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Introduction

This paper is the third in the sequence of works [9,10] that study the connection 
between Jacobi matrices on trees and the theory of multiple orthogonal polynomials 
(MOPs). In [9], we have described a large class of MOPs that generate bounded and self-
adjoint Jacobi matrices on rooted homogeneous trees and established some basic facts 
explaining this connection. In particular, we constructed a bijection between MOPs of the 
first type and a class of such Jacobi matrices. In the follow-up paper [10], we performed 
a case study of the Angelesco systems generated by two measures of orthogonality with 
analytic densities. We used Riemann-Hilbert analysis to obtain asymptotics of MOPs 
and their recurrence coefficients. That led to a complete description of all the “right 
limits” of these Jacobi matrices and allowed us to find their essential spectrum. In the 
current paper, we study the spectrum and spectral decomposition in a more general 
situation. We focus on the case of two measures only and address several questions that 
were left open in [9].
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The rest of the paper is organized as follows. In the remaining part of the introduction, 
we emphasize the importance of Jacobi matrices, outline their connection to orthogonal 
polynomials, provide a general definition of Jacobi matrices on graphs, and state some of 
the properties of multiple orthogonal polynomials on the real line that we need to study 
the Jacobi matrices we are interested in. After that, we focus exclusively on the study of 
spectral properties of Jacobi matrices on trees generated by MOPs on the real line. In 
Part 1, we provide a full Spectral Theorem for finite Jacobi matrices. In Part 2, we define 
Jacobi matrices on a 2-homogeneous infinite rooted Cayley tree and discuss some of their 
basic properties. In Part 3, we study Jacobi matrices generated by Angelesco systems 
and describe cyclic subspaces, generalized eigenfunctions, and the corresponding spectral 
measures. Part 4 contains the spectral decomposition for Jacobi matrices on rooted trees 
with periodic coefficients. That complements the construction in Part 3.

Orthogonal decomposition and spectrum

We recall some basic facts from the spectral theory of bounded self-adjoin operators 
(see, [2,3] and [38, Section VII.2]). Let H be a Hilbert space and A be a bounded self-
adjoint operator acting on it. We can study the spectrum of this operator by obtaining 
a decomposition of H into an orthogonal sum of cyclic subspaces of A. That is, take any 
g1 ∈ H with unit norm, i.e., ‖g1‖ = 1, and generate the cyclic subspace

C1
def= span{Amg1 : m = 0, 1, . . .}.

We shall call g1 the first generator and C1 the first cyclic subspace. One can show that 
C1 is invariant with respect to A. If C1 ⊂ H, we take g2 ∈ H, that satisfies ‖g2‖ = 1 and 
g2 ⊥ C1. We denote by C2 the cyclic space generated by g2. It is also invariant under A
and satisfies C1 ⊥ C2. Continuing this way, we obtain the following representation of H
as a sum of orthogonal cyclic subspaces:

H = ⊕N
m=1Cm, (0.0.1)

where N ∈ N ∪ ∞. Since A is self-adjoint, the operator (A − z)−1 is bounded on H for 
every z ∈ C+, the upper half-plane. For each f ∈ H, the function 〈(A − z)−1f, f〉 is in 
Herglotz-Nevanlinna class, i.e., it is analytic in C+ and has non-negative imaginary part 
there (we discuss this class below, see (3.1.8)). Moreover, since A is bounded, we have 
an integral representation

〈(A − z)−1f, f〉 =
ˆ

R

dρf (x)
x − z

, z ∈ C+ , (0.0.2)

where the measure ρf is called the spectral measure of f . Then, the following result holds.
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Theorem 0.0.1. Let A be a bounded self-adjoint operator on a Hilbert space H and let 
σ(A) denote its spectrum. It holds that

σ(A) =
N⋃

m=1
supp ρgm

,

where ρgm
is the spectral measure of the generator gm for the cyclic subspace Cm from 

decomposition (0.0.1).

Decomposition (0.0.1) can be used as follows. Fix Cm. Taking a sequence of vectors

{gm,Agm,A2gm, . . .}

and running Gramm-Schmidt orthogonalization procedure gives the orthonormal basis 
in Cm in which the restriction of A to Cm takes the form of either an infinite or a finite 
(depending on dimCm) one-sided Jacobi matrix, see (0.0.3) and (0.0.6), further below. 
It turns out that these matrices are related to orthogonal polynomials, a connection that 
is central to our interest in the subject.

Classical Jacobi matrices

Let {aj}, {bj} ∈ �∞(Z+) and aj > 0, bj ∈ R, hereafter Z+
def= {0, 1, 2, . . .} and 

N
def= {1, 2, . . .}. An infinite one-sided Jacobi matrix is a matrix of the form

J
def=

⎡⎢⎢⎢⎢⎢⎣
b0

√
a0 0 0 . . .√

a0 b1
√

a1 0 . . .

0 √
a1 b2

√
a2 . . .

0 0 √
a2 b3 . . .

. . . . . . . . . . . . . . .

⎤⎥⎥⎥⎥⎥⎦ , (0.0.3)

and an N–dimensional Jacobi matrix is the upper-left N ×N corner of (0.0.3), see (0.0.6)
further below. We define two sets of measures on the real line

M
def=
{

μ : supp μ ⊂ [−Rμ, Rμ], Rμ < ∞, and # supp μ = ∞
}

and

M1
def=
{

μ ∈ M : μ(R) = 1
}

,

where the cardinality of a set S is denoted by #S. One-sided infinite Jacobi matrices with 
uniformly bounded entries are known to be in one-to-one correspondence with M1, the 
set of probability measures on R whose support is compact and has infinite cardinality. 
This bijection is realized via polynomials orthogonal on the real line. On the one hand, 
since J defines a bounded self-adjoint operator on the Hilbert space �2(Z+), we can 
consider the spectral measure of the vector (1, 0, 0, . . .), see (0.0.2). We will call it ρ(J). 
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On the other hand, given μ ∈ M1, one can produce a Jacobi matrix in the following 
way. Let pn(x, μ) be the n-th orthonormal polynomial with respect to μ, i.e., pn(x, μ) is 
a polynomial of degree n such that

ˆ

R

pn(x, μ)xmdμ(x) = 0, m = 0, . . . , n − 1 ,

that is normalized so that

coeffnpn > 0,

ˆ

R

p2
n(x, μ)dμ(x) = 1 ,

where coeffnQ is the coefficient in front of xn of the polynomial Q(x). It is known that 
polynomials pn(x, μ) satisfy the three-term recurrence relations

xpn(x, μ) =
√

anpn+1(x, μ) + bnpn(x, μ) + √
an−1pn−1(x, μ), n = 0, 1, . . . , (0.0.4)

where an > 0, bn ∈ R and p−1
def= 0, a−1

def= 0. The coefficients {an}, {bn} are defined 
uniquely by μ and one can show that

{an}, {bn} ∈ �∞(Z+) .

Let J be defined via (0.0.3) with these coefficients. It is a general fact of the theory [2,3]
that

ρ(J) = μ and therefore σ(J) = supp μ . (0.0.5)

The above correspondence is one-to-one: one can start with a bounded self-adjoint 
Jacobi matrix (0.0.3), compute ρ(J), the spectral measure of (1, 0, 0, . . .), via (0.0.2), 
take ρ(J) as a measure of orthogonality μ and, finally, define the orthogonal polynomials 
whose recurrence coefficients will give rise to the same J.

It follows from (0.0.4) that the sequence {pn(x, μ)}, with μ = ρ(J), represents the 
generalized eigenfunction of J. That can be made explicit by the following statement, 
see [2,3], which, together with (0.0.4), can be taken as a definition of a generalized 
eigenfunction.

Proposition 0.0.2. Suppose μ ∈ M1. The map

α(x) �→ α̂ =
{

α̂(n)
}

n∈Z+
, α̂(n) def=

ˆ
α(x)pn(x, μ)dμ(x),

is a unitary map from L2(μ) onto �2(Z+) such that

‖α‖2
L2(μ) = ‖α̂‖2

�2(Z ) .

+
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This map establishes unitary equivalence of the operator J on �2(Z+) and the operator 
of multiplication by x on L2(μ). In particular,

xα(x) �→ Jα̂.

Finite Jacobi matrices can also be studied via polynomials orthogonal on the real line 
although the measure of orthogonality giving rise to a particular matrix

JN
def=

⎡⎢⎢⎢⎢⎢⎣
b0

√
a0 0 . . . . . . 0√

a0 b1
√

a1 . . . . . . 0
0 √

a1 b2 . . . . . . 0
. . . . . . . . . . . . . . . . . .

0 0 0 . . .
√

aN−1 bN

⎤⎥⎥⎥⎥⎥⎦ (0.0.6)

is not unique, which has to do with multiple solutions to a moment problem, see [2]. Let 
μ be any measure of orthogonality such that JN is upper-left (N + 1) × (N + 1) corner 
of J generated by the orthogonal polynomials {pn(x, μ)}. If �pN

def= (p0, . . . , pN ), we get

(JN − x)�pN (x) = −√
aN pN+1(x)δ(N), δ(N) def= (0, . . . , 0, 1) . (0.0.7)

The last identity provides, in particular, the characterization of the spectrum of JN :

σ(JN ) = {E : pN+1(E, μ) = 0} . (0.0.8)

Jacobi matrices on graphs

We are interested in the generalizations of the above notion of a Jacobi matrix to 
the case when underlying Hilbert space is realized not as �2(Z+), but as a space of 
square-integrable functions on vertices of a tree.

Let G = (V, E) be an infinite graph, where V and E stand for the sets of its vertices 
and edges, respectively. The set of directed edges will be denoted by �E. For Y ∈ V, the 
symbol δ(Y ) indicates the Kronecker symbol at Y , i.e., the function which is equal to 1
at Y and zero otherwise. Given two vertices V1, V2 ∈ V, we shall write V1 ∼ V2 if they 
are connected by an edge and also use this notation to denote the edge itself. The edge 
directed from V1 to V2 will be denoted by [V1, V2].

A connected graph that has no loops is called a tree, in which case we shall use the 
symbol T instead of G. If every vertex in a tree has the same number of neighbors, this 
tree is called homogeneous. We can construct a rooted homogeneous tree of degree d + 1
as follows. One starts with the root O and connects it to d “children” that we name 
O(ch),j , j = 1, . . . , d. Then, we connect each O(ch),j to d new vertices. Continuing this 
process generation by generation, we obtain an infinite rooted tree in which O has d

neighbors, and any other vertex has d + 1 neighbors. For each Y �= O, the vertex Y(p)
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indicates its unique parent and Y(ch),j, j = 1, . . . , d, its children. Given functions f and F
on V and E , respectively, we shall denote by fY the value of f at Y and by FZ,Y (= FY,Z)
the value of F at an edge Z ∼ Y .

Given a graph G = (V, E), let V , W , and σ be functions on V, E , and �E, respectively. 
Assume that V and W are both bounded, W > 0, and σ takes value in {0, 1}. By 
definition WY,Z = WZ,Y while σ[Y,Z] and σ[Z,Y ] might not be equal to each other. If 
there is a constant C such that each vertex has at most C neighbors, we can define an 
operator, a generalized Jacobi matrix on the graph G, by

(J f)Y
def= VY fY +

∑
Z∼Y

(−1)σ[Y,Z]W
1/2
Y,ZfZ , (0.0.9)

where f is any function on V. We call J a generalized Jacobi matrix since in most of the 
literature it is common to define J with σ ≡ 0. We, however, allow a more general setup, 
which, as we explain later, is more natural in the case of Jacobi matrices generated by 
multiple orthogonality. Keeping this distinction in mind, throughout the paper we call 
J from (0.0.9) simply a Jacobi matrix on G.

As we already mentioned, we are interested in the connection between Jacobi matrices 
on graphs and orthogonal polynomials. In the full generality of definition (0.0.9) such 
a connection no longer exists. However, there are large classes of Jacobi operators on 
trees that can be defined via multiple orthogonal polynomials. Spectral theory of Jacobi 
matrices and Schrödinger operators on trees is a vibrant topic of modern mathematical 
physics, see, e.g., [1,13,15,16,27,29,34,35]. It is conceivable that the powerful tools devel-
oped for the analysis of multiple orthogonality, already known to have applications in 
number theory, statistics, and random matrices, can find new applications in the analysis 
of quantum systems.

Multiple orthogonal polynomials

The system of polynomials orthogonal on the real line can be generalized to the case 
of orthogonality with respect to several measures. This multiple orthogonality, being 
a classical area of approximation theory, has connections to number theory, numerical 
analysis, etc., see [7,33,36] for the introduction to this topic. To define it, consider

�μ
def= (μ1, μ2), supp μk ⊆ R, and �n

def= (n1, n2) ∈ Z2
+, |�n| def= n1 + n2,

where we assume that all the moments of the measures μ1, μ2 are finite.

Definition. Polynomials A(1)
�n (x) and A(2)

�n (x), deg A
(k)
�n � nk − 1, k ∈ {1, 2}, that satisfy

ˆ
xm
(
A

(1)
�n (x)dμ1(x) + A

(2)
�n (x)dμ2(x)

)
= 0, m ∈ {0, . . . , |�n| − 2} , (0.0.10)
R
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are called type I multiple orthogonal polynomials (type I MOPs). We assume that 
A

(k)
�n (x) �≡ 0 unless nk − 1 < 0. Furthermore, non-identically zero polynomial P�n(x)

is called type II multiple orthogonal polynomial (type II MOP) if it satisfies

deg P�n � |�n|,
ˆ

R

P�n(x)xmdμk(x) = 0

for all m ∈ {0, . . . , nk − 1} and k ∈ {1, 2}. (0.0.11)

Polynomials of the first and second type always exist. The question of uniqueness is 
more involved. If every P�n(x) has degree exactly |�n|, then the multi-index �n is called 
normal and we choose the following normalization

P�n(x) = x|�n| + · · · ,

i.e., the polynomial P�n(x) is monic. It turns out that �n is normal if and only if the 
following linear form

Q�n(x) def= A
(1)
�n (x)dμ1(x) + A

(1)
�n (x)dμ2(x) (0.0.12)

is defined uniquely up to multiplication by a constant. In this case deg A
(k)
�n = nk − 1

and we will normalize the polynomials of the first type by
ˆ

R

x|�n|−1Q�n(x) = 1 . (0.0.13)

Definition. The vector �μ is called perfect if all the multi-indices �n ∈ Z2
+ are normal.

Besides the orthogonal polynomials, we will need the functions of the second kind.

Definition. The functions

L�n(z) def=
ˆ

R

Q�n(x)
z − x

and R�n,k(z) def=
ˆ

R

P�n(x)dμk(x)
z − x

, k ∈ {1, 2}, (0.0.14)

are called functions of the second kind associated to the linear forms Q�n(x) and to 
polynomials P�n(x), respectively.

If d = 1, type II polynomials P�n(x) are the standard monic polynomials orthogonal on 
the real line with respect to the measure μ1 and the polynomials A(1)

�n (x) are proportional 
to pn−1(x, μ1) with the coefficient of proportionality that can be computed explicitly.

In the literature on orthogonal polynomials, the following Cauchy-type integral

μ̂(z) def=
ˆ

dμ(x)
z − x

, z /∈ supp μ , μ ∈ M, (0.0.15)

R
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is often referred to as a Markov function. If μ1, μ2 ∈ M, we can rewrite L�n(z) as

L�n(z) = A
(1)
�n (z)μ̂1(z) + A

(2)
�n (z)μ̂2(z) − A

(0)
�n (z), (0.0.16)

where A(0)
�n (z) is a polynomial given by

A
(0)
�n (z) def=

ˆ

R

A
(1)
�n (z) − A

(1)
�n (x)

z − x
dμ1(x) +

ˆ

R

A
(2)
�n (z) − A

(2)
�n (x)

z − x
dμ2(x). (0.0.17)

Similarly to classical orthogonal polynomials on the real line, the above MOPs also 

satisfy nearest-neighbor lattice recurrence relations. Denote by �e1
def= (1, 0) and �e2

def=
(0, 1) the standard basis vectors in R2. Assume that

�μ = (μ1, μ2) is perfect . (0.0.18)

This is an assumption we carry throughout the paper. In this case, see, e.g., [33,41], there 
exist real constants {a�n,1, a�n,2, b�n,1, b�n,2}�n∈Z2

+
, which we call the recurrence coefficients

corresponding to the system �μ, such that the linear forms Q�n(x) satisfy

xQ�n(x) = Q�n−�ei
(x) + b�n−�ei,iQ�n(x) + a�n,1Q�n+�e1(x) + a�n,2Q�n+�e2(x) , �n ∈ N2, (0.0.19)

for each i ∈ {1, 2}, while it holds for type II polynomials that

xP�n(x) = P�n+�ei
(x) + b�n,iP�n(x) + a�n,1P�n−�e1(x) + a�n,2P�n−�e2(x) , �n ∈ Z2

+, (0.0.20)

again, for each i ∈ {1, 2}, where we let P�n−�el
(x) ≡ 0 when the l-th components of �n −�el

is negative. It is known that

a�n,i �= 0, �n ∈ N2, i ∈ {1, 2}, and
{

a(n,0),1, a(0,n),2 > 0, n ∈ N,

a(0,n),1 = a(n,0),2
def= 0, n ∈ Z+,

(0.0.21)

where the first conclusion follows from perfectness and an explicit integral representa-
tion for a�n,i, see [41, Equation (1.8)], and the second one is part definition and part a 
consequence of positivity of parameters {an} in (0.0.4).

Remark. For perfect systems �μ, one can show that (0.0.19) implies the recursion for the 
type I polynomials themselves:

xA
(j)
�n (x) = A

(j)
�n−�ei

(x) + b�n−�ei,iA
(j)
�n (x) + a�n,1A

(j)
�n+�e1

(x) + a�n,2A
(j)
�n+�e2

(x) ,

�n ∈ N2, i, j ∈ {1, 2} . (0.0.22)
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The recurrence coefficients {a�n,i, b�n,i} are uniquely determined by �μ. However, when 
d > 1, unlike in the one-dimensional case, we can not prescribe them arbitrarily. In fact, 
coefficients in (0.0.19) and (0.0.20) satisfy the so-called “consistency conditions”, see, 
e.g., [41, Theorem 3.2] and [11], which is a system of nonlinear difference equations:

b�n+�ei,j − b�n,j = b�n+�ej ,i − b�n,i,

2∑
k=1

a�n+�ej ,k −
2∑

k=1

a�n+�ei,k = b�n+�ej ,ib�n,j − b�n+�ei,jb�n,i,

a�n,i(b�n,j − b�n,i) = a�n+�ej ,i(b�n−�ei,j − b�n−�ei,i),

where �n ∈ N2 and i, j ∈ {1, 2}. Conversely, see [23, Theorem 3.1], solution to this 
nonlinear system is unique and uniquely defines �μ (μk’s are the spectral measures of the 
Jacobi operators corresponding to the boundary values) provided the boundary values 
are properly defined.

Part 1. Jacobi matrices on finite rooted trees

The goal of this part of the paper is to prove analogs of (0.0.7) and (0.0.8) for Jacobi 
matrices (0.0.9) on finite trees in the case when these Jacobi matrices are generated by 
multiple orthogonality.

1.1. Definitions and basic properties

1.1.1. Finite trees

Fix �N = (N1, N2) ∈ N2. Truncate Z2
+ to a discrete rectangle

R �N = {�n : n1 � N1, n2 � N2}

and denote by P �N the family of all paths of length | �N | = N1 + N2 connecting the points 
�N = (N1, N2) and (0, 0) (within a path exactly one of the coordinates is decreasing by 
1 at each step). The tree T �N is obtained by untwining P �N in such a way that P �N is in 
one-to-one correspondence with the paths in T �N originating at the root, say O, which 
corresponds to �N , see Fig. 1 for �N = (2, 1).

We denote by V �N the set of the vertices of T �N . The above construction defines a 
projection Π : V �N → R �N as follows: given Y ∈ V �N we consider the path from O to Y , 
take the corresponding path on R �N , and let Π(Y ) to be its endpoint (the one which is 
not �N). We denote by �2(V �N ) the set of all functions on V �N with the norm coming from 
the standard inner product 〈·, ·〉.

As agreed before, we denote by Y(p) the “parent” of Y . To distinguish the “children” 
of a vertex Y we introduce an index function ι by
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Fig. 1. Tree for �N = (2, 1).

ι : V �N → {1, 2} Z �→ ιZ such that Π(Z(p)) = Π(Z) + �eιZ
. (1.1.1)

Then, if Y = Z(p), we write Z = Y(ch),ιZ
, see Fig. 1. We further let

ch(Y ) def=
{

i : ni > 0, Π(Y ) = (n1, n2)
}

to be the index set of the children of Y . It will be convenient to introduce an artificial 
vertex O(p), a formal parent of the root O. We do not include O(p) into V �N , but we do 
extend every function f on V �N to O(p) by setting fO(p) = 0 (recall that we denote the 
value of a function f at Y ∈ V �N by fY ).

1.1.2. Jacobi matrices generated by multiple orthogonality

Let �μ be a perfect system and {a�n,i, b�n,i} be its recurrence coefficients, see (0.0.19)
and (0.0.20). In this subsection, we specialize definition (0.0.9) to the case of finite trees 
T �N and Jacobi matrices whose potentials V, W , and the signature σ come from �μ.

Fix �κ ∈ R2 such that |�κ| = κ1 + κ2 = 1. We define the potentials V = V �μ, W = W �μ :
V �N → R (as with most quantities dependent on �μ, we drop the dependence on �μ from 
notation) by

VO
def= κ1b �N,1 + κ2b �N,2, WO

def= 1, and

VY
def= bΠ(Y ),ιY

, WY
def=
∣∣aΠ(Y(p)),ιY

∣∣, Y �= O. (1.1.2)

This definition is consistent with (0.0.9) if we let WY(p),Y = WY,Y(p) = WY (for trees, 
neighboring vertices always form child/parent pairs). We further choose function σ :
V �N → {0, 1} to recover the signs of the recurrence coefficients a�n,i. Namely, we set σY

to be such that

(−1)σY WY = aΠ(Y(p)),ιY
, Y �= O, and σO

def= 0 (1.1.3)



12 S.A. Denisov, M.L. Yattselev / Advances in Mathematics 396 (2022) 108114
(observe that WY > 0 since a�n+�ei,i �= 0 by (0.0.21)). To relate back to the definition 
given in (0.0.9), we set σ[Y,Y(p)] = 0 and σ[Y(p),Y ] = σY . With these definitions, (0.0.9)
specializes to

(J�κ, �N f)Y
def= VY fY + W

1/2
Y fY(p) +

∑
l∈ch(Y )

(−1)σY(ch),l W
1/2
Y(ch),l

fY(ch),l
, (1.1.4)

which we call a Jacobi matrix on a finite tree T �N .
For a given multi-index �n, let P�n(z) be the type II MOP with respect to �μ, see (0.0.11). 

We consider z ∈ C+ as a parameter and put

pY (z) def= m−1
Y PY (z), PY (z) def= PΠ(Y )(z), and mY

def=
∏

Z∈path(Y,O)

W
−1/2
Z , (1.1.5)

where path(Y, O) is the non-self-intersecting path connecting Y and O that includes 
both Y and O. Obviously, all three functions p, P , and m depend on �μ. To uniformize 
the notation, let us formally set

PΠ(O(p))(z) def= κ1P �N+�e1
(z) + κ2P �N+�e2

(z). (1.1.6)

Given X ∈ V �N , denote by T �N [X] the subtree of T �N with root at X and by V �N [X] the set 
of its vertices. Let J[X] and p[X] be the restriction of J�κ, �N and p to T �N [X] and V �N [X], 
respectively. Then, it follows from (0.0.20) that

J[X]p[X](z) = zp[X](z) −
(
m−1

X PΠ(X(p))(z)
)
δ(X), (1.1.7)

which is an identity reminiscent of (0.0.7).

1.1.3. Conditions on �μ

Recall that �μ is a perfect system since, otherwise, its recurrence coefficients might not 
exist for all �n ∈ R �N , which makes J�κ, �N undefined. Besides that, we place one more set 
of conditions on �μ. Denote by EΠ(Y ) the set of zeroes of PΠ(Y )(x), Y ∈ V �N ∪ {O(p)}
(recall (1.1.6)). Notice that EΠ(O(p)) = E �N+�ei

when �κ = �ei, i ∈ {1, 2}. Our additional 
assumptions on �μ are

{
EΠ(Y ) ⊂ R, #EΠ(Y ) = |Π(Y )|, Y ∈ V �N ∪ {O(p)},

EΠ(Y ) ∩ EΠ(Y(p)) = ∅, Y ∈ V �N ,
(1.1.8)

where we put |Π(O(p))| 
def= | �N | +1 and #S denotes the cardinality of S. That is, we assume 

that all zeroes of each polynomial PΠ(Y )(x) are real and simple, and that PΠ(Y )(x) and 
PΠ(Y(p))(x) do not have common zeroes.
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All the classical examples of type II MOPs satisfy (1.1.8). Indeed, for Angelesco sys-
tems, see Part 3 further below, multiple Hermite polynomials [41, Section 5.1], multiple 
Laguerre polynomials of the second kind [41, Section 5.4], multiple Charlier polynomials 
[41, Section 5.2], and multiple Meixner polynomials of the first kind [32, Section 3.3], it 
holds that

a�n,i > 0 �n ∈ N2, i ∈ {1, 2}. (1.1.9)

This, together with perfectness (all the above examples form perfect systems) implies, 
see [32, Theorem 2.2], that

x�n+�ei,1 < x�n,1 < x�n+�ei,2 < x�n,2 < . . . < x�n,|�n| < x�n+�ei,|�n|+1 (1.1.10)

for each i ∈ {1, 2}, where we write E�n = {x�n,1, . . . , x�n,|�n|}. That is, the zeroes of P�n(x)
and P�n+�ei

(x) interlace. Hence, the only conditions that remain to be checked in (1.1.8)
are those that involve O(p) and they, of course, depend on �κ. The positivity of a�n,i, 
i.e., the condition (1.1.9), is not satisfied by other classical systems such as Nikishin 
systems, see Section 1.4 further below, multiple Laguerre polynomials of the first kind 
[41, Section 5.3], Jacobi-Piñeiro polynomials [41, Section 5.5], and multiple Meixner 
polynomials of the second kind [32, Section 3.7]. However, it is known that type II 
MOPs form the so-called AT-systems and their zeroes again satisfy (1.1.10) for all just 
listed examples, see [32]. Hence, all conditions in (1.1.8), except for the ones involving 
O(p), are satisfied automatically.

