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Abstract

We present a numerical study of the local stability of mean curvature

flow (MCF) of rotationally symmetric, complete noncompact hypersurfaces

with type-II curvature blowup. Our numerical analysis employs a novel overlap

method that constructs ‘numerically global’ (i.e., with spatial domain arbitrar-

ily large but finite) flow solutions with initial data covering analytically distinct

regions. Our numerical results show that for certain prescribed families of per-

turbations, there are two classes of initial data that lead to distinct behaviours

under MCF. Firstly, there is a ‘near’ class of initial data which lead to the

same singular behaviour as an unperturbed solution; in particular, the curva-

ture at the tip of the hypersurface blows up at a type-II rate no slower than

(T − t)−1. Secondly, there is a ‘far’ class of initial data which lead to solutions

developing a local type-I nondegenerate neckpinch under MCF. These numeri-

cal findings further suggest the existence of a ‘critical’ class of initial data which

conjecturally lead to MCF of noncompact hypersurfaces forming local type-II
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degenerate neckpinches with the highest curvature blowup rate strictly slower

than (T − t)−1.

Keywords: mean curvature flow, type-II singularities, noncompact hypersur-

faces, stability analysis, numerical method
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1. Introduction

The nature of finite time singularities in geometric flows such as Ricci flow andmean curvature

flow (MCF) has long been a focus of interest in the study of these flows. In both flows, the

formation of type-I singularities, which are characterized by the supremum of the product of

the finite time to the singularity and the curvature norm being finite, predominate. Much less

prevalent are type-II singularities, in which case the supremum of the product of the time to

the singularity and the curvature norm is necessarily infinite.

For immersed one-dimensional MCF (i.e., curve shortening flow), type-II behaviour can

occur for solutions originating from open sets of initial data [EW87]. Nonetheless, it is

a folklore conjecture that type-I behaviour is generic for compact (embedded) solutions.

For MCF, there is in fact strong evidence in important work of Colding and Minicozzi [CM12]

that only a restricted subclass of type-I tangent flows (self-shrinkers) is generic. For example,

they prove that if Σ is a smooth, complete, embedded self-shrinking surface without boundary

and with polynomial volume growth that is not a generalized cylinder, then there is a graph

Σ̃ over Σ of a compactly supported function with arbitrarily small Cm-norm (for any fixed m)

such that Σ cannot occur as the tangent flow of MCF originating from Σ̃.

In the noncompact setting, type-II singularities can form in solutions originating from an

open set within the class of rotationally symmetric initial data for embedded MCF, as is

shown by two of the authors of this paper and their collaborator [IW19, IWZ20] (similar

behaviour in Ricci flow has been verified in [Wu14]). They prove that MCF of embedded non-

compact hypersurfaces satisfying certain conditions5 necessarily develop a type-II singularity.

Furthermore, the maximum of the curvature measured in terms of |h|, where h denotes the

second fundamental form, of such a solution occurs at the tip, with the type-II blowup of the

flow approaching a translating solution known as the bowl soliton—the unique (up to rigid

motion) translating solution that is rotationally symmetric and strictly convex [Has15]—in the

region surrounding the tip (i.e., the left most point on the hypersurface in figure 1). At spa-

tial infinity (i.e., on the far right of figure 1), the solution remains asymptotic to a shrinking

cylinder and hence forms a type-I singularity. In particular, such a solution is an example of a

degenerate neckpinch in MCF forming at spatial infinity.

What is the stability of the noncompactMCF behaviour illustrated in figure 1 and discussed

in [IW19]] and [IWZ20]? In this work, we carry out a numerical stability analysis by simulat-

ing MCFs of embedded noncompact hypersurfaces that are perturbations of the embeddings

considered in [IW19, IWZ20]. Retaining the rotational symmetry in these perturbations, we

find that there is one class of such perturbations for which the simulated MCFs develop type-II

singularities modelled by the bowl soliton, and there is another set of these perturbations for

5 Precisely, the hypersurface is a complete, rotationally symmetric, strictly convex graph over a shrinking ball that is

asymptotically enveloped within a shrinking cylinder near spatial infinity; see figure 1.
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Figure 1. Diagram of anMCF solution forming a degenerate neckpinch at spatial infinity
with the curvature at the tip (on the left) blowing up at a type-II rate, as constructed in
[IW19, IWZ20].

which the numerical simulations develop type-I singularities. For this second class, the type-I

singularities that occur are all of the ‘neckpinch’ type. The perturbations that lead to MCFs

with type-II singularities generally involve distortions of the initial embeddings very close to

the tip (which we call the ‘near class’ in this paper), while those perturbations that lead to

type-I singularities generally involve distortions that are not close to the tip (called the ‘far

class’ in this work). Interestingly, as noted below in figure 5, there are perturbations of the

initial data which are not especially close to the tip, yet the numerical simulation of the MCF

starting from that perturbed initial data set approaches the bowl soliton with type-II behaviour

at the tip and with no neckpinch singularity forming away from the tip. We define the ‘near’

and ‘far’ classes (in sections 4.1 and 4.2, resp.) based on the MCF behaviour rather than on the

location of the perturbation.

