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Isolation of cuspidal spectrum,
with application to the
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Abstract

We introduce a new technique for isolating components on the spectral
side of the trace formula. By applying it to the Jacquet—Rallis relative
trace formula, we complete the proof of the global Gan—Gross—Prasad con-
jecture and its refinement Ichino-ITkeda conjecture for U(n) x U(n + 1) in
the stable case.
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1. Introduction

1.1. Isolation of cuspidal spectrum. Let F' be a number field and G a
connected reductive group over F. In this subsection, we describe a gen-
eral method for annihilating the non-cuspidal spectrum, while keeping certain
prescribed representations of G(Ar). We fix an open compact subgroup K
of G(AY). Denote by S(G(Ar))xk the space of bi-K-invariant Schwartz test
functions on G(Af); that is, we allow the archimedean component to be a
Schwartz function rather than just a compactly supported smooth function.
Recall that a Schwartz function on G(Fy) is a smooth function f such that
Df is bounded for every algebraic differential operator D on G(Fs).! Then
S(G(AF))k is an algebra under convolution and acts continuously on the L2-
spectrum L?(G(F)\G(Ar)/K) via the right regular representation R.

THEOREM 1.1 (see Theorem 3.6 for a more general version). Let m = ®,,m,
be an irreducible admissible representation of G(Ap) with unitary automorphic
central character w. Suppose that there does not exist a pair (P,o), where
P is a proper parabolic subgroup of G (defined over F') and o is a cuspidal
automorphic representation of M(Ap) with M the Levi quotient of P, such
that m, is a constituent of Indg(av) for all but finitely many places v of F.
Then there is a multiplier p*x of the algebra S(G(Ar))x such that for every
feS(G(AR))k,

(1) R(p* f) maps L*(G(F)\G(Ap)/K,w) into L, (G(F\G(Ap)/ K, w)x —

the m-nearly isotypic subspace of Lgusp(G(F)\G(AF)/K,w), that is, the
direct sum of K-invariants of irreducible subrepresentations T such that

Ty =2 1y for all but finitely many places v of F';
(2) m(p* f)=m(f).

Recall that a multiplier of a complex linear algebra S is a complex linear
operator ux: & — § that commutes with both left and right multiplications.
Finding multipliers is most interesting when S, such as S(G(Ar))k, is non-
commutative and non-unital.

Remark 1.2. We have

'Readers should not confuse it with a Harish-Chandra Schwartz function, which is defined
by a much weaker condition.
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(1) Theorem 1.1, together with its application to the stable case of the Gan—
Gross—Prasad conjecture discussed in the next subsection, breaks the long-
standing impression that to understand every (non-CAP) cuspidal auto-
morphic representation, one has to understand the full L?-spectrum on the
spectral side of the (relative) trace formula.

(2) When G is anisotropic modulo center, L?(G(F)\G(Afr)/K,w) coincides
with L2, (G(F)\G(AFr)/K,w), which is a Hilbert direct sum of subspaces

cusp

of the form Lgusp(G(F)\G(AF)/K, w), for irreducible (cuspidal) automor-
phic representations 7’ of G(Ar) with central character w and non-zero
K-invariants up to near equivalence. In this case, Theorem 1.1 implies
that one can use multipliers to modify f € S(G(Ar))k such that the effect
is the same as composing the projection map to an arbitrarily given factor
of the form L2, (G(F)\G(AF)/K,w)x.

(3) It is crucial that we work with the algebra S(G(Ar))k of Schwartz test
functions in Theorem 1.1. The method does not work if one works with
compactly supported test functions.

(4) In Theorem 1.1, we do not even require 7 to be cuspidal automorphic. For
example, it is possible that 7% # {0} but L2,sp(G(F\G(AF)/K,w)r = 0.

Then the theorem provides a uniform way to modify f € S(G(Ar))xk,
without changing its action on 7%, but annihilating the entire L?-spectrum.

In fact, we also obtain a result for isolating general cuspidal components
of the L?-spectrum. For simplicity, here we only state the theorem for G =
Respr/p GL;, for a finite extension F'/F. For such G, we have the result on
the classification of automorphic representations [JS81, Th. 4.4].

THEOREM 1.3 (special case of Theorem 3.19). In the situation of Theo-
rem 1.1, suppose that G = Resp:/p GLy, and that 7 is an irreducible constituent
of Ind%(o) for a parabolic subgroup P of G and a cuspidal automorphic rep-
resentation o of the Levi quotient of P. Then there is a multiplier ux of the
algebra S(G(Ar)) i such that for every f € S(G(AF))k,

(1) R(u * f) maps LAGFNG(Ar)/K.w) into L2, (GIFNG(Ar)/K,w),
where the latter is the cuspidal component of L*(G(F)\G(Afr)/K,w) as-
sociated to (M, o);

(2) m(p* f)=7(f).

In the process of proving Theorems 1.1 and 1.3, we need a sufficient sup-
ply for multipliers of the archimedean component of S(G(Ar))x. Now we
temporarily switch the notation so that G = G(R) for a connected reductive
algebraic group G over R. Let h* be the real vector space spanned by the
weight lattice of the abstract Cartan group of G, and let W be the Weyl
group of G, which acts on h*. By the Harish-Chandra isomorphism, the infin-
itesimal character x,. of an irreducible admissible representation 7 of G gives
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rise to a W-orbit in hz.. In Definition 2.8, we will define a space Mg13(h¢) of
holomorphic functions on b satisfying certain growth conditions, stable under
the action of W. Let S(G) be the convolution algebra of Schwartz functions on
G. The following is our theorem on multipliers of S(G).

THEOREM 1.4 (Theorem 2.13). For every function pu € /\/lgu{l}(f](*c)w,
there is a unique linear operator ux: S(G) — S(G), such that

m(p* f) = p(xx) - 7(f)

holds for every f € S(G) and every irreducible admissible representation m of G.
In particular, px is a multiplier of S(G).

Now it is a good time to explain the crucial difference between S(G) and
C°(@). As pointed out in the final remark of the article [Del84], if G has no
compact factors, then the only W-invariant holomorphic functions on hg that
give rise to (continuous) multipliers of C°(G) are polynomials, that is, elements
in the center of the universal enveloping algebra. Even if one considers only the
subalgebra C2°(G) k) of bi- K-finite compactly supported smooth functions for
a fixed maximal compact subgroup K of GG, the W-invariant holomorphic func-
tions on b that give rise to (continuous) multipliers of C2°(G) k) have to be of
exponential type, a property not required for S(G). The removal of the restric-
tion of being of exponential type will vastly increase the collection of multipliers,
making it possible to obtain results like Theorem 1.1, as long as the Casimir
eigenvalues of cuspidal automorphic representations are distributed in a certain
discrete way, while the latter is indeed fulfilled by a result of Donnelly [Don82].

1.2. Application to the Gan—Gross—Prasad conjecture. In this subsection,
we describe the results obtained by applying Theorem 1.1 and its variants to the
Jacquet—Rallis relative trace formula [JR11], [Zyd20]. Let E/F be a quadratic
extension of number fields, with ¢ the Galois involution. Let n > 1 be an
integer.

Definition 1.5. We let II be an isobaric automorphic representation of

GL,(Ag).

(1) We say that IT is conjugate self-dual if its contragredient ITV is isomorphic
to IToc.

(2) We say that II is hermitian if II is an isobaric sum of mutually non-
isomorphic cuspidal automorphic representations Ily, ..., II; in which each
factor II; is conjugate self-dual and satisfies that L(s, II;, As(_l)n) is regular
at s =1.

