

Continuity of Weighted Operators, Muckenhoupt A_p Weights, and Steklov Problem for Orthogonal Polynomials

Michel Alexis¹, Alexander Aptekarev² and Sergey Denisov^{1,2,*}

¹Department of Mathematics, University of Wisconsin–Madison, 480 Lincoln Dr., Madison, WI 53706, USA and ²Keldysh Institute of Applied Mathematics, Russian Academy of Sciences, Miusskaya pl. 4, 125047 Moscow, Russia

**Correspondence to be sent to: e-mail: denissov@wisc.edu*

We consider weighted operators acting on $L^p(\mathbb{R}^d)$ and show that they depend continuously on the weight $w \in A_p(\mathbb{R}^d)$ in the operator topology. Then, we use this result to estimate $L_w^p(\mathbb{T})$ norm of polynomials orthogonal on the unit circle when the weight w belongs to Muckenhoupt class $A_2(\mathbb{T})$ and $p > 2$. The asymptotics of the polynomial entropy is obtained as an application.

To Peter Yuditskii on the occasion of his 65th birthday.

1 Introduction

Suppose μ is a probability measure on the unit circle \mathbb{T} and $\{\varphi_n(z, \mu)\}$ is the sequence of polynomials orthonormal with respect to μ , that is,

$$\deg \varphi_n = n, \quad k_n \stackrel{\text{def}}{=} \text{coeff}_n \varphi_n > 0, \quad (\varphi_n, \varphi_k)_{L^2_\mu(\mathbb{T})} = \delta_{n,k}, \quad (1.1)$$

where $\delta_{n,k}$ is the Kronecker symbol and $\text{coeff}_j Q$ denotes the coefficient at the power z^j in polynomial Q . One version of Steklov's problem in the theory of orthogonal polynomials can be phrased as follows: given a Banach space X with norm $\|\cdot\|_X$, what regularity of μ is needed to have $\sup_{n \in \mathbb{N}} \|\varphi_n(z, \mu)\|_X < \infty$? This problem has a long history. It goes

Received December 19, 2019; Revised July 3, 2020; Accepted August 27, 2020
Communicated by Prof. Misha Sodin

back to Steklov's conjecture that asked to prove that the sequence $\{\varphi_n(x, \rho)\}$ is bounded for every $x \in (a, b)$, where $\{\varphi_n\}$ are polynomials orthonormal on the interval $[a, b]$ with respect to a weight ρ that satisfies $\rho(x) \geq c > 0, x \in [a, b]$. The negative answer to this question was given by Rakhmanov [26, 27] and the sharp estimates on supremum norm were obtained only recently in [2]. If $X = L^2_\mu(\mathbb{T})$, we have $\|\varphi_n\|_X = 1$ by definition. In this paper, we will be concerned with the case when $X = L^p_\mu(\mathbb{T}), p > 2$ and absolutely continuous μ is given by its weight, that is, $d\mu = \frac{w}{2\pi} d\theta$. It is the natural choice since the space $L^p_w(\mathbb{T})$ interpolates between the trivial case when $X = L^2_w(\mathbb{T})$ and the space $L^\infty_w(\mathbb{T})$, which was studied in [2, 10] for weights w that satisfy Steklov's condition: $w^{-1} \in L^\infty(\mathbb{T})$.

We recall the definition of Muckenhoupt class $A_p(\mathbb{T})$ [30, p. 194].

Definition. The weight $w \in A_p(\mathbb{T}), p \in (1, \infty)$ if

$$[w]_{A_p(\mathbb{T})} \stackrel{\text{def}}{=} \sup_I \left(\langle w \rangle_I \left(\langle w^{\frac{1}{1-p}} \rangle_I \right)^{p-1} \right) < \infty, \quad \langle w \rangle_I \stackrel{\text{def}}{=} \frac{1}{|I|} \int_I w \, d\theta, \quad (1.2)$$

where I is an arc in \mathbb{T} .

Given $w \in A_2(\mathbb{T})$, we define the following quantity:

$$p_{\text{cr}}(t) = \sup \{p : \sup_n \|\varphi_n(z, w)\|_{L^p_w(\mathbb{T})} < \infty, [w]_{A_2(\mathbb{T})} \leq t\}.$$

Clearly, $p_{\text{cr}}(t)$ is nonincreasing on $[1, \infty)$ as a function in t and $p_{\text{cr}}(t) \geq 2$. The study of how $p_{\text{cr}}(t)$ depends on t amounts to considering another more precise version of Steklov's problem. Our 1st main result is the following theorem.

Theorem 1.1. We have

$$p_{\text{cr}}(t) > 2, \quad \lim_{t \rightarrow 1} p_{\text{cr}}(t) = +\infty, \quad \lim_{t \rightarrow \infty} p_{\text{cr}}(t) = 2.$$

Remark. In the appendix, we take w as Fisher–Hartwig weight and prove $p_{\text{cr}}(t) < C(t-1)^{-1/2}$ for $t \in (1, 2]$. For $t > 2$, the estimate $p_{\text{cr}}(t) < 2 + Ct^{-1/6}$ will be obtained in the 3rd section.

The proof of this theorem in the perturbative regime, that is, when t is close to 1, requires the following general result in the theory of weighted L^p spaces. Consider spaces $L^p(\mathbb{R}^d)$ or $L^p(\mathbb{T}^d)$, $d \in \mathbb{N}$. If \mathcal{H} is a linear bounded operator from $L^p(\mathbb{R}^d)$ to itself, its operator norm will be denoted by $\|\mathcal{H}\|_{p,p}$. Suppose $w \in A_p(\mathbb{R}^d)$ and H is a linear operator that satisfies weighted bound

$$\|w^{1/p} H w^{-1/p}\|_{p,p} \leq \mathcal{F}([w]_{A_p}, p), \quad p \in (1, \infty) \quad (1.3)$$

with some $p \in (1, \infty)$ and function $\mathcal{F}(t, p)$, which is continuous in t on $(1, \infty)$. In what follows, we do not need to know \mathcal{F} explicitly. However, \mathcal{F} is known in many applications. For example, the Hunt–Muckenhoupt–Wheeden theorem [30, p. 205] shows that H can be taken as a singular integral operator and the recent breakthrough on domination of singular integrals by sparse operators provides the sharp dependence of \mathcal{F} on $[w]_{A_p}$. In particular, for a large class of singular integral operators, one can take $\mathcal{F}(t, p) = C(p)t^{\max(1, (p-1)^{-1})}$, (see, e.g., [19, p. 264]).

Recall that $f \in \text{BMO}(\mathbb{R}^d)$ if

$$\|f\|_{\text{BMO}(\mathbb{R}^d)} \stackrel{\text{def}}{=} \sup_B \langle |f - \langle f \rangle_B| \rangle_B < \infty,$$

where B denotes a ball in \mathbb{R}^d (see, e.g., [30, p. 140]). The theorem that comes next is a slight improvement of a result by Pattakos and Volberg [24, 25]; see also the paper [23] where the sublinear operators were treated.

Theorem 1.2. Suppose $p \in (1, \infty)$, $[w]_{A_p(\mathbb{R}^d)} < \infty$, $\|f\|_{\text{BMO}} < \infty$, and H satisfies (1.3). Consider $w_\delta = we^{\delta f}$. Then, there is $\delta_0(p, [w]_{A_p}, \|f\|_{\text{BMO}}) > 0$ such that

$$\|w_\delta^{1/p} H w_\delta^{-1/p} - w^{1/p} H w^{-1/p}\|_{p,p} < |\delta| C(p, [w]_{A_p}, \|f\|_{\text{BMO}}, \mathcal{F})$$

for all $\delta : |\delta| < \delta_0$.

Two corollaries of Theorem 1.1 are straightforward and we give their proofs in the end of Section 3. To state them, we need a few definitions. Given a weight w , define

$$q_{\text{cr}}(w) = \sup\{q : \|w^{-1}\|_{L^q(\mathbb{T})} < \infty\}. \quad (1.4)$$

Clearly, if $w \in A_2(\mathbb{T})$, then $q_{\text{cr}}(w) > 1$ and $\lim_{[w]_{A_2} \rightarrow 1} q_{\text{cr}}(w) = \infty$ as follows from the definition of $A_p(\mathbb{T})$ and inclusion of Muckenhoupt classes (see [32, Theorem 1] where the sharp bounds were obtained).

Definition. If $w \in L^1(\mathbb{T})$ and it has finite logarithmic integral, that is, $\log w \in L^1(\mathbb{T})$, we define function D , the Szegő function, as an outer function in \mathbb{D} that satisfies

$$|D|^2 = w. \quad (1.5)$$

The formula for D is

$$D(z) = \exp \left(\frac{1}{2\pi} \int_{\mathbb{T}} \frac{1 + \bar{\xi}z}{1 - \bar{\xi}z} \log \sqrt{w(\theta)} \, d\theta \right), \quad \xi = e^{i\theta}, \quad z \in \mathbb{D}. \quad (1.6)$$

Remark. If $w \in A_2(\mathbb{T})$, then $w^{-1} \in L^1(\mathbb{T})$. Thus, $\log w \in L^1(\mathbb{T})$ and D is well defined.

Given a polynomial Q of degree at most n , its reversed polynomial Q^* is defined by $Q^* = z^n \overline{Q(1/\bar{z})}$. Notice that the map $Q \mapsto Q^*$ depends on n . Our 1st corollary establishes the asymptotics of $\{\varphi_n^*\}$ (and thus of $\{\varphi_n\}$ since $\varphi_n(\xi) = \xi^n \overline{\varphi_n^*(\xi)}$ if $\xi \in \mathbb{T}$).

Corollary 1.3. Suppose $[w]_{A_2} < \infty$ and $\|\frac{w}{2\pi}\|_1 = 1$, then

$$\lim_{n \rightarrow \infty} \|\varphi_n^* - D^{-1}\|_{L_w^p(\mathbb{T})} = 0$$

for every $p \in [2, \min(p_{\text{cr}}([w]_{A^2}), 2(1 + q_{\text{cr}}(w)))]$.

Another application of Theorem 1.1 has to do with the asymptotics of polynomial entropy $E(n, \mu)$, which is defined by

$$E(n, \mu) = \int_{\mathbb{T}} |\varphi_n(\xi, \mu)|^2 \log |\varphi_n(\xi, \mu)| \, d\mu,$$

where $\xi = e^{i\theta}$, $\theta \in [-\pi, \pi)$.

Corollary 1.4. If $w \in A_2(\mathbb{T})$, then

$$\lim_{n \rightarrow \infty} E(n, w) = -\frac{1}{4\pi} \int_{-\pi}^{\pi} \log w \, d\theta.$$

Given a probability measure μ on \mathbb{T} , let F be defined by

$$F(z) = \int_{\mathbb{T}} \frac{1 + \bar{\xi}z}{1 - \bar{\xi}z} \, d\mu, \quad \xi = e^{i\theta}. \quad (1.7)$$

Notice that $\text{Re}F > 0$ in \mathbb{D} and $F(0) = 1$. For $\alpha \in \mathbb{T}$, consider the following one-parameter family (see, e.g., [28, p. 36 and Formula (1.3.90)])

$$F_\alpha(z) \stackrel{\text{def}}{=} \frac{\zeta + F(z)}{1 + \zeta F(z)}, \quad \zeta = \frac{1 - \alpha}{1 + \alpha} \in i(\mathbb{R} \cup \infty).$$

Function F_α also has positive real part in \mathbb{D} and $F_\alpha(0) = 1$, so

$$F_\alpha(z) = \int_{\mathbb{T}} \frac{1 + \bar{\xi}z}{1 - \bar{\xi}z} d\mu_\alpha,$$

which defines the family of Aleksandrov–Clark measures $\{\mu_\alpha\}$. Taking $z = 0$, we see that μ_α is a probability measure. If $\alpha = -1$, then $F_{-1} = 1/F$ and the resulting measure is called dual for μ , we will use notation $\mu_{\text{dual}} (= \mu_{-1})$ for it. Measure μ_{dual} plays an important role in the theory of polynomials orthogonal on the circle. In fact, the polynomials of the 2nd kind $\{\psi_n\}$ defined by

$$\psi_n(z) = \int_{\mathbb{T}} \frac{1 + z\bar{\xi}}{1 - z\bar{\xi}} (\varphi_n(\xi, \mu) - \varphi_n(z, \mu)) d\mu, \quad \xi = e^{i\theta}$$

are orthonormal with respect to μ_{dual} (see, e.g., [28, Formulas (3.2.32) and (3.2.50)] or [13, Section 1]). The Muckenhoupt class $A_2(\mathbb{T})$ turns out to be invariant with respect to taking dual. In fact, more general statement is true.

Theorem 1.5. If $w \in A_2(\mathbb{T})$ and $d\mu = \frac{w}{2\pi} d\theta$, then μ_α is absolutely continuous and $d\mu_\alpha = \frac{w_\alpha}{2\pi} d\theta$ for every $\alpha \in \mathbb{T}$. Moreover, $w_\alpha \in A_2(\mathbb{T})$.

This has an immediate implication for regularity of ψ_n . Indeed, if $w \in A_2(\mathbb{T})$, then $d\mu_{\text{dual}} = \frac{w_{\text{dual}}}{2\pi} d\theta$ with $w_{\text{dual}} \in A_2(\mathbb{T})$, so Theorem 1.1 can be applied and we get

$$\sup_n \|\psi_n\|_{L_{w_{\text{dual}}}^p(\mathbb{T})} < \infty$$

with $p \in [2, p_{\text{cr}}([w_{\text{dual}}]_{A_2}))$.

The proofs of the main results in this paper involve complex interpolation, a suitable choice of the algebraic formulas and a few facts from the general spectral theory.

