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We consider weighted operators acting on LP(R%) and show that they depend contin-
uously on the weight w € Ap(]Rd) in the operator topology. Then, we use this result
to estimate L%, (T) norm of polynomials orthogonal on the unit circle when the weight
w belongs to Muckenhoupt class A,(T) and p > 2. The asymptotics of the polynomial

entropy is obtained as an application.

To Peter Yuditskii on the occasion of his 65th birthday.

1 Introduction

Suppose u is a probability measure on the unit circle T and {¢,,(z, 1)} is the sequence of
polynomials orthonormal with respect to u, that is,

def
degp,=n, k, = coeff,p, >0, (s 0012(T) = S s (1.1)

where §,, ; is the Kronecker symbol and coeff;Q denotes the coefficient at the power 7 in
polynomial Q. One version of Steklov's problem in the theory of orthogonal polynomials
can be phrased as follows: given a Banach space X with norm | - |5, what regularity of

u is needed to have sup,, .y ll¢, (2, ) llx < oo? This problem has a long history. It goes
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back to Steklov’s conjecture that asked to prove that the sequence {p,,(x, p)} is bounded
for every x € (a,b), where {p,,} are polynomials orthonormal on the interval [a, b] with
respect to a weight p that satisfies p(x) > ¢ > 0,x € [a, b]. The negative answer to this
question was given by Rakhmanov [26, 27] and the sharp estimates on supremum norm
were obtained only recently in [2]. If X = Lﬁ(T), we have |¢,llx = 1 by definition. In
this paper, we will be concerned with the case when X = Lﬁ (T),p > 2 and absolutely
continuous u is given by its weight, that is, du = 5-d6. It is the natural choice since the
space LE,(T) interpolates between the trivial case when X = LTZA,(’]I‘) and the space L3 (T),
which was studied in [2, 10] for weights w that satisfy Steklov’s condition: w—! e L>(T).
We recall the definition of Muckenhoupt class A, (T) [30, p. 194].
Definition. The weight w € A,(T),p e (1,00 if

€ 1 p_l e ].
[w]Ap(T) def stllp ((w); ((wl—P >,) ) <00, (W), def 7 / do, (1.2)

where I is an arc in T.

Given w € A,(T), we define the following quantity:
pcr(t) = Sup{p : Sup ”(pn(zl W)||L€V(’]:[‘) < OOI [W]Az(']l‘) g t}
n

Clearly, p,.(?) is nonincreasing on [1,00) as a function in ¢ and p_.(t) > 2. The study
of how p.(t) depends on ¢t amounts to considering another more precise version of

Steklov’s problem. Our 1st main result is the following theorem.

Theorem 1.1. We have

Per(d) > 2, lmpe(t) =+00, lim per(t) = 2.

Remark. In the appendix, we take w as Fisher-Hartwig weight and prove
P < C(t—1)"Y2 for t € (1,2]. For t > 2, the estimate p () < 2 + Ct~/6 will be
obtained in the 3rd section.

The proof of this theorem in the perturbative regime, that is, when ¢ is close to
1, requires the following general result in the theory of weighted LP spaces. Consider
spaces LP(R%) or LP(T%), d € N. If K is a linear bounded operator from LP(R%) to itself,
its operator norm will be denoted by IHll,,p- Suppose w € Ap(Rd) and H is a linear

operator that satisfies weighted bound

lw"PHW VP, < F(wly ,p), P € (1,00) (1.3)
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with some p € (1,00) and function F(t,p), which is continuous in ¢ on (1,00). In
what follows, we do not need to know F explicitly. However, ¥ is known in many
applications. For example, the Hunt-Muckenhoupt-Wheeden theorem [30, p. 205] shows
that H can be taken as a singular integral operator and the recent breakthrough on
domination of singular integrals by sparse operators provides the sharp dependence of
F on [W]Ap. In particular, for a large class of singular integral operators, one can take
F(t,p) = C(p)tmaxL®-D™) (see, e.g., [19, p. 264]).
Recall that f € BMO(R?) if

1 Ispromay = sup (If = (fals < oo,

where B denotes a ball in R? (see, e.g., [30, p. 140]). The theorem that comes next is a
slight improvement of a result by Pattakos and Volberg [24, 25]; see also the paper [23]

where the sublinear operators were treated.

Theorem 1.2. Suppose p € (1,0), [W]Ap(Rd) < 00, |Ifllgmo < oo, and H satisfies (1.3).

Consider w; = we. Then, there is 8, (p, (W4, Iflzmo) > O such that
1 -1 _
lw; PHw; VP — wlPHW P, < 151C(D, W, I Fllno. T

forall § : |8] < §.

Two corollaries of Theorem 1.1 are straightforward and we give their proofs in

the end of Section 3. To state them, we need a few definitions. Given a weight w, define
Qor(W) = sup{q : [w™ |l q(q) < 00} (1.4)

Clearly, if w € A,(T), then q,.(w) > 1 and 1im[w]A2—>1 q.,(w) = oo as follows from the
definition of Ap(T) and inclusion of Muckenhoupt classes (see [32, Theorem 1] where
the sharp bounds were obtained).

Definition. If w € L}(T) and it has finite logarithmic integral, that is, logw € LY(T), we

define function D, the Szego function, as an outer function in D that satisfies

ID|* = w. (1.5)
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The formula for D is

D(z) = exp (%/T i tgz log vw(0) d@) ,E=éY,zeD. (1.6)

Remark. If w € A,(T), then w—! € L}(T). Thus, logw € L}(T) and D is well defined.
Given a polynomial Q of degree at most n, its reversed polynomial Q* is defined

by Q* = z"Q(1/z). Notice that the map Q — Q* depends on n. Our 1lst corollary

establishes the asymptotics of {¢}} (and thus of {¢,} since ¢, (§) = £"¢} (&) if & € T).

Corollary 1.3.  Suppose [wl],, < oo and ||~ |l; = 1, then
: * _ -1 —
rllglgo lgn, —D ”Le,,(?l‘) 0

for every p € [2, min (pcr([w]Az), 2(1 + qcr(w)))).

Another application of Theorem 1.1 has to do with the asymptotics of polyno-
mial entropy E(n, 1), which is defined by

E(n ) =A|¢n(s,u>|zlog|wn(é,u>| du,

where & =€, 0 € [-7, 7).

Corollary 1.4. If w € A,(T), then

. L [7
nlgroloE(n,W)_—E _ﬂlogwd@.

Given a probability measure u on T, let F be defined by

14+£ .
F(2) =/ T8Z 4 £ = e, (1.7)
Tl—-£&z
Notice that ReF > 0 in D and F(0) = 1. For « € T, consider the following one-parameter
family (see, e.g., [28, p. 36 and Formula (1.3.90)])
def ¢+ F(2) 1-—

o .
F,(2) = m, CZEEL(RUOO).
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Function F, also has positive real part in D and F,(0) = 1, so

[ 1+é&z
F, (@) —/T e du,

which defines the family of Aleksandrov-Clark measures {i,}. Taking z = 0, we see that
i, is a probability measure. If « = —1, then F_; = 1/F and the resulting measure
is called dual for u, we will use notation pg,, (= wn_;) for it. Measure pug,, Plays
an important role in the theory of polynomials orthogonal on the circle. In fact, the
polynomials of the 2nd kind {v,,} defined by

1+ z€ .

Yn(2) =/ " (&, 1) — 9z ) dpt, & = €
T1—2z§

are orthonormal with respect to 4., (see, e.g., [28, Formulas (3.2.32) and (3.2.50)] or

[13, Section 1]). The Muckenhoupt class A,(T) turns out to be invariant with respect to

taking dual. In fact, more general statement is true.

