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Introduction

This paper is the third in the sequence of works [9,10] that study the connection
between Jacobi matrices on trees and the theory of multiple orthogonal polynomials
(MOPs). In [9], we have described a large class of MOPs that generate bounded and self-
adjoint Jacobi matrices on rooted homogeneous trees and established some basic facts
explaining this connection. In particular, we constructed a bijection between MOPs of the
first type and a class of such Jacobi matrices. In the follow-up paper [10], we performed
a case study of the Angelesco systems generated by two measures of orthogonality with
analytic densities. We used Riemann-Hilbert analysis to obtain asymptotics of MOPs
and their recurrence coefficients. That led to a complete description of all the “right
limits” of these Jacobi matrices and allowed us to find their essential spectrum. In the
current paper, we study the spectrum and spectral decomposition in a more general
situation. We focus on the case of two measures only and address several questions that
were left open in [9].
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The rest of the paper is organized as follows. In the remaining part of the introduction,
we emphasize the importance of Jacobi matrices, outline their connection to orthogonal
polynomials, provide a general definition of Jacobi matrices on graphs, and state some of
the properties of multiple orthogonal polynomials on the real line that we need to study
the Jacobi matrices we are interested in. After that, we focus exclusively on the study of
spectral properties of Jacobi matrices on trees generated by MOPs on the real line. In
Part 1, we provide a full Spectral Theorem for finite Jacobi matrices. In Part 2, we define
Jacobi matrices on a 2-homogeneous infinite rooted Cayley tree and discuss some of their
basic properties. In Part 3, we study Jacobi matrices generated by Angelesco systems
and describe cyclic subspaces, generalized eigenfunctions, and the corresponding spectral
measures. Part 4 contains the spectral decomposition for Jacobi matrices on rooted trees
with periodic coefficients. That complements the construction in Part 3.

Orthogonal decomposition and spectrum

We recall some basic facts from the spectral theory of bounded self-adjoin operators
(see, [2,3] and [38, Section VIIL.2]). Let $) be a Hilbert space and 2 be a bounded self-
adjoint operator acting on it. We can study the spectrum of this operator by obtaining
a decomposition of § into an orthogonal sum of cyclic subspaces of . That is, take any
g1 € $ with unit norm, i.e., ||g1]| = 1, and generate the cyclic subspace

¢ span{A™g; : m=0,1,...}.

We shall call g; the first generator and €; the first cyclic subspace. One can show that
¢, is invariant with respect to 2(. If €; C £, we take g2 € £, that satisfies ||gz]| = 1 and
g2 L €. We denote by €, the cyclic space generated by go. It is also invariant under A
and satisfies €; 1 €,. Continuing this way, we obtain the following representation of £
as a sum of orthogonal cyclic subspaces:

H=0N_1Cm, (0.0.1)

where N € N U oco. Since 2l is self-adjoint, the operator (2 — 2)~! is bounded on § for
every z € C, the upper half-plane. For each f € §, the function ((2 — 2)~1f, f) is in
Herglotz-Nevanlinna class, i.e., it is analytic in C and has non-negative imaginary part
there (we discuss this class below, see (3.1.8)). Moreover, since 2 is bounded, we have
an integral representation

(@-27nn= [P ec,, 0.02)

r—z
R

where the measure py is called the spectral measure of f. Then, the following result holds.
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Theorem 0.0.1. Let 2 be a bounded self-adjoint operator on a Hilbert space $ and let
o (1) denote its spectrum. It holds that

N
o) = | J supp pg,,

m=1

where pg,. is the spectral measure of the generator g,, for the cyclic subspace €, from
decomposition (0.0.1).

Decomposition (0.0.1) can be used as follows. Fix €,,. Taking a sequence of vectors

{ng Q[gnu ngm, .. }

and running Gramm-Schmidt orthogonalization procedure gives the orthonormal basis
in €, in which the restriction of 2 to €, takes the form of either an infinite or a finite
(depending on dim €,,,) one-sided Jacobi matrix, see (0.0.3) and (0.0.6), further below.
It turns out that these matrices are related to orthogonal polynomials, a connection that
is central to our interest in the subject.

Classical Jacobi matrices

Let {a;},{b;} € £*°(Z4) and a; > 0,b; € R, hereafter Z, def {0,1,2,...} and

N & {1,2,...}. An infinite one-sided Jacobi matrix is a matrix of the form

bo Vas 0 0
Ve a0
Il 0 yar b Ja ..., (0.0.3)
0 0 ag bs

and an N-dimensional Jacobi matrix is the upper-left N x N corner of (0.0.3), see (0.0.6)
further below. We define two sets of measures on the real line

M (s supppi C [~ Ry, Ryl, By < 00, and #suppj= oo} and

m, & {pem: wR) =1},

where the cardinality of a set S is denoted by #.S5. One-sided infinite Jacobi matrices with
uniformly bounded entries are known to be in one-to-one correspondence with 9y, the
set of probability measures on R whose support is compact and has infinite cardinality.
This bijection is realized via polynomials orthogonal on the real line. On the one hand,
since J defines a bounded self-adjoint operator on the Hilbert space ¢*(Z.), we can
consider the spectral measure of the vector (1,0,0,...), see (0.0.2). We will call it p(J).
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On the other hand, given g € 9y, one can produce a Jacobi matrix in the following
way. Let p,(z, 1) be the n-th orthonormal polynomial with respect to p, i.e., p,(z, p) is
a polynomial of degree n such that

[ e () =0, m=o.n- 1,
R

that is normalized so that

coeff,,p, > 0, /pfl(:c,u)du(a:) =1,
R

where coeff,,@ is the coefficient in front of 2™ of the polynomial Q(z). It is known that
polynomials p,, (z, 1) satisfy the three-term recurrence relations

mpn(xa ,U/) = ananrl(xaM) + ann(%M) + \Y4 anflpnfl(ma/i)v n= 0; 17 cee (004)

where a, > 0, b, € R and p_4 def 0,a_1 4f ). The coefficients {an},{bn} are defined
uniquely by p and one can show that

{an} {bn} € £2(Z+).

Let J be defined via (0.0.3) with these coefficients. It is a general fact of the theory [2,3]
that

p(3) = p  and therefore o(JF) = suppp. (0.0.5)

The above correspondence is one-to-one: one can start with a bounded self-adjoint
Jacobi matrix (0.0.3), compute p(J), the spectral measure of (1,0,0,...), via (0.0.2),
take p(J) as a measure of orthogonality 1 and, finally, define the orthogonal polynomials
whose recurrence coefficients will give rise to the same J.

It follows from (0.0.4) that the sequence {p,(x,u)}, with p = p(3J), represents the
generalized eigenfunction of Jj. That can be made explicit by the following statement,
see [2,3], which, together with (0.0.4), can be taken as a definition of a generalized
eigenfunction.

Proposition 0.0.2. Suppose p € 9. The map

~ A ~\ def
afe) > a={a0),z, a0 Y [ al@paledu(o)
is a unitary map from L?(u) onto £*(Z.) such that

|\04||2L2(u) = ||a\|?2(z+)~
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This map establishes unitary equivalence of the operator J on (*(Z.) and the operator
of multiplication by x on L*(u). In particular,

~

za(z) — Ja.

Finite Jacobi matrices can also be studied via polynomials orthogonal on the real line
although the measure of orthogonality giving rise to a particular matrix

b a 0 ... ... 0
Jao b Jar ... ... 0
wwE Ll o ar by ... ... 0 (0.0.6)

0 0 0 ... Van—1 bn
is not unique, which has to do with multiple solutions to a moment problem, see [2]. Let

w be any measure of orthogonality such that Jy is upper-left (N + 1) x (N + 1) corner
of J generated by the orthogonal polynomials {p,(x, u)}. If px def (o, ---,DN), We get

An — 2)fn () = —Vanpy (@)™, 6™ E(0,...,0,1). (0.0.7)
The last identity provides, in particular, the characterization of the spectrum of Jy:
o(In) ={E: pny1(E,p) =0}. (0.0.8)
Jacobi matrices on graphs

We are interested in the generalizations of the above notion of a Jacobi matrix to
the case when underlying Hilbert space is realized not as ¢?(Z, ), but as a space of
square-integrable functions on vertices of a tree.

Let G = (V, &) be an infinite graph, where V and & stand for the sets of its vertices
and edges, respectively. The set of directed edges will be denoted by E ForY e V, the
symbol 6¥) indicates the Kronecker symbol at Y, i.e., the function which is equal to 1
at Y and zero otherwise. Given two vertices V1, Vo € V, we shall write V; ~ V5 if they
are connected by an edge and also use this notation to denote the edge itself. The edge
directed from V; to V4 will be denoted by [V1, V2.

A connected graph that has no loops is called a tree, in which case we shall use the
symbol T instead of G. If every vertex in a tree has the same number of neighbors, this
tree is called homogeneous. We can construct a rooted homogeneous tree of degree d + 1
as follows. One starts with the root O and connects it to d “children” that we name
O(chy,j»J = 1,...,d. Then, we connect each O(.p) ; to d new vertices. Continuing this
process generation by generation, we obtain an infinite rooted tree in which O has d
neighbors, and any other vertex has d + 1 neighbors. For each Y # O, the vertex Y,
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indicates its unique parent and Y{cp);,j = 1,...,d, its children. Given functions f and F'
on V and &, respectively, we shall denote by fy the value of f at Y and by Fzy (= Fy,z)
the value of F' at an edge Z ~ Y.

Given a graph G = (V, ), let V, W, and ¢ be functions on V, &£, and 5, respectively.
Assume that V and W are both bounded, W > 0, and o takes value in {0,1}. By
definition Wy z = Wz y while oy 7 and o[z y] might not be equal to each other. If
there is a constant C such that each vertex has at most C neighbors, we can define an
operator, a generalized Jacobi matrix on the graph G, by

(THy EVafy + 3 (~1) 02wy £z, (0.0.9)
Z~Y

where f is any function on V. We call J a generalized Jacobi matrix since in most of the
literature it is common to define J with ¢ = 0. We, however, allow a more general setup,
which, as we explain later, is more natural in the case of Jacobi matrices generated by
multiple orthogonality. Keeping this distinction in mind, throughout the paper we call
J from (0.0.9) simply a Jacobi matrix on G.

As we already mentioned, we are interested in the connection between Jacobi matrices
on graphs and orthogonal polynomials. In the full generality of definition (0.0.9) such
a connection no longer exists. However, there are large classes of Jacobi operators on
trees that can be defined via multiple orthogonal polynomials. Spectral theory of Jacobi
matrices and Schrédinger operators on trees is a vibrant topic of modern mathematical
physics, see, e.g., [1,13,15,16,27,29,34,35]. It is conceivable that the powerful tools devel-
oped for the analysis of multiple orthogonality, already known to have applications in
number theory, statistics, and random matrices, can find new applications in the analysis
of quantum systems.

Multiple orthogonal polynomials

The system of polynomials orthogonal on the real line can be generalized to the case
of orthogonality with respect to several measures. This multiple orthogonality, being
a classical area of approximation theory, has connections to number theory, numerical
analysis, etc., see [7,33,36] for the introduction to this topic. To define it, consider

_, def _, def _, def
M = (p1,p2), supppr CR, and 7 = (n1,n2) EZi, |7 = ni + na,

where we assume that all the moments of the measures 1, o are finite.

Definition. Polynomials Ag)(m) and Ag)(x), deg Agc) < — 1, k € {1,2}, that satisfy

/ o™ (AD (@) djur () + AL (@)dpia(a)) = 0, m e {0,..., |7 — 2}, (0.0.10)
R
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are called type I multiple orthogonal polynomials (type I MOPs). We assume that
A%k) () £ 0 unless ny — 1 < 0. Furthermore, non-identically zero polynomial Py (z)
is called type II multiple orthogonal polynomial (type II MOP) if it satisfies

deg Pz < |71, /Pﬁ(ac)xmduk(x) =0
R
forall me{0,...,nx —1} and ke {1,2}. (0.0.11)

Polynomials of the first and second type always exist. The question of uniqueness is
more involved. If every Pg(x) has degree exactly |fi|, then the multi-index 7 is called
normal and we choose the following normalization

Pi(z) = 2l £ ... |

i.e., the polynomial Pz(z) is monic. It turns out that 7 is normal if and only if the
following linear form

Qs(2) €AY (@) dpy () + AV (2)dpa () (0.0.12)

n

(k)

is defined uniquely up to multiplication by a constant. In this case deg A}’ = ny — 1

and we will normalize the polynomials of the first type by
/zlﬁ‘*lQﬁ(x) =1. (0.0.13)
R

Definition. The vector ji is called perfect if all the multi-indices 7 € Zi are normal.
Besides the orthogonal polynomials, we will need the functions of the second kind.

Definition. The functions

def [Qafz) Ri(2) / P (x)dpk (2)
zZ—X zZ—X
R R

La(2) . ke{1,2},  (0.0.14)

are called functions of the second kind associated to the linear forms Qz(z) and to
polynomials Pz (x), respectively.

If d = 1, type II polynomials Py(x) are the standard monic polynomials orthogonal on
the real line with respect to the measure 1 and the polynomials Ag) (z) are proportional
to pn—1(x, u1) with the coefficient of proportionality that can be computed explicitly.

In the literature on orthogonal polynomials, the following Cauchy-type integral

—~ e d
i) £ / Zﬂf(xx) , z¢supppu, peM, (0.0.15)
R
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is often referred to as a Markov function. If py, puo € M, we can rewrite Lz(2) as
La(z) = AD (2)n () + AL (2)ia(2) — AT (2), (0.0.16)

where A(ﬁo) (z) is a polynomial given by

WD z) = AW (z @ (2) — AP (2
A9 (2) déf/Aﬁ (2) = A5 ( )dm(x)+/A” (2) = 4y ( )d,uz(x). (0.0.17)

n zZ—T zZ—T
R R

Similarly to classical orthogonal polynomials on the real line, the above MOPs also

satisfy nearest-neighbor lattice recurrence relations. Denote by e def (1,0) and &, def
(0,1) the standard basis vectors in R?. Assume that
i = (p1, 12) is perfect. (0.0.18)

This is an assumption we carry throughout the paper. In this case, see, e.g., [33,41], there
exist real constants {az 1, a2, b1, brfi,Q}ﬁEZi7 which we call the recurrence coefficients
corresponding to the system i, such that the linear forms Qz(x) satisfy

2Qi(x) = Qr—g, () + ba—z,iQa(x) + a5 1 Qrte, (¥) + a7,2Q742,(x), 7 € N2, (0.0.19)
for each i € {1,2}, while it holds for type II polynomials that
:C.Pﬁ(l') = Pﬁ+€i (1’) + bﬁ7ipﬁ($) + aﬁ71Pﬁ_gl (:C) + aﬁ72Pﬁ_é‘2 (:U) , ME Zi, (0.0.20)

again, for each ¢ € {1,2}, where we let P;_z (z) = 0 when the I-th components of 7 — €
is negative. It is known that

A(n,0),15 A0,n),2 >0, n €N,

am; #0, neN? ie{l,2}, and { (0.0.21)

def
ao,n),1 = Am,0),2 = 0, n€Zy,

where the first conclusion follows from perfectness and an explicit integral representa-
tion for az ;, see [41, Equation (1.8)], and the second one is part definition and part a
consequence of positivity of parameters {a,} in (0.0.4).

Remark. For perfect systems fi, one can show that (0.0.19) implies the recursion for the
type I polynomials themselves:
xA%j)(a:) = Agla (z) + bﬁ,giﬁiA%j)(Z‘) + aﬁylAgJ)reﬂl (x) + aﬁ’QA,’(gj_é-z (x),

e N? i je{1,2}. (0.0.22)
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The recurrence coefficients {a; ;, b7 ;} are uniquely determined by ji. However, when
d > 1, unlike in the one-dimensional case, we can not prescribe them arbitrarily. In fact,
coefficients in (0.0.19) and (0.0.20) satisfy the so-called “consistency conditions”, see,
e.g., [41, Theorem 3.2] and [11], which is a system of nonlinear difference equations:

bive,j — bj = bave;i — bii,

where 77 € N2 and i,5 € {1,2}. Conversely, see [23, Theorem 3.1], solution to this
nonlinear system is unique and uniquely defines i (u’s are the spectral measures of the
Jacobi operators corresponding to the boundary values) provided the boundary values
are properly defined.

Part 1. Jacobi matrices on finite rooted trees

The goal of this part of the paper is to prove analogs of (0.0.7) and (0.0.8) for Jacobi
matrices (0.0.9) on finite trees in the case when these Jacobi matrices are generated by
multiple orthogonality.

1.1. Definitions and basic properties
1.1.1. Finite trees
Fix N = (N1, N3) € N2, Truncate Zi to a discrete rectangle
Ry ={i:n1 < Ni,ng < Na}

and denote by Py the family of all paths of length |N| = Ny + Ny connecting the points
N = (N1, N,) and (0,0) (within a path exactly one of the coordinates is decreasing by
1 at each step). The tree Ty is obtained by untwining Py in such a way that P is in
one-to-one correspondence with the paths in 7 originating at the root, say O, which
corresponds to N, see Fig. 1 for N = (2,1).

We denote by Vg the set of the vertices of Ty. The above construction defines a
projection II : Vg — R as follows: given Y € Vg we consider the path from O to Y,
take the corresponding path on R, and let II(Y) to be its endpoint (the one which is
not N). We denote by (%(Vy) the set of all functions on Vg with the norm coming from
the standard inner product (-, ).

As agreed before, we denote by Y, the “parent” of Y. To distinguish the “children”
of a vertex Y we introduce an index function ¢ by
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(2,1) ~ O

(1,1) ~ X(p) = YpR(2,0) ~ Zp)

(1,0) ~ Z = Cy

(00) ~A= X(ch),Z (07 0) ~B= Y’(ch)J (070) ~C= Z(ch),l

Fig. 1. Tree for N = (2,1).

t: Vg —{1,2} Zwr 1z suchthat II(Zy,) =1I(2) +é,,. (1.1.1)

Then, if Y = Z(,), we write Z = Y. see Fig. 1. We further let

ch(Y) = {it ng >0, TI(Y) = (n1,n2)}

to be the index set of the children of Y. It will be convenient to introduce an artificial
vertex O(y), a formal parent of the root O. We do not include O(,) into V3, but we do
extend every function f on Vg to O(,) by setting fo,, =0 (recall that we denote the
value of a function f at Y € Vg by fy).

1.1.2. Jacobi matrices generated by multiple orthogonality

Let ji be a perfect system and {a7,, bz} be its recurrence coefficients, see (0.0.19)
and (0.0.20). In this subsection, we specialize definition (0.0.9) to the case of finite trees
Ty and Jacobi matrices whose potentials V, W, and the signature o come from /.