Previous results. In [2], it was proved that, given every $q \in [1, \infty)$ and $n \in \mathbb{N}$, there is w_* that satisfies $\|w_*\|_{L^q(\mathbb{T})} < c_1$, $\|w_*^{-1}\|_{L^\infty(\mathbb{T})} < c_2$ and nonetheless $\|\varphi_n(\xi, w_*)\|_{L^\infty(\mathbb{T})} \geq C(c_1, c_2, q)\sqrt{n}$ with parameters c_1 and c_2 being n -independent. By Nikolskii inequality [11, p. 102 and Theorem 2.6], we see that $\|\varphi_n(\xi, w_*)\|_{L^p(\mathbb{T})} > C(c_1, c_2, p, q)n^{1/2-1/p}$ for every $p \in [2, \infty)$. Since the weight w_* is bounded below by c_2^{-1} , one also gets $\|\varphi_n(\xi, w_*)\|_{L_{w_*}^p(\mathbb{T})} > C(c_1, c_2, p, q)n^{1/2-1/p}$. Therefore, the stated conditions on w , that is,

$$\|w\|_{L^q(\mathbb{T})} < c_1, \quad \|w^{-1}\|_{L^\infty(\mathbb{T})} < c_2, \quad q \in [1, \infty)$$

do not provide the uniform in n weighted L^p estimates for polynomials if $p > 2$ is fixed. The question what regularity of w is enough to have $\sup_n \|\varphi_n\|_{L^p(\mathbb{T})} < \infty$ or $\sup_n E(n, w) < \infty$ has been addressed in [3–5, 9, 10, 22]. The following theorem was proved in [9].

Theorem 1.6 (Denisov–Rush [9]). Let $s \stackrel{\text{def}}{=} \|w\|_{\text{BMO}(\mathbb{T})} < \infty$ and $t \stackrel{\text{def}}{=} \|w^{-1}\|_{\text{BMO}(\mathbb{T})} < \infty$. Then, there is $p(s, t) > 2$ such that $\sup_n \|\varphi_n(\xi, w)\|_{L^p(\mathbb{T})} < \infty$.

We will see later that Theorem 1.1 implies Theorem 1.6 and, in fact, gives a qualitatively stronger statement. It appears that A_2 regularity of w is, to the best of our knowledge, the weakest general condition that provides weighted L^p estimates on $\{\varphi_n\}$.

As far as Theorem 1.2 is concerned, the continuity of operators in the weighted spaces with respect to a weight has been addressed previously. In [24, 25], Pattakos and Volberg show that $A_\infty(\mathbb{R}^d)$ is a metric space with metric defined by

$$d_*(w_1, w_2) \stackrel{\text{def}}{=} \|\log w_1 - \log w_2\|_{\text{BMO}}.$$

These two authors studied other properties of $A_\infty(\mathbb{R}^d)$ as a metric space and established, among other things, the Lipschitz continuity of $\|H\|_{L_w^p, L_w^p}$ in $w \in A_p(\mathbb{R}^d)$ for H that satisfies (1.3).

The structure of our paper is as follows. The 2nd section contains the proof of Theorem 1.2 along with related information about the Muckenhoupt class. Theorem 1.1 and its corollaries are proved in the 3rd section. The analysis of the Christoffel–Darboux kernel for the case when $w \in A_2(\mathbb{T})$ is done in Section 4. In Section 5, we discuss Alexandrov–Clark measures and give proof of Theorem 1.5. The appendix contains an example of weight in the Fisher–Hartwig class for which the asymptotics of the polynomials is known. This provides an upper estimate for $p_{\text{cr}}(t)$ in the regime when t is close to 1.

1.1 Notation

- If $p \in [1, \infty]$, the dual exponent is denoted by $p' = p/(p - 1)$.
- Given a set $A \subseteq \mathbb{R}^d$ (or $A \subseteq \mathbb{T}$), we will use notation A^c for its complement, that is, $A^c = \mathbb{R}^d \setminus A$ (or $A^c = \mathbb{T} \setminus A$).
- Given two Banach spaces $L^p(X, \mu)$, $L^q(Y, \nu)$, and a linear bounded operator $T : L^p(X, \mu) \rightarrow L^q(Y, \nu)$, its norm is denoted by $\|T\|_{p,q}$.

- By $L_w^p(\mathbb{T})$, we mean the space $L_\mu^p(\mathbb{T})$ where $d\mu = w \frac{d\theta}{2\pi}$.
- If f is locally integrable in \mathbb{R}^d and B is a ball, then

$$\langle f \rangle_B \stackrel{\text{def}}{=} \frac{1}{|B|} \int_B f \, dx.$$

- Given function $f \in L^1(\mathbb{T})$, we will write $\mathfrak{h}(f)$ to denote the operator of harmonic conjugation [17], that is,

$$\mathfrak{h}(f) = \tilde{f}(\xi) = \lim_{r \rightarrow 1} \frac{1}{2\pi} \int_{\mathbb{T}} f(\zeta) Q_r(\zeta, \xi) \, d\theta, \quad Q_r(\zeta, \xi) = \text{Im} \frac{1 + r\bar{\zeta}\xi}{1 - r\bar{\zeta}\xi}, \quad \zeta = e^{i\theta}, \quad \xi \in \mathbb{T}. \quad (1.8)$$

- Given a function $f \in L^1(\mathbb{T})$, the Poisson integral is defined by [17, pp. 2 and 3]

$$\mathcal{P}(f, z) = \frac{1}{2\pi} \int_{\mathbb{T}} \frac{1 - |z|^2}{|1 - \bar{\zeta}z|^2} f(\zeta) \, d\theta, \quad z \in \mathbb{D}, \quad \zeta = e^{i\theta}. \quad (1.9)$$

The Cauchy integral over \mathbb{T} is defined by [17, p. 35]

$$\mathcal{C}(f, z) = \frac{1}{2\pi} \int_{\mathbb{T}} \frac{f(\zeta)}{1 - \bar{\zeta}z} \, d\theta, \quad z \in \mathbb{D}, \quad \zeta = e^{i\theta}. \quad (1.10)$$

- For two nonnegative functions f_1 and f_2 , we write $f_1 \lesssim f_2$ if there is an absolute constant C such that

$$f_1 \leq C f_2$$

for all values of the arguments of f_1 and f_2 . If the constant depends on a parameter α , we will write $f_1 \leq_\alpha f_2$. We define \gtrsim similarly and say that $f_1 \sim f_2$ if $f_1 \lesssim f_2$ and $f_2 \lesssim f_1$ simultaneously.

- The symbol $C_c^\infty(\mathbb{R}^d)$ denotes the space of infinitely smooth function with compact support in \mathbb{R}^d .
- Given two operators, A and B , we use the symbol $[A, B] = AB - BA$ for their commutator.

2 Weighted Operators are Continuous in $w \in A_p(\mathbb{R}^d)$

We start by recalling a few basic facts from the theory of $A_p(\mathbb{R}^d)$ weights (see, e.g., [18, 30]). Given the definition (1.2), the limiting case when $p \rightarrow \infty$ leads to $A_\infty(\mathbb{R}^d)$, which is characterized by (see, e.g., [15])

$$[w]_{A_\infty(\mathbb{R}^d)} \stackrel{\text{def}}{=} \sup_B \left(\langle w \rangle_B \exp \left(- \langle \log w \rangle_B \right) \right). \quad (2.1)$$

The following results are well known.

Lemma 2.1. (See, e.g., [30, p. 218]) If $\|f\|_{\text{BMO}} < \infty$, then there is $\delta_1(\|f\|_{\text{BMO}}) > 0$ such that

$$[e^{\delta f}]_{A_\infty(\mathbb{R}^d)} \lesssim 1$$

for all $\delta : |\delta| < \delta_1(\|f\|_{\text{BMO}})$.

Proof. From John–Nirenberg theorem [30, pp. 145–146], we have

$$\sup_B \left(\langle e^{\delta|f - \langle f \rangle_B|} \rangle_B \right) \lesssim 1 \quad (2.2)$$

provided $|\delta| < \delta_1(\|f\|_{\text{BMO}})$. In (2.1), take $w = e^{\delta f}$, to get

$$[w]_{A_\infty} = \sup_B \left(\langle e^{\delta(f - \langle f \rangle_B)} \rangle_B \right) \lesssim 1$$

by (2.2). ■

The proofs for the next two lemmas are immediate corollaries from [32, Theorems 1_∞ and 1].

Lemma 2.2. Suppose $w \in A_\infty(\mathbb{R}^d)$. For every $p \in (1, \infty)$, there is $\delta_2(p, [w]_{A_\infty(\mathbb{R}^d)}) > 0$ such that

$$[w^\delta]_{A_p(\mathbb{R}^d)} < C(p, [w]_{A_\infty(\mathbb{R}^d)}) \quad (2.3)$$

for every $\delta : |\delta| < \delta_2(p, [w]_{A_\infty(\mathbb{R}^d)})$.

Remark. The exact dependence of the right-hand side in (2.3) on the parameters will not be needed in this paper so we are only using the symbol C .

Lemma 2.3. Given $p \in (1, \infty)$ and $w \in A_p(\mathbb{R}^d)$, there is $\delta_3(p, [w]_{A_p(\mathbb{R}^d)}) > 0$ such that $[w^{1+\delta}]_{A_p(\mathbb{R}^d)} \leq C(p, [w]_{A_p(\mathbb{R}^d)})$ for $\delta \in [0, \delta_3]$.

Given these lemmas, we claim the following.

Lemma 2.4. For every $p \in (1, \infty)$, $f \in \text{BMO}(\mathbb{R}^d)$, and $w \in A_p(\mathbb{R}^d)$, we have

$$[we^{\delta f}]_{A_p(\mathbb{R}^d)} \leq C(p, [w]_{A_p(\mathbb{R}^d)}, \|f\|_{\text{BMO}}), \quad (2.4)$$

if $\delta : |\delta| < \delta_4(p, [w]_{A_p(\mathbb{R}^d)}, \|f\|_{\text{BMO}})$.

Proof. Consider (1.2). Given w and some nonnegative w_0 , we use Hölder's inequality

$$\begin{aligned} & \left(\int_B w w_0 \, dx \right) \left(\int_B (w w_0)^{1/(1-p)} \, dx \right)^{p-1} \leq \\ & \left(\int_B w^\alpha \, dx \right)^{1/\alpha} \left(\int_B w_0^{\alpha'} \, dx \right)^{1/\alpha'} \left(\int_B w^{\alpha/(1-p)} \, dx \right)^{(p-1)/\alpha} \left(\int_B w_0^{\alpha'/(1-p)} \, dx \right)^{(p-1)/\alpha'}, \end{aligned}$$

where α' is dual to α and $\alpha > 1$ is chosen such that $w^\alpha \in A_p(\mathbb{R}^d)$ (this choice is warranted by Lemma 2.3). Now, if we let $w_0 = e^{\delta f}$, then $w_0^{\alpha'} \in A_p(\mathbb{R}^d)$ for small δ thanks to Lemmas 2.1 and 2.2. This yields (2.4). \blacksquare

Lemma 2.5. If $p \in (1, \infty)$, $w \in A_p(\mathbb{R}^d)$, $f \in \text{BMO}(\mathbb{R}^d)$, and H satisfies (1.3), then

$$\|w^{1/p}[H, f]w^{-1/p}\|_{p,p} \leq C(p, [w]_{A_p(\mathbb{R}^d)}, \|f\|_{\text{BMO}}, \mathcal{F}) \quad (2.5)$$

and

$$\|w^{1/p}[f, [H, f]]w^{-1/p}\|_{p,p} \leq C(p, [w]_{A_p(\mathbb{R}^d)}, \|f\|_{\text{BMO}}, \mathcal{F}). \quad (2.6)$$

Proof. Given two test functions $u, v \in C_c^\infty(\mathbb{R}^d)$, define operator-valued function

$$G(z) \stackrel{\text{def}}{=} w^{1/p} e^{zf} H e^{-zf} w^{-1/p},$$

and consider $\widehat{G}(z) = (G(z)u, v)$, where the inner product is in $L_2(\mathbb{R}^d)$. $\widehat{G}(z)$ is analytic in z around the origin and we can write Cauchy integral formula with $|z| < \epsilon$, when ϵ is small enough (and depends only on p , $[w]_{A_p(\mathbb{R}^d)}$, and $\|f\|_{\text{BMO}}$):

$$\widehat{G}(z) = \frac{1}{2\pi i} \int_{|\xi|=\epsilon} \frac{\widehat{G}(\xi)}{\xi - z} d\xi, \quad \widehat{G}'(0) = (w^{1/p}[f, H]w^{-1/p}u, v) = \frac{1}{2\pi i} \int_{|\xi|=\epsilon} \frac{\widehat{G}(\xi)}{\xi^2} d\xi,$$

so

$$|(w^{1/p}[H, f]w^{-1/p}u, v)| \lesssim \epsilon^{-1} \max_{|\xi|=\epsilon} |\widehat{G}(\xi)|.$$

For any point $z : |z| = \epsilon$ on the circle, we can apply Lemma 2.4 and (1.3) to choose $\epsilon(p, [w]_{A_p}, \|f\|_{\text{BMO}})$ such that $\max_{|\xi|=\epsilon} |\widehat{G}(\xi)| < C(p, [w]_{A_p}, \|f\|_{\text{BMO}}, \mathcal{F}) \|u\|_p \|v\|_{p'}$ (here p' is dual to p). This implies (2.5) by the standard duality argument, that is, by employing an identity

$$\|O\|_{p,p} = \sup_{u, v \in C_c^\infty(\mathbb{R}^d), \|u\|_p \leq 1, \|v\|_{p'} \leq 1} |(Ou, v)|,$$

which holds for every linear bounded operator O and $p \in (1, \infty)$.

The estimate (2.6) follows from (2.5) by taking H in (2.5) as a commutator $[H, f]$ itself and using (2.5). \blacksquare

Proof of Theorem 1.2. Consider analytic operator-valued function defined for $z : \text{Re } z \in [0, 1]$,

$$F(z) = w^{1/p} \exp(\alpha z f/p) H \exp(-\alpha z f/p) w^{-1/p} - w^{1/p} H w^{-1/p} - z \frac{\alpha}{p} w^{1/p} [f, H] w^{-1/p},$$

where the parameter α will be chosen later, it will depend on p , $\|f\|_{\text{BMO}}$, and $[w]_{A_p(\mathbb{R}^d)}$ only. Consider rectangle $\Pi = \{z : |\text{Im } z| < 1, 0 < \text{Re } z < 1\}$. We will estimate the operator norm of F on $\partial\Pi$ as follows. If $z \in \{z : |\text{Im } z| = 1, \text{Re } z \in [0, 1]\} \cup \{z : \text{Re } z = 1, \text{Im } z \in [-1, 1]\}$, the estimate is straightforward:

$$\begin{aligned} \|F(z)\|_{p,p} &\leq C(p, [w]_{A_p}, \mathcal{F}) + C(p, [we^{\alpha f}]_{A_p}, \mathcal{F}) \\ &\leq C(p, [w]_{A_p}, \|f\|_{\text{BMO}}, \mathcal{F}), \quad \alpha : |\alpha| < \alpha_4(p, [w]_{A_p}, \|f\|_{\text{BMO}}), \end{aligned}$$

where we first used (2.5), (1.3), and then Lemma 2.4. Now, we take test functions $u, v \in C_c^\infty(\mathbb{R}^d)$ and consider $\widehat{F}(z) = (F(z)u, v)$. It is analytic in Π and continuous on $\overline{\Pi}$.

