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We consider weighted operators acting on Lp(Rd) and show that they depend contin-

uously on the weight w ∈ Ap(Rd) in the operator topology. Then, we use this result

to estimate Lpw(T) norm of polynomials orthogonal on the unit circle when the weight

w belongs to Muckenhoupt class A2(T) and p > 2. The asymptotics of the polynomial

entropy is obtained as an application.

To Peter Yuditskii on the occasion of his 65th birthday.

1 Introduction

Suppose μ is a probability measure on the unit circle T and {ϕn(z, μ)} is the sequence of

polynomials orthonormal with respect to μ, that is,

deg ϕn = n, kn
def= coeffnϕn > 0, (ϕn, ϕk)L2

μ(T) = δn,k, (1.1)

where δn,k is the Kronecker symbol and coeffjQ denotes the coefficient at the power zj in

polynomial Q. One version of Steklov’s problem in the theory of orthogonal polynomials

can be phrased as follows: given a Banach space X with norm ‖ · ‖X , what regularity of

μ is needed to have supn∈N ‖ϕn(z, μ)‖X < ∞? This problem has a long history. It goes
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5936 M. Alexis et al.

back to Steklov’s conjecture that asked to prove that the sequence {pn(x, ρ)} is bounded

for every x ∈ (a,b), where {pn} are polynomials orthonormal on the interval [a,b] with

respect to a weight ρ that satisfies ρ(x) � c > 0,x ∈ [a,b]. The negative answer to this

question was given by Rakhmanov [26, 27] and the sharp estimates on supremum norm

were obtained only recently in [2]. If X = L2
μ(T), we have ‖ϕn‖X = 1 by definition. In

this paper, we will be concerned with the case when X = Lpμ(T),p > 2 and absolutely

continuous μ is given by its weight, that is, dμ = w
2π

dθ . It is the natural choice since the

space Lpw(T) interpolates between the trivial case when X = L2
w(T) and the space L∞

w (T),

which was studied in [2, 10] for weights w that satisfy Steklov’s condition: w−1 ∈ L∞(T).

We recall the definition of Muckenhoupt class Ap(T) [30, p. 194].

Definition. The weight w ∈ Ap(T),p ∈ (1, ∞) if

[w]Ap(T)
def= sup

I

(
〈w〉I

(
〈w 1

1−p 〉I
)p−1

)
< ∞, 〈w〉I def= 1

|I|
∫
I
w dθ , (1.2)

where I is an arc in T.

Given w ∈ A2(T), we define the following quantity:

pcr(t) = sup{p : sup
n

‖ϕn(z,w)‖Lpw(T) < ∞, [w]A2(T) � t}.

Clearly, pcr(t) is nonincreasing on [1, ∞) as a function in t and pcr(t) � 2. The study

of how pcr(t) depends on t amounts to considering another more precise version of

Steklov’s problem. Our 1st main result is the following theorem.

Theorem 1.1. We have

pcr(t) > 2, lim
t→1

pcr(t) = +∞, lim
t→∞pcr(t) = 2.

Remark. In the appendix, we take w as Fisher–Hartwig weight and prove

pcr(t) < C(t − 1)−1/2 for t ∈ (1, 2]. For t > 2, the estimate pcr(t) < 2 + Ct−1/6 will be

obtained in the 3rd section.

The proof of this theorem in the perturbative regime, that is, when t is close to

1, requires the following general result in the theory of weighted Lp spaces. Consider

spaces Lp(Rd) or Lp(Td), d ∈ N. If H is a linear bounded operator from Lp(Rd) to itself,

its operator norm will be denoted by ‖H‖p,p. Suppose w ∈ Ap(Rd) and H is a linear

operator that satisfies weighted bound

‖w1/pHw−1/p‖p,p � F([w]Ap
,p), p ∈ (1, ∞) (1.3)
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Continuity of Weighted Operators 5937

with some p ∈ (1, ∞) and function F(t,p), which is continuous in t on (1, ∞). In

what follows, we do not need to know F explicitly. However, F is known in many

applications. For example, the Hunt–Muckenhoupt–Wheeden theorem [30, p. 205] shows

that H can be taken as a singular integral operator and the recent breakthrough on

domination of singular integrals by sparse operators provides the sharp dependence of

F on [w]Ap
. In particular, for a large class of singular integral operators, one can take

F(t,p) = C(p)tmax(1,(p−1)−1), (see, e.g., [19, p. 264]).

Recall that f ∈ BMO(Rd) if

‖ f ‖BMO(Rd)

def= sup
B

〈| f − 〈 f 〉B|〉B < ∞,

where B denotes a ball in R
d (see, e.g., [30, p. 140]). The theorem that comes next is a

slight improvement of a result by Pattakos and Volberg [24, 25]; see also the paper [23]

where the sublinear operators were treated.

Theorem 1.2. Suppose p ∈ (1, ∞), [w]Ap(Rd) < ∞, ‖f ‖BMO < ∞, and H satisfies (1.3).

Consider wδ = weδf . Then, there is δ0(p, [w]Ap
, ‖f ‖BMO) > 0 such that

‖w1/p
δ Hw−1/p

δ − w1/pHw−1/p‖p,p < |δ|C(p, [w]Ap
, ‖ f ‖BMO,F)

for all δ : |δ| < δ0.

Two corollaries of Theorem 1.1 are straightforward and we give their proofs in

the end of Section 3. To state them, we need a few definitions. Given a weight w, define

qcr(w) = sup{q : ‖w−1‖Lq(T) < ∞}. (1.4)

Clearly, if w ∈ A2(T), then qcr(w) > 1 and lim[w]A2→1 qcr(w) = ∞ as follows from the

definition of Ap(T) and inclusion of Muckenhoupt classes (see [32, Theorem 1] where

the sharp bounds were obtained).

Definition. If w ∈ L1(T) and it has finite logarithmic integral, that is, logw ∈ L1(T), we

define function D, the Szegő function, as an outer function in D that satisfies

|D|2 = w. (1.5)
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5938 M. Alexis et al.

The formula for D is

D(z) = exp
(

1

2π

∫
T

1 + ξ̄z

1 − ξ̄z
log

√
w(θ) dθ

)
, ξ = eiθ , z ∈ D. (1.6)

Remark. If w ∈ A2(T), then w−1 ∈ L1(T). Thus, logw ∈ L1(T) and D is well defined.

Given a polynomial Q of degree at most n, its reversed polynomial Q∗ is defined

by Q∗ = znQ(1/z̄). Notice that the map Q 	→ Q∗ depends on n. Our 1st corollary

establishes the asymptotics of {ϕ∗
n} (and thus of {ϕn} since ϕn(ξ) = ξnϕ∗

n(ξ) if ξ ∈ T).

Corollary 1.3. Suppose [w]A2
< ∞ and ‖ w

2π
‖1 = 1, then

lim
n→∞ ‖ϕ∗

n − D−1‖Lpw(T)
= 0

for every p ∈ [2, min
(
pcr([w]A2), 2(1 + qcr(w))

)
).

Another application of Theorem 1.1 has to do with the asymptotics of polyno-

mial entropy E(n, μ), which is defined by

E(n, μ) =
∫
T

|ϕn(ξ , μ)|2 log |ϕn(ξ , μ)| dμ,

where ξ = eiθ , θ ∈ [−π , π).

Corollary 1.4. If w ∈ A2(T), then

lim
n→∞E(n,w) = − 1

4π

∫ π

−π

logw dθ .

Given a probability measure μ on T, let F be defined by

F(z) =
∫
T

1 + ξ̄z

1 − ξ̄z
dμ, ξ = eiθ . (1.7)

Notice that ReF > 0 in D and F(0) = 1. For α ∈ T, consider the following one-parameter

family (see, e.g., [28, p. 36 and Formula (1.3.90)])

Fα(z)
def= ζ + F(z)

1 + ζF(z)
, ζ = 1 − α

1 + α
∈ i(R ∪ ∞).
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Continuity of Weighted Operators 5939

Function Fα also has positive real part in D and Fα(0) = 1, so

Fα(z) =
∫
T

1 + ξ̄z

1 − ξ̄z
dμα,

which defines the family of Aleksandrov–Clark measures {μα}. Taking z = 0, we see that

μα is a probability measure. If α = −1, then F−1 = 1/F and the resulting measure

is called dual for μ, we will use notation μdual(= μ−1) for it. Measure μdual plays

an important role in the theory of polynomials orthogonal on the circle. In fact, the

polynomials of the 2nd kind {ψn} defined by

ψn(z) =
∫
T

1 + zξ̄

1 − zξ̄
(ϕn(ξ , μ) − ϕn(z, μ)) dμ, ξ = eiθ

are orthonormal with respect to μdual (see, e.g., [28, Formulas (3.2.32) and (3.2.50)] or

[13, Section 1]). The Muckenhoupt class A2(T) turns out to be invariant with respect to

taking dual. In fact, more general statement is true.

Theorem 1.5. If w ∈ A2(T) and dμ = w
2π

dθ , then μα is absolutely continuous and

dμα = wα

2π
dθ for every α ∈ T. Moreover, wα ∈ A2(T).

This has an immediate implication for regularity of ψn. Indeed, if w ∈ A2(T),

then dμdual = wdual
2π

dθ with wdual ∈ A2(T), so Theorem 1.1 can be applied and we get

sup
n

‖ψn‖Lpwdual
(T) < ∞

with p ∈ [2,pcr([wdual]A2
)).