One expected consequence of the aforementioned numerical results is that if one were to

consider a one-parameter family (with parameter s) of rotationally symmetric perturbed initial

embeddings that proceeds from the near class to the far class, then the MCF solutions evolving

from all the embeddings up to a certain value s0 develop type-II singularities, while the flows

evolving from the embeddings up to a certain value s1 � s0 develop type-I neckpinch singular-

ities. The question then arises regarding what happens for the MCF solution that evolves from

an embedding corresponding to an intermediate parameter value s ∈ [s0, s1].

For analogous numerical simulation studies of Ricci flow on a compact manifold carried

out by two of the authors [GI05, GI08], one set of parameters lead to nondegenerate neck-

pinches while another set of parameters lead to round singularities, and a very distinctive

behaviour—a degenerate neckpinch, corresponding to some intermediate, critical parameter

value s0—is observed. The same phenomenon is seen in the remarkable numerical studies of

gravitational collapse carried out by Choptuik. Notably, in certain of his numerical simulations

of the gravitational collapse governed by solutions of Einstein’s gravitational field equations,

very distinctive critical behaviour is found to occur for a unique choice of the initial data

along a one-parameter family of such gravitational data [Cho93]. Interestingly, for an alterna-

tive collection of Choptuik’s numerical simulations of gravitational collapse, critical behaviour

is not found [GMG07].

One challenge in carrying out these numerical simulations is the need to ensure compati-

bility of the evolutions that we carry out in two different regions with two different coordinate

systems. Using the coordinate z for the direction parallel to the enveloping cylinder, and the

coordinate r for the radial direction orthogonal to z, we are led to evolve the function z(r, t)

in the region near the tip, and to evolve the function r(z, t) in the region away from the tip

and along the cylindrical region. Coordinate transformations of this sort are of course familiar

in differential geometry, but they do present a challenge in these numerical simulations. Since

the near class of initial data generally involves perturbations in the region where we work with
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z(r, t) while the far class of initial data generally involves perturbations in the region where we

work with r(z, t), we note that these coordinate transformations make it somewhat difficult to

very closely investigate whether distinctive critical behaviour occurs for perturbations located

at the transition region.

While we have looked very carefully at numerical simulations of the MCFs for initial

embeddings very close to the transition from the near class to the far class, we have not found

any distinctive critical behaviour there. This may mean that the potential critical behaviour

does not exist, or that it does exist but is too unstable to be readily found by numerical

experiments. Inferring from our numerical results, we conjecture that a critical behaviour exists

(see conjecture 5.1), and further investigations are needed.

The perturbations of the initial embeddings we consider in this work are all rotationally

symmetric. In future work, we plan to consider perturbations that do not retain this symme-

try. We conjecture that if these perturbed initial embeddings remain small and confined to a

region near the tip, the resulting MCF solutions are likely to still produce type-II singularities

modelled by a bowl soliton in the neighbourhood of the tip.

This paper is organized as follows. In section 2, we briefly review from [IW19, IWZ20]

the construction of noncompact, rotationally symmetric MCF solutions with type-II curvature

blowup at the tip. In section 3, we discuss the computational techniques used to carry out the

numerical simulations done here. Numerical results for the near classes and the far classes

are presented in section 4. These results lead to conjectures on the asymptotic behaviour of

MCFs originating from initial data similar to the near class, and the existence of a critical

class as one interpolates between the near classes and the far classes. Concluding remarks and

discussions of future directions appear in section 5.

2. Set up

Following the set up in [IW19, IWZ20], we consider theMCF of rotationally symmetric hyper-

surfaces embedded in Euclidean space. For any point (x0, x1, . . . , xn) ∈ R
n+1 for n � 2, we

write

z = x0, r =

√
x21 + · · ·+ x2n.

We consider a noncompact hypersurface Γ which is obtained by rotating the graph of r(z),

a � z < ∞, around the z-axis. We assume that r(z) is strictly concave so that Γ is strictly

convex, and that r is strictly increasing with r(a) = 0 and with lim
zր∞

r(z) = r0, where r0 is the

radius of the enveloping cylinder. The function r is assumed to be smooth except at z = a. We

note that this particular non-smoothness of r is a consequence of the choice of the (cylindrical-

type) coordinates; if the time-dependent flow function r(z, t) is inverted in a particular way,

then this irregularity is removed. The point where r = 0 is called the tip of the hypersurface.

We focus our attention on the class G of complete hypersurfaces that are rotationally sym-

metric, (strictly) convex6, smooth graphs over a ball and asymptotic to a cylinder. One readily

verifies that embeddingswith these properties are preserved byMCF (see for example [SS14]).

By the general existence result in [SS14], an MCF solution starting from any hypersurface in

this class moves towards its open end (e.g., to the right in figure 1) and remains asymptotic to

a shrinking cylinder; moreover, the hypersurface disappears at spatial infinity at the same time

as the cylinder collapses. We call this finite time the ‘vanishing time’ of the hypersurface and

6Throughout this paper, ‘convex’ means ‘strictly convex’.
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denote it by T . The results of [IW19] and [IWZ20] exhibit, for each real number γ � 1/2,MCF

solutions in the class G with the type-II curvature blowup rate (T − t)−(γ+1/2) at the tip, and

also determine the precise geometry of the solution both near the tip and near spatial infinity.