On the interval $z = i\xi$, $|\xi| < 1$, have

$$\widehat{F}(0) = 0, \quad \widehat{F}'(0) = 0, \quad \partial_{\xi} \widehat{F}(i\xi) = \frac{i\alpha}{p} (w^{1/p} e^{i\alpha\xi f/p} [f, H] e^{-i\alpha\xi f/p} w^{-1/p} u, v) - \frac{i\alpha}{p} w^{1/p} [f, H] w^{-1/p}$$

and

$$\begin{aligned} \partial_{\xi\xi}^2 \widehat{F}(i\xi) &= \left(\frac{i\alpha}{p} \right)^2 (w^{1/p} e^{i\alpha\xi f/p} [f, [f, H]] e^{-i\alpha\xi f/p} w^{-1/p} u, v), \\ |\partial_{\xi\xi}^2 \widehat{F}(i\xi)| &\leq C(p, [w]_{A_p}, \|f\|_{\text{BMO}}, \mathcal{F}) \|u\|_p \|v\|_{p'} \end{aligned}$$

by Lemma 2.5. The fundamental theorem of calculus gives

$$\widehat{F}(i\xi) = \int_0^{\xi} \left(\int_0^{\tau} \partial_{\tau\tau}^2 \widehat{F}(i\tau) d\tau \right) d\xi, \quad |\widehat{F}(i\xi)| \leq \xi^2 C(p, [w]_{A_p}, \|f\|_{\text{BMO}}, \mathcal{F}) \|u\|_p \|v\|_{p'}.$$

The last bound implies

$$\|F(i\xi)\|_{p,p} \leq \xi^2 C(p, [w]_{A_p}, \|f\|_{\text{BMO}}, \mathcal{F})$$

after we use duality argument. Notice that the function $|\widehat{F}|$ is subharmonic in Π . Thus, by mean-value inequality, one has

$$|\widehat{F}(\delta)| \leq \left(\int_{\partial\Pi} |\widehat{F}(\xi)| d\omega_{\delta}(\xi) \right),$$

where $\omega_z(\xi)$ denotes the harmonic measure at point z (see, e.g., [12, p. 13, Formula (3.4)]). By duality again,

$$\|F(\delta)\|_{p,p} \leq \left(\int_{\partial\Pi} \|F(\xi)\|_{p,p} d\omega_{\delta}(\xi) \right).$$

When $\delta \rightarrow 0$, measure $\omega_{\delta}(\xi)$ concentrates on the left side of $\partial\Pi$ around point 0 and we have $\lim_{\delta \rightarrow 0} \|F(\delta)\|_{p,p} = 0$. Putting the estimates together, we can make it more precise. Recall that the harmonic measure on the upper half-plane \mathbb{C}^+ with the reference point z is given by

$$\frac{1}{\pi} \frac{\text{Im } z}{\text{Im}^2 z + (\text{Re } z - t)^2}, z \in \mathbb{C}^+, t \in \mathbb{R}.$$

Consider a conformal map φ from \mathbb{C}^+ to Π . For example, we can take φ as the following Schwarz–Christoffel integral [31, pp. 181, 188, and 189 and Formula (6–76)]:

$$\varphi(z) = C \int_0^z \frac{d\eta}{\sqrt{(1-\eta^2)(1-k^2\eta^2)}}, \quad z \in \mathbb{C}^+,$$

where C and k are constants that can be found explicitly and $k \in (0, 1)$. Under the inverse map φ^{-1} , the left side $\{i\xi, |\xi| < 1\}$ of Π goes to the interval $[-1, 1]$ and its right side $\{1+i\xi, |\xi| < 1\}$ goes to $[k^{-1}, \infty) \cup (-\infty, -k^{-1}]$. Clearly, $\varphi(0) = 0$. Now, we obtain

$$\int_{\partial\Pi} \|F(\xi)\|_{p,p} d\omega_\delta(\xi) \lesssim \int_{\mathbb{R}} \frac{\delta}{\delta^2 + t^2} \|F(\varphi(t))\|_{p,p} dt,$$

where $\varphi(t) : \mathbb{R} \rightarrow \partial\Pi$. Substituting the estimates for $\|F\|_{p,p}$ and using $|\varphi(z)/z| \sim 1$, $|z| < 0.5$, we get

$$\begin{aligned} \int_{\mathbb{R}} \frac{\delta}{\delta^2 + t^2} \|F(\varphi(t))\|_{p,p} dt &\leqslant \\ C(p, [w]_{A_p}, \|f\|_{\text{BMO}}, \mathcal{F}) \left(\int_{-0.5}^{0.5} \frac{\delta t^2}{\delta^2 + t^2} dt + \int_{|t| > 0.5} \frac{\delta}{\delta^2 + t^2} dt \right) &\leqslant \\ C(p, [w]_{A_p}, \|f\|_{\text{BMO}}, \mathcal{F}) \delta. \end{aligned}$$

Finally, we get the statement of the theorem since

$$w^{1/p} \exp(\alpha\delta f/p) H \exp(-\alpha\delta f/p) w^{-1/p} - w^{1/p} H w^{-1/p} = F(\delta) + \delta \frac{\alpha}{p} w^{1/p} [f, H] w^{-1/p},$$

and

$$\begin{aligned} \|F(\delta)\|_{p,p} &\leqslant C(p, [w]_{A_p}, \|f\|_{\text{BMO}}, \mathcal{F}) \delta, \\ \left\| \frac{\alpha}{p} w^{1/p} [f, H] w^{-1/p} \right\|_{p,p} &\leqslant C(p, [w]_{A_p}, \|f\|_{\text{BMO}}, \mathcal{F}). \end{aligned}$$

■

Remark. Clearly, the theorem holds if $A_p(\mathbb{R}^d)$ is replaced by $A_p(\mathbb{T})$.

3 Steklov Problem in the Theory of Orthogonal Polynomials: $w \in A_2(\mathbb{T})$ and Bounds for $\|\varphi_n(z, w)\|_{L_w^p(\mathbb{T})}$

This section contains the proofs of Theorem 1.1 and its two corollaries. In the proof of Theorem 1.1, we will consider separately two cases: when $[w]_{A^2(\mathbb{T})} \in [1, 2)$ and

when $[w]_{A_2(\mathbb{T})} \geq 2$. It will be more convenient for us to work with monic orthogonal polynomials, which are defined as

$$\Phi_n(z, \mu) = \frac{\varphi_n(z, \mu)}{k_n}.$$

If $w \in A_2(\mathbb{T})$, then $w^{-1} \in L^1(\mathbb{T})$ by definition. Thus, $\log w \in L^1(\mathbb{T})$ as well. This means that $\mu : d\mu = \frac{w}{2\pi} d\theta$ belongs to Szegő class of measures and, consequently, the sequence $\{k_n\}$ has a finite and positive limit [13, Section 2]. More precisely, we have an estimate

$$\exp\left(\frac{1}{4\pi} \int_{\mathbb{T}} \log w \, d\theta\right) \leq \left| \frac{\Phi_n(z, w)}{\varphi_n(z, w)} \right| \leq 1, \quad \forall z \in \mathbb{C}; \quad (3.1)$$

(see, e.g., [10]). This bound shows that we can focus on estimating $\|\Phi_n(\xi, w)\|_{L_w^p(\mathbb{T})}$.

Later in the text, we will need to use the 2nd resolvent identity, which is contained in the following proposition.

Proposition 3.1. Suppose X is an Banach space and H, V are linear bounded operators from X to X . Then,

$$(I + H + V)^{-1} = (I + H)^{-1} - (I + H + V)^{-1} V (I + H)^{-1},$$

$$(I + H + V)^{-1} = (I + H)^{-1} (I + V (I + H)^{-1})^{-1},$$

provided the operators involved are well defined and bounded in X . Moreover, assuming $\|V\| \cdot \|(I + H)^{-1}\| < 1$, we get

$$\|(I + H + V)^{-1}\| \leq \frac{\|(I + H)^{-1}\|}{1 - \|V\| \cdot \|(I + H)^{-1}\|}. \quad (3.2)$$

Finally, if $\|V\| < 1$, then

$$\|(I + V)^{-1}\| \leq \frac{1}{1 - \|V\|}. \quad (3.3)$$

The proof of this proposition is a straightforward calculation. The following well-known lemma (see, e.g., [18, Corollary 6]) will be important later on.

Lemma 3.2. If $[w]_{A_2(\mathbb{T})} = 1 + \tau$, $\tau \in [0, 1]$, then

$$\|\log w\|_{\text{BMO}} \lesssim \sqrt{\tau}.$$

Let \mathcal{P}_n denote the orthogonal $L^2(\mathbb{T})$ projection to the frequencies $\{1, \dots, e^{in\theta}\}$. Consider the perturbative regime, that is, the case when $[w]_{A_2(\mathbb{T})} = 1 + \tau$ and $\tau \in [0, 1]$.

Lemma 3.3. We have $\lim_{\tau \rightarrow 0} p_{\text{cr}}(1 + \tau) = \infty$.

Proof. Fix any $p \geq 2$. We need to show that there is $\tau > 0$ small enough so that $[v]_{A_2} < 1 + \tau$ implies

$$\sup_n \|\Phi_n(z, v)\|_{L_v^p(\mathbb{T})} < \infty.$$

Our argument is based on a representation (see, e.g., [9, Formula (8)] for Φ_n^*):

$$\Phi_n = z^n - v^{-1}[\mathcal{P}_{n-1}, v]\Phi_n. \quad (3.4)$$

This formula can be obtained by combining trivial identity $\Phi_n = z^n + \mathcal{P}_{n-1}\Phi_n$, which holds for all monic polynomials of degree n , with $\mathcal{P}_{n-1}(v\Phi_n) = 0$, which follows from that fact that Φ_n is orthogonal to $\{1, z, \dots, z^{n-1}\}$ in $L_v^2(\mathbb{T})$. Thus, we infer from (3.4) that

$$(v^{1/p}\Phi_n) = v^{1/p}z^n - v^{-1/p'}\mathcal{P}_{n-1}v^{1/p'}(v^{1/p}\Phi_n) + v^{1/p}\mathcal{P}_{n-1}v^{-1/p}(v^{1/p}\Phi_n).$$

Denoting $\zeta_n \stackrel{\text{def}}{=} v^{1/p}\Phi_n$, $O_{1,n} \stackrel{\text{def}}{=} v^{-1/p'}\mathcal{P}_{n-1}v^{1/p'} - \mathcal{P}_{n-1}$, $O_{2,n} \stackrel{\text{def}}{=} v^{1/p}\mathcal{P}_{n-1}v^{-1/p} - \mathcal{P}_{n-1}$, we rewrite it as

$$\zeta_n = v^{1/p}z^n - O_{1,n}\zeta_n + O_{2,n}\zeta_n. \quad (3.5)$$

If \mathcal{P}^+ denotes the orthogonal $L^2(\mathbb{T})$ projection onto Hardy space $H^2(\mathbb{T})$ (Riesz projection), then we can write an identity

$$\mathcal{P}_n = \mathcal{P}^+ - z^{n+1}\mathcal{P}^+z^{-(n+1)} = z^{n+1}[z^{-(n+1)}, \mathcal{P}^+]. \quad (3.6)$$

We now apply Theorem 1.2 with $H = \mathcal{P}^+$, $w = 1$, and $w_\delta = e^{\delta f} = v$. Then, $f = \delta^{-1} \log v$ and Lemma 3.2 gives

$$\|f\|_{\text{BMO}} \lesssim \delta^{-1}\sqrt{\tau} \leq 1,$$

when $\tau < \delta^2$. Since $\|w^{1/p}\mathcal{P}^+w^{-1/p}\|_{p,p} \leq \mathcal{F}([w]_{A^p}, p)$ by Hunt–Muckenhoupt–Wheeden theorem, Theorem 1.2 then yields

$$\lim_{\tau \rightarrow 0} \|v^{1/p}\mathcal{P}^+v^{-1/p} - \mathcal{P}^+\|_{p,p} = 0$$

for every $p \in (1, \infty)$. In particular, it also holds for p' :

$$\lim_{\tau \rightarrow 0} \|v^{1/p'} \mathcal{P}^+ v^{-1/p'} - \mathcal{P}^+\|_{p', p'} = 0.$$

Indeed, we use the standard identity in the operator theory, which follows from duality considerations:

$$\|\mathcal{O}\|_{p, p} = \|\mathcal{O}^*\|_{p', p'},$$

where \mathcal{O}^* is adjoint operator to \mathcal{O} with respect to L^2 inner product and \mathcal{O} is linear bounded operator in L^p space. Since \mathcal{P}^+ is self-adjoint in $L^2(\mathbb{T})$, we get

$$\|v^{1/p'} \mathcal{P}^+ v^{-1/p'} - \mathcal{P}^+\|_{p', p'} = \|v^{-1/p'} \mathcal{P}^+ v^{1/p'} - \mathcal{P}^+\|_{p, p}$$

and hence

$$\lim_{\tau \rightarrow 0} \|v^{-1/p'} \mathcal{P}^+ v^{1/p'} - \mathcal{P}^+\|_{p, p} = 0.$$

Summarizing, (3.6) gives two bounds

$$\|O_{1,n}\|_{p, p} \leq 2\|v^{-1/p'} \mathcal{P}^+ v^{1/p'} - \mathcal{P}^+\|_{p, p}, \quad \|O_{2,n}\|_{p, p} \leq 2\|v^{1/p} \mathcal{P}^+ v^{-1/p} - \mathcal{P}^+\|_{p, p}$$

that hold uniformly in n . Therefore,

$$\lim_{\tau \rightarrow 0} \|O_{2,n}\|_{p, p} = 0, \quad \lim_{\tau \rightarrow 0} \|O_{1,n}\|_{p, p} = 0.$$

Now, we apply (3.3) with $V = O_{1,n}$ to (3.5) in the space $L^p(\mathbb{T})$. This gives the statement of the lemma. Here, we notice that $\sup_n \|z^n v^{1/p}\|_p < \infty$ because $v \in A_2(\mathbb{T}) \subset L_1(\mathbb{T})$. \blacksquare

Next, we consider more complicated case when $[w]_{A_2(\mathbb{T})} \geq 2$.