The proofs of the main results in this paper involve complex interpolation, a

suitable choice of the algebraic formulas and a few facts from the general spectral

theory.

Previous results. In [2], it was proved that, given every q ∈ [1, ∞) and n ∈ N, there is

w∗ that satisfies ‖w∗‖Lq(T) < c1, ‖w−1∗ ‖L∞(T) < c2 and nonetheless ‖ϕn(ξ ,w∗)‖L∞(T) �
C(c1, c2, q)

√
n with parameters c1 and c2 being n-independent. By Nikolskii inequality

[11, p. 102 and Theorem 2.6], we see that ‖ϕn(ξ ,w∗)‖Lp(T) > C(c1, c2,p,q)n1/2−1/p for every

p ∈ [2, ∞). Since the weight w∗ is bounded below by c−1
2 , one also gets ‖ϕn(ξ ,w∗)‖Lpw∗ (T) >

C(c1, c2,p,q)n1/2−1/p. Therefore, the stated conditions on w, that is,

‖w‖Lq(T) < c1, ‖w−1‖L∞(T) < c2, q ∈ [1, ∞)
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do not provide the uniform in n weighted Lp estimates for polynomials if p > 2 is

fixed. The question what regularity of w is enough to have supn ‖ϕn‖Lp(T) < ∞ or

supn E(n,w) < ∞ has been addressed in [3–5, 9, 10, 22]. The following theorem was

proved in [9].

Theorem 1.6 (Denisov–Rush [9]). Let s
def= ‖w‖BMO(T) < ∞ and t

def= ‖w−1‖BMO(T) < ∞.

Then, there is p(s, t) > 2 such that supn ‖ϕn(ξ ,w)‖Lp(T) < ∞.

We will see later that Theorem 1.1 implies Theorem 1.6 and, in fact, gives a

qualitatively stronger statement. It appears that A2 regularity of w is, to the best of

our knowledge, the weakest general condition that provides weighted Lp estimates on

{ϕn}.
As far as Theorem 1.2 is concerned, the continuity of operators in the weighted

spaces with respect to a weight has been addressed previously. In [24, 25], Pattakos and

Volberg show that A∞(Rd) is a metric space with metric defined by

d∗(w1,w2)
def= ‖ logw1 − logw2‖BMO.

These two authors studied other properties of A∞(Rd) as a metric space and established,

among other things, the Lipschitz continuity of ‖H‖Lpw ,Lpw
in w ∈ Ap(Rd) for H that

satisfies (1.3).

The structure of our paper is as follows. The 2nd section contains the proof of

Theorem 1.2 along with related information about the Muckenhoupt class. Theorem 1.1

and its corollaries are proved in the 3rd section. The analysis of the Christoffel–Darboux

kernel for the case when w ∈ A2(T) is done in Section 4. In Section 5, we discuss

Alexandrov–Clark measures and give proof of Theorem 1.5. The appendix contains

an example of weight in the Fisher–Hartwig class for which the asymptotics of the

polynomials is known. This provides an upper estimate for pcr(t) in the regime when

t is close to 1.

1.1 Notation

• If p ∈ [1, ∞], the dual exponent is denoted by p′ = p/(p − 1).

• Given a set A ⊆ R
d (or A ⊆ T), we will use notation Ac for its complement,

that is, Ac = R
d\A (or Ac = T\A).

• Given two Banach spaces Lp(X, μ), Lq(Y, ν), and a linear bounded operator

T : Lp(X, μ) → Lq(Y, ν), its norm is denoted by ‖T‖p,q.
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Continuity of Weighted Operators 5941

• By Lpw(T), we mean the space Lpμ(T) where dμ = wdθ
2π

.

• If f is locally integrable in R
d and B is a ball, then

〈 f 〉B def= 1

|B|
∫
B
f dx.

• Given function f ∈ L1(T), we will write h(f ) to denote the operator of

harmonic conjugation [17], that is,

h( f )= f̃ (ξ)= lim
r→1

1

2π

∫
T

f (ζ )Qr(ζ , ξ) dθ , Qr(ζ , ξ)=Im
1 + rζ̄ ξ

1 − rζ̄ ξ
, ζ =eiθ , ξ ∈ T.

(1.8)

• Given a function f ∈ L1(T), the Poisson integral is defined by [17, pp. 2

and 3]

P( f , z) = 1

2π

∫
T

1 − |z|2
|1 − ζ̄z|2 f (ζ ) dθ , z ∈ D, ζ = eiθ . (1.9)

The Cauchy integral over T is defined by [17, p. 35]

C(f , z) = 1

2π

∫
T

f (ζ )

1 − ζ̄z
dθ , z ∈ D, ζ = eiθ . (1.10)

• For two nonnegative functions f1 and f2, we write f1 � f2 if there is an

absolute constant C such that

f1 � Cf2

for all values of the arguments of f1 and f2. If the constant depends on a

parameter α, we will write f1 �α f2. We define � similarly and say that

f1 ∼ f2 if f1 � f2 and f2 � f1 simultaneously.

• The symbol C∞
c (Rd) denotes the space of infinitely smooth function with

compact support in R
d.

• Given two operators, A and B, we use the symbol [A,B] = AB − BA for their

commutator.
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2 Weighted Operators are Continuous in w ∈ Ap(Rd)

We start by recalling a few basic facts from the theory of Ap(Rd) weights (see, e.g.,

[18, 30]). Given the definition (1.2), the limiting case when p → ∞ leads to A∞(Rd),

which is characterized by (see, e.g., [15])

[w]A∞(Rd)

def= sup
B

(
〈w〉B exp

(
− 〈logw〉B

))
. (2.1)

The following results are well known.

Lemma 2.1. (See, e.g., [30, p. 218]) If ‖f ‖BMO < ∞, then there is δ1(‖f ‖BMO) > 0

such that

[eδf ]A∞(Rd) � 1

for all δ : |δ| < δ1(‖f ‖BMO).

Proof. From John–Nirenberg theorem [30, pp. 145–146], we have

sup
B

(
〈eδ|f−〈f 〉B|〉B

)
� 1 (2.2)

provided |δ| < δ1(‖f ‖BMO). In (2.1), take w = eδf , to get

[w]A∞ = sup
B

(
〈eδ(f−〈f 〉B)〉B

)
� 1

by (2.2). �

The proofs for the next two lemmas are immediate corollaries from

[32, Theorems 1∞ and 1].

Lemma 2.2. Suppose w ∈ A∞(Rd). For every p ∈ (1, ∞), there is δ2(p, [w]A∞(Rd)) > 0

such that

[wδ]Ap(Rd) < C(p, [w]A∞(Rd)) (2.3)

for every δ : |δ| < δ2(p, [w]A∞(Rd)).
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Remark. The exact dependence of the right-hand side in (2.3) on the parameters will not

be needed in this paper so we are only using the symbol C.

Lemma 2.3. Given p ∈ (1, ∞) and w ∈ Ap(Rd), there is δ3(p, [w]Ap(Rd)) > 0 such that

[w1+δ]Ap(Rd) � C(p, [w]Ap(Rd)) for δ ∈ [0, δ3).

Given these lemmas, we claim the following.

Lemma 2.4. For every p ∈ (1, ∞), f ∈ BMO(Rd), and w ∈ Ap(Rd), we have

[weδf ]Ap(Rd) � C(p, [w]Ap(Rd), ‖f ‖BMO), (2.4)

if δ : |δ| < δ4(p, [w]Ap(Rd), ‖f ‖BMO).

Proof. Consider (1.2). Given w and some nonnegative w0, we use Hölder’s inequality

(∫
B
ww0 dx

) (∫
B
(ww0)1/(1−p) dx

)p−1

�

(∫
B
wα dx

)1/α (∫
B
wα′

0 dx
)1/α′ (∫

B
wα/(1−p) dx

)(p−1)/α (∫
B
wα′/(1−p)

0 dx
)(p−1)/α′

,

where α′ is dual to α and α > 1 is chosen such that wα ∈ Ap(Rd) (this choice is warranted

by Lemma 2.3). Now, if we let w0 = eδf , then wα′
0 ∈ Ap(Rd) for small δ thanks to

Lemmas 2.1 and 2.2. This yields (2.4). �

Lemma 2.5. If p ∈ (1, ∞), w ∈ Ap(Rd), f ∈ BMO(Rd), and H satisfies (1.3), then

‖w1/p[H, f ]w−1/p‖p,p � C(p, [w]Ap(Rd), ‖ f ‖BMO,F) (2.5)

and

‖w1/p[ f , [H, f ]]w−1/p‖p,p � C(p, [w]Ap(Rd), ‖ f ‖BMO,F). (2.6)

Proof. Given two test functions u,v ∈ C∞
c (Rd), define operator-valued function

G(z)
def= w1/pezf He−zfw−1/p,
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and consider Ĝ(z) = (G(z)u,v), where the inner product is in L2(Rd). Ĝ(z) is analytic in

z around the origin and we can write Cauchy integral formula with |z| < ε, when ε is

small enough (and depends only on p, [w]Ap(Rd), and ‖f ‖BMO):

Ĝ(z) = 1

2π i

∫
|ξ |=ε

Ĝ(ξ)

ξ − z
dξ , Ĝ′(0) = (w1/p[f ,H]w−1/pu,v) = 1

2π i

∫
|ξ |=ε

Ĝ(ξ)

ξ2 dξ ,

so

|(w1/p[H, f ]w−1/pu,v)| � ε−1 max|ξ |=ε
|Ĝ(ξ)|.