Let V be a (non-degenerate) hermitian space over E of rank n (with respect
to the involution c). Put G := U(V'), which is a reductive group over F.
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Definition 1.6. Let 7 be an irreducible admissible representation of G(Ar).
We say that an isobaric automorphic representation II of GL,(Ag) is a weak
automorphic base change of  if for all but finitely many places v of F' split in F,
the (split) local base change of m, is isomorphic to II,. If weak automorphic
base change of 7 exists, then it is unique up to isomorphism by [Ram18, Th. AJ;
we denote it by BC(m).

Remark 1.7. In most of the literature, weak automorphic base change of
m requires the local-global compatibility for all but finitely many places, so
in some sense our notion of weak automorphic base change should really be
“very weak automorphic base change,” though by the endoscopic classification
for unitary groups [Art13], [Mok15|, [KMSW14|, we now know that these two
definitions are equivalent. The reason we use this weaker notion is that we want
to make our argument independent of the endoscopic theory for unitary groups.
In fact, under our weaker notion of automorphic base change, we can prove, as
a byproduct of the Jacquet—Rallis relative trace formulae, the following result:

e The weak automorphic base change (in the sense of Definition 1.6) of 7 exists
as long as there exist infinitely many places v of F' split in F such that m,
is generic.

Our proof is completely free of using endoscopic trace formulae. The method

can be used to show the local-global compatibility at all places where m, is

unramified as well, but the argument implicitly relies on [Mok15], [KMSW14].

See Remark 4.15 for more details.

The following theorem confirms the global Gan—Gross—Prasad conjecture
[GGP12] for U(n) x U(n + 1) in the stable case completely, which improves
previous results in [Zhal4b|, [Xuel9], [BP20a).

THEOREM 1.8. Let I, and 11,41 be hermitian cuspidal automorphic rep-
resentations of GLy,(Ag) and GLy,+1(Ag), respectively. Then the following two
statements are equivalent:

(1) We have L(3,10, x IL,41) # 0.
(2) There exist
e a hermitian space Vy, over E of rank n, which gives another hermitian
space Vi1 =V, @ E.e over E of rank n + 1 in which e has norm 1;
o form =mn,n+1, an irreducible subrepresentation my, C Acusp(Gm) of
Gm(AF), where G, = U(Vy,), satisfying BC(my,) ~ I, and a cusp
Jorm @um € T,
such that

‘@(me SOnJrl) = / wn(h)ganrl(h) dh 7é O>
Gn(F)\Gn(AF)

where dh is the Tamagawa measure on G, (AFr).
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Before our current work, the above theorem was known under the restric-
tion that both II, and II,y; are supercuspidal at some prime of E that is
split over F'. However, removing this (last) local restriction is crucial for arith-
metic application to certain motives like symmetric powers of elliptic curves;
see [LTX"19.

Using the above theorem, we can obtain the following non-vanishing result
on central L-values, which improves [Zhal4b, Th. 1.2].

THEOREM 1.9. Let 11,11 be a hermitian cuspidal automorphic represen-
tation of GL,11(Ag). Then there exists a hermitian cuspidal automorphic rep-
resentation 11, of GL,(Ag) such that

L(3,1L,, x My4q) # 0.

The last application is the Ichino—Ikeda conjecture [I110]|, which is a re-
finement of the Gan—Gross—Prasad conjecture by giving an explicit formula for
|2 (0n, Pni1)]?. In the case of U(n) x U(n + 1), it is formulated in [Harl4,
Conj. 1.2] (see also |Zhal4a, Conj. 1.1]). The following theorem confirms the
Ichino-Tkeda conjecture for U(n) x U(n+1) in the stable case completely, which
improves previous results in [Zhal4al, [BP20a|, [BP21b].

THEOREM 1.10. Let the situation be as in (2) of Theorem 1.8. If, more-
over, T, and mpy1 are both everywhere tempered, then the Ichino—Ikeda conjec-
ture holds for m, and m,41.

The proofs of Theorems 1.8, 1.9, and 1.10 will be given in Section 4.4.

Remark 1.11. The results on isolating components of the L?-spectrum ob-
tained in this article can vastly simplify the computation on the spectral side
toward the endoscopic case of the Gan—Gross—Prasad and the Ichino-Ikeda
conjectures for U(n) x U(n + 1) as well. Indeed, on the unitary side, by The-
orems 3.6 and 4.14, it suffices to understand the w-nearly isotypic subspace
of the L2-spectrum, which is contained in the cuspidal spectrum; on the gen-
eral linear side, by Theorem 3.19, it suffices to understand the single cuspidal
component of the L2-spectrum that corresponds to BC(7r).?

Remark 1.12. Using similar ideas, one can improve the results on the Gan—
Gross—Prasad conjecture and the Ichino-Ikeda conjecture for U(n) x U(n) pre-
viously obtained by Hang Xue [Xueld|, [Xuel6], based on the relative trace
formulae developed in |Liul4|, after establishing analogous results in [BP21b],
[CZ21], |Zyd20].

2In fact, during the referee process of the current article, the endoscopic case has already
been worked out in [BPCZ20].
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1.3. Strategy of proofs. The main part of the article has three sections,
responsible for three clusters of results: existence of multipliers of Schwartz
convolution algebras, isolation of cuspidal components in the L?-spectrum, and
confirmation of the Gan—Gross—Prasad conjecture in the stable case and related
results, respectively. In this subsection, we will briefly explain the strategy of
proving these results.

In Section 2, we prove Theorem 1.4. First, we give a slightly more precise
description of the space Mgy13(bg). Let (X*, @, X,, ") be the root datum of
G so that b* = X* @z R. For every automorphism 9 of (X*, ®, X, ®") of order
at most two, we can formulate two types of growth conditions — moderate
growth and rapid decay with respect to 19 — for holomorphic functions on bg.
(See Definition 2.8 for the accurate definition.) In particular, when J = 1,
they coincide with the usual notions of moderate growth and rapid decay on
vertical strips, respectively. The (inner form class) of G gives rise to a set
6 of automorphisms of (X*, ®,X,, ®) of order at most two, stable under W-
conjugation. Then we define My} (hg) (resp. Npugiy(be)) to be the space
of holomorphic functions on b that have moderate growth (resp. rapid decay)
with respect to all elements in # U {1}. It will be clear from the definition (and
suggested by the terminology) that Nyg13(bg) € Maugy(be). We will first
prove Theorem 1.4 for the smaller space Ngu{l}(f)&":)w (Proposition 2.24), and
then use a limit process to pass to Mgu{l}([](*c)w.

For Ngu{l}(hE)W, note that N1} (he) is contained in N1y (hz), the space
of holomorphic functions on hg that have rapid decay on vertical strips. Es-
sentially by a result of Delorme (Proposition A.1), elements in N{l}(b(*c)w will
give multipliers for the subalgebra S(G) ) of S(G) of bi-K-finite Schwartz
functions. Therefore, to construct pux f for p € Ngu{l}(bE)W and f € S(G), we
may choose a sequence { f,} C C2°(G) k) approaching f in S(G) and show that
{p* fn} converges. It is a crucial observation that the Fréchet topology of S(G)
is also induced from the semi-norms f + ||Df]|2 for all algebraic differential
operators D on G. Thus, it suffices for us to show that ||[D(u* —)||z2 is con-
tinuous on the subspace CSO(G)( k) with respect to the subspace topology for
all D. When D is (left and right) invariant, we have D(u* f) = ux(Df), hence
the continuity is clear. It remains to consider the case where D is a polyno-
mial on G, or equivalently, a matrix coefficient of a finite dimensional algebraic
representation of G. In this case, we can show that there are finitely many
pairs (S;, L;), depending on the matrix coefficient presentation of D only, in
which 5; is a linear operator of Ngu{l}(b&)w and L; is an algebraic differential
operator of S(G) preserving C2°(G) k), such that D(ux f) = 3=, Si(p) * Li(f).
Thus, we obtain the desired continuity for ||D(p * —)||z2, hence Theorem 1.4
for the smaller space Neu{l}(fl(*c)w is confirmed. However, in order to pass to
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Mau{1}(h<*c)w, we will need more precise bounds on the linear operators S; with
respect to a certain natural family of semi-norms on Ngu{l}(f)("é), as stated in
Lemma 2.20.