Remark. We have $w^{-1/p'} = (w^{-p/p'})^{1/p}$ and

$$[w^{-p/p'}]_{A_p(\mathbb{T})} = [w]_{A_{p'}(\mathbb{T})}^{p/p'} \tag{3.7}$$

as can be directly verified.

Lemma 3.4. For every $w \in A_2(\mathbb{T})$ and $l \in \mathbb{N}$, define a simple function w_l as follows: let $w_l = \langle w \rangle_{I_j}$ on each interval $I_j = 2^{-l}(2\pi)[j, j+1], j = 0, \dots, 2^l - 1$. Then,

$\lim_{l \rightarrow \infty} \Phi_n(z, w_l) = \Phi_n(z, w)$ uniformly in z over compacts in \mathbb{C} and

$$[w_l]_{A_2(\mathbb{T})} \leq C([w]_{A_2(\mathbb{T})}).$$

Proof. From the construction, we immediately get $\{w_l\} \rightarrow w$ in the weak- $(*)$ sense when $l \rightarrow \infty$. Since the coefficients of $\Phi_n(z, \mu)$ depend continuously on the moments of measure μ , we have the 1st statement of the lemma. The 2nd one can be verified directly using the definition of $A_2(\mathbb{T})$ characteristic. \blacksquare

Next, we need the following interpolation result. Given $w \in A_2(\mathbb{T})$ and $p_* \geq 2$, define

$$Q_{w,p(z)} \stackrel{\text{def}}{=} w^{-1/p'(z)} \mathcal{P}_{n-1} w^{1/p'(z)} - w^{1/p(z)} \mathcal{P}_{n-1} w^{-1/p(z)}, \quad (3.8)$$

where

$$\frac{1}{p(z)} = \frac{z}{p_*} + \frac{1-z}{2}, \quad \frac{1}{p'(z)} = 1 - \frac{1}{p(z)} = \frac{1+z}{2} - \frac{z}{p_*}, \quad \operatorname{Re} z \in [0, 1], \quad (3.9)$$

so that $1/p(z) + 1/p'(z) = 1$.

Proposition 3.5. Suppose $w, w^{-1} \in L^\infty(\mathbb{T})$, parameter κ is real, and

$$\sup_{0 \leq \operatorname{Re} z \leq 1} \|Q_{w,p(z)}\|_{p(t),p(t)} < \infty, \quad (3.10)$$

where $t \stackrel{\text{def}}{=} \operatorname{Re} z \in [0, 1]$. If there is a positive number Λ such that

$$\|(I - \kappa Q_{w,p(t+iy)})^{-1}\|_{p(t),p(t)} \leq 2\Lambda$$

for all $t \in [0, 1]$ and $y \in \mathbb{R}$, then there is an $t_*(\Lambda) \in (0, 1]$, so that

$$\|(I - \kappa Q_{w,p(t+iy)})^{-1}\|_{p(t),p(t)} \leq \Lambda$$

for all $y \in \mathbb{R}$ and $t \in [0, t_*]$.

Proof. We notice that $Q_{w,p(iy)}$ is bounded and antisymmetric operator in Hilbert space $L^2(\mathbb{T})$. Therefore, $\|(I - \kappa Q_{w,p(iy)})^{-1}\|_{2,2} \leq 1$. Given conditions $w, w^{-1} \in L^\infty(\mathbb{T})$, it is easy

to check that the operator-valued function $(I - \kappa Q_{w,p(z)})^{-1}$ is analytic and continuous in the sense of Stein [6, p. 209]. Applying Stein's interpolation theorem, we get

$$\|(I - \kappa Q_{w,p(t+iy)})^{-1}\|_{p(t),p(t)} \leq \exp\left(\frac{\sin(\pi t)}{2} \int_{\mathbb{R}} \frac{\log(2\Lambda)}{\cosh(\pi y) + \cos(\pi t)} dy\right) = 1 + O(t), \quad t \rightarrow 0,$$

which proves the proposition. \blacksquare

Remark. We emphasize here that positive t_* does not depend on n or w .

Now, we are ready to prove the following lemma.

Lemma 3.6. For every $t \geq 2$, we have $p_{\text{cr}}(t) > 2$.

Proof. Consider $w \in A_2(\mathbb{T})$. It will be more convenient later on to work with weights that are bounded above and below. With fixed n , we can use Lemma 3.4 to approximate w by w_n , which satisfies

$$\begin{aligned} \|w_n\|_{L^\infty(\mathbb{T})} &< C(n, w), \quad \|w_n^{-1}\|_{L^\infty(\mathbb{T})} < C(n, w), \\ [w_n]_{A_2(\mathbb{T})} &\leq \gamma \stackrel{\text{def}}{=} C([w]_{A_2}), \quad n \in \mathbb{N} \end{aligned}$$

and

$$|\Phi_n(z, w)| \leq 2|\Phi_n(z, w_n)|$$

for each $z \in \mathbb{T}$. In what follows, we suppress the dependence of w_n in n and do the proof understanding that w depends on n and satisfies

$$\|w\|_{L^\infty(\mathbb{T})} < \infty, \quad \|w^{-1}\|_{L^\infty(\mathbb{T})} < \infty, \quad [w]_{A_2(\mathbb{T})} \leq \gamma < \infty,$$

where γ does not depend on n .

As in the proof of Lemma 3.3, we can write

$$\zeta_n = w^{1/p} z^n + Q_{w,p} \zeta_n,$$

where $\zeta_n \stackrel{\text{def}}{=} w^{1/p} \Phi_n$ and $Q_{w,p} \stackrel{\text{def}}{=} -B_n + C_n$, $B_n \stackrel{\text{def}}{=} w^{-1/p'} \mathcal{P}_{n-1} w^{1/p'}$, $C_n \stackrel{\text{def}}{=} w^{1/p} \mathcal{P}_{n-1} w^{-1/p}$ and all operators are considered in Banach space $L^p(\mathbb{T})$. It is sufficient to prove that

$$\sup_n \|(I - Q_{w,\tilde{p}_\gamma})^{-1}\|_{\tilde{p}_\gamma, \tilde{p}_\gamma} < \infty \tag{3.11}$$

with some $\tilde{p}_\gamma > 2$ because $\sup_n \|w^{1/p} z^n\|_p < \infty$ and

$$\zeta_n = (I - Q_{w,p})^{-1}(w^{1/p} z^n).$$

By open inclusion of Muckenhoupt classes (see [30, Corollary on p. 202] or [32, Theorem 1]), there is $\widehat{p}_\gamma > 2$ such that $\widehat{p}'_\gamma < 2$ and $\widehat{\gamma} \stackrel{\text{def}}{=} [w]_{A_{\widehat{p}'_\gamma}} < \infty$. Thus, by (3.7),

$$[w^{-p/p'}]_{A_p} = [w]_{A_{p'}}^{p/p'} \leq \widehat{\gamma}^{\widehat{p}/\widehat{p}'} \quad (3.12)$$

for all $p \in [2, \widehat{p}_\gamma]$. We need this bound to control B_n through writing it as

$$B_n = (w^{-p/p'})^{1/p} \mathcal{P}_{n-1} (w^{-p/p'})^{-1/p}$$

and viewing $w_1 \stackrel{\text{def}}{=} w^{-p/p'}$ as element of $A_p(\mathbb{T})$. Now, we use Hunt–Muckenhoupt–Wheeden theorem, which implies that

$$\sup_n \|B_n\|_{p,p} = \sup_n \|w_1^{1/p} \mathcal{P}_{n-1} w_1^{-1/p}\|_{p,p} < \mathcal{F}_1(p, \gamma), \quad (3.13)$$

where \mathcal{F}_1 is defined for $p \in [2, \widehat{p}_\gamma]$. Analogous bound for C_n is obvious:

$$\sup_n \|C_n\|_{p,p} < \mathcal{F}_2(p, \gamma) \quad (3.14)$$

for all $p \in (2, \infty)$ since $w \in A_2(\mathbb{T}) \subset A_p(\mathbb{T})$. Define $Q_{w,p(z)}$ by (3.8), and take $p_* \in [2, \widehat{p}_\gamma]$. The bounds (3.13) and (3.14) imply that

$$\sup_n \|Q_{w,p(z)}\|_{p(t),p(t)} < \infty$$

for $t = \operatorname{Re} z \in [0, 1]$.

Now, we proceed as follows. Recall, see (3.11), that our goal is to show that $(I - Q_{w,\tilde{p}_\gamma})^{-1}$ is bounded in $L^{\tilde{p}}(\mathbb{T})$ for some $\tilde{p}_\gamma > 2$ with bound on the operator norm independent in n . In (3.8), we take parameter p_* as $p_*^{(1)} = \widehat{p}_\gamma$ and define $p_1(z) \stackrel{\text{def}}{=} p(z)$ where $p(z)$ is from (3.9). Consider $Q_{w,p(z)}^{(j)} \stackrel{\text{def}}{=} jQ_{w,p(z)}/N, j = 1, \dots, N$ where N is large and will be fixed later (it will depend on γ only). Notice that, by (3.13) and (3.14), we get

$$\|Q_{w,p(t+iy)}\|_{p(t),p(t)} \leq \|w^{-1/p'(t)} \mathcal{P}_{n-1} w^{1/p'(t)}\|_{p(t),p(t)} + \|w^{1/p(t)} \mathcal{P}_{n-1} w^{-1/p(t)}\|_{p(t),p(t)} < C_\gamma.$$

Let Λ be an absolute constant larger than one. We take N to satisfy

$$1 - C_\gamma \Lambda / N > 1/2. \quad (3.15)$$

Next, we use (3.3) to get

$$\left\| \left(I - Q_{w,p(t+iy)}^{(1)} \right)^{-1} \right\|_{p(t),p(t)} \leq \frac{1}{1 - C_\gamma / N} \leq \frac{1}{1 - C_\gamma \Lambda / N} \leq 2 \leq 2\Lambda$$

since $\Lambda > 1$ by our choice. We continue with an inductive argument in which the bound for $\{Q_{w,p(z)}^{(j)}\}$ provides the bound for $\{Q_{w,p(z)}^{(j+1)}\}$ when $j = 1, \dots, N-1$.

- **Base of induction: handling $Q_{w,p(z)}^{(1)}$.** Apply Proposition 3.5 with $\kappa = 1/N$ to get an absolute constant t_* so that

$$\left\| \left(I - Q_{w,p(t+iy)}^{(1)} \right)^{-1} \right\|_{p(t),p(t)} \leq \Lambda$$

for $t \in [0, t_*]$ and $y \in \mathbb{R}$. Next, we use (3.2) with $H = -Q_{w,p(t+iy)}^{(1)}$ and $V = -N^{-1}Q_{w,p(t+iy)}$. This gives

$$\left\| \left(I - Q_{w,p(t+iy)}^{(2)} \right)^{-1} \right\|_{p(t),p(t)} \leq \frac{\Lambda}{1 - C_\gamma \Lambda / N} \leq 2\Lambda, \quad t \in [0, t_*] \quad (3.16)$$

by (3.15).

That finishes the 1st step. Next, we will explain how estimates on $Q_{w,p(z)}^{(2)}$ give bounds for $Q_{w,p(z)}^{(3)}$.

- **Handling $Q_{w,p(z)}^{(2)}$.** In Proposition 3.5, we now take $\kappa = \kappa_2 \stackrel{\text{def}}{=} 2/N$, $p_*^{(2)} \stackrel{\text{def}}{=} p_1(t_*) = p(t_*)$ (here $p(t_*)$ is obtained at the previous step) and compute new $p_2(z), p_2'(z)$ by (3.9):

$$\frac{1}{p_2(z)} = \frac{z}{p(t_*)} + \frac{1-z}{2} = \frac{zt_*}{p_*} + \frac{1-zt_*}{2} = \frac{1}{p_1(zt_*)} = \frac{1}{p(zt_*)}. \quad (3.17)$$

Therefore, when z belongs to $0 < \operatorname{Re} z < 1$, zt^* belongs to $0 < \operatorname{Re} zt^* < t_*$ and $p_2(z) = p(zt_*)$. In this domain, we have an estimate (3.16), which can be rewritten as

$$\left\| \left(I - Q_{w,p_2(t+iy)}^{(2)} \right)^{-1} \right\|_{p_2(t),p_2(t)} \leq 2\Lambda, \quad t \in [0, 1], \quad y \in \mathbb{R},$$

where $p_2(z)$ is different from $p_1(z) = p(z)$ only by the choice of parameter p_* in (3.9) and is in fact a rescaling of the original $p(z)$ as follows from (3.17). Thus, from Proposition 3.5, we have

$$\left\| \left(I - Q_{w,p_2(t+iy)}^{(2)} \right)^{-1} \right\|_{p_2(t),p_2(t)} \leq \Lambda$$

for $t \in [0, t_*]$, $y \in \mathbb{R}$. We use the perturbative bound (3.2) one more time with $H = -Q_{w,p_2(t+iy)}^{(2)}$ and $V = -N^{-1}Q_{w,p_2(t+iy)}$ to get

$$\left\| \left(I - Q_{w,p_2(t+iy)}^{(3)} \right)^{-1} \right\|_{p_2(t),p_2(t)} \leq 2\Lambda$$

for $t \in [0, t_*]$, $y \in \mathbb{R}$.