For any point z : |z| = ε on the circle, we can apply Lemma 2.4 and (1.3) to choose

ε(p, [w]Ap
, ‖f ‖BMO) such that max|ξ |=ε |Ĝ(ξ)| < C(p, [w]Ap

, ‖f ‖BMO,F)‖u‖p‖v‖p′ (here p′ is

dual to p). This implies (2.5) by the standard duality argument, that is, by employing an

identity

‖O‖p,p = sup
u,v∈C∞

c (Rd),‖u‖p�1,|v‖p′�1
|(Ou, v)|,

which holds for every linear bounded operator O and p ∈ (1, ∞).

The estimate (2.6) follows from (2.5) by taking H in (2.5) as a commutator [H, f ]

itself and using (2.5). �

Proof of Theorem 1.2. Consider analytic operator-valued function defined for z : Rez ∈
[0, 1],

F(z) = w1/p exp (αzf /p)H exp (−αzf /p)w−1/p − w1/pHw−1/p − z
α

p
w1/p[f ,H]w−1/p,

where the parameter α will be chosen later, it will depend on p, ‖f ‖BMO, and [w]Ap(Rd)

only. Consider rectangle 
 = {z : |Imz| < 1, 0 < Rez < 1}. We will estimate the operator

norm of F on ∂
 as follows. If z ∈ {z : |Imz| = 1, Rez ∈ [0, 1]} ∪ {z : Rez = 1, Imz ∈ [−1, 1]},
the estimate is straightforward:

‖F(z)‖p,p � C(p, [w]Ap
,F) + C(p, [weαf ]Ap

,F)

� C(p, [w]Ap
, ‖f ‖BMO,F), α : |α| < α4(p, [w]Ap

, ‖f ‖BMO),

where we first used (2.5), (1.3), and then Lemma 2.4. Now, we take test functions

u,v ∈ C∞
c (Rd) and consider F̂(z) = (F(z)u,v). It is anaytic in 
 and continuous on 
.
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Continuity of Weighted Operators 5945

On the interval z = iξ , |ξ | < 1, have

F̂(0)=0, F̂ ′(0)=0, ∂ξ F̂(iξ)= iα

p
(w1/peiαξf /p[f ,H]e−iαξf /pw−1/pu,v) − iα

p
w1/p[f ,H]w−1/p

and

∂2
ξξ F̂(iξ) =

(
iα

p

)2

(w1/peiαξf /p[f , [f ,H]]e−iαξf /pw−1/pu,v),

|∂2
ξξ F̂(iξ)| � C(p, [w]Ap

, ‖f ‖BMO,F)‖u‖p‖v‖p′

by Lemma 2.5. The fundamental theorem of calculus gives

F̂(iξ) =
∫ ξ

0

(∫ τ

0
∂2
ττ F̂(iτ) dτ

)
dξ , |̂F(iξ)| � ξ2C(p, [w]Ap

, ‖f ‖BMO,F)‖u‖p‖v‖p′ .

The last bound implies

‖F(iξ)‖p,p � ξ2C(p, [w]Ap
, ‖f ‖BMO,F)

after we use duality argument. Notice that the function |̂F| is subharmonic in 
. Thus,

by mean-value inequality, one has

|̂F(δ)| �
(∫

∂


|̂F(ξ)| dωδ(ξ)

)
,

where ωz(ξ) denotes the harmonic measure at point z (see, e.g., [12, p. 13, Formula (3.4)]).

By duality again,

‖F(δ)‖p,p �
(∫

∂


‖F(ξ)‖p,p dωδ(ξ)

)
.

When δ → 0, measure ωδ(ξ) concentrates on the left side of ∂
 around point 0 and we

have limδ→0 ‖F(δ)‖p,p = 0. Putting the estimates together, we can make it more precise.

Recall that the harmonic measure on the upper half-plane C
+ with the reference point

z is given by

1

π

Im z

Im2z + (Re z − t)2
, z ∈ C

+, t ∈ R.
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5946 M. Alexis et al.

Consider a conformal map ϕ from C
+ to 
. For example, we can take ϕ as the following

Schwarz–Christoffel integral [31, pp. 181, 188, and 189 and Formula (6–76)]:

ϕ(z) = C
∫ z

0

dη√
(1 − η2)(1 − k2η2)

, z ∈ C
+,

where C and k are constants that can be found explicitly and k ∈ (0, 1). Under the inverse

map ϕ−1, the left side {iξ , |ξ | < 1} of 
 goes to the interval [−1, 1] and its right side

{1 + iξ , |ξ | < 1} goes to [k−1, ∞) ∪ (−∞, −k−1]. Clearly, ϕ(0) = 0. Now, we obtain∫
∂


‖F(ξ)‖p,p dωδ(ξ) �
∫
R

δ

δ2 + t2 ‖F(ϕ(t))‖p,p dt,

where ϕ(t) : R → ∂
. Substituting the estimates for ‖F‖p,p and using |ϕ(z)/z| ∼ 1, |z| <

0.5, we get ∫
R

δ

δ2 + t2 ‖F(ϕ(t))‖p,p dt �

C(p, [w]Ap
, ‖ f ‖BMO,F)

(∫ 0.5

−0.5

δt2

δ2 + t2 dt +
∫

|t|>0.5

δ

δ2 + t2 dt
)
�

C(p, [w]Ap
, ‖f ‖BMO,F)δ.

Finally, we get the statement of the theorem since

w1/p exp (αδf /p)H exp (−αδf /p)w−1/p − w1/pHw−1/p = F(δ) + δ
α

p
w1/p[f ,H]w−1/p,

and

‖F(δ)‖p,p � C(p, [w]Ap
, ‖f ‖BMO,F)δ,∥∥∥∥α

p
w1/p[f ,H]w−1/p

∥∥∥∥
p,p

� C(p, [w]Ap
, ‖f ‖BMO,F).

�

Remark. Clearly, the theorem holds if Ap(Rd) is replaced by Ap(T).

3 Steklov Problem in the Theory of Orthogonal Polynomials: w ∈ A2(T) and Bounds

for ‖ϕn(z,w)‖Lpw(T)

This section contains the proofs of Theorem 1.1 and its two corollaries. In the proof

of Theorem 1.1, we will consider separately two cases: when [w]A2(T) ∈ [1, 2) and
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Continuity of Weighted Operators 5947

when [w]A2(T) � 2. It will be more convenient for us to work with monic orthogonal

polynomials, which are defined as

�n(z, μ) = ϕn(z, μ)

kn
.

If w ∈ A2(T), then w−1 ∈ L1(T) by definition. Thus, logw ∈ L1(T) as well. This means

that μ : dμ = w
2π

dθ belongs to Szegő class of measures and, consequently, the sequence

{kn} has a finite and positive limit [13, Section 2]. More precisely, we have an estimate

exp
(

1

4π

∫
T

logw dθ

)
�

∣∣∣∣�n(z,w)

ϕn(z,w)

∣∣∣∣ � 1, ∀z ∈ C; (3.1)

(see, e.g., [10]). This bound shows that we can focus on estimating ‖�n(ξ ,w)‖Lpw(T)
.

Later in the text, we will need to use the 2nd resolvent identity, which is

contained in the following proposition.

Proposition 3.1. Suppose X is an Banach space and H,V are linear bounded operators

from X to X. Then,

(I + H + V)−1 = (I + H)−1 − (I + H + V)−1V(I + H)−1,

(I + H + V)−1 = (I + H)−1(I + V(I + H)−1)−1,

provided the operators involved are well defined and bounded in X. Moreover, assuming

‖V‖ · ‖(I + H)−1‖ < 1, we get

‖(I + H + V)−1‖ � ‖(I + H)−1‖
1 − ‖V‖ · ‖(I + H)−1‖ . (3.2)

Finally, if ‖V‖ < 1, then

‖(I + V)−1‖ � 1

1 − ‖V‖ . (3.3)

The proof of this proposition is a straightforward calculation. The following

well-known lemma (see, e.g., [18, Corollary 6]) will be important later on.

Lemma 3.2. If [w]A2(T) = 1 + τ , τ ∈ [0, 1], then

‖ logw‖BMO �
√

τ .
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5948 M. Alexis et al.

Let Pn denote the orthogonal L2(T) projection to the frequencies {1, . . . , einθ }.
Consider the perturbative regime, that is, the case when [w]A2(T) = 1 + τ and τ ∈ [0, 1].

Lemma 3.3. We have limτ→0 pcr(1 + τ) = ∞.

Proof. Fix any p � 2. We need to show that there is τ > 0 small enough so that

[υ]A2
< 1 + τ implies

sup
n

‖�n(z, υ)‖Lpυ(T)
< ∞.