Fix & € R? such that |g| = k1 + k2 = 1. We define the potentials V = VA W = WF
Vi — R (as with most quantities dependent on /i, we drop the dependence on /i from
notation) by

Vo € kibg  +raby ., Wo 1, and
def def
Vv S by Wy S langg)ur |, Y # 0. (1.1.2)
This definition is consistent with (0.0.9) if we let Wy, vy = Wyy,, = Wy (for trees,
neighboring vertices always form child/parent pairs). We further choose function o :
V5 — 10,1} to recover the signs of the recurrence coefficients aj ;. Namely, we set oy
to be such that

(=)™ Wy =any,y).: Y #0, and oo “o (1.1.3)
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(observe that Wy > 0 since agye,; 7# 0 by (0.0.21)). To relate back to the definition
given in (0.0.9), we set ojyy,,,) = 0 and oy, y] = oy. With these definitions, (0.0.9)
specializes to

def ”
(Teg Dy E Ve by + W2 fr + 3 (S Wy py (1.1.4)
lech(Y)

which we call a Jacobi matriz on a finite tree Ty.
For a given multi-index 7, let Pz (2) be the type I MOP with respect to fi, see (0.0.11).
We consider z € C as a parameter and put

py(z) EmyPy(2), Pr(2) € Payy(2), and my ® [ W, (1.15)

Zepath(Y,0)

where path(Y,O) is the non-self-intersecting path connecting ¥ and O that includes
both Y and O. Obviously, all three functions p, P, and m depend on . To uniformize
the notation, let us formally set

def
= m1Pgz (2) + RaPy, 2 (2). (1.1.6)

Pro,) (#)
Given X € Vg, denote by TJ\7[X] the subtree of T with root at X and by VN[X] the set
of its vertices. Let J|x) and p[x] be the restriction of J. y and p to TN[X] and VN[X],
respectively. Then, it follows from (0.0.20) that

Tixpix)(2) = 2pix(2) = (my' Prcx,)(2)) 85, (1.1.7)

which is an identity reminiscent of (0.0.7).
1.1.8. Conditions on [i

Recall that [ is a perfect system since, otherwise, its recurrence coefficients might not
exist for all i € R g, which makes J. ; undefined. Besides that, we place one more set
of conditions on fi. Denote by EH(y), the set of zeroes of Pryy(z), Y € Vg U{Op)}
(recall (1.1.6)). Notice that Ero,,)) = Exy,s when & = ¢, i € {1,2}. Our additional
assumptions on [ are

{ Enwyy CR, #EBpy) =I(Y)|[, Y eVzUu{Op}, (1.18)

En(y) ﬂ En(y(p)) - @, Y 6 Vﬁ,

where we put [I1(O,))| f |N|+1 and #8S denotes the cardinality of S. That is, we assume
that all zeroes of each polynomial Pryy(x) are real and simple, and that Py (z) and

Pn(y(p))(x) do not have common zeroes.
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All the classical examples of type IT MOPs satisfy (1.1.8). Indeed, for Angelesco sys-
tems, see Part 3 further below, multiple Hermite polynomials [41, Section 5.1], multiple
Laguerre polynomials of the second kind [41, Section 5.4], multiple Charlier polynomials
[41, Section 5.2], and multiple Meixner polynomials of the first kind [32, Section 3.3], it
holds that

am; >0 @eN? qe{1,2}. (1.1.9)

This, together with perfectness (all the above examples form perfect systems) implies,
see [32, Theorem 2.2], that

Tive,1 < Ta1 < Tayee < Taz < ... < Tqja| < Tiye,,|il+1 (1.1.10)

for each 7 € {1,2}, where we write Ej = {Z7,1,..., 75,5} That is, the zeroes of Py(x)
and Py, s, () interlace. Hence, the only conditions that remain to be checked in (1.1.8)
are those that involve O, and they, of course, depend on <. The positivity of az;,
i.e., the condition (1.1.9), is not satisfied by other classical systems such as Nikishin
systems, see Section 1.4 further below, multiple Laguerre polynomials of the first kind
[41, Section 5.3], Jacobi-Pifeiro polynomials [41, Section 5.5], and multiple Meixner
polynomials of the second kind [32, Section 3.7]. However, it is known that type II
MOPs form the so-called AT-systems and their zeroes again satisfy (1.1.10) for all just
listed examples, see [32]. Hence, all conditions in (1.1.8), except for the ones involving
O(p), are satisfied automatically.

1.2. Spectral analysis
1.2.1. Spectrum and eigenvalues

One can readily see from (1.1.7) that every E € Eno,,,) is an eigenvalue and

def
j’_{’ﬁb(E,O(p)) = Eb(E,O(p)), b(E,O(p)) = p(E) (121)

We call b(E, Oy, ) the trivial canonical eigenvector. To identify the remaining eigenvalues
and eigenvectors, we set

def
gﬁ,ﬁ = EH(O(p)) U U Eny). (1.2.2)
YeEVg: #ch(Y)=2

The condition #ch(Y') = 2 is equivalent to II(Y) € N2. Hence, the set £, 3 consists of
Enog,) and the zeroes of type II MOPs that are “truly” multiple orthogonal, i.e., they
satisfy orthogonality conditions on both intervals. Given £ € £ 5, let Joint(£) be the

set of joints corresponding to F defined by
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Joint(E) def

{YeVg: Py(E)=0 and #ch(Y)=2}. (1.2.3)
If £ € Eno,,) and E ¢ UYGVN: sen(v)=2 Eri(y), then Joint(E) = @; otherwise,
Joint(F) # @. To each X € Joint(E), we associate a special vector. To define it, recall
that Wy > 0 for all Y, see the remark after formula (1.1.3), and that px ,,,,(£) # 0 by
(1.1.8) when X € Joint(F). We will need a standard notation: if B is a subset of a graph
g, the symbol x5 denotes its characteristic function. Given F € 5'3,]\77 X € Joint(E), let

(—1)7F w2y (—=1)7Fem 1y
b(E, X) & p(E) 3 e TWemal ) (1.2.4)
WX(ch),2pX(Ch)v2 (E) WX(ch),le(Ch)vl (E)

where, as before, TN[Z] denotes the subtree of Ty with root at Z. Anticipating the
forthcoming theorem, we call each b(E, X) a canonical eigenvector (it follows right away
from (1.1.4) that J gb(E, X) is also supported on TN[XM)J} U TJV[X(ch>,2])' Finally, we
set

Joint(E), E ¢ EH(O(p))a

| (1.2.5)
Joint(E) U{O}, E € Enoy,)-

Joint™(F) %ef {
Definitions (1.2.1), (1.2.2), (1.2.4), and (1.2.5) are needed for the following theorem,

which is the main result of this part.

Theorem 1.2.1. Let [i be a perfect system of measures on the real line for which (1.1.8)
holds and J.  be the corresponding Jacobi matriz defined in (1.1.4). Then

0<«7fz,1\7> = 5@,1\?

Given E € a(jgﬁ), a particular basis for the eigenspace corresponding to E is given by
{b(E,X): X € Joint™(E)}

and the geometric multiplicity of E, we call it gg, is given by

gg = #Joint™(E).
Moreover, the system

{b(E,X): X € Joint*(E), E€ J(jﬁﬁ)}

is a basis for (V).

We illustrate the construction of the canonmical eigenvectors for a simple case of
@,(2,1), see Fig. 1. Assume that (1.1.9) takes place and all the zeroes are distinct. There
are 9 vertices and 9 eigenvalues:
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#E@22) =4, (Epg2 =Eno,)); #FEe1) =3, and #Eq1) =2

For any I € E(3 ), it holds that Joint™(E) = {O(;)} and each such root defines a trivial
canonical eigenvector p(E). Every E in E(, ;) is a simple eigenvalue with Joint™(E) =
{O}. The corresponding canonical eigenvector b(E, O) is equal to zero at O and

*(W)l(/(f)px(p) (E)), Ve{Xy,X,Y, A B},
bv(E,0) = pv(E)/ 1/2
Wz Pz, (E)), V€{Zy),ZC}.
Finally, if E € E(; 1, then Joint™(E) = {X,}. The canonical eigenvector b(E, X)) is

supported on {X,Y, A, B} and

~(Wy*px(E)), Ve {X, A},

bv(E, X)) =pv(E)/ 12
Wy py(E)), V e{Y, B}

1.2.2. G-self-adjointness

When o =0 in (1.1.3), or equivalently, (1.1.9) holds, the corresponding Jacobi matrix
is self-adjoint and thus has an orthogonal basis of eigenvectors. When o # 0 this is no
longer the case. However, there exists an indefinite inner product given by a diagonal
matrix & with diagonal entries equal 41 such that the Jacobi matrix is &-self-adjoint.
The general theory of G-self-adjoint operators (see, e.g., [28]) does not guarantee that
their eigenvectors span EQ(VN) (that is, that J. 5 has no Jordan blocks, i.e., that it has
a simple structure). Yet, this is indeed the case for Jacobi matrices.

Let, as before, path(Y, O) be the non-self-intersecting path connecting Y and O that
includes both Y and O. Define a diagonal matrix & on Ty by

&6 50 and 6600 L (—1)Xzepancro) 925Y) Yy £ O, (1.2.6)

The diagonal matrix & defined this way assigns either +1 or —1 to a vertex Y depending
on whether the number of “negative” edges connecting O to Y is even or odd. We define

an indefinite inner product [, ] by
def
/.91 = (&f.9), f.9€ (V). (1.2.7)
Denote the number of vertices Y € Vg such that [6(¥),6)] = £1 by iy. If ¢ = 0, the
matrix & is the identity matrix and [-,-] = (-,+), i4 = #V while i_ = 0. We let (X (V)

denote the corresponding indefinite inner product vector space, which is sometimes called
a finite-dimensional Krein space.
A matrix A is called G-self-adjoint if

[Af, 9] = [f, Agl (1.2.8)
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(3,2) ~ O

(2,2) ~ Xy L) T2 =T

=

T =Taol (2,1) ~ X

T3 =~ 7(1,1) Ty = 7(270)

Fig. 2. Partition of V(3 2y into waves Wi (E) (blue), W2(E) (purple), and W3 (E) (green) when Joint(E) =
{O, X}. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this
article.)

for all vectors f and g. Notice that (1.2.8) is equivalent to 6A = A*S, where A* is
the adjoint of A in the original inner product (-,-). Since &2 is the identity matrix,
multiplying identity A = A*S from the left and from the right by & gives us AG =
G A*. Thus, A is G-self-adjoint if and only if A* is &-self-adjoint. Clearly, when & is
the identity matrix, i.e., when (1.1.9) holds, condition (1.2.8) is equivalent to A being
self-adjoint in the standard inner product.

Proposition 1.2.2. Jacobi matrices J. 5 and "7;]\7 are &-self-adjoint.
1.2.3. &-orthogonalization

In this subsection, we show that the basis of canonical eigenvectors, which is yielded
by Theorem 1.2.1, can be used to construct G-orthogonal basis of eigenvectors. To this
end, we notice that eigenspaces that correspond to two different real eigenvalues are
already G—-orthogonal. Indeed, this is due to the following identity

Er[Uy, Ws] = [T 5 V1, Vo] = [U1, T g W] = [V1, E2Ws] = Eb[Vy, Vs,

where E1, Ey are eigenvalues of J.. y and Wy, ¥y are corresponding eigenvectors. Thus,
we only need to focus on each individual eigenspace.

Suppose F is an eigenvalue and Joint(FE) # &. This guarantees that g(E) > 1 and
{b(E,X)} is a basis for the eigenspace. We start with some geometric constructions

on the tree and a few definitions. Let us first partition Vg into a collection of disjoint

“waves”. Define the canopy of T by C def -1 (0,0). If O € Joint(E), we set the first wave

and its front simply to be {O}, that is, Wy (E) = F1(E) = {O}. Otherwise, we define
F1(E) to be the set of vertices from C U Joint(E) that can be connected to O by a path
which does not contain elements of Joint(F) in its interior. We then let the wave W;(E)
to be the union of all the vertices on these paths, including the endpoints. To define
Fo(E), consider all the vertices in (C U Joint(E)) \ Wi (E) that can be connected to a
vertex in F (E) by a path which does not contain vertices of Joint(E) in its interior. The
second wave Wh(F) is then defined as the set of all the vertices on these paths, including
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the ones from F3(E), but excluding the ones from F1(E) (so, Wi (E)NWs(E) = ). We
continue this process until all of V is exhausted.

Example. Consider 735y and assume that Joint(E) = {O, X'}, where II(X) = (2, 1), see
Fig. 2. Then,

Wi(E) = {0}, Wh(E) ={X4p), X}UV(T1)UV(T2), and
Ws(E) =V(T3) UV(Ta),
where T1, T2, T3, and T4 are the subtrees with the roots at the sibling of X, the sibling

of X(p), X(ch),1, and X(cp),2, respectively, and V(T) is the set of vertices of a subtree T
Moreover, it holds that

Fi(E)={0}, F(E)={X}u(Cn¥(T1)UV(Tz))), and
Fo(E) =Cn(V(Ts) UV(T4)).
Suppose all constructed fronts and waves are enumerated by {Fi,...,Fp} and

{Wi,...., W, }. To produce G-orthogonal basis out of {b(E, X )}, we start at the canopy
and go up the tree. Consider the canonical eigenvectors corresponding to E that are sup-
ported inside the last wave W, (E). Each of these eigenvectors has support on a subtree
sitting inside W, (E) and having the root at a vertex of the previous front F,_1(E). As
their supports are disjoint, they are G-orthogonal. Call their span S,(E). Next, take all
the canonical eigenvectors that have support inside W,_1(E) U W,(E) and that were
not chosen before. For each of them, take its G-perpendicular to S,(E). By construc-
tion, it is nonzero. These new vectors are still eigenvectors and they are G-orthogonal
to each other because they are supported on different subtrees as well as G-orthogonal
to the previously considered eigenvectors by constructions. Denote by S,_1(E) the span
of these G-perpendiculars and previously considered eigenvectors spanning S,(E). If we
continue going up the tree in this fashion, we will produce an G-orthogonal basis of
the F-eigenspace. Since all the eigenspaces are G-orthogonal, we have constructed a
G-orthogonal set of eigenvectors. By scaling, we can make sure that this basis is &-
orthonormal.

We want to finish by explaining how our result fits into the general spectral theory of
G-self-adjoint operators. We say that a vector v is G-positive if [¢), 9] > 0 and S-negative
if [, 9] < 0. It is G-neutral if [¢), ] = 0. Suppose {¢1,...,¥,} is a S-orthogonal basis
of £2(Vg). It is known, see [28, Proposition 2.2.3] and Lemma 1.3.7 further below, that

#{j D is G-Hegative} =1i_ and #{j 2 is G—positive} =14,

where the numbers iy were defined right after (1.2.7). Label the S-positive and &-

negative vectors in the basis {1,...,9,} by {wf,...,wit} and by {¢7,...,9%; },
respectively. We clearly have a G-orthogonal sum decomposition
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(é(Vﬁ):HJF@G H—7 Hi:Span{wi‘:a"'ﬂ/}i}v

where H; and H_ are positive and negative subspaces. In the case of our G-self-adjoint
Jacobi matrices, we just illustrated that such a basis {t1,...,%,} can be built out of
canonical eigenvectors. That provides the concrete realization of the Spectral Theorem
for G-self-adjoint matrices, see, e.g., [28, Theorem 5.1.1].

1.3. Proofs of the main results

Proof of Proposition 1.2.2. By formula (1.2.8) and the remark that comes after it, we
need to check that 67, ¢ = J. g 1\76, which is the same as checking

(1.8 59) = (Te.n ] ©9)

for all vectors f,g € 52(12]\7). Since J. 5 only contains self-interaction and interaction

between neighbors, it is enough to consider cases f = §(4) and g = 6(X) where either
Z =X or Z~ X.1It follows from (1.1.4) that

jﬁ,]\_fé(X) _ (_1)0'XW)1(/26(X(;D)) + VX(S(X) + Z WA)I(/(fh,),lé(X(C}L)J)’
lech(X)

where we agree that §(°@) = 0. It further follows from (1.2.6) that
1/2 o 1/2 )
&, 6% = [0, 5] (Wx/ 50 1 Vs 1 Y (-1 xw.lWX/(CW(;(XW,n).
lech(X)

Now, it is a simple matter of examining three cases: when Z = X, Z = X, and

7 = X(ch),l~ O

p)>

It will be convenient for us to split the proof Theorem 1.2.1 into several lemmas. Let
X(4) denote the parent of X ;). Recall that we extend all functions on £%(V) to O(;) by
Zero.

Lemma 1.3.1. Let £ € o(J. ) and ¥ be a corresponding eigenvector. If ¥x # 0 and
Ux, =0, then E € Enx,,,)- Moreover, if we also have Vx =~ = 0, then X, €
Joint(E). Finally, we have an inclusion

U(jz,ﬁ) c 5,2,1\7-

Proof. Denote by 7[x) the subtree of Ty with root at X and by J|x) the restriction of
J= § to Tix)- By the conditions of the lemma, F is also an eigenvalue of Jx) with an
eigenvector X7, ¥. We can restrict the indefinite inner product to 7jx) as well keeping
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the same notation [-,-]. Notice that Jx) = XTix Tz §XTix) 18 G-self-adjoint with respect
to this restriction.
The function

F(2) € [(Jix) - Z)‘lxm]\lhd(x)] = (SL)X (6W)x £0, (1.3.1)

is well-defined in a small punctured neighborhood of E because the operator Jx] — z is
invertible there. Since Jx) is G-self-adjoint, we can write

[X'T[)q \117 mXXTP(’g)]
Pri(x,)(2)

F(z) = |x7q %, (Jix) — 2)—15<X)} —_— , (1.3.2)

where we also used (1.1.7) and the fact that polynomials Py(x) have real coefficients.
Since F is a pole of F(z) by (1.3.1), the denominator of the right hand side of (1.3.2)
vanishes at F, that is, F € EH(X(p)) as claimed.

To prove the second statement of the lemma, we only need to show that X has a
sibling, see (1.2.3). This is true since otherwise

0=E¥x,, = (\7,5,1\7‘1’))((?) = Vx, ¥x, + W)1</(:) Ux + W>1</2\I’X = W)lf/z\I’X

by (1.1.4), which is clearly impossible as Wx > 0 and ¥x # 0.

Consider the last claim. Let E be an eigenvalue and ¥ be its eigenfunction. If U # 0,
we have F € Eno,)) & EE’N by the definition. If o = 0, let Z be a vertex with
the shortest path to O among all vertices X for which Wx # 0 and ¥y = 0 for all
Y € path(X,0), Y # X. Since Z # O, Z(, € Joint(FE) by the second claim and
therefore £ € Enz,,,) € 84’]\7. O

Remark. Notice that assumption (1.1.8) was not used in the proof.

Lemma 1.3.2. Let E € £, y and X € Joint™(E). Then, E € o(J. ) and b(E, X) is a

corresponding eigenvector.

Proof. Let E be a zero of Pri(o,)(2). In this case (1.1.7) states that J. gp(E) = Ep(E)
and therefore E is indeed an eigenvalue with an eigenvector b(E, O(,)). Now, let E € 5}%7 N
and X € Joint(E). We need to show that b(E, X) is an eigenvector with eigenvalue E.
Recall that TN[X] denotes the subtree of T which has X as its root and observe that

(j}E’Z\-/:b(E,X))Y:O:EbY(EaX>a Y¢T]\7[X]’

by the definition of b(E, X), see (1.1.4). Moreover, let

def i+ —1/2
v (FD)T e W Pyl (E).
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Then

2

(T gb(E, X)) = Z(,l)ax(ch),iW)l(/(fh)yibx(ch)yi(E,X) = 0= FEbx(E,X)
=1

by (1.1.4) and the choice of v;. Furthermore,

o 1/2
— () W v (E)

(jg,ﬁb(EvX))X(cw = (Jz qup(E))
= EUle(ch),L(E) = EbX(ch),l(E?X)

X(eny 1

by (1.1.7), definition of b(F, X), and since px (F) = 0. Similarly,
(jﬁ,ﬁb(EvX))y = (jﬁ,ﬁvlp(E))Y = Bupy (E) = Eby (E, X), Y€ TIV[X(ch),z]’
which finishes the proof of the lemma. O

Lemma 1.3.3. Given E € . g, the vectors in the system {b(E,X) : X € Joint*(E)}
are linearly independent.

Proof. Assume that F € En(o,,), the proof for other cases is similar. Let B(2), Z €
Joint™(E), be numbers such that

BOG)by (E,0p) + > B(Z)by(E,Z) =0

ZeJoint(E)

is true for all Y. Due to assumption (1.1.8) with ¥ = O and the very construction of
b(E, Z), it holds that

bo(E,O(p)) =po(E)#0 and bo(F,Z)=0, Z € Joint(E).
Thus, it must hold that 3(O(,y) = 0. Next, let X € Joint(E) be any vertex such that the

path from X to O contains no other elements in Joint(E). This and assumption (1.1.8)
then yield that

OX (onya (B, X) =Dx(y, () #0 and  bx,, ,(E,Z) =0, Z € Joint(E)\ {X}.

Hence, 3(X) = 0. Going down the tree T in this fashion, we can inductively show that
B(Z) =0 for every Z € Joint*(FE), thus, proving linear independence. O

Lemma 1.3.4. Suppose ¥ is an eigenvector of J. i with eigenvalue E. If Yo = 0, then
Uy =0 for all Y € Wy (E), where the waves Wy (E) were defined in Section 1.2.5.
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Proof. If O € Joint(E), then Wi (E) = {O} by definition and the claim is obvious.
Otherwise, take O(cny; € Wi(E). If Yo, , # 0 were true, then it would hold that
O € Joint(F) by Lemma 1.3.1 which is a contradiction. Furthermore, if the desired
claim were false at another vertex of Wy (E), there would exist X € W;(E) such that
VUx #0and ¥y, =Yy, =0, where X(, is the parent of X,). Then, X, € Joint(E)
by Lemma 1.3.1, which contradicts the very definition of Wi (E). O

Lemma 1.3.5. Given E € £ 5, the system {b(E,X) : X € Joint*(E)} spans the sub-
space of eigenvectors corresponding to E.