1.2. Spectral analysis

1.2.1. Spectrum and eigenvalues

One can readily see from (1.1.7) that every E ∈ EΠ(O(p)) is an eigenvalue and

J�κ, �N b(E, O(p)) = Eb(E, O(p)), b(E, O(p))
def= p(E). (1.2.1)

We call b(E, O(p)) the trivial canonical eigenvector. To identify the remaining eigenvalues 
and eigenvectors, we set

E�κ, �N

def= EΠ(O(p)) ∪
⋃

Y ∈V �N : #ch(Y )=2

EΠ(Y ). (1.2.2)

The condition #ch(Y ) = 2 is equivalent to Π(Y ) ∈ N2. Hence, the set E�κ, �N consists of 
EΠ(O(p)) and the zeroes of type II MOPs that are “truly” multiple orthogonal, i.e., they 
satisfy orthogonality conditions on both intervals. Given E ∈ E�κ, �N , let Joint(E) be the 
set of joints corresponding to E defined by
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Joint(E) def=
{

Y ∈ V �N : PY (E) = 0 and #ch(Y ) = 2
}

. (1.2.3)

If E ∈ EΠ(O(p)) and E /∈
⋃

Y ∈V �N : #ch(Y )=2 EΠ(Y ), then Joint(E) = ∅; otherwise, 
Joint(E) �= ∅. To each X ∈ Joint(E), we associate a special vector. To define it, recall 
that WY > 0 for all Y , see the remark after formula (1.1.3), and that pX(ch),l

(E) �= 0 by 
(1.1.8) when X ∈ Joint(E). We will need a standard notation: if B is a subset of a graph 
G, the symbol χB denotes its characteristic function. Given E ∈ E�κ, �N , X ∈ Joint(E), let

b(E, X) def= p(E)

⎛⎝ (−1)σX(ch),2 χT �N[X(ch),2]

W
1/2
X(ch),2

pX(ch),2(E)
−

(−1)σX(ch),1 χT �N[X(ch),1]

W
1/2
X(ch),1

pX(ch),1(E)

⎞⎠ , (1.2.4)

where, as before, T �N [Z] denotes the subtree of T �N with root at Z. Anticipating the 
forthcoming theorem, we call each b(E, X) a canonical eigenvector (it follows right away 
from (1.1.4) that J�κ, �N b(E, X) is also supported on T �N [X(ch),1] ∪ T �N [X(ch),2]). Finally, we 
set

Joint∗(E) def=
{

Joint(E), E /∈ EΠ(O(p)),

Joint(E) ∪ {O(p)}, E ∈ EΠ(O(p)).
(1.2.5)

Definitions (1.2.1), (1.2.2), (1.2.4), and (1.2.5) are needed for the following theorem, 
which is the main result of this part.

Theorem 1.2.1. Let �μ be a perfect system of measures on the real line for which (1.1.8)
holds and J�κ, �N be the corresponding Jacobi matrix defined in (1.1.4). Then

σ(J�κ, �N ) = E�κ, �N .

Given E ∈ σ(J�κ, �N ), a particular basis for the eigenspace corresponding to E is given by{
b(E, X) : X ∈ Joint∗(E)

}
and the geometric multiplicity of E, we call it gE, is given by

gE = #Joint∗(E).

Moreover, the system {
b(E, X) : X ∈ Joint∗(E), E ∈ σ(J�κ, �N )

}
is a basis for �2(V �N ).

We illustrate the construction of the canonical eigenvectors for a simple case of 
J�e2,(2,1), see Fig. 1. Assume that (1.1.9) takes place and all the zeroes are distinct. There 
are 9 vertices and 9 eigenvalues:
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#E(2,2) = 4, (E(2,2) = EΠ(Op)), #E(2,1) = 3, and #E(1,1) = 2.

For any E ∈ E(2,2), it holds that Joint∗(E) = {O(p)} and each such root defines a trivial 
canonical eigenvector p(E). Every E in E(2,1) is a simple eigenvalue with Joint∗(E) =
{O}. The corresponding canonical eigenvector b(E, O) is equal to zero at O and

bV (E, O) = pV (E)/

⎧⎨⎩−(W 1/2
X(p)

pX(p)(E)), V ∈ {X(p), X, Y, A, B},

(W 1/2
Z(p)

pZ(p)(E)), V ∈ {Z(p), Z, C}.

Finally, if E ∈ E(1,1), then Joint∗(E) = {X(p)}. The canonical eigenvector b(E, X(p)) is 
supported on {X, Y, A, B} and

bV (E, X(p)) = pV (E)/

⎧⎨⎩−(W 1/2
X pX(E)), V ∈ {X, A},

(W 1/2
Y pY (E)), V ∈ {Y, B}.

1.2.2. S-self-adjointness

When σ ≡ 0 in (1.1.3), or equivalently, (1.1.9) holds, the corresponding Jacobi matrix 
is self-adjoint and thus has an orthogonal basis of eigenvectors. When σ �≡ 0 this is no 
longer the case. However, there exists an indefinite inner product given by a diagonal 
matrix S with diagonal entries equal ±1 such that the Jacobi matrix is S-self-adjoint. 
The general theory of S-self-adjoint operators (see, e.g., [28]) does not guarantee that 
their eigenvectors span �2(V �N ) (that is, that J�κ, �N has no Jordan blocks, i.e., that it has 
a simple structure). Yet, this is indeed the case for Jacobi matrices.

Let, as before, path(Y, O) be the non-self-intersecting path connecting Y and O that 
includes both Y and O. Define a diagonal matrix S on T �N by

Sδ(O) def= δ(O) and Sδ(Y ) def= (−1)
∑

Z∈path(Y,O) σZ δ(Y ), Y �= O. (1.2.6)

The diagonal matrix S defined this way assigns either +1 or −1 to a vertex Y depending 
on whether the number of “negative” edges connecting O to Y is even or odd. We define 
an indefinite inner product [·, ·] by

[f, g] def=
〈
Sf, g

〉
, f, g ∈ �2(V �N ). (1.2.7)

Denote the number of vertices Y ∈ V �N such that [δ(Y ), δ(Y )] = ±1 by i±. If σ ≡ 0, the 
matrix S is the identity matrix and [·, ·] = 〈·, ·〉, i+ = #V �N while i− = 0. We let �2

S(V �N )
denote the corresponding indefinite inner product vector space, which is sometimes called 
a finite-dimensional Krein space.

A matrix A is called S-self-adjoint if

[Af, g] = [f, Ag] (1.2.8)
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Fig. 2. Partition of V(3,2) into waves W1(E) (blue), W2(E) (purple), and W3(E) (green) when Joint(E) =
{O, X}. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this 
article.)

for all vectors f and g. Notice that (1.2.8) is equivalent to SA = A∗S, where A∗ is 
the adjoint of A in the original inner product 〈·, ·〉. Since S2 is the identity matrix, 
multiplying identity SA = A∗S from the left and from the right by S gives us AS =
SA∗. Thus, A is S-self-adjoint if and only if A∗ is S-self-adjoint. Clearly, when S is 
the identity matrix, i.e., when (1.1.9) holds, condition (1.2.8) is equivalent to A being 
self-adjoint in the standard inner product.

Proposition 1.2.2. Jacobi matrices J�κ, �N and J ∗
�κ, �N

are S-self-adjoint.

1.2.3. S-orthogonalization

In this subsection, we show that the basis of canonical eigenvectors, which is yielded 
by Theorem 1.2.1, can be used to construct S-orthogonal basis of eigenvectors. To this 
end, we notice that eigenspaces that correspond to two different real eigenvalues are 
already S–orthogonal. Indeed, this is due to the following identity

E1[Ψ1, Ψ2] = [J�κ, �N Ψ1, Ψ2] = [Ψ1, J�κ, �N Ψ2] = [Ψ1, E2Ψ2] = E2[Ψ1, Ψ2],

where E1, E2 are eigenvalues of J�κ, �N and Ψ1, Ψ2 are corresponding eigenvectors. Thus, 
we only need to focus on each individual eigenspace.

Suppose E is an eigenvalue and Joint(E) �= ∅. This guarantees that g(E) > 1 and 
{b(E, X)} is a basis for the eigenspace. We start with some geometric constructions 
on the tree and a few definitions. Let us first partition V �N into a collection of disjoint 
“waves”. Define the canopy of T �N by C def= Π−1(0, 0). If O ∈ Joint(E), we set the first wave
and its front simply to be {O}, that is, W1(E) = F1(E) = {O}. Otherwise, we define 
F1(E) to be the set of vertices from C ∪ Joint(E) that can be connected to O by a path 
which does not contain elements of Joint(E) in its interior. We then let the wave W1(E)
to be the union of all the vertices on these paths, including the endpoints. To define 
F2(E), consider all the vertices in (C ∪ Joint(E)) \ W1(E) that can be connected to a 
vertex in F1(E) by a path which does not contain vertices of Joint(E) in its interior. The 
second wave W2(E) is then defined as the set of all the vertices on these paths, including 
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the ones from F2(E), but excluding the ones from F1(E) (so, W1(E) ∩ W2(E) = ∅). We 
continue this process until all of V �N is exhausted.

Example. Consider T(3,2) and assume that Joint(E) = {O, X}, where Π(X) = (2, 1), see 
Fig. 2. Then,

W1(E) = {O}, W2(E) = {X(p), X} ∪ V(T1) ∪ V(T2), and

W3(E) = V(T3) ∪ V(T4),

where T1, T2, T3, and T4 are the subtrees with the roots at the sibling of X, the sibling 
of X(p), X(ch),1, and X(ch),2, respectively, and V(T ) is the set of vertices of a subtree T . 
Moreover, it holds that

F1(E) = {O}, F2(E) = {X} ∪
(
C ∩ (V(T1) ∪ V(T2))

)
, and

F2(E) = C ∩ (V(T3) ∪ V(T4)).

Suppose all constructed fronts and waves are enumerated by {F1, . . . , Fp} and 
{W1, . . . , Wp}. To produce S-orthogonal basis out of {b(E, X)}, we start at the canopy 
and go up the tree. Consider the canonical eigenvectors corresponding to E that are sup-
ported inside the last wave Wp(E). Each of these eigenvectors has support on a subtree 
sitting inside Wp(E) and having the root at a vertex of the previous front Fp−1(E). As 
their supports are disjoint, they are S-orthogonal. Call their span Sp(E). Next, take all 
the canonical eigenvectors that have support inside Wp−1(E) ∪ Wp(E) and that were 
not chosen before. For each of them, take its S-perpendicular to Sp(E). By construc-
tion, it is nonzero. These new vectors are still eigenvectors and they are S-orthogonal 
to each other because they are supported on different subtrees as well as S-orthogonal 
to the previously considered eigenvectors by constructions. Denote by Sp−1(E) the span 
of these S-perpendiculars and previously considered eigenvectors spanning Sp(E). If we 
continue going up the tree in this fashion, we will produce an S-orthogonal basis of 
the E-eigenspace. Since all the eigenspaces are S-orthogonal, we have constructed a 
S-orthogonal set of eigenvectors. By scaling, we can make sure that this basis is S-
orthonormal.

We want to finish by explaining how our result fits into the general spectral theory of 
S-self-adjoint operators. We say that a vector ψ is S-positive if [ψ, ψ] > 0 and S-negative 
if [ψ, ψ] < 0. It is S-neutral if [ψ, ψ] = 0. Suppose {ψ1, . . . , ψn} is a S-orthogonal basis 
of �2(V �N ). It is known, see [28, Proposition 2.2.3] and Lemma 1.3.7 further below, that

#
{

j : ψj is S-negative
}

= i− and #
{

j : ψj is S-positive
}

= i+ ,

where the numbers i± were defined right after (1.2.7). Label the S-positive and S-
negative vectors in the basis {ψ1, . . . , ψn} by {ψ+

1 , . . . , ψ+
i+

} and by {ψ−
1 , . . . , ψ−

i−
}, 

respectively. We clearly have a S-orthogonal sum decomposition
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�2
S(V �N ) = H+ ⊕S H−, H± = span

{
ψ±

1 , . . . , ψ±
i±

}
,

where H+ and H− are positive and negative subspaces. In the case of our S-self-adjoint 
Jacobi matrices, we just illustrated that such a basis {ψ1, . . . , ψn} can be built out of 
canonical eigenvectors. That provides the concrete realization of the Spectral Theorem 
for S-self-adjoint matrices, see, e.g., [28, Theorem 5.1.1].

1.3. Proofs of the main results

Proof of Proposition 1.2.2. By formula (1.2.8) and the remark that comes after it, we 
need to check that SJ�κ, �N = J ∗

�κ, �N
S, which is the same as checking

〈
f,SJ�κ, �N g

〉
=
〈
J�κ, �N f,Sg

〉
for all vectors f, g ∈ �2(V �N ). Since J�κ, �N only contains self-interaction and interaction 

between neighbors, it is enough to consider cases f = δ(Z) and g = δ(X) where either 
Z = X or Z ∼ X. It follows from (1.1.4) that

J�κ, �N δ(X) = (−1)σX W
1/2
X δ(X(p)) + VXδ(X) +

∑
l∈ch(X)

W
1/2
X(ch),l

δ(X(ch),l),

where we agree that δ(O(p)) ≡ 0. It further follows from (1.2.6) that

SJ�κ, �N δ(X) =
[
δ(X), δ(X)](W

1/2
X δ(X(p)) +VXδ(X) +

∑
l∈ch(X)

(−1)σX(ch),l W
1/2
X(ch),l

δ(X(ch),l)
)

.

Now, it is a simple matter of examining three cases: when Z = X, Z = X(p), and 
Z = X(ch),l. �

It will be convenient for us to split the proof Theorem 1.2.1 into several lemmas. Let 
X(g) denote the parent of X(p). Recall that we extend all functions on �2(V �N ) to O(p) by 
zero.

Lemma 1.3.1. Let E ∈ σ(J�κ, �N ) and Ψ be a corresponding eigenvector. If ΨX �= 0 and 
ΨX(p) = 0, then E ∈ EΠ(X(p)). Moreover, if we also have ΨX(g) = 0, then X(p) ∈
Joint(E). Finally, we have an inclusion

σ(J�κ, �N ) ⊆ E�κ, �N .

Proof. Denote by T[X] the subtree of T �N with root at X and by J[X] the restriction of 
J�κ, �N to T[X]. By the conditions of the lemma, E is also an eigenvalue of J[X] with an 
eigenvector χT[X]Ψ. We can restrict the indefinite inner product to T[X] as well keeping 
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the same notation [·, ·]. Notice that J[X] = χT[X]J�κ, �N χT[X] is S-self-adjoint with respect 
to this restriction.

The function

F (z) def=
[
(J[X] − z)−1χT[X]Ψ, δ(X)

]
= (SΨ)X

E − z
, (SΨ)X �= 0, (1.3.1)

is well-defined in a small punctured neighborhood of E because the operator J[X] − z is 
invertible there. Since J[X] is S-self-adjoint, we can write

F (z) =
[
χT[X]Ψ, (J[X] − z̄)−1δ(X)

]
= −

[χT[X]Ψ, mXχT p(z̄)]
PΠ(X(p))(z) , (1.3.2)

where we also used (1.1.7) and the fact that polynomials P�n(x) have real coefficients. 
Since E is a pole of F (z) by (1.3.1), the denominator of the right hand side of (1.3.2)
vanishes at E, that is, E ∈ EΠ(X(p)) as claimed.

To prove the second statement of the lemma, we only need to show that X has a 
sibling, see (1.2.3). This is true since otherwise

0 = EΨX(p) = (J�κ, �N Ψ)X(p) = VX(p)ΨX(p) + W
1/2
X(p)

ΨX(g) + W
1/2
X ΨX = W

1/2
X ΨX

by (1.1.4), which is clearly impossible as WX > 0 and ΨX �= 0.
Consider the last claim. Let E be an eigenvalue and Ψ be its eigenfunction. If ΨO �= 0, 

we have E ∈ EΠ(O(p)) ⊆ E�κ, �N by the definition. If ΨO = 0, let Z be a vertex with 
the shortest path to O among all vertices X for which ΨX �= 0 and ΨY = 0 for all 
Y ∈ path(X, O), Y �= X. Since Z �= O, Z(p) ∈ Joint(E) by the second claim and 
therefore E ∈ EΠ(Z(p)) ⊆ E�κ, �N . �
Remark. Notice that assumption (1.1.8) was not used in the proof.

Lemma 1.3.2. Let E ∈ E�κ, �N and X ∈ Joint∗(E). Then, E ∈ σ(J�κ, �N ) and b(E, X) is a 
corresponding eigenvector.

Proof. Let E be a zero of PΠ(O(p))(x). In this case (1.1.7) states that J�κ, �N p(E) = Ep(E)
and therefore E is indeed an eigenvalue with an eigenvector b(E, O(p)). Now, let E ∈ E�κ, �N

and X ∈ Joint(E). We need to show that b(E, X) is an eigenvector with eigenvalue E. 
Recall that T �N [X] denotes the subtree of T �N which has X as its root and observe that

(
J�κ, �N b(E, X)

)
Y

= 0 = EbY (E, X), Y /∈ T �N [X],

by the definition of b(E, X), see (1.1.4). Moreover, let

υi
def= (−1)i+σX(ch),i W

−1/2
X p−1

X (E).

(ch),i (ch),i
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Then

(
J�κ, �N b(E, X)

)
X

=
2∑

i=1
(−1)σX(ch),i W

1/2
X(ch),i

bX(ch),i
(E, X) = 0 = EbX(E, X)

by (1.1.4) and the choice of υi. Furthermore,

(
J�κ, �N b(E, X)

)
X(ch),l

=
(
J�κ, �N υlp(E)

)
X(ch),l

− (−1)σX(ch),l W
1/2
X(ch),l

υlpX(E)

= EυlpX(ch),l
(E) = EbX(ch),l

(E, X)

by (1.1.7), definition of b(E, X), and since pX(E) = 0. Similarly,

(
J�κ, �N b(E, X)

)
Y

=
(
J�κ, �N υlp(E)

)
Y

= EυlpY (E) = EbY (E, X), Y ∈ T �N [X(ch),l],

which finishes the proof of the lemma. �
Lemma 1.3.3. Given E ∈ E�κ, �N , the vectors in the system 

{
b(E, X) : X ∈ Joint∗(E)

}
are linearly independent.

Proof. Assume that E ∈ EΠ(O(p)), the proof for other cases is similar. Let β(Z), Z ∈
Joint∗(E), be numbers such that

β(O(p))bY (E, O(p)) +
∑

Z∈Joint(E)

β(Z)bY (E, Z) = 0

is true for all Y . Due to assumption (1.1.8) with Y = O and the very construction of 
b(E, Z), it holds that

bO(E, O(p)) = pO(E) �= 0 and bO(E, Z) = 0, Z ∈ Joint(E).

Thus, it must hold that β(O(p)) = 0. Next, let X ∈ Joint(E) be any vertex such that the 
path from X to O contains no other elements in Joint(E). This and assumption (1.1.8)
then yield that

bX(ch),1(E, X) = pX(ch),1(E) �= 0 and bX(ch),1(E, Z) = 0, Z ∈ Joint(E) \ {X}.

Hence, β(X) = 0. Going down the tree T �N in this fashion, we can inductively show that 
β(Z) = 0 for every Z ∈ Joint∗(E), thus, proving linear independence. �
Lemma 1.3.4. Suppose Ψ is an eigenvector of J�κ, �N with eigenvalue E. If ΨO = 0, then 
ΨY = 0 for all Y ∈ W1(E), where the waves Wk(E) were defined in Section 1.2.3.
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Proof. If O ∈ Joint(E), then W1(E) = {O} by definition and the claim is obvious. 
Otherwise, take O(ch),l ∈ W1(E). If ΨO(ch),l

�= 0 were true, then it would hold that 
O ∈ Joint(E) by Lemma 1.3.1 which is a contradiction. Furthermore, if the desired 
claim were false at another vertex of W1(E), there would exist X ∈ W1(E) such that 
ΨX �= 0 and ΨX(p) = ΨX(g) = 0, where X(g) is the parent of X(p). Then, X(p) ∈ Joint(E)
by Lemma 1.3.1, which contradicts the very definition of W1(E). �
Lemma 1.3.5. Given E ∈ E�κ, �N , the system 

{
b(E, X) : X ∈ Joint∗(E)

}
spans the sub-

space of eigenvectors corresponding to E.

Proof. Let Ψ be an eigenvector that corresponds to E. First, consider the values of Ψ
on W1(E). If ΨO = 0, then ΨY = 0 for all Y ∈ W1(E) by Lemma 1.3.4 and we set 
Ψ(1) def= Ψ. Otherwise, ΨO �= 0 and E is a zero of PΠ(O(p)) according to Lemma 1.3.1. In 
particular, P �N (E) �= 0 due to assumption (1.1.8) with Y = O and so pO(E) �= 0. Then, 
we set

Ψ(1) def= Ψ −
(
ΨO/pO(E)

)
b(E, O(p)).

Since PΠ(O(p))(E) = 0, it follows from (1.1.7) and the definition of b(E, O(p)) that Ψ(1)

is also an eigenvector corresponding to E. Since Ψ(1)
O = 0, we have Ψ(1)

Y = 0 for every 
Y ∈ W1(E) by Lemma 1.3.4 as desired.

Second, we consider the values of Ψ(1) on W2(E) ∪ W1(E). Fix X ∈ F1(E) \ C. By 
the very definition of the first front we have that X ∈ Joint(E). Choose β(X) so that

ΦX(ch),1 = 0, Φ def= Ψ(1) − β(X)b(E, X).

Since Φ is an eigenvector corresponding to E that vanishes at X(ch),1, X, and X(p), it 
follows from (1.1.4) that

0 = EΦX =(J�κ, �N Φ)X = VXΦX + W
1/2
X ΦX(p) + (−1)σX(ch),1 W

1/2
X(ch),1

ΦX(ch),1

+ (−1)σX(ch),2 W
1/2
X(ch),2

ΦX(ch),2 = W
1/2
X(ch),2

ΦX(ch),2 .

Thus, Φ vanishes at X(ch),2 as well. Now, as in the proof of Lemma 1.3.4, we apply the 
second claim of Lemma 1.3.1 to conclude that Φ vanishes at all Y ∈ T �N [X] ∩ W2(E). 
Therefore, we can set

Ψ(2) def= Ψ(1) −
∑

X∈F1(E)

β(X)bY (E, X),

which is an eigenvector corresponding to E that vanishes at all Y ∈ W2(E) ∪ W1(E). 
Continuing in the same way, we decompose Ψ into the sum of canonical eigenvectors. �
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Lemma 1.3.6. It holds that

# V �N =
∑

E∈E�κ, �N

# Joint∗(E) .

Proof. Recall that according to our assumption (1.1.8) all zeroes of any polynomial P�n(x)
are simple and there are exactly |�n| of them since �μ is perfect. Given an eigenvalue E, 
each polynomial P�n(x), �n ∈ N2, such that P�n(E) = 0, generates as many canonical 
eigenvectors as the number of vertices X for which Π(X) = �n (the number of paths from 
�n to �N in R �N ). Hence, the number of the canonical eigenvectors that each polynomial 
P�n(x), �n ∈ N2, generates is equal to |�n| · #Π−1(�n). Therefore, the total number of 
eigenvectors is equal to

∑
E∈E�κ, �N

# Joint∗(E) = | �N | + 1 +
∑

�n∈R �N ∩N2

|�n|
(

| �N | − |�n|
N1 − n1

)
,

where | �N | + 1 is the number of the trivial canonical eigenvectors ((1.1.8) is used here 
too as well as equality κ1 + κ2 = 1). The above formula is true for every Jacobi matrix 
on T �N , including the self-adjoint ones (that do exist). For the self-adjoint matrices the 
desired claim is a standard fact of linear algebra (the number of linearly independent 
eigenvectors of a self-adjoint matrix is equal to the dimension of the space). Hence, it 
holds for all Jacobi matrices. �
Remark. There is an alternative proof of this lemma using an inductive argument.

Proof of Theorem 1.2.1. The first claim follows from Lemmas 1.3.1 and 1.3.2. The va-
lidity of the second one is due to Lemmas 1.3.3 and 1.3.5. The formula for gE is a 
trivial consequence of the second claim. Since all the eigenspaces of a linear operator are 
mutually linearly independent, the last claim follows from Lemma 1.3.6. �

For reader’s convenience, we include the proof of the following standard result.

Lemma 1.3.7. Suppose {ψ1, . . . , ψn} is a S-orthogonal basis of �2(V �N ). Then

#
{

j : ψj is S-negative
}

= i− and #
{

j : ψj is S-positive
}

= i+ .

Proof. Notice first that none of {ψj} is S-neutral since otherwise, we would have 
[ψk, f ] = 0 for all f ∈ �2(V �N ) and some k. In particular, this would yield that

0 =
∣∣[ψk, δ(Y )]∣∣ = |ψk|Y |

∣∣[δ(Y ), δ(Y )]∣∣ = |ψk|Y |

for every Y ∈ V �N , which is clearly impossible as ψk �≡ 0 (here, ψk|Y is the value of 
ψk at Y ). Thus, we can assume that [ψj , ψj ] = ±1 for all j. Let k− and k+ be the 
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numbers of S-negative and S-positive vectors in {ψj}, respectively. Assume without 
loss of generality that {ψ1, . . . , ψk+} are S-positive. Since {ψj} is a basis, we can write

f =
∑

Y

fY δ(Y ) =
∑

j

xjψj , f ∈ �2(V �N ),

for some numbers {xj}. Let V+ and V− be the subsets of V �N for which δ(Y ) is S-positive 
and S-negative, respectively. Clearly, #V± = i± by definition. Then

∑
Y ∈V+

|fY |2 −
∑

Y ∈V−

|fY |2 = 〈Sf, f〉 = [f, f ] =
k+∑

j=1
|xj |2 −

n∑
j=k++1

|xj |2 .

The desired claim now follows from Sylvester’s law of inertia for Hermitian matrices, 
[24, Theorem X.18] (the numbers of positive and negative squares do not depend on the 
choice of a representation of a Hermitian form). �
1.4. Appendix to Part 1

In the end of Subsection 1.1.3, we have listed a number of systems of MOPs whose 
recurrence coefficients do not satisfy condition (1.1.9). Most of them come from special 
orthogonality measures and their recurrence coefficients are known explicitly. The only 
exception in that list are Nikishin systems. A vector �μ = (μ1, μ2) defines a Nikishin 
system if there exists a measure τ such that

dμ2(x) = τ̂(x)dμ1(x) and Δ1 ∩ Δτ = ∅, (1.4.1)

where τ̂(z) is the Markov function of τ , see (0.0.15), Δ1
def= ch(supp μ1), and Δτ

def=
ch(supp τ) (here, ch(·) stands for the convex hull). Given two sets E1 and E2, we write 
E1 < E2 if sup E1 < inf E2. In what follows, we assume that

Δτ < Δ1. (1.4.2)

The case when Δτ > Δ1 can be handled similarly.
It is known that Nikishin systems are perfect [17,18,21]. The goal of this appendix is to 

show that the recurrence coefficients {a�n,1, a�n,2}�n∈N2 , see (0.0.19)–(0.0.20), of Nikishin 
systems have a definite sign pattern. That explains how the indefinite inner product S
should be defined to make the associated Jacobi matrix S-self-adjoint. Recall (0.0.21).