In Section 3, we prove all results related to the isolation of the L?-spectrum.
To make the discussion here more explicit, we restrict ourselves to the number
field ' = Q and the group G = PGL, g with n > 2, and we only consider
Theorem 1.1 with 7 cuspidal automorphic. In particular, Z = 1, and we will
omit the necessarily trivial character w in the following notation. For every
tuple n = (n1,n2,...) of integers 0 < n; < ny < -+ summing up to n, we let
M,, be the standard diagonal Levi subgroup of G of block sizes n and W, the
subgroup of the Weyl group stabilizing M,,. Then we have the coarse Langlands
decomposition

p——

L*(GQ\G(A)/K) =P o) (GQ\G(A)/K),

(M,o)
where M = M, for some n and o is a cuspidal automorphic representation
of M(A) up to twist and W,-conjugation. Our goal, in view of the strong
multiplicity one property, is to find p such that for every f € S(G(A))k,
= f annihilates all components but L?Gyw)(G(Q)\G(A) /K) and maintains the
action of f on .

For the first step, it is not hard to construct a function u%, € Mouiny (h(’E)W
(notation with respect to the real reductive group G ®g R) satisfying 19 (xr..)
= 1 and the following condition: there exists a finite set T of K.-types, where
K is the standard maximal compact subgroup of G(R) = PGL,,(R), such that
for every f € S(G(R)), u2 xf annihilates the component L%Mﬁ)(G(Q)\G(A)/K)
if it has no K-types in . This will exclude all but finitely many components

there are still infinitely many components remaining.
The second step is to annihilate all but finitely many components

Livo) (G(Q\G(A)/K)
with a Koo-type in T for every M. To explain the idea, we consider the simplest
non-trivial case where M = M(; ;) (hencen > 3). It is easy to see that there
exist a finite set Ty of (Ko N M(R))-types and an open compact subgroup
Ky € M(A®°) such that if L%M,a') (G(Q)\G(A)/K) has a K-type in T, then o
must have a (K, N M(R))-type in Tps and non-trivial Kjs-invariants. Note
that there are infinitely many such o up to twist and Wy ; 2)-conjugation!
However, we observe that the Casimir operator for the derived subgroup of M,
which is simply SLo @, gives a polynomial function A on bg. It is a well-known
result of Harish-Chandra that for any given Ay € C, there are only finitely
many cuspidal automorphic representations o of M (A) up to twist that have a
(KoM (R))-type in Tjs and non-trivial K js-invariants, such that A(xs..) = Ao-
By another well-known result on the distribution of Casimir eigenvalues of SLg
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(or [Don82] for general semisimple groups), one can find a holomorphic func-
tion vy on b that has moderate growth on vertical strips with zeros exactly
A"H(A\ Mxxo,)), where A C C is the set of Casimir eigenvalues of cuspidal
automorphic representations o of M (A) that have a (K. N M (R))-type in Ty
and non-trivial K /-invariants.? Using vy, it is not hard to construct an ele-
ment p € Mgu{l}(b(*c)w such that for every f € S(G(R)), u x f annihilates
all but finitely components L%MJ)(G(@)\G(A)/K) with given M = M . 19
and maintains the action of f on . In fact, we can achieve this for every M.

The last step is to annihilate, without changing =, every single com-
ponent L?M,U) (G(Q)\G(A)/K) that is not isomorphic to m. This is easy if
M = M,y = G, since we can use spherical Hecke operators at unramified (non-
archimedean) places. When M # G, L%MJ)(G(Q)\G(A) /K) is a “continuous”
space of induced representations. However, there is a secret correlation between
(non-archimedean) Hecke eigenvalues and (archimedean) infinitesimal charac-
ters for all representations that contribute to L%Mvg)(G(Q)\G(A) /K). This
motivates us to construct, for every component L%M’a)(G(Q)\G(A) /K) that
is not isomorphic to 7, a multiplier y(ys ) that is “mixed” from Mgu{l}(h?{:)w
and spherical Hecke operators, such that for every f € S(G(A))k, pe) * f
annihilates L(2M7J)(G(Q)\G(A)/K) and maintains the action of f on 7. We
remark that this step is inspired by the work [LV07].

To conclude the proof of Theorem 1.1, we only need to take the product
of ul,, {u} s, and (finitely many) (M,o)-

In Section 4, we prove the Gan—Gross—Prasad conjecture in the stable
case and other related results. Here, we explain how to apply Theorem 1.1
to the Jacquet—Rallis relative trace formulae to attack the Gan—Gross—Prasad
conjecture. The Jacquet—Rallis relative trace formulae have two sides: the
group G’ := Resp/p GLy g X Resg/p GLy, 11,5, and the group GV = U(V,) x
U(Vyg1) where V= (V,,,V,,41) is a pair of hermitian spaces over E as in
Theorem 1.8. The two sides share the same space of orbits, which is an affine
variety B over F; in other words, we have surjective morphisms G/ — B < GV.
By Zydor’s extension of the Jacquet—Rallis relative trace formulae, we have a
relative trace formula on each side: For every f' € S(G'(Ar)) that annihilates
the entire non-cuspidal part of L*(G'(F)\G'(Ar),1), we have the identity

o mlf)= ) L,

IT cuspidal YEB(F)

where Iy and I, are certain invariant functionals on S(G'(Af)) associated to
a cuspidal automorphic representation IT and an element v € B(F) defined

3However, we cannot require vas to be of exponential type at the same time.
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via relative characters and (regularized) relative orbital integrals, respectively.
Similarly, for every f" € S(GY(Ar)) that annihilates the entire non-cuspidal
part of L2(GY(F)\GY (Ar), 1), we have the identity

Yo ()= ) J(;VfV

7wV cuspidal SVeB(F

In practice, we have to consider all pairs V' up to isomorphism. The starting
point for the comparison of trace formulae is to find a pair of test functions
(f',{fV}v) that have matching orbital integrals, so that I, (f') = Jsv (fV)
when v = 6". The common strategy of finding (f’,{f" }y/) that annihilate
non-cuspidal spectra is to take f’ such that f; annihilates all non-supercuspidal
representations at some non-archimedean place v of F split in E, and similarly
for fV. However, by doing this, we necessarily annihilate all cuspidal auto-
morphic representations that are nowhere supercuspidal. The new invention,
which is enabled by Theorem 1.1, is to modify an arbitrary pair (f/,{f" }v)
of test functions that have matching orbital integrals by multipliers, so that
the resulting test functions annihilate non-cuspidal spectra and maintain their
actions on any prescribed representations (I, {w"'}) in which IT is cuspidal au-
tomorphic and is isomorphic to BC(7"). Thus, it is a natural question to find
multipliers (p/, {u" }v/) from Theorem 1.1, such that (' * £/, {u" x fV'}1/) still
have matching orbital integrals. The answer turns out to be quite elegant:
there is a natural “base change” map from those multipliers for GV (obtained
in the way of Theorem 1.1) to those for G’; and we show in Proposition 4.8 that
if 4/ is the base change of 1" for all V, then (u'x ', {u" x f¥'}1/) have matching
orbital integrals as long as (f’, {f¥ }1/) do. Such multipliers (/, {:" }v/) are not
hard to find. Therefore, we can compare the above two relative trace formulae
without sacrificing any prescribed representations (IT, {r"'}) as above. The rest
of the argument is a standard business in trace formulae approach.