Theorem 1.5. If w € A,(T) and du = 5-d#, then p, is absolutely continuous and

du, = 52do for every a € T. Moreover, w, € A,(T).

This has an immediate implication for regularity of v,,. Indeed, if w € A,(T),

then dugya = “S22ldo with wy,, € Ay(T), so Theorem 1.1 can be applied and we get

su p < o0
D Vnlip, m

with p € [2, pe(Wgyarla,))-

The proofs of the main results in this paper involve complex interpolation, a
suitable choice of the algebraic formulas and a few facts from the general spectral
theory.

Previous results. In [2], it was proved that, given every q € [1,00) and n € N, there is
w, that satisfies |w,lljq) < Cl,||w*_1||LOO(T) < ¢, and nonetheless |l¢, (&, W)l =
C(cy, ¢y, @) /1 with parameters ¢, and ¢, being n-independent. By Nikolskii inequality
[11, p. 102 and Theorem 2.6], we see that ||¢, (&, w,)llzp(r) > C(C}, Cy, D, q)n'/?~1/P for every
p € [2,00). Since the weight w, is bounded below by cz_l, one also gets | ¢, (&, W*)||L€V* T >

C(cy, ¢y, p, @n'/?71/P_ Therefore, the stated conditions on w, that is,

IWllLaery < €1/ ||W_1||L<X>("ﬂ‘) <€y, qell, o00)
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do not provide the uniform in n weighted LP estimates for polynomials if p > 2 is
fixed. The question what regularity of w is enough to have sup, ll¢, [l < oo or
sup,, E(n,w) < oo has been addressed in [3-5, 9, 10, 22]. The following theorem was

proved in [9].

Theorem 1.6 (Denisov-Rush [9]). Let s & Iwllgpoery < oo and t Lt lemocT) < ©-

Then, there is p(s, t) > 2 such that sup,, ll¢,,(§, W) (1) < 00.

We will see later that Theorem 1.1 implies Theorem 1.6 and, in fact, gives a
qualitatively stronger statement. It appears that A, regularity of w is, to the best of
our knowledge, the weakest general condition that provides weighted LP estimates on
{en}

As far as Theorem 1.2 is concerned, the continuity of operators in the weighted
spaces with respect to a weight has been addressed previously. In [24, 25], Pattakos and

Volberg show that Aoo(Rd) is a metric space with metric defined by
def
d,(wy,wy) = |[logw; —log wyllgyo-

These two authors studied other properties oono(Rd) as ametric space and established,
among other things, the Lipschitz continuity of ”H”Lﬁ,,Lﬁ, inw € Ap(Rd) for H that
satisfies (1.3).

The structure of our paper is as follows. The 2nd section contains the proof of
Theorem 1.2 along with related information about the Muckenhoupt class. Theorem 1.1
and its corollaries are proved in the 3rd section. The analysis of the Christoffel-Darboux
kernel for the case when w € A,(T) is done in Section 4. In Section 5, we discuss
Alexandrov-Clark measures and give proof of Theorem 1.5. The appendix contains
an example of weight in the Fisher—-Hartwig class for which the asymptotics of the
polynomials is known. This provides an upper estimate for p .(¢) in the regime when

t is close to 1.

1.1 Notation

e If p €[l,0], the dual exponent is denoted by p’ = p/(p — 1).

e Given a set A € R2 (or A C T), we will use notation A€ for its complement,
that is, A = R%\A (or A¢ = T\A).

e Given two Banach spaces LP(X, u), L4(Y,v), and a linear bounded operator
T:LP(X,u) — L9(Y,v), its norm is denoted by 1T p,q-
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p p da
By Ly, (T), we mean the space L;,(T) where du = w5~

If f is locally integrable in R and B is a ball, then

def 1 /
= fdx
Tls |B|

Given function f e L!(T), we will write h(f) to denote the operator of

harmonic conjugation [17], that is,

1+ 1
1-rgé’

Mﬂf@4m—/NMG@M Q,(;,6)=Im (=’ EeT.

(1.8)

Given a function f € LY(T), the Poisson integral is defined by [17, pp. 2
and 3]

2 .
P(f,2) = /Il L_Z||2f(;)d9 zeD, ¢=é°. (1.9)

The Cauchy integral over T is defined by [17, p. 35]

@

do, zeD, §=ei9. (1.10)
21 Tl—¢z

e(fl Z) =

For two nonnegative functions f; and f,, we write f; < f, if there is an

absolute constant C such that

fi <Cfy

for all values of the arguments of f; and f,. If the constant depends on a
parameter o, we will write f; <, f,. We define 2> similarly and say that
fi ~ L iffi <f, and f, < f; simultaneously.

The symbol ch(Rd) denotes the space of infinitely smooth function with
compact support in R%.

Given two operators, A and B, we use the symbol [A4, B] = AB — BA for their

commutator.
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5942 M. Alexis et al.
2 Weighted Operators are Continuous in w € A, (R%)

We start by recalling a few basic facts from the theory of Ap(]Rd) weights (see, e.g.,
[18, 30]). Given the definition (1.2), the limiting case when p — oo leads to Aoo(Rd),
which is characterized by (see, e.g., [15])

(W, (ra) def sgp ((W)B exp (— (log W)B)) . (2.1)

The following results are well known.

Lemma 2.1. (See, e.g., [30, p. 218]) If ||fllgmo < oo, then there is §;(||fllgpo) > O
such that

[egf]Aoo(Rd) ,S 1
forall § : |8] < 8; (If llgpmo)-
Proof. From John-Nirenberg theorem [30, pp. 145-146], we have

sup ((e‘sUL(f)Bl)B) <1 (2.2)
B

provided [8] < &, (If llgno)- In (2.1), take w = €%, to get
[W]Aoc = sup ((e(S(f*(ﬂB))B) 5 1
B

by (2.2). []

The proofs for the next two lemmas are immediate corollaries from
[32, Theorems 1, and 1].

Lemma 2.2. Suppose w € A
such that

R?). For every p € (1,00), there is 8,(p, (Wl _ga)) > 0

oo(

[W(S]Ap(Rd) < C(p, [W]AOO(]Rd)) (23)

for every § : |8] < 8,(p, Wy (ra))-
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Remark. The exact dependence of the right-hand side in (2.3) on the parameters will not

be needed in this paper so we are only using the symbol C.

Lemma 2.3. Given p € (1,00) and w € Ap(Rd), there is 8§5(p, [W]Ap(Rd)) > 0 such that
[W1+5]Ap(Rd) < C(p, [W]Ap(Rd)) for s € [0, 63)

Given these lemmas, we claim the following.
Lemma 2.4. Foreveryp e (1,),f € BMO(R?), and w € Ap(Rd), we have

(we' 1, wa) < C@, Wy ay, Iflpmo): (2.4)

i 5 18] < 84(p, Wy gy, Il pao)-

Proof. Consider (1.2). Given w and some nonnegative w,, we use H6lder’'s inequality

p—1
() ([ )
B B
1/ 1/a’ (p—1)/a , (p—1)/a’
(o) (o)™ (oo (o
B B B B

where o’ is dual to o and @ > 1 is chosen such that w® € Ap(Rd) (this choice is warranted
by Lemma 2.3). Now, if we let w; = e’f, then wg‘/ € Ap(Rd) for small § thanks to
Lemmas 2.1 and 2.2. This yields (2.4). |

Lemma 2.5. Ifp e (1,00), w € A,(RY), f € BMO(R?), and H satisfies (1.3), then
1w PH, flw =P, < C, Wy @y | fllpmo: F) (2.5)
and
lw' PLE I, fTIw ™ VP, < C, Wl gay, I fllgor 3)- (2.6)
Proof. Given two test functions u,v € C° (R%), define operator-valued function

