A 2-3.5 GHz Automatically Tunable Bandpass Filter Using Deep
Reinforcement Learning

Abstract— This paper presents a novel automatic tuning
mechanism that eliminates hand-tuning and is suitable for
electronically-tunable microwave filters. The proposed method is
based on a deep Q-learning approach using physics-based filter
characteristic parameters like resonant frequency, bandwidth,
insertion loss, and return loss. The whole tuning process is done
automatically and does not require any pre-tuning or human
expertise. Furthermore, unlike single-frequency post-production
tuning techniques, the presented methodology is applicable to
continuously-tunable filters covering a wide frequency range.
This method is experimentally demonstrated on a 2-3.5 GHz
evanescent-mode electronically-tunable bandpass filter. To the
best of our knowledge, this is the first demonstration of such
an automatic tuning mechanism where the user can specify any
frequency of interest and the filter tunes automatically to that
frequency within the entire operating range of the filter.

Keywords — automatic tuning, contactless cavity resonator,
deep Q-learning, microwave tunable filter.

I. INTRODUCTION

The main captivating feature of a typical software-defined
cognitive radio transceiver is its ability to dynamically adjust
its center frequency, bandwidth, and modulation type among
many other characteristics [1]. For such an implementation
several reconfigurable radio frequency (RF) components are
required, including tunable filters preferably with automatic
tuning. Evanescent (EVA) mode cavity resonator-based tunable
filters have shown promising performance for the last decade.
However, all these filters are manually tunable with various
technologies such as piezoelectric disks, MEMS diaphragms,
and commercial linear actuators [2]-[4].

While robotic tuning methodologies exist for screw-tuning
filters, these techniques are slow (tuning takes several minutes)
and are applicable to single-frequency post-production
corrective tuning. They are typically not effective for
applications that require continuously-tunable filters. The
RoboCAT (Robotic Computer-aided Tuning) automation
system developed by COM DEV for screw tuning microwave
filters is such an example [5]. Similar single-frequency
post-fabrication tuning techniques have bene presented in
[6]-[8].

In this paper, we automate the filter tuning process by
eliminating all hand-tuning for continuously-tunable filters
using a deep Q-learning approach. Besides the main advantage
of removing the need of a human expert during the tuning
process, the presented deep Q-learning technique is powerful
and capable of learning complex functions, making it robust to

Floating
tuner plate 2 |
4

Floating)
tuner plate 1

_inter=resonator
d coupling iris

avity Substrate
(TMM3)

Fig. 1. HFSS simulated 3-D view of a second-order bandpass filter.

unintuitive tuning patterns, manufacturing imprecisions, and an
increasing number of tuning elements. This work demonstrates
the presented methodology on a two-pole widely tunable
S-band filter as a proof-of-concept demonstrator. However, this
algorithm is applicable to higher-order and higher-frequency
filters.

II. FILTER DESIGN AND TUNING PROCESS
A. Tunable Filter

A two-pole bandpass filter (BPF) at S-band has been
designed using two contactless tunable EVA-mode cavity
resonators [4]. Each resonator can be tuned individually by
changing the air gap between the cavity substrate and the tuner
plate. As a result, the filter can also be tuned by vertically
moving the tuner plates. The coupling matrix used to design
the two-pole filter with a 5% fractional bandwidth (FBW) is
given below.

0 0.8056 0 0
0.8056 0 0.708 0

M= 0 0.708 0 0.8056 M
0 0 0.8056 0

A 3-D view of the second-order filter from HFSS simulation is
shown in Fig. 1. The filter response type and FBW depend on
the external and inter-resonator coupling values. The required
external coupling to the grounded CPW transmission line (TL)
and inter-resonator coupling are realized by using a coupling
via and an iris, respectively. A full assembly of the fabricated
second-order tunable BPF with M3L actuators is shown in

Fig. 2 (a). Two M3L actuators are used to vertically move
the tuner plates, thus to tune the filter. The filter board and
the tuner plates are fabricated using Rogers TMM3 substrates
with thickness 0.200" and 0.060", respectively. The BPF can
tune from 2 to 3.5 GHz with FBW of 5 to 6.5%. The measured
insertion loss of the filter varies from 0.39 to 0.92 dB.

M3L — Filter
with
M3L
N
i PC loaded
i with M
VNA —

Connector

(a) (b)

Fig. 2. (a) Complete assembly of a second-order filter with M3L actuators,
(b) block diagram of automatic tuning system by machine learning approach.