Theorem 1.4.1. For all �n ∈ N2 and j ∈ {1, 2} it holds that

sign a�n,j = (−1)j−1, n2 � n1, and sign a�n,j = (−1)j , n2 � n1 + 1.
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To prove this theorem, let us make the following observation. It holds that

1
τ̂(z) − z

m0(τ) + m1(τ)
m2

0(τ) = O
(

1
z

)
(1.4.3)

as z → ∞, where ml(τ) def=
´

xldτ(x). Next, we will use some basic facts from the theory 
of Herglotz-Nevalinna functions, see Section 3.1 further below. As the left-hand side of 
(1.4.3) has positive imaginary part in C+ and is holomorphic and vanishing at infinity, 
there exists a positive measure τd supported on Δτ , which we call the dual measure of 
τ , such that

1
τ̂(z) − z

m0(τ) + m1(τ)
m2

0(τ) = −τ̂d(z). (1.4.4)

The bulk of the proof of Theorem 1.4.1 is contained in Lemmas 1.4.2 and 1.4.3. These 
lemmas and ideas behind their proofs are not new, see, for example, [17,18,31], but we 
decided to include them as their proofs are short, they are formulated exactly in the way 
we need, and their inclusion makes the paper as self-contained as possible.

Let {P�n(x)} be monic type II MOPs for Nikishin system (1.4.1)–(1.4.2). Define

h�n,j
def=
ˆ

P 2
�n(x)dμj(x). (1.4.5)

Recall the functions of the second kind R�n,j(z) defined in (0.0.14). It follows from or-
thogonality relations (0.0.11) that

R�n,j(z) = 1
p(z)

ˆ

Δ1

p(x)P�n(x)
z − x

dμj(x) (1.4.6)

for any polynomial p(z) such that deg p � nj . Moreover, the Taylor expansion of (z−x)−1

at infinity gives

R�n,j(z) = h�n,j

znj+1

(
1 + O(z−1)

)
as z → ∞ . (1.4.7)

Then the following lemma holds.

Lemma 1.4.2. Let functions R�n,j(z) be given by (0.0.14) for a Nikishin system (1.4.1)–
(1.4.2) and τd be the dual measure of τ . The functions R�n,j(z) satisfy

ˆ
xkR�n,1(x)dτ(x) = 0 and

ˆ
xkR�n,2(x)dτd(x) = 0

for k � min{n1, n2 − 1} and k � min{n1 − 1, n2 − 2}, respectively. It further holds that
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ˆ
xn2R�n,1(x)dτ(x) = −h�n,2 and

ˆ
xn1R�n,2(x)dτd(x) = h�n,1

when n2 � n1 and n2 � n1 + 2, respectively. Finally, it holds that

‖τ‖h�n,1 − h�n,2 =
ˆ

xn2R�n,1(x)dτ(x) = ‖τ‖
ˆ

xn1R�n,2(x)dτd(x)

when n2 = n1 + 1, where ‖τ‖ = m0(τ) is the total mass of τ .

Proof. We only consider the case j = 2, the argument for j = 1 is similar. Assume that 
k � n1 − 1. Then

0 =
ˆ

P�n(x)xkdμ1(x) =
ˆ

P�n(x)xkτ̂−1(x)dμ2(x).

If we further assume that k � n2 − 2, then we get from (1.4.4) and orthogonality condi-
tions that

0 = −
ˆ

P�n(x)xkτ̂d(x)dμ2(x).

Thus, we can deduce from the Fubini-Tonelli Theorem that

0 = −
ˆ (ˆ

xkP�n(x)
x − y

dμ2(x)
)

dτd(y) =
ˆ

ykR�n,2(y)dτd(y)

as claimed, where we used (1.4.6) with p(x) = xk. Similarly, we have that

h�n,1 =
ˆ

P�n(x)xn1dμ1(x) = −
ˆ

P�n(x)xn1 τ̂d(x)dμ2(x) =
ˆ

yn1R�n,2(y)dτd(y)

when n1 � n2 − 2. Furthermore, if n1 = n2 − 1, we get from (1.4.4) that

h�n,1 = −
ˆ

P�n(x)xn1 τ̂d(x)dμ2(x) + ‖τ‖−1
ˆ

P�n(x)xn2dμ2(x)

=
ˆ

yn1R�n,2(y)dτd(y) + ‖τ‖−1h�n,2. �
Let r�n,j(x) be the monic polynomial with zeroes on Δτ such that R�n,j(x)/r�n,j(x) is 

analytic and non-vanishing on Δτ . It follows from the previous lemma that r�n,1(x) has at 
least min{n1, n2 −1} +1 different zeroes while r�n,2(x) has at least min{n1 −1, n2 −2} +1
different zeroes.

Lemma 1.4.3. If n2 � n1 + 1, r�n,1(x) has degree exactly n2 (in particular, all its zeroes 
are simple) and R�n,1(z)/r�n,1(z) is non-vanishing in C \ Δ1. Moreover,
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ˆ
xkP�n(x) dμ1(x)

r�n,1(x) = 0 and
ˆ

P 2
�n(x) dμ1(x)

r�n,1(x) = h�n,1,

where the first relation holds for any k < |�n|.
Similarly, if n2 � n1 + 1, r�n,2(x) has degree exactly n1 (in particular, all its zeroes 

are simple) and R�n,2(z)/r�n,2(z) is non-vanishing in C \ Δ1. Furthermore,
ˆ

xkP�n(x) dμ2(x)
r�n,2(x) = 0 and

ˆ
P 2

�n(x) dμ2(x)
r�n,2(x) = h�n,2,

where again the first relation holds for any k < |�n|.

Proof. It follows from the remark before the lemma that deg r�n,j = n3−j + mj , mj � 0, 
in the considered cases. Therefore, it follows from (1.4.7) that

R�n,j(z)/r�n,j(z) = h�n,jz−|�n|−mj−1 + O
(

z−|�n|−mj−2
)

as z → ∞ and the ratio is a holomorphic function in C \ Δ1. Let Γ be a smooth Jordan 
curve that encircles Δ1 but not Δτ . Then, by integrating over Γ in positive direction we 
get

0 = 1
2πi

ˆ

Γ

skR�n,j(s) ds

r�n,j(s) =
ˆ

P�n(x)

⎛⎝ 1
2πi

ˆ

Γ

sk

s − x

ds

r�n,j(s)

⎞⎠ dμj(x)

=
ˆ

xkP�n(x) dμj(x)
r�n,j(x)

for k < |�n| + mj , by the Cauchy theorem, the Fubini-Tonelli theorem, and the Cauchy 
integral formula. Since dμj(x)/r�n,j(x) is a measure of constant sign on Δ1, P�n(x) cannot 
be orthogonal to itself. Thus, mj = 0. Now, if there existed another real zero x0 /∈
Δ1 ∪ Δτ of R�n,j(z), then the above argument can be applied with rn,j(z) replaced 
by (z − x0)r�n,j(z) and Γ not containing x0 in its interior to arrive at a contradiction, 
namely, that P�n(x) is orthogonal to itself with respect to a measure of constant sign. If 
R�n,j(z0) = 0 for some z0 /∈ R, then R�n,j(z̄0) = 0 by conjugate-symmetry, and therefore 
the above argument can be used with (z − z0)(z − z̄0)r�n,j(z). Using (1.4.7) one more 
time, we get that

h�n,j = 1
2πi

ˆ

Γ

s|�n|R�n,j(s) ds

r�n,j(s) =
ˆ

x|�n|P�n(x) dμj(x)
r�n,j(x) =

ˆ
P 2

�n(x) dμj(x)
r�n,j(x)

by orthogonality and since P�n(x) is monic. �
Corollary 1.4.4. It holds that

sign h�n,1 = 1 and sign h�n,2 = 1
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when n2 � n1 + 1 and n2 � n1 + 1, respectively.

Proof. The claim follows from Lemma 1.4.3 since Δτ < Δ1 while each r�n,j(z) is a monic 
polynomial. �
Corollary 1.4.5. It holds that

R�n,1(z) = r�n,1(z)
P�n(z)

ˆ
P 2

�n(x)
z − x

dμ1(x)
r�n,1(x) and R�n,2(z) = r�n,2(z)

P�n(z)

ˆ
P 2

�n(x)
z − x

dμ2(x)
r�n,2(x)

when n2 � n1 + 1 and n2 � n1 + 1, respectively.

Proof. We have that

R�n,j(z) =
ˆ

P�n(x)r�n,j(x)
z − x

dμj(x)
r�n,j(x)

=
ˆ

r�n,j(x) − r�n,j(z)
z − x

P�n(x) dμj(x)
r�n,j(x) + r�n,j(z)

ˆ
P�n(x)
z − x

dμj(x)
r�n,j(x) .

Since n3−j − 1 < |�n| is the degree of (r�n,j(·) − r�n,j(z))/(z − ·), it holds that

R�n,j(z) = r�n,j(z)
ˆ

P�n(x)
z − x

dμj(x)
r�n,j(x) .

Using the same argument one more time yields the desired claim. �
Corollary 1.4.6. It holds that

sign h�n,1 = (−1)|�n|+1 and sign h�n,2 = (−1)|�n|

when n2 � n1 + 2 and n2 � n1, respectively.

Proof. It follows from the previous corollary that

sign (R�n,j(x)/r�n,j(x)) = (−1)|�n|+1, x ∈ Δτ , (1.4.8)

when n2 � n1 + 1 for j = 2 and n2 � n1 + 1 for j = 1. The claim now follows from 
Lemma 1.4.2 since

h�n,1 =
ˆ

xn1R�n,2(x)dτd(x) =
ˆ

r�n,2(x)R�n,2(x)dτd(x)

when n2 � n1 + 2 and

h�n,2 = −
ˆ

xn2R�n,1(x)dτ(x) = −
ˆ

r�n,1(x)R�n,1(x)dτ(x)

when n2 � n1. �



28 S.A. Denisov, M.L. Yattselev / Advances in Mathematics 396 (2022) 108114
Proof of Theorem 1.4.1. It is well known, see [33, Theorem 23.1.11], that if we multiply 
equation (0.0.20) by xnj−1 and integrate agains the measure μj, we will get

a�n,j =
´

P�n(x)xnj dμj(x)´
P�n−�ej

(x)xnj−1dμj(x)
= h�n,j

h�n−�ej ,j
, (1.4.9)

where we used (1.4.5) and orthogonality relations (0.0.11) to get the second equality. 
The claim of the theorem now follows from Corollaries 1.4.4 and 1.4.6. �
Part 2. Jacobi matrices on infinite rooted Cayley trees

Below we introduce a notion of a Jacobi matrix on an infinite 2-homogeneous rooted 
tree whose coefficients are generated by MOPs.

2.1. Definitions

Let �μ be a perfect system of measures on the real line with recurrence coefficients 
{a�n,i, b�n,i}, see (0.0.19) and (0.0.20). Assume that

sup
�n∈Z2

+, i∈{1,2}
|a�n,i| < ∞ and sup

�n∈Z2
+, i∈{1,2}

|b�n,i| < ∞ . (2.1.1)

Conditions (2.1.1) used along the marginal directions imply that the classical Jacobi 
matrices corresponding to μ1 and μ2 have bounded coefficients and therefore μ1, μ2 ∈ M.

2.1.1. Rooted Cayley tree

Hereafter, we let T stand for an infinite 2-homogeneous rooted tree (rooted Cayley 
tree) and V for the set of its vertices with O being the root. On the lattice N2, consider 
an infinite path{

�n(1), �n(2), . . .
}

, �n(1) = �1 def= (1, 1) and �n(l+1) = �n(l) + �ekl
, kl ∈ {1, 2}, l ∈ N.

Clearly, these are paths for which, as we move from �1 to infinity, the multi-index of 
each next vertex is increasing by 1 at exactly one position. Each such path can be 
mapped bijectively to a non-self-intersecting path on T that starts at O, see Fig. 3. This 
construction defines a projection Π : V → N2 as follows: given Y ∈ V we consider the 
non-self-intersecting path from O to Y , map it to a path on N2 and let Π(Y ) be the 
endpoint of the mapped path. Every vertex Y ∈ V, which is different from O, has a 
unique parent, which we denote by Y(p). That allows us to define the following index 
function:

ı : V → {1, 2}, Y �→ ıY such that Π(Y ) = Π(Y(p)) + �eıY
. (2.1.2)
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Fig. 3. Three generations of T .

This way, if Z = Y(p), then we write that Y = Z(ch),ιY
, see Fig. 3. Recall that for a 

function f on V, we denote its value at a vertex Y ∈ V by fY . As before, we introduce 
an artificial vertex O(p), a formal parent of the root O. We do not include O(p) into V, 
but we do extend every function f on V to O(p) by setting fO(p) = 0. We denote the space 
of square-summable functions on V by �2(V) and the standard inner product generating 
�2(V) by 〈·, ·〉.

The above construction differs from the one in Section 1.1 in the following ways: the 
projection Π maps onto the lattice N2, not Z2

+; the values |Π(Y )| increase rather than 
decrease as we go down the tree; the index function ιY now tells which coordinate of 
Π(Y(p)) needs to increase rather than decrease to get Π(Y ).

2.1.2. Jacobi matrices

In this subsection we specialize definition (0.0.9) to the case of Jacobi matrices on T
whose potentials V, W come from �μ. As in the previous part, we fix �κ ∈ R2 such that 
|�κ| = 1. We define the potentials V = V �μ, W = W �μ : V → R (again, as with the most 
quantities dependent on �μ, we drop the dependence on �μ from notation) by

VO
def= κ1b(0,1),1 + κ2b(1,0),2, WO

def= 1, and

VY
def= bΠ(Y(p)),ιY

, WY
def=
∣∣aΠ(Y(p)),ιY

∣∣, Y �= O. (2.1.3)

Notice the difference in definition of V as compared to (1.1.2). As before, this definition 
is consistent with (0.0.9) if we let WY(p),Y = WY,Y(p) = WY . We further choose function 
σ : V → {0, 1} to recover the signs of the recurrence coefficients a�n,i exactly as in (1.1.3). 
With these definitions, (0.0.9) specializes to the following Jacobi matrix J�κ = J �μ

�κ on T :

(J�κf)Y
def= VY fY + W

1/2
Y fY(p) + (−1)σY(ch),1 W

1/2
Y(ch),1

fY(ch),1

+ (−1)σY(ch),2 W
1/2
Y(ch),2

fY(ch),2 . (2.1.4)

Due to its local nature, J�κ is defined on the set of all functions on V. Moreover, assump-
tion (2.1.1) also shows that it is a bounded operator on �2(V) and therefore we can talk 
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about its spectrum σ(J�κ). Notice also that if a�n,i > 0 when ni > 0, �n = (n1, n2), i.e., if 
they satisfy (1.1.9) (recall also (0.0.21)), the operator J�κ is self-adjoint. Otherwise, let 
S be a diagonal matrix on T defined by (1.2.6) and [·, ·] be the corresponding indefi-
nite inner product on �2(V) given by (1.2.7). We define S-self-adjointness exactly as in 
(1.2.8).

Proposition 2.1.1. Jacobi matrices J�κ and J ∗
�κ are S-self-adjoint.

Proof. The operator J�κ is bounded in �2(V) and checking its S–self-adjointness is iden-
tical to the proof of Proposition 1.2.2 from the previous part. �
2.2. Basic properties

Recall the functions L�n(z) introduced in (0.0.14). We consider z ∈ C+ as a parameter 
and define

lY (z) def= m−1
Y LY (z), LY (z) def= LΠ(Y )(z), and mY

def=
∏

Z∈path(Y,O)

W
−1/2
Z , (2.2.1)

where path(Y, O) is the non-self-intersecting path connecting Y and O that includes both 
Y and O. More generally, we agree that any function f = {f�n} on the lattice N2 is also 

a function on V whose values are fY
def= fΠ(Y ).

Recall definition (0.0.15) of a Markov function. It will be convenient to formally set 
Π(O(p)) 

def= �κ = (κ1, κ2) def= (κ2, κ1) and

L�κ(z) def= κ2L�e1(z) + κ1L�e2(z) =
(
κ1‖μ1‖−1)μ̂1(z) +

(
κ2‖μ2‖−1)μ̂2(z), (2.2.2)

where the second equality follows straight from the definition (0.0.10) and the normal-
ization (0.0.13). The reason we introduced �κ is that this way the meaning of L�ei

(z) is 
still the same.

Given X ∈ V, we shall denote by T[X] the subtree of T with the root at X (in this 
case T[O] = T ). We also let V[X] be the set of vertices of T[X] and denote the restriction 
of the inner product in �2(V) to V[X] by the same symbol 〈·, ·〉. The notation J[X] and 
l[X] stand for the restrictions of J�κ and l to T[X] and V[X], respectively. In general, f[X]
will be used to denote the restriction of any function f , defined on V initially, to the 
subset V[X].

Proposition 2.2.1. It holds that

J�κl(z) = zl(z) − L�κ(z)δ(O). (2.2.3)

Given X ∈ V, X �= O, we also have

J[X]l[X](z) = zl[X](z) − m−1
X LX(p)(z)δ(X). (2.2.4)
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Proof. By integrating (0.0.19) against (z−x)−1 and noticing that |�n| � 2 for any �n ∈ N2, 
we get that

zL�n(z) = L�n−�ej
(z) + b�n−�ej ,jL�n(z) + a�n,1L�n+�e1(z) + a�n,2L�n+�e2(z), j ∈ {1, 2}.

Fix j and let Y �= O, Π(Y ) = �n, be such that Π(Y(p)) = �n −�ej . Then, the above relation 
can be rewritten as

zLY (z) =LY(p)(z) + VY LY (z) + (−1)σY(ch),1 WY(ch),1LY(ch),1(z)

+ (−1)σY(ch),2 WY(ch),2LY(ch),2(z).

It follows immediately from (2.2.1) and the above formula that zlY (z) =
(
J�κl(z)

)
Y

, 
Y �= O. Similarly, it holds that

zlO(z) =zLO(z)

=κ1
(
L�1−�e1

(z) + b�1−�e1,1LO(z)

+ (−1)σO(ch),1 WO(ch),1LO(ch),1(z) + (−1)σO(ch),2 WO(ch),2LO(ch),2(z)
)

+ κ2
(
L�1−�e2

(z) + b�1−�e2,2LO(z)

+ (−1)σO(ch),1 WO(ch),1LO(ch),1(z) + (−1)σO(ch),2 WO(ch),2LO(ch),2(z)
)
,

which finishes the proof (2.2.3) (recall that κ1 + κ2 = 1).
Consider the second claim of the lemma. Given any f defined on V, we can use (2.1.4)

to get

J[X]f[X] = (J�κf)[X] − W
1/2
X fX(p)δ

(X). (2.2.5)

Since W 1/2
X m−1

X(p)
= m−1

X , (2.2.4) follows from (2.2.5) applied to f = l. �
We need to introduce Green’s functions of J[X]. They are defined by

G(Y, X; z) def=
〈

(J[X] − z)−1δ(X), δ(Y )
〉

,

where X ∈ V and Y ∈ V[X]. Using Proposition 2.2.1 we can obtain the following 
conditional result. Since J[X] is a bounded operator, there exists R[X] > 0 such that 
σ(J[X]) ⊂ {|z| � R[X]}. Let C[X] denote the unbounded component of the complement 
of σ(J[X]) ∪ supp μ1 ∪ supp μ2 ∪ {z : LΠ(X(p))(z) = 0}.

Proposition 2.2.2. If there exists R > 0 such that l(z) ∈ �2(V) for |z| > R, then l(z) ∈
�2(V) for all z ∈ C[X], and for all such z we have that

(J[X] − z)−1δ(X) = −mX l[X](z)/LΠ(X(p))(z). (2.2.6)
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In particular, G(Y, X; z) extends to a holomorphic function in C[X] by

G(Y, X; z) = −mX

mY

LΠ(Y )(z)
LΠ(X(p))(z) . (2.2.7)

Proof. Let z ∈ C[X] be such that |z| > |R|. If X = O, identity (2.2.6) follows immediately 
from (2.2.3). If X �= O, it follows from (2.2.4). Formula (2.2.7) for such z now follows 
from the definition and (2.2.1). Moreover, since G(Y, X; z) is an analytic function of z /∈
σ(J[X]) and LΠ(Y )(z)/LΠ(X(p))(z) is analytic in z /∈ supp μ1∪supp μ2∪{z : LΠ(X(p))(z) =
0}, the full claim follows by analytic continuation. �

There are other functions that satisfy algebraic identities similar to (2.2.3). To intro-
duce them, we first recall (0.0.10) and (0.0.17). Set

Λ(k)
Y (z) def= m−1

Y A
(k)
Π(Y )(z), k ∈ {0, 1, 2}. (2.2.8)

Observe that Λ(0)
O = 0. For any functions f, g on V and a fixed vertex Z ∈ V we introduce 

a new function on V by

[f, g](Z) def= fZg − fgZ . (2.2.9)

We call it the commutator of functions f, g with respect to the vertex Z.

Proposition 2.2.3. The following algebraic identities hold

J�κΛ(k)(z) = zΛ(k)(z) − κ3−kA
(k)
�ek

(z)δ(O),

for each k ∈ {1, 2}, as well as

J�κΛ(0)(z) = zΛ(0)(z).

Furthermore, let X �= O. Then, for any k, l ∈ {0, 1, 2} it holds that

J[X]
[
Λ(k)(z), Λ(l)(z)

](X(p))
[X] = z

[
Λ(k)(z), Λ(l)(z)

](X(p))
[X] . (2.2.10)

Proof. We can repeat the proof of Proposition 2.2.1 with L�n(z) replaced by A
(k)
�n (z), 

k ∈ {1, 2}, and using (0.0.22) instead of (0.0.19) to get that

zΛ(k)(z) = J�κΛ(k)(z) +
(
κ1A

(k)
(0,1)(z) + κ2A

(k)
(1,0)(z)

)
δ(O).

Since A(k) (z) ≡ 0, the first claim follows. We further get from (0.0.17) and (2.2.3) that
�1−�ek
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J�κΛ(0)(z) = μ̂1(z)J�κΛ(1)(z) + μ̂2(z)J�κΛ(2)(z) − J�κl(z)

= zΛ(0)(z) −
(

κ2A
(1)
(1,0)(z) μ̂1(z) + κ1A

(2)
(0,1)(z) μ̂2(z) − L�κ(z)

)
δ(O).

Since A(1)
(1,0)(z) = ‖μ1‖−1 and A(1)

(0,1)(z) = ‖μ2‖−1 by (0.0.13), the second claim follows 
from (2.2.2). To prove the third claim, observe that

J[X]Λ
(k)
[X](z) = zΛ(k)

[X](z) − W
1/2
X Λ(k)

X(p)
(z)δ(X)

by (2.2.5). The desired identity (2.2.10) now easily follows from the definition (2.2.9). �
Remark. The relations of Proposition 2.2.3 should be regarded as algebraic identities 
and we do not claim that the functions involved belong to the Hilbert space �2(V) for 
any given z.

The spectral theory of Jacobi matrices (2.1.4) under the sole condition (2.1.1) is cur-
rently beyond our reach. In Part 3, however, we consider a large class of multiorthogonal 
systems, known as Angelesco systems, for which this analysis is possible.

2.3. Appendix to Part 2

In Part 3, we will explain that the so-called Angelesco systems generate bounded and 
self-adjoint Jacobi matrices. In the current appendix, we show that Nikishin systems, 
see Section 1.4, do not generate bounded Jacobi matrices, in general. We need some 
notation first. Recall that a measure μ supported on an interval Δ = [α, β] is called a 
Szegő measure if

G(μ) def= exp

⎧⎨⎩ 1
π

ˆ

Δ

log μ′(x)dx√
(x − α)(β − x)

⎫⎬⎭ > 0, (2.3.1)

where dμ(x) = μ′(x)dx + dμsing(x) and μsing is singular to Lebesgue measure.

Theorem 2.3.1. Let �μ be a Nikishin system (1.4.1)–(1.4.2) and {b�n,1, b�n,2, a�n,1, a�n,2}�n∈Z2
+

be the corresponding recurrence coefficients, see (0.0.19)–(0.0.20). Then, there exists a 
constant C�μ such that

sup
�n∈Z2

+

|b�n,i| � C�μ, sup
�n∈Z2

+:n2�n1 or n2�n1+2
|a�n,i| � C�μ (2.3.2)

for any i ∈ {1, 2}. Assume further that the measures μ1 and τ are Szegő measures. Then,

lim a(n,n+1),1 = −∞ and lim a(n,n+1),2 = ∞. (2.3.3)

n→∞ n→∞
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It is conceivable that the Szegő condition for the measures can be relaxed. However, 
we assume it to simplify the proof. Our result shows that even for nice measures μ1, τ
the corresponding Nikishin system does not generate a bounded Jacobi matrix. In the 
remaining part of this section, we prove Theorem 2.3.1.

Lemma 2.3.2. There exists a constant C�μ such that

sup
�n∈Z2

+, i∈{1,2}
|b�n,i| � C�μ.

Proof. We continue to use notation from Section 1.4. The following argument is taken 
from [8]. Divide recursion relations (0.0.20) by xP�n(x) and integrate over a contour Γ
that encircles Δ1 ∪ {0} in the positive direction to get

1
2πi

ˆ

Γ

(
1 − P�n+�ei

(z)
zP�n(z)

)
dz = b�n,i + 1

2πi

ˆ

Γ

2∑
k=1

a�n,k
P�n−�ek

(z)
zP�n(z) dz.

The last integral is zero by the Cauchy theorem applied at infinity. Therefore,

|b�n,i| �
1

2π

ˆ

Γ

∣∣∣∣P�n+�ei
(z)

P�n(z)

∣∣∣∣ |dz|
|z| .

It is known that the zeroes of P�n+�ei
(z) and P�n(z) interlace. Indeed, this follows from 

[32, Theorem 2.1], see also [22, Corollary 1], since it was established in [21] that {1, ̂τ}
is an AT system on Δ1 relative to μ1, see also [20, page 782]. Thus, it holds that

P�n+�ei
(z)

P�n(z) = (z − x�n+�ei,1)(z − x�n+�ei,|�n|+1)
|�n|∑
l=1

c�n,l

z − x�n,l
, (2.3.4)

where c�n,l > 0 and 
∑|�n|

l=1 c�n,l = 1, and x�m,1 < x�m,2 < · · · < x�m,|�m| are the zeroes 
of P�m(x), which all belong to Δ1. That shows boundedness of |P�n+�ei

(z)/P�n(z)| on Γ
independently of �n and therefore proves the desired claim. �

Let r�n,1(z), r�n,2(z) be polynomials from Lemma 1.4.3.

Lemma 2.3.3. If multi-indices �n and �n + �ei both belong to the region {(n1, n2) : n2 �
n1 + 1}, then the zeroes of r�n,1(z) and r�n+�ei,1(z) interlace. Similarly, if multi-indices �n
and �n + �ei both belong to the region {(n1, n2) : n2 � n1 + 1}, then the zeroes of r�n,2(z)
and r�n+�ei,2(z) interlace.

