p4))

× δ(p1 − p2 − p3 − p4)δ(ω1 − ω2 − ω3 − ω4)(K
3,1
1,2,3,4)

2

×
[
f3 f4 f2( f1 + 1) − f1( f2 + 1)( f3 + 1)( f4 + 1)

]
, (8)

in which ωi , fi stand for ω(pi ), f (pi ), p ∈ R
3\{O} is the 3-dimensional non-zero momen-

tum variable. In the above collision operators, the kernels are defined as follows

K 1,2
1,2,3 = u p1u p2u p3 − vp1vp2vp3 − u p1u p2vp3

+ vp1vp2u p3 − u p1vp2u p3 + vp1u p2vp3 , (9)

K 2,2
1,2,3,4 = u p1u p2u p3u p4 + u p1vp2u p3vp4 + u p1vp2vp3u p4

+ vp1u p2vp3u p4 + vp1u p2u p3vp4 + vp1vp2vp3vp4 , (10)

and

K 3,1
1,2,3,4 = 2

[
u p1u p2vp3u p4 + vp1vp2u p3vp4

]
, (11)

with u p and vp being defined in (19).
When T ≈ Tc, the Bogoliubov dispersion relation can be approximated by the Hatree–

Fock energy. In this regime, u p � 1 and vp � 0. Therefore, K 1,2
1,2,3 � 1, K 2,2

1,2,3,4 � 1, while

K 3,1
1,2,3,4 � 0. As a result, when T ≈ Tc, C31 is negligible while the two collision operators

C12 and C22 dominate the collisional processes. In lower temperature regimes, both u p and
vp are large, making all quantities K 1,2

1,2,3, K 2,2
1,2,3,4, K 3,1

1,2,3,4 large. Thus, the contribution of
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all collision operators C12, C22 and C31 needs to be taken into account. It is discussed in
[14][Section 8.2.3] that using all the three collision operators C12, C22 and C31, the speed
of both the fast mode and the slow mode can be computed and they turn out to approach
finite values in the limit T → 0 K. using all the three collision operators C12, C22 and C31,
the speed of both the fast mode and the slow mode can be computed and they turn out to
approach finite values in the limit T → 0 K. This computation is consistent with the findings
of Lee and Yang [13] using a very different approach. Moreover, it is also discussed in [14]
that the value of the sound mode lifetime, computed by using all the three collision operators
C12, C22 and C31, is consistent with that reported in the Steinhauer experiment [20].

In the integral on the momenta
∫
R3\{O} dp, the origin is removed due to the fact that the

condensate has been factored out in the Bogoliubov diagonalization. In a mathematical point
of view, if the origin is not removed from the domain of integration, the solution can develop
a singular part supported at {O}.

2 The quantum system and the three unitary transformations

To derive the coupling system (1)–(11), we consider a system of weakly interacting, spin-
less bosons at finite temperatures. We introduce the boson field operator �̂(x), and its

conjugate �̂†(x). These operators satisfy the the commutation relation [�̂(x), �̂(x ′)] =
[�̂†(x), �̂†(x ′)] = 0; [�̂(x), �̂†(x ′)] = δ(x − x ′). The Hamiltonian of the system is now
written

Ĥ =
∫

T
d
L

dx�̂†(x)
[

− h̄2

2m
∇2 + U (x) + 1

2
�̂†(x)V(x, x ′)�̂(x ′)

]
�̂(x), (12)

where T3
L is the 3-dimensional periodic torus

[− L
2 , L

2

]3
; V(x, x ′) is the interaction potential

between two particles at locations x , x ′. We also take V(x, x ′) = gδ(x − x ′). Inserting these
two forms for the external and interaction potentials into (12), we find

Ĥ = Ĥ ′ + V̂ , (13)

where

Ĥ ′ = h̄2

2m

∫
dx∇̂�†(x) · ∇�̂(x), (14)

and

V̂ = g

2

∫
dx�̂†(x)�̂†(x)�̂(x)�̂(x), (15)

with the shorthand notations
∫
T
d
L

= ∫
.

We introduce the non-equilibrium statistical density operator ρ̂(t) of the spatially inho-
mogeneous Bose gas at time t . This density operator then satisfies the quantum Liouville
equation

∂ρ̂

∂t
= − i

h̄
[Ĥ , ρ̂].

We follow the approach of Kirkpatrick and Dorfman [10,12]. First, we introduce the
following local unitary transformations to the quantum Liouville equation. The first unitary
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operator changes the reference frame of the system to one in which the superfluid velocity is
zero

Ô1[φ] = exp

[
−i

∫
dx ′φ(x ′, t)�̂†(x ′, t)�̂(x ′, t)

]
.