Our argument is based on a representation (see, e.g., [9, Formula (8)] for �∗
n):

�n = zn − υ−1[Pn−1, υ]�n. (3.4)

This formula can be obtained by combining trivial identity �n = zn + Pn−1�n, which

holds for all monic polynomials of degree n, with Pn−1(υ�n) = 0, which follows from

that fact that �n is orthogonal to {1, z, . . . , zn−1} in L2
υ(T). Thus, we infer from (3.4) that

(
υ1/p�n

)
= υ1/pzn − υ−1/p′

Pn−1υ1/p′(
υ1/p�n

)
+ υ1/pPn−1υ−1/p

(
υ1/p�n

)
.

Denoting ζn
def= υ1/p�n, O1,n

def= υ−1/p′
Pn−1υ1/p′ − Pn−1, O2,n

def= υ1/pPn−1υ−1/p − Pn−1, we

rewrite it as

ζn = υ1/pzn − O1,nζn + O2,nζn. (3.5)

If P+ denotes the orthogonal L2(T) projection onto Hardy space H2(T) (Riesz projection),

then we can write an identity

Pn = P+ − zn+1P+z−(n+1) = zn+1[z−(n+1),P+]. (3.6)

We now apply Theorem 1.2 with H = P+, w = 1, and wδ = eδf = υ. Then, f = δ−1 log υ

and Lemma 3.2 gives

‖f ‖BMO � δ−1√
τ � 1,

when τ < δ2. Since ‖w1/pP+w−1/p‖p,p � F([w]Ap ,p) by Hunt–Muckenhoupt–Wheeden

theorem, Theorem 1.2 then yields

lim
τ→0

‖υ1/pP+υ−1/p − P+‖p,p = 0
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Continuity of Weighted Operators 5949

for every p ∈ (1, ∞). In particular, it also holds for p′:

lim
τ→0

‖υ1/p′
P+υ−1/p′ − P+‖p′,p′ = 0.

Indeed, we use the standard identity in the operator theory, which follows from duality

considerations:

‖O‖p,p = ‖O∗‖p′,p′ ,

where O∗ is adjoint operator to O with respect to L2 inner product and O is linear

bounded operator in Lp space. Since P+ is self-adjoint in L2(T), we get

‖υ1/p′
P+υ−1/p′ − P+‖p′,p′ = ‖υ−1/p′

P+υ1/p′ − P+‖p,p

and hence

lim
τ→0

‖υ−1/p′
P+υ1/p′ − P+‖p,p = 0.

Summarizing, (3.6) gives two bounds

‖O1,n‖p,p � 2‖υ−1/p′
P+υ1/p′ − P+‖p,p, ‖O2,n‖p,p � 2‖υ1/pP+υ−1/p − P+‖p,p

that hold uniformly in n. Therefore,

lim
τ→0

‖O2,n‖p,p = 0, lim
τ→0

‖O1,n‖p,p = 0.

Now, we apply (3.3) with V = O1,n to (3.5) in the space Lp(T). This gives the statement of

the lemma. Here, we notice that supn ‖znυ1/p‖p < ∞ because υ ∈ A2(T) ⊂ L1(T). �

Next, we consider more complicated case when [w]A2(T) � 2.

Remark. We have w−1/p′ = (w−p/p′
)1/p and

[w−p/p′
]Ap(T) = [w]p/p′

Ap′ (T)
(3.7)

as can be directly verified.

Lemma 3.4. For every w ∈ A2(T) and l ∈ N, define a simple function wl as

follows: let wl = 〈w〉Ij on each interval Ij = 2−l(2π)[j, j + 1), j = 0, . . . , 2l − 1. Then,
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5950 M. Alexis et al.

liml→∞ �n(z,wl) = �n(z,w) uniformly in z over compacts in C and

[wl]A2(T) � C([w]A2(T)).

Proof. From the construction, we immediately get {wl}→w in the weak–(∗) sense

when l → ∞. Since the coefficients of �n(z, μ) depend continuously on the moments

of measure μ, we have the 1st statement of the lemma. The 2nd one can be verified

directly using the definition of A2(T) characteristic. �

Next, we need the following interpolation result. Given w ∈ A2(T) and p∗ � 2,

define

Qw,p(z)
def= w−1/p′(z)Pn−1w

1/p′(z) − w1/p(z)Pn−1w
−1/p(z), (3.8)

where

1

p(z)
= z

p∗
+ 1 − z

2
,

1

p′(z)
= 1 − 1

p(z)
= 1 + z

2
− z

p∗
, Re z ∈ [0, 1] , (3.9)

so that 1/p(z) + 1/p′(z) = 1.

Proposition 3.5. Suppose w,w−1 ∈ L∞(T), parameter κ is real, and

sup
0�Re z�1

‖Qw,p(z)‖p(t),p(t) < ∞, (3.10)

where t
def= Rez ∈ [0, 1]. If there is a positive number � such that

‖(I − κQw,p(t+iy))
−1‖p(t),p(t) � 2�

for all t ∈ [0, 1] and y ∈ R, then there is an t∗(�) ∈ (0, 1], so that

‖(I − κQw,p(t+iy))
−1‖p(t),p(t) � �

for all y ∈ R and t ∈ [0, t∗].

Proof. We notice that Qw,p(iy) is bounded and antisymmetric operator in Hilbert space

L2(T). Therefore, ‖(I − κQw,p(iy))
−1‖2,2 � 1. Given conditions w,w−1 ∈ L∞(T), it is easy
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Continuity of Weighted Operators 5951

to check that the operator-valued function (I − κQw,p(z))
−1 is analytic and continuous in

the sense of Stein [6,p. 209]. Applying Stein’s interpolation theorem, we get

‖(I − κQw,p(t+iy))
−1‖p(t),p(t) � exp

(
sin(πt)

2

∫
R

log(2�)

cosh(πy) + cos(πt)
dy

)
= 1 + O(t), t → 0,

which proves the proposition. �

Remark. We emphasize here that positive t∗ does not depend on n or w.

Now, we are ready to prove the following lemma.

Lemma 3.6. For every t � 2, we have pcr(t) > 2.

Proof. Consider w ∈ A2(T). It will be more convenient later on to work with weights

that are bounded above and below. With fixed n, we can use Lemma 3.4 to approximate

w by wn, which satisfies

‖wn‖L∞(T) < C(n,w), ‖w−1
n ‖L∞(T) < C(n,w),

[wn]A2(T) � γ
def= C([w]A2

), n ∈ N

and

|�n(z,w)| � 2|�n(z,wn)|

for each z ∈ T. In what follows, we suppress the dependence of wn in n and do the proof

understanding that w depends on n and satisfies

‖w‖L∞(T) < ∞, ‖w−1‖L∞(T) < ∞, [w]A2(T) � γ < ∞,

where γ does not depend on n.

As in the proof of Lemma 3.3, we can write

ζn = w1/pzn + Qw,pζn,

where ζn
def= w1/p�n and Qw,p

def= −Bn+Cn,Bn
def= w−1/p′

Pn−1w
1/p′

,Cn
def= w1/pPn−1w

−1/p

and all operators are considered in Banach space Lp(T). It is sufficient to prove that

sup
n

‖(I − Qw,̃pγ
)−1‖p̃γ ,̃pγ

< ∞ (3.11)
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5952 M. Alexis et al.

with some p̃γ > 2 because supn ‖w1/pzn‖p < ∞ and

ζn = (I − Qw,p)−1(w1/pzn).

By open inclusion of Muckenhoupt classes (see [30, Corollary on p. 202] or [32, Theorem

1]), there is p̂γ > 2 such that p̂′
γ < 2 and γ̂

def= [w]Ap̂′
γ

< ∞ . Thus, by (3.7),

[w−p/p′
]Ap

= [w]p/p′
Ap′ � γ̂ p̂/p̂′

(3.12)

for all p ∈ [2, p̂γ ]. We need this bound to control Bn through writing it as

Bn = (w−p/p′
)1/pPn−1(w−p/p′

)−1/p

and viewing w1
def= w−p/p′

as element of Ap(T). Now, we use Hunt–Muckenhoupt–

Wheeden theorem, which implies that

sup
n

‖Bn‖p,p = sup
n

‖w1/p
1 Pn−1w

−1/p
1 ‖p,p < F1(p, γ ), (3.13)

where F1 is defined for p ∈ [2, p̂γ ]. Analogous bound for Cn is obvious:

sup
n

‖Cn‖p,p < F2(p, γ ) (3.14)

for all p ∈ (2, ∞) since w ∈ A2(T) ⊂ Ap(T). Define Qw,p(z) by (3.8), and take p∗ ∈ [2, p̂γ ].

The bounds (3.13) and (3.14) imply that

sup
n

‖Qw,p(z)‖p(t),p(t) < ∞

for t = Rez ∈ [0, 1].

Now, we proceed as follows. Recall, see (3.11), that our goal is to show that

(I − Qw,̃pγ
)−1 is bounded in Lp̃(T) for some p̃γ > 2 with bound on the operator norm

independent in n. In (3.8), we take parameter p∗ as p(1)∗ = p̂γ and define p1(z)
def= p(z)

where p(z) is from (3.9). Consider Q(j)
w,p(z)

def= jQw,p(z)/N, j = 1, . . . ,N where N is large and

will be fixed later (it will depend on γ only). Notice that, by (3.13) and (3.14), we get

‖Qw,p(t+iy)‖p(t),p(t) � ‖w−1/p′(t)Pn−1w
1/p′(t)‖p(t),p(t) + ‖w1/p(t)Pn−1w

−1/p(t)‖p(t),p(t) < Cγ .
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Continuity of Weighted Operators 5953

Let � be an absolute constant larger than one. We take N to satisfy

1 − Cγ �/N > 1/2. (3.15)

Next, we use (3.3) to get

∥∥∥∥(
I − Q(1)

w,p(t+iy)

)−1
∥∥∥∥
p(t),p(t)

� 1

1 − Cγ /N
� 1

1 − Cγ �/N
� 2 � 2�

since � > 1 by our choice. We continue with an inductive argument in which the bound

for {Q(j)
w,p(z)} provides the bound for {Q(j+1)

w,p(z)} when j = 1, . . . ,N − 1.