G(2) def w /P ge=2 yw~1/P,
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and consider @(z) = (G(2)u, v), where the inner product is in L, (R%). @(z) is analytic in
z around the origin and we can write Cauchy integral formula with |z| < ¢, when ¢ is

small enough (and depends only on p, [W]Ap(Rd), and ||f llgpo):

. 1 G N 1 G
G(z) = -— © g, O = WPl HIW Pu ) = / @ de,
2m1 |E|=€ E —Z 2m1 |&|=€ E
so
(W PIH, flw™Pu,v)| S €7 max (G
=€
For any point z : |z] = € on the circle, we can apply Lemma 2.4 and (1.3) to choose

e, [W]Ap, I/ lgmo) such that maxs_, 1G®)| < C(p, [W]Ap, If gm0 Dl vy (here p’ is
dual to p). This implies (2.5) by the standard duality argument, that is, by employing an
identity

1ol , = sup (O, v)],
u,veC® (RY), [ulp<1, v,y <1

which holds for every linear bounded operator O and p € (1, c0).
The estimate (2.6) follows from (2.5) by taking H in (2.5) as a commutator [H, f]
itself and using (2.5). |

Proof of Theorem 1.2. Consider analytic operator-valued function defined for z : Rez €
[0, 11,

F(z) = w'/P exp (azf/p) H exp (—azf/p) w /P — w /PHW /P — z;—;wl/p[f,H]W_l/p,

where the parameter « will be chosen later, it will depend on p, ||f|lgyo, and [W]Ap(Rd>
only. Consider rectangle IT = {z : [Imz| < 1,0 < Rez < 1}. We will estimate the operator
norm of F on 911 as follows. If z€ {z: |Imz| = 1,Rez € [0,1]}U{z: Rez=1,Imz € [-1, 1]},

the estimate is straightforward:

IF @y, < C Wy, F)+ Cp, [we ], ,F)

g C(pr[W]Apr ”f”BMO! g:)r (o2 |Ol| < 054(p, [W]Ap’ ”f”BMO)r

where we first used (2.5), (1.3), and then Lemma 2.4. Now, we take test functions

u,v e ch(Rd) and consider f(z) = (F(2)u,v). It is anaytic in IT and continuous on TI.
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Continuity of Weighted Operators 5945

On the interval z = i&, |€| < 1, have
F0)=0, F(0)=0, 8.F(it)= ‘;“(wl/l’ei“ff /PIf, Hle W&/ /Py =1/Py, v) — %wl/l’ If, Hlw™ /P

and
lo

2
02.F(iE) = (;) (WP IPIf [, Elle— €l Py 1Py, v,

|02, F(i5)] < C(p, Wiy, Ifllgamor DIl vl

by Lemma 2.5. The fundamental theorem of calculus gives

_ . E T _ . _ .
Rig) = /0 ( /0 92 F(ir) dr) a, RG] < €20, Wy, o, D Iul vl
The last bound implies

IFGE),, < E2CE, Wiy, , IF o, F)

after we use duality argument. Notice that the function |f| is subharmonic in I1. Thus,

by mean-value inequality, one has

IF(8)| < ( / IF&)] dwa(s)) ,
oIl

where w,(¢) denotes the harmonic measure at point z (see, e.g., [12, p. 13, Formula (3.4)]).

By duality again,

IF@®), < ( /d F®lp, dwa@)) .

When § — 0, measure wg(&) concentrates on the left side of dIT around point 0 and we
have lim;_, IE@ N, = 0. Putting the estimates together, we can make it more precise.
Recall that the harmonic measure on the upper half-plane C* with the reference point

z is given by

1 Im z

—— ,zeCh, teR.
7 Im4z + (Re z — t)2
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Consider a conformal map ¢ from C* to I1. For example, we can take ¢ as the following
Schwarz-Christoffel integral [31, pp. 181, 188, and 189 and Formula (6-76)]:

c dn
o VA -1 -k2n2)

zeCT,

¢(z) =

where C and k are constants that can be found explicitly and k € (0, 1). Under the inverse
map ¢!, the left side {i£,|£] < 1} of I goes to the interval [—1, 1] and its right side
{1 +1i&,|8| < 1} goes to [k}, 00) U (—oo, —k~1]. Clearly, ¢(0) = 0. Now, we obtain

1)
/3 IF@©lpp dos @) < / sz IFeOl,, dt,

where ¢(t) : R — 0I1. Substituting the estimates for IE1p,p and using |p(2)/z| ~ 1, |z| <
0.5, we get

1)
/ 57 IF@O)lp,p dt <

05 542 3
C. Wla, | flsmor ) ( /_ sZre T /m>05 82+ 12 dt)
Cp, Wy, Iflsmo. DS

Finally, we get the statement of the theorem since
wl/P exp (a8f/p) H exp (—asf /p) w™ /P — wl/PHW /P = F(5) + (Sgwl/p[f,H]w_l/p,
and

IFO)p,p < C Wlg,, Ifllemo. )9,

H ;‘_;Wl/p[f, Hlw~1/P

g C(pr [W]Apl ||f||BMOI 3:)
p.p

Remark. Clearly, the theorem holds if Ap(Rd) is replaced by Ap(’]I‘).

3 Steklov Problem in the Theory of Orthogonal Polynomials: w € 4,(T) and Bounds

for (¢, (z, W)l 2 1,

This section contains the proofs of Theorem 1.1 and its two corollaries. In the proof

of Theorem 1.1, we will consider separately two cases: when [wly2q) € [1,2) and
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when [w]y2) > 2. It will be more convenient for us to work with monic orthogonal

polynomials, which are defined as

0z, 1)

D, (z,pn) = X

n

If w € A,(T), then w~! € L!(T) by definition. Thus, logw € L!(T) as well. This means
that i : du = 5-d6 belongs to Szeg6 class of measures and, consequently, the sequence

{k,,} has a finite and positive limit [13, Section 2]. More precisely, we have an estimate

exp ( / logw d9)

(see, e.g., [10]). This bound shows that we can focus on estimating ||®,, (&, W)”Lﬁ,('[r)-

[ (z w)

<1, VzeC; (3.1)
Pz, W)

Later in the text, we will need to use the 2nd resolvent identity, which is

contained in the following proposition.

Proposition 3.1. Suppose X is an Banach space and H, V are linear bounded operators
from X to X. Then,

I+H+V ' =0+ ' -T+H+W'va+H),

I+H+V) ' =a+B'a+va+HH,

provided the operators involved are well defined and bounded in X. Moreover, assuming
VI - I+ H)7H| < 1, we get

_ I +H)™
II+H+V) Y < . (3.2)
1— V|- IId+H)
Finally, if | V|| < 1, then
I+ < —— (3.3)
1V’ '

The proof of this proposition is a straightforward calculation. The following

well-known lemma (see, e.g., [18, Corollary 6]) will be important later on.

Lemma 3.2. If [wly,q) =1+7,7 €[0,1], then

I log Wligpo < V7
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Let P, denote the orthogonal L?(T) projection to the frequencies {1, ... ,einfy,

Consider the perturbative regime, that is, the case when [w]Az(T) =1+4r7andrze[0,1].
Lemma 3.3. We havelim__ ,p..(1+ 1) = oc0.

Proof. Fix any p > 2. We need to show that there is t > 0 small enough so that

[vly, <1+ 7 implies

sup || P, (2, V)|l zp ) < 0.
n

Our argument is based on a representation (see, e.g., [9, Formula (8)] for &})):

o, =2"—v P, 1, v, (3.4)

n

This formula can be obtained by combining trivial identity &, = z* + ?,,_; ®,,, which
holds for all monic polynomials of degree n, with ?,_;(v®,,) = 0, which follows from
that fact that ®,, is orthogonal to {1, z, ... ,z" 1 in Lﬁ (T). Thus, we infer from (3.4) that

(vl/pcbn) =l /Pg =P p /P (Ul/pan) + Ul/pﬂ’n_lvfl/p(vl/pd%).