Proof. The first claim was shown in [12, Theorem 2.1]. The proof of the second claim is 
identical provided one knows that the functions AR�n,2(z) + BR�n+�ei,2(z) have no more 
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than n1+1 zeroes in R\Δ1 all of which are simple (A, B are arbitrary real constants). The 
last property can be established exactly as in Lemma 1.4.3, where the cases A = 0, B = 1
and A = 1, B = 0 were considered. �

Recall that if qn(x; μ) is the n-th monic orthogonal polynomial with respect to measure 
μ on the real line, then qn(x; μ) is the unique minimizer of the following variational 
problem:

ˆ
q2

n(x; μ)dμ(x)

= min
{ˆ

q2(x)dμ(x) : q(x) = xn + qn−1xn−1 + · · · + q1x + q0, {qj} ∈ R

}
.

(2.3.5)

Lemma 2.3.4. We have a bound

sup
i∈{1,2}, �n∈Z2

+:n2�n1 or n2�n1+2
|a�n,i| � C�μ.

Proof. As shown in Lemma 1.4.3, it holds that

h�n,1 =
ˆ

P 2
�n(x) dμ1(x)

r�n,1(x)

when n2 � n1 + 1. Recall that the monic polynomials r�n,1(x) and r�n−�e1,1(x) have degree 
n2 and all their zeroes belong to Δτ when n2 � n1 by Lemma 1.4.3. Let 0 < l < L be 
constants given by

l−1 def= max{|x − y| : x ∈ Δ1, y ∈ Δτ } and

L−1 def= min{|x − y| : x ∈ Δ1, y ∈ Δτ }. (2.3.6)

Then, when n2 � n1, it follows from Lemma 2.3.3 that lr�n−�e1,1(x) � Lr�n,1(x) for any 
x ∈ Δ1 > Δτ . Let γ be the midpoint of Δ1 and |Δ1| be its length. Using (2.3.5), we get 
that

h�n−�e1,1 � 4
|Δ1|2

ˆ
(x − γ)2P 2

�n−�e1
(x) dμ1(x)

r�n−�e1,1(x) � 4
|Δ1|2

l

L

ˆ
(x − γ)2P 2

�n−�e1
(x) dμ1(x)

r�n,1(x)

� 4
|Δ1|2

l

L
min

{ˆ
q2(x) dμ1(x)

r�n,1(x) : q(x) = x|�n| + · · ·
}

= 4
|Δ1|2

l

L
h�n,1.

Therefore, it follows from (1.4.9) that

|a�n,1| = |h�n,1/h�n−�e1,1| � (|Δ1|2L)/(4l), n2 � n1. (2.3.7)
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Furthermore, we get from recursion relations (0.0.20) that

x − b�n,i = P�n+�ei
(x)

P�n(x) + a�n,1
P�n−�e1(x)

P�n(x) + a�n,2
P�n−�e2(x)

P�n(x) . (2.3.8)

Take x = β1 + 1, where Δ1 = [α1, β1]. The interlacing property used in Lemma 2.3.2, 
see (2.3.4), implies that the ratios of polynomials in the above formula are positive and 
bounded above and away from zero independently of �n. Thus, it follows from Lemma 2.3.2
and (2.3.7) that

|a�n,2| � C�μ, n2 � n1,

for some constant C�μ independent of �n, which is not necessarily the same as in 
Lemma 2.3.2. The proof in the case n2 � n1 + 2 is absolutely analogous: we first use 
Lemmas 1.4.3 and 2.3.3 to show boundedness of a�n,2 and then use recurrence relations 
(0.0.20) and Lemma 2.3.2 to deduce boundedness of a�n,1. �

We are left with proving (2.3.3). To proceed, let us recall some results from [40]. 
Consider the function

ψ(z) = z +
√

z2 − 1,

which is the conformal map of C \ [−1, 1] onto C \ {|z| � 1} such that ψ(∞) = ∞ and 
ψ′(∞) > 0. Let μ be a Szegő measure on [−1, 1] and {a2n,i}2n

i=1 ⊂ C \ [−1, 1] define a 
sequence of multi-sets of complex numbers that are conjugate-symmetric and satisfy

lim
n→∞

2n∑
i=1

(
1 − |ψ(a2n,i)|−1) = ∞ . (2.3.9)

We emphasize that the elements in each multi-set {a2n,i}2n
i=1 can be equal to each other 

and some of them can be equal to ∞. Let mn be the number of finite elements in 
{a2n,i}2n

i=1. Set

w2n(z) def=
2n∏

i=1
(1 − z/a2n,i) and w̃2n(z) def=

∏
|a2n,i|<∞

(z − a2n,i),

which are polynomials of degree mn � 2n (w̃2n(z) is the monic renormalization of 
w2n(z)). Conjugate-symmetry of {a2n,i}2n

i=1 guarantees that w2n(z) is real on the real line. 
Notice that w2n(z) ≡ 1 when a2n,i = ∞ for all i ∈ {1, . . . , 2n}. If γn is the leading coeffi-
cient of the n-th polynomial orthonormal with respect to the measure |w2n(x)|−1dμ(x), 
then

γ−2
n = min

{ˆ
q2(x) dμ(x) : q(x) = xn + · · ·

}
, (2.3.10)
|w2n(x)|
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see (2.3.5). It was shown in [40, Corollary 1] that

lim
n→∞

γ−2
n 22n

∏
|a2n,i|<∞

(
ψ(a2n,i)
2a2n,i

)
= 2G(μ),

where G(μ) was introduced in (2.3.1). Furthermore, if γ̃−2
n is defined to be the right-hand 

side of (2.3.10) with |w2n(x)|−1dμ(x) replaced by |w̃2n(x)|−1dμ(x), then it clearly holds 
that

lim
n→∞

γ̃−2
n 22n−mn

mn∏
i=1

ψ(a2n,i) = 2G(μ) . (2.3.11)

More generally, let ν be a Szegő measure on an interval Δ = [α, β] and dn(z) be a 
monic polynomial of degree mn � 2n with all its zeroes belonging to an interval Δ∗ such 
that Δ∗ ∩ Δ = ∅. Define

Ωn(ν, dn) def= min
{ˆ

q2(x) dν(x)
|dn(x)| : q(x) = xn + · · ·

}
. (2.3.12)

By rescaling the variables as x(s) = |Δ|(s + 1)/2 + α, we get from (2.3.11) that

lim
n→∞

Ωn(ν, dn)(4/|Δ|)2n−mn

mn∏
i=1

ψ(s2n,i) = |Δ|G(ν), (2.3.13)

where {x(s2n,i)}mn
i=1 are the zeroes of dn(x).

We will need the following auxiliary statement.

Lemma 2.3.5. If G(τ) > 0, then G(τd) > 0. That is, the dual measure τd is a Szegő 
measure when τ is a Szegő measure.

Proof. It follows from Proposition 3.1.4 further below that τ ′
d(x) exists almost every-

where on Δτ and

τ ′
d(x) = |τ̂+(x)|−2τ ′(x) �

(
π2τ ′(x)

)−1

for a.e. x ∈ Δτ = [ατ , βτ ]. Thus, if we let wτ (x) def=
√

(x − ατ )(βτ − x), x ∈ Δτ , then it 
holds that

G(τd) � exp
{

1
π

ˆ
log
(

1
wτ (x)τ ′(x)

)
dx

wτ (x) + 1
π

ˆ
log
(

wτ (x)
π2

)
dx

wτ (x)

}
= Cτ exp

{
1
π

ˆ
log
(

1
wτ (x)τ ′(x)

)
dx

wτ (x)

}
� πCτ´

τ ′(x)dx
> 0,

where we used Jensen’s inequality at the last step. �
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Lemma 2.3.6. Assume that τ is a Szegő measure. Then, there exists a constant C�μ > 0
such that

C−1
�μ � h(n,n+1),2/h(n,n+1),1 � C�μ

for all n ∈ N.

Proof. Let �n = (n, n + 1) and l, L be as in (2.3.6). It follows from Corollary 1.4.5 and 
Lemma 1.4.3 that

lh�n,j � |P�n(x)R�n,j(x)/r�n,j(x)| � Lh�n,j , x ∈ Δτ , (2.3.14)

(recall that h�n,j > 0 for such �n by Corollary 1.4.4). We further get from Lemma 1.4.2
that

ˆ
xkr�n,2(x)R�n,2(x)dτd(x)

r�n,2(x) = 0

for k � n −1 and deg r�n,2 = n, where the measure R�n,2(x)dτd(x)/r�n,2(x) is non-negative 
on Δτ , see (1.4.8). Therefore,

ˆ
xnR�n,2(x)dτd(x) =

ˆ
r2

�n,2(x)R�n,2(x)dτd(x)
r�n,2(x)

= min
q(x)=xn+···

ˆ
q2(x)R�n,2(x)dτd(x)

r�n,2(x) , (2.3.15)

where we used (2.3.5) for the last equality. One can readily check that

min
q(x)=xn+···

ˆ
q2(x)dτ1(x) � min

q(x)=xn+···

ˆ
q2(x)dτ2(x)

if τ1(B) � τ2(B) for all Borel sets B. Hence, it follows from (2.3.14) that

l2h�n,2Ωn(τd, P ∗
�n) � min

q(x)=xn+···

ˆ
q2(x)R�n,2(x)dτd(x)

r�n,2(x) � L2h�n,2Ωn(τd, P ∗
�n),

where Ωn(τd, P ∗
�n) is defined via (2.3.12), P ∗

�n(x) = P�n(x)/(x − x�n,2n+1), and we denote 
the zeroes of P�n(x) by x�n,1 < . . . < x�n,2n+1 (we stripped one zero from P�n(x) since 
deg P�n = 2n + 1 > 2n = 2 deg r�n,2). Similarly, we get that

lh�n,1Ωn+1(τ, P�n) � min
q(x)=xn+1+···

ˆ
q2(x)R�n,1(x)dτ(x)

r�n,1(x) � Lh�n,1Ωn+1(τ, P�n)

(here, we do not need to strip zeroes from P�n(x) since deg P�n = 2n + 1 < 2(n + 1) =
2 deg r�n,1). Then, it follows from the last claim of Lemma 1.4.2 (the equality of the 
integrals), (2.3.15), and a similar formula for R�n,1(x) that
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1
‖τ‖

l

L2
Ωn+1(τ, P�n)
Ωn(τd, P ∗

�n) � h�n,2

h�n,1
� 1

‖τ‖
L

l2
Ωn+1(τ, P�n)
Ωn(τd, P ∗

�n) . (2.3.16)

By Lemma 2.3.5, we know that τd is a Szegő measure and we can apply formula (2.3.13)
to control the ratios in the left-hand and right-hand sides of (2.3.16). We get

CΔτ ,Δ1

G(τ)
G(τd) � lim inf

n→∞
Ωn+1(τ, P�n)
Ωn(τd, P ∗

�n) � lim sup
n→∞

Ωn+1(τ, P�n)
Ωn(τd, P ∗

�n) � C ′
Δτ ,Δ1

G(τ)
G(τd) , (2.3.17)

where CΔτ ,Δ1 and C ′
Δτ ,Δ1

depend only on the intervals Δτ and Δ1. The desired claim 
now follows from (2.3.16) and (2.3.17). �
Lemma 2.3.7. Assume that τ is a Szegő measure. Then,

lim
n→∞

h(n,n),1/h(n,n),2 = ∞.

Proof. Let �n = (n, n). Similarly to (2.3.15), it follows from Lemma 1.4.2, (1.4.8), and 
(2.3.5) that

h�n,2 = −
ˆ

xnR�n,1(x)dτ(x) = min
q(x)=xn+···

ˆ
q2(x) |R�n,1(x)|dτ(x)

|r�n,1(x)| .

As in the previous lemma, we get from (2.3.14) that

0 � h�n,2

h�n,1
� L min

q=xn+···

ˆ
q2(x) dτ(x)

|P�n(x)| = LΩn(τ, P�n).

Again, as in the previous lemma, let x(s) = |Δτ |(s + 1)/2 + ατ , Δτ = [ατ , βτ ]. Then, we 
get from (2.3.13) that

lim
n→∞

Ωn(τ, P�n)
2n∏

i=1
ψ(s�n,i) = |Δτ |G(τ),

where x�n,i = x(s�n,i), i ∈ {1, . . . , 2n}, are the zeroes of P�n(x). Since x�n,i � α1 > βτ and 
therefore ψ(s�n,i) � ψ(x−1(α1)) > 1, it holds that limn→∞ Ωn(τ, P�n) = 0, which finishes 
the proof of the lemma. �
Lemma 2.3.8. Assume that μ1 is a Szegő measure. Then, there exists a constant C�μ > 0
such that

C−1
�μ � h(n,n+1),1/h(n,n),1 � C�μ

holds for all n ∈ N.
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Proof. As shown in Lemma 1.4.3, it holds that deg r�n,1 = n2 and

h�n,1 =
ˆ

P 2
�n(x) dμ1(x)

r�n,1(x) = min
q(x)=x|�n|+···

ˆ
q2(x) dμ1(x)

r�n,1(x) = Ω|�n|(μ1, r�n,1)

when n2 � n1 + 1, where we also used property (2.3.5) and definition (2.3.12). Let 
x(s) = |Δ1|(s + 1)/2 + α1, where Δ1 = [α1, β1]. Then, it follows from (2.3.13) that

lim
n→∞

Ω2n(μ1, r(n,n),1)
(
4/|Δ1|

)3n
n∏

i=1
|ψ(s(n,n),i)| = |Δ1|G(μ1),

where x�n,i = x(s�n,i), i ∈ {1, . . . , n}, are the zeroes of r�n,1(x), and

lim
n→∞

Ω2n+1(μ1, r(n,n+1),1)(4/|Δ1|
)3n+1

n+1∏
i=1

|ψ(s(n,n+1),i)| = |Δ1|G(μ1).

Recall that according to Lemma 2.3.3, the zeroes of r�n,1(x) and r�n+�el,1(x) interlace as 
long as both �n and �n + �el belong to the set {n2 � n1 + 1}. Thus,

|ψ(x−1(ατ ))|−1
n+1∏
i=1

|ψ(s(n,n+1),i)| �
n∏

i=1
|ψ(s(n,n),i)|

� |ψ(x−1(βτ ))|−1
n+1∏
i=1

|ψ(s(n,n+1),i)|,

where, as before, we write Δτ = [ατ , βτ ] < Δ1. Therefore, by combining the previous 
estimates, we get that

C−1
�μ � lim inf

n→∞

h(n,n+1),1

h(n,n),1
� lim sup

n→∞

h(n,n+1),1

h(n,n),1
� C�μ

which yields the desired claim. �
Proof of Theorem 2.3.1. The proofs of the claims in (2.3.2) are contained in Lem-
mas 2.3.2 and 2.3.4. It further follows from (1.4.9) that

a(n,n+1),2 =
h(n,n+1),2

h(n,n),2
=
(

h(n,n+1),2

h(n,n+1),1

)
·
(

h(n,n),1

h(n,n),2

)
·
(

h(n,n+1),1

h(n,n),1

)
.

Thus, the second claim of (2.3.3) is a consequence of Lemmas 2.3.6–2.3.8. The first claim 
of (2.3.3) now follows from the considerations laid out right after (2.3.8). �
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Part 3. Jacobi matrices of Angelesco systems

In this part, we consider Angelesco systems [4]. These are systems �μ = (μ1, μ2) that 
satisfy

Δ1 ∩ Δ2 = ∅, Δi
def= ch(supp μi) = [αi, βi], (3.0.1)

where, as before, ch(·) stands for the convex hull of a set. Without loss of generality, 
we assume that Δ1 < Δ2 (recall that we write E1 < E2 if two sets E1 and E2 satisfy 
sup E1 < inf E2). Note that Δ1, Δ2 is a system of two closed intervals separated by an 
open one. It will be convenient to use notation

μ� def= μ1 + μ2. (3.0.2)

It is known, see [9, Appendix A], that Angelesco systems satisfy not only (0.0.18) and 
(2.1.1), but also (1.1.8). In particular, Jacobi matrices J�κ of such systems are bounded 
and self-adjoint. It is also known that l(z) ∈ �2(V) for |z| > R and some R > 0, 
see [9, Proposition 4.2]. The function L�n(z) has no zeroes outside Δ1 ∪ Δ2 (see, e.g., 
Lemma 3.6.4) for any �n. Therefore, (2.2.6) holds everywhere in σ(J�κ) ∪supp μ1 ∪supp μ2
as σ(J�κ) ⊂ R.

3.1. Poisson integrals

Our primary working tool in studying spectral properties of J�κ are the Green’s func-
tions G(Y, X; z), whose boundary behavior we investigate via formula (2.2.7). To ease 
referencing while doing so, we gather some well-known properties of functions harmonic 
in C+, the upper half-plane, in this section.

Proposition 3.1.1. Let v(z) be a function harmonic in C+ and such that

sup
y>0

ˆ

R

|v(x + iy)|pdx < ∞ (3.1.1)

for some p � 1. Then, there exists a finite (generally signed) measure μ on R such that

v(x + iy) =
ˆ

R

Pz(t)dμ(t), Pz(t) def= 1
π

Im
(

1
t − z

)
, z = x + iy , (3.1.2)

where Pz(t) is known as the Poisson kernel. The measure μ is constructed as

v(x + iy)dt
∗→ dμ(x) as y → 0+, (3.1.3)

where ∗→ denotes the weak∗ convergence of measures. The limit



42 S.A. Denisov, M.L. Yattselev / Advances in Mathematics 396 (2022) 108114
μ′(x) = lim
y→0+

v(x + iy) (3.1.4)

exists for Lebesgue almost all x on the real line (the limit in (3.1.4) can be taken in 
non-tangential sense) and

dμ(x) = μ′(x)dx + dμsing(x), (3.1.5)

where μsing is singular to Lebesgue measure. For each p > 1, (3.1.1) holds if and only if 
μsing ≡ 0 and μ′ ∈ Lp(dx).

Proof. This proposition is a combination of Theorem I.3.1, I.3.5, and I.5.3 of [26]. �
Hereafter we use the following convention: for a closed interval Δ, we let Δ◦ be the 

corresponding open interval. We denote by DC(I) the set of Dini-continuous functions 
on I ∈ {Δ, Δ◦} (see, e.g., p.105 in [26]).

Proposition 3.1.2. Let v(z) = Im f(z) for some function f(z) analytic in C+ which 
satisfies

lim
y→+∞

f(iy) = 0. (3.1.6)

(1) If v(z) satisfies (3.1.1) for some p > 1, then so does f(z).
(2) Suppose v(z) satisfies (3.1.1) with p = 1, the measure μ, defined in (3.1.3), is ab-

solutely continuous on some open, possibly unbounded, interval I, and μ′ ∈ DC(I), 
then f(z) extends continuously to I from C+.

Proof. Given condition (3.1.6), we can write f = −ṽ + iv, where ṽ is the harmonic 
conjugate of v. Now, the proof follows by applying a combination of Theorem III.2.3 and 
Corollary III.1.4 in [26]. �

The following result provides an integral representation of functions that are harmonic 
and positive in C+.

Proposition 3.1.3. A function u(z) is positive harmonic in C+ if and only if

u(x + iy) = by +
ˆ

R

Pz(t)dμ(t), (3.1.7)

where b � 0 and μ is a positive measure satisfying 
´
R(1 + x2)−1dμ(x) < ∞. Given such 

u(z), the measure μ can be obtained via (3.1.3).

Proof. These claims are contained in [26, Theorem I.3.5]. �
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The function m(z) belongs to HN, the Herglotz-Nevanlinna class, if it is holomorphic 
in C+ and has non-negative imaginary part there. Such functions allow the following 
unique integral representation [26]

m(z) = 1
π

ˆ

R

(
1

x − z
− x

x2 + 1

)
dμ(x) + bz + ã, z ∈ C+, (3.1.8)

where ã ∈ R, and b, μ are as in (3.1.7). If m(z) has a holomorphic continuation to 
a punctured neighborhood of infinity (where its has a simple pole), the measure μ is 
compactly supported and the above representation becomes

m(z) = −π−1μ̂(z) + bz + a, z ∈ C+, (3.1.9)

where b � 0, a ∈ R, and μ̂(z) is the Markov function of μ, see (0.0.15). Notice that

Im m(z) = by +
ˆ

R

Pz(t)dμ(t).

Motivated by (3.1.3), we shall set

Im m+ def= μ . (3.1.10)

We will be particularly interested in reciprocals μ̂−1 of Markov functions μ̂. It follows 
straight from the definition that μ̂−1 ∈ HN. Since μ is positive and has compact support, 
there exist a compactly supported positive measure υ and a real number a such that

μ̂−1(z) = a + ‖μ‖−1z − υ̂(z). (3.1.11)

We called the measure υ dual to μ, see (1.4.4). Let DC0(Δ) ⊂ DC(Δ) be the subset of 
functions that vanish at the endpoints of a closed interval Δ.

Proposition 3.1.4. Let μ be compactly supported non-negative measure and μsing denote 
its singular part. It holds that

(1) The traces μ̂±(x) def= limy→0± μ̂(x + iy) exist and are finite almost everywhere on the 
real line.

(2) μ′(x) = −π−1 Im
(
μ̂+(x)

)
almost everywhere on the real line.

(3) μ({E}) = limy→0+ iyμ̂(E + iy) and supp μsing ⊆
{

x : − limy→0+ Im
(
μ̂(x + iy)

)
=

∞
}

.
(4) If supp μ = Δ, μ is absolutely continuous, and μ′ ∈ DC0(Δ), then μ̂(z) extends 

continuously to R from C+ and from C−. Moreover, μ̂+(x) = μ̂−(x).
(5) If, in addition to assumptions in (4), we have μ′(x) > 0 for x ∈ Δ◦, then μ̂±(x) �= 0, 

x ∈ R.
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Proof. (1) This claim follows from [26, Theorem I.5.3, Lemma III.1.1, and Theo-
rem III.2.1].
(2) The claim is a restatement of (3.1.4).
(3) These statements can be found in [37, Proposition 1] and [39, Proposition 2.3.12].
(4) This claim follows from Proposition 3.1.2(2) since μ′ ∈ DC(I) for any open interval 
I containing Δ.
(5) Since Im

(
μ̂+(x)

)
= −πμ′(x) by claim (2), it is non-vanishing on Δ◦. Moreover, 

Re
(
μ̂+(x)

)
= μ̂(x) for x /∈ Δ◦ and therefore is monotonically decreasing there while also 

equal to zero at infinity. Thus, it is necessarily non-vanishing for x /∈ Δ◦. �
3.2. Reference measures

As we mentioned before, formula (2.2.7) is central to our analysis and therefore we 
need to study the functions L�n(z). Below, we shall often refer to the auxiliary lemmas 
proven in Section 3.6.

Lemma 3.2.1. Assume that the measure μk is supported on Δk and is absolutely contin-
uous with μ′

k ∈ DC0(Δk) and μ′
k(x) > 0 for x ∈ Δ◦

k, k ∈ {1, 2}. Then, given �n ∈ N2, 
the function L�n(z) extends continuously to the real line from C+ and, in particular, the 
function |L�n(x)| is well-defined, continuous, and non-vanishing on the whole real line.

Proof. It follows from (0.0.16) and Proposition 3.1.2(2) that L�n(z) extends continuously 
to the real line from the upper and lower half-planes. Actually, as L�n+(x) and L�n−(x)
are complex-conjugates of each other, |L�n(x)| is well-defied and continuous on all of C. 
It follows from Lemma 3.6.4(3) that it is non-vanishing outside of Δ◦

1 ∪ Δ◦
2. We further 

get from Proposition 3.1.4(2-4) that Im L�n+(x) = −πA
(k)
�n (x)μ′

k(x) on Δk. Thus, |L�n(x)|
is non-vanishing outside of zeroes of A(k)

�n (x). However, we show in Lemma 3.6.4(4) that 
Re L�n+(E) �= 0 for each such zero E. �

In the case of systems �μ satisfying conditions of Lemma 3.2.1 we can introduce “ref-
erence measures” as

|L�n(x)|−2dμ�(x), (3.2.1)

where μ� was defined in (3.0.2). When �μ is no longer smooth, we use the general theory of 
Herglotz-Nevalinna functions to introduce them. We start with a few definitions. Given 
ξ ∈ (β1, α2), define D�n,ξ(z) by

D�n,ξ(z) def= (−1)n2(z − ξ)A(1)
�n (z)A(2)

�n (z) (3.2.2)

and non-negative function S�n,ξ(x) by
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S�n,ξ(x) def= |x − ξ|−1
(

χΔ1(x) |A(2)
�n (x)|−1 + χΔ2(x) |A(1)

�n (x)|−1
)

.

Let E�n be the set of zeroes of A(1)
�n (z)A(2)

�n (z). For each E ∈ E�n, we define an auxiliary 
measure ν�n,E by

dν�n,E(x) def=
D�n,ξ(x)A(1)

�n (x)
(x − E)2 dμ1(x) +

D�n,ξ(x)A(2)
�n (x)

(x − E)2 dμ2(x) . (3.2.3)

This is a well-defined measure on Δ1 ∪ Δ2 since each E ∈ Δk is a double zero of 
the respective numerator. In Lemma 3.6.4(2), we prove that ν�n,E(x) is in fact positive 
provided that ξ ∈ (β1, α2). Recall that HN stands for the Herglotz-Nevanlinna class.

Proposition 3.2.2. Given �n ∈ N2, it holds that (D�n,ξL�n)−1 ∈ HN for any ξ ∈ (β1, α2). 
There exists a non-negative measure ω�n (the reference measure) supported on Δ1 ∪ Δ2
such that

1
D�n,ξ(z)L�n(z) =

ˆ

R

S�n,ξ(x)dω�n(x)
x − z

+
∑

E: D�n,ξ(E)=0

ζ�n,ξ(E)
E − z

+ a�n,ξ + b�n,ξz, z ∈ C+ ,

(3.2.4)
where a�n,ξ ∈ R, b�n,ξ > 0 and the numbers ζ�n,ξ(E) def= −(D′

�n,ξ(E)L�n+(E))−1 are well-
defined and positive for every zero E of D�n,ξ(x) (in fact, ζ�n,ξ(E) = ‖ν�n,E‖ − ν�n,E({E})
for each E ∈ E�n). Measure ω�n has no atoms at the zeroes of D�n,ξ(z). Moreover, if �μ

satisfies the conditions of Lemma 3.2.1, then dω�n(x) is equal to (3.2.1).