Proof. Let ¥ be an eigenvector that corresponds to E. First, consider the values of ¥
on Wi (E). If o = 0, then Uy = 0 for all Y € W;(F) by Lemma 1.3.4 and we set
g Ly, Otherwise, ¥ # 0 and F is a zero of Pro,,,) according to Lemma 1.3.1. In
particular, Pg(E) # 0 due to assumption (1.1.8) with Y = O and so po(E) # 0. Then,
we set

v E (Vo /po(B))b(E, Oy).

Since Pri(o,,,)(E£) = 0, it follows from (1.1.7) and the definition of b(E, O,)) that ARy
is also an eigenvector corresponding to F. Since \IIS) = 0, we have \Ilg/l)
Y € Wi (E) by Lemma 1.3.4 as desired.

Second, we consider the values of U(Y) on Wh(E) U W, (E). Fix X € Fi(E)\ C. By

the very definition of the first front we have that X € Joint(E). Choose 5(X) so that

= 0 for every

By, =0, @O _ g(X)H(E, X).

Since ® is an eigenvector corresponding to E that vanishes at X(.4) 1, X, and X, it
follows from (1.1.4) that

0= B®x =(J, y®)x = Vx®x + W/ 0x  + (-1 w2 oy, |

_ W1/2

o 1/2
+ (=1)7Xem2 W / Ym. Lo

X(ch), 2<I)X(eh) 2
Thus, ® vanishes at X(.;) 2 as well. Now, as in the proof of Lemma 1.3.4, we apply the
second claim of Lemma 1.3.1 to conclude that ® vanishes at all Y € Ty N Wa(E).
Therefore, we can set

v Eg® N B(X)by (B, X),
XeF1(E)

which is an eigenvector corresponding to F that vanishes at all Y € Wh(FE) U W, (E).
Continuing in the same way, we decompose W into the sum of canonical eigenvectors. 0O
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Lemma 1.3.6. It holds that

#Vy= > #Joint*(E).

Eeé’ﬁ N

Proof. Recall that according to our assumption (1.1.8) all zeroes of any polynomial Pz (x)
are simple and there are exactly |7i| of them since [ is perfect. Given an eigenvalue E,
each polynomial P;(x), @ € N2, such that P;(E) = 0, generates as many canonical
eigenvectors as the number of vertices X for which II(X) = 7 (the number of paths from
il to N in R ). Hence, the number of the canonical eigenvectors that each polynomial
P;(z), @ € N2, generates is equal to |fi| - #I171(77). Therefore, the total number of
eigenvectors is equal to

- v _ (IN] = ||
Y #Joint*(E) = [N[+1+ > |n|<N1n1 :

Eeg, 5 nER gNN2

where |N| 4 1 is the number of the trivial canonical eigenvectors ((1.1.8) is used here
too as well as equality k1 + k2 = 1). The above formula is true for every Jacobi matrix
on Ty, including the self-adjoint ones (that do exist). For the self-adjoint matrices the
desired claim is a standard fact of linear algebra (the number of linearly independent
eigenvectors of a self-adjoint matrix is equal to the dimension of the space). Hence, it
holds for all Jacobi matrices. O

Remark. There is an alternative proof of this lemma using an inductive argument.

Proof of Theorem 1.2.1. The first claim follows from Lemmas 1.3.1 and 1.3.2. The va-
lidity of the second one is due to Lemmas 1.3.3 and 1.3.5. The formula for gg is a
trivial consequence of the second claim. Since all the eigenspaces of a linear operator are
mutually linearly independent, the last claim follows from Lemma 1.3.6. O

For reader’s convenience, we include the proof of the following standard result.
Lemma 1.3.7. Suppose {11, ...,¢,} is a S-orthogonal basis of EQ(VN). Then
#{j Dy s G—negative} =i_ and #{j Dy ois G—positive} =14

Proof. Notice first that none of {v;} is G-neutral since otherwise, we would have
[k, f] =0 for all f € (*(Vg) and some k. In particular, this would yield that

0= [ [, %] | = oy | [077, %] | = b

for every Y € Vg, which is clearly impossible as 1 # 0 (here, ¢yy is the value of
¥y at Y). Thus, we can assume that [¢;,1;] = %1 for all j. Let k_ and k4 be the
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numbers of G-negative and G-positive vectors in {i;}, respectively. Assume without
loss of generality that {t1,..., v, } are G-positive. Since {1;} is a basis, we can write

F=Y /00 =3 aip, feP(Vy),
Y J

for some numbers {x;}. Let V; and V_ be the subsets of V for which §(Y) is G-positive
and G-negative, respectively. Clearly, #V1 = i1 by definition. Then

n

oy
ST = D INP=GLH=1LA=D |zl = D |
j=1

Yev, Yev_

j=ki++1

The desired claim now follows from Sylvester’s law of inertia for Hermitian matrices,
[24, Theorem X.18] (the numbers of positive and negative squares do not depend on the
choice of a representation of a Hermitian form). O

1.4. Appendix to Part 1

In the end of Subsection 1.1.3, we have listed a number of systems of MOPs whose
recurrence coefficients do not satisfy condition (1.1.9). Most of them come from special
orthogonality measures and their recurrence coefficients are known explicitly. The only
exception in that list are Nikishin systems. A vector [ = (u1,u2) defines a Nikishin
system if there exists a measure 7 such that

dus(z) = 7(x)dpi(x) and ATNA, =g, (1.4.1)
where 7(z) is the Markov function of 7, see (0.0.15), A; Lo ch(supp p1), and A, o
ch(supp 7) (here, ch(-) stands for the convex hull). Given two sets E; and FEs, we write
FEy < B, if sup Ey < inf Es. In what follows, we assume that

A < Aq. (142)

The case when A, > Aj can be handled similarly.
It is known that Nikishin systems are perfect [17,18,21]. The goal of this appendix is to
show that the recurrence coefficients {as 1, 7,2 }renz, see (0.0.19)—(0.0.20), of Nikishin
systems have a definite sign pattern. That explains how the indefinite inner product &

should be defined to make the associated Jacobi matrix &-self-adjoint. Recall (0.0.21).

Theorem 1.4.1. For all i € N2 and j € {1,2} it holds that

sign ap ; = (=177, ny <ny, and sign agp; = (=1)7, ng>=ng + 1.
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To prove this theorem, let us make the following observation. It holds that

1z mlr) :0(1> (1.4.3)

7(2)  mo(r) = mg(7) z

as z — 00, where m;(7) def [ xldr(x). Next, we will use some basic facts from the theory
of Herglotz-Nevalinna functions, see Section 3.1 further below. As the left-hand side of
(1.4.3) has positive imaginary part in C4 and is holomorphic and vanishing at infinity,
there exists a positive measure 74 supported on A, which we call the dual measure of
T, such that

1 =z mq (7)
72)  mo(r) T ma(r

= —7a(2). (1.4.4)

The bulk of the proof of Theorem 1.4.1 is contained in Lemmas 1.4.2 and 1.4.3. These
lemmas and ideas behind their proofs are not new, see, for example, [17,18,31], but we
decided to include them as their proofs are short, they are formulated exactly in the way
we need, and their inclusion makes the paper as self-contained as possible.

Let {P;(z)} be monic type II MOPs for Nikishin system (1.4.1)—(1.4.2). Define

ey [ P@dus (o). (1.4.5)

Recall the functions of the second kind Ry ;(z) defined in (0.0.14). It follows from or-
thogonality relations (0.0.11) that

Ri j(2) = ]% / Wduj(x) (1.4.6)

1

for any polynomial p(z) such that deg p < n;. Moreover, the Taylor expansion of (z—z)*

at infinity gives

hii.j
anJrl

Rij(z) = (1 + 0(z*1)) as z— 00, (1.4.7)

Then the following lemma holds.

Lemma 1.4.2. Let functions Ry ;(z) be given by (0.0.14) for a Nikishin system (1.4.1)—
(1.4.2) and 74 be the dual measure of 7. The functions Ry j(z) satisfy

/kaﬁ,l(Z)dT(fﬂ) =0 and /kaﬁ72(1’)d7—d(x) =0

for k < min{ny,ny — 1} and k < min{n, — 1, ng — 2}, respectively. It further holds that
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/.fanﬁ’l(x)dT<x) =—hpo and /x”lRﬁ,g(x)de(x) = hi1

when ny < ny and ny = ny + 2, respectively. Finally, it holds that

Tllhz1 — ha2 = /mn2Rﬁ’1($)dT($) = ||7]| /xanﬁ72($>de(x)
when ne = ny + 1, where ||T]| = mo(7) is the total mass of T.

Proof. We only consider the case j = 2, the argument for j = 1 is similar. Assume that
k <ni;—1. Then

0= / Pa(@)abdps (z) = / Pa(@)2 5 () dua (2).

If we further assume that k < ny — 2, then we get from (1.4.4) and orthogonality condi-
tions that

0= —/Pﬁ(a:)xk?d(x)dug(m).

Thus, we can deduce from the Fubini-Tonelli Theorem that

0= f/ </ "Tkpﬁ(:ﬂ)duz(m)) dra(y) = /y’“Rﬁ,z(y)de(y)

z—y
as claimed, where we used (1.4.6) with p(x) = z*. Similarly, we have that
s = [ Pa()a™din(@) = = [ Pata)a™ Falw)dna(a) = [ 4 Ral)draty

when ny < ng — 2. Furthermore, if ny = ny — 1, we get from (1.4.4) that

s = [ Pa()a™ Fawdpa(e) + |77 [ Pa(o)aduao)
:/ymRﬁ,2(y)de(y) 71 2. O

Let r7 j(z) be the monic polynomial with zeroes on A; such that Rj ;(x)/rz j(x) is
analytic and non-vanishing on A . It follows from the previous lemma that rz ; (z) has at
least min{ny,ny —1}+1 different zeroes while 75 o(x) has at least min{n; —1,n,—2}+1
different zeroes.

Lemma 1.4.3. If ng < ny + 1, rz1(x) has degree exactly no (in particular, all its zeroes
are simple) and Ry 1(%)/ra1(2) is non-vanishing in C \ Aq. Moreover,
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d d
/Ikpﬁ(fl?) 8 o g / 2 () () = hia,
where the first relation holds for any k < |
Similarly, if ng > n1 + 1, rae(x) has degree exactly nq (in particular, all its zeroes
are simple) and Ry 2(2)/r7,2(2) is non-vanishing in C \ Aq. Furthermore,

/kaﬁ(x) dpa(z) =0 and /P,%(x)duz(z) = hp.2,

ri2(x) ’

where again the first relation holds for any k < |7].

Proof. It follows from the remark before the lemma that degry ; = nz—; +m;, m; > 0,
in the considered cases. Therefore, it follows from (1.4.7) that

Ritj(2)/17,4(2) = ha g 1m0 4 0 (517l -ms=2)

as z — oo and the ratio is a holomorphic function in C \ A;. Let T' be a smooth Jordan
curve that encircles A; but not A,. Then, by integrating over I" in positive direction we
get

1 & ds 1 sk ds
0=~ [s Rn,g(s)—rﬁvj(s) = / Pa(z) | o~ / pR— dyuj ()
r r
_/xkpﬁ(x) d,uj(sc)
ri ()

for k < |7i] + m;, by the Cauchy theorem, the Fubini-Tonelli theorem, and the Cauchy
integral formula. Since du;(x)/r7 j(x) is a measure of constant sign on Ay, Py () cannot
be orthogonal to itself. Thus, m; = 0. Now, if there existed another real zero z, ¢
A1 UA; of Rj ;(z), then the above argument can be applied with r, ;(z) replaced
by (2 — x0)r5,;(2) and I" not containing z in its interior to arrive at a contradiction,
namely, that Pz(z) is orthogonal to itself with respect to a measure of constant sign. If
Rj; j(20) = 0 for some zy ¢ R, then Ry ;j(Z0) = 0 by conjugate-symmetry, and therefore
the above argument can be used with (2 — 20)(2z — Zo)r5,;(2). Using (1.4.7) one more
time, we get that

1 [ o9 [ p @) e d(@)
i 27riF B j( )TﬁJ(S) / Pa( )TﬁJ‘(l') / () 7

by orthogonality and since Pg(x) is monic. O
Corollary 1.4.4. It holds that

sign hz1 =1 and sign hfo =1
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when ng < nqp + 1 and ne = ny + 1, respectively.

Proof. The claim follows from Lemma 1.4.3 since A, < A; while each rz ;(2) is a monic
polynomial. O

Corollary 1.4.5. It holds that

rale) [P,y gy - Taal) [ PR diat)

Pi(2) z—x ri1(z) Pi(2) z—a r50(x)

Ri1(2) =

when ng < np + 1 and ne > ny + 1, respectively.

Proof. We have that
Ra () = / P (x)rs () dp;(x)
n,J -

z—x i, ()

_ / (@) —rij(2) Pala) dp;(z)

z—x 3,5 (x)

®
[
8
=
S
—
8
N

Ry j(2) = ra;(2)
Using the same argument one more time yields the desired claim. O

Corollary 1.4.6. It holds that

|7i]+1 I7|

sign hz1 = (—1) and sign hpo = (—1)
when ng = ny + 2 and ne < nq, respectively.
Proof. It follows from the previous corollary that

sign (Ry ;(x)/ra j(x)) = (—D)lH re A, (1.4.8)

when ny > ny + 1 for j = 2 and no < n; + 1 for j = 1. The claim now follows from
Lemma 1.4.2 since

hii = /l’anﬁ,Q((IJ)de(I) = /Tﬁ,g(l’)Rﬁ’g(l’)de(I)
when ny > ny + 2 and
hs = — / 2" Ry (2)dr(z) = — / ri1 (@) Rt (2)dr ()

when no <ny1. O
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Proof of Theorem 1.4.1. Tt is well known, see [33, Theorem 23.1.11], that if we multiply
equation (0.0.20) by 2™ ~! and integrate agains the measure 1y, we will get
[ Pa(x)x™ dp;(z) hi ;

G — o _ , (1.4.9)
T [ Pag (@) dpg(x)  hiee

where we used (1.4.5) and orthogonality relations (0.0.11) to get the second equality.
The claim of the theorem now follows from Corollaries 1.4.4 and 1.4.6. O

Part 2. Jacobi matrices on infinite rooted Cayley trees

Below we introduce a notion of a Jacobi matrix on an infinite 2-homogeneous rooted
tree whose coefficients are generated by MOPs.

2.1. Definitions

Let ji be a perfect system of measures on the real line with recurrence coefficients
{a7,i, b7}, see (0.0.19) and (0.0.20). Assume that

sup laz:| < oo and sup |b7,4] < 0. (2.1.1)
AeZ?, ie{1,2} AeZ?, ie{1,2}

Conditions (2.1.1) used along the marginal directions imply that the classical Jacobi
matrices corresponding to p; and ps have bounded coefficients and therefore p1, po € 9.

2.1.1. Rooted Cayley tree

Hereafter, we let T stand for an infinite 2-homogeneous rooted tree (rooted Cayley
tree) and V for the set of its vertices with O being the root. On the lattice N2, consider
an infinite path

(A0, ), @0 =T 11 and @) =70 &, ke{1,2), 1€N.

Clearly, these are paths for which, as we move from 1 to infinity, the multi-index of
each next vertex is increasing by 1 at exactly one position. Each such path can be
mapped bijectively to a non-self-intersecting path on 7 that starts at O, see Fig. 3. This
construction defines a projection IT : V — N2 as follows: given Y € V we consider the
non-self-intersecting path from O to Y, map it to a path on N? and let II(Y) be the
endpoint of the mapped path. Every vertex Y € V., which is different from O, has a
unique parent, which we denote by Y,). That allows us to define the following index
function:

1:V —{1,2}, Y =y suchthat I(Y) =I(Y,)) + €, . (2.1.2)
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(1,1) ~ 0 =Y,

(172) ~Y = O(ch),Z

(37 1) (27 2) (27 2) ~ 1/(<:h),l (1: 3) ~ }/(ch,)ﬂ

Fig. 3. Three generations of 7.

This way, if Z = Y{;,), then we write that Y = Zy,,,, , see Fig. 3. Recall that for a
function f on V, we denote its value at a vertex Y € V by fy. As before, we introduce
an artificial vertex O, a formal parent of the root O. We do not include O, into V,
but we do extend every function f on 'V to O(,) by setting fo ,, = 0. We denote the space
of square-summable functions on V by £?(V) and the standard inner product generating
(V) by ().

The above construction differs from the one in Section 1.1 in the following ways: the
projection IT maps onto the lattice N2, not Z2 ; the values [II(Y)| increase rather than
decrease as we go down the tree; the index function ¢ty now tells which coordinate of
I1(Y(p)) needs to increase rather than decrease to get I1(Y).

2.1.2. Jacobi matrices

In this subsection we specialize definition (0.0.9) to the case of Jacobi matrices on T
whose potentials V, W come from . As in the previous part, we fix & € R? such that
|| = 1. We define the potentials V = VA W = W# :V — R (again, as with the most
quantities dependent on [i, we drop the dependence on i from notation) by

def def
Vo = K1bo,1),1 + k201,002, Wo =1, and

def def
Vy = bn(y(p)),by, Wy = |an(y(p))7w|, Y 7§ 0. (2.1.3)

Notice the difference in definition of V' as compared to (1.1.2). As before, this definition
is consistent with (0.0.9) if we let Wy, v = Wy,y,, = Wy. We further choose function
o :V — {0,1} to recover the signs of the recurrence coefficients aj ; exactly as in (1.1.3).
With these definitions, (0.0.9) specializes to the following Jacobi matrix Jz = J. Eﬁ onT:

def 2 o 2
(Tel)y = Wy fy + Wll’/ fY(p) + (=1)7 e W11’</ch>,1fy(ch,),1
o 1/2
+ (1) y<ch,>,zwy(/ch)72 Fony 2 (2.1.4)

Due to its local nature, Jz is defined on the set of all functions on V. Moreover, assump-
tion (2.1.1) also shows that it is a bounded operator on ¢?(V) and therefore we can talk
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about its spectrum o(J%). Notice also that if az; > 0 when n; > 0, @ = (n1, ng), i.e., if
they satisfy (1.1.9) (recall also (0.0.21)), the operator Jz is self-adjoint. Otherwise, let
G be a diagonal matrix on T defined by (1.2.6) and [-,-] be the corresponding indefi-
nite inner product on £2(V) given by (1.2.7). We define G-self-adjointness exactly as in
(1.2.8).

Proposition 2.1.1. Jacobi matrices Jz and JZ are G-self-adjoint.

Proof. The operator Jz is bounded in £2(V) and checking its &-self-adjointness is iden-
tical to the proof of Proposition 1.2.2 from the previous part. O

2.2. Basic properties

Recall the functions Lz(z) introduced in (0.0.14). We consider z € C, as a parameter
and define

y(z) € myLy(2), Ly(2) € Lugy(2), and my & T w,'? (221)

Zepath(Y,0)

where path(Y; O) is the non-self-intersecting path connecting Y and O that includes both

Y and O. More generally, we agree that any function f = {f7} on the lattice N2 is also
. def

a function on V whose values are fy = fry).

Recall definition (0.0.15) of a Markov function. It will be convenient to formally set

H(O(p)) o i = (501, 72) def (k2, k1) and

Li(2) = kaLe, (2) + 61Le, (2) = Gallm | )i (2) + Gellpel )fa(z),  (2.2.2)
where the second equality follows straight from the definition (0.0.10) and the normal-
ization (0.0.13). The reason we introduced i is that this way the meaning of Lz, (z) is
still the same.

Given X € V, we shall denote by 7[x] the subtree of 7 with the root at X (in this
case Tjo] = T). We also let Vix) be the set of vertices of 7;x) and denote the restriction
of the inner product in £2(V) to Vix] by the same symbol (-,-). The notation Jjx] and
lix) stand for the restrictions of Jz and [ to Tx) and V[xj, respectively. In general, fix)
will be used to denote the restriction of any function f, defined on V initially, to the
subset V[x].