. def def ' ' def
Denoting ¢, = v'/P®,, 0, , T v VPP, WP P ., 0,, /PP, _vIP_P

rewrite it as

n—1+ W€

tn =0'PZ" — 0, 10y + 0y &y (3.5)
If P* denotes the orthogonal L?(T) projection onto Hardy space H?(T) (Riesz projection),
then we can write an identity

g)n —pt _ Zn+l‘:P+Z_(n+1) — Zn+1[Z_(n+1),fP+]. (3.6)

We now apply Theorem 1.2 with H = P, w = 1, and w; = ¥ = v. Then, f = §~!logv

and Lemma 3.2 gives

Ifllemo S 87 'VT < 1,

when ¢ < 8. Since |w!'/PPTw 1P|, < F((wlyp, p) by Hunt-Muckenhoupt-Wheeden

theorem, Theorem 1.2 then yields

: 1/pp+,,—1/p _ p+ —
}13(1)”1) PTu P lpp=0
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for every p € (1, 00). In particular, it also holds for p’:

/ /
lim |[vV/P Pty VP —pt| ,  =o0.
IS0 ” ”p ,p/

Indeed, we use the standard identity in the operator theory, which follows from duality

considerations:

101, = 10¥11 -

where O* is adjoint operator to © with respect to L? inner product and O is linear

bounded operator in LP space. Since P is self-adjoint in L?(T), we get
1/p'p+,,—1/p _ p+ _ -1/pp+,,1/p) _ pt
[lv* P PTu P ||p,'p, =|v PTu P ||p’p
and hence
. —-1/p'p+.,,1/p) _ p+ —
}1_I)I(1)||U P Py p =0.
Summarizing, (3.6) gives two bounds

—1/p’ 1/p’ 1 -1
10y 1l p < 200~ VP PTLVE — PE| 110, 1, < 20 PPTUTVP —

lp,p

that hold uniformly in n. Therefore,

}IE)I(I) ||02,n||p,p = Ol }E;I(I) ||01,n||p,p = 0'

Now, we apply (3.3) with V = O, ,, to (3.5) in the space LP(T). This gives the statement of

the lemma. Here, we notice that sup,, ||z"v1/p||p < 0o because v € A,(T) C L, (T). [ |

Next, we consider more complicated case when [W]AZ(T) > 2.

Remark. We have w~ /7" = (w=P/P)1/P and
-p/p’ — [ P/P
[W p/p ]Ap(']T) = [W]Ap/(T) (37)
as can be directly verified.

Lemma 3.4. For every w € A,(T) and I € N, define a simple function w; as

follows: let w; = (W)Ij on each interval I; = 27'2mlj,j+1),j = 0,...,2" — 1. Then,
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lim; , , ®,(z, w)) = ®,,(z, w) uniformly in z over compacts in C and

[WZ]AZ(T) < C([W]Az(']r))-

Proof. From the construction, we immediately get {w;}—w in the weak—(x) sense
when | — oo. Since the coefficients of &, (z, 1) depend continuously on the moments
of measure u, we have the 1st statement of the lemma. The 2nd one can be verified

directly using the definition of A,(T) characteristic. |

Next, we need the following interpolation result. Given w € A,(T) and p, > 2,

define
Qs def W—I/P/(z)(pnilwl/p/(z) _wlP@p 1@, (3.8)

where
lﬁ—piyfl;z, p/tz)=1—$=1;rz—pi*, Rezel0,1], (3.9

so that 1/p(z) + 1/p'(z) = 1.

Proposition 3.5. Suppose w, w~! € L>°(T), parameter « is real, and

sup |lQ I < o0, (3.10)
ocnobe ' Cwp@ lp@p

where t % Rez ¢ [0, 1]. If there is a positive number A such that
-1
I = € Quy periy) ™ lpy py < 2A
for all t € [0,1] and y € R, then there is an ¢,(A) € (0, 1], so that
-1
1T =, Qy pietip) lpaypy < A
forallye Rand t < [0,t,].

Proof. We notice that Qy piy) 18 bounded and antisymmetric operator in Hilbert space

L*(T). Therefore, ||(I — kQy, piy)) 'llz2 < 1. Given conditions w, w™! € L™(T), it is easy
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Continuity of Weighted Operators 5951

to check that the operator-valued function (I — «Q is analytic and continuous in

wp@) |
the sense of Stein [6,p. 209]. Applying Stein’s interpolation theorem, we get

log(2A)
cosh(ry) + cos(xt)

_ sin(xt)
”(I - Kaw,p(t+iy)) 1||p(t)'p(t) g eXp ( 2 /R dY) =1 + O(t)r t— Or

which proves the proposition. |

Remark. We emphasize here that positive ¢, does not depend on n or w.

Now, we are ready to prove the following lemma.
Lemma 3.6. Foreveryt > 2, we have p_.(t) > 2.

Proof. Consider w € A,(T). It will be more convenient later on to work with weights
that are bounded above and below. With fixed n, we can use Lemma 3.4 to approximate

w by w,,, which satisfies
Wy llzeeery < C,w), 1wy g (ry < Cn, w),

Wyla,m <v¥ o C(lwly,), neN
and

D, (z, w)| < 2|D,(z,w,)|

for each z € T. In what follows, we suppress the dependence of w,, in n and do the proof

understanding that w depends on n and satisfies
||W||L°°(']I‘) < 00, ||W71||L00(’]1‘) < o0, [W]AZ(T) Sy < oo,

where y does not depend on n.
As in the proof of Lemma 3.3, we can write
é.n — Wl/pzn + lepé'n,
where ¢, & wl/P®, and Qy p © B +c,B, Lw e wir o Ewlirp  wolp
and all operators are considered in Banach space LP(T). It is sufficient to prove that

< 00 (3.11)

-1
Sup 1 =~ Oy 5, I, 5,
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with some ﬁy > 2 because sup,, ||W1/pz"||p < oo and
ty =T - Q) (w'/Pzh.

By open inclusion of Muckenhoupt classes (see [30, Corollary on p. 202] or [32, Theorem

1]), there is ﬁy > 2 such that ﬁ;, <2andy def [W]Aﬁ,y < 00. Thus, by (3.7),
-p/p’ p/p’ _ =p/p
[wP/P la, =Wl < yP/P (3.12)
forallp e [Z,ﬁy]. We need this bound to control B,, through writing it as
B, = (W—p/p’)l/pgpn_l(W—p/p’)—l/p

and viewing w; def /P’ as element of Ap(T). Now, we use Hunt-Muckenhoupt-

Wheeden theorem, which implies that
Sup 1B, ll,p = SUp wy PPy Pl < 5127, (3.13)
where 7, is defined for p € [2,p,]. Analogous bound for C,, is obvious:
sup 1Cxllpp < F2(0:¥) (3.14)

for all p € (2,00) since w € A,(T) C Ap(’]I‘). Define Qu pz) by (3.8), and take p, € [Z,ﬁy].
The bounds (3.13) and (3.14) imply that

SUP [1Qy () llpce) peey <

for t = Rez € [0, 1].
Now, we proceed as follows. Recall, see (3.11), that our goal is to show that
- Ow,ﬁy)_l is bounded in LP(T) for some ﬁy > 2 with bound on the operator norm

independent in n. In (3.8), we take parameter p, as plM = p, and define p,(2) def p(z)

where p(z) is from (3.9). Consider Ov(/{/),p(z) d=9fj(lwyp(z)/N,j =1,...,N where N is large and

will be fixed later (it will depend on y only). Notice that, by (3.13) and (3.14), we get

—1/p'(t 1/p/(t 1/p(t —1/p(t
1Qw pevip) Ipeype < WP OP W PO g+ W POP,_ w™ PO ey < €,
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Continuity of Weighted Operators 5953

Let A be an absolute constant larger than one. We take NV to satisfy

1-C,A/N > 1/2. (3.15)
Next, we use (3.3) to get
-1 1 1
(€Y
(I o) . ) < <2<2A
; t+ ~ N ~ ~
H W) | e 1—C,/N " 1—C,A/N

since A > 1 by our choice. We continue with an inductive argument in which the bound
for {Ogv),p(z)} provides the bound for {08,2()2)} whenj=1,...,N—1.