B. Tuning Process

The manual tuning of this cavity filter is quite
straightforward. First, an experienced operator connects the
filter to a vector network analyzer (VNA) and manually inputs
commands to change the air gap between the tuning plate and
the cavity substrate based on their knowledge to tune the filter.
There are two tuning plates for the second-order filter that
need to change to specific positions to tune the filter at the
desired frequency. This tuning process becomes more complex
and time consuming for higher-order filters. Besides, manual
tuning does not serve the actual purpose of the tunable filter
for digital control.

Fig. 2(b) depicts the automatic tuning mechanism proposed
in this paper. Once the filter is connected to the VNA,
the S-parameters of the filter are measured by the VNA
and read by a MATLAB script for the initial positions
of the tuning plates via a GPIB cable. Then the machine
learning (ML) algorithm, written in Python, determines the
necessary gap changes for each resonator to improve the
scattering characteristics towards the desired filter response.
These calculated changes are sent to the M3L by USB through
a Total Phase Aardvark I2C adapter. Each actuator moves to its
new position, at which point MATLAB reads the updated filter
response from the VNA. The process is automatically repeated
until the desired S-parameter of the filter are obtained. In the
whole process, the user only specifies the desired frequency
and the filter is tuned automatically to that frequency.

III. AUTOMATIC TUNING BASED ON MACHINE LEARNING

In a reinforcement learning (RL) approach, we define our
task through a reinforcement learning environment, and our
tuning model is defined as an agent exploring the environment.
The environment contains states, and actions from the agent
cause transitions between states. The agent will learn to
accomplish a task by following a policy, a mapping from
states to actions. This policy is adjusted based on the amount

of reward given for certain actions taken in certain states
depending on how beneficial those actions were.

Q-learning is a method of training an agent to learn the
optimal policy for accomplishing the task in the environment.
A Q-learning agent analyzes the “quality” of every state-action
pair to choose the best action given a state. Formally, a Q-value
for state, s and action, a is computed as

Q(s,a) = r(s,a) + ymax Q(s', a’) 2)

where (s, a) is the initial state-action pair and (s’, a’) is the
next iteration state-action pair. Here, v € (0,1) is the decay
rate, so decisions far into the future have less impact on the
Q-value. This equation is known as the Bellman equation [9].

In a standard Q-learning environment, we can simply
initialize all Q-values to some constant and update them
iteratively according to the Bellman equation as the agent
explores the environment. However, since the state space is
often too big to deterministically evaluate every Q-value, we
approximate (Q(s,a) with Q(s,a;&), where) is a neural
network called a deep Q-network [10].

A. Environment

We define our reinforcement learning environment using

the following states, actions, and rewards.

o States: States are in the form of 3-tuples, (f,g1,92),
where f is the user-specified desired center frequency
and g; and go are the two gaps for the two tuning plates
of the second-order BPF.

o Actions: There are six actions labeled 0 through 5.
Actions 0 through 3 represent tuning gap 1 or 2 either up
or down. Action 4 is an idle action, resulting in no change
in state. Action 5 randomly reassigns the gaps, which
improves exploration during the learning process and
allows for quicker convergence if the gaps are extremely
off.

+ Rewards: The reward at each iteration is determined by
computing the error between the ideal S-parameters and
the measured S-parameters which is described in detail
in the following subsection.

B. Reward Function

The measured S-parameters (S1; and So1) of the filter are
passed back to the environment. Instead of using the entire
curves, which is computationally expensive and may result in
overfitting, we only look at 7 specific points in each curve.
The 7 points (M; through M7) for S1; and Sy; are at the
desired center frequency (f), f £bw/2, f £ (bw/2+ bwmaz),
and f £ (bw/2 + 4 % bwpmaz)-

We compute losses for S11 and So; as L(Y) and L) as

Z)\ log(M, (3)

LMW = — X log(1 — M)

Z)\log Z)\log 1-M;) 4

L=1LW 13 Q)

Here, L represents the total loss and \; represents a weight
for the ith point of the curves, chosen as a hyperparameter.
This loss resembles cross-entropy loss, where we attempt to
maximize the values at certain points and minimize the values
at others to match a perfect curve. A perfect Si; curve for
this loss calculation has a magnitude of —oco at M; and a
magnitude of 0 elsewhere. A perfect So; curve has a magnitude
of 0 at My, M>, and M3 and a magnitude of —oo elsewhere.

