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1. Introduction

In this note, we look at the multidimensional Schrédinger operator H: H = -A+V, x € R3 in
the case when the real-valued potential V € L®(R®) does not satisfy the classical assumptions
of the scattering theory [14]. Our motivation is to present a method based on the elementary
properties of subharmonic functions which provides control on spatial asymptotics of Green’s
function for H in the situation when the standard tools of perturbation theory do not work.
In the classical situation, when V is short-range, i.e., |V (x)| < C(|x| +1)77,y > 1 the results of
Kato [9] and Agmon [1] provide existence of wave operators in Schrédinger dynamics and the
positive spectrum of H is purely absolutely continuous. The case when V is long-range, e.g.,
IDIV] < C(lx| +1)7Y, ¥ >0.5,0< j < jo was addressed in the works of Hérmander [7, 8] and,
again, the positive spectrum was shown to be purely a.c. (see also Saito [12] for results with even
weaker conditions on V). Following the significant progress in one-dimensional scattering theory
(see [13] for the survey), the focus shifted to understanding the spectrum of multidimensional
operator with rough potentials, e.g., V satisfying only an upper bound |V| < C(|x| + 1)~ with
Y € (0.5,1]. For that case, the existence of a.c. spectrum is not known, but some results were
obtained [4, 5, 11] if V is assumed to oscillate additionally. We notice that for potentials so
rough the singular spectrum can coexist with the absolutely continuous one and the standard
tools of scattering theory, such as absorption principle, has no chance to work. The alternative
method rooted in complex analysis rather than harmonic analysis is based on the study of spatial
asymptotics of Green’s function. Here is its outline. Given z € C* and F € L?(R%), we define
R,F = (H - 2)~1F and Green’s function G(x, ¥, 2) as (R;F)(x) = fRs G(x,y,2)F(y)dy. For the free
Schrédinger equation when V' = 0, the formula for Green’s function is known:

Go(x,y, k%) = eV am|x -y, k= vz, keC*.
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Let F have compact support and F # 0. If one defines Ur(x, k) = Rz F, then the central quantity
of interest is an amplitude Ar(k,0) defined by

Ar(k,0) = lim |xle” ¥ U (x, k). 4))

|x|—00,x/|x|=0€S?

If one formally takes F = 6y, then A tells how the perturbed Green’s function deviates from the
unperturbed one. Suppose o (E) denotes the spectral measure of F relative to H. The importance
of the amplitude in the study of the spectral type is explained by the following Lemma (see [3,
formula (4.2)]).

Lemma l. SupposeV and F are compactly supported, then

o) =1kl Ap(k, 0117, cz) K ERY. @

This identity is remarkable for two reasons. First, by the Spectral Theorem, we always have
equality
fR dor(E) = |IF|*. 3)

Second, the function h(k) :=log |l Ar(k,0)| 2(s?) is subharmonic in k € {3k > 0, Rk > 0}. Thus, if
we can obtain
(A) rough upper bounds for h, e.g., h(k) < c(Sk)~ for some a >0,
(B) some lower bound away from the real line, e.g., h(ky) > 6,3ko = € with some positive €
and 6

then the mean-value inequality for subharmonic functions written for a suitable isosceles trape-
zoid 9 < C* with the base I c R* gives

f h(©)dw, = h(ky). @)
0T

The symbol wy, denotes the harmonic measure with the reference point ko € 9. In particular,
(A) and (B) provide the lower estimate for % on interval I. Combined with (3) and Chebyshev’s
inequality, this gives the following bound

[{ke I ARk, 0172 < €M + [{k € T2 11 AR (K, 0117262y = €M} < CUL 6, )M (5)

for every A > 1. Thanks to (2), we also have control on the spectral measure o :
[{kel:oh(?) se ™} +|{kel:0k(k*) = et} <CU,c,ae, ) A"

These bounds indicate that “scattering happens” for most positive energies E = k?. At the same
time, they are also consistent with the possibility that some energies carry the singular part of o .

In the next section, we use that strategy to study potentials V supported on large annuli. In [2],
this technique was applied to show the presence of a.c. spectral type for 1d Schrédinger with
operator-valued rough potential. We expect this approach to be useful for other problems, e.g.,
spectral theory of difference operators on graphs.

Notation.

« Given an interval I ¢ R* and positive @, the symbol R; o denotes the rectangle I x (0, )
in complex plane; c; is the center of 1.

o For the function g € L?(S?), the symbol | g|| stands for its L?(S?) norm. B, (x) is the ball
with radius r centered at x.