The article has an appendix (Appendix A) in which we extend a result of
Delorme to reductive groups, which is only used in the proof of Proposition 2.24.

1.4. Notation and conventions.

e For a set S, we denote by 1g the characteristic function of S.

e In the main text, if we do not specify the base ring of a tensor product ®,
then the base ring is C.

e For a real vector space U, we put Ug := U®grC, and iU := U Qg iR, which is
a subspace of the underlying real vector space of Uz. We have the R-linear
map Re: Uc — U by taking the real part.

e For a finite dimensional complex vector space U, we denote by O(U) the
ring of holomorphic functions on U, Oexp(U) € O(U) the subring of holo-
morphic functions of exponential type, and C[U] C Ocxp(U) the subring of
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polynomial functions. A lattice (resp. full lattice) of U is a subgroup L of
U such that the induced map L ®7 C — U is injective (resp. bijective).

e For a complex linear algebra S, we denote by Mul(S) the C-algebra of
multipliers of S, that is, complex linear operators ux: & — S satisfying
wx(fxg)=(uxf)xg= f*(uxg) for every f,g € S, where * denotes the
multiplication in S.

e By a prime of a number field, we mean a non-archimedean place. In Sec-
tions 3 and 4, we will encounter various sets of places of a number field F'.
To summarize,

— S will always be a finite set consisting of primes;

— T will always be a (possibly infinite) set consisting of primes;

— O will always be a finite set containing all archimedean places.

e For an algebraic group G over a number field F', we put G = G(F ®qg R)
for short.

e A subgroup of an algebraic group defined over a field is by default defined
over the same field.

e Let P be a parabolic subgroup of a reductive group G.

— We denote by Np C P the unipotent radical.

— When o is an admissible representation of P(R) for an appropriate
ring R for which admissibility makes sense, we denote by 1%(c) the
normalized parabolic induction as an admissible representation of G(R).

— When o is an admissible representation of M(R) for a Levi subgroup
M of P, we also write Ig(a) by regarding o as a representation of P(R)
through inflation.
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2. Multipliers of Schwartz convolution algebra

In this section, we construct sufficiently many multipliers of the convolution
algebra of Schwartz functions for a real connected reductive algebraic group.

In Section 2.1, we record some lemmas on constructing holomorphic func-
tions on complex vector spaces with special properties. In Section 2.2, we define
various spaces of functions related to the multipliers of Schwartz convolution
algebras. In Section 2.3, we state our result (Theorem 2.13) on the existence of
sufficiently many multipliers of Schwartz convolution algebras. In Section 2.4,
we prove Theorem 2.13, following the strategy described in Section 1.3.

2.1. Preliminaries on holomorphic functions. We first review some facts
about entire functions on the complex plane. Recall that the order of an entire
function ¥: C — C is defined as

inf{e € [0, +o00) | IC. > 0, such that |¥(z)| < Ceexp(|z|®) for all z € C}.
Here, |z| = v/2Z. If the above set is empty, then we say that ¥ has infinite
order.

Next, we review the construction of entire functions with prescribed zeroes.
Let A be a subset of C, and let p > 0 be an integer. We define the (formal)

Weierstrass product
Upp(2) =2 [ En(z/N),

AEA
AZ0

where Ep(z) = (1 —z)exp(z+---+2P/p) is the elementary function, and 6 =1
(resp. 6 = 0) if 0 belongs (resp. does not belong) to A.
Definition 2.1. Let p > 0 be an integer. We say that A has rank p if
(1) A is countable;
(2) p is the least non-negative integer such that »"\ca 20 IA~®+D) con-
verges.

LEMMA 2.2. Let A C C be a subset of rank p for some integer p > 0. Then
Uy p is a well-defined entire function of (finite) order at most p + 1, with the
set of zeroes exactly A.

Proof. Tt is well known that there exist constants C,C’ > 0 such that
|Wap(2)| < Cexp(C'|z[PT1) for z € C. Thus, ¥p, is of finite order at most
p + 1 by definition. The set of zeroes is clear from the construction. O

Now we consider a finite dimensional real vector space U.

Definition 2.3. Let v be a holomorphic function on Uc. We say that v has
moderate vertical growth if for every M > 0, there exists rjp; € R such that

sup  |v(2)] - (14 [|z])™ < o0
|IRe z||<M

holds for some, hence every, Euclidean norm || - || on Ug.
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PROPOSITION 2.4. Let A: Uc — C be a polynomial function. For every
entire function W of finite order, there exists a holomorphic function v on Uc
that has moderate vertical growth, such that the set of zeroes of v is exactly the
wnverse 1mage of the set of zeroes of W along A.

Proof. We choose an isomorphism U ~ R" and write elements in Uc as
z=(z1,...,2). Suppose that ¥ is of order e and \ has degree d. Take an odd
integer ¢ > de. Define v by the formula

v(z) = exp(zp? + - 4 217) - U(A(2))

for z € Ug, which is holomorphic. It is straightforward to check that v(z) has
moderate vertical growth. Moreover, we have v(z) = 0 if and only if A(z) is a
zero of W. The proposition follows. O

COROLLARY 2.5. Let A: Uc — C be a polynomial function. For every
subset A C C of finite rank, there exists a holomorphic function v on Uc that
has moderate vertical growth and whose set of zeroes is exactly \™'A.

Proof. The proof follows from Lemma 2.2 and Proposition 2.4. ([

COROLLARY 2.6. Let L be a lattice of Uc and A C Uc a finite subset.
Then there exists a holomorphic function v on Uc that has moderate vertical
growth, vanishes on L\ A, and is nowhere vanishing on A.

Proof. Let r be the dimension of U. We may choose linearly indepen-
dent complex linear maps A1,...,A: Uc — C such that L is contained in
Niey A\; 'Z. For every 1 < i <, the subset Z \ \;(A) C C is of finite rank. By
Corollary 2.5, we may find a holomorphic function v; on Ug that has moderate
vertical growth, such that the set of zeroes of v; is exactly A\;*(Z\ \i(A)). Put
v = []i=1 ¥i- Then v has moderate vertical growth, vanishes on all but finitely
many elements in L, and is nowhere vanishing on A. Let zq,...,zs be the
finitely many elements in L\ A at which v is non-vanishing. For each 1 < j < s,
we may choose an affine function /;: Ug — C such that [;(z;) = 0 and that [;
is nowhere vanishing on A. Then the holomorphic function v - J]5_; l; satisfies
the requirement in the corollary. ([

Remark 2.7. In fact, from the proof of Proposition 2.4, we may even re-
quire v in Corollaries 2.5 and 2.6 to have exponential decay on vertical strips.
However, we do not need this in what follows.

2.2. Multiplier functions. In this subsection, we introduce the spaces of
multiplier functions that will give multipliers of the convolution algebra of
Schwartz functions. We fix a root datum (X*, ®,X,, ®") and

e let W be the Weyl group of (X*, @, X,, ®");
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o let Aut(X*, ®,X,,®")” be the set of automorphisms of (X*, ®,X,,®") of
order at most 2, which is finite and stable under the conjugation action
of W,

e put h* := X* @z R;

o for every ¥ € Aut(X*, ®,X,, ®Y)?, let b} (resp. bj ") be the +1-eigenspace
(resp. —1-eigenspace) of the action of ¥ on h*; and let Y}, be the projection
of p+X* C b* onto by, where p is the half sum of positive roots in ® with
respect to an arbitrary base of ®.4

It is clear that Y} is a translation of a discrete subgroup of bj;~. Though Y}
is not necessarily a subgroup, in what follows, we will sometimes write H @ Y7
for a subgroup H of h:;,(C as the subset of b consisting of elements of the form
a+w for o € Hand @w € Y.