Let Γt denote an MCF solution constructed in [IW19, IWZ20]. Representing Γt by the

profile of rotation, i.e., the graph of r(z, t), one finds that the function r satisfies the PDE

rt =
rzz

1+ r2z
− n− 1

r
. (2.1)

A multi-scale blowup analysis of equation (2.1) is carried out in [IW19] for the case γ > 1/2,
and in [IWZ20] for the ‘limiting’ case γ = 1/2. We recall the relevant details for each case

below.

2.1. The case γ > 1/2

In the rescaled time and space parameters

τ = − log(T − t), y = z(T − t)γ−1/2, φ(y, τ ) = r(x, t)(T − t)−1/2,

equation (2.1) becomes

∂τ |yφ =
e−2γτφyy

1+ e−2γτφ2
y

− (1/2− γ)yφy −
(n− 1)

φ
+

φ

2
, (2.2)

where the notation ∂τ |y means taking the partial derivative in τ while keeping y fixed. We

readily note that equation (2.2) admits the constant solutionφ ≡ √
2(n− 1), which corresponds

to the collapsing cylinder (which is a self-shrinking solution of MCF).

We now introduce two more coordinate transformations. Firstly, because the hypersurface

under consideration is a convex graph over a ball, it is useful to invert the coordinates and work

with

y(φ, τ ) = y (φ(y, τ ), τ ) .

In terms of y(φ, τ ), theMCF equation,which is equivalent to equations (2.2) and (2.1), becomes

∂τ |φy =
yφφ

1+ e2γτy2φ
+

(
(n− 1)

φ
− φ

2

)
yφ + (1/2− γ)y. (2.3)

Secondly, it is further useful to work with the quantity λ := −1/y, since by using λ, the asymp-

totically cylindrical end of the embedded hypersurface corresponding to large values of y is

effectively compactified. The evolution equation for λ(φ, τ ) is

∂τ |φλ =
λφφ − 2λ2

φ/λ

1+ e2γτλ2
φ/λ

4
+

(
n− 1

φ
− φ

2

)
λφ +

(
γ − 1

2

)
λ. (2.4)

By rotational symmetry, we can let φ ∈ (−
√
2n− 2,

√
2n− 2) for n � 2, and τ ∈ [τ 0,∞) for

some large τ 0 = −log(T − t0) for the initial time t0. The boundary conditions for (2.4) are

λ(−
√
2n− 2, τ ) = λ(

√
2n− 2, τ ) = 0 for all τ � τ 0.

Using the method of matched asymptotics, formal solutions to equation (2.4) can be derived

in two regions: the interior region where ζ :=φeγτ = O(1), and the exterior region, which is

the complement of the interior region (see details in [IW19, section 2]). Global initial data for
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(2.4) are then defined by joining the formal functions in the exterior and the interior regions.

Precisely, taking any real number c > 0 (e.g., c = 1) and letting A := c(2n− 2)γ−1/2, we define

λ̂0(φ) :=

⎧
⎪⎪⎨
⎪⎪⎩

−A+ e−2γτ0F(ζ)− e−2γτ0F(R1)

+

[
A− c

(
2n− 2− (R1e

−γτ0)2
)γ−1/2

], 0 � |ζ| � R1,

−c(2n− 2− φ2)γ−1/2, R1e
−γτ0 � |φ| <

√
2(n− 1),

(2.5)

where R1 is some large constant, and F is the unique solution to the ODE initial value problem

Fζζ

1+ F2
ζ/A

4
+ (n− 1)Fζ/ζ = (γ − 1/2)A, F(0) = Fζ(0) = 0.

In fact, F(ζ) is defined for all ζ � 0 and gives the profile function for a scaled copy of the

bowl soliton. For any R1 ≫ 1 we choose, we can always find a sufficiently large τ 0 so that

φ = ζe−γτ0 is close enough to 0 for definition (2.5) to make sense and yield piecewise-smooth

continuous initial data for the PDE (2.4). The unperturbed initial data sets are specified by the

constants (n, c,R1, τ 0). In the end of section 3, we discuss how to specify the perturbed initial

data sets used in our simulations.

Remark 2.1. For the numerical study in this paper, which is carried out using standard finite

differencing methods, piecewise-smooth continuous initial data for (2.4) are sufficient. An

extra step to smooth the initial data is needed in [IW19].

2.2. The case γ = 1/2

For a > 0 to be chosen, we consider the rescaled time and space parameters

τ = − log(T − t), y = z+ a log(T − t), φ(y, τ ) = r(x, t)(T − t)−1/2.