The second unitary transformation replaces the boson field operators in the Hamiltonians by
new ones without the contribution of the condensate

Ô2[nc] = exp

[∫
dx ′[�̂(x ′, t) − �̂†(x ′, t)]n

1
2
c (x ′, t)

]
.

Now, we write the time-dependent field operator �̂ as the sum of a condensate part 
 and a
non-condensate part ψ̂

�̂(x, t) = ψ̂(x, t) + 
(x, t). (16)

Under the assumption that the difference between the condensate field operator and the
average value are approximately the same in the thermodynamics limit, we replace 
(x, t)
by the c-number n1/2

c (x, t) exp(iφ(x, t)). Thus, ψ̂(x, t) can be expressed as follows

Ô†
1 Ô

†
2 �̂ Ô2 Ô1 = ˆ� exp[ − iφ] − n1/2

c = ˆψ exp[ − iφ].
Using the above two unitary transformations, we obtain the Liouville equation for the density
operator ρ̂′ of the non-condensate part in the superfluid rest-frame

∂ρ̂′

∂t
= − i

h̄
[Ĥ ′′, ρ̂′].

We introduce the last unitary transformation - the local Bogoliubov transformation, which
changes the field operators from those for particles to those for Bogoliubov excitations. To
this end, we define the Wigner operator

f̂ (x, p) =
∫

dx ′[exp(i p · x ′)]ψ̂†(x + x ′/2)ψ̂(x − x ′/2). (17)

Since ρ̂′ is defined in the superfluid rest-frame, we can define the Fourier series of the fields
operators, under the assumption that the gas is slightly inhomogeneous in space

ψ̂(x) = 1√
�

∑̃
p

exp(ikp · x)âp,

where we employ the shorthand notation
∑̃

p = ∑
p∈Zd

L ,p 	=0, with Z
3
L = (Z/L)3 and � is

the volume of the box under consideration.
We now define the Bogoliubov unitary transformation operator

Ô3(x, t) = exp

[
1

2

∑̃
p

ϑp(x, t)
(
âpâ−p − â†

pâ
†
−p

)]
.

In the above formulation, ϑp(x, t) depends on ω̃p , which, by neglecting completely the
quantum pressure, can be approximated by the Bogoliubov dispersion relation

ω̃p ≈ ωp =
[
gnch̄2

m
p2 +

(
h̄2 p2

2m

)2] 1
2

. (18)
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This is often referred to as Thomas–Fermi approximation [4,6]. We now write down the
Bogoliubov excitation annihilation and creation operators

âp = u pb̂p − vpb̂
†
−p, â†

p = u pb̂
†
p − vpb̂−p, (19)

with

u p, vp =
(

εp + gnc
2ωp

± 1

2

) 1
2

,

u p = cosh ϑp, vp = − sinh ϑp.

We also define the new statistical density operator ρ̂b(x, t) for the Bogoliubov excitations

ρ̂b(x, t) = Ô3(x, t)ρ̂
′(t)Ô†

3 (x, t). (20)

We arrive at a new quantum Liouville equation for the Bogoliubov excitations

∂ρ̂b

∂t
= − i

h̄
[Ĥb, ρ̂b]. (21)

The operator Ĥb takes the form

Ĥb = ĤT,1 + ĤT,2 + Ĥ2 + Ĥ3 + Ĥ4, (22)

in which ĤT,1, ĤT,2 will contribute to the transport part of the kinetic equation

ĤT,1 =
∑̃
p

ωpb̂
†b̂p + h̄

∑
p

(v · p)b̂†
pb̂p,

ĤT,2 =
3∑

j,l=1

∑̃
p1,p2

∂v j

∂xl

h̄

2V

∫
dx ′(x ′

l − xl) exp[i x ′ · (p2 − p1)]

× (p1 j + p2 j )[(u p1u p2 − vp1vp2)b̂
†
p1
b̂p2 − u p2vp1 b̂−p1 b̂p2

− u p1vp2 b̂
†
p1
b̂−p2 ] +

3∑
j,l=1

∑̃
p1,p2

∂nc
∂x j

g

2V

∫
dx ′(x ′

j − x j )

× exp[i x ′ · (p2 − p1)][2(u p1u p2 − u p2vp1 − u p1vp2

+ vp1vp2)b̂
†
p1
b̂p2 + (u p1u p2 + vp1vp2 − 2u p1vp2)b̂

†
p1
b̂†
−p2

+ (u p1u p2 + vp1vp2 − 2u p2vp1)b̂−p1 b̂p2 ]
− i h̄

2

∂(ncv j )