We take a subset § C Aut(X*, @, X,, @V)o that is stable under the conju-
gation action of W. In the following definition, we introduce several important
spaces of holomorphic functions on hg that will be related to multipliers of
Schwartz convolution algebras.

Definition 2.8. We define several spaces of holomorphic functions on hg.

(1) Define Mg(b¢) to be the space of holomorphic functions p on b such that
for every ¥ € 0 and every M > 0, there exists ry s € R such that

(2.1) sup lp(a+@)| - (14 ||o+ @)™ < oo
a€hy o |Reall<M
weYy
holds for some, hence every, Euclidean norm || - || on .

(2) Define Ny(hg) to be the space of holomorphic functions g on b such that
for every ¥ € 0, every M > 0, and every r € R,

sup (e +@)|- (1 +[la+w=|)" < oo
a€h o ||Re ol <M
weYy
holds for some, hence every, Euclidean norm || - || on .

(3) Define Mg(h;&) to be the subspace of My} (hg) consisting of p satisfying
that for every ¥ € 0, N|hi§ «+= = 0 for all but finitely many elements @ € Y.

When 6 = {1}, we suppress it in the subscripts in the above notation.

Remark 2.9. We have the following concerning Definition 2.8:

(1) In (1) (resp. (2)), for every ¥ € 0 and every w € Y}, the function o
(o + w) has moderate vertical growth (Definition 2.3) (resp. has rapid
decay on vertical strips) on b5 .c- On the other hand, for every ¢ € 0, if we

It is easy to see that Y}, does not depend on the choice of the base.
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restrict the growth condition (2.1) to b} @ Y}, then it means that p has
polynomial growth.

(2) The spaces My(bh¢), No(hg), and Mg(h(*c) are all closed under multiplica-
tion and the action of W.

(3) If p € O(hg) has moderate vertical growth, then p - ./\/lg(h(*c) - Mg(h(*c).
In particular, we have M(hg) -Mg(b(’{;) - Mg(b(’{j). Note that M(hg) =
M1y (ht) according to Definition 2.8.

The following lemma demonstrates the existence of elements in Mg( he)W.

LEMMA 2.10. For every element g € b, there exists an element p €
Mﬁ@(b(*c)w such that p(ag) # 0.

Proof. For each 9 € 0, we can find, by Corollary 2.6, a holomorphic func-
tion vy on bg that has moderate vertical growth and vanishes on b} - + @ for
all but finitely many elements w € Y}, such that v(wag) # 0 for evei"y w e W.
Now since 6 is a finite set, we can take the product v := [[yeg v € ./\/lg(f](}k;),
satisfying v(wag) # 0 for every w € W. Put p := [],ew ¥ o w. Then p belongs
to Mg(h?&)w and satisfies p(ag) # 0. The lemma follows. O

2.3. Multipliers of Schwartz algebra. We now consider a connected reduc-
tive algebraic group G over R. Let (X*, &, X,, ®") be the root datum associated
to G, namely, X* and X, are the weight and coweight lattices of the abstract
Cartan group of G, with ® and ®" the subsets of roots and coroots of G,
respectively. We keep the notation in the previous subsection.

We let @ be the subset of Aut(X*, ®,X,,®")? consisting of elements of
the form w¥ in which w € W and ¢ € Aut(X*, ®, X,, ®")? is an element that
induces the real form G of G¢. Then 0 is stable under the conjugation action
of W.

Denote by g the complex Lie algebra of G and by U(g) the universal
enveloping algebra of g with the center Z(g). By the Harish-Chandra isomor-
phism Z(g) ~ C[h5]W [HC51], we obtain a character x, of Z(g) for every
element « of .. Conversely, every character x of Z(g) gives rise to a W-orbit
in b, hence p(x) is well defined for an element € O(hz)W.

Put G := G(R). We fix a maximal compact subgroup K of G and a Haar
measure dg on G. Denote by C[G] and D[G] the complex algebras of algebraic
functions and algebraic differential operators on G, respectively.

By an admissible representation of G, we mean a smooth admissible Fréchet
representation of moderate growth of G in the sense of Casselman—Wallach
([Cas89|, |Wal92, §11]|). The category of admissible representations of G is
equivalent to the category of Harish-Chandra (g, K)-modules by the functor of
taking K-finite vectors. For an irreducible admissible representation m of G,
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we denote by xr: Z(g) — C its infinitesimal character, which is identified with
a W-orbit in bg.

We recall some definitions and facts from [Wal83, §§2.5, 2.6]. A Schwartz
function on G is a smooth function f such that Df is bounded for every
D € D(G). Let S(G) be the convolution algebra of Schwartz functions on G,
equipped with its natural Fréchet topology, under which the convolution prod-
uct *, defined by the formula

(fi=* f2)(g /fl gh™1) f2(h) dh

is continuous. For every admissible representatlon (or more generally Fréchet
representation of moderate growth) (m, V) of G, the expression

v—/f g)vdg

is absolutely convergent for every f € S(G) and v € V., hence defines a con-
tinuous operator w(f) € End(Vy).

Remark 2.11. We have S(G) C (5o CP(G), where CP(G) denotes the con-
volution algebra of Harish-Chandra LP-Schwartz functions on G; the inclusion
is an equality if and only if the center of G is compact.

Remark 2.12. Let L?(G) be the L%-space of G. Using the Sobolev lemma,
it is easy to see that S(G) is also the space of f € L?(G) such that Df € L?(G)
for every D € D(G), where Df is understood in the sense of distributions.
Moreover, the Fréchet topology of S(G) is also induced from the semi-norms

f = ||Dfllr2 for all D € D(G).
The following theorem provides many multipliers of the algebra S(G).

THEOREM 2.13. For every element p € Meu{l}(hE)W7 there is a unique

linear operator
ux: S(G) = S(G),
such that
m(p* f) = pxz) - 7(f)

holds for every f € S(G) and every irreducible admissible representation w of G.
In particular, px € Mul(S(G)) is a multiplier of S(G).

The proof of this theorem will be given in the next subsection.

Remark 2.14. The subset 6 defined above only determines the inner form
class of G. We may define a refined invariant g associated to G to be the
subset of Aut(X*, ®, X, ®")? of elements induced from all maximal tori T of
G in the way described in Lemma 2.19 below, which is contained in 8 and stable
under the conjugation action of W. Note that
e Og =0 if and only if G is quasi-split;

e 0g contains 1 if and only if G is split;
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e (¢ contains —1 if and only if G admits an anisotropic maximal torus;

e g = {—1} if and only if G is anisotropic.

Ezxample 2.15. Suppose that G = SLac. In this case, we may identity
X* with Z under which ® = {2, -2}, hence W = Aut(X*, &, X,, ®") = {£1}.
There are two cases of G up to isomorphism.
(1) When G is split, we have 6 = g = {£1}. In this case, Mgy (b5)V =
My, (he)W = M{il}(b(*c)w7 which consists of even holomorphic functions

on C that have moderate vertical growth, and have polynomial growth on
the subset Z C C.

(2) When G is anisotropic, we have 0 = {—1} C 6 = {£1}. In this case,
Mo, (62)W = My_13(b%)", which consists of even holomorphic functions
on C that have polynomial growth on the subset Z C C.