Then equation (2.1) becomes

∂τ |yφ =
e−τφyy

1+ e−τφ2
y

+ aφy +
φ

2
− (n− 1)

φ
. (2.6)

Letting

y(φ, τ ) = y (φ(y, τ ), τ ) , λ(φ, τ ) := −1/y(φ, τ ).

as in the case that γ > 1/2, we find that λ(φ, τ ) evolves according to the PDE

∂τ |φλ =
λφφ − 2λ2

φ/λ

1+ eτλ2
φ/λ

4
+

(
n− 1

φ
− φ

2

)
λφ − aλ2. (2.7)

By rotational symmetry, we consider φ ∈ (−
√
2n− 2,

√
2n− 2) for n � 2, and τ ∈ [τ 0,∞)

for some large τ 0. The boundary conditions are λ(−
√
2n− 2, τ ) = λ(

√
2n− 2, τ ) = 0 for all

τ � τ 0.
As in the case that γ > 1/2, the formal solutions to equation (2.7) are derived in two regions:

the interior region where ζ :=φeτ/2 = O(1), and the exterior region, which is the complement
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of the interior region (see details in [IWZ20, section 2]). Global initial data for (2.4) are then

defined by joining the formal functions in the exterior and the interior regions. Precisely, we

take any a > 0, fix any c > a log(2n− 2), let A := 1/ (c− a log(2n− 2)), and define

λ̂0(φ) :=

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

−A+ e−τ0F(ζ)− e−τ0F(R1)

+A−
(
c− a log(2n− 2− R2

1e
−τ0)

)−1
, 0 � |ζ| � R1,

−1/
(
c− a log(2n− 2− φ2)

)
, R1e

−τ0/2 � |φ| <
√
2(n− 1),

(2.8)

where R1 is a large constant, and F is the unique solution to the ODE initial value problem

Fζζ

1+ F2
ζ/A

4
+ (n− 1)

Fζ

ζ
= aA2, F(0) = Fζ(0) = 0.

As remarked above, F(ζ) is the profile function for a scaled copy of the bowl soliton. For any

R1 ≫ 1 we choose, we can find τ 0 large enough so that φ = ζe−τ0/2 is close enough to 0 for

definition (2.8) to make sense and yield piecewise-smooth continuous initial data for the PDE

(2.7). The unperturbed initial data sets are specified by the constants (n, c,R1, τ 0). In the end

of section 3, we discuss how to specify the perturbed initial data sets used in our simulations.

Remark 2.2. As noted above, since the numerical study in this paper is carried out using

finite differencing methods, the use of piecewise-smooth continuous initial data for (2.7) is

sufficient.

3. Numerical method

Our numerical method essentially consists of writing the MCF PDE in a standard parabolic

form and then using a standard finite-difference method for parabolic equations. However, for

reasons to be explained below, we find it convenient to write the equation in two different ways

and to use both of them.

We recall that equation (2.1) tells us that, underMCF, the profile function r(z, t) of a rotation-

ally symmetric n-dimensional hypersurface embedded inRn+1 satisfies the following evolution

equation:

∂t|z(r) =
rzz

1+ r2z
− n− 1

r
. (3.1)

If r(z, t) is invertible, we can write z(r, t) = z(r(z, t), t) and then z(r, t) satisfies the PDE

∂t|r(z) =
zrr

1+ z2r
+ (n− 1)

zr

r
. (3.2)

In the rest of this paper, we consider the MCF of noncompact, rotationally symmetric

surfaces in R
3. (We briefly consider higher dimensions in section 4.3 and verify that those

solutions display the same qualitative behaviours as we observe for the MCF for surfaces.)

Since all of our simulations involve (hyper-)surfaces with rotational symmetry, the evolu-

tion equations (3.1) and (3.2) for higher dimensions differ from those for surfaces only in

terms of a coefficient appearing on the right-hand side; consequently the same numerical anal-

ysis applies. Consider a rotationally symmetric map from the two-sphere with coordinates
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(θ,ϕ) to R3 with cylindrical coordinates (r, z,ϕ); that is, r and z are functions of θ. This is the
setup for MCF of a compact surface. For the noncompact surfaces that are the main focus of

this paper, we can consider maps from an open portion of the two-sphere. In terms of Cartesian

coordinates, we have

(x, y, z) = (r cos ϕ, r sin ϕ, z)

Under MCF, the profile r(z, t) evolves by (cf (2.1))

∂t|z(r) =
rzz

1+ r2z
− 1

r
. (3.3)

Correspondingly, if we invert the coordinates and work with

z(r, t) = z(r(z, t), t),

then under MCF, z(r, t) satisfies the PDE

∂t|r(z) =
zrr

1+ z2r
+

zr

r
. (3.4)

Thus it appears that we have a choice of evolving either equation (3.3) or equation (3.4).

Let us consider first what is involved in numerically evolving (3.3). We approximate the

function r(t, z) by the values rki that the function takes at points zi equally spaced with spac-

ing ∆z and with times tk equally spaced with spacing ∆t. We use standard centred finite

differences, so that rz and rzz are approximated by

rz =
rki+1 − rki−1

2∆z
(3.5)

and

rzz =
rki+1 + rki−1 − 2rki

(∆z)2
, (3.6)

respectively.