• Base of induction: handling Q(1)
w,p(z). Apply Proposition 3.5 with κ = 1/N to get

an absolute constant t∗ so that

∥∥∥∥(
I − Q(1)

w,p(t+iy)

)−1
∥∥∥∥
p(t),p(t)

� �

for t ∈ [0, t∗] and y ∈ R. Next, we use (3.2) with H = −Q(1)

w,p(t+iy)
and

V = −N−1Qw,p(t+iy). This gives

∥∥∥∥(
I − Q(2)

w,p(t+iy)

)−1
∥∥∥∥
p(t),p(t)

� �

1 − Cγ �/N
� 2�, t ∈ [0, t∗] (3.16)

by (3.15).

That finishes the 1st step. Next, we will explain how estimates on Q(2)
w,p(z) give

bounds for Q(3)
w,p(z).

• Handling Q(2)
w,p(z). In Proposition 3.5, we now take κ = κ2

def= 2/N,p(2)∗
def= p1(t∗) =

p(t∗) (here p(t∗) is obtained at the previous step) and compute new p2(z),p′
2(z)

by (3.9):

1

p2(z)
= z

p(t∗)
+ 1 − z

2
= zt∗

p∗
+ 1 − zt∗

2
= 1

p1(zt∗)
= 1

p(zt∗)
. (3.17)

Therefore, when z belongs to 0 < Rez < 1, zt∗ belongs to 0 < Rez < t∗
and p2(z) = p(zt∗). In this domain, we have an estimate (3.16), which can be

rewritten as ∥∥∥∥(
I − Q(2)

w,p2(t+iy)

)−1
∥∥∥∥
p2(t),p2(t)

� 2�, t ∈ [0, 1], y ∈ R,
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5954 M. Alexis et al.

where p2(z) is different from p1(z) = p(z) only by the choice of parameter p∗ in

(3.9) and is in fact a rescaling of the original p(z) as follows from (3.17). Thus,

from Proposition 3.5, we have

∥∥∥∥(
I − Q(2)

w,p2(t+iy)

)−1
∥∥∥∥
p2(t),p2(t)

� �

for t ∈ [0, t∗],y ∈ R. We use the perturbative bound (3.2) one more time with

H = −Q(2)

w,p2(t+iy)
and V = −N−1Qw,p2(t+iy) to get

∥∥∥∥(
I − Q(3)

w,p2(t+iy)

)−1
∥∥∥∥
p2(t),p2(t)

� 2�

for t ∈ [0, t∗],y ∈ R.

• Induction in j and the bound for Q(N)
w,p(z). Next, we take p(3)∗

def= p(2)∗ (t∗) and

repeat the process in which the bound

∥∥∥∥(
I − Q(j)

w,pj(t+iy)

)−1
∥∥∥∥
pj(t),pj(t)

� 2�, t ∈ [0, 1], y ∈ R

implies

∥∥∥∥(
I − Q(j+1)

w,pj+1(t+iy)

)−1
∥∥∥∥
pj+1(t),pj+1(t)

� 2�

for t ∈ [0, 1] and y ∈ R. Notice that each time the new pj(z) is in fact a rescaling

of the original p(z) by tj−1
∗ as can be seen from a calculation analogous to (3.17).

In N − 1 steps, we get

∥∥∥∥(
I − Q(N)

w,pN−1(t+iy)

)−1
∥∥∥∥
pN−1(t),pN−1(t)

� 2� , t ∈ [0, t∗], y ∈ R.

Thus, taking y = 0 and t = t∗ and recalling that pN−1(z) = p(tN−2∗ z), one has

∥∥∥∥(
I − Q(N)

w,p(tN−1∗ )

)−1
∥∥∥∥
p(tN−1∗ ),p(tN−1∗ )

� 2�.
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Continuity of Weighted Operators 5955

Since Q(N)

w,p(tN∗ )
= Qw,p(tN∗ ), we get (3.11) with

p̃γ = 2p̂γ

2tN−1∗ + p̂γ (1 − tN−1∗ )
.

The estimates (3.15) implies that we can take N ∼ Cγ . �

Proof of Theorem 1.1. From Lemmas 3.3 and 3.6, we get that pcr(t) > 2 and

limt→1 pcr(t) = ∞. To show that pcr(t) → 2 when t → ∞, it is enough to start with arbi-

trarily large t and present a weight ŵ such that [ŵ]A2(T) � t and supn ‖ϕn(ξ , ŵ)‖
Lp(t)
ŵ (T)

=
+∞ with some p(t), which depends on t and limt→∞ p(t) = 2. To this end, we use the

following result established in [10, Theorem 3.2]: given any t > 2, there is a weight w

that satisfies 1 � w � t and a subsequence {kn} such that

‖ϕkn(ξ ,w)‖L∞(T) � C(t)k1/2−ct−1/6

n .

The weight w in the statement does not satisfy condition ‖ w
2π

‖L1(T) = 1. However,

for ŵ = 2πw/‖w‖L1(T), we will have

∥∥∥ ŵ

2π

∥∥∥
L1(T)

= 1,
sup

T
ŵ

inf
T
ŵ

� t (3.18)

and

‖ϕkn(ξ , ŵ)‖L∞(T) � C(t)k1/2−ct−1/6

n .

Nikolskii inequality [11, p. 102 and Theorem 2.6] gives ‖ϕkn(ξ , ŵ)‖Lp(T) �
C(t,p)k1/2−1/p−ct−1/6

n and thus

‖ϕkn(ξ , ŵ)‖Lpŵ(T)
� C(t,p)k1/2−1/p−ct−1/6

n .

The weight ŵ satisfies the trivial bound [ŵ]A2(T) � t. Therefore,

pcr(t) �
2t1/6

t1/6 − 2c
= 2 + O(t−1/6), t → ∞.

�

Remark. Some lower bounds on pcr(t) when t → 1 and t → ∞ can be traced through the

proof. We do not include these calculations here.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/2022/8/5935/5930866 by U
niversity of W

isconsin-M
adison Libraries user on 01 M

ay 2022



5956 M. Alexis et al.

Proof of Corollary 1.3. We have (see [16, Formula (5.37)] or [13, Section 2])

lim
n→∞ ‖ϕ∗

n − D−1‖L2
w(T) = 0. (3.19)

Recall that qcr(w) was defined in (1.4). Take p̃ ∈ [2, min(pcr([w]A2), 2(1 + qcr(w)))). For

p ∈ [2, p̃), we use Hölder’s inequality

∫
T

|ϕ∗
n − D−1|pw dθ �

(∫
T

|ϕ∗
n − D−1|p1αw dθ

)1/α

·
(∫

T

|ϕ∗
n − D−1|p2α′

w dθ

)1/α′

, (3.20)

where p1 + p2 = p,p1α = p̃,p2α′ = 2, α−1 + α′−1 = 1, α ∈ (1, ∞). In fact, solving these

equations gives α = (̃p − 2)/(p − 2), p1 = p̃(p − 2)/(̃p − 2), p2 = 2(̃p − p)/(̃p − 2). The 2nd

factor in the right-hand side of (3.20) converges to zero due to (3.19). For the 1st one, we

apply the triangle inequality to write

sup
n

(∫
T

|ϕ∗
n − D−1 |̃pw dθ

)1/p̃

� sup
n

‖ϕ∗
n‖p̃,w + ‖D−1‖p̃,w.

The 1st term is finite thanks to Theorem 1.1. For the 2nd one, we use w = |D|2 to write

‖D−1‖p̃p̃,w =
∫
T

|D−1 |̃pw dθ =
∫
T

w1−p̃/2 dθ < ∞

because p̃/2 − 1 < qcr(w). �

Proof of Corollary 1.4. Let S
def= D−1 for shorthand. Recall that |ϕn| = |ϕ∗

n| on T. The

following inequality follows from the mean value formula

|x2 log x − y2 logy| � (1 + x| log x| + y| logy|)|x − y|, x, y � 0.

Hence,∫ π

−π

||ϕ∗
n|2 log |ϕ∗

n| − |S|2 log |S||w dθ �
∫ π

−π

(1 + |ϕ∗
n log |ϕ∗

n|| + |S log |S||)||ϕ∗
n| − |S||w dθ .

Then, one can write∫ π

−π

(1 + |ϕ∗
n log |ϕn|| + |S log |S||)||ϕ∗

n| − |S||w dθ �

C(δ)

(∫ π

−π

(1 + |ϕ∗
n|2+δ + |S|2+δ)w dθ

)1/2 (∫
T

|ϕ∗
n − S|2w dθ

)1/2
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Continuity of Weighted Operators 5957

by applying Cauchy–Schwarz inequality and the trivial bound: (1 +u| logu|)2 � C(δ)(1 +
u2+δ), δ > 0. The 2nd factor converges to zero when n → ∞ due to (3.19). For the 1st

one, Theorem 1.1 and identity |S| = w−1/2 allow us to find δ > 0 such that

sup
n

∫ π

−π

(|ϕ∗
n|2+δ + |S|2+δ)w dθ < ∞.