Proof. It is shown in Lemma 3.6.4(2) that the linear form D�n,ξ(x)Q�n(x) is, in fact, a non-
negative measure on Δ1 ∪Δ2 for any ξ ∈ (β1, α2), and, according to Lemma 3.6.4(1), the 
Markov function of this measure is equal to D�n,ξ(z)L�n(z). Therefore, (D�n,ξL�n)−1 ∈ HN
and we get from (3.1.11) that there exist constants b�n,ξ > 0, a�n,ξ ∈ R, and a non-negative 
measure υ�n,ξ such that(

D�n,ξ(z)L�n(z)
)−1 − a�n,ξ − b�n,ξz = −π−1υ̂�n,ξ(z). (3.2.5)

The measure υ�n,ξ has a point mass at ξ since D�n,ξ(z)L�n(z) is holomorphic around ξ and 
has a simple zero there. The mass at ξ can be computed via Proposition 3.1.4(3), where 
one needs to observe that D′

�n,ξ(ξ)L�n(ξ) < 0 because Markov functions have negative 
derivatives on the real line away from the support of the defining measure. If E ∈ E�n, it 
follows from Proposition 3.1.4(3) and Lemma 3.6.4(4) that

υ�n,ξ({E}) = −π lim
y→0+

(
iy(D�n,ξ(E + iy)L�n(E + iy))−1

)
= −π(D′

�n,ξ(E)L�n+(E))−1 = π(‖ν�n,E‖ − ν�n,E({E}))−1 > 0. (3.2.6)

Hence, the reference measure ω�n introduced in the proposition is equal to
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dω�n(x) = π−1S−1
�n,ξ(x)dυ�n,ξ(x) −

∑
E: D�n(ξ;E)=0

S−1
�n,ξ(E)ζ�n,ξ(E)dδE(x)

and it has no atoms at the zeroes of D�n(ξ; x). To show that ω�n is indeed independent of 
ξ, let us derive an explicit expression for it when �μ satisfies the condition of Lemma 3.2.1. 
We know from Lemma 3.6.4(1,2) and Proposition 3.1.4(2-4) that

Im(L�n+(x)) = −π
(

χΔ1(x)A(1)
�n (x)μ′

1(x) + χΔ2(x)A(2)
�n (x)μ′

2(x)
)

. (3.2.7)

It further follows from Lemma 3.2.1 that |L�n(x)| is continuous and non-vanishing on the 
real line. Therefore, for any x /∈ E�n we get that

−π−1 Im(υ̂�n,ξ+(x)) = −|L�n(x)|−2D−1
�n,ξ(x) Im(L�n+(x)) < ∞. (3.2.8)

Thus, Proposition 3.1.4(3) yields that the support of the singular part of υ�n,ξ is a subset 
of the zeroes of D�n,ξ(z) (actually, is equal to it by what precedes). Hence, in this case 
ω�n is an absolutely continuous measure and it follows from Proposition 3.1.4(2) that

dω�n(x) = π−1S−1
�n,ξ(x)υ′

�n,ξ(x)dx = −π−2S−1
�n,ξ(x) Im

(
υ̂�n,ξ+(x)

)
dx = |L�n(x)|−2dμ�(x)

as claimed, where we used (3.2.2), (3.2.7), (3.2.8), and Lemma 3.6.4(2) to get the last 
equality.

Let �μ be any Angelesco system and {�μm} be a sequence of Angelesco systems satisfying 
conditions of Lemma 3.2.1 and such that μm,l

∗→ μl as m → ∞, l ∈ {1, 2}. Since the 
moments of μm,l converge to the corresponding moments of μl, MOPs with respect to �μm

converge uniformly on compact subsets of C to the corresponding MOPs with respect 
to �μ. Thus, linear forms (0.0.12) with respect to �μm converge in the weak∗ topology to 
the corresponding linear form with respect to �μ. Therefore, their functions of the second 
kind (0.0.14) converge uniformly on closed subsets of C \ (Δ1 ∪ Δ2) to the respective 
function of the second kind with respect to �μ. Since compactly supported measures on 
the real line are uniquely determined by their moments and those moments are the 
Laurent coefficients at infinity of the respective Markov function, it also holds that the 
measures (3.2.3) and (3.2.5) defined with respect to �μm converge in the weak∗ topology 
to ν�n,E and υ�n,ξ, respectively. Notice that if E ∈ En and μ� has no atom at E, it 
holds that υ�n,ξ({E}) = π‖ν�n,E‖−1 by (3.2.6). In particular, this is the case for each �μm. 
Thus, the weak∗ limit of the reference measures corresponding to �μm, which is obviously 
independent of ξ, is equal to

π−1S−1
�n,ξ(x)dυ�n,ξ(x) −

∑
E: D�n(ξ;E)=0

S−1
�n,ξ(E)

‖ν�n,E‖ dδE(x)

= dω�n(x) +
∑

E∈E�n

S−1
�n,ξ(E) ν�n,E({E})

‖ν�n,E‖(‖ν�n,E‖ − ν�n,E({E}))dδE(x). (3.2.9)
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Fix E ∈ E�n. Let k ∈ {1, 2} be such that E ∈ Δk. Recall the definition of S�n,l,k(x) in 
(3.6.7) further below. We get from the very definition of ν�n,E in (3.2.3), (3.2.6), and 
Lemmas 3.6.2 and 3.6.4(5) that

S−1
�n,ξ(E) ν�n,E({E})

‖ν�n,E‖(‖ν�n,E‖ − ν�n,E({E})) =
S−1

�n,ξ(E) A
(k)
�n+�el

(E)
D′

�n,ξ(E)S�n,l,k(E)
D′

�n,ξ(E)(A(k)
�n )′(E)

D′
�n,ξ(E)L�n+(E) μk({E})

= Q�n+�el
({E})

S�n,l,k(E)L�n+(E) . (3.2.10)

As the above expression is independent of ξ, so is the measure ω�n. �
3.3. Green’s functions

In this section, we study functions G(Y, X; z) using equation (2.2.7). The Spectral 
Theorem applied to the self-adjoint operator J[X] gives

G(Y, X; z) = 〈(J[X] − z)−1δ(X), δ(Y )〉 =
ˆ

d〈P[X],λδ(X), δ(Y )〉
λ − z

,

where {P[X],λ} is the family of orthoprojectors associated with J[X]. The function F (λ) =
〈P[X],λδ(X), δ(Y )〉 has bounded variation and can be written as a difference of two non-
decreasing functions. Therefore, G(Y, X; z) is a difference of two HN functions and the 
nontangential boundary values G(Y, X; x)± are defined a.e. on R.

Let T[X] be the subtree with the root at X and ρ[X] = 〈P[X],λδ(X), δ(X)〉 be the 
spectral measure of δ(X) restricted to T[X], see (0.0.2), where we also write ρO for ρ[O]
(we use square brackets to emphasize that ρ[X] is a spectral measure of δ(X) with respect 
to a subtree and not the whole tree). Then

G(X, X; z) = −ρ̂[X](z) and therefore Im G(X, X)+ = πρ[X]. (3.3.1)

Statements (3.3.1) and (2.2.7) provide a non-trivial application of the operator theory 
to the theory of orthogonal polynomials. They say that the ratio of Markov functions of 
two “consecutive” linear forms Q�n+�el

(x) and Q�n(x) is also a Markov function! Below, 
we shall verify it in a different way by providing “explicit” expressions for ρ[X] and 
more generally Im G(Y, X; x)+. Again, we often refer to the auxiliary lemmas proven in 
Section 3.6.

3.3.1. Function L�κ(z)

By (2.2.7), G(O, O; z) = −L�1(z)/L�κ(z). While the behavior of the numerator L�1(z)
for smooth measures is described by Lemma 3.2.1, we have not yet addressed the behavior 
of L�κ(z). Recall that �κ = (κ1, κ2) = (κ2, κ1), the function L�κ(z) was defined in (2.2.2), 
and
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L�κ(z) = κ2L�e1(z) + κ1L�e2(z) =
(
κ1‖μ1‖−1)μ̂1(z) +

(
κ2‖μ2‖−1)μ̂2(z). (3.3.2)

Lemma 3.3.1. The set E�κ
def= {E : L�κ(E) = 0, E ∈ R \ (Δ1 ∪ Δ2)} is either empty 

or has exactly one element in it. It is empty when �κ = �ei, i ∈ {1, 2}. If E ∈ E�κ exists, 
it is necessarily a simple zero of L�κ(x). If �μ satisfies the assumptions of Lemma 3.2.1, 
then L�κ(z) extends continuously from C+ to R and the function |L�κ(x)| is well-defined, 
continuous and non-vanishing on R except for a possible single zero that belongs to 
R \ (Δ◦

1 ∪ Δ◦
2).

Proof of Lemma 3.3.1. The function L�κ(z) =
∑2

i=1 κiσ̂i(z), σi = ‖μi‖−1μi, is analytic 
in C \ (Δ1 ∪Δ2) and we are looking for its zeroes on the real line away from the intervals 
Δ1, Δ2. Observe that the equation L�κ(x) = 0 has no solutions on the set of interest when 
�κ = �ei, i ∈ {1, 2}, since in this case it is a Markov function and Markov functions have 
no zeroes in the finite plane away from the convex hull of the support of the defining 
measure. When κi > 0, i ∈ {1, 2}, we have that L�κ(x) > 0 for x ∈ (β2, ∞) and L�κ(x) < 0
for x ∈ (−∞, α1) as one can see from (3.3.2). Since both functions κiσ̂i(x) are decreasing 
in the gap (β1, α2), but one of them is negative and one is positive, there can be at most 
one solution there. When κ1κ2 < 0, there cannot be any solutions in (β1, α2). To show 
that there is at most one solution in (−∞, α1) ∪ (β2, ∞) in this case, notice that the 
original equation can be rewritten as −(σ̂1/σ̂2)(x) = κ2/κ1. The ratio −(σ̂1/σ̂2)(z) is a 
Markov function of a measure supported on Δ1 ∪Δ2. Indeed, it follows from (3.1.3) that

Im(σ̂1/σ̂2)(x + iy)dx
∗→ σ̂−1

2 (x)d
(

Im σ̂1
)+(x) + σ̂1(x)d

(
Im σ̂−1

2
)+(x), (3.3.3)

which is indeed a positive measure supported on Δ1 ∪ Δ2 since σ̂2(x) < 0, x ∈ Δ1, and 
σ̂1(x) > 0, x ∈ Δ2. Markov functions are monotonically decreasing on the real line away 
from the support and are positive/negative to the right/left of the convex hull of the 
support of the defining measure. Thus, any equation of the form (σ̂1/σ̂2)(x) = τ �= 0 can 
have at most two solution away from Δ1 ∪ Δ2, one in the gap and one outside the gap, 
which proves the desired conclusion.

Continuity of |L�κ(x)| when �μ satisfies condition of Lemma 3.2.1 can be shown exactly 
as in the proof of that lemma. Since Im L�κ±(x) = ∓πκkσ′

k(x) on Δk by Proposi-
tion 3.1.4(2-4), it vanishes at the endpoints of the intervals Δ1, Δ2. Hence, the traces 
L�κ±(x) are real at those points and the considerations of the previous paragraph can 
be extended from open intervals to closed ones. Since Im L�κ±(x) does not vanish on 
Δ◦

1 ∪ Δ◦
2, there cannot be any other zeroes. �

Notice that for Dini-continuous measures, |L�κ(x)| can vanish at some endpoint of the 
intervals Δ1, Δ2.
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3.3.2. Green’s functions at O

We already know from the Spectral Theory that G(O, O; z) ∈ HN. However, we can 
see it directly. Recall that σi = ‖μi‖−1μi and define

Ξ�μ
def=
ˆ

R

tdσ2(t) −
ˆ

R

tdσ1(t) . (3.3.4)

We have Ξ�μ > 0 since it is a difference of the centers of mass of probability measures 
supported on disjoint intervals with supp σ1 < supp σ2. Assuming that κ1 �= 0 (the case 
κ2 �= 0 can be treated absolutely analogously), we have that

Ξ�μ G(O, O; z) = − Ξ�μ
L�1(z)
L�κ(z) = − σ̂2(z) − σ̂1(z)

κ2σ̂2(z) + κ1σ̂1(z)

= 1
κ1

− 1
κ1κ2 + κ

2
1(σ̂1/σ̂2)(z) , (3.3.5)

where we used κ1 +κ2 = 1, (3.3.2), and Lemma 3.6.1. Since κ2
1 , Ξ�μ > 0, G(O, O; ·) ∈ HN

if and only if (σ̂1/σ̂2) ∈ HN. The claim (σ̂1/σ̂2) ∈ HN has been shown in the proof of 
Lemma 3.3.1 above, see (3.3.3).

Let SO(x) be a positive function on Δ1 ∪ Δ2 given by

SO(x) def=
(
Ξ�μ‖μ1‖‖μ2‖

)−1 (μ̂1(x)χΔ2(x) − μ̂2(x)χΔ1(x)) . (3.3.6)

This function will be used to obtain a convenient formula for the generalized eigenfunc-
tion Ψ, introduced in the following proposition (for the general theory of eigenfunction 
expansions, check [14]).

Proposition 3.3.2. Let E�κ be as in Lemma 3.3.1. We have that supp ρO ⊆ Δ1 ∪ Δ2 ∪ E�κ

and

d Im G(Y, O)+(x) = πΨY (O; x)dρO(x), (3.3.7)

where Ψ(O; E) = l(E)/L�1(E) for E ∈ E�κ,

Ψ(O; x) = S−1
O (x)

(
Λ(0)(x) κk

‖μk‖ − (−1)kμ̂3−k(x)
(

Λ(2)(x) κ1

‖μ1‖ − Λ(1)(x) κ2

‖μ2‖

))
(3.3.8)

for x ∈ Δk, k ∈ {1, 2}, and otherwise Ψ(O; x) = 0. Furthermore, it holds that

J�κΨ(O; x) = xΨ(O; x) and δ
(O)
Y =

ˆ
ΨY (O; x)dρO(x). (3.3.9)

If �μ satisfies conditions of Lemma 3.2.1 and
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(μ′
k(x))−1 ∈ Lp(Δk) (3.3.10)

for some p > 1 and each k ∈ {1, 2}, then

dρO(x) = SO(x)|L�κ(x)|−2dμ�(x) +
∑

E∈E�κ

(L�1/L′
�κ)(E)dδE(x). (3.3.11)

Remark. Assumption (3.3.10) is a non-essential technical condition which we use solely 
to simplify the discussion of the behavior of ρO around a zero of |L�κ(x)| when the latter 
happens to be an endpoint of either Δ1 or Δ2.

Proof. The first claim follows from (3.3.5) and the definition of E�κ in Lemma 3.3.1. 
Assume first that �μ satisfies conditions of Lemma 3.2.1 with the additional integrability 
assumption (3.3.10). We get from Lemma 3.3.1 that |L�κ(x)| is continuous on the real line 
with at most one zero, say E, that belongs to R \(Δ◦

1∪Δ◦
2). Since −G(O, O; z) is a Markov 

function by (3.3.5) and the explanation right after, it follows from Lemma 3.2.1 and 
Proposition 3.1.4(2,3) that ρO is an absolutely continuous measure except for a possible 
mass point at E. When E is not an endpoint of Δ1 or Δ2, we get from Proposition 3.1.4(3) 
that ρO indeed has a mass point at E of mass (L�1/L′

�κ)(E). If E is an endpoint of either 
Δ1 or Δ2, we deduce from Proposition 3.1.4(3) and Lemma 3.6.5 further below that E
is not a mass point (this is exactly where the Lp-integrability is used). Hence, it only 
remains to compute the absolutely continuous part of ρO, that is, π−1 Im

(
G(O, O; x)+

)
, 

see again Proposition 3.1.4(2). To this end, it holds that

G(O, O; x)+ =(−1)k σ̂3−k(x)
Ξ�μ

κ3−kσ̂3−k(x) + κkσ̂k−(x)
|L�κ(x)|2

− (−1)k σ̂k+(x)
Ξ�μ

κ3−kσ̂3−k(x) + κkσ̂k−(x)
|L�κ(x)|2

for x ∈ Δk, k ∈ {1, 2}, where again σk = ‖μk‖−1μk are the normalized measures. By 
taking the imaginary part of both sides and using σ̂k−(x) = σ̂k+(x) and κ1 + κ2 = 1, 
we get that

Im
(
G(O, O; x)+

)
= (−1)k

Ξ�μ

κkσ̂3−k(x) Im
(
σ̂k−(x)

)
− κ3−kσ̂3−k(x) Im

(
σ̂k+(x)

)
|L�κ(x)|2

= (−1)k

Ξ�μ

σ̂3−k(x) Im
(
σ̂k−(x)

)
|L�κ(x)|2 = π

(−1)k μ̂3−k(x)
Ξ�μ‖μ1‖‖μ2‖

μ′
k(x)

|L�κ(x)|2

= π
SO(x)μ′

k(x)
|L�κ(x)|2

for x ∈ Δk by the very definition (3.3.6), which finishes the proof of (3.3.11).
Let us still assume that �μ satisfies condition of Lemma 3.2.1 with the additional 

integrability assumption (3.3.10). Set gY (z) to be G(Y, O; z) when E�κ = ∅ or E ∈ E�κ is 
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an endpoint of Δ1 or Δ2 and otherwise set it to be G(Y, O; z) − (LY /L�κ)(E)(E − z)−1. 
Then, −gO(z) is a Markov function of an absolutely continuous measure with an Lp-
density for some p > 1 by Lemma 3.6.5. It follows from the last claim of Proposition 3.1.1
and Proposition 3.1.2(1) that both real and imaginary parts of gO(z) satisfy (3.1.1) with 
this p. Since gY (z) = mY (LY /LO)(z)gO(z) and (LY /LO)(z) extends continuously to the 
real line from the upper half-plane by Lemma 3.2.1, the imaginary part of gY (z) satisfies 
(3.1.1) with the same p as well. Thus, it follows from the last claim of Proposition 3.1.1
that Im gY (z) is a Poisson integral of an absolutely continuous measure whose density is 
equal to Im(gY +(x)). Now, we get from (2.2.2), (0.0.16), and (2.2.7) that

G(Y, O; z) =|L�κ(z)|−2
(

Λ(0)
Y (z) − Λ(1)

Y (z)μ̂1(z) − Λ(2)
Y (z)μ̂2(z)

)
×
((

κ1‖μ1‖−1)μ̂1(z) +
(
κ2‖μ2‖−1)μ̂2(z)

)
.

Since Im(μ̂k+(x)) = −πμ′
k(x) by Proposition 3.1.4(2-4), it holds that

Im
(
gY +(x)

)
=πμ′

k(x)|L�κ(x)|−2
(

Λ(0)
Y (x) κk

‖μk‖

− (−1)kμ̂3−k(x)
(

Λ(2)(x) κ1

‖μ1‖ − Λ(1)(x) κ2

‖μ2‖

))

for x ∈ Δk. That clearly yields (3.3.7) and (3.3.8) in the considered case.
If the system �μ does not satisfy the assumptions of Lemma 3.2.1 with the addi-

tional integrability assumption, approximate �μ in the weak∗ topology by a sequence 
{�μm} of measures that do satisfy them as it was done in the proof of Proposition 3.2.2. 
The explanation given there shows that the spectral measures and measures generated 
by Green’s functions corresponding to �μm will converge in the weak∗ sense to ρO and 
Im G(Y, O)+ corresponding to �μ, respectively. This convergence will clearly preserve 
(3.3.7) and (3.3.8).

The first algebraic identity of (3.3.9) is a direct consequence of the first two claims of 
Proposition 2.2.3. To prove the second identity, notice that

G(Y, O; z) =
ˆ

R

ΨY (O; x)dρO(x)
x − z

by (3.1.2) and (3.1.3). Now, since ΨY (O; x)dρO(x) has finite total variation, the above 
formula, the Fubini-Tonelli Theorem, and the Cauchy integral formula give that

ˆ
ΨY (O; x)dρO(x) = 1

2πi

ˆ
G(Y, O; z)dz = 1

2πi

˛ (
(J�κ − z)−1δ(O)

)
Y

dz = δ
(O)
Y ,
R Γ Γ
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where Γ encircles σ(J�κ) ∪ Δ1 ∪ Δ2 ∪ E�κ in the positive direction, the second identity is 
just definition (2.2.7), and the last one is a part of the Spectral theorem for self-adjoint 
operators. �
3.3.3. Green’s functions at X �= O

Recall definition (2.2.9) of the commutator of two functions with respect to a given 
vertex as well as definitions of functions Λ(k)(x) in (2.2.8). Given X �= O, set

Ψ̃(X; x) def= mX(p)mX

2∑
k=1

([
Λ(k)(x), Λ(0)(x)

](X(p))

+
[
Λ(3−k)(x), Λ(k)(x)

](X(p))
μ̂3−k(x)

)
χΔk

(x)

to be a function on V that depends of a parameter x ∈ Δ1 ∪ Δ2. Clearly, each Ψ̃Y (X; x)
extends analytically from each interval Δk.

Lemma 3.3.3. Given X ∈ V, X �= O, it holds that SX(x) def= Ψ̃X(X; x) > 0 and it is 
continuous for x ∈ Δ1 ∪ Δ2.

We prove Lemma 3.3.3 further below in Section 3.6.1. Recall Proposition 3.2.2 and 
that in our notation the symbol J[X] stands for the restriction of J�κ to T[X]. If E ∈ R

and X ∈ V, we denote the mass of the form QΠ(X) at a point E by QX({E}), i.e.,

QX({E}) def= A
(1)
Π(X)(E)μ1({E}) + A

(2)
Π(X)(E)μ2({E}) .

In the next result, we explain how the spectral measure ρ[X] from (3.3.1) is related to 
the reference measure at the vertex X(p). We also introduce Ψ(X; x), a function on V[X]
that is a generalized eigenfunction of the operator J[X].

Proposition 3.3.4. Let X �= O and EY be the set of zeroes of the polynomial 
Λ(1)

Y (x)Λ(2)
Y (x). It holds that

dρ[X](x) = SX(x)dωX(p)(x) +
∑

E∈EX(p)

QX({E})L−1
X(p)+(E) dδE(x), (3.3.12)

where the numbers QX({E})L−1
X(p)+(E) � 0 are well-defined and non-negative for each 

E ∈ EX(p) . Moreover, it holds that

d Im G(Y, X)+(x) = πΨY (X; x)dρ[X](x), (3.3.13)

for every Y ∈ V[X], where Ψ(X; x) = S−1
X (x)Ψ̃(X; x). Furthermore, it holds that
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J[X]Ψ(X; x) = xΨ(X; x) and δ
(X)
Y =

ˆ
ΨY (X; x)dρ[X](x). (3.3.14)

Remark. It follows directly from its definition that Ψ satisfies a normalization
ΨX(X; x) = 1.

Proof. Assume first that �μ satisfies conditions of Lemma 3.2.1. Recall that the traces 
μ̂k±(x) are continuous on the real line and are complex conjugates of each other, see 
Proposition 3.1.2(2). It follows from (2.2.7) and (0.0.16) that

Im(G(Y, X; z)) = − mXmX(p) |LX(p)(z)|−2 Im
((

Λ(1)
Y (z)μ̂1(z) + Λ(2)

Y (z)μ̂2(z) − Λ(0)
Y (z)

)
×
(

Λ(1)
X(p)

(z)μ̂1(z) + Λ(2)
X(p)

(z)μ̂2(z) − Λ(0)
X(p)

(z)
))

.

Since the first kind MOPs have real coefficients, a straightforward algebraic computation 
and Lemma 3.2.1 imply that Im(G(Y, X; z)) has continuous traces on the real line and

Im(G(Y, X; x)+) = −Ψ̃Y (X; x)|LX(p)(x)|−2 Im
(
μ̂k+(x)

)
, x ∈ Δk, k ∈ {1, 2}.

(3.3.15)
In particular, we get from Proposition 3.1.4(2-4), Lemmas 3.2.1 and 3.3.3 that 
Im(G(X, X; z)) extends continuously to the real line where it has a continuous and 
non-negative trace. Thus, it follows from the maximum principle for harmonic func-
tions that Im(G(X, X; ·)) ∈ HN, the fact already known to us from the general Spectral 
Theory. Since −G(X, X; z) is holomorphic at infinity, it is indeed a Markov function. 
Formula (3.3.12) now follows from Propositions 3.1.4(2,3) and 3.2.2 since QX({E}) = 0
for any E by absolute continuity of μ�. Since ρ[X] is absolutely continuous with contin-
uous density, we get from the last claim of Proposition 3.1.1 and Proposition 3.1.2(1) 
that both real and imaginary parts of G(X, X; z) satisfy (3.1.1) for any p > 1. Since 
G(Y, X; z) = mY (LY /LX)(z)G(X, X; z) and (LY /LX)(z) extends continuously to the 
real line by Lemma 3.2.1, the imaginary part of G(Y, X; z) also satisfies (3.1.1) for any 
p > 1. Thus, Im(G(Y, X; z)) is a Poisson integral of an absolutely continuous measure 
with density given by Im(G(Y, X; x)+), which, together with (3.3.15), proves (3.3.13) in 
the considered case.

If the system �μ does not satisfy assumptions of Lemma 3.2.1, approximate �μ in the 
weak∗ topology by systems �μm that do satisfy these assumptions as it was done in 
the proof of Proposition 3.2.2. The explanation given there shows that the spectral 
measures corresponding to �μm converge in the weak∗ sense to ρ[X], the spectral measure 
corresponding to �μ. On the other hand, the right-hand sides of (3.3.12) corresponding 
to �μm will converge weak∗ to SX(x) times the measure in (3.2.9). Formula (3.3.12) now 
follows from (3.2.10) and the identity SX(x) = S�n,l,k(x) for x ∈ Δk, which holds by the 
definition of S�n,l,k(x) in (3.6.7), where �n = Π(X(p)) and l = ιX . As Im G(Y, X)+ is the 
weak∗ limit of the corresponding measures with respect to �μm, the validity of (3.3.13)
follows as well.
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The first algebraic identity of (3.3.14) is a direct consequence of the third claim of 
Proposition 2.2.3. The second one can be justified exactly as in Proposition 3.3.2. �
3.4. Cyclic subspaces

In this section we derive an orthogonal decomposition of �2(V) into a direct sum of 
cyclic subspaces of J�κ.

3.4.1. Trivial cyclic subspaces

Let X ∈ V and α(x) be a polynomial. Formulae (3.3.9) and (3.3.14) immediately allow 
us to conclude that

α(J[X])δ(X) =
ˆ

α(J[X])Ψ(X; x)dρ[X](x) =
ˆ

α(x)Ψ(X; x)dρ[X](x) def= α̂ ∈ �2(V[X]),

(3.4.1)
where the last conclusion trivially holds as α(J[X])δ(X) is compactly supported in this 
case. Of course, (3.4.1) can be further extended to continuous functions on Δ1 ∪Δ2 using 
the Spectral Theorem. Namely, let {P[X],λ} be the orthogonal spectral decomposition 
for J[X]. Then, it holds that

α(J[X])δ(X) def=
(ˆ

α(λ)dP[X],λ

)
δ(X) ∈ �2(V[X]).

In fact, we can say more. Let C(X)
[X] be the cyclic subspace of �2(V[X]) generated by δ(X), 

that is,

C
(X)
[X]

def= span
{

J n
[X]δ

(X) : n ∈ Z+

}
=
{

α(J[X])δ(X) : α is a polynomial
}

.

The next result is an analog of Proposition 0.0.2, where Ψ plays the role of orthogonal 
polynomials.