Time evolution is carried out using the Euler method, so that

rk+1
i = rki +∆t∂tr, (3.7)

where ∂tr is the finite difference version of the right-hand side of equation (3.3) with the spa-
tial derivatives evaluated using equations (3.5) and (3.6). The standard von Neumann stability

analysis of equation (3.7) reveals that the time step must satisfy the Courant condition

∆t <
1

2
(∆z)2. (3.8)

Equation (3.8) is already a severe constraint on the type of numerical simulations that we can

do. We need a small spatial step ∆z to accurately model the small spatial scales involved in

the approach to the singularity. However, the Courant condition then requires a very small time

step. The advantage of the rotational symmetrymeans that evenwith small∆z, only a moderate

amount of computer memory is needed to store the values of r at the spatial grid points, and

only a moderate amount of computer time is needed to take the enormous number of time steps

required by the tiny time step ∆t.
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A more serious difficulty comes from the nature of the finite difference approximations in

equations (3.5) and (3.6). These approximations are good for functions that vary very little on

the scale of∆z. However, for our surfaces, rz and rzz are singular at the tip, which means that

no matter how small we make∆z, the finite difference approximations fail at the tip.

Alternatively, we can evolve equation (3.4) which is regular at the tip. Here, the function

z(t, r) is represented by the values zki that it takes on a spatial grid with spacing∆r and at times

with spacing ∆t. In this setup, the finite difference approximations used are

zr =
zki+1 − zki−1

2∆r
, (3.9)

zrr =
zki+1 + zki−1 − 2zki

(∆r)2
. (3.10)

Time evolution is again carried out using the Euler method, so that

zk+1
i = zki +∆t∂tz, (3.11)

where ∂tz is the finite difference version of the right-hand side of equation (3.4) with the spatial
derivatives evaluated using equations (3.9) and (3.10). The standard von Neumann stability

analysis of equation (3.11) reveals that the time step must satisfy the Courant condition

∆t <
1

2
(∆r)2. (3.12)

The approximations in equations (3.9) and (3.10) are good at the tip. However, far from the

tip the surface asymptotically approaches a cylinder, which means that zr →∞; consequently,

equations (3.9) and (3.10) fail to be accurate in this region. Thus, we have one equation (3.3)

which does not work near the tip, and another (3.4) which does not work in the asymptotic

region.

Our solution is to use both equations, with equation (3.3) used in a region that does not

include the tip, and equation (3.4) used in a region that does not include the asymptotic region.

Often in numericalmethodswith two different grids, onemakes the gridsmeet at a fixed bound-

ary point. Instead, in keepingwith the spirit of differential geometry,wemake our grids overlap,

like two coordinate patches in an atlas. In a numerical simulation, the last point in a grid can-

not be evolved using the same method as the interior points and must be specified in some

other way, typically some sort of boundary condition. However, in our overlap method the

final point of one grid corresponds to an interior point of the other grid. Thus, we determine

the evolution of the finite difference function values at the end points of each grid using the

function values at the corresponding interior points of the alternate grid.

Specifically, consider the grid values zi representing the function z(r). Let N be the max-

imum value of i; we must specify the value of zN corresponding to the value that z takes if

r = (N − 1)∆r (since the grid points have spacing∆r and the first grid point is at r = 0). We

also have the grid values ri corresponding to the function r(z) represented by the values on the

other grid. If r = (N − 1)∆r is contained between some ri and ri+1, then we interpolate lin-

early between the values of z on that grid to obtain an interpolated value zN . If r = (N − 1)∆r

is not contained between any ri on the other grid (as is sometimes the case as the surface moves

under MCF), then we simply remove this last point from the grid, and subsequently the next to

last grid point becomes the last one. Correspondingly, this method is used to specify the value

of r at the endpoint of the other grid, and to remove that endpoint if necessary. Endpoints can

also be removed from the grid if derivatives become so large at those points that they cannot

be accurately computed using finite differences.
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To avoid any significant round-off error, we perform all computations in double precision.

Thus, the main source of error in our simulations is truncation error; that is, the effect of finite

size time step ∆t and space step ∆r (or ∆z). The finite difference operators that we use give

rise to errors that are first order in time step and second order in the space step. However, since

the Courant condition requires that the time step is of order the space step squared, this means

that each source of truncation error is of the same order.

We end this section by explaining how we choose the perturbed initial data sets for the

numerical simulations. We first recall that for an unperturbed solution constructed in [IW19]

(or [IWZ20], resp.), its initial data set is obtained by joining a scaled bowl soliton to a cylinder

at spatial infinity, and is defined precisely in the rescaled coordinates by equation (2.5) (or (2.8),

resp.). Expressed in terms of the unscaled (z, r)-coordinates, the ODE for the bowl soliton takes

the form

zrr = (1+ z2r )
(
β − zr

r

)
. (3.13)

For each choice of γ, we fix c = 1 and choose τ 0 large (in all the numerical simula-

tions we let τ 0 = 4) so that the matched asymptotics explained in section 2 make sense. We

then choose β according to β = c−1(γ − 1/2)2−(γ−1/2)e−(γ+1/2)τ0, and numerically integrate

equation (3.13) outward from r = 0 to value r1, which is obtained by writing R1 (chosen to

be eγτ0/2 in our numerical simulations) in the unscaled r-coordinate. For all r > r1, we use

the following analytic formula which follows from rewriting the second equation in (2.5) in

the (r, z)-coordinates:

z(r) = z(r1)+
1

c

[(
2e−τ0 − r2

) 1
2
−γ −

(
2e−τ0 − r21

) 1
2
−γ
]
. (3.14)

In the patch where we write z as a function of r, we use formula (3.14). In the patch where r is

written as a function of z, we use the formula obtained by inverting the expression (3.14).