Proposition 2.2.1. It holds that
Txl(2) = z1(z) — Lz(2)69). (2.2.3)
Given X € V, X # O, we also have

u7[X]l[X] (z) = Zl[X] (2) — m)_clLX(p) (Z)(S(X). (2.2.4)
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Proof. By integrating (0.0.19) against (z—z)~! and noticing that |fi| > 2 for any 7t € N2,
we get that

2L7(2) = Li_sz, (Z) + bﬁ,é‘jJLﬁ(Z) + as1Lite, (Z) + ap2Lliye, (Z), j € {1, 2}.

Fix j and let Y # O, II(Y') = 7, be such that II(Y{,)) = 7 — €;. Then, the above relation
can be rewritten as

ZLY(Z) :LY(p) (Z) + VyLy(Z) + (_1)UY(Ch)'1 WY(ch),1LY(ch),1 (Z)
+ (_1)Jy(c}l)’2 Wy(ch,),zLY(ch,),2 (z)

It follows immediately from (2.2.1) and the above formula that zly(z) = (Jzl(2))y,
Y # O. Similarly, it holds that

zlo(z) =zLo(z)
=k1(Ly_g (2) +by_z 1 Lo(2)
+ (=171 Wo ), Lo, , (2) + (=1)77m2Wo, . , Loy, ,(2))
+r2(Ly_g, (2) +by_g, s Lo(2)

+ (=1)7Cma WOy 1 Lo 1 (2) + (=1)7Cem.2 WO(cm,zLO(ch),z(Z))’

which finishes the proof (2.2.3) (recall that k1 + ko = 1).
Consider the second claim of the lemma. Given any f defined on V, we can use (2.1.4)
to get

Tixfix) = (T = Wi fx,, 6. (2.2.5)
Since W;(/Qm}(lp) =my", (2.2.4) follows from (2.2.5) applied to f =1. O
We need to introduce Green’s functions of Jjx). They are defined by
GV, X;2) & (T = 2) 716,807,
where X € V and Y € Vxj. Using Proposition 2.2.1 we can obtain the following
conditional result. Since J[x) is a bounded operator, there exists R[x) > 0 such that

o(Jix)) C {lz] < Rix)}. Let Cix) denote the unbounded component of the complement
of o(Jx7) Usupp 1 Usupp pp U {2 : LH(X(p))(z) = 0}.

Proposition 2.2.2. If there exists R > 0 such that [(z) € £2(V) for |z| > R, then l(z) €
2(V) for all z € Cix1, and for all such z we have that

(Tix) = 2) 710 = —mxlix)(2)/ Lucx,,) (2)- (2.2.6)
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In particular, G(Y, X; z) extends to a holomorphic function in Cxy by

_mx Ly (2)

Y. X;2)= .
G( ; 72) my LH(X“D))(Z)

(2.2.7)

Proof. Let z € C[x) be such that |z| > [R]. If X = O, identity (2.2.6) follows immediately
from (2.2.3). If X # O, it follows from (2.2.4). Formula (2.2.7) for such z now follows
from the definition and (2.2.1). Moreover, since G(Y, X; z) is an analytic function of z ¢
o(Jix)) and Ln(y)(z)/LH(x(m)(z) is analytic in z ¢ supp u1 Usupp paU{z : LH(X(p))(z) =
0}, the full claim follows by analytic continuation. O

There are other functions that satisfy algebraic identities similar to (2.2.3). To intro-
duce them, we first recall (0.0.10) and (0.0.17). Set

k def _ k
AP (2) ZE myt Al (2), ke {0,1,2}. (2.2.8)

Observe that Ag) ) = 0. For any functions f, g on V and a fixed vertex Z € V we introduce
a new function on V by

1£.9)D < f29— foz. (2.2.9)
We call it the commutator of functions f, g with respect to the vertex Z.
Proposition 2.2.3. The following algebraic identities hold
Teh® (2) = 2AW) (2) — &3,;614;?(2')5(0),
for each k € {1,2}, as well as
Tih O (2) = 2AO(2).
Furthermore, let X # O. Then, for any k,l € {0,1,2} it holds that

X Xy
Tix)[A® (), AD ()] ) = 2[A®) (), AD (2)] (3. (2.2.10)

Proof. We can repeat the proof of Proposition 2.2.1 with Lz(z) replaced by A;Lk)(Z)7
k € {1,2}, and using (0.0.22) instead of (0.0.19) to get that

AP (2) = TeAP) (2) + (1 A (2) + m2 ALy (2)) 6.

(0,1) 1,0)

Since Agi)gk (z) = 0, the first claim follows. We further get from (0.0.17) and (2.2.3) that
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Teh O (2) = i1 (2) TeA D (2) + T2 (2) Te AP (2) — Trl(2)
=200 (2) = (k24 (2) i1 (2) + s AG) (2) Fia(2) — Lz(2) ) 6.

Since A(1 0)( 2) = |~ and Al © 1)( z) = ||| 7t by (0.0.13), the second claim follows
from (2.2.2). To prove the third clalm observe that

j[X]AEf()} (2) = AP

WIOEREIINNOTRY

by (2.2.5). The desired identity (2.2.10) now easily follows from the definition (2.2.9). O

Remark. The relations of Proposition 2.2.3 should be regarded as algebraic identities
and we do not claim that the functions involved belong to the Hilbert space ¢2()) for
any given z.

The spectral theory of Jacobi matrices (2.1.4) under the sole condition (2.1.1) is cur-
rently beyond our reach. In Part 3, however, we consider a large class of multiorthogonal
systems, known as Angelesco systems, for which this analysis is possible.

2.3. Appendix to Part 2

In Part 3, we will explain that the so-called Angelesco systems generate bounded and
self-adjoint Jacobi matrices. In the current appendix, we show that Nikishin systems,
see Section 1.4, do not generate bounded Jacobi matrices, in general. We need some
notation first. Recall that a measure p supported on an interval A = [a, 3] is called a
Szegd measure if

1 log /' (z)d
G() & exp = gz | (2.3.1)

(x =) (B — )

where dp(x) = p'(x)dz + dptsing(x) and psing is singular to Lebesgue measure.

Theorem 2.3.1. Let i be a Nikishin system (1.4.1)~(1.4.2) and {bs 1, b7 2, a7 1, aﬁ’Q}ﬁGZi
be the corresponding recurrence coefficients, see (0.0.19)—(0.0.20). Then, there exists a
constant Cy such that

sup |bg | < Cg, sup lari| < Cp (2.3.2)
ﬁGZi ﬁEZﬁ_:n2<n1 or nay>ni+2

for any i € {1,2}. Assume further that the measures py and T are Szegd measures. Then,

nh_)m A(nn+1),1 = —00  and nh_{n A(nn+1),2 = 00. (2.3.3)
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It is conceivable that the Szeg6 condition for the measures can be relaxed. However,
we assume it to simplify the proof. Our result shows that even for nice measures pi, 7
the corresponding Nikishin system does not generate a bounded Jacobi matrix. In the
remaining part of this section, we prove Theorem 2.3.1.

Lemma 2.3.2. There exists a constant Cy such that

sup b i| < Cj.
AeZi, ie{1,2}

Proof. We continue to use notation from Section 1.4. The following argument is taken
from [8]. Divide recursion relations (0.0.20) by xzPz(x) and integrate over a contour I'
that encircles Ay U {0} in the positive direction to get

2

1 Pﬁ+€~<z) 1 n—e )
— 1-———+)d ko dz.
2mi ( 2Pz (2) ) o7 /Zan’k 2Py (z
r r

The last integral is zero by the Cauchy theorem applied at infinity. Therefore,

1 Pﬁ_,_g,(z)
bﬂ . < R -t 7
b7 277/‘ Pa(2)
I

It is known that the zeroes of Pji¢,(2) and Pz(z) interlace. Indeed, this follows from
[32, Theorem 2.1], see also [22, Corollary 1], since it was established in [21] that {1,7}
is an AT system on A; relative to pg, see also [20, page 782]. Thus, it holds that

||

Prie,(2) Cii,l
i — (o — — = 1 E d 2.3.4
—Pﬁ(z) (z xn+e1,1)(z xn+e1,|n|+1) — o xﬁ,f ( )
where ¢z; > 0 and ) @1 cig = 1, and zm1 < wm2 < -0 < Ty m| are the zeroes

of Pg(x), which all belong to A;. That shows boundedness of |Pryz(2)/Pr(2)] on T’
independently of 77 and therefore proves the desired claim. O

Let 77 1(%), 77,2(%) be polynomials from Lemma 1.4.3.

Lemma 2.3.3. If multi-indices 7i and i + €; both belong to the region {(n1,n2) : n2 <
ny + 1}, then the zeroes of rz1(z) and rate, 1(2) interlace. Similarly, if multi-indices 7
and 7 + €; both belong to the region {(n1,n2) : ng = ny + 1}, then the zeroes of r72(%)
and ritz,.2(2) interlace.

Proof. The first claim was shown in [12, Theorem 2.1]. The proof of the second claim is
identical provided one knows that the functions ARy 2(2) + BRj+e, 2(2) have no more
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than ny+1 zeroes in R\A; all of which are simple (A, B are arbitrary real constants). The
last property can be established exactly as in Lemma 1.4.3, where the cases A =0,B =1
and A =1, B = 0 were considered. O

Recall that if g, (x; ) is the n-th monic orthogonal polynomial with respect to measure

w on the real line, then g, (z;u) is the unique minimizer of the following variational
problem:

[ i wnta)
—min { [ F@ute) s o) =" +aroaa® 4t o (g € R,
(2.3.5)
Lemma 2.3.4. We have a bound

cup jandl < C.
i€{1,2}, A€Z3 na<n1 or ny>ni+2

Proof. As shown in Lemma 1.4.3, it holds that

hiia :/P,%(ZC)dul(x)

Tﬁ’l(x)

when ng < n1 + 1. Recall that the monic polynomials r 1 (z) and r7_¢, 1(x) have degree
ngo and all their zeroes belong to A, when no < ny by Lemma 1.4.3. Let 0 < I < L be
constants given by

! défmaxﬂx—y\: xr €A, ye€A;} and

def

L' S min{lz —y|: z€ Ay, ye A} (2.3.6)

Then, when ns < nq, it follows from Lemma 2.3.3 that lrz_g 1(2) < Lrgi(x) for any
x € Ay > A,. Let v be the midpoint of Ay and |A1] be its length. Using (2.3.5), we get
that

- dp () 4 1 / dpa ()
hﬁ—é’ 2 X — 2Pg_4 T 2 e T QPZ_H .
1,1 |A1|2 /( ’Y) n 61( )rﬁ—é'l,l(x) |A1|2L ( ’7) m 61( )

> _ - 4 . S T G S U
N me{/q (x)rﬁl(x) q(z) = 2™ + 1AL2 Lhn,l

Therefore, it follows from (1.4.9) that

laz1| = |hiaa/hi—z 1] < (|A1PL)/(41), ny <. (2.3.7)



36 S.A. Denisov, M.L. Yattselev / Advances in Mathematics 396 (2022) 10811

Furthermore, we get from recursion relations (0.0.20) that

Prie (x) Pii_¢, () Pq_g,(z)
+ ag,1 Pﬁ(l‘) + ag.2 Pﬁ(l‘) .

z—bi; = (2.3.8)

’ Pr(x)
Take z = 1 + 1, where Ay = [ay, f1]. The interlacing property used in Lemma 2.3.2,
see (2.3.4), implies that the ratios of polynomials in the above formula are positive and

bounded above and away from zero independently of 7i. Thus, it follows from Lemma 2.3.2
and (2.3.7) that

laz 2| < Cgz, mn2 <ny,

for some constant C; independent of @, which is not necessarily the same as in
Lemma 2.3.2. The proof in the case no > ni + 2 is absolutely analogous: we first use
Lemmas 1.4.3 and 2.3.3 to show boundedness of a; 2 and then use recurrence relations
(0.0.20) and Lemma 2.3.2 to deduce boundedness of az 1. O

We are left with proving (2.3.3). To proceed, let us recall some results from [40].
Consider the function

(z) =2+ V22 -1,

which is the conformal map of C \ [~1,1] onto C \ {|z| < 1} such that 1(c0) = oo and
Y'(00) > 0. Let u be a Szegd measure on [—1,1] and {az,;}?", C C \ [~1,1] define a

sequence of multi-sets of complex numbers that are conjugate-symmetric and satisfy

2n

nlgréoz (1 — [p(azn,:)| ™) = 0. (2.3.9)

i=1

We emphasize that the elements in each multi-set {as, ;}?"; can be equal to each other
and some of them can be equal to co. Let m, be the number of finite elements in

{agn)i }321 . Set

2n
def ~ def
wap(2) = H(l — 2/agn;) and W (z) = H (z — azn,i),
i=1 lazn,i|<oo

which are polynomials of degree m, < 2n (Ws,(z) is the monic renormalization of
wap (2)). Conjugate-symmetry of {asy, ; }27; guarantees that wa,, (z) is real on the real line.
Notice that wa,(2) = 1 when agy, ; = oo for all i € {1,...,2n}. If ~, is the leading coeffi-
cient of the n-th polynomial orthonormal with respect to the measure |wa, ()|~ tdu(z),
then

- :mm{/ﬁx)du_@):q(m) :x"+---} 7 (2:3.10)

|wan ()]
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see (2.3.5). It was shown in [40, Corollary 1] that

. 9non P(a2n,;
fm s I () <2000
‘U/2n,i‘<00 2n,t

where G(u) was introduced in (2.3.1). Furthermore, if 7,2 is defined to be the right-hand
side of (2.3.10) with |way, (z)| " du(z) replaced by |wa, (x)|~tdu(x), then it clearly holds
that

Mn

lim 3,222~ [ [ 4 (agn.i) = 2G (1) . (2.3.11)

n—o00 .
i=1

More generally, let v be a Szegé measure on an interval A = [a, §] and d,,(z) be a
monic polynomial of degree m,, < 2n with all its zeroes belonging to an interval A* such
that A* N A = @. Define

(v, dy) < min{/q2(x) (@) o) = g +} . (2.3.12)

By rescaling the variables as z(s) = |A|(s +1)/2 + «, we get from (2.3.11) that

Tim (v, ) (/AN [ (s20) = [AIGW), (23.13)
=1

where {z(s25,:)}io are the zeroes of d,(z).
We will need the following auxiliary statement.

Lemma 2.3.5. If G(1) > 0, then G(74) > 0. That is, the dual measure 74 is a Szegd
measure when T is a Szegd measure.

Proof. It follows from Proposition 3.1.4 further below that 7/(z) exists almost every-
where on A, and

(@) = [7(2)| 72 (@) = (n27(2)) 7

for a.e. x € A; = [ar, f]. Thus, if we let w,(z) def V(z—ar)(B; —x), x € A,, then it

holds that

ot > o - f1on () e 7 o (U5

=ceen {1 s (0o ) v} w7

where we used Jensen’s inequality at the last step. O
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Lemma 2.3.6. Assume that T is a Szegd measure. Then, there exists a constant Cz > 0
such that

Cgl < hnnt1),2/hnns1)1 < Ci

for alln € N.

Proof. Let 7 = (n,n+ 1) and [, L be as in (2.3.6). It follows from Corollary 1.4.5 and
Lemma 1.4.3 that

lhﬁ’]‘ < |Pﬁ($)Rﬁﬁj(.T)/7‘ﬁ’j($)| < Lhﬁ’j, reN;, (2.3.14)

(recall that hgz ; > 0 for such 7 by Corollary 1.4.4). We further get from Lemma 1.4.2
that

/ k ( )Rﬁ’2($)d’rd(1’) —0

z"ryo(x
" T7i,2()

for k < n—1 and deg 7,2 = n, where the measure Ry o(x)drq(x)/r7 2(x) is non-negative
on A;, see (1.4.8). Therefore,

[ e satoyinta) - [ 1oty Pr2e)
o R p(w)dra()
7q(z)rilirwlr+,../q2(x) riz(@) -

where we used (2.3.5) for the last equality. One can readily check that

min /q2(x)d71(x) <  min /qz(a:)de(:r)

q(m):zn+,,, q(z):x"+---

if 7 (B) < 72(B) for all Borel sets B. Hence, it follows from (2.3.14) that

. Ry o(x)dry(x)

Phiz2Qn(7a, P}) < (o) = < LPhiaoQa(ra, Py,
,2 (Td n) q(x)Iilglcl;Ll+/q (l‘) TﬁﬁQ(l‘) ,2 (Td n)

where Q,, (74, P%) is defined via (2.3.12), PZ(z) = Ps(z)/(x — ®7,2n41), and we denote

the zeroes of Py(x) by zz1 < ... < g ant+1 (We stripped one zero from Py(z) since

deg Py =2n+ 1> 2n = 2degry 2). Similarly, we get that

Ry d
lhiz1Qn41(T, Pr) < min /qz(m)M < Lhig 1 Q11 (T, Pr)
q(z)=an Tl
(here, we do not need to strip zeroes from Pz(z) since deg Pz =2n+1 < 2(n+1) =
2degri1). Then, it follows from the last claim of Lemma 1.4.2 (the equality of the
integrals), (2.3.15), and a similar formula for Rz 1(x) that
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i l Qn+1(T,Pﬁ) < h 2 < 1 LQn+1(T,Pﬁ)

[T L2 Qu(ra, P3) iy 17112 Qul7a, P

=

(2.3.16)

By Lemma 2.3.5, we know that 74 is a Szeg6 measure and we can apply formula (2.3.13)
to control the ratios in the left-hand and right-hand sides of (2.3.16). We get

G(T) . Qn-‘rl(T; P’Fi) . Qn—i—l(Tv P’Fi) ! G(T)
<liminf ———— <limsup ———— < ,
Glra) ~ nooe Qu(ra, P5)  mose Qu(ra, B A A1 G(ry)

Ca, A, (2.3.17)

where Ca_ A, and C/AT, A, depend only on the intervals A, and A;. The desired claim
now follows from (2.3.16) and (2.3.17). O

Lemma 2.3.7. Assume that 7 is a Szegd measure. Then,

nh—{go h(n,n),l/h(n,n),Q = 0.