(1)

e Base of induction: handling Oy bz

Apply Proposition 3.5 with x = 1/N to get

an absolute constant ¢, so that

H (I oW )_1 <A
D (t+1 =
WP ey per
. _ (1)
for t € [0,t,] and y € R. Next, we use (3.2) with H = —Ow,p(t“y) and
V = —N"'Q,, iy This gives
_1 A
(2)
(I—O ) <— 2 <2A, telot.] (3.16)
p(t+ _ ' r b
” WP pey 1= CyA/N

by (3.15).
That finishes the 1st step. Next, we will explain how estimates on Og)p(z) give

3)
bounds for lep(z).

(2) def

e Handling . In Proposition 3.5, we now take k = Ky & 2/N,ps" = p;(t,) =

w,p(2)*
p(t,) (here p(t,) is obtained at the previous step) and compute new p,(2), p,(2)

by (3.9):

1z +1—z_zt*+1—zt*_ 1 1
po(z  pty) 2 p, 2 p(zty)  pat,)

(3.17)

Therefore, when z belongs to 0 < Rez < 1, zt* belongs to 0 < Rez < t,
and p,(z) = p(zt,). In this domain, we have an estimate (3.16), which can be

rewritten as

<2A, tel0,1], yeR,

-1
@
H <I = wpaeriy )) p2(®),p(t)

220z Ay L0 uo Jasn saleiqi] UOSIPEIA-UISUODSIAA JO ANISIaAun AQ 9980E6S/SE6S/8/2202/2191Ke/ulwil/woo dno olwapeae//:sdiy Wol) papeojumo(]



5954 M. Alexis et al.

where p,(2) is different from p, (z) = p(z) only by the choice of parameter p, in
(3.9) and is in fact a rescaling of the original p(z) as follows from (3.17). Thus,

from Proposition 3.5, we have

A

N

—1
@
H (I - Ow,pz(t+iy))

Dp2(t),p2(t)

for t € [0,t,],y € R. We use the perturbative bound (3.2) one more time with

_ (2) _ -1
H=-Q, iy a0d V=—-N"0Qy , iy to get
H (I —a® )_1 <2A
D2 (t+i =
RN LA PR
forte[0,t,],y e R.
e Induction in j and the bound for Ofﬁ;(z). Next, we take pf) def pf)(t*) and

repeat the process in which the bound

<2A, tel0,1], yeR
pj(®),pj(t)

0 -1
H (I - Ow,pj(t+iy))

implies

< 2A

. -1
( oy )
I—-Q .
w,pji1(t+iy)
H s Dj+1(8),pj41(t)

for ¢t € [0,1] and y € R. Notice that each time the new p;(z) is in fact a rescaling
of the original p(z) by ti_l as can be seen from a calculation analogous to (3.17).

In N — 1 steps, we get

<2A, tel0,t], yeR.

-1
(V)
(I o) . )
PN-1(t+iy)
H Ny pn-1(),pr-1(t)

Thus, taking y = 0 and t = t, and recalling that py,_,(2) = p(t¥~2z), one has

< 2A.
p ) p¥ 1

~1
@
H (I Ow,p(ti"“))
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. N .
Since O‘(/V;(tﬁ,) = Qyy p(my, We get (3.11) with
5, = 2Py
T2t v p,a-dh
The estimates (3.15) implies that we can take N ~ C,,. m

Proof of Theorem 1.1. From Lemmas 3.3 and 3.6, we get that p (f) > 2 and
lim, ,; p,.(t) = co. To show that p_.(t) — 2 when t — o0, it is enough to start with arbi-
trarily large t and present a weight w such that [Wl,, ) < t and sup,, [l¢, (¢, W) ”Lf;,(”(ir) =
+oo with some p(t), which depends on ¢ and lim, , ., p(t) = 2. To this end, we use the
following result established in [10, Theorem 3.2]: given any ¢ > 2, there is a weight w
that satisfies 1 < w < t and a subsequence {k,,} such that

1/2—ct~1/8
g, € W)llgeoqry = COky/ >

The weight w in the statement does not satisfy condition || % L1y = 1. However,
for w = 27 w/||wl|p1 (1), we will have

H w supp w
2

<t (3.18)

i infpw
and

Y 1/2—ct™1/®
g, €, W)llgeocry = COky/ >
Nikolskii inequality [11, p. 102 and Theorem 2.6] gives ||<pkn($,{7|7)||Lp(T) >

—1/p—ct-1/8
C(t,p)k:/2 1/p=¢t" and thus

A 1/2—1/p—ct™1/8
Ik, € P2 ) > CCE Yy > P70

The weight w satisfies the trivial bound [W],, ) < t. Therefore,

1/6
et -1/6
Por®) < S5 —5- =2+ 0/%), t — oo, _

Remark. Some lower bounds on p..(t) when t — 1 and t — oo can be traced through the

proof. We do not include these calculations here.
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Proof of Corollary 1.3. We have (see [16, Formula (5.37)] or [13, Section 2])
. —1 _
nlgrolo gy, —D Iz2 () = O. (3.19)

Recall that g..(w) was defined in (1.4). Take p € [2, min(p . (IWly2), 2(1 + g..(W)))). For
p € [2,p), we use Hblder's inequality

1/a ) 1/a’
/ ot — D L Pw db < (/ gt — DL Py de) : (/ |pf — D™LP2e wd9) . (3.20)
T T T

where p; + py = p,p1@ = D, P’ = 2,07 +a&'7! = 1,a € (1,00). In fact, solving these

equations givese = (p —2)/(p—2),p; =D(P—2)/(P — 2), p, = 2(p — p)/(p — 2). The 2nd
factor in the right-hand side of (3.20) converges to zero due to (3.19). For the 1st one, we

apply the triangle inequality to write

_ 1/p
sup ( /T gy — D~ Pw de) < sup 9 15,0 + 1DV 15,40
n n
The 1st term is finite thanks to Theorem 1.1. For the 2nd one, we use w = |D|? to write
-1,P -1p 1-p/2
D1, = [0 Pwds = [ wi P2 < oo

T T

because p/2 — 1 < g (w). [ |

Proof of Corollary 1.4. LetS 4f p-1 for shorthand. Recall that lo,| = lg;i| on T. The

following inequality follows from the mean value formula
x*logx — y*logy| < (1 +x|logx| +y|logyDIx —y|, x,v>0.
Hence,

T T
/ gy > log gy | — 1S log |SIlw d6 < | (1 + Ig}; 1og gyl + 1S1og SIDIlgy| — ISIIw dé.
-

-7

Then, one can write

T

(1 + l¢n log eIl + 1Slog [SIDIlen| — ISIIw do <

-7

P 1/2 1/2
C() ( (1 + @512 + ISI*PHw de) ( / lof, — S|2wde)
T

-7
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Continuity of Weighted Operators 5957

by applying Cauchy-Schwarz inequality and the trivial bound: (1 4+ u|log u|)? < C(8)(1 +
u?t%), § > 0. The 2nd factor converges to zero when n — oo due to (3.19). For the 1st
one, Theorem 1.1 and identity |S| = w~!/? allow us to find § > 0 such that

T

sup [ (o2 + 1S w do < oo.
n -7

In the rest of this section, we will show that Theorem 1.1 implies Theorem 1.6.