« Symbol B is Laplace-Beltrami operator on the unit sphere. It is nonpositive in L2(S?).
Given a set E c R3, the symbol yz denotes the characteristic function of E.

* We define the angular component of the gradient (in spherical coordinates) as

X X
V,V=VV- —<—,vv>.
[x| \ x|
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2. An example: V supported on the large annulus

We are looking for conditions on V that provide estimates (A) and (B) discussed in Introduction.
Supposesupp V < {x: T/2<|x|< T}, F = xB,(0), Ar isdefined as in (1), and T is a large parameter.
Theorem 2. Consider H = —A + V, x € R® where non-negative real-valued potential V satisfies

suppVcix:T/2<|x|<T}, |VI<CT, |V.V|< CT™ 9, 8,y>0. 6)
Ifye (3,1 andy+$ > 1, then

sup [ llogllAp(k,0)|lldk < oo
T>1J1

for every segment I cR*,|I| ~ 1.

Operator H with potential V that satisfies stronger assumptions on angular gradient has been
studied in [10].
Remark 3. As a consequence, we get
[{ke I 1Ar(k, 0%, o) < €M} + [{k € T 1 AR (K, O)1 5, o) Z ™} < Cv, 6, DA (D)
foreveryA>1and T > 1.

To get bounds (A) and (B), we will use Schrédinger equation itself. Recall that the operator H
can be written as B
H=-0% — V0

in the spherical coordinates (r,60) € R* x $? and the corresponding map F(x) — f(r,0) = rF(r,0)
satisfies || Fll;2gs) = | f Il ;2 g+) where f is considered as [2(S?%)-valued function in r. If [ represents
F and u represents Ur = R;2 F, we have an equation for u:
Bu
" _ 1.2
—-u —?'FVU—IC u+f, r>0.

ikr

Similarly, if a represents e~ ¥l Uy, then a = ue™**" and
Ba i
Zika'z—a”—?+Va—fe_’k’ )]
or B
a .
d =ik~ (—a”—7+Va—fe_””). 9)

Recall that supp f < [0,1]. Then, the last equation gives the following identity if one takes the
inner product and integrates the real part of resulting equation.

Lemma4. Letl<r;<ryandk:Rk>0,3k>0, then

C\k ) B , C\k rn
||a(rz,k)||2+|7wf (Ila'l|2—< sz)dpﬁwf (Va,aydp = lla(rn, K>+ Q(r2) - Q(r1) (10)
n Y

where ; ;
gt _ /
Q(r) := 2k<a (r, k), a(r, k)) 2]_C<a(r, k), a'(r,k)).
If V satisfies
V=0, suppVe[T/2,T], [Vljwsz) <oco

all terms in the left-hand side of (10) are non-negative and we get the following apriori estimate
after setting r, = co and applying Cauchy-Schwartz to Q(r1):

latoo, I < Cr(lalry, )1 + lld (r1, ) 11?) (11

provided that k € R;,; and I < R*. The Spectral Theorem implies that 1Ull 23y < Cr(Sk)L.
Thus, from equation HU = k2U + F, we get AU 2gsy < C;(Sk)~L. So, the theorem about
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traces of functions in Sobolev class implies ||a(2, k)[? + lla’ (2, k)|I> < C;(Sk)~! and (11) yields
lla(oo, k)1 < C;(Sk)~L if we set r; = 2. Thus,

h=loglla(oo, k)|l < C1 + C2|logSSkl, keRp; (12)

with some positive T-independent C; and C. This is a rough bound (A) from the Introduction
that we are looking for and it does not require any smallness assumption on V at all. Our next
immediate goal is to obtain better control on i away from the real line, i.e., an estimate (B). The
idea is to use (10) with r» = o0, 11 = T/4, and k € Ry to write

lla(oo, k)12~ lla(T /4, k)%

T o)
<cm{iarmi+@or [ it @k [ (na’nz—(Ba;a))dp) a3)
T/2 T/4 I

Here, we choose r; = T/4 to guarantee enough separation from the support of V. Our goal is to
show that the right-hand side is small if k is separated from the real axis. If

IVlljeo2y <CT ™Y, ke€Rp1, Sk>cTY (14)

with suitable T-independent constant ¢, the standard perturbation theory based on Combes-
Thomas estimates (see, e.g., [6]) yields

la(TI4, 112 ~1, d (T/I4k1%<Cre™ T, (Ba(Tl4,k),a(T/4,k)/T><Cre T, x>0. (15)

Hence, |Q(T/4)| < CIe‘TK. In what follows, we will assume that (14) holds. We need to control
the other three terms in the right-hand side of (13). Taking the inner product with &’ in (8) and
integrating the real part from r to oo gives the following lemma.