Remark 2.16. It is natural to ask when a holomorphic function p on b
gives a multiplier as in Theorem 2.13. We conjecture that p does this if and
only if it belongs to M@G(b;fj)w; in particular, the conjecture gives rise to a
homomorphism My, (h%)"V — Mul(S(G)) of complex algebras. By a result of
Harish-Chandra, the subset of e of all infinitesimal characters of irreducible
admissible representations of G is the union Jyeq,, h:;’(c @ Yj5. Thus, the ker-
nel of the previous homomorphism consists exactly of those u that vanish on
Useog Do.c @ Y-

This conjecture can be easily checked when G is anisotropic, that is, when
G is compact. On the other hand, when G is split, Theorem 2.13 implies
the existence of the homomorphism Mg, (h%)"W — Mul(S(G)), as in this case
fU {1} = 0 = 6 (Remark 2.14). We also remark that when G = SLy, this
conjecture was known as a consequence of the work [Bar88|.

Remark 2.17. Theorem 2.13 together with Definition 2.8(3) provide us
with a homomorphism
Mi(0%)" — Mul(S(G))
of complex algebras.

To end this subsection, we record a property for elements in Mg(bz&)w
that will be used later. As usual, by a K -type, we mean an isomorphism class
of irreducible smooth representations of K.

LEMMA 2.18. Let i be an element in Mg(bf’é)w. Then there is a finite set
T(u) of K-types such that for every irreducible admissible representation m of
G satisfying u(x=) # 0, we have that |k contains some member from T(p).

Proof. By Definition 2.8(3) together with Harish-Chandra’s description of
the infinitesimal characters of discrete series of Levi subgroups of G' [HC66],
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there are only finitely many pairs (M, o) where M is a Levi subgroup of G and
o is an irreducible discrete series representation of M, up to conjugation and
unramified twists, such that p is non-vanishing on the infinitesimal character
of the parabolic induction of (M, o). By the Langlands classification and the
fact that for a standard module, the Langlands quotient inherits its minimal
K-types [Kna0l, Th. 15.10], we can take T(u) to be the minimal K-types of
the parabolic induction of those finitely many pairs (M, o). O

2.4. Proof of Theorem 2.13. In this subsection, we prove Theorem 2.13.
We fix a W-invariant Euclidean norm | - || on h. For ¢ € Aut(X*, ®,X,, ®")",
M >0, and r € R, we put

po,mr (1) = sup lwla+w@)|- (1+[le+=|)
a€by o lIReall<M
weYy
for p € O(bg). Clearly, we have pyarr(p) < poarr(n) if M < M’ and
po.mr (1) < poar () if <7l

We start with some discussion on maximal tori of G. Let H be the abstract
Cartan group of G, whose weight lattice is X*. Recall that the abstract Cartan
group H of G represents the presheaf on the opposite category of complex
tori whose value on (a complex torus) S is the set of collections {¢p: B — S}
of homomorphisms for every Borel subgroup B of G satisfying that ¢p =
gp © ap p for every inner automorphism ap g of G¢ mapping B into B'. In
particular, for every maximal torus 7" of G, there is a canonical W-conjugacy
class of isomorphisms T — H from the universal object, which we refer as
universal isomorphisms.

Let T be a maximal torus of G. Put T := T(R). Then T admits a
decomposition T' = ApT, in which Ap and T, are the maximal split and the
anisotropic (analytic) sub-tori, respectively; it induces a decomposition t =
ar @ t. for the corresponding Lie algebras.

LEMMA 2.19. For every universal isomorphism T — H , which induces a
decomposition h* = ap. @it} there is a unique element ¥ € 0 such that af. = b}
and it; = by .

Proof. We define an automorphism 91 of 1" as follows. Let d be the rank
of T, and fix an isomorphism tr: T — ng,C' Then we set ¥ = 7! o7,
where 77 denotes the complex conjugate of vr.

It is easy to see that Y7 does not depend on the choice of vz and, moreover,
that on the Lie algebra t of T, ¥7 acts by +1 on ar and by —1 on t.. Take
a universal isomorphism T — H, which gives rise to a decomposition h* =
ak®itf. Then Jp induces an element ¥ € Aut(X*, ®, X,, ®") that belongs to 6,
which satisfies aj, = b}, and it} = b} . The lemma is proved as the uniqueness
is clear. O
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As we have explained in Section 1.3, the key step is to bound ||D(u* f)|| 12
when D € D(G) is a polynomial, which boils down to the study of certain linear
operators on NgU{l}(h(*C)W. Those operators turn out to be from the algebra
7 below, which we study now.

Denote by W := X* x W the extended affine Weyl group and by W C W
the subset of reflections. Recall that an element s € W is a reflection if the
locus Hy of fixed points of s on b is an affine hyperplane. For every s € VNV@,
we fix an affine function ¢, on b with zero locus Hy.

For every w € \/NV7 we denote by t, the operator on C[hg]| given by
(twP)(a) = P(w™'a). Let Z be the algebra of endomorphisms of C[h7] gener-
ated by t,, for all w € W and multiplications by elements of C[h]. We consider
Z as a left C[hg]-module in the obvious way. Put

S = ClhE][es" | s € WY) @cppy 2,
T = C(he) @cryz) Z,

where C(h¢) denotes the function field of C[h]. We have natural maps # —
. — T of algebras. The algebra .# is independent of the choices of {{; | s €
\TVO}. The algebra 7 can be considered as the algebra of endomorphisms of
C(bt) generated by t,, for all w € W and multiplications by elements of C(bg).

The following lemma tells us when an element S € . extends to a linear
operator on Ngu{l}(bff:) and how it behaves with respect to the family of semi-
norms {py -

LEMMA 2.20. Let S € .7 be an element satisfying SC[h] C Clhg]. Then
S extends uniquely to a continuous endomorphism of O(h¢) with respect to the
topology of uniform convergence on compact subsets, which we still denote by S
Moreover, there exist Mg > 0 and rg > 0 such that for every M > 0 and every
r € R, there exists Cgar,r > 0 such that

P (Si) < Csarr - P1 M+ Mg r4rs (1),

max g vz, (k) < Ot - WAX Py, 0 s (1)

hold for every p € O(hg). In particular,

(1) S preserves the subspace Nyup11(bg);
(2) if SC[bg] C (C[h?é]w, then S preserves the subspace Neu{l}(h(*c)w-

Proof. Note that for the topology of uniform convergence on compact sub-
sets, the subspace C[h{] is dense in O(bh), hence the uniqueness of the exten-
sion is clear.

Now we show the existence of the extension, with the estimate on py as,»(Sp)
together. By definition, S is of the form ©~15’, where S’ € # and © is a finite
product (possibly with multiplicities) of ¢4 for s € W?. It is immediate that
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the action of S” on C[hE] extends by continuity to an action on O(hg) with the
following property: there exist Mg > 0 and rg/ > 0 such that for every M > 0
and every r € R, there exists C'ss 37, > 0 such that

L (S'1) < Cor v PLMA Mg e g (1),

/
rgggm,M,T(S ) < Csiaiy AX Py M+ Mgy r+7g0 ()

hold for every € O(hg). In particular, S” preserves the subspace Nyu1y(he)-
Now the similar properties for S follow from Lemma 2.21 below.

For the last two claims, (1) is an immediate consequence of the estimate
on py mr(Spk), and (2) follows from the uniqueness of the extension. O

LEMMA 2.21. For every s € VT/O, there exists Mg > 0 such that for every
M >0 and every r € R, there exists Cs prr > 0 such that

pl,M,r(gglﬂ) < C(s,M,r 'Pl,M+MS,r(,U)7
DR
AN

max py ar,r (05 1)

C M. - IMax M4+M
9ep s,Myr - 1082 Py, M+ s,r(/‘)

hold for every p € O(hg) that vanishes on Hyg. In particular, for a (holomor-
phic) function p € Npugy(bg) that vanishes on Hs, the function 0711 belongs
to Nougiy (be) as well.