Proof. Let @ = (n,n). Similarly to (2.3.15), it follows from Lemma 1.4.2; (1.4.8), and
(2.3.5) that

ro=— [ 2"Rz1(x)dr(z) = min 2£_|Rﬁ71(1')‘d7'($)
i =~ [ " Baa(@)dr(a) [ s,

q(m):m"—‘r“'
As in the previous lemma, we get from (2.3.14) that

h

3t

0< 2 <L min /qQ(x) dr(z) = LQy (7, Py).

i g=a"+--

>

Again, as in the previous lemma, let z(s) = |[A|(s+1)/24+ ar, A; = [ar, B7]. Then, we
get from (2.3.13) that

2n
lim Qn(Tv Pfi) Hw(sﬁ,i) = |AT|G(T)7

n—o0
i=1
where z7,; = z(s7.4), ¢ € {1,...,2n}, are the zeroes of Py(z). Since z7; > a1 > 5, and
therefore 1 (s ;) = ¥(z~!(a1)) > 1, it holds that lim,,_, Q, (7, P7) = 0, which finishes

the proof of the lemma. O

Lemma 2.3.8. Assume that j11 is a Szegé measure. Then, there exists a constant Cz > 0
such that

Cit <hnmina/hmma < Cp

holds for all n € N.
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Proof. As shown in Lemma 1.4.3, it holds that degr; ;1 = no and

d x) . duy(x
hi _/Pq i) _ min /qQ(sc) () = Qi (p1,77,1)

r,1(x) q(w):z\ﬁ\+~. ri1(x)

when ny < ny 4+ 1, where we also used property (2.3.5) and definition (2.3.12). Let
x(s) = |A1|(s +1)/2 + a1, where Ay = [, $1]. Then, it follows from (2.3.13) that

n

. 3n
Jim Qo (1, 70 ,m),1) (4/1A1]) T (smm.)l = 1211G (na),

i=1
where z,; = 2(s5,), i € {1,...,n}, are the zeroes of r; 1 (x), and
— n+1
Jim Qo g (p1, 7(n,n1),1) (4/1A1]) I 1¥(stnmsn))] = 11| G ().
i=1

Recall that according to Lemma 2.3.3, the zeroes of rz 1(z) and 754¢ 1(z) interlace as
long as both 7 and 7 + €; belong to the set {n2 < ny + 1}. Thus,

n+1 n
|1/J(x_1(047))|_1 H |w(s(n,n+1) i H W) (n,n), z
i=1 i=1
n+1
<[ B TT 1 (smmany.al;
i=1
where, as before, we write A; = [a,, 8;] < Aj. Therefore, by combining the previous

estimates, we get that

hn’n h’nn
CEI < lim inf —n 1L < limsupﬂ < Cp

n—00 (n,n),1 n— oo (n,n),1

which yields the desired claim. O

Proof of Theorem 2.3.1. The proofs of the claims in (2.3.2) are contained in Lem-
mas 2.3.2 and 2.3.4. Tt further follows from (1.4.9) that

_ iz (h(n,n+1),2> . <h(n,n),1> _ (h(n,n+1),1>
Hrnt1),2 = h(n,n),2 h(n,n+1),1 h(n,n),Q h(n,n),l .
Thus, the second claim of (2.3.3) is a consequence of Lemmas 2.3.6-2.3.8. The first claim
of (2.3.3) now follows from the considerations laid out right after (2.3.8). O
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Part 3. Jacobi matrices of Angelesco systems

In this part, we consider Angelesco systems [4]. These are systems i = (u1, uo) that
satisfy

Al M AQ = @, Ai déf ch(supp /,[,1) = [Oéi, ﬂi]v (301)

where, as before, ch(:) stands for the convex hull of a set. Without loss of generality,
we assume that A; < Ay (recall that we write Ey < Fj if two sets Fy and Eo satisfy
sup Eq < inf F5). Note that A;, Ay is a system of two closed intervals separated by an
open one. It will be convenient to use notation

% def
W= pr A+ pe. (3.0.2)

It is known, see [9, Appendix A], that Angelesco systems satisfy not only (0.0.18) and
(2.1.1), but also (1.1.8). In particular, Jacobi matrices Jz of such systems are bounded
and self-adjoint. It is also known that [(z) € ¢2(V) for |z| > R and some R > 0,
see [9, Proposition 4.2]. The function Lz(z) has no zeroes outside A; U Ag (see, e.g.,
Lemma 3.6.4) for any 7. Therefore, (2.2.6) holds everywhere in o (Jz)Usupp w1 Usupp pa
as o(Jz) C R.

3.1. Poisson integrals

Our primary working tool in studying spectral properties of Jz are the Green’s func-
tions G(Y, X; z), whose boundary behavior we investigate via formula (2.2.7). To ease
referencing while doing so, we gather some well-known properties of functions harmonic

in C4, the upper half-plane, in this section.

Proposition 3.1.1. Let v(2) be a function harmonic in Cy and such that

sup/ |v(x + iy)|Pdz < oo (3.1.1)
y>0]R

for some p = 1. Then, there exists a finite (generally signed) measure p on R such that

1 1
o(@ +iy) = /Pz(t)du(t), P Ly <t ) R (3.1.2)
—z
R
where P,(t) is known as the Poisson kernel. The measure p is constructed as

v(x +iy)dt = du(z) as y— 0T, (3.1.3)

where = denotes the weak* convergence of measures. The limit
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p(x) = lim v(z+iy) (3.1.4)

y—0t

exists for Lebesque almost all x on the real line (the limit in (3.1.4) can be taken in
non-tangential sense) and

du(x) = p' (v)dz + dpsing (v), (3.1.5)

where figing 15 singular to Lebesgue measure. For each p > 1, (3.1.1) holds if and only if
Using = 0 and p' € LP(dx).

Proof. This proposition is a combination of Theorem I1.3.1, 1.3.5, and 1.5.3 of [26]. O

Hereafter we use the following convention: for a closed interval A, we let A° be the
corresponding open interval. We denote by DC(I) the set of Dini-continuous functions
on I € {A,A°} (see, e.g., p.105 in [26]).

Proposition 3.1.2. Let v(z) = Im f(z) for some function f(z) analytic in C, which
satisfies

lim f(iy) =0. (3.1.6)

Yy—r—+oo

(1) If v(z) satisfies (3.1.1) for some p > 1, then so does f(z).

(2) Suppose v(z) satisfies (3.1.1) with p = 1, the measure u, defined in (3.1.3), is ab-
solutely continuous on some open, possibly unbounded, interval I, and ' € DC(I),
then f(z) extends continuously to I from C..

Proof. Given condition (3.1.6), we can write f = —v + v, where v is the harmonic
conjugate of v. Now, the proof follows by applying a combination of Theorem II1.2.3 and
Corollary II1.1.4 in [26]. O

The following result provides an integral representation of functions that are harmonic
and positive in C.

Proposition 3.1.3. A function u(z) is positive harmonic in Cy if and only if
u(z +iy) = by + /Pz(t)d,u(t), (3.1.7)
R

where b >0 and 1 is a positive measure satisfying [g(1 + 2?)~tdpu(r) < co. Given such
u(z), the measure p can be obtained via (3.1.3).

Proof. These claims are contained in [26, Theorem 1.3.5]. O
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The function m(z) belongs to HN, the Herglotz-Nevanlinna class, if it is holomorphic
in C; and has non-negative imaginary part there. Such functions allow the following
unique integral representation [26]

m(z) = l/ ( ! L) du(z) +bz+a, zeCyg, (3.1.8)

T T—z x2+1

where @ € R, and b, are as in (3.1.7). If m(z) has a holomorphic continuation to
a punctured neighborhood of infinity (where its has a simple pole), the measure p is
compactly supported and the above representation becomes

m(z) = —m 'i(2) + bz +a, z€Cy, (3.1.9)
where b > 0, a € R, and [i(z) is the Markov function of y, see (0.0.15). Notice that
Imm(z) = by + /Pz(t)du(t).
R
Motivated by (3.1.3), we shall set

Imm* < . (3.1.10)

We will be particularly interested in reciprocals fi~! of Markov functions 7i. It follows
straight from the definition that zi~! € HN. Since p is positive and has compact support,
there exist a compactly supported positive measure v and a real number a such that

(=) =a+ [lpl ™ = = O(z). (3.1.11)

We called the measure v dual to p, see (1.4.4). Let DCy(A) C DC(A) be the subset of
functions that vanish at the endpoints of a closed interval A.

Proposition 3.1.4. Let ;1 be compactly supported non-negative measure and [ising denote
its singular part. It holds that

(1) The traces fi+(x) def lim,_,o+ fi(x +1iy) exist and are finite almost everywhere on the

real line.

(2) W (z) = —n'Im ({4 () almost everywhere on the real line.

(3) M({E}) = lirnyHOJr 1yﬁ(E + 1y) and Supp HUsing g {1' L= 1iIny%()Jr Im (//j(x + ly)) =
o).

(4) If supp p = A, p is absolutely continuous, and p' € DCy(A), then fi(z) extends

continuously to R from Cy and from C_. Moreover, fiy(x) = i—(x).
(5) If, in addition to assumptions in (4), we have ' (x) > 0 for x € A°, then iy (x) # 0,
z € R.
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Proof. (1) This claim follows from [26, Theorem 1.5.3, Lemma III.1.1, and Theo-
rem II1.2.1].

(2) The claim is a restatement of (3.1.4).
(3) These statements can be found in [37, Proposition 1] and [39, Proposition 2.3.12].
(4) This claim follows from Proposition 3.1.2(2) since p/ € DC(I) for any open interval

I containing A.

(5) Since Im (fiy(z)) = —mp/(z) by claim (2), it is non-vanishing on A°. Moreover,
Re (74 (z)) = fi(z) for ¢ A° and therefore is monotonically decreasing there while also
equal to zero at infinity. Thus, it is necessarily non-vanishing for x ¢ A°. O

3.2. Reference measures

As we mentioned before, formula (2.2.7) is central to our analysis and therefore we
need to study the functions Lz (z). Below, we shall often refer to the auxiliary lemmas
proven in Section 3.6.

Lemma 3.2.1. Assume that the measure py is supported on Ay and is absolutely contin-
uous with pj, € DCo(Ax) and p)(x) > 0 for x € A, k € {1,2}. Then, given it € N2,
the function Lz(z) extends continuously to the real line from C, and, in particular, the
function |Lz(x)| is well-defined, continuous, and non-vanishing on the whole real line.

Proof. Tt follows from (0.0.16) and Proposition 3.1.2(2) that Lz(z) extends continuously
to the real line from the upper and lower half-planes. Actually, as Lz, (z) and Lz_(x)
are complex-conjugates of each other, |Lz(x)| is well-defied and continuous on all of C.
It follows from Lemma 3.6.4(3) that it is non-vanishing outside of A U A3. We further
get from Proposition 3.1.4(2-4) that Im Lz, (z) = —ﬂ'A%k) (x)py,(x) on Ay. Thus, |Lz(z)|
is non-vanishing outside of zeroes of A%k)(x). However, we show in Lemma 3.6.4(4) that
Re Lz, (F) # 0 for each such zero E. 0O

In the case of systems ji satisfying conditions of Lemma 3.2.1 we can introduce “ref-
erence measures” as

|Lis(2)| " 2dp* (x), (32.1)
where p* was defined in (3.0.2). When /i is no longer smooth, we use the general theory of

Herglotz-Nevalinna functions to introduce them. We start with a few definitions. Given
£ € (B1,a2), define Dy ¢(2) by

Die(2) = (=1)" (2 — )AY (2) AP (2) (3.2.2)

and non-negative function Sj ¢(x) by
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Sae(@) < o = €7 (xa, @) 14T @) 7" + xa,(@) 14D @) 71) -

Let Ej be the set of zeroes of Ag)(z)Ag)(z). For each E € Ej, we define an auxiliary
measure Vi g by

act Dre(2)AY () Dy ¢(1) AP ()
dv g(x) = de(m) + Wdug(x). (3.2.3)

This is a well-defined measure on A; U Ay since each E € Ay is a double zero of
the respective numerator. In Lemma 3.6.4(2), we prove that vz g(z) is in fact positive
provided that € € (81, a2). Recall that HN stands for the Herglotz-Nevanlinna class.

Proposition 3.2.2. Given ii € N2, it holds that (Dz¢Lz)~! € HN for any € € (81, ).
There exists a non-negative measure wy (the reference measure) supported on Ay U Aqg
such that

1 [ Saclakester GrelE)
= d + = tame+brez, z€Cy,
Di; ¢(2) L7 (2) J T —z . D%EE)O E—=z ¢ ¢ +

(3.2.4)
where az ¢ € R, by ¢ > 0 and the numbers (z ¢(F) . —(D%)s(E)LﬁJr(E))’l are well-
defined and positive for every zero E of Dy ¢(x) (in fact, (z¢(E) = ||vs el — va,e({E})
for each E € Eg). Measure wyz has no atoms at the zeroes of Dy ¢(2). Moreover, if i
satisfies the conditions of Lemma 3.2.1, then dwz(x) is equal to (3.2.1).

Proof. It is shown in Lemma 3.6.4(2) that the linear form Dy ¢(x)Qg(x) is, in fact, a non-
negative measure on Ay UA; for any £ € (81, az), and, according to Lemma 3.6.4(1), the
Markov function of this measure is equal to Dz ¢(2)L7(2). Therefore, (D7 ¢L7)~" € HN
and we get from (3.1.11) that there exist constants bz ¢ > 0, az ¢ € R, and a non-negative
measure v ¢ such that

(Die(2)Li(2)) " = ane — ez = —1 Tae(2). (3.2.5)

The measure vj ¢ has a point mass at £ since Dy ¢(2)Liz(2) is holomorphic around £ and
has a simple zero there. The mass at £ can be computed via Proposition 3.1.4(3), where
one needs to observe that D .(£)L7(§) < 0 because Markov functions have negative
derivatives on the real line away from the support of the defining measure. If £ € E5, it
follows from Proposition 3.1.4(3) and Lemma 3.6.4(4) that

vre({EY) = =7 tim (iy(Dse(E +iy)La(E +iy) ")

y—0t

— (D ((E) Ly (B) " = nlllv sl - vae({ED) ™ > 0. (3.26)

Hence, the reference measure wy introduced in the proposition is equal to
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dwi(z) = W_lsgé(l')dvﬁ,g(l') - Z S%E(E)Cﬁ,g(E)d(SE(x)
E: Ds(€E)=0

and it has no atoms at the zeroes of Dz (&;x). To show that wy is indeed independent of
&, let us derive an explicit expression for it when [ satisfies the condition of Lemma 3.2.1.
We know from Lemma 3.6.4(1,2) and Proposition 3.1.4(2-4) that

I (L (7)) = = (Xa, ()AL @)1 (@) + X0 () A (@)1i(2)) (3:2.7)

It further follows from Lemma 3.2.1 that |Lz(z)| is continuous and non-vanishing on the
real line. Therefore, for any « ¢ E; we get that

—71 M (g 64 (7)) = —|Lﬁ($)|_2DT€)2($) Im(Lz4(z)) < o00. (3.2.8)

Thus, Proposition 3.1.4(3) yields that the support of the singular part of vj ¢ is a subset
of the zeroes of Dy ¢(2) (actually, is equal to it by what precedes). Hence, in this case
wy is an absolutely continuous measure and it follows from Proposition 3.1.4(2) that

dwz(z) = W_ngé(m)v%g(x)dx = —W_QST{é(x) Im (0 ¢4 (2))dz = |Li(z)| " dp*(z)
as claimed, where we used (3.2.2), (3.2.7), (3.2.8), and Lemma 3.6.4(2) to get the last
equality.

Let fi be any Angelesco system and {fi,,, } be a sequence of Angelesco systems satisfying
conditions of Lemma 3.2.1 and such that ji,; — w as m — oo, I € {1,2}. Since the
moments of fi,, ; converge to the corresponding moments of y;, MOPs with respect to jip,
converge uniformly on compact subsets of C to the corresponding MOPs with respect
to fi. Thus, linear forms (0.0.12) with respect to [, converge in the weak* topology to
the corresponding linear form with respect to (. Therefore, their functions of the second
kind (0.0.14) converge uniformly on closed subsets of C \ (A; U Ay) to the respective
function of the second kind with respect to ji. Since compactly supported measures on
the real line are uniquely determined by their moments and those moments are the
Laurent coefficients at infinity of the respective Markov function, it also holds that the
measures (3.2.3) and (3.2.5) defined with respect to [i,, converge in the weak* topology
to vz g and vge, respectively. Notice that if £ € E, and p* has no atom at F, it
holds that vz ¢ ({E}) = 7||va gl =" by (3.2.6). In particular, this is the case for each fi,.
Thus, the weak™ limit of the reference measures corresponding to fi,,, which is obviously
independent of &, is equal to

S-YE
S - > T s
B: Dp(¢&E)=0 ™
Sz ¢(BE)vap({E})
lva,ell(lva,ell — va,e({E£}))

= dwﬁ(l‘) + Z

EcE5

dép(z). (3.2.9)
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Fix E € E5. Let k € {1,2} be such that E € Aj. Recall the definition of Sy ; i () in
(3.6.7) further below. We get from the very definition of vz g in (3.2.3), (3.2.6), and
Lemmas 3.6.2 and 3.6.4(5) that

SieEvas(EY)  _ S;i(E) AL (B) Dy (B)(AF) (B) (&N
Tl (sl = v s(ED) ~ Dy ((B)Sa1s(B) Dy (E)Lar(E) "
Qa+a ({E})
= Sﬁ,l,ker) T (B (3.2.10)

As the above expression is independent of £, so is the measure wz. O
3.3. Green’s functions

In this section, we study functions G(Y, X;z) using equation (2.2.7). The Spectral
Theorem applied to the self-adjoint operator Jx) gives

d{Pix) A6, 60)
A—2z ’

G(Y, X;2) = ((Jix) — 2)~ 16,60y = /

where { Px),»} is the family of orthoprojectors associated with Jxj. The function F'(\) =
(P[X],,\é(x), 50 has bounded variation and can be written as a difference of two non-
decreasing functions. Therefore, G(Y, X; z) is a difference of two HN functions and the
nontangential boundary values G(Y, X;x)1 are defined a.e. on R.

Let Tix) be the subtree with the root at X and ppx; = <P[X]7,\5(X),(5(X)> be the
spectral measure of §(X) restricted to Tix), see (0.0.2), where we also write po for pjoj
(we use square brackets to emphasize that px] is a spectral measure of § (X) with respect
to a subtree and not the whole tree). Then

G(X,X;z) = —pix)(z) and therefore ImG(X,X)" =mp[x). (3.3.1)

Statements (3.3.1) and (2.2.7) provide a non-trivial application of the operator theory
to the theory of orthogonal polynomials. They say that the ratio of Markov functions of
two “consecutive” linear forms Qs+ (z) and Qz(z) is also a Markov function! Below,
we shall verify it in a different way by providing “explicit” expressions for px) and
more generally Im G(Y, X; z) 4. Again, we often refer to the auxiliary lemmas proven in
Section 3.6.

3.3.1. Function Lz(z)

By (2.2.7), G(0,0;z) = —L3(2)/Lz(z). While the behavior of the numerator Ly(z)
for smooth measures is described by Lemma 3.2.1, we have not yet addressed the behavior
of Lz(z). Recall that 3 = (511, 322) = (k2, K1), the function Lz (z) was defined in (2.2.2),
and



48 S.A. Denisov, M.L. Yattselev / Advances in Mathematics 396 (2022) 10811

L3(2) = koLe, (2) + k1L, (2) = (allp || 1) 11 (2) + (eallpall 1) fi2(2). (3.3.2)

Lemma 3.3.1. The set E def {E: Lx(E)=0, EcR\(A1UAs)} is either empty

or has exactly one element in it. It is empty when 3z = €;, i € {1,2}. If E € E; exists,
it is necessarily a simple zero of Lz(x). If fi satisfies the assumptions of Lemma 3.2.1,
then Lz (z) extends continuously from C4 to R and the function |Lz(x)| is well-defined,

continuous and non-vanishing on R except for a possible single zero that belongs to
R\ (A UA3).

Proof of Lemma 3.3.1. The function Lz(z) = 25:1 3#;0:(2), 0; = ||pil| 7 i, is analytic
in C\ (A1 UAy) and we are looking for its zeroes on the real line away from the intervals
A, As. Observe that the equation Lz (z) = 0 has no solutions on the set of interest when
2 =¢;,1 € {1,2}, since in this case it is a Markov function and Markov functions have
no zeroes in the finite plane away from the convex hull of the support of the defining
measure. When s; > 0,14 € {1,2}, we have that Lz(z) > 0 for z € (82,00) and Lz(z) <0
for x € (—o0, 1) as one can see from (3.3.2). Since both functions »;0;(z) are decreasing
in the gap (f1, a2), but one of them is negative and one is positive, there can be at most
one solution there. When ;55 < 0, there cannot be any solutions in (51, as). To show
that there is at most one solution in (—oo,aq) U (82,00) in this case, notice that the
original equation can be rewritten as —(71/02)(x) = 3¢2/. The ratio —(71/02)(z) is a
Markov function of a measure supported on A; UAgq. Indeed, it follows from (3.1.3) that

Im(31/5s) (2 + iy)dz 5 75 L(x)d(Tmay) () + 71 (2)d(Ima; 1) T (), (3.3.3)

which is indeed a positive measure supported on Ay U Ag since d2(x) < 0, x € Ay, and
o1(x) > 0, x € Ay. Markov functions are monotonically decreasing on the real line away
from the support and are positive/negative to the right/left of the convex hull of the
support of the defining measure. Thus, any equation of the form (¢1/03)(z) = 7 # 0 can
have at most two solution away from A; U As, one in the gap and one outside the gap,
which proves the desired conclusion.