- **Induction in j and the bound for $Q_{w,p(z)}^{(N)}$.** Next, we take $p_*^{(3)} \stackrel{\text{def}}{=} p_*^{(2)}(t_*)$ and repeat the process in which the bound

$$\left\| \left(I - Q_{w,p_j(t+iy)}^{(j)} \right)^{-1} \right\|_{p_j(t),p_j(t)} \leq 2\Lambda, \quad t \in [0, 1], \quad y \in \mathbb{R}$$

implies

$$\left\| \left(I - Q_{w,p_{j+1}(t+iy)}^{(j+1)} \right)^{-1} \right\|_{p_{j+1}(t),p_{j+1}(t)} \leq 2\Lambda$$

for $t \in [0, 1]$ and $y \in \mathbb{R}$. Notice that each time the new $p_j(z)$ is in fact a rescaling of the original $p(z)$ by t_*^{j-1} as can be seen from a calculation analogous to (3.17). In $N-1$ steps, we get

$$\left\| \left(I - Q_{w,p_{N-1}(t+iy)}^{(N)} \right)^{-1} \right\|_{p_{N-1}(t),p_{N-1}(t)} \leq 2\Lambda, \quad t \in [0, t_*], \quad y \in \mathbb{R}.$$

Thus, taking $y = 0$ and $t = t_*$ and recalling that $p_{N-1}(z) = p(t_*^{N-2}z)$, one has

$$\left\| \left(I - Q_{w,p(t_*^{N-1})}^{(N)} \right)^{-1} \right\|_{p(t_*^{N-1}),p(t_*^{N-1})} \leq 2\Lambda.$$

Since $Q_{w,p(t_*^N)}^{(N)} = Q_{w,p(t_*^N)}$, we get (3.11) with

$$\tilde{p}_\gamma = \frac{2\hat{p}_\gamma}{2t_*^{N-1} + \hat{p}_\gamma(1 - t_*^{N-1})}.$$

The estimates (3.15) implies that we can take $N \sim C_\gamma$. ■

Proof of Theorem 1.1. From Lemmas 3.3 and 3.6, we get that $p_{\text{cr}}(t) > 2$ and $\lim_{t \rightarrow 1} p_{\text{cr}}(t) = \infty$. To show that $p_{\text{cr}}(t) \rightarrow 2$ when $t \rightarrow \infty$, it is enough to start with arbitrarily large t and present a weight \hat{w} such that $[\hat{w}]_{A_2(\mathbb{T})} \leq t$ and $\sup_n \|\varphi_n(\xi, \hat{w})\|_{L_{\hat{w}}^{p(t)}(\mathbb{T})} = +\infty$ with some $p(t)$, which depends on t and $\lim_{t \rightarrow \infty} p(t) = 2$. To this end, we use the following result established in [10, Theorem 3.2]: given any $t > 2$, there is a weight w that satisfies $1 \leq w \leq t$ and a subsequence $\{k_n\}$ such that

$$\|\varphi_{k_n}(\xi, w)\|_{L^\infty(\mathbb{T})} \geq C(t)k_n^{1/2-ct^{-1/6}}.$$

The weight w in the statement does not satisfy condition $\|\frac{w}{2\pi}\|_{L^1(\mathbb{T})} = 1$. However, for $\hat{w} = 2\pi w/\|w\|_{L^1(\mathbb{T})}$, we will have

$$\left\| \frac{\hat{w}}{2\pi} \right\|_{L^1(\mathbb{T})} = 1, \quad \frac{\sup_{\mathbb{T}} \hat{w}}{\inf_{\mathbb{T}} \hat{w}} \leq t \quad (3.18)$$

and

$$\|\varphi_{k_n}(\xi, \hat{w})\|_{L^\infty(\mathbb{T})} \geq C(t)k_n^{1/2-ct^{-1/6}}.$$

Nikolskii inequality [11, p. 102] and Theorem 2.6] gives $\|\varphi_{k_n}(\xi, \hat{w})\|_{L^p(\mathbb{T})} \asymp C(t, p)k_n^{1/2-1/p-ct^{-1/6}}$ and thus

$$\|\varphi_{k_n}(\xi, \hat{w})\|_{L_{\hat{w}}^p(\mathbb{T})} \geq C(t, p)k_n^{1/2-1/p-ct^{-1/6}}.$$

The weight \hat{w} satisfies the trivial bound $[\hat{w}]_{A_2(\mathbb{T})} \leq t$. Therefore,

$$p_{\text{cr}}(t) \leq \frac{2t^{1/6}}{t^{1/6} - 2c} = 2 + O(t^{-1/6}), \quad t \rightarrow \infty. \quad \blacksquare$$

Remark. Some lower bounds on $p_{\text{cr}}(t)$ when $t \rightarrow 1$ and $t \rightarrow \infty$ can be traced through the proof. We do not include these calculations here.

Proof of Corollary 1.3. We have (see [16, Formula (5.37)] or [13, Section 2])

$$\lim_{n \rightarrow \infty} \|\varphi_n^* - D^{-1}\|_{L_w^2(\mathbb{T})} = 0. \quad (3.19)$$

Recall that $q_{\text{cr}}(w)$ was defined in (1.4). Take $\tilde{p} \in [2, \min(p_{\text{cr}}([w]_{A^2}), 2(1 + q_{\text{cr}}(w))))$. For $p \in [2, \tilde{p})$, we use Hölder's inequality

$$\int_{\mathbb{T}} |\varphi_n^* - D^{-1}|^p w \, d\theta \leq \left(\int_{\mathbb{T}} |\varphi_n^* - D^{-1}|^{p_1 \alpha} w \, d\theta \right)^{1/\alpha} \cdot \left(\int_{\mathbb{T}} |\varphi_n^* - D^{-1}|^{p_2 \alpha'} w \, d\theta \right)^{1/\alpha'}, \quad (3.20)$$

where $p_1 + p_2 = p$, $p_1 \alpha = \tilde{p}$, $p_2 \alpha' = 2$, $\alpha^{-1} + \alpha'^{-1} = 1$, $\alpha \in (1, \infty)$. In fact, solving these equations gives $\alpha = (\tilde{p} - 2)/(p - 2)$, $p_1 = \tilde{p}(p - 2)/(\tilde{p} - 2)$, $p_2 = 2(\tilde{p} - p)/(\tilde{p} - 2)$. The 2nd factor in the right-hand side of (3.20) converges to zero due to (3.19). For the 1st one, we apply the triangle inequality to write

$$\sup_n \left(\int_{\mathbb{T}} |\varphi_n^* - D^{-1}|^{\tilde{p}} w \, d\theta \right)^{1/\tilde{p}} \leq \sup_n \|\varphi_n^*\|_{\tilde{p}, w} + \|D^{-1}\|_{\tilde{p}, w}.$$

The 1st term is finite thanks to Theorem 1.1. For the 2nd one, we use $w = |D|^2$ to write

$$\|D^{-1}\|_{\tilde{p}, w}^{\tilde{p}} = \int_{\mathbb{T}} |D^{-1}|^{\tilde{p}} w \, d\theta = \int_{\mathbb{T}} w^{1 - \tilde{p}/2} \, d\theta < \infty$$

because $\tilde{p}/2 - 1 < q_{\text{cr}}(w)$. ■

Proof of Corollary 1.4. Let $S \stackrel{\text{def}}{=} D^{-1}$ for shorthand. Recall that $|\varphi_n| = |\varphi_n^*|$ on \mathbb{T} . The following inequality follows from the mean value formula

$$|x^2 \log x - y^2 \log y| \lesssim (1 + |x| \log |x| + |y| \log |y|) |x - y|, \quad x, y \geq 0.$$

Hence,

$$\int_{-\pi}^{\pi} ||\varphi_n^*|^2 \log |\varphi_n^*| - |S|^2 \log |S| w \, d\theta \lesssim \int_{-\pi}^{\pi} (1 + |\varphi_n^* \log |\varphi_n^*|| + |S \log |S||) |\varphi_n^*| - |S| w \, d\theta.$$

Then, one can write

$$\begin{aligned} \int_{-\pi}^{\pi} (1 + |\varphi_n^* \log |\varphi_n^*|| + |S \log |S||) |\varphi_n^*| - |S| w \, d\theta &\leq \\ C(\delta) \left(\int_{-\pi}^{\pi} (1 + |\varphi_n^*|^{2+\delta} + |S|^{2+\delta}) w \, d\theta \right)^{1/2} &\left(\int_{\mathbb{T}} |\varphi_n^* - S|^2 w \, d\theta \right)^{1/2} \end{aligned}$$

by applying Cauchy–Schwarz inequality and the trivial bound: $(1 + u|\log u|)^2 \leq C(\delta)(1 + u^{2+\delta})$, $\delta > 0$. The 2nd factor converges to zero when $n \rightarrow \infty$ due to (3.19). For the 1st one, Theorem 1.1 and identity $|S| = w^{-1/2}$ allow us to find $\delta > 0$ such that

$$\sup_n \int_{-\pi}^{\pi} (|\varphi_n^*|^{2+\delta} + |S|^{2+\delta}) w \, d\theta < \infty.$$

■

In the rest of this section, we will show that Theorem 1.1 implies Theorem 1.6. We start with the following lemma.

Lemma 3.7. If $w, w^{-1} \in \text{BMO}(\mathbb{T})$, then $w \in A_2(\mathbb{T})$.

Proof. Let $s \stackrel{\text{def}}{=} \|w\|_{\text{BMO}(\mathbb{T})}$, $t \stackrel{\text{def}}{=} \|w^{-1}\|_{\text{BMO}(\mathbb{T})}$ for shorthand. Consider any interval $I \subseteq \mathbb{T}$. We define $a \stackrel{\text{def}}{=} \langle w \rangle_I$, $b \stackrel{\text{def}}{=} \langle w^{-1} \rangle_I$. We have

$$\langle |w - a| \rangle_I \leq s, \quad \langle |w^{-1} - b| \rangle_I \leq t$$

by the definition of BMO space. To estimate $A_2(\mathbb{T})$ characteristic, we need to bound ab . We assume without loss of generality that $I = [0, 1]$ and that $a \leq b$. Apply triangle's inequality and an estimate

$$\frac{1}{|I|} \|w - \langle w \rangle_I\|_{L^2(I)}^2 \lesssim s^2$$

[30, p. 144 and Formula (7)], to get

$$\|w\|_2 \leq \|w - a\|_2 + \|a\|_2 \lesssim s + a, \quad (3.21)$$

where here and in the rest of the proof all estimates are done with respect to $I = [0, 1]$. Consider a set $\Omega \stackrel{\text{def}}{=} \{|w^{-1} - b| \leq 0.5b\}$. By John–Nirenberg inequality [30, p. 145 and Formula (8)], we can estimate the measure of its complement via

$$|\Omega^c| \lesssim \exp(-c_1 bt^{-1}), \quad (3.22)$$

where c_1 is an absolute positive constant. We can rewrite Ω as follows $\Omega = \{0.5b \leq w^{-1} \leq 1.5b\} = \{2/(3b) \leq w \leq 2/b\}$ and this formula shows that

$$\int_{w>2/b} d\theta \leq |\Omega^c| \lesssim \exp(-c_1 bt^{-1}). \quad (3.23)$$

Then,

$$a = \int_{w \leq 2/b} w \, d\theta + \int_{w > 2/b} w \, d\theta$$

and consequently

$$\int_{w > 2/b} w \, d\theta = a - \int_{w \leq 2/b} w \, d\theta \geq a - 2/b.$$

On the other hand, by Cauchy–Schwarz inequality and (3.23),

$$\int_{w > 2/b} w \, d\theta \leq \|w\|_2 \left(\int_{w > 2/b} d\theta \right)^{1/2} \lesssim (s + a) \exp(-c_1 b t^{-1}/2).$$

Putting these bounds together, we get

$$ab \lesssim 1 + (s + a)b \exp(-c_1 b t^{-1}/2).$$

Since $\sup_{t > 0} b t^{-1} \exp(-c_1 b t^{-1}/2) \lesssim 1$, the following estimate holds:

$$ab \lesssim 1 + st + ab \exp(-c_1 b t^{-1}/2).$$

Recall that $a \leq b$. Thus, an elementary bound $\sup_{t > 0} b^2 t^{-2} \exp(-c_1 b t^{-1}/2) < \infty$ yields

$$ab \exp(-c_1 b t^{-1}/2) \leq b^2 \exp(-c_1 b t^{-1}/2) \lesssim t^2.$$

We finally get

$$ab \lesssim 1 + st + t^2 \lesssim 1 + s^2 + t^2,$$

and that proves the lemma. ■

Now, given this lemma, we can argue in the following way. If $w, w^{-1} \in \text{BMO}(\mathbb{T})$, then $w \in A_2(\mathbb{T})$ and Theorem 1.1 yields

$$\sup_n \int_{\mathbb{T}} |\varphi_n|^p w \, d\theta < \infty, \quad 2 \leq p < p_{\text{cr}}([w]_{A^2}). \quad (3.24)$$

Therefore, for every $q \in [2, p)$, we can use Hölder's inequality

$$\int_{\mathbb{T}} |\varphi_n|^q d\theta = \int_{\mathbb{T}} |\varphi_n|^q w^\beta w^{-\beta} d\theta \leq \left(\int_{\mathbb{T}} |\varphi_n|^{q\alpha} w^{\beta\alpha} d\theta \right)^{1/\alpha} \left(\int_{\mathbb{T}} w^{-\beta\alpha'} d\theta \right)^{1/\alpha'} \quad (3.25)$$

and choose $\alpha \in (1, \infty)$ and $\beta > 0$ such that $\beta\alpha = 1, q\alpha = p$. The 1st factor in the right-hand side of (3.25) is controlled by (3.24). Since $w^{-1} \in \text{BMO}(\mathbb{T})$, the 2nd factor is finite due to John–Nirenberg estimate and we get $\sup_n \|\varphi_n\|_{L^q(\mathbb{T})} < \infty$ as claimed in Theorem 1.6. This argument shows that Theorem 1.1 is qualitatively stronger than Theorem 1.6.

4 The Christoffel–Darboux Kernel and Bounds for the Associated Projection Operator

In this section, we study the projection operators associated to $\{\varphi_n(z, w)\}_{n \geq 0}$. Recall the Christoffel–Darboux kernel is defined as [28, p. 120]

$$K_n(z, \zeta, w) = \sum_{k=0}^n \varphi_k(z, w) \overline{\varphi_k(\zeta, w)}.$$

In particular, $K_n(z, \zeta, w)$ is integral kernel associated to the orthogonal projection operator $\mathcal{P}_{[0, n]}^w$ onto $\text{Span}\{\varphi_0, \dots, \varphi_n\}$ in $L_w^2(\mathbb{T})$; see [28] for more details. In this section, we prove that these projections are uniformly bounded.