To implement the perturbations of the initial data sets that we consider in this work, we dis-

tort the above initial data set by putting a ‘dimple’ near the tip (for the near class, cf figures 2–5

in section 4.1) or putting a dimple in the region far away from the tip (for the far class, cf

figures 6–8 in section 4.2). Precisely, for a perturbed initial data set expected to be in the near

class, we choose an amplitude a0 and a maximum r value rm. We leave the surface undistorted

for r > rm, while for r � rm we change z as follows,

z 
→ z+ a0

(
1− r2

r2m

)2

.

For a perturbed initial data set expected to be in the far class, we choose an amplitude a0, and

two values of z: za and zb. We distort the surface only on the interval (za, zb) by letting

r 
→ r − a0
(z− aa)

2(z− zb)
2

(zb − za)4
.

4. Numerical results

Let Γt, where t ∈ [t0, T), be an MCF solution of a noncompact hypersurface constructed in

[IW19, IWZ20]. In particular, Γt is asymptotic to a shrinking cylinder Cylt near spatial infinity

for all t ∈ [t0, T), where T is the time precisely when Cylt collapses to a line [SS14] (see also

figure 1). At the tip ofΓt, the curvature blows up at a type-II rate (T − t)−(γ+1/2) for γ � 1/2; at
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Figure 2. Numerical simulation of an MCF solution in the near class, for γ = 1/2.

spatial infinity, Γt is asymptotic to Cylt, which is a self-shrinking solution to MCF. We regard

Γt as MCF with a degenerate neckpinch forming at spatial infinity.

Let Γ̃t0 be a perturbation of Γt0 such that Γ̃t0 is still an embedding of a noncompact hyper-

surface and asymptotic to Cylt0 . Let r(z) be the profile of rotation for Γt0 and r̃(z) the profile of

rotation for Γ̃t0 . In particular, by construction in [IW19, IWZ20], r′(z) is always positive.
We now present the results from numerical simulations by solving MCF with initial data

Γ̃t0 using the overlapping method explained in section 3.
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Figure 3. Numerical simulation of an MCF solution in the near class, for γ = 3/4.

4.1. The near class

We define an initial data set Γ̃0 to be contained in the near class if the MCF solution start-

ing from Γ̃0 develops a type-II singularity (modelled by the bowl soliton) at t = T̃ � T. Our

numerical simulations show that if the perturbation of r(z) is placed sufficiently close to the tip

so that Γ̃t0 is still locally a graph over the cross-sectional ball of Cylt0 , then the evolution of Γ̃t

starting from Γ̃t0 generated by r̃(z) resembles that of Γt.

We now present some numerical simulations of MCF originating in the near classes. See

figure 2 for a simulation with γ = 1/2, and figures 3 and 4 for simulations with two different

values of γ > 1/2. The perturbation of the initial data set in each of figures 2–4 involves a
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Figure 4. Numerical simulation of an MCF solution in the near class, with the initial
perturbation away from the tip, for γ = 3/2.

dimple placed very close to the tip. The near class also includes initial data sets with the dimple

placed relatively far from the tip, as shown in figure 5. In each figure, the unscaled (signed)

curvature at the tip is denoted by H0, whereas HS0 :=H0(T − t)γ+1/2 denotes the rescaled

curvature at the tip according to the type-II rate of the unperturbed solution Γt.

Figure 2 shows the numerical simulation of an MCF solution in the near class, for γ = 1/2.
Graph (A) shows the embeddings as time progresses. Note that the perturbation in the initial

data near the tip quickly disappears. Graph (B) shows the time development of the mean curva-

ture at the tip. Note that it becomes arbitrarily large near the singularity. Graph (C) shows the
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Figure 5. Numerical simulation of an MCF solution in the near class, for γ = 3/4.

time development of the rescaled mean curvature at the tip. Note that it approaches a constant,

consistent with a type-II singularity forming at the tip.

Figure 3 shows the numerical simulation of an MCF solution in the near class, for γ = 3/4.
Graph (A) again shows the time progression of the embeddings; in this case the perturbation

in the initial data disappears a bit more slowly. Graph (B) shows the time development of the

mean curvature at the tip again becoming arbitrarily large, while graph (C) shows the rescaled

mean curvature at the tip approaching a constant, consistent with a type-II singularity.

Figure 4 shows the numerical simulation of an MCF solution in the near class, for γ = 3/2.
Graphs (A)–(C) indicate behaviour very similar to that seen in the examples illustrated in

figures 2 and 3.
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Figure 6. Numerical simulation of an MCF solution in the far class, for γ = 1/2.

Figure 5 shows the numerical simulation of an MCF solution in the near class with the per-

turbation of the initial data set located away from the tip, for γ = 3/4. The bahaviors indicated
in graphs (A)–(C) resemble those observed in the examples illustrated in figures 2–4.