We start with the following lemma.

Lemma 3.7. If w,w~! e BMO(T), then w € A,(T).

Proof. Tets & Iwllgnmocr def ”W_IHBMO(T) for shorthand. Consider any interval

1< T. We define a & (w), b def (w~1);. We have

(lw—al);<s, (w'-b))<t

by the definition of BMO space. To estimate A,(T) characteristic, we need to bound ab.
We assume without loss of generality that I = [0,1] and that a < b. Apply triangle’s

inequality and an estimate

1
W = Wilzg S 5°
[30, p. 144 and Formula (7)], to get

wil, < lw —all, + llall, Ss+a, (3.21)

where here and in the rest of the proof all estimates are done with respect to I = [0, 11.
Consider a set @ & {lw~! — b| < 0.5b}. By John-Nirenberg inequality [30, p. 145 and

Formula (8)], we can estimate the measure of its complement via
1Q°] < exp (—clbt‘l) . (3.22)

where ¢, is an absolute positive constant. We can rewrite Q as follows
Q ={0.5b < w~! < 1.5b} = {2/(3b) < w < 2/b} and this formula shows that

/ do < |Q°] < exp(—c,bt™). (3.23)
w>2/b

220z Ay L0 uo Jasn saleiqi] UOSIPEIA-UISUODSIAA JO ANISIaAun AQ 9980E6S/SE6S/8/2202/2191Ke/ulwil/woo dno olwapeae//:sdiy Wol) papeojumo(]



5958 M. Alexis et al.

Then,

a= / w dé +/ w dé
w<2/b w>2/b

and consequently

/ Wd9=a—/ wdb >a—2/b.
w>2/b w<2/b

On the other hand, by Cauchy-Schwarz inequality and (3.23),

1/2
/ wdo < |lw, (/ dG) < (s+a)exp (—clbtfl/z) )
w>2/b w>2/b

Putting these bounds together, we get

ab <1+ (s +a)bexp(—c;bt"1/2).
Since sup,., bt~ exp(—c;bt71/2) < 1, the following estimate holds:

ab <1+ st+ abexp(—c,bt™1/2).
Recall that a < b. Thus, an elementary bound sup,. b%t~2 exp(—c;bt~!/2) < oo yields

ab exp(—clbt_l/Z) < b? exp(—clbt_l/Z) <t
We finally get
ab <1+st+1t*><1+s%+1¢,

and that proves the lemma. |

Now, given this lemma, we can argue in the following way. If w, w~! e BMO(T),
then w € A,(T) and Theorem 1.1 yields

sup/ lp,Pwdd < o0, 2<p<p([wlye). (3.24)
n Jr
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Continuity of Weighted Operators 5959

Therefore, for every q € [2, p), we can use Holder's inequality

1/a , 1/a’
/ lp, |7 do =/ lg, [ TwPw do < (/ |, |2 WP d0) (/ whe de) (3.25)
T T T T

and choose ¢ € (1,00) and 8 > 0 such that o = 1,qe¢ = p. The 1st factor in the
right-hand side of (3.25) is controlled by (3.24). Since w~! € BMO(T), the 2nd factor
is finite due to John-Nirenberg estimate and we get sup,, ll¢,llzqry < oo as claimed
in Theorem 1.6. This argument shows that Theorem 1.1 is qualitatively stronger than
Theorem 1.6.

4 The Christoffel-Darboux Kernel and Bounds for the Associated Projection

Operator

In this section, we study the projection operators associated to {¢,(z, w)},>. Recall the
Christoffel-Darboux kernel is defined as [28, p. 120]

Ky (2,8, W) = D ¢p(2, W)gp(, w).
k=0

In particular, K,,(z,¢{,w) is integral kernel associated to the orthogonal projection
operator iPE"éln] onto Span{gg,...,¢,} in La,(’ﬂ‘); see [28] for more details. In this section,

we prove that these projections are uniformly bounded.

Theorem 4.1. Suppose w € A,(T), with y def (Wla,r)- Then, there exists €, > 0

y
such that
sup P16, llz2,(m) 12, (1) < 2°
n

forallp € [2 —€,,2 —l—ey].

Recall (check (1.6)) that the Szeg6 function D can be introduced for any weight
w that satisfies logw e LY(T). We define the subspace H, ., (T) as the closure of
Span{g,},> = Span{zn}n>0 in La,(’]l“) metric. Denote by ?E/(l)/,oo] the operator of orthogonal
projection onto H, ., (T) in L2, (T). By Beurling's theorem [17, p. 79], function f belongs
to H,,,(T) if and only if f = D~'g where g is an element of the Hardy space H,(T),
for example, H, ,(T) = D~'H,(T). Recall the standard notation that H,(T) denotes the

restriction of functions in H,(D) onto T. Since w = |D|?, the map g — D~!g is unitary
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isomorphism between L?(T) and L2 (T). The restriction of the same map to H?(T) is
unitary isomorphism between H,(T) and H, ,,(T). Finally, the orthogonal projection of
f € L3(T) to H,(T) is given by lim,_; C(f,r€) (see (1.10) and [14, p. 2]) where the limit

exists for a.e. £ € T. Thus, we can write

I
P HE) IID(g)@(fDr%‘) EeT, (4.1)

where C is Cauchy integral.

Lemma4.2. Ifpe(l,00)and w!™P/2cA »(T), then Pf _; is bounded on IP (7).

Proof. Let¢ € T and z € D. The Cauchy kernel in (1.10) can be written as
1_lgz=%(if§“)'

The 1st term inside the parenthesis

is the so-called Schwarz kernel. Two real parts of Schwarz kernel is Poisson kernel (1.9)
and its imaginary part, when restricted to T, defines b in (1.8). Therefore, for f € L5, (T),

we can use (4.1) and (1.5) to get

[Ooo](f)|<hmﬁﬂ’(tﬂ7l s>+ﬁ/vmd +‘ b(fD)‘

~ifi+ 5 [ D10+ | Zo o) 4.2
due to [17, p. 11] and the identity

lin} P(g,r&) =g&), ae &eT,

which holds for g € L}(T). Since f € LE,(T) and w = |D|?, we get

=) " (o).

[ o1
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Since w!=P/2 ¢ A,(T) and A,(T) C L(T), the 1st integral converges. For the 2nd one, we

use Holder's inequality

1/p 1/p
/ Iflvw do = / (FIw'/Py(w/271/P) 4o < ( / fIPw de) ( / wl/2=1/PP' de)
T T T T

To show that the integral
) (p-2)
/W(I/Z—l/p)p de :/WZ(p—l) do
T T

(p=2)
converges, we recall that w!P/2 ¢ A,(T) implies that w2(P-1 ¢ LY(T) as follows from

the definition of Ap(T) given in (1.2). We are left with estimating L%, (T) norm of the
3rd term in (4.2). The operator of harmonic conjugation h is one of the basic singular
integral operators and the Hunt-Muckenhoupt-Wheeden theorem claims (see, e.g., [30,
p.205)) that v'/Phu~1/P is a bounded operator on LP(T) if v € A,(T) and p € (1,00). Since

w = |D|? and w!7P/2 ¢ A,(T), we get statement of the lemma thanks to the formula
||W_1/2h(wl/2f)||L‘pN(’]1‘) — ”W—1/2+1/pb(wl/Z—l/P(Wl/Pf))||Lp(T)
after one takes v = w' /2 and notices that |w/Pf| ;) = 2 om- [ ]
This yields the following corollary.
Corollary 4.3. Let w € A,(T). Then, TE’(‘)’IOO] is bounded on L%,(T) for all p € [4/3, 4l.
Proof. The projection is self-adjoint operator in L2,(T). Therefore, by duality, it is
enough to consider p € [2,4]. For p = 4, we have w™! € A,(T) C A,4(T) and the previous

lemma applies. If p = 2, the projection operator has norm 1. Thus, by Riesz-Thorin

interpolation, we have an estimate for all p € [2, 4]. |
Define the projection operator onto Span{y,},> .1 by

w def pHw w
[a+1,00] — UJ[0,00] - :P[O,a]'

When w € A,(T) and p € [4/3, 4], {?F(l)/,n]}n>0 is uniformly bounded on L%, (T) if and
only if {?m +1,00]}n>0 18 uniformly bounded on LP,(T). We will show the latter. To apply
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the same process as in Section 3 for getting bounds for the polynomials {¢,}, one needs

the following identities.