∂x j

∑̃
p

∂ϑp

∂nc
(b̂pb̂−p − b̂†

pb̂
†
−p). (23)

Define the distribution function for the Bogoliubov excitations by

f (x, p, t) = Tr[ρ̂b(x, t) f̂ (x, t)] = 〈 f̂ (x, t)〉,
it follows from the quantum Liouville equation (21) that

∂ f (x, p, t)

∂t
= − i

h̄

∑
q 	=±2p

exp(iq · x)〈[b̂†
p−q/2b̂p+q/2, Ĥb]〉. (24)

The three Hamiltonians Ĥ2, Ĥ3, Ĥ4 will only contribute to the collisional processes, similar
to the spatial homogeneous case [21]. As a result, the techniques introduced in [21] can be
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reused to derive the collision operators. The explicit forms of Ĥ2, Ĥ3, Ĥ4 will be given in
the Appendix.

Notice that in the superfluid rest frame, the condensate wave function 
(x, t) becomes
nc(x, t)1/2, and the phase φ(x, t) is removed. As a result, instead of writing the equation for
the dynamics of 
(x, t), we write the equation for ϒ = 
 exp(iφ)

i h̄
∂ϒ(x, t)

∂t
=

(
− h̄∇2

2m
+ gnc(x, t) + 2gñ(x, t) +U (x)

)

×ϒ(x, t) + gm̃(x, t)ϒ∗(x, t) + g〈ψ̂†(x, t)ψ̂(x, t)ψ̂(x, t)〉, (25)

where ñ(x, t) = 〈ψ̂†(x, t)ψ̂(x, t)〉 is the non-equilibrium non-condensate density, m̃(x, t) =
〈ψ̂(x, t)ψ̂(x, t)〉 is the off-diagonal non-condensate density. All of the terms in (25) are non-
zero due to the Bose broken symmetry.

3 The quantum Boltzmann equation

If we replace the right hand side of (24) by ĤT,1 and label this term by A, we find

A = i

h̄

∑
q 	=±2p

exp(iq · x)[ωp+q/2 − ωp−q/2 + h̄q · v]〈b̂†
p−q/2b̂p+q/2〉.

We now introduce the key approximation of our derivation. We suppose that the hydrodynamic
variables are slowly varying in space and time. As a result, we will expand the microscopic
quantities nc and v about their values in x and the gradients |∇xnc(x, t)|k, |∇xv(x, t)|k
become the parameters describing the smallness in our asymptotic expansion. We denote
these smallness parameters by O(|∇|k), which are the only smallness parameters being used.
Now, in (26), expanding ωp+q/2 −ωp−q/2 and v in powers of q , we obtain the approximation

A = −
3∑
j=1

1

h̄

∂

∂p j
(ωp + h̄ p · v)

∂ f (x, p, t)

∂x j
+ O(|∇|). (26)

Similarly, if we replace the right hand side of (24) by ĤT,2 and label this term by B, the same
asymptotic expansion also gives

B =
3∑
j=1

1

h̄

∂

∂x j
(ωp + h̄ p · v)

∂ f (x, p, t)

∂p j
+ O(|∇|). (27)

The above two approximations give the transport part of the kinetic equation

T [ f ]
=

(
∂

∂t
+ 1

h̄
∇p(ωp + h̄ p · v) · ∇x − 1

h̄
∇x (ωp + h̄ p · v) · ∇p

)
f. (28)

The derivation of the collision operators from Ĥ2, Ĥ3 and Ĥ4 follows verbatim the argu-
ment of the homogeneous case [21], based on the method by Akhiezer and Peletminskii
[1]. We note that Kirkpartrick–Dorfman’s method [12] is also based on the same principles.
Indeed, the effects of Ĥ2 and Ĥ3 have already been studied in [21, Sections IV, V]. On the
other hand, the role of Ĥ4 is exactly the same as that of Ĥ1,1, Ĥ ′