Continuity of |Lz(z)| when [i satisfies condition of Lemma 3.2.1 can be shown exactly
as in the proof of that lemma. Since Im Lz (z) = Fmsgo)(x) on Ay by Proposi-
tion 3.1.4(2-4), it vanishes at the endpoints of the intervals A;, Ag. Hence, the traces
L. (z) are real at those points and the considerations of the previous paragraph can
be extended from open intervals to closed ones. Since Im Lz (z) does not vanish on
A$ U AS, there cannot be any other zeroes. O

Notice that for Dini-continuous measures, |Lz(z)| can vanish at some endpoint of the
intervals Aq, As.
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3.83.2. Green’s functions at O

We already know from the Spectral Theory that G(O, O; z) € HN. However, we can

I~

see it directly. Recall that o; = ||u;|| ' g and define

= / tdoo(t) — / tdoy (). (3.3.4)

We have Z; > 0 since it is a difference of the centers of mass of probability measures
supported on disjoint intervals with supp o1 < supp o2. Assuming that sc; # 0 (the case
9 # 0 can be treated absolutely analogously), we have that

= )= = Ly(z) _ 02(2) — 01(2)
— G(O)O7z) - T =u L;{(z - _%20'2(2)"’_%181(2)
1 1
_ 1 _ ’ (3.3.5)

where we used 31 + 302 = 1, (3.3.2), and Lemma 3.6.1. Since 5%,Z; > 0, G(0,0;-) € HN
if and only if (61/02) € HN. The claim (61/62) € HN has been shown in the proof of
Lemma 3.3.1 above, see (3.3.3).

Let So(z) be a positive function on Ay U Ay given by

So(z) < Eallmlllual) ™ (71 (@)xa, (@) — fa(z)xa, (). (3.3.6)

This function will be used to obtain a convenient formula for the generalized eigenfunc-
tion U, introduced in the following proposition (for the general theory of eigenfunction
expansions, check [14]).

Proposition 3.3.2. Let Ez be as in Lemma 3.5.1. We have that supp po C A1 UA;UE3;
and

dIm G(Y,0)*(z) = 70y (O; x)dpo (), (3.3.7)

where U(O; E) = (E)/L;(E) for E € Ez,

cp) — @ Pk (_1\k (2) 2 S (1
¥(0:0) = 55" (@) (AO0) 72 = (1) Fa-ala) (AP )72~ A ))
© ] ’ lpua | Hmn
3.8)
forxz € Ay, k € {1,2}, and otherwise U(O;z) = 0. Furthermore, it holds that
JzU(0;2) =2¥(0;z) and 5@0) = /‘I’y(O;x)d,oo(m). (3.3.9)

If [i satisfies conditions of Lemma 3.2.1 and
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(@) € L2(A) (3.3.10)
for some p > 1 and each k € {1,2}, then

dpo(@) = So(@)|La(x)|2dp* () + 3 (Ly/LL)(E)dos(x). (3.3.11)
E€Ex

Remark. Assumption (3.3.10) is a non-essential technical condition which we use solely
to simplify the discussion of the behavior of po around a zero of |Lz(z)| when the latter
happens to be an endpoint of either Ay or As.

Proof. The first claim follows from (3.3.5) and the definition of Ez in Lemma 3.3.1.
Assume first that [ satisfies conditions of Lemma 3.2.1 with the additional integrability
assumption (3.3.10). We get from Lemma 3.3.1 that |Lz(x)| is continuous on the real line
with at most one zero, say E, that belongs to R\ (AJUAS). Since —G(O, O; z) is a Markov
function by (3.3.5) and the explanation right after, it follows from Lemma 3.2.1 and
Proposition 3.1.4(2,3) that po is an absolutely continuous measure except for a possible
mass point at E. When E is not an endpoint of Aq or A, we get from Proposition 3.1.4(3)
that po indeed has a mass point at E of mass (Ly/L%)(FE). If E is an endpoint of either
A; or Ag, we deduce from Proposition 3.1.4(3) and Lemma 3.6.5 further below that E
is not a mass point (this is exactly where the LP-integrability is used). Hence, it only
remains to compute the absolutely continuous part of po, that is, 7= Im (G (0,0; x)+),
see again Proposition 3.1.4(2). To this end, it holds that

G(0,0:2); =(~1)

2 03—k (2) s3_ 1031 () + 261,04 — ()
=p | Lz ()

—( 1)k Okt () 20303k (x) + se1.0%— ()
S |Lz(2)[?
for ¥ € Ay, k € {1,2}, where again o}, = ||Hk|\*1uk are the normalized measures. By

taking the imaginary part of both sides and using ox—(z) = G+ (z) and 3¢ + 500 = 1,
we get that

Im (G(0,0;z)4) = (—1)F 5403-k(z) Im (Gp— () — s3-£03—k () Im (Gr ()

Il
|
3

for © € Ay by the very definition (3.3.6), which finishes the proof of (3.3.11).
Let us still assume that ji satisfies condition of Lemma 3.2.1 with the additional
integrability assumption (3.3.10). Set gy (z) to be G(Y,0; z) when Ez; = g or E € Ej; is
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an endpoint of A; or Ay and otherwise set it to be G(Y,0;2) — (Ly /Lz)(E)(E — 2)~1.
Then, —go(z) is a Markov function of an absolutely continuous measure with an LP-
density for some p > 1 by Lemma 3.6.5. It follows from the last claim of Proposition 3.1.1
and Proposition 3.1.2(1) that both real and imaginary parts of go(z) satisfy (3.1.1) with
this p. Since gy (2) = my (Ly /Lo)(2)go(z) and (Ly /Lo)(z) extends continuously to the
real line from the upper half-plane by Lemma 3.2.1, the imaginary part of gy (z) satisfies
(3.1.1) with the same p as well. Thus, it follows from the last claim of Proposition 3.1.1
that Im gy (2) is a Poisson integral of an absolutely continuous measure whose density is
equal to Im(gy 4 (z)). Now, we get from (2.2.2), (0.0.16), and (2.2.7) that

G(Y, 0:2) =IL(2) |72 (AP (2) = AP ()7 (2) = AP (2ia2)
< (Galmll ™G + (ellu) ) 7)) -
Since Im(fig4(x)) = —mp) (z) by Proposition 3.1.4(2-4), it holds that

Ak
Il

(=D g () [ A® () T A () 22
(Vi) (A - AV ) )

I (gy 4 () =yt (2)] L ()| 2 (A@(x)

for © € Ay. That clearly yields (3.3.7) and (3.3.8) in the considered case.

If the system (i does not satisfy the assumptions of Lemma 3.2.1 with the addi-
tional integrability assumption, approximate ji in the weak* topology by a sequence
{fim} of measures that do satisfy them as it was done in the proof of Proposition 3.2.2.
The explanation given there shows that the spectral measures and measures generated
by Green’s functions corresponding to ji,, will converge in the weak* sense to po and
Im G(Y,0)" corresponding to ji, respectively. This convergence will clearly preserve
(3.3.7) and (3.3.8).

The first algebraic identity of (3.3.9) is a direct consequence of the first two claims of
Proposition 2.2.3. To prove the second identity, notice that

Uy (O;z)dpo(z)

Tr—z

G(KO;2)=/

R
by (3.1.2) and (3.1.3). Now, since ¥y (O;z)dpo(x) has finite total variation, the above

formula, the Fubini-Tonelli Theorem, and the Cauchy integral formula give that

/\I/y(O x)dpo (z /G (Y,0;2) =55

R r

((J* —2)” 15(0))de = 5&0),
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where T encircles o(Jz) U A1 U Ay U Ex in the positive direction, the second identity is
just definition (2.2.7), and the last one is a part of the Spectral theorem for self-adjoint
operators. O

3.3.3. Green’s functions at X # O

Recall definition (2.2.9) of the commutator of two functions with respect to a given
vertex as well as definitions of functions A% (z) in (2.2.8). Given X # O, set

\I/<X x) me( )mxz ( A(k ),A(O)(I)}(X(p))

+[A<3*k><x),A<k>(w>]( 7 fia-i(@) xau (o)

to be a function on V that depends of a parameter x € A; U Ay. Clearly, each {Iv/y(X; x)
extends analytically from each interval Ay.

Lemma 3.3.3. Given X € V, X # O, it holds that Sx(z) <

continuous for x € Ay U As.

Ux(X;z) > 0 and it is

We prove Lemma 3.3.3 further below in Section 3.6.1. Recall Proposition 3.2.2 and
that in our notation the symbol J|x) stands for the restriction of Jz to Tjx). If E € R
and X €V, we denote the mass of the form Q(x) at a point £ by Qx({E}), i.e

Qx({E}) E Al B ({E}) + ARy (E)uz({E})

In the next result, we explain how the spectral measure pjx] from (3.3.1) is related to
the reference measure at the vertex X(,). We also introduce ¥(X;z), a function on Vx;
that is a generalized eigenfunction of the operator Jx;

Proposition 3.3.4. Let X # O and Ey be the set of zeroes of the polynomial
AP (@)AP (). It holds that

dpix)(z) = Sx (z)dwx, (@) + Y Qx({ENLy, 1 (E)dop(x), (3.3.12)

EGEX(p)

where the numbers Qx({E})L X, )+(E) > 0 are well-defined and non-negative for each
E € Ex, . Moreover, it holds that

dIm G(Y, X) " (z) = 70y (X;z)dpx(2), (3.3.13)

for every Y € Vix, where ¥(X;x) = S)}l(x)\if(X; x). Furthermore, it holds that
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Ix1¥(X;z) =20 (X52) and (5§,X) 2/\I/y(X;x)dp[X](x). (3.3.14)

Remark. It follows directly from its definition that ¥ satisfies a mnormalization
\I/X (X, SL’) = 1.

Proof. Assume first that [ satisfies conditions of Lemma 3.2.1. Recall that the traces

Lik+(x) are continuous on the real line and are complex conjugates of each other, see
Proposition 3.1.2(2). It follows from (2.2.7) and (0.0.16) that

I (G(Y, X:2)) = = mxmx,, [Lx,,, ()7 Im (AP (2)7(2) + AP (2)7ia(2) = AP (2))

<A, @)+ AL, () - AT, () )

Since the first kind MOPs have real coefficients, a straightforward algebraic computation
and Lemma 3.2.1 imply that Im(G(Y, X; z)) has continuous traces on the real line and

Im(G(Y, X;2)1) = Uy (X;2)|Lx,, (2) 2 Im (A (z)), =€ Ay, ke {1,2}.

(3.3.15)
In particular, we get from Proposition 3.1.4(2-4), Lemmas 3.2.1 and 3.3.3 that
Im(G(X, X; z)) extends continuously to the real line where it has a continuous and
non-negative trace. Thus, it follows from the maximum principle for harmonic func-
tions that Im(G(X, X;-)) € HN, the fact already known to us from the general Spectral
Theory. Since —G(X, X;z) is holomorphic at infinity, it is indeed a Markov function.
Formula (3.3.12) now follows from Propositions 3.1.4(2,3) and 3.2.2 since Qx({E}) =0
for any E by absolute continuity of u*. Since p[x) is absolutely continuous with contin-
uous density, we get from the last claim of Proposition 3.1.1 and Proposition 3.1.2(1)
that both real and imaginary parts of G(X, X;z) satisfy (3.1.1) for any p > 1. Since
G(Y,X;z) = my(Ly/Lx)(2)G(X,X;2) and (Ly/Lx)(z) extends continuously to the
real line by Lemma 3.2.1, the imaginary part of G(Y, X; z) also satisfies (3.1.1) for any
p > 1. Thus, Im(G(Y, X;2)) is a Poisson integral of an absolutely continuous measure
with density given by Im(G(Y, X; ) ), which, together with (3.3.15), proves (3.3.13) in
the considered case.

If the system i does not satisfy assumptions of Lemma 3.2.1, approximate /i in the
weak™* topology by systems i, that do satisfy these assumptions as it was done in
the proof of Proposition 3.2.2. The explanation given there shows that the spectral
measures corresponding to fi,, converge in the weak™ sense to p[x], the spectral measure
corresponding to . On the other hand, the right-hand sides of (3.3.12) corresponding
to fim, will converge weak* to Sx(x) times the measure in (3.2.9). Formula (3.3.12) now
follows from (3.2.10) and the identity Sx(z) = Si, () for € Ay, which holds by the
definition of S (z) in (3.6.7), where 7 = II(X(;)) and | = tx. As InG(Y, X)7T is the
weak™ limit of the corresponding measures with respect to fi,,, the validity of (3.3.13)
follows as well.
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The first algebraic identity of (3.3.14) is a direct consequence of the third claim of
Proposition 2.2.3. The second one can be justified exactly as in Proposition 3.3.2. O

3.4. Cyclic subspaces

In this section we derive an orthogonal decomposition of £2(V) into a direct sum of
cyclic subspaces of Jz.

3.4.1. Trivial cyclic subspaces

Let X € V and a(x) be a polynomial. Formulae (3.3.9) and (3.3.14) immediately allow
us to conclude that

def ~
a(Jix))s ) = / a(Jix) U (X; 2)dpix)(x) = / a(z)W(X;2)dppx () = @ € £ (V)
(3.4.1)
where the last conclusion trivially holds as a(J] X])5(X ) is compactly supported in this
case. Of course, (3.4.1) can be further extended to continuous functions on A;UAs using

the Spectral Theorem. Namely, let {Px]x} be the orthogonal spectral decomposition
for Jx. Then, it holds that

a(Jp)d™) = (/ a()\)dp[x]«\) dX) € (V).

In fact, we can say more. Let Cg]) be the cyclic subspace of EQ(V[ x]) generated by 5,

that is,

cf))((]) et span {j&]é(x) :ne Z+} = {a(Jx))6) : a is a polynomial}.

The next result is an analog of Proposition 0.0.2, where ¥ plays the role of orthogonal
polynomials.

Proposition 3.4.1. Fix X € V. The map

~ def

afz) —»a= {ay}Yev[X], ay = /a(x)\Ily(X;w)dp[X] (x), (3.4.2)

is a unitary map from L? (pix7) onto Qfg]). In particular, it holds that

~ X ~
lalay = Gy and €)= {@: ae (o)} (343)

Thus, the formula
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a(Jix))0™) £ 6 = / a(z)¥(X; x)dpx)(x) (3.4.4)

extends the definition ofoc(J[X])é(X) Jrom continuous functions a(x) to those in L*(p[x]).
We also have that

za(z) = Jx@, o€ L*(px))- (3.4.5)

Proof. The following argument is standard and we reproduce it solely for completeness.
Let a(x) be a continuous function on Ay U A,. It follows from the Spectral Theorem
that

(T8 Ny = (@(Tix))8N), a(T1x)6™)) = (|l Tix)) 26, 6)
= [laPatRx 62,509 = [ lata) Pl
= [0l (540

since pyx is the spectral measure for 8 in 2 (Vix])- Take any a € L? (p1x7) and approx-
imate it in L?(p[x]) by a sequence {a(™} of polynomials. Recall that each o™ (J(x)
is compactly supported and therefore is in EQ(V[ x])- Because ¥y (X; ) is continuous on
A1 U Ay, it holds that ay = lim,, &gf) for every Y. Thus,

> lavl < [laldpn forany NeN 5 [l < [ loPdiy
II(Y)|<N

and therefore {62 : o€ L3 } - QZ ]) Furthermore, let & € Q:[X]) and a™ — &
as n — oo in 62(V[X]) for some sequence {a(" } of polynomials. By (3.4.6), we have
sup,, ”O‘(n)”N(p[x]) < oo and, according to the Banach-Alaoglu theorem, there exists
¢ € L?(pix)) such that ™) — » weakly in L?*(ppx)) as k — oo. Therefore, evaluating
at each Y € V, we get

Py :/W(x)\I/Y(X;JJ)dP[X](JJ) < /a(nk)(x)‘I’Y(XW)dP[X](x)

("k) - (PY

as k — oo. Hence, {a acL?p } Q[X] That is, the map « — @ is onto as well
as isometric on the dense subset so 1t is isometric everywhere. Thus, the considered map
a +— @ is actually unitary, which finishes the proof of (3.4.3). Finally, one can readily
see that

Tx& =Tpx) [ WXia)a(a)dpi (@)
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— [ Fo¥(Xsa)a@)do (@) = [ 2¥(Xiz)a(e)dpp (o)
by (3.3.14), which shows (3.4.5). O
3.4.2. Non-trivial cyclic subspaces

Fix X € V and let X; = X(cpy,5, @ € {1,2}. Put

pX i wx + Z {E} g, (347)
FEeFEx

where wx is the reference measure from Proposition 3.2.2, E'x is the set of zeroes of
Ag)(x)Ag?) (x), and p* is the measure from (3.0.2). It readily follows from (3.3.12) that

dppx(2) = vx, (x)dpx (). (3.4.8)

where vy, (z) = Sx,(z) for x € (A UAy)\ Ex and vy,(E) = AQ(E)LYL(E) for
FE € Ex N Ayg. Most importantly for us there exists cx > 1 such that

c)_(1 <y, (x) <cx, z€A;UAg, (3.4.9)

according to Lemmas 3.3.3 and 3.6.3 (it is also continuous on (A; U Ag) \ Ex). Let
U (X;;x) be the generalized eigenfunction from Proposition 3.3.4. Recall that Wy, > 0.
Let
Uy (X;z) def (—l)iW);il/Z\I/y(Xi;x), Y €Vix,), and Uy (X;z) 410, otherwise.
(3.4.10)
We stress that \/I\!(X ;) is a function on V that is supported by V|x) with value zero at
X itself. Define

¢ &t {/a(x)\f/(X;x)dﬁx(x) Coae LQ(ﬁX)} - (3.4.11)

Let x; be the restriction operator that sends f € €(X) to its restriction to Vix,p, @ € {1,2}.
Given f € €X) let o € L?(px) be the corresponding function in (3.4.11). Set

a;(z) = (=) Wi Pvil(@)a(z). (3.4.12)

i

It follows from (3.4.9) that o; € L*(pix,)). Moreover, it holds that x;f = @; € Q:E));i])’
see (3.4.2). It is clear from (3.4.9) and (3.4.12) that different functions a(z) define dif-
ferent functions «;(x), that is, x; : e QEQ]) is an injection. Conversely, given
o; € L*(pix,)), define « via (3.4.12). It again follows from (3.4.9) that a € L*(px)

and that x;f = @;, where f is the element of ) corresponding to «. Hence,
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Xi : e Cg_i]) is a bijection, and the composition x2 o Xfl is a bijection between

Qg;lf and CE))(?])' Altogether, we can say that

fe cX o supp f € Vix,1 UV x,),

fi€ QE))((;]), i€{1,2}, and Xx;'fi=x5" fo (3.4.13)
where f; is the restriction of f to Vx ).

Proposition 3.4.2. Fiz X € V. The function \/I}(X;z) is a generalized eigenfunction of
J=, that is, it holds that

TV (X;2) = 20(X; 7). (3.4.14)

Moreover, let the function gZ(X) € ¢X) pe given by

o [ (X B (@), w(Xia) S )Wk (@), (3419
Then, it holds that Xiggx) = xi0XD) i€ {1,2}, and
&) = span {J,%‘gfx’ i ne Z+}. (3.4.16)

(X)

That is, each g;”’ is a generator of the cyclic subspace e In particular, the formula

a(Je)g ) & / a(z)w(Xi; 2)U(X; 2)dpx () (3.4.17)

extends the definition of a(j,g)ggx) from continuous functions a(z) to those in L*(px).
Furthermore, it holds that

2 V2 X
dox s(a) = 3 WX 60 o) (3.4.18)

where px ; = Py is the spectral measure of gl(X) with respect to the operator Jz.