Proof. For every fixed ¥ € § U{1}, we claim that there exists M > 0 such
that for every M > 0 and r € R, there exists C; ps, > 0 such that

Co My - PO M+M, (1) ifv=1,

por (65 1) < {C'S,Mm : qu}g}eipﬁ’,M—i-Ms,r(:u) ifd#1
holds for every u € O(hg) that vanishes on H,. The lemma then follows from
this claim.

To prove the claim, let ¢; be the linear part of ¢5. Take a function p €
Npug13(bg) that vanishes on Hs.

First suppose that Zgh’fm # (0. Then the claim is an easy consequence
of Cauchy’s integral formula. Indeed, take an element ay € bj o such that
03(as) = 1. When |[l5(a + w)| > 1/2, we have

pla + @)
ls(a+ w)

\<mMa+wm

whereas when |{s(a + @)| < 1/2, we have

du

<2 sup |pulotuas+w)l|.
ueCx |Ju|=1

/ pla+ uas + w)
weCx Juj=1 Ls(a + uas + @)
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Together, we obtain

(2.2) < 2 sup ||p(o+ uas + @)

ul<1

pla + @) ‘
ls(a+ @)

Choose Cs prr > 0 such that

21+ |la+@|)" < Csppr- min (14 |la+uos +w||)"
ueCx |Jul=1

holds for every o € b  with ||[Rea| < M and every w € Yj. Then we have

po.ur(C5 1) < Contr - poarent,r (1)

with Mj := ||as|| depending only on s. Thus, the claim holds.

Now suppose that ¢3 bye = 0, hence 9 # 1. Since the image of h:;,c DYy
under /5 is a discrete subset of C, there exists Cs > 0 such that |[¢5] > Cs on
(h5.c ®Yy5) \ H. It follows that

o+ )

(2.3) sup (ot =)

a€hy o ||Reaf| <M
weYy,at+w@Hs

\ (U ot ) < O poara ().

It remains to bound £y on vertical strips of b5 c®(YyNHs) = (b5 c®Y§H)NHs.
Let ws € W® MW be the reflection that is the linear part of s. As {{[ps . =0,

the actions of ws and ¥ on b commute. Thus, the element V' := w,? satisfies
9?2 = 1, hence belongs to . However for ¥, we have h;;,_’(c = by Nker 7 and
bo.c S Do c
Since the map ¢ induces an isomorphism b}, - N by - =5 C, there exists
an element o € b}, - such that @’ == w — o), € b,  for every w € Y N H,.
Since £3]p+, ~# 0, we obtain from (2.2) that there exists a, € b, - such that
9! ,C )

< 2 sup |p(a + uas + o + @')|

lul<1

p(o+ @) ‘
ls(a+w)

holds for o+ w € (b}~ ® Yj) Nkerl,. Note that the projection of Y} onto
by ¢ coincides with Y7,. Thus, as in the previous case, we may find a constant
Csmyr = Cs_l such that

pla+ )

e et @)

a€by o |Reall<M
weYj,a+weHs

‘ (Tt la+ )" < Csaryr - por pryaaa e (1)

with M = ||as|| +||o||. Thus, the claim holds after combining with (2.3). O

Now we relate the algebra . to finite dimensional algebraic representations
of G. Let (7,W;) be a finite dimensional algebraic representation of G, and let

§: U(g) — U(g) ® End(W,)
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be the homomorphism that sends X € gto X ® 1 +1® 7(X). Let R, be the
centralizer of the image of §. By [Kos75, Th. 4.8], R, is a finitely generated
free Z(g)-module, where Z(g) acts on U(g) ® End(W;) by z- (u ® A) = (zu)
® A. Recall that we have identified Z(g) with C[h]" via the Harish-Chandra
isomorphism.

LEMMA 2.22. For every basis vy, ..., v, of the finite free Z(g)-module R,
there exist elements St,...,S, € 7 sending C[b%] to C[hE]W such that

3(z) =Y Si(z)v;
i=1

for every z € Z(g).

Proof. The basis vy, ..., v, induces an isomorphism R, ~ Z(g)®", through
which the right multiplication by d(z) for z € Z(g) is represented by a matrix
S(z) = (S8ij(2))1<ij<r € Mat,(Z2(g)). By Lemma 2.23 below, it suffices to
show that for every 1 <4,j < r, the map z € Z(g) — 5, ;(2) is induced from
an element of .7 sending C[h%] to C[hx]W.

Let A(7) C X* be the set of weights of 7. For every z € Z(g), put

P(X)= ] (X -tr2),
AEA(T)
which belongs to Z(g)[X] = C[hx]W[X], as A(7) is W-invariant. According
to [Kos75, Th. 4.9], we have P,(d(z)) = 0, or equivalently P,(S(z)) = 0 for
every z € Z(g). As the characters z € Z(g) — tyz € Clbg] for A € A(7) are
all distinct, there exist an element P € GL,(C(hs)) and a family of weights
AL,y .-y Ar € A(T) such that

ty 2
S(z)=P P!
tr.z

holds in Mat, (C(hg.)) for every z € Z(g). This shows that for every 1 < i,j <,
the map S; ; is induced from an element S} ; € 7 sending ClhEI™ to ClhEW.
However, up to replacing Sj ; by [W|™" 3", cw S} jtw, We see that S} ; also sends
Clhz] to Clog]"™.

The lemma is proved. O

LEMMA 2.23. If an element T' € 7 satisfies TCbg] C Clhg], then T is
contained in the image of & — 7.

This lemma is essentially [KK86, Lemma 4.9]. For the readers’ conve-
nience, we give a detailed proof.
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Proof. The lemma amounts to the following: For an irreducible polynomial
P € Clbg], and a family (Py), . of elements of C[hg| with P, = 0 for all but
finitely many w, if

Z Putw | Clbe] € PClbel,
weW
then either P divides P, for every w € VNV, or P € (,C[hg] for some s € WO,
Suppose that P ¢ ¢,C[h] for every s € WO, Then, the zero set of P is not
contained in the union | J WA {1} ker(w —1). This implies that the stabilizer of
a generic element of the zero set Z(P) := {a € b | P(a) = 0} in W is trivial.
Let oo € Z(P) be such an element. Note that for every @ € C[hg], we have

Z P,(a)Q(wa) = 0.

weW
As the linear forms @ — Q(w™'a) on C[h%] are linearly independent, it follows
that P, (« ) = 0 for every generic element o € Z(P). Thus, P divides P, for
every w € W. The lemma is proved. U

As we have explained in Section 1.3, we will first prove Theorem 2.13 for
the smaller space Nyyg1y(b3)"W, together with bounds on ||D(u* f)| 72, which
is the content of the next proposition.

PROPOSITION 2.24. Theorem 2.13 holds for u € Ngu{l}(f)f{:)w. Moreover,
for every D € D(Q), there exists a real number Mp > 0 such that for every
f € S(G) and every r € R, there exists Cp s, > 0 such that

[D(p* f)llr2 < Cp g HI0AX Py M e ()

holds for every p € Neu{1}(h<*c)

Proof. Let C2°(G) k) be the subalgebra of CZ°(G) of bi-K-finite func-
tions. As Ngu{l}(hf‘c)w C N(h5)W, the existence of the function u* f for
[ € CX(G) (k) was essentially proved by Delorme (see Proposition A.1). As
C(G) (k) is dense in S(G), it suggests we show that the map C°(G) k) —
S(G), f+— px f, extends continuously to an endomorphism of S(G).