3,1 and, therefore, is neg-
ligible, following [21, Section IV]. As a consequence, we will not repeat the derivation of
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the collision operators here, but rather recall the main ideas of the computations. The key
assumption of the Akhiezer–Peletminskii method is that in the long time t >> t0 ≡ r0/v0,
where r0 is the radius of the initial correlations and v0 is the average quasi-particle veloc-
ity, the state of the system of weakly interacting Bogoliubov quasiparticles is played by the
single-particle density matrix. By applying twice the quantum Liouville equation (24), we
arrive at a new form of the type 〈[Ĥ2 + Ĥ3 + Ĥ4, [b̂†b̂, Ĥ2 + Ĥ3 + Ĥ4]]〉. We then compute
all of the commutators, without doing any approximations by dropping terms. Among all
of the possible combinations, there are only three that really contribute into the collisional
processes 〈[Ĥ1,2, [b̂†b̂, Ĥ1,2]〉, 〈[Ĥ2,2, [b̂†b̂, Ĥ2,2]〉 and 〈[Ĥ3,1, [b̂†b̂, Ĥ3,1]〉, while the other
terms can be proved to vanish due to the violation of the conservation of energy. As a result,
the C12 collision operator arises from commutators of the type [b̂†b̂†b̂, [b̂†b̂, b̂†b̂b̂]] and
[b̂†b̂b̂, [b̂†b̂, b̂†b̂†b̂]], coming from 〈[Ĥ1,2, [b̂†b̂, Ĥ1,2]〉. The C22 collision operator arises
from commutators of the type [b̂†b̂†b̂b̂, [b̂†b̂, b̂†b̂†b̂b̂]], coming from 〈[Ĥ2,2, [b̂†b̂, Ĥ2,2]〉.
TheC31 collision operator arises from commutators of the types [b̂†b̂†b̂†b̂, [b̂†b̂, b̂†b̂b̂b̂]] and
[b̂†b̂b̂b̂, [b̂†b̂, b̂†b̂†b̂†b̂]], coming from 〈[Ĥ3,1, [b̂†b̂, Ĥ3,1]〉. Collecting (28) and the three col-
lision operators C12, C22, C31, we finally obtain the quantum Boltzmann equation

T [ f ] = 4πg2nc
h̄(2π)3

∫ ′ ∫ ′ ∫ ′
dp1dp2dp3δ(p1 − p2 − p3)

× (δ(p − p1) − δ(p − p2) − δ(p − p3))δ(ω1 − ω2 − ω3)

× (K 1,2
1,2,3)

2
[
f2 f3( f1 + 1) − f1( f2 + 1)( f3 + 1)

]

+ πg2

h̄(2π)6

∫ ′ ∫ ′ ∫ ′ ∫ ′
dp1dp2dp3dp4

× (δ(p − p1) + δ(p − p2) − δ(p − p3) − δ(p − p4))

× δ(ω1 + ω2 − ω3 − ω4)δ(p1 + p2 − p3 − p4)(K
2,2
1,2,3,4)

2

×
[
f3 f4( f2 + 1)( f1 + 1) − f1 f2( f3 + 1)( f4 + 1)

]

+ 3πg2

h̄(2π)6

∫ ′ ∫ ′ ∫ ′ ∫ ′
dp1dp2dp3dp4

× (δ(p − p1) − δ(p − p2) − δ(p − p3) − δ(p − p4))

× δ(p1 − p2 − p3 − p4)δ(ω1 − ω2 − ω3 − ω4)(K
3,1
1,2,3,4)

2

×
[
f3 f4 f2( f1 + 1) − f1( f2 + 1)( f3 + 1)( f4 + 1)

]
, (29)

in which, the quantities K 1,2
1,2,3, K 2,2

1,2,3,4 and K 3,1
1,2,3,4 are defined in (9)–(11). The quantity nc

can be deduced from the solution of the Gross–Pitaevskii equation by (1).

4 The Gross–Pitaevskii equation

Similar with Griffin et al. [6] and Pomeau and Tran [14], we also limit our analysis to the
Popov approximation by setting m̃ = 0. From (25), we obtain

i h̄
∂ϒ(x, t)

∂t
=

(
− h̄∇2

2m
+ gnc(x, t) + 2gñ(x, t) +U (x)

)

×ϒ(x, t) + g〈ψ̂†(x, t)ψ̂(x, t)ψ̂(x, t)〉. (30)
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To derive the generalized Gross–Pitaevskii equation, we only need to compute g〈ψ̂†

(x, t)ψ̂(x, t)ψ̂(x, t)〉 in (30). This quantity can be computed by exactly the same strat-
egy used to compute C12 (see also [16,17]). As a consequence, we skip the details of this
calculation and display only the final result, which also involves C12 in its expression

g〈ψ̂†(x, t)ψ̂(x, t)ψ̂(x, t)〉 = − i h̄ϒ

2nc

∫ ′
dpC12[ f ]. (31)

Plugging (31) into (30) yields

i h̄
∂ϒ(x, t)

∂t
=

(
− h̄∇2

2m
+ gnc(x, t) + 2gñ(x, t) +U (x)

)

×ϒ(x, t) − i h̄ϒ

2nc

∫ ′
dpC12[ f ], (32)

which is the same with (2). This is our Gross–Pitaevskii equation, in which, ñ is computed
using the solution of the quantum Boltzmann equation via (3) and nc is determined by (1).
The form of C12 is given in (6).