Proposition 3.4.1. Fix X ∈ V. The map

α(x) �→ α̂ =
{

α̂Y

}
Y ∈V[X]

, α̂Y
def=
ˆ

α(x)ΨY (X; x)dρ[X](x), (3.4.2)

is a unitary map from L2(ρ[X]) onto C(X)
[X] . In particular, it holds that

‖α‖2
L2(ρ[X]) = ‖α̂‖2

�2(V[X]) and C
(X)
[X] =

{
α̂ : α ∈ L2(ρ[X])

}
. (3.4.3)

Thus, the formula
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α(J[X])δ(X) def= α̂ =
ˆ

α(x)Ψ(X; x)dρ[X](x) (3.4.4)

extends the definition of α(J[X])δ(X) from continuous functions α(x) to those in L2(ρ[X]). 
We also have that

xα(x) �→ J[X]α̂, α ∈ L2(ρ[X]). (3.4.5)

Proof. The following argument is standard and we reproduce it solely for completeness. 
Let α(x) be a continuous function on Δ1 ∪ Δ2. It follows from the Spectral Theorem 
that

‖α(J[X])δ(X)‖2
�2(V[X]) =

〈
α(J[X])δ(X), α(J[X])δ(X)〉 =

〈
|α(J[X])|2δ(X), δ(X)〉

=
ˆ

|α(λ)|2d〈P[X],λδ(X), δ(X)〉 =
ˆ

|α(x)|2dρ[X](x)

= ‖α‖2
L2(ρ[X]) (3.4.6)

since ρ[X] is the spectral measure for δ(X) in �2(V[X]). Take any α ∈ L2(ρ[X]) and approx-
imate it in L2(ρ[X]) by a sequence 

{
α(n)} of polynomials. Recall that each α(n)(J[X])

is compactly supported and therefore is in �2(V[X]). Because ΨY (X; x) is continuous on 

Δ1 ∪ Δ2, it holds that α̂Y = limn→∞ α̂
(n)
Y for every Y . Thus,

∑
|Π(Y )|<N

|α̂Y |2 �
ˆ

|α|2dρ[X] for any N ∈ N ⇒ ‖α̂‖2
�2(V[X]) �

ˆ
|α|2dρ[X]

and therefore 
{

α̂ : α ∈ L2(ρ[X])
}

⊆ C
(X)
[X] . Furthermore, let Φ ∈ C

(X)
[X] and α̂(n) → Φ

as n → ∞ in �2(V[X]) for some sequence 
{

α(n)} of polynomials. By (3.4.6), we have 
supn ‖α(n)‖L2(ρ[X]) < ∞ and, according to the Banach-Alaoglu theorem, there exists 
ϕ ∈ L2(ρ[X]) such that α(nk) → ϕ weakly in L2(ρ[X]) as k → ∞. Therefore, evaluating 
at each Y ∈ V, we get

ϕ̂Y =
ˆ

ϕ(x)ΨY (X; x)dρ[X](x) ←
ˆ

α(nk)(x)ΨY (X; x)dρ[X](x)

=α̂
(nk)
Y → ΦY

as k → ∞. Hence, 
{

α̂ : α ∈ L2(ρ[X])
}

= C
(X)
[X] . That is, the map α �→ α̂ is onto as well 

as isometric on the dense subset so it is isometric everywhere. Thus, the considered map 
α �→ α̂ is actually unitary, which finishes the proof of (3.4.3). Finally, one can readily 
see that

J[X]α̂ =J[X]

ˆ
Ψ(X; x)α(x)dρ[X](x)



56 S.A. Denisov, M.L. Yattselev / Advances in Mathematics 396 (2022) 108114
=
ˆ

J[X]Ψ(X; x)α(x)dρ[X](x) =
ˆ

xΨ(X; x)α(x)dρ[X](x)

by (3.3.14), which shows (3.4.5). �
3.4.2. Non-trivial cyclic subspaces

Fix X ∈ V and let Xi = X(ch),i, i ∈ {1, 2}. Put

ρ̃X
def= ωX +

∑
E∈EX

μ�({E})δE , (3.4.7)

where ωX is the reference measure from Proposition 3.2.2, EX is the set of zeroes of 
Λ(1)

X (x)Λ(2)
X (x), and μ� is the measure from (3.0.2). It readily follows from (3.3.12) that

dρ[Xi](x) = νXi
(x)dρ̃X(x), (3.4.8)

where νXi
(x) = SXi

(x) for x ∈ (Δ1 ∪ Δ2) \ EX and νXi
(E) = A

(k)
Xi

(E)L−1
X+(E) for 

E ∈ EX ∩ Δk. Most importantly for us there exists cX > 1 such that

c−1
X � νXi

(x) � cX , x ∈ Δ1 ∪ Δ2, (3.4.9)

according to Lemmas 3.3.3 and 3.6.3 (it is also continuous on (Δ1 ∪ Δ2) \ EX). Let 
Ψ(Xi; x) be the generalized eigenfunction from Proposition 3.3.4. Recall that WXi

> 0. 
Let

Ψ̂Y (X; x) def= (−1)iW
−1/2
Xi

ΨY (Xi; x), Y ∈ V[Xi], and Ψ̂Y (X; x) def= 0, otherwise.

(3.4.10)
We stress that Ψ̂(X; x) is a function on V that is supported by V[X] with value zero at 
X itself. Define

Ĉ(X) def=
{ˆ

α(x)Ψ̂(X; x)dρ̃X(x) : α ∈ L2(ρ̃X)
}

. (3.4.11)

Let χi be the restriction operator that sends f ∈ Ĉ(X) to its restriction to V[Xi], i ∈ {1, 2}. 
Given f ∈ Ĉ(X), let α ∈ L2(ρ̃X) be the corresponding function in (3.4.11). Set

αi(x) := (−1)iW
−1/2
Xi

ν−1
Xi

(x)α(x). (3.4.12)

It follows from (3.4.9) that αi ∈ L2(ρ̃[Xi]). Moreover, it holds that χif = α̂i ∈ C
(Xi)
[Xi] , 

see (3.4.2). It is clear from (3.4.9) and (3.4.12) that different functions α(x) define dif-
ferent functions αi(x), that is, χi : Ĉ(X) → C

(Xi)
[Xi] is an injection. Conversely, given 

αi ∈ L2(ρ̃[Xi]), define α via (3.4.12). It again follows from (3.4.9) that α ∈ L2(ρ̃X)
and that χif = α̂i, where f is the element of Ĉ(X) corresponding to α. Hence, 
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χi : Ĉ(X) → C
(Xi)
[Xi] is a bijection, and the composition χ2 ◦ χ−1

1 is a bijection between 

C
(X1)
[X1] and C(X2)

[X2] . Altogether, we can say that

f ∈ Ĉ(X) ⇔ supp f ⊆ V[X1] ∪ V[X2],

fi ∈ C
(Xi)
[Xi] , i ∈ {1, 2}, and χ−1

1 f1 = χ−1
2 f2, (3.4.13)

where fi is the restriction of f to V[Xi].

Proposition 3.4.2. Fix X ∈ V. The function Ψ̂(X; x) is a generalized eigenfunction of 
J�κ, that is, it holds that

J�κΨ̂(X; x) = xΨ̂(X; x). (3.4.14)

Moreover, let the function g(X)
i ∈ Ĉ(X) be given by

g
(X)
i

def=
ˆ

�(Xi; x)Ψ̂(X; x)dρ̃X(x), �(Xi; x) def= (−1)iW
1/2
Xi

νXi
(x). (3.4.15)

Then, it holds that χig
(X)
i = χiδ

(Xi), i ∈ {1, 2}, and

Ĉ(X) = span
{

J n
�κ g

(X)
i : n ∈ Z+

}
. (3.4.16)

That is, each g(X)
i is a generator of the cyclic subspace Ĉ(X). In particular, the formula

α(J�κ)g(X)
i

def=
ˆ

α(x)�(Xi; x)Ψ̂(X; x)dρ̃X(x) (3.4.17)

extends the definition of α(J�κ)g(X)
i from continuous functions α(x) to those in L2(ρ̃X). 

Furthermore, it holds that

dρX,i(x) =
2∑

k=1

WXi

WXk

ν2
Xi

(x)
νXk

(x)dρ̃X(x), (3.4.18)

where ρX,i = ρ
g

(X)
i

is the spectral measure of g(X)
i with respect to the operator J�κ.

Proof. If Y /∈ V[X], it clearly holds that (J�κΨ̂(X; x))Y = 0 = xΨ̂Y (X; x). Further, we 
get straight from (3.4.10) that

(J�κΨ̂(X; x))X =W
1/2
X1

Ψ̂X1(X; x) + W
1/2
X2

Ψ̂X2(X; x) = −ΨX1(X1; x) + ΨX2(X2; x)

=0 = xΨ̂X(X; x)
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since ΨXi
(Xi; x) = 1 according to their definition, see remark after Proposition 3.3.4. 

Moreover, if Y ∈ VXi
, then we get from (3.4.10) and (3.3.14) that

(J�κΨ̂(X; x))Y =(−1)iW
−1/2
Xi

(J[Xi]Ψ(Xi; x))Y = (−1)iW
−1/2
Xi

xΨY (Xi; x)

=xΨ̂Y (X; x),

which proves (3.4.14). Further, it holds that χig
(X)
i = χiδ

(Xi) since

(
g

(X)
i

)
Y

=(−1)iW
−1/2
Xi

ˆ
�(Xi; x)ΨY (Xi; x)dρ̃X(x) =

ˆ
ΨY (Xi; x)dρ[Xi](x)

=δ
(Xi)
Y , Y ∈ V[Xi],

where we used (3.4.10), (3.4.8), and (3.3.14). Now, according to (3.4.13), to prove (3.4.16)
it is enough to show that the closure of the span of χiJ n

�κ g
(X)
i is equal to C(Xi)

[Xi] . As χi and 

J�κ commute by (3.4.11) and (3.4.14) (or, put differently, χiJ n
�κ g

(X)
i = J n

[Xi](χiδ
(Xi)) )

the latter claim follows. Formula (3.4.17) can be obtained through approximation by 
polynomials exactly as an analogous formula of Proposition 3.4.1 was obtained. Finally, 
to get (3.4.18), observe that

〈
(J�κ − z)−1g

(X)
i , g

(X)
i

〉
=

2∑
k=1

1
Wk

〈ˆ
�(Xi; x)

x − z
Ψ(Xk; x)dρ̃X(x),

ˆ
�(Xi; x)Ψ(Xk; x)dρ̃X(x)

〉

=
2∑

k=1

Wi

Wk

〈ˆ
νXi

(x)
(x − z)νXk

(x)Ψ(Xk; x)dρ[Xk](x),
ˆ

νXi
(x)

νXk
(x)Ψ(Xk; x)dρ[Xk](x)

〉
,

where we used (3.4.8) and (3.4.17). Now it follows from (0.0.2), (3.3.14), (3.4.4), and 
(3.4.8) that

ˆ
dρX,i(x)

x − z
=

2∑
k=1

Wi

Wk

ˆ
ν2

Xi
(x)

νXk
(x)

dρ̃X(x)
x − z

.

Since Markov functions are uniquely determined by their defining measures, (3.4.18)
follows. �
3.4.3. Decomposition into an orthogonal sum of cyclic subspaces

In this subsection, we will prove a theorem that, in the view of Theorem 0.0.1, con-
stitutes the central result of this paper.
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Theorem 3.4.3. The Hilbert space �2(V) decomposes into an orthogonal sum of cyclic 
subspaces of J�κ as follows:

�2(V) = C(O) ⊕ L, L = ⊕Z∈V Ĉ
(Z) . (3.4.19)

Proof. First, we need to show that the subspaces on the right-hand side of (3.4.19)
are orthogonal to each other. Recall that Ĉ(Y ) is supported by V[Y ], the set of vertices 
of the subtree T[Y ]. Let Z, X ∈ V, Z �= X. If the subtrees T[X] and T[Z] are disjoint, 
the subspaces Ĉ(X) and Ĉ(Z) are naturally orthogonal. If they are not disjoint, one is a 
subtree of another. Assume for definiteness that T[Z] is a (proper) subtree of T[X]. That 
is, Z is a descendant of X. Let i ∈ {1, 2} be such that Z is equal to or is a descendant 
of X(ch),i. Let α(x) be a polynomial and f ∈ Ĉ(Z). Then〈

f, α(J�κ)g(X)
i

〉
=
〈

α(J�κ)f, g
(X)
i

〉
=
〈

α(J�κ)f, δ(Xi)
〉

=
(
α(J�κ)f

)
Xi

= 0

since α(J�κ)f ∈ Ĉ(Z) and Xi does not belong to the support of any h ∈ Ĉ(Z). Because 
functions α(J�κ)g(X)

i are dense in Ĉ(X) by (3.4.16), we get that Ĉ(X) ⊥ Ĉ(Z) as claimed. 
When the subspace Ĉ(X) is replaced by C(O), the proof remains absolutely the same 
except that we need to consider functions α(J�κ)δ(O) instead of α(J�κ)g(X)

i .
Since all cyclic subspaces are orthogonal to each other, to prove the theorem, it is 

enough to show that finite sums of the above cyclic subspaces contain all the functions 
with compact support. As the latter are linear combinations of delta functions, it is 
sufficient to show that all delta functions belong to such finite sums. Trivially, it holds 
that δ(O) ∈ C(O). By going down the tree T , we shall inductively show that

δ(X) ∈ C(O) ⊕ LX , LX = ⊕Y ∈path(X(p),O)Ĉ
(Y ) ,

for any X ∈ V, X �= O, where path(X(p), O) is the same as (2.2.1). Take such X and 
assume the claim is true for X(p) and X(g), where X(g) is parent of X(p). Let Z be the 
sibling of X. It follows from (3.4.15) that(

g
(X(p))
ιZ

)
Z

= 1 and
(

g
(X(p))
ιZ

)
X

= (−1)ιX W
−1/2
X

ˆ
α(Z; x)dρ̃X(x) = −(WZ/WX)1/2.

We further get from the very definition of J�κ in (2.1.4) that(
J�κδ(X(p)))

X
= W

1/2
X ,

(
J�κδ(X(p)))

Z
= W

1/2
Z ,

(
J�κδ(X(p)))

X(p)
= VX(p) , and(

J�κδ(X(p)))
X(g)

= UX(p) ,

where UX(p) = 0 if X(p) = O and UX(p) = W
1/2
X(p)

otherwise (all other values of J�κδ(X(p))

are equal to zero). Extend Ψ(X; x) from V[X] to the whole set V by zero. Set β(X; x) def=
WX + WZ(νZ/νX)(x). Then



60 S.A. Denisov, M.L. Yattselev / Advances in Mathematics 396 (2022) 108114
√
WXWZ

[
W

−1/2
Z

(
J�κδ(X(p)) − VX(p)δ

(X(p)) − UX(p)δ
(X(g))

)
− g

(X(p))
ιZ

]
=WXδ(X) + WZ

ˆ
νZ(x)
νX(x)Ψ(X; x)dρ[X](x)

=
ˆ

β(X; x)Ψ(X; x)dρ[X](x) def= β̂(X), (3.4.20)

where we used (3.3.14) for the next to last equality. By (3.4.9), the function β(X; x) is 
strictly positive on the support of ρ[X]. Observe that β̂(X) is supported on V[X] and has 
value WX + WZ > 0 at X. It follows from the properties of β(X; x) that

{
α(x)β(X; x) : α is a polynomial

}
= L2(ρ[X]),

where the closure is taken in L2(ρ[X])-norm. Thus, there exists a sequence of polynomials 
{α(n)(x)} such that α(n)(x)β(X; x) → 1 as n → ∞ in L2(ρ[X])-norm and therefore

α(n)(J[X])β̂(X) =
ˆ

α(n)(x)β(X; x)Ψ(X; x)dρ[X](x) → δ(X) (3.4.21)

as n → ∞ in �2(V[X]) by (3.4.5) and since β̂(X) ∈ C
(X)
[X] , where we extend α(n)(J[X])β̂(X)

from V[X] to V by zero. On the other hand, it follows from (3.4.20) that

J[X]β̂(X) =J�κβ̂(X) − W
1/2
X β̂X(X)δ(X(p))

=γ(J�κ)δ(X(p)) + J�κ

(
c1δ(X(g)) + c2g

(X(p))
ιZ

)
∈ C(O) ⊕ LX ,

where γ(x) is a certain quadratic polynomial and c1, c2 are certain constants (all can 
be explicitly written using (3.4.20)) and the last conclusion follows from the inductive 
hypothesis and the nature of cyclic subspaces, see (3.4.16). By iterating the above relation 
we get that

α(n)(J[X])β̂(X) ∈ C(O) ⊕ LX ⇒ δ(X) ∈ C(O) ⊕ LX ,

where the last conclusion is a consequence of (3.4.21) and C(O) ⊕ LX being closed. This 
finishes the proof of the theorem. �
3.5. Spectral analysis

In this section, we will apply Theorem 3.4.3 to the analysis of the spectral type of J�κ.

Theorem 3.5.1. Let E�κ be as in Lemma 3.3.1. It holds that

σ(J�κ) ⊆ Δ1 ∪ Δ2 ∪ E�κ. (3.5.1)
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Furthermore, if supp μk = Δk for each k ∈ {1, 2}, then the inclusion in (3.5.1) becomes 
equality.

Proof. It follows from Theorems 0.0.1 and 3.4.3, and Proposition 3.4.2 that

σ(J�κ) = supp ρO ∪
⋃

Z∈V
supp ρZ,1

where ρZ,1 is the spectral measure of g(Z)
1 . As stated in Proposition 3.3.2, we have that

supp ρO ⊆ Δ1 ∪ Δ2 ∪ E�κ ,

where the inclusion becomes equality when supp μk = Δk for each k ∈ {1, 2} as can 
be seen from (3.3.3) and (3.3.5). We further get from (3.4.18) that ρZ,1 is absolutely 
continuous with respect to ρ̃Z . Since supp ρ̃Z ⊆ Δ1 ∪ Δ2 by (3.4.7), Proposition 3.2.2, 
and Lemma 3.6.3, the claim of the theorem follows. �

This result complements characterization of the essential spectrum of J�κ obtained in 
the recent preprint [10] where all right limits of J�κ for �κ = �ei were computed for the case 
where the measures μ1, μ2 are absolutely continuous with analytic and non-vanishing 
densities.

As the following example shows, in general, σ(J�κ) �= supp μ1 ∪ supp μ2 even when 
E�κ = ∅. Thus, equality (0.0.5) does not hold for the case of multiple orthogonality.

Example. Consider any probability measures μ1, μ2 for which supp μ1 = [−1, 0] and 
supp μ2 = {1, 2} ∪ [3, 4], i.e., 1 and 2 are isolated atoms of μ2. Clearly, Δ1 = [−1, 0] and 
Δ2 = [1, 4]. Consider J�e1 . Formulae (3.3.1) and (3.3.5) become

ρ̂O(z) = 1
Ξ�μ

μ̂2(z) − μ̂1(z)
μ̂2(z) .

Since μ̂2(z) necessarily has a zero on (1, 2), ρO has a point mass there and therefore its 
support is clearly not a subset of supp μ1 ∪ supp μ2.

It is standard in the multidimensional scattering theory to deal with operators that 
have purely absolutely continuous spectrum (see [38] for basics of Spectral Theory). In 
the next theorem, we provide simple conditions for J�κ to have such a spectrum.

Theorem 3.5.2. Suppose that dμk(x) = μ′
k(x)dx and (μ′

k)−1 ∈ L∞(Δk) for each k ∈
{1, 2}. Then the spectrum of J�ei

is purely absolutely continuous for each i ∈ {1, 2}.

Proof. We need to show that the spectral measures ρO and {ρZ,1}, Z ∈ V, are all 
absolutely continuous. It follows from (3.4.18) that ρZ,1 is absolutely continuous with 
respect to ρ̃Z . Since measures μ1, μ2 have no mass points, we get from (3.4.7) that ρ̃Z
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is equal to the reference measure ω�n, �n = Π(Z). To show that the latter has no singular 
part, it is enough to prove that

lim sup
y→0+

Im
((

D�n,ξ(x + iy)L�n(x + iy)
)−1

)
< ∞ for every x ∈ (Δ1 ∪ Δ2) \ E�n,

according to (3.2.4) and Proposition 3.1.4(3), where E�n is the set of zeroes of 
A

(1)
�n (z)A(2)

�n (z) and D�n,ξ(z) is given by (3.2.2) with ξ ∈ (β1, α2). It clearly holds that

lim
y→0+

Im
((

D�n,ξ(x + iy)L�n(x + iy)
)−1

)
� lim

y→0+

(
− Im

(
D�n,ξ(x + iy)L�n(x + iy)

))−1
.

Fix k ∈ {1, 2} and a closed subinterval Δ of Δk \ E�n. By the conditions of the theorem 
and the definition of E�n there exists ε > 0 such that

|x − ξ||A(3−k)
�n (x)|A(k)

�n (x)2μ′
k(x) � ε

almost everywhere on Δ. Then, it follows from Lemma 3.6.4(1,2) that

− Im
(
D�n,ξ(x + iy)L�n(x + iy)

)
= y

ˆ
Q�n(s)D�n,ξ(s)
(x − s)2 + y2 � ε

ˆ

Δ

y ds

(x − s)2 + y2 .

Therefore, for every x ∈ Δ it holds that

lim sup
y→0+

Im
((

D�n,ξ(x + iy)L�n(x + iy)
)−1

)
� 2/(ε π).

As Δ was arbitrary closed subinterval of (Δ1 ∪Δ2) \E�n and ω�n has no mass points at the 
elements of E�n by its very definition, ω�n is indeed absolutely continuous. The absolute 
continuity of ρO can be shown analogously using (3.3.1), (3.3.3), and (3.3.5). �
3.6. Appendix to Part 3

In this appendix we collected some results that were used in the main text.

3.6.1. Some properties of A(k)
�n (x)

Recall that A(1)
(1,1)(x) and A(2)

(1,1)(x) have degree 0 and therefore are constants.

Lemma 3.6.1. It holds that

A
(1)
(1,1) = −Ξ−1

�μ ‖μ1‖−1 and A
(2)
(1,1) = Ξ−1

�μ ‖μ2‖−1 , (3.6.1)

where Ξ�μ was defined in (3.3.4). In particular, A(1)
< 0 and A(2)

> 0.
(1,1) (1,1)
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Proof. The claim is a consequence of the fact that A
(1)
(1,1), A

(2)
(1,1) solve the system of 

equations

ˆ (
A

(1)
(1,1)dμ1(x) + A

(2)
(1,1)dμ2(x)

)
= 0 and

ˆ
x

(
A

(1)
(1,1)dμ1(x) + A

(1)
(1,1)dμ2(x)

)
= 1. �

Recall that we assumed Δ1 < Δ2. Let

λ�n,1
def= coeffn1−1 A

(1)
�n and λ�n,2

def= coeffn2−1 A
(2)
�n .

Lemma 3.6.2. We have that

sign λ�n,1 = (−1)n2 and sign λ�n,2 = 1 .

Proof. Comparing the leading coefficients in recursion relations (0.0.22) gives λ�n,j =
a�n,jλ�n+�ej ,j . By taking into account that a�n,j > 0, we get

sign λ(n1,n2),1 = sign λ(1,n2),1 and sign λ(n1,n2),2 = sign λ(n1,1),2 , �n ∈ N2 . (3.6.2)

It follows from Lemma 3.6.1 that λ(1,1),1 = A
(1)
(1,1) < 0 and λ(1,1),2 = A

(2)
(1,1) > 0. There-

fore,

sign λ(n1,1),1 = −1 and sign λ(1,n2),2 = 1 .

It follows from orthogonality conditions (0.0.10) for the multi-index (1, n2) that

ˆ
q(x)

(
A

(1)
(1,n2)(x)dμ1(x) + A

(2)
(1,n2)(x)dμ2(x)

)
= 0

for all polynomials q(x) of degree at most n2 − 1. By taking q(x) = A
(2)
(1,n2)(x), we get

−
ˆ (

A
(2)
(1,n2)(x)

)2
dμ2(x) =

ˆ
A

(1)
(1,n2)(x)A(2)

(1,n2)(x)dμ1(x).

Since all the zeroes of A(2)
(1,n2)(x) are on Δ2 and A(1)

(1,n2) = λ(1,n2),1 is a constant, we get 
that

−1 = sign λ(1,n2),1 · sign λ(1,n2),2 · (−1)n2−1 = (−1)n2−1 · sign λ(1,n2),1

and therefore sign λ�n,1 = sign λ(1,n2),1 = (−1)n2 by (3.6.2). That proves the first state-
ment. The second one can be proved similarly. �
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Let E�n,k be the set of zeroes of A(k)
�n (x), k ∈ {1, 2}, and E�n = E�n,1 ∪ E�n,2.

Lemma 3.6.3. It holds that E�n,k ⊂ Δk and #E�n,k = nk − 1. That is, all the zeroes 
of A

(k)
�n (x) are simple and belong to Δk. Write E�n,k =

{
x

(�n,k)
1 , . . . , x(�n,k)

nk−1
}

, where the 
zeroes are labeled in the increasing order. The sets E�n+�el,k and E�n,k interlace for any 
k, l ∈ {1, 2} and

x
(�n,2)
1 < x

(�n+�e1,2)
1 < x

(�n,2)
2 < . . . < x

(�n,2)
n2−1 < x

(�n+�e1,2)
n2−1 (3.6.3)

while

x
(�n+�e2,1)
1 < x

(�n,1)
1 < x

(�n+�e2,1)
2 < . . . < x(�n+�e2,1)

n1
< x(�n,1)

n1
(3.6.4)

(in the other two situations the order is uniquely induced by the fact that #E�n+�ek,k =
#E�n,k + 1).

Proof. The statements about location of zeroes and interlacing can be proved in the 
standard way (see, e.g., [19, Proposition 2.2 and Theorem 5] for the proofs). We only 
need to show (3.6.3) and (3.6.4). Let us prove (3.6.3), the argument for (3.6.4) is identical. 
By (0.0.22), we have two identities

xA
(2)
�n (x) = A

(2)
�n−�ei

(x) + b�n−�ei,iA
(2)
�n (x) + a�n,1A

(2)
�n+�e1

(x) + a�n,2A
(2)
�n+�e2

(x) , i ∈ {1, 2} .

Subtracting one from another, we get

A
(2)
�n−�e1

(x) − A
(2)
�n−�e2

(x) = (b�n−�e2,2 − b�n−�e1,1)A(2)
�n (x) .

Taking x = x
(�n,2)
n2−1, the largest zero of A(2)

�n (x), in the previous identity yields

A
(2)
�n−�e1

(x(�n,2)
n2−1) = A

(2)
�n−�e2

(x(�n,2)
n2−1) . (3.6.5)

The leading coefficients of {A
(2)
�m (x)} are all positive by Lemma 3.6.2 and the zeroes 

of A(2)
�n−�e2

(x) and A(2)
�n (x) interlace, so A(2)

�n−�e2
(x(�n,2)

n2−1) > 0. Thus, A(2)
�n−�e1

(x(�n,2)
n2−1) > 0 by 

(3.6.5). Since the zeroes of A(2)
�n−�e2

(x) and A(2)
�n (x) also interlace, we conclude that the 

zeroes of A(2)
�n (x) dominate those of A(2)

�n−�e1
(x). �

Define the polynomials {T�n,l(x)} by

T�n,l(x) def=
(
A

(2)
A

(1) − A
(1)

A
(2))(x), l ∈ {1, 2} . (3.6.6)
�n+�el �n �n+�el �n
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Proof of Lemma 3.3.3. It holds by the very definition (0.0.12) that

T�n,l(x)dμ1(x) =T�n,l(x)dμ1(x) ± A
(2)
�n+�el

(x)A(2)
�n (x)dμ2(x)

=A
(2)
�n+�el

(x)Q�n(x) − A
(2)
�n (x)Q�n+�el

(x).