According to these numerical simulations, the MCF Γ̃t developing from initial data in the

near class develops a type-II singularity at the tip for a wide range of choices of γ. Moreover,

the above figures of the rescaled curvature at the tip suggest that the type-II singularity of Γ̃t
blows up at the same type-II rate. Thus, we are led to the following conjecture:

Conjecture 4.1. Mean curvature flow solutions starting from initial data sets in the near

class have the same singular behaviour as the unperturbed solution, their maximum curvatures

blow up at the same type-II rate, and they always converge to a corresponding unperturbed

solution.

Remark 4.2. In [CSS07], Clutterbuck, Schnürer and Schulze prove the stability of the bowl

soliton by showing that the MCF of an entire graph that is asymptotic to the bowl soliton

converges uniformly to the bowl soliton as t→∞. In comparison, since Γt0 is close to the

bowl soliton in the interior region, and so is the perturbed initial data Γ̃t0 , our numerical results

suggest a localized stability result for the bowl soliton.

Remark 4.3. We recall the ‘vertical line test’ which is a consequence of the Sturmian

theorem [AAG95, section 4] and says that the number of intersections of the graph of r(z, t)

and a vertical line z = z0 is nonincreasing in time. Our numerical simulation shows that a solu-

tion Γ̃t in the near class converges to a solution Γt from [IW19, IWZ20]. In particular, this

is consistent with the vertical line test as any intersection at the initial time disappears as the

graph shrinks and moves toward spatial infinity under mean curvature flow. The vertical line

test does not imply any convergence of the solution. In comparison, our numerical simulation

indicates the convergence of Γ̃t and the local stability of Γt from [IW19, IWZ20].
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Figure 7. Numerical simulation of an MCF solution in the far class, for γ = 3/4.

4.2. The far class

We define an initial data set Γ̃t0 to be contained in the far class if the MCF solution start-

ing from Γ̃t0 develops a local type-I neckpinch singularity (which is modelled by the cylin-

der Sn−1 × R) at t = T̃ � T. Our numerical simulations show that if the perturbed initial

profile r̃(z) contains a local minimum—no matter the size of its depth—sufficiently far from

the tip region of Γt0 (equivalently, in the region where |r′(z)| is sufficiently small), then MCF

starting from Γ̃t0 generated by r̃(z) develops a type-I nondegenerate neckpinch.

In the literature, type-I singularities are often called rapidly forming, because one has a

bound on the time remaining until the singularity form of the type
√
T − t � C/(supΓt |h|);

by contrast, type-II singularities are called slowly forming because no such bound holds. Our

results for perturbations in the far class illustrate this heuristically: a type-II singularity is

forming slowly at the tip. However, the solution does not have time to become singular there,

because a type-I singularity is rapidly forming away from the tip.

Below we display a few numerical simulations of MCF originating in the far classes. See

figure 6 for a simulation with γ = 1/2, and figures 7 and 8 for simulations with two different

values of γ > 1/2. In each figure, the unscaled curvature at the tip is denoted by H0, and

HS0 :=H0(T − t)γ+1/2 denotes the rescaled curvature at the tip according to the type-II rate of

the unperturbed solution Γt.

Figure 6 shows the numerical simulation of an MCF solution in the far class, for γ = 1/2.
Note that as time progresses, the perturbation far from the tip increases with time, indicating

that a nondegenerate neckpinch necessarily forms far away, albeit at a finite distance, from the

tip. This singular behaviour is different from that of a degenerate neckpinch forming at spatial

infinity in the unperturbed solution.

Figure 7 shows the numerical simulation of an MCF solution in the far class, for γ = 3/4.
Again, we see that the perturbation far from the tip growswith time. The evolution indicates the
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Figure 8. Numerical simulation of an MCF solution in the far class, for γ = 3/2.

likely formation of a nondegenerate neckpinch singularity far away, but still at a finite distance,

from the tip. This shows a singular behaviour distinct from that of the unperturbed solution.

Figure 8 shows the numerical simulation of an MCF solution in the far class, for γ = 3/2.
The perturbation far from the tip—even though it is initially quite small—increases with time

and should result in a nondegenerate neckpinch singularity at a finite distance away from the

tip, contrasting with the degenerate neckpinch at infinity in the unperturbed solution.

Remark 4.4. Under MCF, a solution in the far class always has one intersection with a

vertical line. This is consistent with the vertical line test.

4.3. Near and far classes in higher dimensions

As explained in section 3, the numerical results in higher dimensions should be the same since

the lower order term in the evolution equation just has a different constant coefficient. Our

simulations agree with this expectation, as illustrated by the following sample figures for n = 3

(see figures 9 and 10).