Lemma 4.4. If T[lo,n] corresponds to the unperturbed case w = 1, then

w _ 1 w 1 w
Prast,000 = = Pio ) P10,001 T Pio,1 Pinr1,00]

1 w _
Pio W Pl11,00 = 0-

Proof. To prove the 1st identity, first note that applying both operators to a function
f is the same as applying it to ng'oo}f, so it suffices to verify the identity for all
functions in the range of TE/(‘J],OO]' which is the closure of finite sums Z}'V:o a;p;(2). The
formula then follows from T[lo,n]‘/’k = ¢, for all kK < n. To prove the 2nd identity, it
suffices to note that the range of P[; , ; will be the closed span of {¢, 1, ¢, 2.}
since ¢,,; L, {1,z...,2"}, it follows that TP[IO,n]WgonJrj = 0 for all j > 1, whence the
identity. |

Proof of Theorem 4.1. By duality, it is sufficient to consider p > 2. Let
X, def Wl/pi]’f,‘;ﬂoolw_l/p and X def wl/piPE’(‘)’oo)W_l/p. We need to estimate [ X[, ,-
Rewriting the relations of the above lemma in terms of operators on LP(T), we get
1 1 ~1 1/ppl -1
X, =wlPI - Py pw VPX  +wl/PPy wlPX,
—1/p'pl 1y —
w VPP WP X, =0.
Subtracting the bottom from the top and rearranging, we get back
I = Qy )X, = WPIT = Plg W HPX_ .
Notice that sup, [w/P(I — Py )W /PX_|l,, < oo by Hunt-Muckenhoupt-Wheeden
theorem and Lemma 4.3. Furthermore, the proof of Lemma 3.6 implies that (I — Q,, ;) on

the left side of the equality has an inverse, which is bounded in LP(T) uniformly in n for

allp e (2,2 +¢,] € [2,4]if €, is small enough. Putting all of this together, we get
X, =(I—Q,,)" (wl/P I— iPlloln])w_l/pXOO).

Therefore, {X,},,> is uniformly bounded, completing the proof. |
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5 Weights in A, (T) and Their Aleksandrov-Clark Measures

Several generalizations of A,(T) and A, (T) classes were studied in the literature (see,
e.g., [29]). We will need two definitions here.
Definition. We say that w € AS(T) if

Wagery = sup (Pw, 2P(w™,2)) < oo (5.1)
2 zeD
and w € AP (T) if
[W]A&(T) def sup (TP(W, z) exp(—P(log w, z))) < 00. (5.2)
zeD

By Jensen's inequality, we have
[W]Aé’o(T) < [W]Ag('ﬂ')' (5.3)

The following lemma is part of the folklore of modern harmonic analysis, we include its

proof for completeness.
Lemma 5.1. We have A,(T) = A5(T) € AL (T).

Proof. By (5.3), we get the 2nd inclusion. The inclusion Alz’ (T) € A,(T) follows from a

bound
1
W (/dee) (/Iw_lde) < P(w, zI)T(W_l,zI),

where z; def c;(1 — 0.1|I]) and c; denotes the center of I. Thus, we only need to show
A,(T) < A12° (T). Due to the rotational symmetry of D, it is enough to take a point
z=1-—¢,¢e €[0,1) and prove that

T € T € _
We can assume without loss of generality that

-1
Wpag=1 (W )pq < [Wlg,m).

In [20], Lerner and Perez proved, in particular, the following.
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Given p € (1,00), we have w € AP(R) if and only if for every y > 0 there is

C(y,wly,) such that
|E| 1| w(E)\ /P
_1 C , R )
I o8’ (IEI) (v Wiy )(W(I))

where I is any interval in R and E C I.
Since each w € A,(T) can be considered as a 2w-periodic weight on R with
(Wla,®) S [Wlg,(r). the result of Lerner and Perez holds for T as well. We take p = 2,

E=1[0,el,I =[0,x],2¢ < x <7 to get

1 rx X -2y (X
)—{/0 w(s)ds < C(y, [W]Az(T))z log™ (E) )

Therefore, when y > 1/2 is fixed,

2e
T ew(x) _ T w(x) T 1 X /
/0 2+ x2 dxSe 1/w(x)dx+e/2 2 (1X<C‘([W]Az)—i—6/26 ;( W(‘L’)d‘L’) dx <
0

€ 2e

| 2y
CIwly,) + e/ w(x) dx + C(y, [W]Az(T))/ og—(X/e) dx < C(wlg, 1),

where in the 2nd inequality we used that A, weights are doubling, along with our

normalization. The integral over [—r, 0] can be estimated in the same way. Thus,

A% dx < C(Iwla, ), (5.5)

and we get a similar estimate for w~! because w™! ¢ A,(T). We obtained (5.4) and the

lemma is proved. n

The following lemma was proved in [7, Lemma 2]. We provide the sketch of the

proof here.

Lemma 5.2. If w € AP (T) and du = 7-df, then p, is absolutely continuous and

du, = 5= Y dp for every a € T. Moreover, w, € AL (T).

Proof. Given probability measure u : du = 5-d6f +dug, consider a generalized entropy

K(u,z) =logP(u,z) — P(logw, 2), zeD.
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If we introduce f, the Schur function of measure u, through the formula

1+zf(z) [ 1+éz _ it
TJ‘,(Z)—F(Z)—/Tl_éz d,bL(E), zeD, s—e ’ (5.6)

then the straightforward but lengthy calculation shows that

1 1- IZf(z)Iz) 1— |z|?
:]C , = —_—— 1 b dg' 5'7
(2) =7 /T Og( 1-1f&12 ) 1 -&z? o7

On the other hand, it is known that the Schur function of each measure p, is given
by f, = «of. Therefore, K(u,,2z) = K(u,z). Notice that w € Ago(T) is equivalent to
KX(w,z) € L*®°(D). Thus, if w € Ago(']I‘), then K(u,,z) € L*(D). On the other hand, this
(o)

condition implies that 1, has no singular part. Indeed, if du, = %d@ + duéa) where ug

is a singular measure, then
log (iP(,uga),z) + T(Wa,z)) —P(logw,,z) <C, zeD.
This implies
P, 2) < P, 2) + P(w,, z) < Cexp (Plogw,,2)) < CP(w,,2)

by Jensen inequality, hence, ug"‘) =0. |

Proof of Theorem 1.5. The 1st claim is immediate from Lemmas 5.1 and 5.2. Now, let
us show that w, € A,(T). We will consider w_; = wy,, only, the cases of other « can
be handled similarly. We can write F(e¥) = w + iw, where W is a harmonic conjugate
function. Then, since ReF_; = ReF 1 = ReF/lFlz, we get

w

W, = —— =5
dual w2 + 2

Without loss of generality, we can consider an interval I, def [—¢€, €] when checking A,(T)

condition for wy,,;. We need to control

€ € 7,2 2
©fe2( [ ™ g9 / WEW 49 (5.8)
—e W2+ w2 e w
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under assumptions
<W)I = 1, <W_1>IE < [W]Az(T)' (5.9)