Theorem 4.1. Suppose $w \in A_2(\mathbb{T})$, with $\gamma \stackrel{\text{def}}{=} [w]_{A_2(\mathbb{T})}$. Then, there exists $\epsilon_\gamma > 0$ such that

$$\sup_n \|\mathcal{P}_{[0, n]}^w\|_{L_w^p(\mathbb{T}), L_w^p(\mathbb{T})} < \infty$$

for all $p \in [2 - \epsilon_\gamma, 2 + \epsilon_\gamma]$.

Recall (check (1.6)) that the Szegő function D can be introduced for any weight w that satisfies $\log w \in L^1(\mathbb{T})$. We define the subspace $H_{2,w}(\mathbb{T})$ as the closure of $\text{Span}\{\varphi_n\}_{n \geq 0} = \text{Span}\{z^n\}_{n \geq 0}$ in $L_w^2(\mathbb{T})$ metric. Denote by $\mathcal{P}_{[0, \infty]}^w$ the operator of orthogonal projection onto $H_{2,w}(\mathbb{T})$ in $L_w^2(\mathbb{T})$. By Beurling's theorem [17, p. 79], function f belongs to $H_{2,w}(\mathbb{T})$ if and only if $f = D^{-1}g$ where g is an element of the Hardy space $H_2(\mathbb{T})$, for example, $H_{2,w}(\mathbb{T}) = D^{-1}H_2(\mathbb{T})$. Recall the standard notation that $H_2(\mathbb{T})$ denotes the restriction of functions in $H_2(\mathbb{D})$ onto \mathbb{T} . Since $w = |D|^2$, the map $g \rightarrow D^{-1}g$ is unitary

isomorphism between $L^2(\mathbb{T})$ and $L_w^2(\mathbb{T})$. The restriction of the same map to $H^2(\mathbb{T})$ is unitary isomorphism between $H_2(\mathbb{T})$ and $H_{2,w}(\mathbb{T})$. Finally, the orthogonal projection of $f \in L^2(\mathbb{T})$ to $H_2(\mathbb{T})$ is given by $\lim_{r \rightarrow 1} \mathcal{C}(f, r\xi)$ (see (1.10) and [14, p. 2]) where the limit exists for a.e. $\xi \in \mathbb{T}$. Thus, we can write

$$\mathcal{P}_{[0,\infty]}^w(f)(\xi) \stackrel{\text{def}}{=} \lim_{r \rightarrow 1} \frac{1}{D(\xi)} \mathcal{C}(fD, r\xi), \quad \xi \in \mathbb{T}, \quad (4.1)$$

where \mathcal{C} is Cauchy integral.

Lemma 4.2. If $p \in (1, \infty)$ and $w^{1-p/2} \in A_p(\mathbb{T})$, then $\mathcal{P}_{[0,\infty]}^w$ is bounded on $L_w^p(\mathbb{T})$.

Proof. Let $\xi \in \mathbb{T}$ and $z \in \mathbb{D}$. The Cauchy kernel in (1.10) can be written as

$$\frac{1}{1 - \bar{\xi}z} = \frac{1}{2} \left(\frac{1 + \bar{\xi}z}{1 - \bar{\xi}z} + 1 \right).$$

The 1st term inside the parenthesis

$$\frac{1 + \bar{\xi}z}{1 - \bar{\xi}z} = \frac{\xi + z}{\xi - z}$$

is the so-called Schwarz kernel. Two real parts of Schwarz kernel is Poisson kernel (1.9) and its imaginary part, when restricted to \mathbb{T} , defines \mathfrak{h} in (1.8). Therefore, for $f \in L_w^p(\mathbb{T})$, we can use (4.1) and (1.5) to get

$$\begin{aligned} |\mathcal{P}_{[0,\infty]}^w(f)| &\lesssim \lim_{r \rightarrow 1} \frac{1}{|D|} \mathcal{P}(|fD|, r\xi) + \frac{1}{|D|} \int_{\mathbb{T}} |fD| \, d\theta + \left| \frac{1}{D} \mathfrak{h}(fD) \right| \\ &= |f| + \frac{1}{|D|} \int_{\mathbb{T}} |fD| \, d\theta + \left| \frac{1}{D} \mathfrak{h}(fD) \right| \end{aligned} \quad (4.2)$$

due to [17, p. 11] and the identity

$$\lim_{r \rightarrow 1} \mathcal{P}(g, r\xi) = g(\xi), \quad \text{a.e. } \xi \in \mathbb{T},$$

which holds for $g \in L^1(\mathbb{T})$. Since $f \in L_w^p(\mathbb{T})$ and $w = |D|^2$, we get

$$\left\| \frac{1}{|D|} \int_{\mathbb{T}} |fD| \, d\theta \right\|_{L_w^p(\mathbb{T})} = \left(\int_{\mathbb{T}} w^{1-p/2} \, d\theta \right)^{1/p} \cdot \left(\int_{\mathbb{T}} |f| \sqrt{w} \, d\theta \right).$$

Since $w^{1-p/2} \in A_p(\mathbb{T})$ and $A_p(\mathbb{T}) \subset L^1(\mathbb{T})$, the 1st integral converges. For the 2nd one, we use Hölder's inequality

$$\int_{\mathbb{T}} |f| \sqrt{w} \, d\theta = \int_{\mathbb{T}} (|f| w^{1/p}) (w^{1/2-1/p}) \, d\theta \leq \left(\int_{\mathbb{T}} |f|^p w \, d\theta \right)^{1/p} \left(\int_{\mathbb{T}} w^{(1/2-1/p)p'} \, d\theta \right)^{1/p'}.$$

To show that the integral

$$\int_{\mathbb{T}} w^{(1/2-1/p)p'} \, d\theta = \int_{\mathbb{T}} w^{\frac{(p-2)}{2(p-1)}} \, d\theta$$

converges, we recall that $w^{1-p/2} \in A_p(\mathbb{T})$ implies that $w^{\frac{(p-2)}{2(p-1)}} \in L^1(\mathbb{T})$ as follows from the definition of $A_p(\mathbb{T})$ given in (1.2). We are left with estimating $L_w^p(\mathbb{T})$ norm of the 3rd term in (4.2). The operator of harmonic conjugation \mathfrak{h} is one of the basic singular integral operators and the Hunt–Muckenhoupt–Wheeden theorem claims (see, e.g., [30, p.205]) that $v^{1/p} \mathfrak{h} v^{-1/p}$ is a bounded operator on $L^p(\mathbb{T})$ if $v \in A_p(\mathbb{T})$ and $p \in (1, \infty)$. Since $w = |D|^2$ and $w^{1-p/2} \in A_p(\mathbb{T})$, we get statement of the lemma thanks to the formula

$$\|w^{-1/2} \mathfrak{h}(w^{1/2} f)\|_{L_w^p(\mathbb{T})} = \|w^{-1/2+1/p} \mathfrak{h}(w^{1/2-1/p}(w^{1/p} f))\|_{L^p(\mathbb{T})}$$

after one takes $v = w^{1-p/2}$ and notices that $\|w^{1/p} f\|_{L^p(\mathbb{T})} = \|f\|_{L_w^p(\mathbb{T})}$. ■

This yields the following corollary.

Corollary 4.3. Let $w \in A_2(\mathbb{T})$. Then, $\mathcal{P}_{[0,\infty]}^w$ is bounded on $L_w^p(\mathbb{T})$ for all $p \in [4/3, 4]$.

Proof. The projection is self-adjoint operator in $L_w^2(\mathbb{T})$. Therefore, by duality, it is enough to consider $p \in [2, 4]$. For $p = 4$, we have $w^{-1} \in A_2(\mathbb{T}) \subset A_4(\mathbb{T})$ and the previous lemma applies. If $p = 2$, the projection operator has norm 1. Thus, by Riesz–Thorin interpolation, we have an estimate for all $p \in [2, 4]$. ■

Define the projection operator onto $\text{Span}\{\varphi_n\}_{n \geq a+1}$ by

$$\mathcal{P}_{[a+1,\infty]}^w \stackrel{\text{def}}{=} \mathcal{P}_{[0,\infty]}^w - \mathcal{P}_{[0,a]}^w.$$

When $w \in A_2(\mathbb{T})$ and $p \in [4/3, 4]$, $\{\mathcal{P}_{[0,n]}^w\}_{n \geq 0}$ is uniformly bounded on $L_w^p(\mathbb{T})$ if and only if $\{\mathcal{P}_{[n+1,\infty]}^w\}_{n \geq 0}$ is uniformly bounded on $L_w^p(\mathbb{T})$. We will show the latter. To apply

the same process as in Section 3 for getting bounds for the polynomials $\{\varphi_n\}$, one needs the following identities.

Lemma 4.4. If $\mathcal{P}_{[0,n]}^1$ corresponds to the unperturbed case $w = 1$, then

$$\begin{cases} \mathcal{P}_{[n+1,\infty]}^w = (I - \mathcal{P}_{[0,n]}^1) \mathcal{P}_{[0,\infty]}^w + \mathcal{P}_{[0,n]}^1 \mathcal{P}_{[n+1,\infty]}^w \\ \mathcal{P}_{[0,n]}^1 w \mathcal{P}_{[n+1,\infty]}^w = 0. \end{cases}$$

Proof. To prove the 1st identity, first note that applying both operators to a function f is the same as applying it to $\mathcal{P}_{[0,\infty]}^w f$, so it suffices to verify the identity for all functions in the range of $\mathcal{P}_{[0,\infty]}^w$, which is the closure of finite sums $\sum_{j=0}^N a_j \varphi_j(z)$. The formula then follows from $\mathcal{P}_{[0,n]}^1 \varphi_k = \varphi_k$ for all $k \leq n$. To prove the 2nd identity, it suffices to note that the range of $\mathcal{P}_{[n+1,\infty]}^w$ will be the closed span of $\{\varphi_{n+1}, \varphi_{n+2}, \dots\}$; since $\varphi_{n+j} \perp_w \{1, z, \dots, z^n\}$, it follows that $\mathcal{P}_{[0,n]}^1 w \varphi_{n+j} = 0$ for all $j \geq 1$, whence the identity. \blacksquare

Proof of Theorem 4.1. By duality, it is sufficient to consider $p > 2$. Let $X_n \stackrel{\text{def}}{=} w^{1/p} \mathcal{P}_{[n+1,\infty]}^w w^{-1/p}$ and $X_\infty \stackrel{\text{def}}{=} w^{1/p} \mathcal{P}_{[0,\infty]}^w w^{-1/p}$. We need to estimate $\|X_n\|_{p,p}$. Rewriting the relations of the above lemma in terms of operators on $L^p(\mathbb{T})$, we get

$$\begin{cases} X_n = w^{1/p} (I - \mathcal{P}_{[0,n]}^1) w^{-1/p} X_\infty + w^{1/p} \mathcal{P}_{[0,n]}^1 w^{-1/p} X_n \\ w^{-1/p'} \mathcal{P}_{[0,n]}^1 w^{1/p'} X_n = 0. \end{cases}$$

Subtracting the bottom from the top and rearranging, we get back

$$(I - Q_{w,p}) X_n = w^{1/p} (I - \mathcal{P}_{[0,n]}^1) w^{-1/p} X_\infty.$$

Notice that $\sup_n \|w^{1/p} (I - \mathcal{P}_{[0,n]}^1) w^{-1/p} X_\infty\|_{p,p} < \infty$ by Hunt–Muckenhoupt–Wheeden theorem and Lemma 4.3. Furthermore, the proof of Lemma 3.6 implies that $(I - Q_{w,p})$ on the left side of the equality has an inverse, which is bounded in $L^p(\mathbb{T})$ uniformly in n for all $p \in [2, 2 + \epsilon_\gamma] \subseteq [2, 4]$ if ϵ_γ is small enough. Putting all of this together, we get

$$X_n = (I - Q_{w,p})^{-1} \left(w^{1/p} (I - \mathcal{P}_{[0,n]}^1) w^{-1/p} X_\infty \right).$$

Therefore, $\{X_n\}_{n \geq 0}$ is uniformly bounded, completing the proof. \blacksquare

5 Weights in $A_2(\mathbb{T})$ and Their Aleksandrov–Clark Measures

Several generalizations of $A_2(\mathbb{T})$ and $A_\infty(\mathbb{T})$ classes were studied in the literature (see, e.g., [29]). We will need two definitions here.

Definition. We say that $w \in A_2^P(\mathbb{T})$ if

$$[w]_{A_2^P(\mathbb{T})} \stackrel{\text{def}}{=} \sup_{z \in \mathbb{D}} \left(\mathcal{P}(w, z) \mathcal{P}(w^{-1}, z) \right) < \infty \quad (5.1)$$

and $w \in A_\infty^P(\mathbb{T})$ if

$$[w]_{A_\infty^P(\mathbb{T})} \stackrel{\text{def}}{=} \sup_{z \in \mathbb{D}} \left(\mathcal{P}(w, z) \exp(-\mathcal{P}(\log w, z)) \right) < \infty. \quad (5.2)$$

By Jensen's inequality, we have

$$[w]_{A_\infty^P(\mathbb{T})} \leq [w]_{A_2^P(\mathbb{T})}. \quad (5.3)$$

The following lemma is part of the folklore of modern harmonic analysis, we include its proof for completeness.

Lemma 5.1. We have $A_2(\mathbb{T}) = A_2^P(\mathbb{T}) \subseteq A_\infty^P(\mathbb{T})$.

Proof. By (5.3), we get the 2nd inclusion. The inclusion $A_2^P(\mathbb{T}) \subseteq A_2(\mathbb{T})$ follows from a bound

$$\frac{1}{|I|^2} \left(\int_I w d\theta \right) \left(\int_I w^{-1} d\theta \right) \lesssim \mathcal{P}(w, z_I) \mathcal{P}(w^{-1}, z_I),$$

where $z_I \stackrel{\text{def}}{=} c_I(1 - 0.1|I|)$ and c_I denotes the center of I . Thus, we only need to show $A_2(\mathbb{T}) \subseteq A_2^P(\mathbb{T})$. Due to the rotational symmetry of \mathbb{D} , it is enough to take a point $z = 1 - \epsilon, \epsilon \in [0, 1)$ and prove that

$$\left(\int_{-\pi}^{\pi} \frac{\epsilon}{\epsilon^2 + \theta^2} w(\theta) d\theta \right) \left(\int_{-\pi}^{\pi} \frac{\epsilon}{\epsilon^2 + \theta^2} w^{-1}(\theta) d\theta \right) < C([w]_{A_2(\mathbb{T})}). \quad (5.4)$$

We can assume without loss of generality that

$$\langle w \rangle_{[0, \epsilon]} = 1, \quad \langle w^{-1} \rangle_{[0, \epsilon]} \leq [w]_{A_2(\mathbb{T})}.$$

In [20], Lerner and Perez proved, in particular, the following.