4.4. The critical class

The numerical results for the near class solutions (cf section 4.1) and those for the far class

solutions (cf section 4.2) display distinct singular behaviours. If we interpolate between

the perturbations that lead to the near class and those that lead to the far class, then we

expect to encounter critical behaviour, corresponding to a closed interval of intermediate

parameter values [s0, s1] for s0 � s1. The existence of such critical behaviour is already

observed and confirmed for the degenerate neckpinch in MCF of closed rotationally symmet-

ric hypersurfaces [AAG95, AV97]. Indeed, if we cinch a round sphere at the equator, then

we find that loose cinching leads to a global type-I round singularity modelled by the sphere,
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Figure 9. Numerical simulation of an MCF solution in the near class, for n = 3 and
γ = 3/4.

whereas tight cinching leads to a local type-I nondegenerate neckpinch modelled by the cylin-

der. Interpolating between these two classes of type-I singular behaviours leads to a degenerate

neckpinch exhibiting both type-I and type-II singular behaviours. However, to the best of the

authors’ knowledge, whether or not degenerate neckpinches in compact MCF occur for a

closed interval of parameters or just a single threshold value is still unknown. We note that

a similar phenomenon appears in the rotationally symmetric Ricci flows on spheres [AIK11,

AIK15, GI05, GI08, GZ08].
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Figure 10. Numerical simulation of an MCF solution in the far class, for n = 3 and
γ = 3/4.

Figure 11. The conjectured behaviour for an MCF solution in the critical class.

We conjecture the following behaviour for a noncompactMCF solution in the critical class;

see figure 11 for a schematic drawing. If we perturb an initial hypersurface to have a mildly

pinched neck at some critical distance from the tip, then we expect that the MCF of the

region containing the tip and the neck should shrink to a cusp in the same fashion that MCF

of an asymmetrical dumb-bell develops a degenerate neckpinch (cf [AV97]). The curvature

near the neck is conjectured to blow up at the type-I rate (T − t)−1/2 and the singularity is

expected to be modelled by a cylinder. We conjecture that the curvature at the tip blows up at

a type-II rate (T − t)−(1−1/m), where m � 3 is an integer. We note in particular that the type-II

blowup rates (T − t)−(1−1/m) interpolate between the type-I rate (T − t)−1/2 and the type-II rates

(T − t)−(γ+1/2), where γ � 1/2, for the solutions in the near class and those constructed in

[IW19, IWZ20].
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5. Conclusions and discussions

Using a geometrically natural and analytically novel overlap method, we have carried out a

numerical investigation of the local stability of rotationally symmetric, complete noncompact

MCF solutions with type-II curvature blowup as constructed in [IW19, IWZ20]. Our numerical

results indicate two distinct singular behaviours for two distinct families of local perturbations:

local stability of the type-II curvature blowup (at the tip) for solutions in the near class solu-

tions, and local instability that leads to type-I nondegenerate neckpinch for solutions in the far

class.

Our numerical results strongly suggest the existence of a critical class as one interpolates

between the near class and the far class. Detection of such a critical class by direct numerical

testing can be very difficult, in part because it is more difficult to resolve a singularity develop-

ing in the overlapping region for our overlap method (cf section 3). Nevertheless, by drawing

an analogy from the setting of MCF of topological spheres, in which a degenerate neckpinch

occurs as a critical class in interpolating through type-I singular solutions [AAG95, AV97],

we pose the following conjecture about the geometric and analytical nature of a class of critical

solutions.

Conjecture 5.1. A solution in the critical class develops a local type-II degenerate neck-

pinch whose precise asymptotics are obtained in [AV97].

Assuming the above conjecture is true, it is then intriguing to ask whether this MCF might

be able to continue through the degenerate neckpinch singularity. We note that similar ques-

tions for Ricci flow have been studied. Angenent et al [ACK12] construct smooth forward

Ricci flow solutions of singular initial metrics resulting from rotationally symmetric nonde-

generate neckpinches on Sn+1 (occurring at the singular time T). In particular, the norm of

the Riemann curvature tensor |Rm| of these solutions decreases at a rate (precisely, log |t−T|
t−T

for t � T), which is slightly faster than the type-I rate before the singularity. In comparison,

Carson has constructed smooth Ricci flows emerging from rotationally symmetric degenerate

neckpinches on Sn+1, and the curvature of these solutions decreases at the same rate at which

it blows up [Car16] (see also [Car18]).

So far we have only considered perturbations, and hence the perturbed MCF solutions,

which are all rotationally symmetric. A natural next step for these numerical studies is to

consider perturbations with a less restrictive assumption placed on the symmetry of these

perturbations. In particular, we will be interested in non-rotationally symmetric perturbations

near the tip where the curvature blow-up is type-I. Then the numerical simulations will allow

us to explore whether or not MCF of non-rotationally symmetric geometries evolve toward

rotationally symmetric ones. We remark that for MCF of noncompact surfaces, the stability

of a rotationally symmetric type-I nondegenerate neckpinch under arbitrary C3 perturbation

is proved in a series of papers by one of the authors of this paper and his collaborators

[GK15, GKS18]. More generally, the stability of generalized cylinders in the class of self-

shrinkers is proved by Colding and Minicozzi [CM12].

In this paper, we have investigated numerically the stability of rotationally symmetric,

asymptotically cylindrical MCF solutions with type-II curvature blowup in finite time. Gener-

alizing to other asymptotic geometries, two of the authors of this paper and their collaborator

have constructedMCF of entire graphs with super-linear growths at spatial infinity and a type-

II curvature blowup occurring in infinite time [IWZ]. A numerical stability analysis for these

solutions can be pursued in the future.
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