Clearly,

—2 € w €
‘ ( —e w2+ w? de) (/_6 Wd@) S W) (5.10)

by definition and we are left with estimating

3 € o,2
2 / LAV /Kde : (5.11)
—e W2+ W2 e W

We can write

~ def def
=hy+hy, hy = DWxge ) hy = BWx_g 2c10),

where h is harmonic conjugation, a standard singular integral operator. Hence,

2¢

Zdeg/w—l Zdo= /w oW w2y 0ql? A0 <C(Wly, (1) w df
T —2¢€

if we use the Hunt-Muckenhoupt-Wheeden theorem with weight w—! € A?(T) and

w~Y/2hw!/2 applied to function w'/2x_,, .. In (5.11), this gives the contribution
) h% ) 2¢ 2¢ 1
(/ w2 + W2 de) [e w v ) < C([W]AZ(T))G ( —2¢ Wde) ( —2¢ v de)
< C([W]AZ(T))' (5.12)

We are left with controlling

€ h2
2 Y4 %2 49, (5.13)
—e W2 4+ w2 e W

Notice that

hy(p) =Im U(e¥),  |g| <e,
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where

def 1 e’ 4 ¢
U@ —/ T wds, ¢eD.
¢ 27 Jig|=2¢ €9 — ¢ ¢

When | — 1| < €, we have

1 €
U < .—Wd9<€_1/ wdd < e le(w ,
| ({)l ~ /|0|>2€ |ele . 1|2 ~ T 92 +€2 ([ ]AZ(’]T))

where we used the bound (5.5). Therefore,
IIm U(e") — Im U(1 — €)| < CWlg, ), lol <€

as follows from the fundamental theorem of calculus. Therefore,
€ h2
/ ~2do S Am U1 - €)* “wlas +C([W]A2(T))/ w! do. (5.14)
—€ —€

The 2nd term gives the following contribution in (5.13):

2
e ? ( / w2 de) C(wla, ) / w ! do < C(Iwly, ) (< >,€) < C(IWl gy,
(5.15)

where we used (5.9). For the 1st term in (5.14), recall that Re(F~!) = w/(w? + w?) a.e. on

T, and estimate

< (/ W2 ) (Im U(1 — €))? W_1 do < (fP(Re(F_l), 1—¢) - (Im U1 — e))2>
. (6_1 ‘ w! d9).

—€

For the last factor, one can write

€
et [ wldo < wly,mp.

—€

Since Re(F~!) is harmonic, p4,, is absolutely continuous, and Re(F~!) = Re F/|F|?,

we get

Re F(1 —¢)

T )|2( m U(1 — €))2.

PRe(F 1), 1—¢) - Im U1 —€))? =
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Notice that our normalization gives

€ T
€
1= (26)_1 w dé 5 ReF(l —¢) ~ /ﬂ mw do < C([W]Az(T))’ (5.16)

—€ —

where the last bound is (5.5). Let us compare ImU(1 — ¢) and ImF(1 — ¢). By definition of
F and U,

1 2¢
UQ—e)—FA -l - w df < C(Iwly,r)-
—2e
Thus,
ReF(l —¢) 2 BeF(l—¢) N
TFa_op WUA oy 5 g (FA = ol + Cwla,m))

1

which, thanks to (5.16), is bounded by C([wly, ). Summing up, we estimate K in (5.8) by
K < C(Iwly,(r)) and the lemma is proved. |

Appendix: Fisher-Hartwig Weights

The Fisher-Hartwig weights are a large class of weights on the circle, which generalizes
the class of Jacobi weights. It was at the focus of recent research (see, e.g., [8]) mainly
due to some connections with probability and mathematical physics. For these weights,
the asymptotics of polynomials is now well understood [8]. In this section, we provide
an upper bound for the function p_.(t) using some results obtained in [21]. In particular,
the analysis developed for Fisher-Hartwig weights will give us the proof of the following

lemma.
Lemma Al. Ift e (1,2), we have p..(t) < C(t — 1)"1/2.

We provide its proof in the end of this section. For 8§ > 0, consider the weight
wy = |z — 1/%# on the unit circle for and the associated orthogonal polynomials
{®,(z, wp)}. This is a particular choice for the Fisher-Hartwig weight with the single
point of singularity located at z = 1. Note that in order for wy; € A,(T), one needs

28 < 1, that is, 8 € [0, %). We start with the following proposition.

220z Ay L0 uo Jasn saleiqi] UOSIPEIA-UISUODSIAA JO ANISIaAun AQ 9980E6S/SE6S/8/2202/2191Ke/ulwil/woo dno olwapeae//:sdiy Wol) papeojumo(]



Continuity of Weighted Operators 5969

Proposition A2. Suppose 8 € [0, %). Then,

1 1
Wilagm ~ ~ :
2™ T _ap2 " 1-28

Furthermore, if 8 € [0, 1/4], then
2
Welaym —1~ 8%

Remark. The 1st asymptotic is useful in particular when [wgl,, ) > 2, that is, when
our weight varies quite a bit, whereas when [wgl,, ) — 1 < 1, the 2nd formula is more
helpful.

Proof. It is the straightforward calculation in which the integrals over intervals I
involved in the definition of A,(T) can be explicitly computed and estimated. We omit

considering all cases here. The formula that best explains the resulting bound is

= —, ~:02ﬂ
1= 1 apz W=l

for7 =[0,al and any 0 < a < 7. | |

The next proposition makes use of some statements from [21]. Similar results

for Jacobi weights were obtained in [3].
Proposition A3. Let wg = |z — 11%#, B €[0,1/2). Then,

1, 28-pB+1>0
P, (- Wﬂ)”Lﬁzﬁ(T) ~B.p logn, 26—pB+1=0-.
n~@F-PA+D 28 _pB+1<0

In particular, sup [|[®, (-, wg)llzp (1) < 0 ifand onlyifp <2+ %
n wp

Proof. First, write
19wy = [ 1OawyPwy o+ [ 10wy P, o,
10]>3 16]<8
where § is a parameter independent of n. To control the 1st term, we use formula (1.13)
of [21] to get

/ |, (z, wp)Pw, d6 < C(B,p.8) | wy P/*do < C(B,p,9).
|0]>6 10]>8
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As for the 2nd term, using the asymptotics provided in [21, (1.17)] and applying a change
of variables x = n6/2, we get
sn/2
/9 @ wp)Pwy o~ nPf-20~1 / XPPPETRNigg () + Ty (OIP dx,
0

where J, (x) is the Bessel function of the 1st kind. One can then split this new integral
in x up into two: when x € (0,1) and when x > 1. We then use the known asymptotics
for Bessel functions (see, e.g., [1]) to get

ns/2 1, 28 —pB+1>0
/ |®n(z, wp)Pwg df ~g n—<2f‘—Pﬂ+1>(1+ / P dX) ~pp {logn, 28 —pp+1=0.
1= 1 n~@F=PA+D) 26 —pp+1 <0

In particular, this quantity is bounded precisely when 28 — pg + 1 > 0, that is, when

B < Iﬁ. The proposition now follows from combining the given estimates. [ |
Now, we are ready to prove the main lemma of this section.

Proof of Lemma Al. From the 1st proposition in appendix, we get [wgly, ) — 1 ~ B2
if g is small. The 2nd proposition shows that sup,, [|®, (&, wi)llzp ) < if and only if
wp

p < 2+ B~l. Combining these results we get the statement of the lemma. |
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