Given $p \in (1, \infty)$, we have $w \in A_p(\mathbb{R})$ if and only if for every $\gamma > 0$ there is $C(\gamma, [w]_{A_p})$ such that

$$\frac{|E|}{|I|} \log^\gamma \left(\frac{|I|}{|E|} \right) \leq C(\gamma, [w]_{A_p}) \left(\frac{w(E)}{w(I)} \right)^{1/p},$$

where I is any interval in \mathbb{R} and $E \subset I$.

Since each $w \in A_2(\mathbb{T})$ can be considered as a 2π -periodic weight on \mathbb{R} with $[w]_{A_2(\mathbb{R})} \lesssim [w]_{A_2(\mathbb{T})}$, the result of Lerner and Perez holds for \mathbb{T} as well. We take $p = 2$, $E = [0, \epsilon]$, $I = [0, x]$, $2\epsilon < x < \pi$ to get

$$\frac{1}{x} \int_0^x w(s) \, ds \leq C(\gamma, [w]_{A_2(\mathbb{T})}) \frac{x}{\epsilon} \log^{-2\gamma} \left(\frac{x}{\epsilon} \right).$$

Therefore, when $\gamma > 1/2$ is fixed,

$$\begin{aligned} \int_0^\pi \frac{\epsilon w(x)}{\epsilon^2 + x^2} \, dx &\lesssim \epsilon^{-1} \int_0^{2\epsilon} w(x) \, dx + \epsilon \int_{2\epsilon}^\pi \frac{w(x)}{x^2} \, dx \leq C([w]_{A_2}) + \epsilon \int_{2\epsilon}^\pi \frac{1}{x^2} \left(\int_{2\epsilon}^x w(\tau) \, d\tau \right)' \, dx \lesssim \\ &C([w]_{A_2}) + \epsilon \int_{2\epsilon}^\pi w(x) \, dx + C(\gamma, [w]_{A_2(\mathbb{T})}) \int_{2\epsilon}^\pi \frac{\log^{-2\gamma}(x/\epsilon)}{x} \, dx < C([w]_{A_2(\mathbb{T})}), \end{aligned}$$

where in the 2nd inequality we used that A_2 weights are doubling, along with our normalization. The integral over $[-\pi, 0]$ can be estimated in the same way. Thus,

$$\int_{\mathbb{T}} \frac{\epsilon w(x)}{\epsilon^2 + x^2} \, dx < C([w]_{A_2(\mathbb{T})}), \quad (5.5)$$

and we get a similar estimate for w^{-1} because $w^{-1} \in A_2(\mathbb{T})$. We obtained (5.4) and the lemma is proved. \blacksquare

The following lemma was proved in [7, Lemma 2]. We provide the sketch of the proof here.

Lemma 5.2. If $w \in A_\infty^P(\mathbb{T})$ and $d\mu = \frac{w}{2\pi} d\theta$, then μ_α is absolutely continuous and $d\mu_\alpha = \frac{w_\alpha}{2\pi} d\theta$ for every $\alpha \in \mathbb{T}$. Moreover, $w_\alpha \in A_\infty^P(\mathbb{T})$.

Proof. Given probability measure $\mu : d\mu = \frac{w}{2\pi} d\theta + d\mu_s$, consider a generalized entropy

$$\mathcal{K}(\mu, z) = \log \mathcal{P}(\mu, z) - \mathcal{P}(\log w, z), \quad z \in \mathbb{D}.$$

If we introduce f , the Schur function of measure μ , through the formula

$$\frac{1 + zf(z)}{1 - zf(z)} = F(z) = \int_{\mathbb{T}} \frac{1 + \bar{\xi}z}{1 - \bar{\xi}z} d\mu(\xi), \quad z \in \mathbb{D}, \quad \xi = e^{i\theta}, \quad (5.6)$$

then the straightforward but lengthy calculation shows that

$$\mathcal{K}(\mu, z) = \frac{1}{2\pi} \int_{\mathbb{T}} \log \left(\frac{1 - |zf(z)|^2}{1 - |f(\xi)|^2} \right) \frac{1 - |z|^2}{|1 - \bar{\xi}z|^2} d\theta. \quad (5.7)$$

On the other hand, it is known that the Schur function of each measure μ_α is given by $f_\alpha = \alpha f$. Therefore, $\mathcal{K}(\mu_\alpha, z) = \mathcal{K}(\mu, z)$. Notice that $w \in A_\infty^P(\mathbb{T})$ is equivalent to $\mathcal{K}(w, z) \in L^\infty(\mathbb{D})$. Thus, if $w \in A_\infty^P(\mathbb{T})$, then $\mathcal{K}(\mu_\alpha, z) \in L^\infty(\mathbb{D})$. On the other hand, this condition implies that μ_α has no singular part. Indeed, if $d\mu_\alpha = \frac{w_\alpha}{2\pi} d\theta + d\mu_s^{(\alpha)}$ where $\mu_s^{(\alpha)}$ is a singular measure, then

$$\log \left(\mathcal{P}(\mu_s^{(\alpha)}, z) + \mathcal{P}(w_\alpha, z) \right) - \mathcal{P}(\log w_\alpha, z) \leq C, \quad z \in \mathbb{D}.$$

This implies

$$\mathcal{P}(\mu_s^{(\alpha)}, z) \leq \mathcal{P}(\mu_s^{(\alpha)}, z) + \mathcal{P}(w_\alpha, z) \leq C \exp(\mathcal{P}(\log w_\alpha, z)) \leq C \mathcal{P}(w_\alpha, z)$$

by Jensen inequality, hence, $\mu_s^{(\alpha)} = 0$. ■

Proof of Theorem 1.5. The 1st claim is immediate from Lemmas 5.1 and 5.2. Now, let us show that $w_\alpha \in A_2(\mathbb{T})$. We will consider $w_{-1} = w_{\text{dual}}$ only, the cases of other α can be handled similarly. We can write $F(e^{i\theta}) = w + i\tilde{w}$, where \tilde{w} is a harmonic conjugate function. Then, since $\text{Re}F_{-1} = \text{Re}F^{-1} = \text{Re}F/|F|^2$, we get

$$w_{\text{dual}} = \frac{w}{w^2 + \tilde{w}^2}.$$

Without loss of generality, we can consider an interval $I_\epsilon \stackrel{\text{def}}{=} [-\epsilon, \epsilon]$ when checking $A_2(\mathbb{T})$ condition for w_{dual} . We need to control

$$K \stackrel{\text{def}}{=} \epsilon^{-2} \left(\int_{-\epsilon}^{\epsilon} \frac{w}{w^2 + \tilde{w}^2} d\theta \right) \left(\int_{-\epsilon}^{\epsilon} \frac{\tilde{w}^2 + w^2}{w} d\theta \right) \quad (5.8)$$

under assumptions

$$\langle w \rangle_{I_\epsilon} = 1, \quad \langle w^{-1} \rangle_{I_\epsilon} \leq [w]_{A_2(\mathbb{T})}. \quad (5.9)$$

Clearly,

$$\epsilon^{-2} \left(\int_{-\epsilon}^{\epsilon} \frac{w}{w^2 + \tilde{w}^2} d\theta \right) \left(\int_{-\epsilon}^{\epsilon} w d\theta \right) \lesssim [w]_{A_2(\mathbb{T})} \quad (5.10)$$

by definition and we are left with estimating

$$\epsilon^{-2} \left(\int_{-\epsilon}^{\epsilon} \frac{w}{w^2 + \tilde{w}^2} d\theta \right) \left(\int_{-\epsilon}^{\epsilon} \frac{\tilde{w}^2}{w} d\theta \right). \quad (5.11)$$

We can write

$$\tilde{w} = h_1 + h_2, \quad h_1 \stackrel{\text{def}}{=} \mathfrak{h}(w \chi_{[-2\epsilon, 2\epsilon]}), \quad h_2 \stackrel{\text{def}}{=} \mathfrak{h}(w \chi_{[-2\epsilon, 2\epsilon]^c}),$$

where \mathfrak{h} is harmonic conjugation, a standard singular integral operator. Hence,

$$\int_{-\epsilon}^{\epsilon} w^{-1} |h_1|^2 d\theta \leq \int_{\mathbb{T}} w^{-1} |h_1|^2 d\theta = \int_{\mathbb{T}} w^{-1} |\mathfrak{h}(w^{1/2} \cdot w^{1/2} \chi_{[-2\epsilon, 2\epsilon]})|^2 d\theta \leq C([w]_{A_2(\mathbb{T})}) \int_{-2\epsilon}^{2\epsilon} w d\theta$$

if we use the Hunt–Muckenhoupt–Wheeden theorem with weight $w^{-1} \in A^2(\mathbb{T})$ and $w^{-1/2} \mathfrak{h} w^{1/2}$ applied to function $w^{1/2} \chi_{[-2\epsilon, 2\epsilon]}$. In (5.11), this gives the contribution

$$\begin{aligned} \epsilon^{-2} \left(\int_{-\epsilon}^{\epsilon} \frac{w}{w^2 + \tilde{w}^2} d\theta \right) \left(\int_{-\epsilon}^{\epsilon} \frac{h_1^2}{w} d\theta \right) &\leq C([w]_{A_2(\mathbb{T})}) \epsilon^{-2} \left(\int_{-2\epsilon}^{2\epsilon} w d\theta \right) \left(\int_{-2\epsilon}^{2\epsilon} w^{-1} d\theta \right) \\ &\leq C([w]_{A_2(\mathbb{T})}). \end{aligned} \quad (5.12)$$

We are left with controlling

$$\epsilon^{-2} \left(\int_{-\epsilon}^{\epsilon} \frac{w}{w^2 + \tilde{w}^2} d\theta \right) \left(\int_{-\epsilon}^{\epsilon} \frac{h_2^2}{w} d\theta \right). \quad (5.13)$$

Notice that

$$h_2(\varphi) = \operatorname{Im} U(e^{i\varphi}), \quad |\varphi| < \epsilon,$$

where

$$U(\zeta) \stackrel{\text{def}}{=} \frac{1}{2\pi} \int_{|\theta|>2\epsilon} \frac{e^{i\theta} + \zeta}{e^{i\theta} - \zeta} w \, d\theta, \quad \zeta \in \mathbb{D}.$$

When $|\zeta - 1| < \epsilon$, we have

$$|U'(\zeta)| \lesssim \int_{|\theta|>2\epsilon} \frac{1}{|e^{i\theta} - 1|^2} w \, d\theta \lesssim \epsilon^{-1} \int_{\mathbb{T}} \frac{\epsilon}{\theta^2 + \epsilon^2} w \, d\theta \leq \epsilon^{-1} C([w]_{A_2(\mathbb{T})}),$$

where we used the bound (5.5). Therefore,

$$|\operatorname{Im} U(e^{i\varphi}) - \operatorname{Im} U(1 - \epsilon)| \leq C([w]_{A_2(\mathbb{T})}), \quad |\varphi| < \epsilon$$

as follows from the fundamental theorem of calculus. Therefore,

$$\int_{-\epsilon}^{\epsilon} \frac{h_2^2}{w} \, d\theta \lesssim (\operatorname{Im} U(1 - \epsilon))^2 \int_{-\epsilon}^{\epsilon} w^{-1} \, d\theta + C([w]_{A_2(\mathbb{T})}) \int_{-\epsilon}^{\epsilon} w^{-1} \, d\theta. \quad (5.14)$$

The 2nd term gives the following contribution in (5.13):

$$\epsilon^{-2} \left(\int_{-\epsilon}^{\epsilon} \frac{w}{w^2 + \tilde{w}^2} \, d\theta \right) C([w]_{A_2(\mathbb{T})}) \int_{-\epsilon}^{\epsilon} w^{-1} \, d\theta \leq C([w]_{A_2(\mathbb{T})}) \left(\langle w^{-1} \rangle_{I_\epsilon} \right)^2 \leq C([w]_{A_2(\mathbb{T})}), \quad (5.15)$$

where we used (5.9). For the 1st term in (5.14), recall that $\operatorname{Re}(F^{-1}) = w/(w^2 + \tilde{w}^2)$ a.e. on \mathbb{T} , and estimate

$$\begin{aligned} \epsilon^{-2} \left(\int_{-\epsilon}^{\epsilon} \frac{w}{w^2 + \tilde{w}^2} \, d\theta \right) (\operatorname{Im} U(1 - \epsilon))^2 \int_{-\epsilon}^{\epsilon} w^{-1} \, d\theta &\lesssim \left(\mathcal{P}(\operatorname{Re}(F^{-1}), 1 - \epsilon) \cdot (\operatorname{Im} U(1 - \epsilon))^2 \right) \\ &\quad \cdot \left(\epsilon^{-1} \int_{-\epsilon}^{\epsilon} w^{-1} \, d\theta \right). \end{aligned}$$

For the last factor, one can write

$$\epsilon^{-1} \int_{-\epsilon}^{\epsilon} w^{-1} \, d\theta \lesssim [w]_{A_2(\mathbb{T})}.$$

Since $\operatorname{Re}(F^{-1})$ is harmonic, μ_{dual} is absolutely continuous, and $\operatorname{Re}(F^{-1}) = \operatorname{Re} F/|F|^2$, we get

$$\mathcal{P}(\operatorname{Re}(F^{-1}), 1 - \epsilon) \cdot (\operatorname{Im} U(1 - \epsilon))^2 = \frac{\operatorname{Re} F(1 - \epsilon)}{|F(1 - \epsilon)|^2} (\operatorname{Im} U(1 - \epsilon))^2.$$

Notice that our normalization gives

$$1 = (2\epsilon)^{-1} \int_{-\epsilon}^{\epsilon} w \, d\theta \lesssim \operatorname{Re} F(1 - \epsilon) \sim \int_{-\pi}^{\pi} \frac{\epsilon}{\theta^2 + \epsilon^2} w \, d\theta \leq C([w]_{A_2(\mathbb{T})}), \quad (5.16)$$

where the last bound is (5.5). Let us compare $\operatorname{Im} U(1 - \epsilon)$ and $\operatorname{Im} F(1 - \epsilon)$. By definition of F and U ,

$$|U(1 - \epsilon) - F(1 - \epsilon)| \lesssim \frac{1}{\epsilon} \int_{-2\epsilon}^{2\epsilon} w \, d\theta \leq C([w]_{A_2(\mathbb{T})}).$$

Thus,

$$\begin{aligned} \frac{\operatorname{Re} F(1 - \epsilon)}{|F(1 - \epsilon)|^2} (\operatorname{Im} U(1 - \epsilon))^2 &\lesssim \frac{\operatorname{Re} F(1 - \epsilon)}{|F(1 - \epsilon)|^2} (|F(1 - \epsilon)|^2 + C([w]_{A_2(\mathbb{T})})) \\ &< C([w]_{A_2(\mathbb{T})}) \left(\operatorname{Re} F(1 - \epsilon) + \frac{1}{\operatorname{Re} F(1 - \epsilon)} \right), \end{aligned}$$

which, thanks to (5.16), is bounded by $C([w]_{A_2(\mathbb{T})})$. Summing up, we estimate K in (5.8) by $K \leq C([w]_{A_2(\mathbb{T})})$ and the lemma is proved. \blacksquare

Appendix: Fisher–Hartwig Weights

The Fisher–Hartwig weights are a large class of weights on the circle, which generalizes the class of Jacobi weights. It was at the focus of recent research (see, e.g., [8]) mainly due to some connections with probability and mathematical physics. For these weights, the asymptotics of polynomials is now well understood [8]. In this section, we provide an upper bound for the function $p_{\text{cr}}(t)$ using some results obtained in [21]. In particular, the analysis developed for Fisher–Hartwig weights will give us the proof of the following lemma.