Proof. If Y ¢ Vixj, it clearly holds that (T«V(X;2))y =0 = 2Uy (X;z). Further, we
get straight from (3.4.10) that

(TRU(X;2)x =W Ux, (X;2) + Wil Ux, (X;2) = —Wx, (X1;2) + Ux, (X2 2)
—0=2Ux(X;z)
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since Ux,(X;;2) = 1 according to their definition, see remark after Proposition 3.3.4.
Moreover, if Y € Vx,, then we get from (3.4.10) and (3.3.14) that

(TeU(X;2)y =(—1)' Wy (Tixg ¥ (X 2))y = (1) Wi oWy (X3 2)
=2y (X; ),

which proves (3.4.14). Further, it holds that Xigl(X) = x:0X%) since

(65, ='Wy / @ (Xi32) Uy (X 2)dpx (z) = / Uy (Xi;2)dpix,) ()
:5§/Xi), Y € V[Xi}»

where we used (3.4.10), (3.4.8), and (3.3.14). Now, according to (3.4.13), to prove (3.4.16)

it is enough to show that the closure of the span of x;J. ggl(x) is equal to €E§Z]). As x; and

Jz commute by (3.4.11) and (3.4.14) (or, put differently, Xijggl(x) = J[’;(i](xié(xi)))
the latter claim follows. Formula (3.4.17) can be obtained through approximation by
polynomials exactly as an analogous formula of Proposition 3.4.1 was obtained. Finally,
to get (3.4.18), observe that

<(sz —2) g, ng>>

B ; Wik < %‘I’(Xk% z)dpx (), /w(Xi; 2)U(Xy; x)dﬁx<x)>
_ . 77 _ovxi(r) - - vy, () . )
=W </ (z — Z)VXk(x)‘I’(Xka )dprx,) ( ),/ x (x)'l’(ka )dpx,( )>,

where we used (3.4.8) and (3.4.17). Now it follows from (0.0.2), (3.3.14), (3.4.4), and
(3.4.8) that

/dpr 22: WZ/ (z) dpx (x)
T—2z W VXk(.’E) rT—2z

=1

Since Markov functions are uniquely determined by their defining measures, (3.4.18)
follows. O

3.4.3. Decomposition into an orthogonal sum of cyclic subspaces

In this subsection, we will prove a theorem that, in the view of Theorem 0.0.1, con-
stitutes the central result of this paper.
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Theorem 3.4.3. The Hilbert space £*(V) decomposes into an orthogonal sum of cyclic
subspaces of Jz as follows:

PV =€DaL, L=az6CD. (3.4.19)

Proof. First, we need to show that the subspaces on the right-hand side of (3.4.19)
are orthogonal to each other. Recall that e s supported by Vy}, the set of vertices
of the subtree Tjy). Let Z, X € V, Z # X. If the subtrees 7[x] and 7|z are disjoint,
the subspaces ¢ and €@ are naturally orthogonal. If they are not disjoint, one is a
subtree of another. Assume for definiteness that 7[z] is a (proper) subtree of 7[x]. That
is, Z is a descendant of X. Let i € {1,2} be such that Z is equal to or is a descendant
of X(cp),;- Let a(z) be a polynomial and f € ¢(@)_ Then

(£.0(72)9™) = (@(T)1.97) = (@) 1,6%9) = (@(T)f) i, =0

since @(Jz)f € €@ and X, does not belong to the support of any h € (@), Because
functions a(JE)gl(X) are dense in €X) by (3.4.16), we get that ¢X) | @) a5 claimed.
When the subspace ¢ g replaced by €(©@) the proof remains absolutely the same
except that we need to consider functions a(Jx)0(?) instead of a(J,;;)gZ(X)

Since all cyclic subspaces are orthogonal to each other, to prove the theorem, it is
enough to show that finite sums of the above cyclic subspaces contain all the functions
with compact support. As the latter are linear combinations of delta functions, it is
sufficient to show that all delta functions belong to such finite sums. Trivially, it holds

that 6(9) € ¢(9), By going down the tree T, we shall inductively show that
§Xee@Dary, Lx= EBYEpath(X(p),O)/é(Y) )

for any X € V, X # O, where path(X(;),0) is the same as (2.2.1). Take such X and
assume the claim is true for X(,) and X,), where X, is parent of X(,). Let Z be the
sibling of X. It follows from (3.4.15) that

X X X -
(s27), =1 and (s27) = (0w [ a(Ziapdpx(e) = ~(Wa/ W),
We further get from the very definition of Jz in (2.1.4) that

(Fed&@)) = w2, (Tzow)) = w2, (JzoX)) . =Vx,, and

(p)

where UX(p) =0 if X(;,) = O and UX(p) = W)l(/(:) otherwise (all other values of Tz w)

are equal to zero). Extend W(X; ) from Vx] to the whole set V by zero. Set 5(X;x) o
Wx + Wz(vz/vx)(z). Then
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T 5 (50, 50 g, ) - 5
W) LW /VL@)\I] X:2)d
X0 Wa [ (X;2)dpx) ()
def >
— [ BXi (X a)dpi (@) BX), (3.4.20)

where we used (3.3.14) for the next to last equality. By (3.4.9), the function 5(X;z) is
strictly positive on the support of pjx). Observe that 3(X) is supported on V;x] and has
value Wx 4+ Wz > 0 at X. It follows from the properties of 8(X;x) that

{a(z)B(X;z): «is a polynomial} = L2(p[X]),

where the closure is taken in L2(p[ x7)-norm. Thus, there exists a sequence of polynomials
{a(™(z)} such that o™ (z)B(X;z) — 1 as n — 0o in L?(p[x))-norm and therefore

o™ (Jix))B(X) = / o™ (2)B(X; 2)U(X; 2)dpp () — 6 (3.4.21)

asn — oo in £2(Vx) by (3.4.5) and since B\(X) € Q:g({]), where we extend (") (ﬂX])E(X)
from Vix) to V by zero. On the other hand, it follows from (3.4.20) that

Tix)B(X) =TB(X) = Wy Bx (X)5Xw)
=~ (TJz)dE@) 4 7. (016(X<9>) + czgfff’))) ecO gLy,
where y(z) is a certain quadratic polynomial and ¢;,co are certain constants (all can
be explicitly written using (3.4.20)) and the last conclusion follows from the inductive
hypothesis and the nature of cyclic subspaces, see (3.4.16). By iterating the above relation
we get that

a(TxB(X) e Ly = 69 e gLy,

where the last conclusion is a consequence of (3.4.21) and €(©) @ Ly being closed. This
finishes the proof of the theorem. O

3.5. Spectral analysis
In this section, we will apply Theorem 3.4.3 to the analysis of the spectral type of Jxz.
Theorem 3.5.1. Let E3 be as in Lemma 3.3.1. It holds that
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Furthermore, if supp pr = Ay for each k € {1,2}, then the inclusion in (3.5.1) becomes
equality.

Proof. It follows from Theorems 0.0.1 and 3.4.3, and Proposition 3.4.2 that

(Jx) = supp po U | J supp pz1
Zey

where pz ;1 is the spectral measure of ggz). As stated in Proposition 3.3.2, we have that
supp po € A1 UA U Ex,

where the inclusion becomes equality when supp pur = Ay for each k£ € {1,2} as can
be seen from (3.3.3) and (3.3.5). We further get from (3.4.18) that pz; is absolutely
continuous with respect to pz. Since supp pz C A; U Ay by (3.4.7), Proposition 3.2.2,
and Lemma 3.6.3, the claim of the theorem follows. O

This result complements characterization of the essential spectrum of Jz obtained in
the recent preprint [10] where all right limits of Jz for £ = €; were computed for the case
where the measures u1, o are absolutely continuous with analytic and non-vanishing
densities.

As the following example shows, in general, o(Jz) # supp p1 U supp 2 even when
Ej5 = &. Thus, equality (0.0.5) does not hold for the case of multiple orthogonality.

Example. Consider any probability measures pq,us for which supp g1 = [—1,0] and
supp p2 = {1,2} U[3,4], i.e., 1 and 2 are isolated atoms of uy. Clearly, A; = [—1,0] and
Ay = [1,4]. Consider Jz,. Formulae (3.3.1) and (3.3.5) become

1 ) - ()
po(z) = =———%———-

Ep H2(2)

Since [iz(z) necessarily has a zero on (1,2), po has a point mass there and therefore its
support is clearly not a subset of supp @ Usupp po.

It is standard in the multidimensional scattering theory to deal with operators that
have purely absolutely continuous spectrum (see [38] for basics of Spectral Theory). In
the next theorem, we provide simple conditions for Jz to have such a spectrum.

Theorem 3.5.2. Suppose that duy(z) = pi(x)dz and (u},)~' € L>®(Ag) for each k €
{1,2}. Then the spectrum of Jz, is purely absolutely continuous for each i € {1,2}.

Proof. We need to show that the spectral measures po and {pz.1}, Z € V, are all
absolutely continuous. It follows from (3.4.18) that pz ;1 is absolutely continuous with
respect to pz. Since measures i1, o have no mass points, we get from (3.4.7) that pz
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is equal to the reference measure wg, @ = I1(Z). To show that the latter has no singular
part, it is enough to prove that

lim sup Im ((Dﬁjg(l’ +iy)La(z + iy))ﬂ) < oo forevery z€ (A;UAg)\ Ex,

y—0t

according to (3.2.4) and Proposition 3.1.4(3), where Ej; is the set of zeroes of
A%l)(z)Ag)(z) and Dy ¢(2) is given by (3.2.2) with £ € (81, ag). It clearly holds that

lim T (Do +iy)La(e +iy)) ") < lim (~Tm (Drgle +iy) La(z +iy)))

y—0t y—0t

Fix k € {1,2} and a closed subinterval A of A \ E5. By the conditions of the theorem
and the definition of E5 there exists € > 0 such that

o — 1A (@) AT (@) () > e
almost everywhere on A. Then, it follows from Lemma 3.6.4(1,2) that

—Im (Dse(z+iy)La(z +iy)) =y Qi(s) D (s) >e /( yds

(x—s8)2+y2~ x—8)2+y?
A
Therefore, for every x € A it holds that

lim sup Im ((Dﬁ,g(:c +1iy)La(x + iy))fl) < 2/(em).
y—0t

As A was arbitrary closed subinterval of (A1 UAs)\ Ez and wyz has no mass points at the
elements of Ez by its very definition, wz is indeed absolutely continuous. The absolute
continuity of po can be shown analogously using (3.3.1), (3.3.3), and (3.3.5). O
3.6. Appendix to Part 3

In this appendix we collected some results that were used in the main text.
3.6.1. Some properties of A%k) (z)

Recall that Ag?l)(x) and Ag?l)(x) have degree 0 and therefore are constants.
Lemma 3.6.1. It holds that

1 —_—— — 2 —_— —
APy = —E Imll ™t and AR =7 el (3.6.1)

where Z; was defined in (3.3.4). In particular, Ag?l) <0 and Ag?l) > 0.
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Proof. The claim is a consequence of the fact that AS)U’AE?)U solve the system of
equations

[ (4@ + AT o) ) =0 ana
/ x(Ag?l)dm(x) +A§}?1)duz(;ﬂ)> ~1. 0o
Recall that we assumed A; < As. Let

def coeff,,, 1 Ag) .

Aia © coeff,, 1 AY and Ao
Lemma 3.6.2. We have that
signAz1 = (—1)"* and signAza=1.

Proof. Comparing the leading coefficients in recursion relations (0.0.22) gives Az ; =
as jAi+e;,j- By taking into account that az ; > 0, we get

SIEN A(ny ng),1 = SIENA(1ny),1 a0d  SIEN Ay, ny) 2 = SIEN A, 1),2, 7T E N?. (3.6.2)

It follows from Lemma 3.6.1 that A1 1)1 = AW

(},1) < 0and A1 1)2 = Ag?l) > 0. There-

fore,
Sign )\(nhl),l =—1 and Sign A(l,nz),Q =1.

It follows from orthogonality conditions (0.0.10) for the multi-index (1,n2) that
AD (x)d AY (2)d =0
q(z) (an)(x) () + (an)(x) pi2(z)

for all polynomials ¢(z) of degree at most ny — 1. By taking ¢(z) = AP?

(an)(m)’ we get

2
_ / (A, (@) duz () = / A @AD (@)dp ().

Since all the zeroes of Ag)nz)(x) are on Ay and AEPM) = A(1,ns),1 is & constant, we get
that

—1 = Sign A(1,ny),1 * SIEN A(1,00),2 - (1)1 = (=1)"27" - sign A(1,ny) 1

and therefore sign A1 = sign A(1 n,),1 = (—=1)"2 by (3.6.2). That proves the first state-
ment. The second one can be proved similarly. O
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Let Ej 1, be the set of zeroes of A%k) (x), k€ {1,2}, and E = Ez1 U Ej 5.

Lemma 3.6.3. It holds that Ezj C A and #Ez ) = ni — 1. That s, all the zeroes
of A%k)(:zr) are simple and belong to Ay. Write Ex ), = {:r(ln’k), e nyi k)l} where the
zeroes are labeled in the increasing order. The sets Egyg i and Eg j interlace for any

k.l e {1,2} and

2D < gD 1) o g0 e (3.6.3)
while
xgﬁ-&-é'z,l) < xgm) < xgﬁ+€2’1) <. < 1.517?+é“2,1) < xgﬁ,l) (3.6.4)

(in the other two situations the order is uniquely induced by the fact that #FEsie, &
#Eqp+1).

Proof. The statements about location of zeroes and interlacing can be proved in the
standard way (see, e.g., [19, Proposition 2.2 and Theorem 5] for the proofs). We only
need to show (3.6.3) and (3.6.4). Let us prove (3.6.3), the argument for (3.6.4) is identical.
By (0.0.22), we have two identities

eAD () = AD) . (2) + ba—e i AL (@) + a1 AT (@) + a2AY) (2), i€ {1,2}.

n n+é1 +E2

Subtracting one from another, we get

AD (@) = AD L () = (bamay2 — bre, 1) AT ().

iy

Taking z = xfif)l, the largest zero of Ag)(x), in the previous identity yields
2 7,2 2 7,2
AD L @2 = AD @0, (3.6.5)

The leading coefficients of {Ag)(x)} are all positive by Lemma 3.6.2 and the zeroes
of Agl@ (z) and A(;) (z) interlace, so Aglg2 (:vf:;z)l) > 0. Thus, Agja (xiZE)l) > 0 by

(3.6.5). Since the zeroes of Aglg2 (z) and Ag)(x) also interlace, we conclude that the
zeroes of Ag) () dominate those of Ag_) s (). O

Define the polynomials {7} ;(z)} by

Tai(w) € (AD AL — 4D ADY@), 1e{1,2}. (3.6.6)

n+e; ni+€e;
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Proof of Lemma 3.3.3. It holds by the very definition (0.0.12) that

T () dps (2) =T (x)dps (x )iAﬂel( )AD (2)dpus ()
=AD) . (2)Qi(x) — AD (2)Qiye (x).

Since the degree of A57+) () is ng + 1 — 2, we get from (0.0.10) that

/.’EkTﬁ’l(x)d/,Ll(x) =0, ke{0,...,n1 —1I}.

Thus, polynomial T ;(z) has at least n; — [ + 1 zeroes on A;. Similarly, we can show
that T () satisfies no + 1 — 2 orthogonality conditions with respect to po and therefore
it has at least no +1 — 2 zeroes on As. Because its degree is nq +ng — 1, all its zeroes are
accounted for and are simple. We can write this polynomial as a product of its leading
coefficient and monic polynomials T5 ;1 () and Tj;2(x) that have their zeroes on Ay
and Ao, respectively.

Without loss of generality we assume that /i satisfies the conditions of Lemma 3.2.1.
The general case can be obtained via weak™ approximation of measures. First, we undo
the transformations leading to the definition of Sx(z). Let 7 = II(X(;)) and | = ¢tx. It
follows from (2.2.9) that

SX(m):((An+elA(k) AP ADY (@) + (—1) () (AD), AD — 4D Af))(x))

n—+e; ni+€]

for x € Ay. Taking the formulae (2.2.7) and (3.3.15) with ¥ = X, we get

wSx (@) () = —Im Lty + () Li— ().

On the other hand, it follows from Plemelj-Sokhotski formulae, see [25, Section 1.4.2],
that

wsx () =~ [ (o [ i ) ) )

X pv/cjﬁi(ss) + i g, () A%k)(x)

for x € Ay, where “p.v.” stands for the “principal value”. Notice that it follows form
(0.0.10) that

Pl(a:)p.v./M :P*l(m)/wQﬁl(‘r)+p.v./Q7ﬁ(5)

r— S
R R
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Qi (5)

xr—S

=p.v.
R

for any polynomial P(z) of degree at most || — 1. In particular, if Y = X and we let
l = tx, in which case m = 7 + €}, then it holds that

AW (z) p.v. / @) - A%k) (x)p.v. M

nté x—s x—s
R R

/ (AL (5)Qa(s) — AL (5)Qare (5))
R
T

r—S

nl()

)k
)/ duz—r(s), € Ay,

R
for any polynomial T'(z) with real coefficients and of degree at most na +1—2if k=1

and of degree at most ny — !+ 1 when k = 2. Hence, taking T'(z) = T5 3—r(x), we have
shown that

e —1)k Tr13-1(8)Ta1(s
S k() o Sx(z) = T*(lg )k(l’) / b3 ;E)S A )dug,k(s), T € Ay, (3.6.7)
by — ]R

which is clearly a non-vanishing function. To prove positivity, take & = 1. Polynomial
T 1,2(x) is monic and has all of its ny + 1 — 2 zeroes on Ag. Thus, its sign on A; is
equal to (—1)"27!. Polynomial Ty o(x)T5 ,(x) has double zeroes on Ay and the same
leading coefficient as (— )lAflli_e (z )Ag_l)(x). The latter has the same sign as (—1)"2*!
by Lemma 3.6.2, and therefore,

|T5,1,2(5)T5,1(5)]
Sx(z) = |Tm / P () > 0, < B

as claimed. The case of k = 2 can be considered similarly. O
3.6.2. Properties of Lz(2)

Recall the definitions of Dy ¢(z) in (3.2.2), the measure v g in (3.2.3), the polynomials
T5 k() in (3.6.6), and the functions Sz, (x) in (3.6.7). The set Ej is the set of zeroes
of the polynomial Ag)(z)Ag)(z).
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Lemma 3.6.4. It holds that

(1) If D(x) is a polynomial of degree at most |7i| — 1, then

Lz (z) = Dl(z)/M (3.6.8)

zZ—x
R

(2) The measure Dy ¢(x)Qr(x) is non-negative on Ay U Ag for every & € (B1,a2). In
particular, vy g 1s a positive measure.

(3) The function Lz(z) has no zeroes outside AqUAq and its restriction to R\ (A1 UAy)
has well-defined nonzero limits at the endpoints of A1 and As.

(4) If E € Eg, then —Dj ((E)limc o+ Lz (E +i€) = |[va,pll — va,s({£}) > 0.

(5) If B € Eq N Ay, then v || = —Dj ((E)Sai(E)/AY) . (E) for either | € {1,2}.

Proof. (1) The claim follows form orthogonality condition (0.0.10), (0.0.12), and (0.0.14)
since

z r— =z

- /Qﬁ(m)(g(f)_mz)) _ / (@D)@ \ prye).
R

R
(2) Since A%k) (x) has all its zeroes localized to Ay, it follows from Lemma 3.6.2 that
(=)™ (z — §)Ag) () >0, €Ay, and (-1)"(z— §)Ag)(:r) >0, x€ Ay,

which yields positivity of Dy ¢(2)Qz(x).

(3) It follows from claims (2) and (1), applied with D(z) = Dy ¢(z), that (Dg ¢Liz)(y) <0
for y € (=00, 1] and (Dj¢Li)(y) > 0 for y € [B2,00) (the limits at a; and f; might
be infinite, but they always exist since Markov functions are decreasing on the real line
away from the support of the defining measure). Hence, Lz(x) is non-vanishing there. To
show that Lj(z) has no zeroes in the lacuna [3;, as], take D(x) = Dy ,(x) with n < oy
and Dj; ,, defined by (3.2.2). Observe that in this case (Q7Ds ,,)(x) is non-positive on Ay
and is still non-negative on Ay. Hence, (Dj ,Lz)(y) < ¢ < 0 for all y € (f1, az), where
(=[5, (a2~ z)"(Q7Dsz ) (), which finishes the proof of the desired statement.

(4) Notice that
(z — B)dvz p(2) = (x — E)’dvap(x), Dap = vip —vip({E})ds.