Let L; define the loss computed at iteration ¢, where Ly =
0. Using this loss, our reward function is computed as

re =L — Ly (6)

which is simply the improvement in loss since the last
iteration. This ensures that we are rewarding improvements in
the curves and penalizing bad actions.

C. Intelligent Tuning Algorithm

Tuning begins by initializing gaps uniformly at random
within the domain of all air gaps. The air gap domain is defined
by the filter designer, and in this specific filter, it was from 50
to 450 pm. Each iteration ¢ of our tuning procedure proceeds
as follows.

1. Given current state s;, choose an action from the network

using an annealing e-greedy strategy. That is, with
probability ¢ = m (which decreases over time),
choose an action at random. Otherwise, choose

a; = argmax Q(s;, a; 6) @)

which is the action with the highest Q value as
recommended by the network.

2. Execute chosen action and receive next state s;y; and
reward r; as feedback. Store tuple (s, at, Sty1,7) into
experience-replay memory, F.

3. Sample B, a batch of b tuples from E. Here, b is a model
hyperparameter set to 64 in our experiments. The most
recent g tuples added to E' are guaranteed to be sampled
to ensure that newer information is used in learning, and
the remaining tuples are sampled uniformly at random
with replacement from E.

4. Perform a forward pass with Q on the samples of B.
Perform gradient descent on the network with a loss
function, which is define as

. . 2
loss = {rt + 7 max Q(st41,a;0) — Q(st,a;0)| (8)

with hyperparameter . Note that this is simply the mean

square error (MSE) between the predicted Q value and

the expected Q value according to the Bellman equation.

Our network architecture consists of a multilayer

perceptron (MLP) with input size 3, one hidden layer of size
64, and output size 6.

[) - ---nv-—w--a-qc-.-:-----.
5t 8 :.'.]
=10 f
215
& -20
25+
7| === AvgBestS11 === AvaS1lafter200Iter
20l s [nitial S11 AvgSllafter300Iter
-30 AvgS|1after10lter =+++= AvgS|afterS00Tter
""" AvgSllafter5Olter
-35
1.5 2 2.5 3 35 4

frequency (GHz)

Fig. 3. Average S11 measurement responses after N number of iterations for
20 trials.

IV. EXPERIMENTAL VALIDATION

To evaluate the proposed automated tuning mechanism, a
two-pole BPF has been manufactured using the Printed Circuit
Board (PCB) technology. A picture of the fabricated filter
is shown in Fig. 2(a), where two M3L actuators are used
to provide the vertical movement of the tuners. The filter
responses were measured using a Keyshight N5230C VNA.
The communication between the filter and tuning system is
described in Section 2B.

Fig. 3 and Fig. 4 show the average measurement responses
per iteration over 20 trials for Sy; and S5, respectively. We
set the desired frequency at 2.9 GHz and ran the Python ML
code for 20 trials, each with 500 iterations. From Fig. 3 and
Fig. 4, we observe that within 10 iterations, the filter is tuned
from an arbitrary frequency position to the desired frequency
position. Within 50 iterations, the return loss drops below

0
-10 ¢
20 ¢
)
= -30
a -40 ¢
50— AvgBestS21 === AvgS2lafter200Iter
=== InitialS2 1 AvgS21after300]1ter g
-60 ¢ AvgS2lafter] Olter *==** AvgS2lafter500Iter|]
----- AvgS21after50lter
-70) ‘ ' '
L5 2 2.5 3 35 4

frequency (GHz)

Fig. 4. Average S21 measurement responses after N number of iterations for
20 trials.

0
-5
-10
£ .15
i -20
25+ Manual Tune @2.132 Manual Tune @2.913
= = Auto tune @2.132 Auto tune @2.913
30+ Manual Tune @2.493 Manual Tune @3.353 ||
= = Auto tune @2.493 = = Auto tune @3.353
_35 I I I I
1.5 2 2.5 3 3.5 4
frequency (GHz)
Fig. 5. Comparison of measured Si; responses by the auto-tune and

hand-tune approaches at four different example frequencies.

—10dB, a reasonable standard for most applications. The next
few hundred iterations improve insertion loss and drop the
return loss even further.