Lemma A1. If $t \in (1, 2)$, we have $p_{\text{cr}}(t) < C(t - 1)^{-1/2}$.

We provide its proof in the end of this section. For $\beta \geq 0$, consider the weight $w_\beta = |z - 1|^{2\beta}$ on the unit circle and the associated orthogonal polynomials $\{\Phi_n(z, w_\beta)\}$. This is a particular choice for the Fisher–Hartwig weight with the single point of singularity located at $z = 1$. Note that in order for $w_\beta \in A_2(\mathbb{T})$, one needs $2\beta < 1$, that is, $\beta \in [0, \frac{1}{2})$. We start with the following proposition.

Proposition A2. Suppose $\beta \in [0, \frac{1}{2})$. Then,

$$[w_\beta]_{A_2(\mathbb{T})} \sim \frac{1}{1 - 4\beta^2} \sim \frac{1}{1 - 2\beta}.$$

Furthermore, if $\beta \in [0, 1/4]$, then

$$[w_\beta]_{A_2(\mathbb{T})} - 1 \sim \beta^2.$$

Remark. The 1st asymptotic is useful in particular when $[w_\beta]_{A_2(\mathbb{T})} > 2$, that is, when our weight varies quite a bit, whereas when $[w_\beta]_{A_2(\mathbb{T})} - 1 < 1$, the 2nd formula is more helpful.

Proof. It is the straightforward calculation in which the integrals over intervals I involved in the definition of $A_2(\mathbb{T})$ can be explicitly computed and estimated. We omit considering all cases here. The formula that best explains the resulting bound is

$$\langle \tilde{w} \rangle_I \langle \tilde{w}^{-1} \rangle_I = \frac{1}{1 - 4\beta^2}, \quad \tilde{w} = |\theta|^{2\beta}$$

for $I = [0, a]$ and any $0 \leq a \leq \pi$. ■

The next proposition makes use of some statements from [21]. Similar results for Jacobi weights were obtained in [3].

Proposition A3. Let $w_\beta = |z - 1|^{2\beta}$, $\beta \in [0, 1/2)$. Then,

$$\|\Phi_n(\cdot, w_\beta)\|_{L_{w_\beta}^p(\mathbb{T})}^p \sim_{\beta, p} \begin{cases} 1, & 2\beta - p\beta + 1 > 0 \\ \log n, & 2\beta - p\beta + 1 = 0 \\ n^{-(2\beta - p\beta + 1)}, & 2\beta - p\beta + 1 < 0 \end{cases}$$

In particular, $\sup_n \|\Phi_n(\cdot, w_\beta)\|_{L_{w_\beta}^p(\mathbb{T})}^p < \infty$ if and only if $p < 2 + \frac{1}{\beta}$.

Proof. First, write

$$\|\Phi_n(\cdot, w_\beta)\|_{L^p(w_\beta)}^p = \int_{|\theta| > \delta} |\Phi_n(z, w_\beta)|^p w_\beta \, d\theta + \int_{|\theta| < \delta} |\Phi_n(z, w_\beta)|^p w_\beta \, d\theta,$$

where δ is a parameter independent of n . To control the 1st term, we use formula (1.13) of [21] to get

$$\int_{|\theta| > \delta} |\Phi_n(z, w_\beta)|^p w_\beta \, d\theta \leq C(\beta, p, \delta) \int_{|\theta| > \delta} w_\beta^{1-p/2} \, d\theta \leq C(\beta, p, \delta).$$

As for the 2nd term, using the asymptotics provided in [21, (1.17)] and applying a change of variables $x = n\theta/2$, we get

$$\int_{|\theta|<\delta} |\Phi_n(z, w_\beta)|^p w_\beta \, d\theta \sim_\beta n^{p\beta-2\beta-1} \int_0^{\delta n/2} x^{2\beta-p(\beta-1/2)} |iJ_{\beta+1/2}(x) + J_{\beta-1/2}(x)|^p \, dx,$$

where $J_\nu(x)$ is the Bessel function of the 1st kind. One can then split this new integral in x up into two: when $x \in (0, 1)$ and when $x \geq 1$. We then use the known asymptotics for Bessel functions (see, e.g., [1]) to get

$$\int_{|\theta|<\delta} |\Phi_n(z, w_\beta)|^p w_\beta \, d\theta \sim_\beta n^{-(2\beta-p\beta+1)} \left(1 + \int_1^{\delta n/2} x^{2\beta-p\beta} \, dx \right) \sim_{\beta,p} \begin{cases} 1, & 2\beta - p\beta + 1 > 0 \\ \log n, & 2\beta - p\beta + 1 = 0 \\ n^{-(2\beta-p\beta+1)}, & 2\beta - p\beta + 1 < 0 \end{cases}$$

In particular, this quantity is bounded precisely when $2\beta - p\beta + 1 > 0$, that is, when $\beta < \frac{1}{p-2}$. The proposition now follows from combining the given estimates. ■

Now, we are ready to prove the main lemma of this section.

Proof of Lemma A1. From the 1st proposition in appendix, we get $[w_\beta]_{A_2(\mathbb{T})} - 1 \sim \beta^2$ if β is small. The 2nd proposition shows that $\sup_n \|\Phi_n(\xi, w_\beta)\|_{L_{w_\beta}^p(\mathbb{T})} < \infty$ if and only if $p < 2 + \beta^{-1}$. Combining these results we get the statement of the lemma. ■

Funding

This work was supported by the National Science Foundation [DMS-1147523 to M.A., DMS-1464479 and DMS-1764245 to S.D.]; and the Van Vleck Professorship Research Award was used to support SD.

Acknowledgments

S.D. gratefully acknowledges the hospitality of IHES where part of this work was done.

References

- [1] Abramowitz, M. and I. Stegun. *Handbook of Mathematical Functions: With Formulas, Graphs, and Mathematical Tables*. National Bureau of Standards. U.S. Government Printing Office, Washington, D.C. 1972 . Digital reprint of the 1972 edition.
- [2] Aptekarev, A., S. Denisov, and D. Tulyakov. "On a problem by Steklov." *J. Amer. Math. Soc.* 29, no. 4 (2016): 1117–65.
- [3] Aptekarev, A. I., V. S. Buyarov, and I. S. Degeza. "Asymptotic behavior of L^p -norms and entropy for general orthogonal polynomials." *Mat. Sb.* 185, no. 8 (1994): 3–30.
- [4] Aptekarev, A. I., J. S. Dehesa, and A. Martinez-Finkelshtein. "Asymptotics of orthogonal polynomial's entropy." *J. Comput. Appl. Math.* 233, no. 6 (2010): 1355–65.

- [5] Beckermann, B., A. Martínez-Finkelshtein, E. A. Rakhmanov, and F. Wielonsky. "Asymptotic upper bounds for the entropy of orthogonal polynomials in the Szegő class." *J. Math. Phys.* 45, no. 11 (2004): 4239–54.
- [6] Bennett, C. and R. Sharpley. *Interpolation of Operators*, vol. 129. Pure and Applied Mathematics. Boston, MA: Academic Press, Inc., 1988.
- [7] Bessonov, R. and S. Denisov. "Entropy, zero sets, and pointwise asymptotics of orthogonal polynomials." (2019): preprint arXiv.
- [8] Deift, P., A. Its, and I. Krasovsky. "Asymptotics of Toeplitz, Hankel, and Toeplitz+Hankel determinants with Fisher–Hartwig singularities." *Ann. of Math.* (2) 174, no. 2 (2011): 1243–99.
- [9] Denisov, S. and K. Rush. "Orthogonal polynomials on the circle for the weight w satisfying conditions $w, w^{-1} \in \text{BMO}$." *Constr. Approx.* 46, no. 2 (2017): 285–303.
- [10] Denisov, S. A. "On the growth of polynomials orthogonal on the unit circle with a weight w that satisfies $w, w^{-1} \in L^\infty(\mathbb{T})$." *Mat. Sb.* 209, no. 7 (2018): 71–105.
- [11] DeVore, R. A. and G. G. Lorentz. *Constructive Approximation*, vol. 303. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Berlin: Springer, 1993.
- [12] Garnett, J. B. and D. E. Marshall. *Harmonic Measure*, vol. 2. New Mathematical Monographs. Cambridge: Cambridge University Press, 2008. Reprint of the 2005 original.
- [13] Geronimus, L. Y. *Orthogonal Polynomials: Estimates, Asymptotic Formulas, and Series of Polynomials Orthogonal on the Unit Circle and on an Interval*. Authorized translation from the Russian. New York: Consultants Bureau, 1961.
- [14] Hollenbeck, B. and I. Verbitsky. "Best constants for the Riesz projection." *J. Funct. Anal.* 175, no. 2 (2000): 370–92.
- [15] Hruščev, S. V. "A description of weights satisfying the A_∞ condition of Muckenhoupt." *Proc. Amer. Math. Soc.* 90, no. 2 (1984): 253–7.
- [16] Khrushchev, S. "Schur's algorithm, orthogonal polynomials, and convergence of Wall's continued fractions in $L^2(T)$." *J. Approx. Theory* 108, no. 2 (2001): 161–248.
- [17] Koosis, P. *Introduction to H_p Spaces*, vol. 115, 2nd ed. Cambridge Tracts in Mathematics. Cambridge: Cambridge University Press, 1998. With two appendices by V. P. Havin [Viktor Petrovich Khavin].
- [18] Korey, M. B. "Ideal weights: asymptotically optimal versions of doubling, absolute continuity, and bounded mean oscillation." *J. Fourier Anal. Appl.* 4, no. 4–5 (1998): 491–519.
- [19] Lerner, A. K. and F. Nazarov. "Intuitive dyadic calculus: the basics." *Expo. Math.* 37, no. 3 (2019): 225–65.
- [20] Lerner, A. K. and C. Pérez. "A new characterization of the Muckenhoupt A_p weights through an extension of the Lorentz–Shimogaki theorem." *Indiana Univ. Math. J.* 56, no. 6 (2007): 2697–722.
- [21] Martínez-Finkelshtein, A., K. T.-R. McLaughlin, and E. B. Saff. "Asymptotics of orthogonal polynomials with respect to an analytic weight with algebraic singularities on the circle." *Int. Math. Res. Not. IMRN* 2006 (2006): 1–43.

- [22] Nevai, P. and Y. G. Shi. "Notes on Steklov's conjecture in L^p and on divergence of Lagrange interpolation in L^p ." *J. Approx. Theory* 90, no. 1 (1997): 147–52.
- [23] Papadimitrakis, M. and N. Pattakos. "Continuity of weighted estimates for sublinear operators." *Bull. Hellenic Math. Soc.* 63 (2019): 50–3.
- [24] Pattakos, N. and A. Volberg. "Continuity of weighted estimates in A_p norm." *Proc. Amer. Math. Soc.* 140, no. 8 (2012): 2783–90.
- [25] Pattakos, N. and A. Volberg. "The Muckenhoupt A_∞ class as a metric space and continuity of weighted estimates." *Math. Res. Lett.* 19, no. 2 (2012): 499–510.
- [26] Rahmanov, E. A. "Steklov's conjecture in the theory of orthogonal polynomials." *Mat. Sb.* 108, no. 4 (1979): 581–608.
- [27] Rahmanov, E. A. "Estimates of the growth of orthogonal polynomials whose weight is bounded away from zero." *Mat. Sb.* 114, no. 2 (1981): 269–98.
- [28] Simon, B. *Orthogonal Polynomials on the Unit Circle. Part 1: Classical Theory*. Colloquium Publications. Providence, RI: American Mathematical Society, 2005.
- [29] Slavin, L. and P. Zatitskii. "Dimension-free estimates for semigroup BMO and A_p ." (2019): preprint arXiv.
- [30] Stein, E. M. *Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals*, vol. 43. Princeton Mathematical Series. Princeton, NJ: Princeton University Press, 1993. With the assistance of Timothy S. Murphy. Monographs in Harmonic Analysis, III.
- [31] Sveshnikov, A. G. and A. N. Tikhonov. *The Theory of Functions of a Complex Variable*. Moscow: Mir, 1982. Translated from the Russian by George Yankovsky [G. Yankovskii].
- [32] Vasyunin, V. I. "The exact constant in the inverse Hölder inequality for Muckenhoupt weights." *Algebra i Analiz* 15, no. 1 (2003): 73–117.