Lemma5. LetRk>0,3k>0,andr > 1, then
® (Ba(p, k),alp, k
(Ba(p )sa(p )>dp
0

_ (Ba(r, kr)z,a(r, k)) _on (f"owa’ a’)dp) _

(4<\‘sk)foo(a',a/>dp+ la'(r, k) 11? —2f

Since the terms in the left-hand side are all non-negative, we obtain another apriori estimate

for ke R;1,Sk>CT™":
. T 1/2 oy 1/2
e T +T’7(f ||a||2dr) (f ||a’||2dr) ) (16)
T/4 T/4

Taking r) = T/4 and integrating (10) in 7, from T/4 to T, we apply Cauchy-Schwartz and (15) to

get
T T 1/2 T 1/2
f ||a||2drsC1(T+(f ||a||2dr) (f ||a’||2dr) )
T/4 T/4 T/4

for k€ R;1,Sk > CT™". This implies

T T [e’s)
f lal?dr < c,(nf ||a’||2dr) SCI(T+f ||a’||2dr) a7
T/4

T/4 T4
which, being substituted into (16), yields

(o0}
(Sk) f la'(p, k)II*dp < C;
T/4

©© K
/ I 12dr < C(Sk) e ™ + (k) 21127
T/4

and, from (17),
T
T_lf lal?>dr<C;. (18)
T/4
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These two last bounds control two additional terms in the right-hand side of (13) in the regime
when k € R;; and Sk > CT~7. Thus, we are only left with estimating
> (Ba,a
f ! ] ) dp.
T/4 P
in (13). To this end, we use an extra smoothness of V, i.e., the last condition in (6). Taking the
gradient of (9) in the angular variables, we rewrite (6) as

BVga
72

(Voa) = 2ik)~" (—(ng)”— +VVga+anV). (19)

This equation has the same structure as equation for a except for the term aVgV. The last con-
dition on V in (6) can be written as |[Vg V| jeo(g2) < C Ti-7-9%, Repeating the previous arguments
and using the bound (18), we obtain
T B T
f { az,a) dp ~ szf IVpal?dp < CI((%k)*ZTI*ZV*Z‘S + T372y725).
T4 Y T/4
For r > T, one has V =0 and the bound
00 Ba, 0 ||y 2
f ( aza) dp :f l eglll dp < CI((%k)_z T1-2r-20 T3—2y—25)
T/4 P T/4 P
follows by the similar reasoning. In (13), we apply the obtained estimates to control the right-
hand side. This gives

llateo, I? = lata, K)I1?| < Ci( T + @RI + T32772) + (1)~ 7172 ),

Given (6), we can always assume T372Y=29 > T1=Y and find a small positive € such that the set

Py r defined by Py r = {keC*: Rke I, T¢(T1™?) < Sk < T‘E(T27’+25‘3)} is nonempty. Hence, if
ke Prr, then

latoo, D)II* = la(T/4, k) 1>+ O(T~) (20)
with some e; > 0 and thus [la(co, k)||2 ~ 1 there. This establishes the required bound (B) and we
are ready to prove Theorem 2.

Proof of Theorem 2. For every I < R*, consider R 1,67 Withér = T“:(TZY+25_3) and write mean-
value inequality for subharmonic function & :=log || a(co, k) ||:

f hdwy, = hke)
6R1‘5T

where kg = x +i67/2,x € I' < I and the subinterval I' is chosen such that ¢y = ¢, |I'| > ¢|I| with
fixed T-independent c.

ot

0.50 1
ko

cr=cCyp I 1
Figure 1. Rectangle R; s,

If Sk >0r1/2 and k € 0R;5,, we have ||a(co, k) || ~ 1 by (20). On the other hand, (12) guarantees
that fr |hldwg, < C uniformly in T where I' are the legs of R; 5,,i.e., I ={k€0R5,,0 <k <7}
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In the end, if we use the standard estimates on the harmonic measure of the rectangle and
integrate in x € I', we obtain the bound [}, h(k)dk > C uniformly in T. The formula (3) yields
S 1 la(oo, k) I2dk < C uniformly in T and the trivial estimate max{0,log#} < t, ¢ > 0 gives

sup | lloglla(oco, k) lldk < oco.
T>1J1'

For an arbitrary I’, we can find the corresponding I = R* so the proof is finished. O
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