Since the degree of A(2)
�n+�el

(x) is n2 + l − 2, we get from (0.0.10) that

ˆ
xkT�n,l(x)dμ1(x) = 0, k ∈ {0, . . . , n1 − l}.

Thus, polynomial T�n,l(x) has at least n1 − l + 1 zeroes on Δ1. Similarly, we can show 
that T�n,l(x) satisfies n2 + l − 2 orthogonality conditions with respect to μ2 and therefore 
it has at least n2 + l − 2 zeroes on Δ2. Because its degree is n1 + n2 − 1, all its zeroes are 
accounted for and are simple. We can write this polynomial as a product of its leading 
coefficient and monic polynomials T�n,l,1(x) and T�n,l,2(x) that have their zeroes on Δ1
and Δ2, respectively.

Without loss of generality we assume that �μ satisfies the conditions of Lemma 3.2.1. 
The general case can be obtained via weak∗ approximation of measures. First, we undo 
the transformations leading to the definition of SX(x). Let �n = Π(X(p)) and l = ιX . It 
follows from (2.2.9) that

SX(x) =
((

A
(0)
�n+�el

A
(k)
�n − A

(k)
�n+�el

A
(0)
�n

)
(x) + (−1)kμ̂3−k(x)

(
A

(2)
�n+�el

A
(1)
�n − A

(1)
�n+�el

A
(2)
�n

)
(x)
)

for x ∈ Δk. Taking the formulae (2.2.7) and (3.3.15) with Y = X, we get

πSX(x)μ′
k(x) = − Im

(
L�n+�el+(x)L�n−(x)

)
.

On the other hand, it follows from Plemelj-Sokhotski formulae, see [25, Section I.4.2], 
that

πSX(x)μ′
k(x) = − Im

⎛⎝⎛⎝p.v.

ˆ

R

Q�n+�el
(s)

x − s
− πi μ′

k(x) A
(k)
�n+�el

(x)

⎞⎠
×

⎛⎝p.v.

ˆ

R

Q�n(s)
x − s

+ πi μ′
k(x) A

(k)
�n (x)

⎞⎠⎞⎠
for x ∈ Δk, where “p.v.” stands for the “principal value”. Notice that it follows form 
(0.0.10) that

P −1(x) p.v.

ˆ
P (s)Q�m(s)

x − s
=P −1(x)

ˆ
P (s) − P (x)

x − s
Q�m(x) + p.v.

ˆ
Q�m(s)
x − s
R R
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=p.v.

ˆ

R

Q�m(s)
x − s

for any polynomial P (x) of degree at most |�m| − 1. In particular, if Y = X and we let 
l = ιX , in which case �m = �n + �el, then it holds that

A
(k)
�n+�el

(x) p.v.

ˆ

R

Q�n(s)
x − s

− A
(k)
�n (x) p.v.

ˆ

R

Q�n+�el
(s)

x − s

= 1
T (x)p.v.

ˆ

R

T (s)
(
A

(k)
�n+�el

(s)Q�n(s) − A
(k)
�n (s)Q�n+�el

(s)
)

x − s

= (−1)k

T (x)

ˆ

R

T (s)T�n,l(s)
x − s

dμ3−k(s), x ∈ Δk,

for any polynomial T (x) with real coefficients and of degree at most n2 + l − 2 if k = 1
and of degree at most n1 − l + 1 when k = 2. Hence, taking T (x) = T�n,l,3−k(x), we have 
shown that

S�n,l,k(x) def= SX(x) = (−1)k

T�n,l,3−k(x)

ˆ

R

T�n,l,3−k(s)T�n,l(s)
x − s

dμ3−k(s), x ∈ Δk, (3.6.7)

which is clearly a non-vanishing function. To prove positivity, take k = 1. Polynomial 
T�n,l,2(x) is monic and has all of its n2 + l − 2 zeroes on Δ2. Thus, its sign on Δ1 is 
equal to (−1)n2+l. Polynomial T�n,l,2(x)T�n,l(x) has double zeroes on Δ2 and the same 
leading coefficient as (−1)lA

(l)
�n+�el

(x)A(3−l)
�n (x). The latter has the same sign as (−1)n2+l

by Lemma 3.6.2, and therefore,

SX(x) = −1
|T�n,l,2(x)|

ˆ

R

|T�n,l,2(s)T�n,l(s)|
x − s

dμ2(s) > 0, x < β2,

as claimed. The case of k = 2 can be considered similarly. �

3.6.2. Properties of L�n(z)

Recall the definitions of D�n,ξ(z) in (3.2.2), the measure ν�n,E in (3.2.3), the polynomials 
T�n,k(x) in (3.6.6), and the functions S�n,l,k(x) in (3.6.7). The set E�n is the set of zeroes 
of the polynomial A(1)(z)A(2)(z).
�n �n
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Lemma 3.6.4. It holds that

(1) If D(x) is a polynomial of degree at most |�n| − 1, then

L�n(z) = D−1(z)
ˆ

R

(
Q�nD

)
(x)

z − x
. (3.6.8)

(2) The measure D�n,ξ(x)Q�n(x) is non-negative on Δ1 ∪ Δ2 for every ξ ∈ (β1, α2). In 
particular, ν�n,E is a positive measure.

(3) The function L�n(z) has no zeroes outside Δ1 ∪Δ2 and its restriction to R\(Δ1 ∪Δ2)
has well-defined nonzero limits at the endpoints of Δ1 and Δ2.

(4) If E ∈ E�n, then −D′
�n,ξ(E) limε→0+ L�n(E + iε) = ‖ν�n,E‖ − ν�n,E({E}) > 0.

(5) If E ∈ E�n ∩ Δk, then ‖ν�n,E‖ = −D′
�n,ξ(E)S�n,l,k(E)/A

(k)
�n+�el

(E) for either l ∈ {1, 2}.

Proof. (1) The claim follows form orthogonality condition (0.0.10), (0.0.12), and (0.0.14)
since

0 =
ˆ

R

Q�n(x)(D(x) − D(z))
x − z

=
ˆ

R

(
Q�nD

)
(x)

x − z
+
(
DL�n

)
(z).

(2) Since A(k)
�n (x) has all its zeroes localized to Δk, it follows from Lemma 3.6.2 that

(−1)n2(x − ξ)A(2)
�n (x) > 0, x ∈ Δ1, and (−1)n2(x − ξ)A(1)

�n (x) > 0, x ∈ Δ2,

which yields positivity of D�n,ξ(x)Q�n(x).
(3) It follows from claims (2) and (1), applied with D(x) = D�n,ξ(x), that (D�n,ξL�n)(y) < 0
for y ∈ (−∞, α1] and (D�n,ξL�n)(y) > 0 for y ∈ [β2, ∞) (the limits at α1 and β1 might 
be infinite, but they always exist since Markov functions are decreasing on the real line 
away from the support of the defining measure). Hence, L�n(x) is non-vanishing there. To 
show that L�n(x) has no zeroes in the lacuna [β1, α2], take D(x) = D�n,η(x) with η < α1
and D�n,η defined by (3.2.2). Observe that in this case (Q�nD�n,η)(x) is non-positive on Δ1
and is still non-negative on Δ2. Hence, (D�n,ηL�n)(y) < ζ < 0 for all y ∈ (β1, α2), where 
ζ =
´

Δ1
(α2 − x)−1(Q�nD�n,η)(x), which finishes the proof of the desired statement.

(4) Notice that

(x − E)2dν�n,E(x) = (x − E)2dν̃�n,E(x), ν̃�n,E
def= ν�n,E − ν�n,E({E})δE .

Then, it follows from the dominated convergence theorem (the integrands below are 
bounded by 1 in absolute value) that

lim
ε→0+

ˆ (x − E)dν�n,E(x)
x − (E + iε) = lim

ε→0+

ˆ (x − E)2dν̃�n,E(x)
(x − E)2 + ε2 + i lim

ε→0+

ˆ
ε(x − E)dν̃�n,E(x)

(x − E)2 + ε2

R R R
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=‖ν̃�n,E‖ > 0, (3.6.9)

where the last conclusion holds since the measures μ1, μ2 have supports of infinite car-
dinality. Thus, claim (4) follows from claim (1) applied with D(x) = D�n,ξ(x)/(x − E).

(5) For a polynomial P (x) vanishing at E, let us set P (E; x) def= P (x)/(x − E). Clearly, 
P (E; E) = P ′(E). Recall that deg(T�n,l,1) = n1 − l + 1 and deg(T�n,l,2) = n2 + l − 2. It 
holds that

‖νn,E‖ =
ˆ

R

D�n,ξ(E; x)Q�n(x)
x − E

= D′
�n,ξ(E)

ˆ

R

Q�n(x)
x − E

=
D′

�n,ξ(E)

T�n,l,3−k(E)A(k)
�n+�el

(E)

ˆ

R

T�n,l,3−k(x)A(k)
�n+�el

(x)Q�n(x)
x − E

,

where we used the fact that Q�n(x) is divisible by (x −E), orthogonality relations (0.0.10)
twice, and Lemma 3.6.3 to observe that A(k)

�n+�el
(E) �= 0. Assume that k ∈ {1, 2} is such 

that E ∈ Δk, that is, it is a zero of A(k)
�n (x). Then

ˆ

R

T�n,l,3−k(x)A(k)
�n (x)Q�n+�el

(x)
x − E

=
ˆ

R

T�n,l,3−k(x)A(k)
�n (E; x)Q�n+�el

(x) = 0,

again, due to orthogonality relations (0.0.10). Therefore, it holds by (3.6.7) that

‖νn,E‖ =
D′

�n,ξ(E)

T�n,l,3−k(E)A(k)
�n+�el

(E)

ˆ

R

T�n,l,3−k(s)
(
A

(k)
�n+�el

(s)Q�n(s) − A
(k)
�n (s)Q�n+�el

(s)
)

s − E

= −
(−1)kD′

�n,ξ(E)

T�n,l,3−k(E)A(k)
�n+�el

(E)

ˆ

R

T�n,l,3−k(s)T�n,l(s)
E − s

dμ3−k(s) = −
D′

�n,ξ(E)S�n,l,k(E)

A
(k)
�n+�el

(E)

as claimed. �
Lemma 3.6.5. Assume that �μ satisfies the conditions of Lemma 3.2.1 and that (μ′

k(x))−1 ∈
Lp(Δk) for some p > 1 and each k ∈ {1, 2}. Suppose further that there exists 
γ ∈ {α1, β1, α2, β2} such that |L�κ(γ)| = 0. Then, |L�κ(x)|−2μ′

k(x) ∈ Lp(Δk) for each 
k ∈ {1, 2} and

lim
y→0+

iy
L�1(γ + iy)
L�κ(γ + iy) = 0.

Proof. Clearly, the first claim is obvious unless |L�κ(x)| vanishes at the endpoint of Δk. 
In the latter situation it follows from Proposition 3.1.4(2-4) that
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|L�κ(x)|2 � Im(L�κ+(x))2 = κ
2
k Im(σk+(x))2 = π(κk/‖μk‖)2(μ′

k(x))2,

where we used the notation σk = ‖μk‖−1μk. This yields the desired claim
|L�κ(x)|−2μ′

k(x) ∈ Lp(Δk).
To prove the limit, assume for definiteness that γ ∈ {α1, β1}. Then, we get that

lim
y→0+

iy
L�1(γ + iy)
L�κ(γ + iy) = L�1(γ) lim

y→0+

(
κ2σ̂′

2(γ) + κ1
σ̂1(γ + iy) − σ̂1(γ)

iy

)−1

,

recall that by Lemma 3.3.1 the value σ̂1(γ) is well-defined. The fraction above can be 
rewritten as

σ̂1(γ + iy) − σ̂1(γ)
iy = −

⎛⎝ˆ
R

dσ1(x)
(γ − x)2 + y2 − iy

ˆ

R

dσ1(x)
(γ − x)((γ − x)2 + y2)

⎞⎠ ,

where the first integral is a strictly decreasing function of y ∈ (0, ∞).
Notice that κ1 �= 0 since otherwise L�κ = L�e1 which has no zeroes on R. Then, it only 

remains to show that (γ −x)−2μ′
1(x) is not L1-integrable on Δ1. Let Δε = [α1 +ε, β1 −ε]

and dν(x) = μ−1
1 (x)dx, which is a finite measure on Δ1. Hence, we get from Cauchy-

Schwarz inequality that

⎛⎝ˆ
Δε

dx

|x − γ|

⎞⎠2

=

⎛⎝ˆ
Δε

μ′
1(x)dν(x)
|x − γ|

⎞⎠2

� ‖ν|Δε
‖
ˆ

Δε

μ′
1(x)2dν(x)
(x − γ)2 = ‖ν|Δε

‖
ˆ

Δε

dμ1(x)
(x − γ)2

and the desired claim follows by letting ε → 0. �
Part 4. Periodic Jacobi operators on rooted trees and Angelesco systems

In Part 1, we introduced operators J�κ, �N , see (1.1.4), defined on finite trees T �N , �N ∈
N2, see Section 1.1.1, and studied their spectra and spectral decompositions. In this part 
of the paper, we consider Angelesco system, as in Part 3, see (3.0.1), in the case when 
supp μi = Δi, dμi(x) = μ′

i(x)dx, μ′
i(x) > 0, x ∈ Δi, and μ′

i(x) is a restriction of an 
analytic function defined around Δi. This situation was studied in great detail in [9] and 
[10], see also [42]. In particular, it was proved that J�el, �N converges to a limiting operator 
L(l)

c when �N goes to infinity along any ray

Nc =
{
�n : ni = ci|�n| + o(|�n|), i ∈ {1, 2}

}
, (c1, c2) = (c, 1 − c), c ∈ [0, 1]. (4.0.1)

Hereafter, limNc
stands for the limit as |�n| → ∞ and �n ∈ Nc.
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4.1. Definitions

It was shown in the work of Gonchar and Rakhmanov [30] that for Angelesco systems 
with two measures there exists a family of vector equilibrium problems, depending on a 
parameter c ∈ [0, 1], whose solutions describe the limiting asymptotics of the normalized 
counting measures of the zeroes of the polynomials P�n(z), see (0.0.11), along all ray 
sequences Nc. In particular, if an Angelesco system �μ is as described before (4.0.1), 
then the support of the vector equilibrium measure corresponding to c is a union of two 
intervals Δc,1 ∪ Δc,2 where Δc,i ⊆ Δi, see, e.g., [9,30] for details.

4.1.1. Riemann surface

To define operators L(l)
c rigorously, we need the following Riemann surfaces. Let Rc

be a 3-sheeted Riemann surface realized as follows: cut a copy of C along Δc,1 ∪ Δc,2, 
which henceforth is denoted by R(0)

c , the second copy of C is cut along Δc,1 and is 
denoted by R(1)

c , while the third copy is cut along Δc,2 and is denoted by R(2)
c . These 

copies are then glued to each other crosswise along the corresponding cuts. It can be 
easily verified that thus constructed Riemann surface has genus 0. We denote by π the 
natural projection from Rc to C and employ the notation z for a generic point on Rc

with π(z) = z as well as z(i) for a point on R(i)
c with π(z(i)) = z.

Since Rc has genus zero, one can arbitrarily prescribe zero/pole divisors of rational 
functions on Rc as long as the degree of the divisor is zero. Clearly, a rational function 
with a given divisor is unique up to multiplication by a constant. Let χc(z) be the 
conformal map of Rc onto C defined uniquely by the condition

χc

(
z(0)) = z + O

(
z−1), z → ∞. (4.1.1)

The following constants are going to be central to our investigations in this part of the 
paper. Let Ac,1, Ac,2, Bc,1, Bc,2 be determined by

χc

(
z(i)) = Bc,i + Ac,iz

−1 + O
(
z−2), z → ∞, i ∈ {1, 2}. (4.1.2)

It was shown in [10, Proposition 2.1] that these constants continuously depend on the 
parameter c and have well-defined limits as c → 0+ and c → 1−, which we denote by 
A0,i, B0,i and A1,i, B1,i, respectively. Moreover, constants Ac,1 > 0 for all c ∈ [0, 1) while 
A1,1 = 0 and Ac,2 > 0 for all c ∈ (0, 1] while A0,2 = 0.

4.1.2. Periodic Jacobi operators on rooted trees

Let T , V, and O be as in Section 2.1.1. There are two edges meeting at the root O. 
We label one of them type 1 and the other one – type 2. Next, consider the children of 
O. Each of them is coincident with exactly three edges, one of which has already been 
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labeled. We label the remaining two as an edge of type 1 and an edge of type 2. We 
continue in a similar fashion going down the tree generation by generation and calling 
one of the unlabeled edges type 1 and the other one type 2. After assigning types to all 
the edges, we continue by labeling the vertices. If a vertex Y meets two edges of type 1 
and one edge of type 2, we call it a vertex of type 1; otherwise, if it is incident with two 
edges of type 2 and one edge of type 1, we call it type 2. We do not need to assign any 
type to the root O. Given a vertex Y �= O, we denote its type by �Y (this is similar to 
the index function introduced in (2.1.2)).

Both operators L(1)
c and L(2)

c are Jacobi matrices defined on T . At a vertex Y �= O of 
type �Y , we define them by the same formula:

(L(l)
c ψ)Y =

∑
j∈{1,2},Y ′∼Y, type of edge (Y,Y ′)=j

√
Ac,jψY ′ + Bc,�Y

ψY , l ∈ {1, 2}; (4.1.3)

and at the root O we define the operators L(1)
c and L(2)

c differently by writing

(L(l)
c ψ)O =

∑
j∈{1,2},Y ′∼O, type of edge (O,Y ′)=j

√
Ac,jψY ′ + Bc,lψO , l ∈ {1, 2}. (4.1.4)

Recall that Ac,j > 0 when c ∈ (0, 1), but either Ac,1 or Ac,2 becomes zero when c ∈ {0, 1}. 
The latter cases are trivial and we do not study them, see [10, Appendix A].

Our operators L(l)
c have “periodic coefficients” and “self-similar structure”. They are 

defined on the binary tree and should not be confused with a similar class of Jacobi 
matrices defined on trees associated with the universal cover of finite connected graphs. 
The latter class was studied in several papers, see, e.g., [5,6,13]. In the rest of this part, 
we will apply the arguments from Section 3.4 to obtain the spectral decomposition of 
L(l)

c using their generalized eigenfunctions.
The following theorem provides the connection between operators L(l)

c and J�κ, �N . It is 
stated in [9] for c ∈ (0, 1) and is a simple consequence of the results of [42]. Its extension 
to c ∈ {0, 1} was obtained in [10].

Theorem 4.1.1. Let �μ be an Angelesco system (3.0.1) such that supp μi = Δi, dμi(x) =
μ′

i(x)dx, μ′
i(x) > 0, x ∈ Δi, and μ′

i(x) is a restriction of a function analytic around Δi

for each i ∈ {1, 2}. Further, let the constants Ac,i, Bc,i, c ∈ [0, 1] and i ∈ {1, 2}, be given 
by (4.1.2). Then, the ray limits (4.0.1) of coefficients 

{
a�n,i, b�n,i

}
from (0.0.19)–(0.0.20)

exist for any c ∈ (0, 1) and

lim
Nc

a�n,i = Ac,i and lim
Nc

b�n,i = Bc,i, i ∈ {1, 2}. (4.1.5)

In [9, Section 4.5], this theorem was used to prove that J�el, �N → L(l)
c , l ∈ {1, 2}, when 

�N ∈ Nc converges to infinity. This convergence can be understood as the strong operator 
convergence on the same Hilbert space �2(T ) when J�el, �N is properly extended to this 
space.
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4.1.3. Green’s functions

In [10, Appendix A], it was proved that σ(L(l)
c ) = Δc,1 ∪ Δc,2 and the spectrum is 

purely absolutely continuous. Moreover, if we denote Green’s functions of L(l)
c corre-

sponding to the root O by

G(l)
c (Y, O; z) def=

〈
(L(l)

c − z)−1δ(O), δ(Y )〉, (4.1.6)

then it was shown in [9, Section 4.5] that

G(l)
c (O, O; z) = M (l)

c (z(0)), z /∈ Δc,1 ∪ Δc,2 , (4.1.7)

where M (l)
c (z) is a function on Rc given by

M (l)
c (z) def= 1

Bc,l − χc(z) , l ∈ {1, 2} . (4.1.8)

Clearly, M (l)
c (z) is an analytic function on Rc apart from a single pole at ∞(l), which 

is simple. Therefore, the traces G(l)
c (O, O; x)± exist and are continuous on Δc,1 ∪ Δc,2. 

Moreover, they are complex conjugates of each other. In particular, |G(l)
c (O, O; x)| is 

well-defined for all x ∈ Δc,1 ∪ Δc,2.

Lemma 4.1.2. The identity

Ac,1|G(1)
c (O, O; x)|2 + Ac,2|G(2)

c (O, O; x)|2 = 1 (4.1.9)

holds for each x ∈ Δc,1 ∪ Δc,2. Moreover,

Ac,1|G(1)
c (O, O; z)|2 + Ac,2|G(2)

c (O, O; z)|2 < 1 (4.1.10)

for z /∈ Δc,1 ∪ Δc,2.

Proof. From [9, formula (4.27)], we get that

z = −1/M (l)
c (z) + Bc,l − Ac,1M (1)

c (z) − Ac,2M (2)
c (z) (4.1.11)

for each l ∈ {1, 2} and z ∈ Rc. Formula (4.1.11), in particular, implies that

Bc,1 − 1/M (1)
c (z) = Bc,2 − 1/M (2)

c (z)

for all z ∈ Rc. Fix i ∈ {1, 2}. Using the above relation with z = z(3−i) gives us

1
(1) (3−i)

− 1
(2) (3−i)

= Bc,1 − Bc,2. (4.1.12)

Mc (z ) Mc (z )
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Since the product of all the branches of an algebraic function is a polynomial, the analysis 
of its behavior at infinity yields that

M (l)
c (z(0))M (l)

c (z(1))M (l)
c (z(2)) = (−1)l(Ac,l(Bc,2 − Bc,1))−1.

By plugging the above relations into (4.1.12) we get

Ac,1M (1)
c (z(0))M (1)

c (z(i)) + Ac,2M (2)
c (z(0))M (2)

c (z(i)) = 1

for all z ∈ C\(Δc,1 ∪Δc,2). Taking the boundary values on Δi from the upper half-plane, 
we obtain

Ac,1M
(1)
c+ (x(0))M (1)

c+ (x(i)) + Ac,2M
(2)
c+ (x(0))M (2)

c+ (x(i)) = 1,

for x ∈ Δi. To prove (4.1.9), it only remains to observe that

G(l)
c (O, O; x)± = M

(l)
c±
(
x(0)) = M

(l)
c∓
(
x(i))

for x ∈ Δi in view of (4.1.7). To show (4.1.10) observe that its right-hand side is subhar-
monic, decays at infinity, and equals 1 on the cuts. Thus, the maximum principle gives 
the claimed bound. �
Remark. Identity (4.1.9) gives a simple description of the image of the cuts Δc,1 and Δc,2
under the conformal map χc(z). Namely, this image is a contour in the plane described 
by the equation

Ac,1

|χ − Bc,1|2 + Ac,2

|χ − Bc,2|2 = 1 , χ ∈ C . (4.1.13)

The self-similar nature of the operators L(l)
c and (4.1.7) make it possible to compute 

their Green’s functions.

Proposition 4.1.3. For z /∈ Δc,1 ∪ Δc,2 and X �= O, it holds that

G(l)
c (X, O; z) = M (l)

c (z(0)) ·
∏

Y ∈path∗(X,O)

(
−A

1/2
c,�Y

)
M (�Y )

c (z(0)) , (4.1.14)

where path∗(X, O) is the path that connects O to X, it includes X, but excludes O. 
Moreover,

∥∥∥G(l)
c (·, O; z)

∥∥∥2

�2(V)
= |M (l)

c (z(0))|2

1 − (Ac,1|M (1)
c (z(0))|2 + Ac,2|M (2)

c (z(0))|2)
(4.1.15)

for all z /∈ Δc,1 ∪ Δc,2, where we consider {G
(l)
c (Y, O; z)} as a function of Y on V.
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Proof. Let g(z) be a function on V given by the right-hand side of (4.1.14) with gO(z) def=
M

(l)
c (z(0)). By induction in n ∈ N, one gets that

∑
|Y |=n

|gY (z)|2 = |M (l)
c (z(0))|2

(
Ac,1|M (1)

c (z(0))|2 + Ac,2|M (2)
c (z(0))|2

)n

,

where |Y | stands for the distance from Y to the root O. Therefore, it follows from 
(4.1.10) that ‖g(z)‖2

�2(V) is finite and is equal to the right-hand side of (4.1.15) for all 
z /∈ Δc,1∪Δc,2. Thus, to prove the lemma we only need to show that (L(l)

c −z)g(z) = δ(O). 
The latter is a straightforward application of (4.1.3) and (4.1.4). Indeed, let Y �= O be 
of type i and Y1 and Y2 be the children of Y of types 1 and 2, respectively. Then(

(L(l)
c − z)g(z)

)
Y

= (Bc,i − z)gY (z) +
√

Ac,igY(p)(z) +
√

Ac,1gY1(z) +
√

Ac,2gY2(z)

= gY (z)
(

Bc,i − z − M (i)
c

(
z(0))−1 − Ac,1M (1)

c

(
z(0))− Ac,2M (2)

c

(
z(0))) = 0,

where the last equality follows from (4.1.11). Similarly, it holds that(
(L(l)

c − z)g(z)
)

O
= (Bc,l − z)gO(z) +

√
Ac,1gO1(z) +

√
Ac,2gO2(z)

= M (l)
c (z(0))

(
Bc,l − z − Ac,1M (1)

c

(
z(0))− Ac,2M (2)

c

(
z(0))) = 1,

where O1 and O2 are the children of O of types 1 and 2, respectively. �
Remark. Direct algebraic proof of (4.1.14), rather than a posteriori computation given 
above, can be found in [9, Remark 4.15].

4.2. Spectral analysis

To carry our spectral analysis of the operators L(l)
c we follow the blueprint of Sec-

tions 3.3–3.5.