�

In the rest of this section, we will show that Theorem 1.1 implies Theorem 1.6.

We start with the following lemma.

Lemma 3.7. If w,w−1 ∈ BMO(T), then w ∈ A2(T).

Proof. Let s
def= ‖w‖BMO(T), t

def= ‖w−1‖BMO(T) for shorthand. Consider any interval

I ⊆ T. We define a
def= 〈w〉I , b def= 〈w−1〉I . We have

〈|w − a|〉I � s, 〈|w−1 − b|〉I � t

by the definition of BMO space. To estimate A2(T) characteristic, we need to bound ab.

We assume without loss of generality that I = [0, 1] and that a � b. Apply triangle’s

inequality and an estimate

1

|I| ‖w − 〈w〉I‖2
L2(I) � s2

[30, p. 144 and Formula (7)], to get

‖w‖2 � ‖w − a‖2 + ‖a‖2 � s + a, (3.21)

where here and in the rest of the proof all estimates are done with respect to I = [0, 1].

Consider a set �
def= {|w−1 − b| � 0.5b}. By John–Nirenberg inequality [30, p. 145 and

Formula (8)], we can estimate the measure of its complement via

|�c| � exp
(
−c1bt

−1
)

, (3.22)

where c1 is an absolute positive constant. We can rewrite � as follows

� = {0.5b � w−1 � 1.5b} = {2/(3b) � w � 2/b} and this formula shows that∫
w>2/b

dθ � |�c| � exp(−c1bt
−1). (3.23)
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5958 M. Alexis et al.

Then,

a =
∫
w�2/b

w dθ +
∫
w>2/b

w dθ

and consequently

∫
w>2/b

w dθ = a −
∫
w�2/b

w dθ � a − 2/b.

On the other hand, by Cauchy–Schwarz inequality and (3.23),

∫
w>2/b

w dθ � ‖w‖2

(∫
w>2/b

dθ

)1/2

� (s + a) exp
(
−c1bt

−1/2
)

.

Putting these bounds together, we get

ab � 1 + (s + a)b exp(−c1bt
−1/2).

Since supt>0 bt
−1 exp(−c1bt

−1/2) � 1, the following estimate holds:

ab � 1 + st + ab exp(−c1bt
−1/2).

Recall that a � b. Thus, an elementary bound supt>0 b
2t−2 exp(−c1bt

−1/2) < ∞ yields

ab exp(−c1bt
−1/2) � b2 exp(−c1bt

−1/2) � t2.

We finally get

ab � 1 + st + t2 � 1 + s2 + t2,

and that proves the lemma. �

Now, given this lemma, we can argue in the following way. If w,w−1 ∈ BMO(T),

then w ∈ A2(T) and Theorem 1.1 yields

sup
n

∫
T

|ϕn|pw dθ < ∞ , 2 � p < pcr([w]A2). (3.24)
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Continuity of Weighted Operators 5959

Therefore, for every q ∈ [2,p), we can use Hölder’s inequality

∫
T

|ϕn|q dθ =
∫
T

|ϕn|qwβw−β dθ �
(∫

T

|ϕn|qαwβα dθ

)1/α (∫
T

w−βα′
dθ

)1/α′

(3.25)

and choose α ∈ (1, ∞) and β > 0 such that βα = 1,qα = p. The 1st factor in the

right-hand side of (3.25) is controlled by (3.24). Since w−1 ∈ BMO(T), the 2nd factor

is finite due to John–Nirenberg estimate and we get supn ‖ϕn‖Lq(T) < ∞ as claimed

in Theorem 1.6. This argument shows that Theorem 1.1 is qualitatively stronger than

Theorem 1.6.

4 The Christoffel–Darboux Kernel and Bounds for the Associated Projection

Operator

In this section, we study the projection operators associated to {ϕn(z,w)}n�0. Recall the

Christoffel–Darboux kernel is defined as [28, p. 120]

Kn(z, ζ ,w) =
n∑

k=0

ϕk(z,w)ϕk(ζ ,w).

In particular, Kn(z, ζ ,w) is integral kernel associated to the orthogonal projection

operator Pw
[0,n] onto Span{ϕ0, . . . , ϕn} in L2

w(T); see [28] for more details. In this section,

we prove that these projections are uniformly bounded.

Theorem 4.1. Suppose w ∈ A2(T), with γ
def= [w]A2(T). Then, there exists εγ > 0

such that

sup
n

‖Pw
[0,n]‖Lpw(T),Lpw(T)

< ∞

for all p ∈ [2 − εγ , 2 + εγ ].

Recall (check (1.6)) that the Szegő function D can be introduced for any weight

w that satisfies logw ∈ L1(T). We define the subspace H2,w(T) as the closure of

Span{ϕn}n�0 = Span{zn}n�0 in L2
w(T) metric. Denote by Pw

[0,∞] the operator of orthogonal

projection onto H2,w(T) in L2
w(T). By Beurling’s theorem [17, p. 79], function f belongs

to H2,w(T) if and only if f = D−1g where g is an element of the Hardy space H2(T),

for example, H2,w(T) = D−1H2(T). Recall the standard notation that H2(T) denotes the

restriction of functions in H2(D) onto T. Since w = |D|2, the map g → D−1g is unitary
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5960 M. Alexis et al.

isomorphism between L2(T) and L2
w(T). The restriction of the same map to H2(T) is

unitary isomorphism between H2(T) and H2,w(T). Finally, the orthogonal projection of

f ∈ L2(T) to H2(T) is given by limr→1 C(f , rξ) (see (1.10) and [14, p. 2]) where the limit

exists for a.e. ξ ∈ T. Thus, we can write

Pw
[0,∞](f )(ξ)

def= lim
r→1

1

D(ξ)
C
(
f D, rξ

)
, ξ ∈ T, (4.1)

where C is Cauchy integral.

Lemma 4.2. If p ∈ (1, ∞) and w1−p/2 ∈ Ap(T), then Pw
[0,∞] is bounded on Lpw(T).

Proof. Let ζ ∈ T and z ∈ D. The Cauchy kernel in (1.10) can be written as

1

1 − ζ̄z
= 1

2

(
1 + ζ̄z

1 − ζ̄z
+ 1

)
.

The 1st term inside the parenthesis

1 + ζ̄z

1 − ζ̄z
= ζ + z

ζ − z

is the so-called Schwarz kernel. Two real parts of Schwarz kernel is Poisson kernel (1.9)

and its imaginary part, when restricted to T, defines h in (1.8). Therefore, for f ∈ Lpw(T),

we can use (4.1) and (1.5) to get

|Pw
[0,∞](f )| � lim

r→1

1

|D|P(|fD|, rξ) + 1

|D|
∫
T

|fD| dθ +
∣∣∣∣ 1

D
h (fD)

∣∣∣∣
= |f | + 1

|D|
∫
T

|fD| dθ +
∣∣∣∣ 1

D
h (fD)

∣∣∣∣ (4.2)

due to [17, p. 11] and the identity

lim
r→1

P(g, rξ) = g(ξ), a.e. ξ ∈ T,

which holds for g ∈ L1(T). Since f ∈ Lpw(T) and w = |D|2, we get

∥∥∥∥ 1

|D|
∫
T

|fD| dθ

∥∥∥∥
Lpw(T)

=
(∫

T

w1−p/2 dθ

)1/p

·
(∫

T

|f |√w dθ

)
.
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Continuity of Weighted Operators 5961

Since w1−p/2 ∈ Ap(T) and Ap(T) ⊂ L1(T), the 1st integral converges. For the 2nd one, we

use Hölder’s inequality

∫
T

|f |√w dθ =
∫
T

(|f |w1/p)(w1/2−1/p) dθ �
(∫

T

|f |pw dθ

)1/p (∫
T

w(1/2−1/p)p′
dθ

)1/p′

.

To show that the integral

∫
T

w(1/2−1/p)p′
dθ =

∫
T

w
(p−2)

2(p−1) dθ

converges, we recall that w1−p/2 ∈ Ap(T) implies that w
(p−2)

2(p−1) ∈ L1(T) as follows from

the definition of Ap(T) given in (1.2). We are left with estimating Lpw(T) norm of the

3rd term in (4.2). The operator of harmonic conjugation h is one of the basic singular

integral operators and the Hunt–Muckenhoupt–Wheeden theorem claims (see, e.g., [30,

p.205]) that υ1/phυ−1/p is a bounded operator on Lp(T) if υ ∈ Ap(T) and p ∈ (1, ∞). Since

w = |D|2 and w1−p/2 ∈ Ap(T), we get statement of the lemma thanks to the formula

‖w−1/2h(w1/2f )‖Lpw(T) = ‖w−1/2+1/ph(w1/2−1/p(w1/pf ))‖Lp(T)

after one takes υ = w1−p/2 and notices that ‖w1/pf ‖Lp(T) = ‖f ‖Lpw(T)
. �

This yields the following corollary.