Then, it follows from the dominated convergence theorem (the integrands below are
bounded by 1 in absolute value) that

1i
e—1>r(r)l+ xTr — (E —+ 16)
R

(x — E)dvg p(x) . (x — E)dvz g(z) . €(z — E)dvg g(x)
W 2)OYR,ENY) 761_1{(]%/ EX) 44 lim / EEE +E€2

({I} — E>2 + €2 e—0t
R
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=72l > 0, (3.6.9)

where the last conclusion holds since the measures p1, 2 have supports of infinite car-
dinality. Thus, claim (4) follows from claim (1) applied with D(z) = Dj ¢(2)/(z — E).
(5) For a polynomial P(z) vanishing at F, let us set P(E;x) def P(x)/(x — E). Clearly,
P(E;E) = P'(E). Recall that deg(Tr,;1) = n1 — 1+ 1 and deg(Tr12) = ne +1—2. It
holds that

Dy ¢(E;7)Qx , =
ool = [ LBy [ 92
R
- D5 (E) Th13-k(z)A %JZ?( Qi ()
Tﬁ,l,?,—k(E)Agizgl(E) x—F ’

R

where we used the fact that Q7 () is divisible by (x — E), orthogonality relations (0.0.10)

twice, and Lemma 3.6.3 to observe that Ag:)-e (E) # 0. Assume that k € {1,2} is such

that E € Ay, that is, it is a zero of Aﬁ (z). Then

(k)

Tip3—k(7) AL e
/ 13 k(x)x,l ;) () _ /Tﬁ,l73_k($)A£—ik)(E;iC)Qﬁ+é’l (2) = 0,
R R

again, due to orthogonality relations (0.0.10). Therefore, it holds by (3.6.7) that

D%,g(E) / T5,1,3—k(5) (A;ﬁgl(s)Qﬁ(s) — A%k) (5)Qii+a, (s))
(E)

[vn, el =
Tﬁ,l,s—k(E)Aga, 2 s—F
B (-1 )kD/ ¢(E) /Tﬁ,z,sk(S)Tﬁ,l(S) ds i (s) = D%,g(E)Sﬁyl,k(E>
= - — 3-k(8) =
Tapai(E )Agle,< ), Ees A5 (B)

as claimed. 0O

Lemma 3.6.5. Assume that [i satisfies the conditions of Lemma 5.2.1 and that (u),(z)) ™! €
LP(Ay) for some p > 1 and each k € {1,2}. Suppose further that there exists
v € {a1,B1,as, B2} such that |Lz(vy)| = 0. Then, |Lz(z)|?u)(xz) € LP(Ay) for each
ke {1,2} and

lim i LI iy

im iy——>% =

y—0+t ~ Lz(y+1iy)

Proof. Clearly, the first claim is obvious unless |Lz(x)| vanishes at the endpoint of Ag.
In the latter situation it follows from Proposition 3.1.4(2-4) that
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|Lz(2)* > Im (L. (2))? = 56 Im(on-(2))* = 7 (e / [l ]])? (i (),

where we used the notation o = |lu||"*ur. This yields the desired claim
| Lz(2)| i () € LP(Av).
To prove the limit, assume for definiteness that v € {ay, 81}. Then, we get that

a1(y +iy) —31(7))_1’

y—0+ L;((’y + iy) yaO

recall that by Lemma 3.3.1 the value 7;(7y) is well-defined. The fraction above can be
rewritten as

ai(y + 1y) —01(7) _ / - doi(z) iyR/ — doy(x) 7

iy (v =2)*+9?)

where the first integral is a strictly decreasing function of y € (0, 00).

Notice that »¢; # 0 since otherwise Lz = Lz, which has no zeroes on R. Then, it only
remains to show that (y—2)~2u) (x) is not L'-integrable on A;. Let A, = [a; +¢, 81 —¢]
and dv(x) = py*(x)dr, which is a finite measure on A;. Hence, we get from Cauchy-
Schwarz inequality that

2
(A/ 7] (A/ a" < . A/ MO s | 2

€ €

and the desired claim follows by letting e — 0. O
Part 4. Periodic Jacobi operators on rooted trees and Angelesco systems

In Part 1, we introduced operators J. y, see (1.1.4), defined on finite trees 7y, N e
N2, see Section 1.1.1, and studied their s;;ectra and spectral decompositions. In this part
of the paper, we consider Angelesco system, as in Part 3, see (3.0.1), in the case when
supp pi = A, dpi(x) = pi(x)dz, pi(x) > 0, x € A;, and p}(z) is a restriction of an
analytic function defined around A;. This situation was studied in great detail in [9] and
[10], see also [42]. In particular, it was proved that T, 5 converges to a limiting operator

Egl) when N goes to infinity along any ray

Ne={ii: n; =cqli| +o(|7]), i€{1,2}}, (c1,c2) =(c,1—¢), c€[0,1]. (4.0.1)

Hereafter, limys, stands for the limit as |7i| — oo and 7 € M.
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4.1. Definitions

It was shown in the work of Gonchar and Rakhmanov [30] that for Angelesco systems
with two measures there exists a family of vector equilibrium problems, depending on a
parameter ¢ € [0, 1], whose solutions describe the limiting asymptotics of the normalized
counting measures of the zeroes of the polynomials Pz(z), see (0.0.11), along all ray
sequences N,. In particular, if an Angelesco system [ is as described before (4.0.1),
then the support of the vector equilibrium measure corresponding to ¢ is a union of two
intervals A.1 U A2 where A.; C Ay, see, e.g., [9,30] for details.

4.1.1. Riemann surface

To define operators ££” rigorously, we need the following Riemann surfaces. Let R,
be a 3-sheeted Riemann surface realized as follows: cut a copy of C along A1 U Ao,
which henceforth is denoted by 9‘%&0), the second copy of C is cut along A.; and is
denoted by 9‘{9)7 while the third copy is cut along A. 2 and is denoted by 9%22). These
copies are then glued to each other crosswise along the corresponding cuts. It can be
easily verified that thus constructed Riemann surface has genus 0. We denote by 7 the
natural projection from 9. to C and employ the notation z for a generic point on R,
with 7(2z) = z as well as z() for a point on R with 7(z()) = 2.

Since R, has genus zero, one can arbitrarily prescribe zero/pole divisors of rational
functions on R, as long as the degree of the divisor is zero. Clearly, a rational function
with a given divisor is unique up to multiplication by a constant. Let x.(z) be the
conformal map of )R, onto C defined uniquely by the condition

Xc(z(o)) =240(z7"), 22— . (4.1.1)

The following constants are going to be central to our investigations in this part of the
paper. Let A¢ 1, Ac 2, B, Be2 be determined by

Xe(2) = Bey + Apiz t + 0(27%), 2 — 00, i € {1,2}. (4.1.2)

It was shown in [10, Proposition 2.1] that these constants continuously depend on the
parameter ¢ and have well-defined limits as ¢ — 0T and ¢ — 17, which we denote by
Ao, Bos and Ay ;, By ;, respectively. Moreover, constants A, 1 > 0 for all ¢ € [0,1) while
A1 =0and A.o > 0 for all ¢ € (0,1] while Ay =0.

4.1.2. Periodic Jacobi operators on rooted trees
Let 7,V, and O be as in Section 2.1.1. There are two edges meeting at the root O.

We label one of them type 1 and the other one — type 2. Next, consider the children of
O. Each of them is coincident with exactly three edges, one of which has already been
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labeled. We label the remaining two as an edge of type 1 and an edge of type 2. We
continue in a similar fashion going down the tree generation by generation and calling
one of the unlabeled edges type 1 and the other one type 2. After assigning types to all
the edges, we continue by labeling the vertices. If a vertex Y meets two edges of type 1
and one edge of type 2, we call it a vertex of type 1; otherwise, if it is incident with two
edges of type 2 and one edge of type 1, we call it type 2. We do not need to assign any
type to the root O. Given a vertex Y # O, we denote its type by £y (this is similar to
the index function introduced in (2.1.2)).

Both operators Cél) and [Z((:Q) are Jacobi matrices defined on 7. At a vertex Y # O of
type ly, we define them by the same formula:

(LDe)y = > VAcjbyr + Beeyby, 1€{1,2}; (4.1.3)

j€{1,2},Y'~Y, type of edge (Y,Y')=j
and at the root O we define the operators £ and 2 differently by writing

(LOy)o = > VAcjbyr + Beibo, 1€{1,2}. (414)

j€{1,2},Y'~O, type of edge (O,Y’)=j

Recall that A, ; > 0 when ¢ € (0, 1), but either A.; or A. 2 becomes zero when ¢ € {0, 1}.
The latter cases are trivial and we do not study them, see [10, Appendix A].

Our operators Egl) have “periodic coefficients” and “self-similar structure”. They are
defined on the binary tree and should not be confused with a similar class of Jacobi
matrices defined on trees associated with the universal cover of finite connected graphs.
The latter class was studied in several papers, see, e.g., [5,6,13]. In the rest of this part,
we will apply the arguments from Section 3.4 to obtain the spectral decomposition of
L’g) using their generalized eigenfunctions.

The following theorem provides the connection between operators £ and JT. 5 Itis
stated in [9] for ¢ € (0, 1) and is a simple consequence of the results of [42]. Its extension
to ¢ € {0,1} was obtained in [10].

Theorem 4.1.1. Let i be an Angelesco system (3.0.1) such that supp u; = A;, du;(z) =
wi(x)de, pi(z) >0, x € Ay, and pi(x) is a restriction of a function analytic around A,
for each i € {1,2}. Further, let the constants A.,;, Bc,i, ¢ € [0,1] and i € {1,2}, be given
by (4.1.2). Then, the ray limits (4.0.1) of coefficients {az. i, br,;} from (0.0.19)—(0.0.20)
exist for any ¢ € (0,1) and

limaz; = Ac; and limbz; = B.,;, i€ {1,2}. (4.1.5)
Ne 7 ’ Ne 7 ’

In [9, Section 4.5], this theorem was used to prove that J, g — P 1e {1,2}, when
N e N, converges to infinity. This convergence can be understood as the strong operator
convergence on the same Hilbert space £2(7) when Jz, 5 is properly extended to this
space.
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4.1.3. Green’s functions
In [10, Appendix A], it was proved that J(Egl)) = A¢1 UA.» and the spectrum is
purely absolutely continuous. Moreover, if we denote Green’s functions of Egl) corre-
sponding to the root O by
GO(Y,0;2) & (LD - 2)716©) 50, (4.1.6)
then it was shown in [9, Section 4.5] that

GP(0,0:2) = MO (20), 2¢ A1 UA;, (4.1.7)

where Mél)(z) is a function on R, given by

— m’ l e {1’2} . (4.1.8)

Clearly, Mc(l)(z) is an analytic function on YR, apart from a single pole at co®), which
is simple. Therefore, the traces Ggl)(O, O; )4 exist and are continuous on A, U A, 9.
Moreover, they are complex conjugates of each other. In particular, |G£l)(O7O;x)| is
well-defined for all z € A.; U A, .

Lemma 4.1.2. The identity

Ac1|GV(0,0;2) + Acn|GP(0,0;2)2 =1 (4.1.9)
holds for each © € Ac1 U A 2. Moreover,

Ac1|GM(0,052)]* + Ac 2| GP(0,052))* < 1 (4.1.10)
for z ¢ Ac1 UA .
Proof. From [9, formula (4.27)], we get that

2= —-1/M"(2) + Bey — Ay MV (2) — Ao MP) (2) (4.1.11)
for each I € {1,2} and z € M. Formula (4.1.11), in particular, implies that
Beq —1/MM(2) = Bey — 1/ M (2)

for all z € MR.. Fix i € {1,2}. Using the above relation with z = 2(3=% gives us

1 1
- = Bc,l - BC,Z- (4112)

Mél)(z(gq)) M£2)(z(3*i))
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Since the product of all the branches of an algebraic function is a polynomial, the analysis
of its behavior at infinity yields that

MO EYMD (zD)MD () = (1) (Aci(Beo = Be)) ™
By plugging the above relations into (4.1.12) we get
A MO OO O) + 4, (O)MP () = 1

forall z € C\ (A;1UA,2). Taking the boundary values on A; from the upper half-plane,
we obtain

AcaME @) ME @) + Ao ME @) M 2 = 1,
for z € A;. To prove (4.1.9), it only remains to observe that
GI(0,052) = M (20) = M ()

for x € A; in view of (4.1.7). To show (4.1.10) observe that its right-hand side is subhar-
monic, decays at infinity, and equals 1 on the cuts. Thus, the maximum principle gives
the claimed bound. O

Remark. Identity (4.1.9) gives a simple description of the image of the cuts A ; and A, -
under the conformal map x.(z). Namely, this image is a contour in the plane described
by the equation

Ac,l Ac,2 -1

+ . xecC. 4.1.13
X Bor? T x— Boal X (4.1.13)

The self-similar nature of the operators £9 and (4.1.7) make it possible to compute
their Green’s functions.

Proposition 4.1.3. For z ¢ A, 1 U A2 and X # O, it holds that

GI(X,0;2) =MD ] (fAi/fy) ) (0 (4.1.14)
Y €path* (X,0)

where path* (X, O) is the path that connects O to X, it includes X, but excludes O.

Moreover,

(4.1.15)

1
HG(”(~ 0:2) 2 _ |M()( (0))2
¢ 01— (At MY O)2 + Auo| MO (20)]2)

for all z ¢ Ac1 U A2, where we consider {Gg)(Y, 0;2)} as a function of Y on V.
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Proof. Let g(z) be a function on V given by the right-hand side of (4.1.14) with go(2) o

Mc(l)(z(o)). By induction in n € N, one gets that

S lov ()P = IMO O (At MO O + Aca|MP (O))"
|Y|=n

where |Y| stands for the distance from Y to the root O. Therefore, it follows from
(4.1.10) that Hg(z)||§2(v) is finite and is equal to the right-hand side of (4.1.15) for all

z ¢ Ac1UA. 2. Thus, to prove the lemma we only need to show that ([,gl) —2)g(z) = 69,
The latter is a straightforward application of (4.1.3) and (4.1.4). Indeed, let Y # O be
of type ¢ and Y7 and Y5 be the children of Y of types 1 and 2, respectively. Then

(£ = 2)g(2))y

= (Bei — 2)9v (2) + VAcigy,,, (2) + VAc19v: (2) + /Ac29v,(2)
=gy (2) (Bm — 2= MO O A, MO (2O) — A, M) (z(0>)) =0,

where the last equality follows from (4.1.11). Similarly, it holds that

(([,g) - 2)9(2))0 = (Bei — 2)go(2) + \/Ac 190, (2) + /A 290,(2)

= Mc(l)(z(o)) (Bc,l —z— Ac,lMc(l) (Z(O)) — ACQM(SQ) (z(o))) =1,
where O; and O; are the children of O of types 1 and 2, respectively. O

Remark. Direct algebraic proof of (4.1.14), rather than a posteriori computation given
above, can be found in [9, Remark 4.15].

4.2. Spectral analysis

To carry our spectral analysis of the operators Egl) we follow the blueprint of Sec-
tions 3.3-3.5.

4.2.1. Trivial cyclic subspaces of [,g) generated by §(©)

From (4.1.1) and the symmetries of the surface ., one can deduce that x.(z(?)) has
positive imaginary part when z € C,, i.e., that Xc(z(o)) € HN. This is consistent with

G.(0,0;-) € HN due to (4.1.7) and (4.1.8). It is indeed a negative of a Markov function

)

of the spectral measure of cﬁl with respect to 6(9). Let us denote this spectral measure

by pg’l). Since functions Mc(l)(z) map the surface R, conformally onto the Riemann

sphere, it follows from Proposition 3.1.4(1-3) and (4.1.7) that

dp(oc’l)(ac) =1Im (Mc(l) (xsf)))da:, T €A1 UA g,
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0) def ;. . 3
where xsr) = limy_,o+ 20 z = z 4+ iy. Define the reference measure w(® as

¢ def
dw'® (z) = \/|(9: — 1) (T = Bet) (@ — qe) (@ — Bep)|dr, T € AciUA2,
where we write Ag; = [ov,i, Bc,i) (in fact, it always holds that a.1 = a1 and fe2 = f2).

The analysis of the conformal map x(z) at the endpoints of A ; reveals that the densities
of both spectral measures poc’l) satisfy

Cr(w®Y (2) < (p5) (x) < Ca(w!®)) (x)

for x € A,; and some positive constants Cy,Cs that might depend on ¢ but do not
depend on z. In particular, if we define v/(>!(x) o (p(oc’l))/(x)/(w(c))’(x), then

V) € L¥(Ac1 UAcn), ()7 € L(Ac1 U Ac) (4.2.1)
for each [ € {1,2}. Similarly to (3.3.7), we can then define

def dIm GV(X,0)* (2)

NG (x)
* dpiy" ()

= Im (MO (@) m (MO D) ] (_Ayfy )Mgfﬂ(x(f))
Y €path* (X,0)

(4.2.2)

for X € Vand x € A.1 UA, 2, where the second equality follows from (4.1.14). Notice
that the same computation as in the second part of the proof of Proposition 4.1.3 shows
that Wi (x) is a formal generalized eigenvector for 52” corresponding to x € As1UA, o
that satisfies T (z) = 1.

Denote by Q(gl)) the cyclic subspace generated by 6(°?) and cﬁ”. Recall that the oper-
ator a(ﬁg)) can be defined for every continuous function « using the Spectral Theorem

for self-adjoint operators. The proof of the next proposition repeats the proof of Propo-
sition 3.4.1.

Proposition 4.2.1. The map
alx) — aleh = {agf’l)}y L a$’” def /a(m)\llgf’l)(x)dpg’l)(x),
€

is a unitary map from Lz(pg’l)) onto QﬁECOl)). In particular, it holds that

a2 = av)?,

) and () ={a@ s ae 25"},
o

M) (e) ™
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Thus, the formula
a(£D)5(@) < e — / a(z) ¥ (2)dpls" ()

extends the definition of a(ﬁg))é(o) to all a € Lz(p(oc’l)). We also have that
za(z) — LYA, ae LQ(pS’l)).
4.2.2. Nontrivial cyclic subspaces of Lgl)

Let X € V and X7, X2 be children of X of types 1 and 2, respectively. Observe that
the restriction of Egl) to Tix,) is equal to [,g), where, as before, 7[x,) is the subtree
of 7 with root at X;. Here, we can use the self-similar structure to naturally identify
Tix,) with 7 when talking about the operator ££i) on Tx,)- Let us further denote by
() (X;;2) the function ¥(¢9(z), defined in (4.2.2), carried to V[y,) from V by using
this natural identification. Similarly to (3.4.10) define

\flgf)(X;x) & (—l)iA;il/zlllgf)(Xi; r), Y €V, and Uy (X;z) 10, otherwise.

Observe that W(©) (X; ) does not depend on [ and it follows from (4.1.3) and (4.1.4) that
((£9 = 2)BO(x2)) = ALPEE) (X2) + AL VL) (Xi2) =0,

Similarly to (3.4.11), define

€§X> . {/a(x)\/l\/(c) (X;2)dw'(z): ae L2 (AU Acg)} .

The following proposition is analogous to Proposition 3.4.2 and can be proven similarly
using (4.2.1) and Proposition 4.2.1.

Proposition 4.2.2. Fiz X € V and let X1, Xo be children of X of types 1 and 2, re-

spectively. The function @(C)(X;x) is a generalized eigenvector of Egl), that s, it holds
that

LOTVE)(X;2) = 20 (X, 2).

Moreover, let the function ggf) € E&X), i € {1,2}, be given by

c,i c,i

g dof /w(c) (X33 2) 0 (X 2)dw' (2), =9(X;; ) e (—1>iA1/-2V(C’i) (x).
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Then, it holds that Xig(x) = x:0X) | where x; is the restriction operator that sends

c,i

fe @EX) to its restriction to Vix,], and

EEX) = span{(ﬁg)) gg() i ne Z+}.

(X) X)

That is, each g.;" is a generator of the cyclic subspace EE . In particular, the formula

a(L0)g) & / (@)= (X3 2) 8O (X 2)deo' (2)

extends the definition ofa(ﬁg))ggf) to all o € Lim (Ag1 UAc2). Furthermore, it holds
that

(cz 2
Ac,i vV (z) c
dpye0 (@) Z Acp V) (z )d“( (@),

where Pat0 is the spectral measure of g( )

4.2.3. Orthogonal decomposition
The proof of the following theorem repeats the one of Theorem 3.4.3.

Theorem 4.2.3. The Hilbert space £2(V) decomposes into an orthogonal sum of cyclic
subspaces of Egl) as follows:

CY)=¢Q) oL, L=070CP, le{1,2}. (4.2.3)

Remark. This theorem implies immediately that a(ﬁgl)) = A, 1UA 2, that the spectrum
is purely absolutely continuous, and that it has infinite multiplicity.
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