4.2.1. Trivial cyclic subspaces of L(l)
c generated by δ(O)

From (4.1.1) and the symmetries of the surface Rc, one can deduce that χc(z(0)) has 
positive imaginary part when z ∈ C+, i.e., that χc(z(0)) ∈ HN. This is consistent with 
Gc(O, O; ·) ∈ HN due to (4.1.7) and (4.1.8). It is indeed a negative of a Markov function 
of the spectral measure of L(l)

c with respect to δ(O). Let us denote this spectral measure 
by ρ

(c,l)
O . Since functions M

(l)
c (z) map the surface Rc conformally onto the Riemann 

sphere, it follows from Proposition 3.1.4(1-3) and (4.1.7) that

dρ
(c,l)
O (x) = Im

(
M (l)

c

(
x

(0)
+
))

dx, x ∈ Δc,1 ∪ Δc,2,
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where x(0)
+

def= limy→0+ z(0), z = x + iy. Define the reference measure ω(c) as

dω(c)(x) def=
√

|(x − αc,1)(x − βc,1)(x − αc,2)(x − βc,2)|dx, x ∈ Δc,1 ∪ Δc,2,

where we write Δc,i = [αc,i, βc,i] (in fact, it always holds that αc,1 = α1 and βc,2 = β2). 
The analysis of the conformal map χ(z) at the endpoints of Δc,i reveals that the densities 
of both spectral measures ρ(c,l)

O satisfy

C1(ω(c))′(x) < (ρ(c,l)
O )′(x) < C2(ω(c))′(x)

for x ∈ Δc,i and some positive constants C1, C2 that might depend on c but do not 
depend on x. In particular, if we define ν(c,l)(x) def= (ρ(c,l)

O )′(x)/(ω(c))′(x), then

ν(c,l) ∈ L∞(Δc,1 ∪ Δc,2), (ν(c,l))−1 ∈ L∞(Δc,1 ∪ Δc,2) (4.2.1)

for each l ∈ {1, 2}. Similarly to (3.3.7), we can then define

Ψ(c,l)
X (x) def= d Im G

(l)
c (X, O)+(x)

dρ
(c,l)
O (x)

= Im
(
M (l)

c

(
x

(0)
+
))−1 Im

⎛⎝M (l)
c

(
x

(0)
+
) ∏

Y ∈path∗(X,O)

(
−A

1/2
c,�Y

)
M (�Y )

c

(
x

(0)
+
)⎞⎠

(4.2.2)

for X ∈ V and x ∈ Δc,1 ∪ Δc,2, where the second equality follows from (4.1.14). Notice 
that the same computation as in the second part of the proof of Proposition 4.1.3 shows 
that Ψ(c,l)(x) is a formal generalized eigenvector for L(l)

c corresponding to x ∈ Δc,1 ∪Δc,2
that satisfies Ψ(c,l)

O (x) = 1.
Denote by C(O)

(c,l) the cyclic subspace generated by δ(O) and L(l)
c . Recall that the oper-

ator α(L(l)
c ) can be defined for every continuous function α using the Spectral Theorem 

for self-adjoint operators. The proof of the next proposition repeats the proof of Propo-
sition 3.4.1.

Proposition 4.2.1. The map

α(x) �→ α̂(c,l) =
{

α̂
(c,l)
Y

}
Y ∈V

, α̂
(c,l)
Y

def=
ˆ

α(x)Ψ(c,l)
Y (x)dρ

(c,l)
O (x),

is a unitary map from L2(ρ(c,l)
O ) onto C(O)

(c,l). In particular, it holds that

‖α‖2
2 (c,l) =

∥∥α̂(c,l)∥∥2
2 and C

(O)
(c,l) =

{
α̂(c,l) : α ∈ L2(ρ(c,l)

O )
}

.

L (ρO ) � (V)
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Thus, the formula

α(L(l)
c )δ(O) def= α̂(c,l) =

ˆ
α(x)Ψ(c,l)(x)dρ

(c,l)
O (x)

extends the definition of α(L(l)
c )δ(O) to all α ∈ L2(ρ(c,l)

O ). We also have that

xα(x) �→ L(l)
c α̂, α ∈ L2(ρ(c,l)

O ).

4.2.2. Nontrivial cyclic subspaces of L(l)
c

Let X ∈ V and X1, X2 be children of X of types 1 and 2, respectively. Observe that 
the restriction of L(l)

c to T[Xi] is equal to L(i)
c , where, as before, T[Xi] is the subtree 

of T with root at Xi. Here, we can use the self-similar structure to naturally identify 
T[Xi] with T when talking about the operator L(i)

c on T[Xi]. Let us further denote by 
Ψ(c)(Xi; x) the function Ψ(c,i)(x), defined in (4.2.2), carried to V[Xi] from V by using 
this natural identification. Similarly to (3.4.10) define

Ψ̂(c)
Y (X; x) def= (−1)iA

−1/2
c,i Ψ(c)

Y (Xi; x), Y ∈ V[Xi], and Ψ̂Y (X; x) def= 0, otherwise.

Observe that Ψ̂(c)(X; x) does not depend on l and it follows from (4.1.3) and (4.1.4) that

((
L(l)

c − x
)
Ψ̂(c)(X; x)

)
X

= A
1/2
c,1 Ψ̂(c)

X1
(X; x) + A

1/2
c,2 Ψ̂(c)

X2
(X; x) = 0.

Similarly to (3.4.11), define

Ĉ(X)
c

def=
{ˆ

α(x)Ψ̂(c)(X; x)dω(c)(x) : α ∈ L2
ω(c)(Δc,1 ∪ Δc,2)

}
.

The following proposition is analogous to Proposition 3.4.2 and can be proven similarly 
using (4.2.1) and Proposition 4.2.1.

Proposition 4.2.2. Fix X ∈ V and let X1, X2 be children of X of types 1 and 2, re-
spectively. The function Ψ̂(c)(X; x) is a generalized eigenvector of L(l)

c , that is, it holds 
that

L(l)
c Ψ̂(c)(X; x) = xΨ̂(c)(X; x).

Moreover, let the function g(X)
c,i ∈ Ĉ

(X)
c , i ∈ {1, 2}, be given by

g
(X)
c,i

def=
ˆ

�(c)(Xi; x)Ψ̂(c)(X; x)dω(c)(x), �(c)(Xi; x) def= (−1)iA
1/2
c,i ν(c,i)(x).
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Then, it holds that χig
(X)
c,i = χiδ

(Xi), where χi is the restriction operator that sends 
f ∈ Ĉ

(X)
c to its restriction to V[Xi], and

Ĉ(X)
c = span

{(
L(l)

c

)n
g

(X)
c,i : n ∈ Z+

}
.

That is, each g(X)
c,i is a generator of the cyclic subspace Ĉ(X)

c . In particular, the formula

α
(
L(l)

c

)
g

(X)
c,i

def=
ˆ

α(x)�(c)(Xi; x)Ψ̂(c)(X; x)dω(c)(x)

extends the definition of α
(
L(l)

c

)
g

(X)
c,i to all α ∈ L2

ω(c)(Δc,1 ∪ Δc,2). Furthermore, it holds 
that

dρ
g

(X)
c,i

(x) =
2∑

k=1

Ac,i

Ac,k

ν(c,i)(x)2

ν(c,k)(x)
dω(c)(x),

where ρ
g

(X)
c,i

is the spectral measure of g(X)
c,i .

4.2.3. Orthogonal decomposition

The proof of the following theorem repeats the one of Theorem 3.4.3.

Theorem 4.2.3. The Hilbert space �2(V) decomposes into an orthogonal sum of cyclic 
subspaces of L(l)

c as follows:

�2(V) = C
(O)
(c,l) ⊕ L, L = ⊕Z∈V Ĉ

(Z)
c , l ∈ {1, 2} . (4.2.3)

Remark. This theorem implies immediately that σ(L(l)
c ) = Δc,1∪Δc,2, that the spectrum 

is purely absolutely continuous, and that it has infinite multiplicity.

References

[1] M. Aizenman, S. Warzel, Resonant delocalization for random Schrödinger operators on tree graphs, 
J. Eur. Math. Soc. 15 (2013) 41167–41222.

[2] N.I. Akhiezer, The Classical Moment Problem and Some Related Questions in Analysis, Hafner 
Publishing Co., New York, 1965.

[3] N.I. Akhiezer, I.M. Glazman, Theory of Linear Operators in Hilbert Space, Dover Publications, 
Inc., New York, 1993.

[4] A. Angelesco, Sur deux extensions des fractions continues algébraiques, C. R. Math. Acad. Sci. 
Paris, Sér. I 168 (1919) 262–265.

[5] K. Aomoto, Algebraic equations for Green kernel on a tree, Proc. Jpn. Acad., Ser. A, Math. Sci. 
64 (4) (1988) 123–125.

[6] K. Aomoto, Y. Kato, Green functions and spectra on free products of cyclic groups, Ann. Inst. 
Fourier (Grenoble) 38 (1) (1988) 59–86.

http://refhub.elsevier.com/S0001-8708(21)00553-3/bib75311EF54F223A7D371CC1BBAF4A6C14s1
http://refhub.elsevier.com/S0001-8708(21)00553-3/bib75311EF54F223A7D371CC1BBAF4A6C14s1
http://refhub.elsevier.com/S0001-8708(21)00553-3/bib017CE333244E1837D45C46133E8E1318s1
http://refhub.elsevier.com/S0001-8708(21)00553-3/bib017CE333244E1837D45C46133E8E1318s1
http://refhub.elsevier.com/S0001-8708(21)00553-3/bib707CBE19E40233B54C2F29D57390BF18s1
http://refhub.elsevier.com/S0001-8708(21)00553-3/bib707CBE19E40233B54C2F29D57390BF18s1
http://refhub.elsevier.com/S0001-8708(21)00553-3/bibAAAC10825D925D1806C3E7B2B1E0F88Ds1
http://refhub.elsevier.com/S0001-8708(21)00553-3/bibAAAC10825D925D1806C3E7B2B1E0F88Ds1
http://refhub.elsevier.com/S0001-8708(21)00553-3/bib0FDA8EF8CC8E418694A4F61570331914s1
http://refhub.elsevier.com/S0001-8708(21)00553-3/bib0FDA8EF8CC8E418694A4F61570331914s1
http://refhub.elsevier.com/S0001-8708(21)00553-3/bibF7815C863FFD2B219542E37635C3EB52s1
http://refhub.elsevier.com/S0001-8708(21)00553-3/bibF7815C863FFD2B219542E37635C3EB52s1


78 S.A. Denisov, M.L. Yattselev / Advances in Mathematics 396 (2022) 108114
[7] A.I. Aptekarev, Multiple orthogonal polynomials, in: Proceedings of the VIIIth Symposium on 
Orthogonal Polynomials and Their Applications, Seville, 1997, J. Comput. Appl. Math. 99 (1–2) 
(1998) 423–447.

[8] A. Aptekarev, V. Kalyagin, G. Lopez Lagomasino, I. Rocha, On the limit behavior of recurrence 
coefficients for multiple orthogonal polynomials, J. Approx. Theory 139 (1–2) (2006) 346–370.

[9] A.I. Aptekarev, S.A. Denisov, M.L. Yattselev, Self-adjoint Jacobi matrices on trees and multiple 
orthogonal polynomials, Trans. Am. Math. Soc. 373 (2) (2020) 875–917.

[10] A.I. Aptekarev, S.A. Denisov, M.L. Yattselev, Asymptotics of coefficients and essential spectrum 
of Jacobi matrices on trees generated by Angelesco system, J. Spectr. Theory (2021), https://
doi .org /10 .4171 /JST /380. Accepted for publication.

[11] A.I. Aptekarev, M. Derevyagin, W. Van Assche, Discrete integrable systems generated by Hermite–
Padé approximants, Nonlinearity 29 (5) (2016) 1487–1506.

[12] A. Aptekarev, G. López Lagomasino, I. Rocha, Ratio asymptotics of Hermite-Padé polynomials 
for Nikishin systems, Mat. Sb. 196 (8) (2005) 3–20 (in Russian). English translation in Sb. Math. 
196 (7-8) (2005) 1089–1107.

[13] N. Avni, J. Breuer, B. Simon, Periodic Jacobi matrices on trees, Adv. Math. 370 (2020) 107241.
[14] Ju.M. Berezanskii, Expansions in Eigenfunctions of Selfadjoint Operators, Translations of Mathe-

matical Monographs, vol. 17, American Mathematical Society, Providence, R.I., 1968.
[15] J. Breuer, R. Frank, Singular spectrum for radial trees, Rev. Math. Phys. 21 (7) (2009) 929–945.
[16] J. Breuer, S. Denisov, L. Eliaz, On the essential spectrum of Schrödinger operators on trees, Math. 

Phys. Anal. Geom. 21 (4) (2018) 33.
[17] Zh. Bustamante, G. López Lagomasino, Hermite-Pade approximations for Nikishin systems of an-

alytic functions, Mat. Sb. 183 (11) (1992) 117–138 (in Russian). English translation in Sb. Math. 
77 (2) (1994) 367–384.

[18] K. Driver, H. Stahl, Normality in Nikishin systems, Indag. Math. (N.S.) 5 (2) (1994) 161–187.
[19] U. Fidalgo Prieto, S. Medina Peralta, J. Mínguez Ceniceros, Mixed type multiple orthogonal poly-

nomials: perfectness and interlacing properties of zeroes, Linear Algebra Appl. 438 (3) (2013) 
1229–1239.

[20] U. Fidalgo Prieto, G. López Lagomasino, Nikishin systems are perfect. The case of unbounded and 
touching supports, J. Approx. Theory 163 (2011) 779–811.

[21] U. Fidalgo, G. López Lagomasino, Nikishin systems are perfect, Constr. Approx. 34 (3) (2011) 
297–356.

[22] U. Fidalgo Prieto, J. Illán, G. López Lagomasino, Hermite-Padé approximation and simultaneous 
quadrature formulae, J. Approx. Theory 126 (2) (2004) 171–197.

[23] G. Filipuk, M. Haneczok, W. Van Assche, Computing recurrence coefficients of multiple orthogonal 
polynomials, Numer. Algorithms 70 (3) (2015) 519–543.

[24] F.R. Gantmacher, The Theory of Matrices, Vol. I, AMS Chelsea Publishing, Providence, Rhode 
Island, 2000.

[25] F.D. Gakhov, Boundary Value Problems, Dover Publications, Inc., New York, 1990.
[26] J.B. Garnett, Bounded Analytic Functions, Graduate Texts in Mathematics, vol. 236, Springer, 

New York, 2007.
[27] V. Georgescu, S.G. Isometries, Fock spaces, and spectral analysis of Schrödinger operators on trees, 

J. Funct. Anal. 227 (2) (2005) 389–429.
[28] I. Gohberg, P. Lancaster, L. Rodman, Indefinite Linear Algebra and Applications, Birkhauser, 2000.
[29] S. Golénia, C∗-algebras of anisotropic Schrödinger operators on trees, Ann. Henri Poincaré 5 (6) 

(2004) 1097–1115.
[30] A. Gonchar, E. Rakhmanov, The equilibrium problem for vector potentials, Usp. Mat. Nauk 40 (4) 

(1985) 155–156.
[31] A. Gonchar, E. Rakhmanov, V. Sorokin, On Hermite-Padé approximants for systems of functions of 

Markov type, Mat. Sb. 188 (5) (1997) 33–58 (in Russian). English translation in Sb. Math. 188 (5) 
(1997) 671–696.

[32] M. Haneszok, W. Van Assche, Interlacing property of zeroes of multiple orthogonal polynomials, J. 
Math. Anal. Appl. 389 (2012) 429–438.

[33] M. Ismail, Classical and Quantum Orthogonal Polynomials in One Variable, with two chapters by 
Walter Van Assche Encyclopedia of Mathematics and Its Applications, vol. 98, Cambridge University 
Press, Cambridge, 2009.

[34] M. Keller, D. Lenz, Unbounded Laplacians on graphs: basic spectral properties and the heat equa-
tion, Math. Model. Nat. Phenom. 5 (2010) 198–224.

http://refhub.elsevier.com/S0001-8708(21)00553-3/bib0A40E3C91A3A55C9A37428C6D194D0E5s1
http://refhub.elsevier.com/S0001-8708(21)00553-3/bib0A40E3C91A3A55C9A37428C6D194D0E5s1
http://refhub.elsevier.com/S0001-8708(21)00553-3/bib0A40E3C91A3A55C9A37428C6D194D0E5s1
http://refhub.elsevier.com/S0001-8708(21)00553-3/bib381E9A746346B1A558F03DAF3D2B7917s1
http://refhub.elsevier.com/S0001-8708(21)00553-3/bib381E9A746346B1A558F03DAF3D2B7917s1
http://refhub.elsevier.com/S0001-8708(21)00553-3/bibB87BCADD1C28E6BF8D82D24E82DC2ADBs1
http://refhub.elsevier.com/S0001-8708(21)00553-3/bibB87BCADD1C28E6BF8D82D24E82DC2ADBs1
https://doi.org/10.4171/JST/380
https://doi.org/10.4171/JST/380
http://refhub.elsevier.com/S0001-8708(21)00553-3/bib914043891DB7EF16A4413D80FE7AF2F2s1
http://refhub.elsevier.com/S0001-8708(21)00553-3/bib914043891DB7EF16A4413D80FE7AF2F2s1
http://refhub.elsevier.com/S0001-8708(21)00553-3/bib348395D346E03BA2C56DB7827D319B66s1
http://refhub.elsevier.com/S0001-8708(21)00553-3/bib348395D346E03BA2C56DB7827D319B66s1
http://refhub.elsevier.com/S0001-8708(21)00553-3/bib348395D346E03BA2C56DB7827D319B66s1
http://refhub.elsevier.com/S0001-8708(21)00553-3/bibD1633D2F9C2CBA987E7E2FA2E3415F34s1
http://refhub.elsevier.com/S0001-8708(21)00553-3/bibBCDFDBF006D1F3DC92FFE9B1099906D0s1
http://refhub.elsevier.com/S0001-8708(21)00553-3/bibBCDFDBF006D1F3DC92FFE9B1099906D0s1
http://refhub.elsevier.com/S0001-8708(21)00553-3/bibDF2184F4B46DE3DDF02F74FB03810020s1
http://refhub.elsevier.com/S0001-8708(21)00553-3/bib96B289FBB95191BB67D9A62FA09EAE68s1
http://refhub.elsevier.com/S0001-8708(21)00553-3/bib96B289FBB95191BB67D9A62FA09EAE68s1
http://refhub.elsevier.com/S0001-8708(21)00553-3/bibFD18772CBAC19277B20DCCCC1B90EFB9s1
http://refhub.elsevier.com/S0001-8708(21)00553-3/bibFD18772CBAC19277B20DCCCC1B90EFB9s1
http://refhub.elsevier.com/S0001-8708(21)00553-3/bibFD18772CBAC19277B20DCCCC1B90EFB9s1
http://refhub.elsevier.com/S0001-8708(21)00553-3/bib522748524AD010358705B6852B81BE4Cs1
http://refhub.elsevier.com/S0001-8708(21)00553-3/bib0666F0ACDEED38D4CD9084ADE1739498s1
http://refhub.elsevier.com/S0001-8708(21)00553-3/bib0666F0ACDEED38D4CD9084ADE1739498s1
http://refhub.elsevier.com/S0001-8708(21)00553-3/bib0666F0ACDEED38D4CD9084ADE1739498s1
http://refhub.elsevier.com/S0001-8708(21)00553-3/bibCDABFEB20C3C17E57A54684F2DDC35CEs1
http://refhub.elsevier.com/S0001-8708(21)00553-3/bibCDABFEB20C3C17E57A54684F2DDC35CEs1
http://refhub.elsevier.com/S0001-8708(21)00553-3/bib81F2701A1E9C32F7ECB9D6B057CA4F19s1
http://refhub.elsevier.com/S0001-8708(21)00553-3/bib81F2701A1E9C32F7ECB9D6B057CA4F19s1
http://refhub.elsevier.com/S0001-8708(21)00553-3/bibE4774CDDA0793F86414E8B9140BB6DB4s1
http://refhub.elsevier.com/S0001-8708(21)00553-3/bibE4774CDDA0793F86414E8B9140BB6DB4s1
http://refhub.elsevier.com/S0001-8708(21)00553-3/bib49CD267B4A02CA8FA3CDCC10C2E07773s1
http://refhub.elsevier.com/S0001-8708(21)00553-3/bib49CD267B4A02CA8FA3CDCC10C2E07773s1
http://refhub.elsevier.com/S0001-8708(21)00553-3/bibD85F54BD4584DC1269690DEB7D28C9A1s1
http://refhub.elsevier.com/S0001-8708(21)00553-3/bibD85F54BD4584DC1269690DEB7D28C9A1s1
http://refhub.elsevier.com/S0001-8708(21)00553-3/bibF76122AC0B14CCB3B354FE46AFCF7B74s1
http://refhub.elsevier.com/S0001-8708(21)00553-3/bib338BDDFDD315565510EB1FB73DE2BE37s1
http://refhub.elsevier.com/S0001-8708(21)00553-3/bib338BDDFDD315565510EB1FB73DE2BE37s1
http://refhub.elsevier.com/S0001-8708(21)00553-3/bib0B8854AD38F0A6C65807928D28195609s1
http://refhub.elsevier.com/S0001-8708(21)00553-3/bib0B8854AD38F0A6C65807928D28195609s1
http://refhub.elsevier.com/S0001-8708(21)00553-3/bib7885444AF42E4B30C518C5BE17C8850Bs1
http://refhub.elsevier.com/S0001-8708(21)00553-3/bib0F826A89CF68C399C5F4CF320C1A5842s1
http://refhub.elsevier.com/S0001-8708(21)00553-3/bib0F826A89CF68C399C5F4CF320C1A5842s1
http://refhub.elsevier.com/S0001-8708(21)00553-3/bibD692BC40D83423D24D3A37582F58468Cs1
http://refhub.elsevier.com/S0001-8708(21)00553-3/bibD692BC40D83423D24D3A37582F58468Cs1
http://refhub.elsevier.com/S0001-8708(21)00553-3/bibA1CA50B49044AFBEEED4B5E31DBECE6Cs1
http://refhub.elsevier.com/S0001-8708(21)00553-3/bibA1CA50B49044AFBEEED4B5E31DBECE6Cs1
http://refhub.elsevier.com/S0001-8708(21)00553-3/bibA1CA50B49044AFBEEED4B5E31DBECE6Cs1
http://refhub.elsevier.com/S0001-8708(21)00553-3/bib98657B1D3EA5B3D5266D6961D98C1152s1
http://refhub.elsevier.com/S0001-8708(21)00553-3/bib98657B1D3EA5B3D5266D6961D98C1152s1
http://refhub.elsevier.com/S0001-8708(21)00553-3/bibF3B32717D5322D7BA7C505C230785468s1
http://refhub.elsevier.com/S0001-8708(21)00553-3/bibF3B32717D5322D7BA7C505C230785468s1
http://refhub.elsevier.com/S0001-8708(21)00553-3/bibF3B32717D5322D7BA7C505C230785468s1
http://refhub.elsevier.com/S0001-8708(21)00553-3/bib1051527638B9DA6FE99E4242795A10EAs1
http://refhub.elsevier.com/S0001-8708(21)00553-3/bib1051527638B9DA6FE99E4242795A10EAs1


S.A. Denisov, M.L. Yattselev / Advances in Mathematics 396 (2022) 108114 79
[35] M. Keller, D. Lenz, S. Warzel, Absolutely continuous spectrum for random operators on trees of 
finite cone type, J. Anal. Math. 118 (1) (2012) 363–396.

[36] A. Martinez-Finkelshtein, W. Van Assche, What is... a multiple orthogonal polynomial?, Not. Am. 
Math. Soc. 63 (9) (2016) 1029–1031.

[37] D.J. Gilbert, D.B. Pearson, On subordinacy and analysis of the spectrum of one-dimensional 
Schrödinger operators, J. Math. Anal. Appl. 128 (1) (1987) 30–56.

[38] M. Reed, B. Simon, Methods of Modern Mathematical Physics, I, Functional Analysis, Academic 
Press, Inc. Harcourt Brace Jovanovich Publishers, New York, 1980.

[39] B. Simon, Szegő’s Theorem and Its Descendants: Spectral Theory for L2-Perturbations of Orthog-
onal Polynomials, Princeton University Press, Princeton and Oxford, 2011.

[40] H. Stahl, Strong asymptotics for orthonormal polynomials with varying weights, Acta Sci. Math. 
(Szeged) 66 (1–2) (2000) 147–192.

[41] W. Van Assche, Nearest neighbor recurrence relations for multiple orthogonal polynomials, J. Ap-
prox. Theory 163 (2011) 1427–1448.

[42] M.L. Yattselev, Strong asymptotics of Hermite-Padé approximants for Angelesco systems, Can. J. 
Math. 68 (5) (2016) 1159–1200.

http://refhub.elsevier.com/S0001-8708(21)00553-3/bibA77CCA9BD375665B36F4239EEDA0C996s1
http://refhub.elsevier.com/S0001-8708(21)00553-3/bibA77CCA9BD375665B36F4239EEDA0C996s1
http://refhub.elsevier.com/S0001-8708(21)00553-3/bib33B224FC1C01D5D89021A1A9FFFB502Cs1
http://refhub.elsevier.com/S0001-8708(21)00553-3/bib33B224FC1C01D5D89021A1A9FFFB502Cs1
http://refhub.elsevier.com/S0001-8708(21)00553-3/bibBB0D62B4F0C05E6513F1FECA8D6696C6s1
http://refhub.elsevier.com/S0001-8708(21)00553-3/bibBB0D62B4F0C05E6513F1FECA8D6696C6s1
http://refhub.elsevier.com/S0001-8708(21)00553-3/bib4FC2F671F0898F76D30DA6B1F9566F42s1
http://refhub.elsevier.com/S0001-8708(21)00553-3/bib4FC2F671F0898F76D30DA6B1F9566F42s1
http://refhub.elsevier.com/S0001-8708(21)00553-3/bib1E0309138C063ACCC05F799FF1B7F87Ds1
http://refhub.elsevier.com/S0001-8708(21)00553-3/bib1E0309138C063ACCC05F799FF1B7F87Ds1
http://refhub.elsevier.com/S0001-8708(21)00553-3/bib93399DC091D09D0882D8A0345CE31917s1
http://refhub.elsevier.com/S0001-8708(21)00553-3/bib93399DC091D09D0882D8A0345CE31917s1
http://refhub.elsevier.com/S0001-8708(21)00553-3/bib1729F3485CA5FE908143F74E2B0CEAB8s1
http://refhub.elsevier.com/S0001-8708(21)00553-3/bib1729F3485CA5FE908143F74E2B0CEAB8s1
http://refhub.elsevier.com/S0001-8708(21)00553-3/bib4141638976566CB8526C738E7514DF9Fs1
http://refhub.elsevier.com/S0001-8708(21)00553-3/bib4141638976566CB8526C738E7514DF9Fs1

	Spectral theory of Jacobi matrices on trees whose coefficients are generated by multiple orthogonality
	Introduction
	Part 1 Jacobi matrices on finite rooted trees
	Part 2 Jacobi matrices on infinite rooted Cayley trees
	Part 3 Jacobi matrices of Angelesco systems
	Part 4 Periodic Jacobi operators on rooted trees and Angelesco systems
	References