Corollary 4.3. Let w ∈ A2(T). Then, Pw
[0,∞] is bounded on Lpw(T) for all p ∈ [4/3, 4].

Proof. The projection is self-adjoint operator in L2
w(T). Therefore, by duality, it is

enough to consider p ∈ [2, 4]. For p = 4, we have w−1 ∈ A2(T) ⊂ A4(T) and the previous

lemma applies. If p = 2, the projection operator has norm 1. Thus, by Riesz–Thorin

interpolation, we have an estimate for all p ∈ [2, 4]. �

Define the projection operator onto Span{ϕn}n�a+1 by

Pw
[a+1,∞]

def= Pw
[0,∞] − Pw

[0,a].

When w ∈ A2(T) and p ∈ [4/3, 4], {Pw
[0,n]}n�0 is uniformly bounded on Lpw(T) if and

only if {Pw
[n+1,∞,]}n�0 is uniformly bounded on Lpw(T). We will show the latter. To apply
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5962 M. Alexis et al.

the same process as in Section 3 for getting bounds for the polynomials {ϕn}, one needs

the following identities.

Lemma 4.4. If P1
[0,n] corresponds to the unperturbed case w = 1, then

⎧⎨⎩Pw
[n+1,∞] = (I − P1

[0,n])P
w
[0,∞] + P1

[0,n]P
w
[n+1,∞]

P1
[0,n]wPw

[n+1,∞] = 0.

Proof. To prove the 1st identity, first note that applying both operators to a function

f is the same as applying it to Pw
[0,∞]f , so it suffices to verify the identity for all

functions in the range of Pw
[0,∞], which is the closure of finite sums

∑N
j=0 ajϕj(z). The

formula then follows from P1
[0,n]ϕk = ϕk for all k � n. To prove the 2nd identity, it

suffices to note that the range of Pw
[n+1,∞] will be the closed span of {ϕn+1, ϕn+2, . . .};

since ϕn+j ⊥w {1, z, . . . , zn}, it follows that P1
[0,n]wϕn+j = 0 for all j � 1, whence the

identity. �

Proof of Theorem 4.1. By duality, it is sufficient to consider p > 2. Let

Xn
def= w1/pPw

[n+1,∞]w
−1/p and X∞

def= w1/pPw
[0,∞)w

−1/p. We need to estimate ‖Xn‖p,p.

Rewriting the relations of the above lemma in terms of operators on Lp(T), we get

⎧⎨⎩Xn = w1/p(I − P1
[0,n])w

−1/pX∞ + w1/pP1
[0,n]w

−1/pXn

w−1/p′
P1

[0,n]w
1/p′

Xn = 0.

Subtracting the bottom from the top and rearranging, we get back

(I − Qw,p)Xn = w1/p(I − P1
[0,n])w

−1/pX∞.

Notice that supn ‖w1/p(I − P1
[0,n])w

−1/pX∞‖p,p < ∞ by Hunt–Muckenhoupt–Wheeden

theorem and Lemma 4.3. Furthermore, the proof of Lemma 3.6 implies that (I −Qw,p) on

the left side of the equality has an inverse, which is bounded in Lp(T) uniformly in n for

all p ∈ [2, 2 + εγ ] ⊆ [2, 4] if εγ is small enough. Putting all of this together, we get

Xn = (I − Qw,p)−1
(
w1/p(I − P1

[0,n])w
−1/pX∞

)
.

Therefore, {Xn}n�0 is uniformly bounded, completing the proof. �
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Continuity of Weighted Operators 5963

5 Weights in A2(T) and Their Aleksandrov–Clark Measures

Several generalizations of A2(T) and A∞(T) classes were studied in the literature (see,

e.g., [29]). We will need two definitions here.

Definition. We say that w ∈ AP
2(T) if

[w]AP
2(T)

def= sup
z∈D

(
P(w, z)P(w−1, z)

)
< ∞ (5.1)

and w ∈ AP∞(T) if

[w]AP∞(T)
def= sup

z∈D

(
P(w, z) exp(−P(logw, z))

)
< ∞. (5.2)

By Jensen’s inequality, we have

[w]AP∞(T) � [w]AP
2(T). (5.3)

The following lemma is part of the folklore of modern harmonic analysis, we include its

proof for completeness.

Lemma 5.1. We have A2(T) = AP
2(T) ⊆ AP∞(T).

Proof. By (5.3), we get the 2nd inclusion. The inclusion AP
2(T) ⊆ A2(T) follows from a

bound

1

|I|2
(∫

I
wdθ

) (∫
I
w−1dθ

)
� P(w, zI)P(w−1, zI),

where zI
def= cI(1 − 0.1|I|) and cI denotes the center of I. Thus, we only need to show

A2(T) ⊆ AP
2(T). Due to the rotational symmetry of D, it is enough to take a point

z = 1 − ε, ε ∈ [0, 1) and prove that(∫ π

−π

ε

ε2 + θ2w(θ) dθ

) (∫ π

−π

ε

ε2 + θ2w
−1(θ) dθ

)
< C([w]A2(T)). (5.4)

We can assume without loss of generality that

〈w〉[0,ε] = 1, 〈w−1〉[0,ε] � [w]A2(T).

In [20], Lerner and Perez proved, in particular, the following.
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5964 M. Alexis et al.

Given p ∈ (1, ∞), we have w ∈ Ap(R) if and only if for every γ > 0 there is

C(γ , [w]Ap
) such that

|E|
|I| logγ

( |I|
|E|

)
� C(γ , [w]Ap

)

(
w(E)

w(I)

)1/p

,

where I is any interval in R and E ⊂ I.

Since each w ∈ A2(T) can be considered as a 2π-periodic weight on R with

[w]A2(R) � [w]A2(T), the result of Lerner and Perez holds for T as well. We take p = 2,

E = [0, ε], I = [0,x], 2ε < x < π to get

1

x

∫ x

0
w(s) ds � C(γ , [w]A2(T))

x

ε
log−2γ

(x
ε

)
.

Therefore, when γ > 1/2 is fixed,

∫ π

0

εw(x)

ε2 + x2 dx�ε−1

2ε∫
0

w(x) dx+ε

∫ π

2ε

w(x)

x2 dx � C([w]A2
) + ε

∫ π

2ε

1

x2

(∫ x

2ε

w(τ ) dτ

)′
dx �

C([w]A2
) + ε

∫ π

2ε

w(x) dx + C(γ , [w]A2(T))

∫ π

2ε

log−2γ (x/ε)

x
dx < C([w]A2(T)),

where in the 2nd inequality we used that A2 weights are doubling, along with our

normalization. The integral over [−π , 0] can be estimated in the same way. Thus,∫
T

εw(x)

ε2 + x2 dx < C([w]A2(T)), (5.5)

and we get a similar estimate for w−1 because w−1 ∈ A2(T). We obtained (5.4) and the

lemma is proved. �

The following lemma was proved in [7, Lemma 2]. We provide the sketch of the

proof here.

Lemma 5.2. If w ∈ AP∞(T) and dμ = w
2π

dθ , then μα is absolutely continuous and

dμα = wα

2π
dθ for every α ∈ T. Moreover, wα ∈ AP∞(T).

Proof. Given probability measure μ : dμ = w
2π

dθ +dμs, consider a generalized entropy

K(μ, z) = logP(μ, z) − P(logw, z), z ∈ D.
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Continuity of Weighted Operators 5965

If we introduce f , the Schur function of measure μ, through the formula

1 + zf (z)

1 − zf (z)
= F(z) =

∫
T

1 + ξ̄z

1 − ξ̄z
dμ(ξ), z ∈ D, ξ = eiθ , (5.6)

then the straightforward but lengthy calculation shows that

K(μ, z) = 1

2π

∫
T

log
(

1 − |zf (z)|2
1 − |f (ξ)|2

)
1 − |z|2
|1 − ξ̄z|2 dθ . (5.7)

On the other hand, it is known that the Schur function of each measure μα is given

by fα = αf . Therefore, K(μα, z) = K(μ, z). Notice that w ∈ AP∞(T) is equivalent to

K(w, z) ∈ L∞(D). Thus, if w ∈ AP∞(T), then K(μα, z) ∈ L∞(D). On the other hand, this

condition implies that μα has no singular part. Indeed, if dμα = wα

2π
dθ +dμ

(α)
s where μ

(α)
s

is a singular measure, then

log
(
P(μ

(α)
s , z) + P(wα, z)

)
− P(logwα, z) � C, z ∈ D.

This implies

P(μ
(α)
s , z) � P(μ

(α)
s , z) + P(wα, z) � C exp

(
P(logwα, z)

)
� CP(wα, z)

by Jensen inequality, hence, μ
(α)
s = 0. �

Proof of Theorem 1.5. The 1st claim is immediate from Lemmas 5.1 and 5.2. Now, let

us show that wα ∈ A2(T). We will consider w−1 = wdual only, the cases of other α can

be handled similarly. We can write F(eiθ ) = w + iw̃, where w̃ is a harmonic conjugate

function. Then, since ReF−1 = ReF−1 = ReF/|F|2, we get

wdual = w

w2 + w̃2 .