5 Conclusion

In this work, we have derived a coupling system that includes a Gross–Pitaevskii equation
of motion for the condensate wave function and a quantum Boltzmann equation for the
excitations. The model approaches the standard ZNG model when the temperature of the
system T is close to the Bose–Einstein Condensate (BEC) transition temperature Tc.

Acknowledgements M.-B. Tran is partially supported by NSF Grant DMS-1814149, NSF Grant DMS-
1854453, NSF CAREER DMS-2044626, SMU URC Grant 2020, Dedman College of Humanities and Sci-
ences Linking Fellowship, and Alexander von Humboldt Fellowship. The authors would like to thank Prof.
Kirkpatrick and Prof. Dorfman for discussions on the topic.

6 Appendix 1

We present below the explicit forms of Ĥ2, Ĥ3 and Ĥ4, which can be computed following
the same argument with Tran and Pomeau [21]

Ĥ2 = Ĥ1,2 + Ĥ3,0,

Ĥ1,2 = g

√
nc
V

∑
p1,p2,p3 	=0

δ(p1 − p2 − p3)K
1,2
1,2,3

× (b̂†
p1
b̂p2 b̂p3 + b̂†

p3
b̂†
p2
b̂p1),

Ĥ3,0 = g

√
nc
V

∑
p1,p2,p3 	=0

δ(p1 + p2 + p3)

×
[
K 3,0

1,2,3(b̂
†
p3
b̂†
p2
b̂†
p1

+ b̂p1 b̂p2 b̂p3)
]
,

K 3,0
1,2,3 = u p1vp2vp3 − vp1u p2u p3; (33)

123
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and

Ĥ3 = Ĥ2,2 + Ĥ1,1 + Ĥ3,1 + Ĥ ′
3,1 + Ĥ4,0,

Ĥ2,2 = g

2V

∑
p1,p2,p3,p4 	=0

δ(p1 + p2 − p3 − p4)K
2,2
1,2,3,4

× b̂†
p1
b̂†
p2
b̂p3 b̂p4 ,

Ĥ1,1 = g

2V

∑
p1,p2 	=0

K 1,1
1,2 b̂

†
p1
b̂p1 ,

K 1,1
1,2 = 4v2

p1
v2
p2

+ 4u2
p1

v2
p2

+ 4u p1vp1u p2vp2 ,

Ĥ3,1 = g

2V

∑
p1,p2,p3,p4 	=0

δ(p1 − p2 − p3 − p4)

× K 3,1
1,2,3,4

[
b̂†
p1
b̂p2 b̂p3 b̂p4 + b̂†

p4
b̂†
p3
b̂†
p2
b̂p1

]
,

Ĥ ′
3,1 = g

2V

∑
p1,p2 	=0

[
b̂p1 b̂−p1 K

2,0
1,2 + b̂†

p1
b̂†
−p1

K 2,0
1,2

]
,

K 2,0
1,2 = u2

p1
u p2vp2 + v2

p1
u p2vp2 + 4u p1vp1v

2
p2

,

Ĥ4,0 = g

2V

∑
p1,p2,p3,p4 	=0

δ(p1 + p2 + p3 + p4)

× K 4,0
1,2,3,4

[
b̂†
p1
b̂†
p2
b̂†
p3
b̂†
p4

+ b̂p1 b̂p2 b̂p3 b̂p4

]
,

K 4,0
1,2,3,4 = u p1u p2vp3vp4; (34)

Finally

Ĥ4 = i h̄n1/2
c Lnc

∑
p 	=0

∂ϑp

∂nc
(b̂pb̂−p − b̂†

pb̂
†
−p)

−
∑
p 	=0

m�[u2
p + v2

p]b̂†
pb̂p +

∑
p 	=0

m�u pvp[b̂pb̂−p + b̂†
pb̂

†
−p]

� = −v2

2
− h̄

m

∂φ

∂t
− gnc, Lnc = h̄−1ImS,

S = gTr
[
ρ̂bψ̂

†ψ̂ψ̂
]

+ 2n1/2
c gTr

[
ρ̂bψ̂

†ψ̂
]

+ n1/2
c gTr

[
ρ̂bψ̂ψ̂

]
. (35)
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