We have tested the tuning algorithm for the entire tuning
range of the filter. Fig. 5 and Fig. 6 show the measured S1;
and S3; at four example frequencies within the filter’s range.
For each desired frequency, we ran the code for 300 iterations.
At the end of 300 iterations for each trial, the filter is tuned
perfectly at the desired location. A perfect agreement between
the automatic tuning and manual tuning results is shown in
Fig. 5 and Fig. 6.

We have also tested the convergence rate of the tuning
algorithm for the filter. Fig. 7 shows the total S-parameter loss
and cumulative reward versus the number of iterations. From
the Fig. 7, it is clearly evident that the loss and reward are
quite stable after 250 iterations, indicating that the filter can

|S21] (dB)

-~

Manual Tune @2.132 Manual Tune @2.913
== = Auto tune @2.132 Auto tune @2.913
-60 Manual Tune @2.493 =——Manual Tune @3.353
== = Auto tune @2.493 = = Auto tune @3.353

-70 I I I I
1.5 2 2.5 3 35 4
frequency (GHz)
Fig. 6. Comparison of measured S; responses by the auto-tune and

hand-tune approaches at four different example frequencies.

0.05

== Average Loss of 20 trials
= Average Reward of 20 trials | (.04

=
003 F
@ 2
K 002 &
= g
2 001 F
o =
g
0 3

-0.01

0.1 ‘ ‘ ‘ ‘ 0.02

0 100 200 300 400 500

Number of Iterations

Fig. 7. Total loss and Cumulative reward versus the number of iterations.

reliably be tuned to its best settings within 250 iterations.
V. CONCLUSION

This work presents a novel automatic tuning mechanism
for continuously-tunable filters suitable for wide tuning
range applications. The tuning mechanism is based on
a deep Q-learning approach that takes into account
physically-meaningful parameters such as resonant frequency,
bandwidth, insertion loss, and return loss. Furthermore, it
does not require any expert human input or pre-tuning.
Measured S-parameter responses show excellent agreement
between hand-tuned and auto-tuned states. The practicality
of this approach is expected to enable a new generation
of automatically-tunable filters based on physics-based
machine-learning algorithms.

REFERENCES

[1] I. F Akyildiz, W. Lee, M. C. Vuran, and S. Mohanty, “A
survey on spectrum management in cognitive radio networks,” IEEE
Communications Magazine, vol. 46, no. 4, pp. 40—48, April 2008.

[2] T. Lee, B. Lee, S. Nam, Y. Kim, and J. Lee, “Frequency-tunable
tri-function filter,” IEEE Transactions on Microwave Theory and
Techniques, vol. 65, no. 11, Nov 2017.

[3] P. Adhikari, W. Yang, and D. Peroulis, “A 20-26.5-ghz pcb bandpass
filter tuned with contactless tuners,” IEEE Microwave and Wireless
Components Letters, vol. 29, no. 8, pp. 513-515, Aug 2019.

[4] M. Abdelfattah and D. Peroulis, “High- ¢ tunable evanescent-mode
cavity siw resonators and filters with contactless tuners,” IEEE
Transactions on Microwave Theory and Techniques, vol. 67, no. 9, pp.
3661-3672, Sep. 2019.

[S] C. D. Ltd., “Robotic computer-aided tuning,” in Microwave Journal,
March 2006.

[6] R. V. P. Harscher and S. Amari, “Automated test and tuning system for
microwave filters,” in IEEE MTT-S International Microwave Symposium
Digest (Cat. No.0ICH37157), vol. 3, Phoenix, AZ, 2001, pp. 1543-1546.

[71 G. Pepe, E. . Gortz, and H. Chaloupka, “Computer-aided tuning and
diagnosis of microwave filters using sequential parameter extraction,” in
2004 IEEE MTT-S International Microwave Symposium Digest (IEEE
Cat. No.0O4CH37535), vol. 3, June 2004, pp. 1373-1376 Vol.3.

[8] V. Miraftab and R. R. Mansour, “Automated microwave filter tuning
by extracting human experience in terms of linguistic rules using fuzzy
controllers,” in 2006 IEEE MTT-S International Microwave Symposium
Digest, June 2006, pp. 1439-1442.

[9] R. S. Sutton and A. G. Barto, Introduction to Reinforcement Learning,
1st ed. Cambridge, MA, USA: MIT Press, 1998.

[10] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou,
D. Wierstra, and M. A. Riedmiller, “Playing atari with deep
reinforcement learning,” CoRR, vol. abs/1312.5602, 2013. [Online].
Available: http://arxiv.org/abs/1312.5602