Without loss of generality, we can consider an interval Iε
def= [−ε, ε] when checking A2(T)

condition for wdual. We need to control

K
def= ε−2

(∫ ε

−ε

w

w2 + w̃2 dθ

) (∫ ε

−ε

w̃2 + w2

w
dθ

)
(5.8)
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under assumptions

〈w〉Iε = 1, 〈w−1〉Iε � [w]A2(T). (5.9)

Clearly,

ε−2
(∫ ε

−ε

w

w2 + w̃2 dθ

) (∫ ε

−ε

w dθ

)
� [w]A2(T) (5.10)

by definition and we are left with estimating

ε−2
(∫ ε

−ε

w

w2 + w̃2 dθ

)(∫ ε

−ε

w̃2

w
dθ

)
. (5.11)

We can write

w̃ = h1 + h2, h1
def= h(wχ[−2ε,2ε]), h2

def= h(wχ[−2ε,2ε]c),

where h is harmonic conjugation, a standard singular integral operator. Hence,

∫ ε

−ε

w−1|h1|2 dθ �
∫
T

w−1|h1|2 dθ =
∫
T

w−1|h(w1/2 ·w1/2χ[−2ε,2ε]|2 dθ �C([w]A2(T))

∫ 2ε

−2ε

w dθ

if we use the Hunt–Muckenhoupt–Wheeden theorem with weight w−1 ∈ A2(T) and

w−1/2hw1/2 applied to function w1/2χ[−2ε,2ε]. In (5.11), this gives the contribution

ε−2
(∫ ε

−ε

w

w2 + w̃2 dθ

)(∫ ε

−ε

h2
1

w
dθ

)
� C([w]A2(T))ε

−2
(∫ 2ε

−2ε

w dθ

)(∫ 2ε

−2ε

w−1 dθ

)
� C([w]A2(T)). (5.12)

We are left with controlling

ε−2
(∫ ε

−ε

w

w2 + w̃2 dθ

) (∫ ε

−ε

h2
2

w
dθ

)
. (5.13)

Notice that

h2(ϕ) = Im U(eiϕ), |ϕ| < ε,
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where

U(ζ )
def= 1

2π

∫
|θ |>2ε

eiθ + ζ

eiθ − ζ
w dθ , ζ ∈ D.

When |ζ − 1| < ε, we have

|U ′(ζ )| �
∫

|θ |>2ε

1

|eiθ − 1|2w dθ � ε−1
∫
T

ε

θ2 + ε2w dθ � ε−1C([w]A2(T)),

where we used the bound (5.5). Therefore,

|Im U(eiϕ) − Im U(1 − ε)| � C([w]A2(T)), |ϕ| < ε

as follows from the fundamental theorem of calculus. Therefore,

∫ ε

−ε

h2
2

w
dθ � (Im U(1 − ε))2

∫ ε

−ε

w−1 dθ + C([w]A2(T))

∫ ε

−ε

w−1 dθ . (5.14)

The 2nd term gives the following contribution in (5.13):

ε−2
(∫ ε

−ε

w

w2 + w̃2 dθ

)
C([w]A2(T))

∫ ε

−ε

w−1 dθ � C([w]A2(T))
(
〈w−1〉Iε

)2
� C([w]A2(T)),

(5.15)

where we used (5.9). For the 1st term in (5.14), recall that Re(F−1) = w/(w2 + w̃2) a.e. on

T, and estimate

ε−2
(∫ ε

−ε

w

w2 + w̃2 dθ

)
(Im U(1 − ε))2

∫ ε

−ε

w−1 dθ �
(
P(Re(F−1), 1 − ε) · (Im U(1 − ε))2

)
·
(
ε−1

∫ ε

−ε

w−1 dθ
)
.

For the last factor, one can write

ε−1
∫ ε

−ε

w−1 dθ � [w]A2(T).

Since Re(F−1) is harmonic, μdual is absolutely continuous, and Re(F−1) = Re F/|F|2,

we get

P(Re(F−1), 1 − ε) · (Im U(1 − ε))2 = Re F(1 − ε)

|F(1 − ε)|2 (Im U(1 − ε))2.
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Notice that our normalization gives

1 = (2ε)−1
∫ ε

−ε

w dθ � Re F(1 − ε) ∼
∫ π

−π

ε

θ2 + ε2w dθ � C([w]A2(T)), (5.16)

where the last bound is (5.5). Let us compare ImU(1 − ε) and ImF(1 − ε). By definition of

F and U,

|U(1 − ε) − F(1 − ε)| � 1

ε

∫ 2ε

−2ε

w dθ � C([w]A2(T)).

Thus,

Re F(1 − ε)

|F(1 − ε)|2 (ImU(1 − ε))2 � Re F(1 − ε)

|F(1 − ε)|2 (|F(1 − ε)|2 + C([w]A2(T)))

< C([w]A2(T))

(
Re F(1 − ε) + 1

Re F(1 − ε)

)
,

which, thanks to (5.16), is bounded by C([w]A2(T)). Summing up, we estimate K in (5.8) by

K � C([w]A2(T)) and the lemma is proved. �

Appendix: Fisher–Hartwig Weights

The Fisher–Hartwig weights are a large class of weights on the circle, which generalizes

the class of Jacobi weights. It was at the focus of recent research (see, e.g., [8]) mainly

due to some connections with probability and mathematical physics. For these weights,

the asymptotics of polynomials is now well understood [8]. In this section, we provide

an upper bound for the function pcr(t) using some results obtained in [21]. In particular,

the analysis developed for Fisher–Hartwig weights will give us the proof of the following

lemma.

Lemma A1. If t ∈ (1, 2), we have pcr(t) < C(t − 1)−1/2.

We provide its proof in the end of this section. For β � 0, consider the weight

wβ = |z − 1|2β on the unit circle for and the associated orthogonal polynomials

{�n(z,wβ)}. This is a particular choice for the Fisher–Hartwig weight with the single

point of singularity located at z = 1. Note that in order for wβ ∈ A2(T), one needs

2β < 1, that is, β ∈ [0, 1
2 ). We start with the following proposition.
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Proposition A2. Suppose β ∈ [0, 1
2 ). Then,

[wβ ]A2(T) ∼ 1

1 − 4β2 ∼ 1

1 − 2β
.

Furthermore, if β ∈ [0, 1/4], then

[wβ ]A2(T) − 1 ∼ β2.

Remark. The 1st asymptotic is useful in particular when [wβ ]A2(T) > 2, that is, when

our weight varies quite a bit, whereas when [wβ ]A2(T) − 1 < 1, the 2nd formula is more

helpful.

Proof. It is the straightforward calculation in which the integrals over intervals I

involved in the definition of A2(T) can be explicitly computed and estimated. We omit

considering all cases here. The formula that best explains the resulting bound is

〈w̃〉I〈w̃−1〉I = 1

1 − 4β2 , w̃ = |θ |2β

for I = [0,a] and any 0 � a � π . �

The next proposition makes use of some statements from [21]. Similar results

for Jacobi weights were obtained in [3].

Proposition A3. Let wβ = |z − 1|2β , β ∈ [0, 1/2). Then,

‖�n(·,wβ)‖Lpwβ
(T)

∼β,p

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1, 2β − pβ + 1 > 0

logn, 2β − pβ + 1 = 0

n−(2β−pβ+1), 2β − pβ + 1 < 0

.

In particular, sup
n

‖�n(·,wβ)‖Lpwβ
(T)

< ∞ if and only if p < 2 + 1
β

.

Proof. First, write

‖�n(·,wβ)‖pLp(wβ) =
∫

|θ |>δ

|�n(z,wβ)|pwβ dθ +
∫

|θ |<δ

|�n(z,wβ)|pwβ dθ ,

where δ is a parameter independent of n. To control the 1st term, we use formula (1.13)

of [21] to get ∫
|θ |>δ

|�n(z,wβ)|pwβ dθ � C(β,p, δ)
∫

|θ |>δ

w1−p/2
β dθ � C(β,p, δ).
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As for the 2nd term, using the asymptotics provided in [21, (1.17)] and applying a change

of variables x = nθ/2, we get∫
|θ |<δ

|�n(z,wβ)|pwβ dθ ∼β npβ−2β−1

δn/2∫
0

x2β−p(β−1/2)|iJβ+1/2(x) + Jβ−1/2(x)|p dx,

where Jν(x) is the Bessel function of the 1st kind. One can then split this new integral
in x up into two: when x ∈ (0, 1) and when x � 1. We then use the known asymptotics
for Bessel functions (see, e.g., [1]) to get

∫
|θ |<δ

|�n(z,wβ)|pwβ dθ ∼β n−(2β−pβ+1)
(
1+

nδ/2∫
1

x2β−pβ dx
)
∼β,p

⎧⎪⎨⎪⎩
1, 2β − pβ+1 > 0

logn, 2β − pβ+1 = 0

n−(2β−pβ+1), 2β − pβ+1 < 0

.

In particular, this quantity is bounded precisely when 2β − pβ + 1 > 0, that is, when

β < 1
p−2 . The proposition now follows from combining the given estimates. �

Now, we are ready to prove the main lemma of this section.

Proof of Lemma A1. From the 1st proposition in appendix, we get [wβ ]A2(T) − 1 ∼ β2

if β is small. The 2nd proposition shows that supn ‖�n(ξ ,wβ)‖Lpwβ
(T) < ∞ if and only if

p < 2 + β−1. Combining these results we get the statement of the lemma. �
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