We claim that for every D € D(G), there exists Mp > 0 such that for
every r € R, there exists a continuous semi-norm vp, on S(G) such that

(2.4) [D(px llzz < vpr(f) - fgggipﬁ,MD,r(u)

holds for every p € Ngu{l}(hé)w and f € CX(G) k.-

We deduce the proposition assuming the claim. Fix p € Ngu{l}(f)f&)w, and
for every f € S(G), choose a sequence {f,,} in C2°(G) k) that converges to f.
Then by Remark 2.12, (2.4) implies that p* f,, converges to an element in S(G),
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which we denote by p« f. It is easy to see that the map p*x: S(G) — S(G)
satisfies the requirement in Theorem 2.13. The second part of the proposition
follows from (2.4) by taking Cp f, = vp.(f).

Now we show the claim. Note that we have a canonical isomorphism
C[G)®U(g) ~ D(G) given by P® X — P - L(X), where L(X) stands for the
left invariant differential operator on G associated to X. For X € U(g), we
have L(X)(pu* f) = px L(X)f. Since the action of L(X) preserves the set of
continuous semi-norms on S(G), it suffices to show (2.4) for D = P € C[G].

First, we consider the case P = 1. By the Plancherel formula of Harish-
Chandra [HC76], there exists a Borel measure dr on the tempered dual Temp(G)
of G such that

12 = / () s
Temp(G)

for every f € S(G), where || - ||us stands for the Hilbert-Schmidt norm. Thus,
we have

e fl3e= [ lu) Pl s dm
Temp(G

for every f € C2°(G) k). Let 0g be the subset of 6 obtained from maximal tori
of G in the way of Lemma 2.19 (see also Remark 2.14). By Harish-Chandra’s
description of the infinitesimal characters of tempered representations [HC75],
the union of x, for 7 € Temp(G) is exactly the W-stable subset

U ey
Vebg

of h¢. In particular, we have

)| < (mas o, (1)) - (U el
€0g

for every 7 € Temp(G). Choose elements 21,...,zy € C[HEW = Z(g) (de-
pending on r) such that

L+ 1Ixx D™ < O P + -+ + 2w () P

holds for every m € Temp(G). It follows that
2 N
2 2 2
* < (max > / Z; Al dm
lx Fllze <\ maxpo.ir () ;1 — 12 O - () s

2 N
R , 2
= (ﬁ@g%hdﬂ)) ; i % flIZ2
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for every f € C2°(G)(k). Thus, we obtain (2.4) with the semi-norm vy, given
by

N 3
v (f) = <Z !Zi*f@)
=1

Now we treat the case for general P € C[G]. As P is a finite sum of
matrix coefficients of finite dimensional algebraic representations of G, by lin-
earity, we may as well assume that there exists a finite dimensional algebraic
representation (7, W;) of G, w € W, and w* € W* such that

P(g) = (r(gw,w"), g€G.

Let v1,...,v, be a basis of the finite free Z(g)-module R,, and let S1,...,S,
be elements of .% as in Lemma 2.22. By Lemma 2.20, Si,..., S, extend con-
tinuously to endomorphisms of O(f)(’f:)w for the topology of uniform conver-
gence on compact subsets, which preserve Ngu{l}(f)E&)W, for which we use the
same notation. Since the map U(g) ® End(W;) — U(g) ® End(W,) given by
u® A~ (1® A)d(u) is an isomorphism, each element v; in the basis can be
written as a finite sum

(2.5) v; = Z(l @ Aij)o(uij)

for some A;; € End(W;) and u;; € U(g). Let P;; € C[G] be the element defined
by Pij(g) == (A;7(9)w,w*) for g € G. Note that S;, u;;, and Pj; depend on
the data (7, W,, w,w*) only. We make the following claim:

(¥) For every f € CX(G) k),

N*f ZS *PZJL Uw)f

holds.
Assuming (x), by the P = 1 case, we have

1P (x f)ll2 < ZIIS ) * BijL(uij) fll 2

< r (PijL(uis) f) - (S
ZZJ:VL jL(uig) ) - maxpy 100 (Si(1))
for every f € C2°(G) (k) and every r’ € R. By Lemma 2.20, there exist Mp > 1,
rp >0, and Cp > 0 such that

%lggpﬁ,mrp(Si(u)) <Cp- rgggm,m,r(u)
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holds for every 7 and every p € Ngu{l}(h%)w. Thus, we obtain (2.4) with the
semi-norm vp, given by

ver(f) = Cp Z V1r—rp (PijL(uij) f)-

It remains to confirm (x). By the injectivity of the operator valued Fourier
transform, it suffices to check that

(2.6)
W(P(u*f)):Zw(S( ) * PyiL(ug;) f ZS - (FijLuij) f)
Z"j
for every irreducible admissible representation 7 of G. By the subquotient the-
orem, it is enough to check (2.6) when = is a principal series whose underlying
space we denote by V. We have the equality

(2.7) T(P(p f)) = cuwr o (m@7)(x f) 0 buy

in End(Vy), where by : Vx — Vi ® Wi is the map defined by b, (v) = v ® w,
and cy+: Vi @ W — V; is the map defined by ¢+ (v @ w') = (', w*)v. By a
density argument, it is even sufficient to establish (2.6) for a principal series in
general position, for which, by Lemma 2.25 below, we can assume that 7 ® 7
is semisimple.

Assume now that 7 ® 7 is semisimple. Let (z,), be a sequence of elements
of Z(g) converging to u for the topology of uniform convergence on compact
subsets. As m ® 7 decomposes as a direct sum of irreducible admissible repre-
sentations of G, (7 ® T)(zn * f) converges to (7 ® 7)(u * f) for the topology
of pointwise convergence. The action of G induces an action of U(g) on (the
smooth vectors in) V., which further induces an action of R, C U(g)®@End(W;)
on Vx ® W;. Note that under this action, é(u) acts by (7 ® 7)(u) for every
u € U(g), and z ® 1 acts by 7(z) ® 1y, for every z € Z(g). Thus, by (2.5) and
Lemma 2.22, we have

(7 @ 7)(2n) = Zs Zn )V = Zs 2n) (1 ® Ai)6(usj)
— Z ) ® 1w, ) o (1y, ® Aij) o (m @ 7)(uij)
—ZS zn)(Xr) - (Lv, ® Ajj) o (7 @ 7)(uij)

in End(V; @ W;). Pre—composmg (7r ® 7)(f) and passing to the limit, we get
(r@7)(u*f) = ZS (v, ® Ayj) o (m @ 7)(L(uig) f),

which, together with (2.7), implies (2.6). The claim (%) is proved.
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The proof of the proposition is now complete. O

LEMMA 2.25. Let Py = MyNy be a minimal parabolic subgroup of G, o an
irreducible (finite dimensional) representation of My, and put o¢ = o ® & for £
an unramified character of My. Then for £ in general position, the admissible
representation Igo (0¢) ® T is semisimple, that is, a direct sum of irreducible
admissible representations.

Proof. By the Frobenius reciprocity, Igo(ag) ® T is isomorphic to Igo (oe®
T|p,), where 7|p, denotes the restriction of 7 to Py (so that the inducing repre-
sentation is now non-trivial on Np). Let Ay be the split center of My and ay its
Lie algebra. The representation o ® 7|p, of Py admits a filtration indexed by
the characters of ag for the partial order defined by the cone of positive roots
with respect to Py, such that in the associated graded vector space €p Aeas ¢ Vi,
ap acts on V) by the character A. This implies that Ny acts trivially on each
of the graded pieces. Thus, {V\ |\ € aé,C} are semisimple representations of
My with distinct central characters. Therefore, Igo (0¢) ® T admits a filtration
with associated graded representations Aeay Igo (Vy ® &), and for generic &,

the representations {IIGD0 (M ®&) | A € age} are all semisimple with distinct

infinitesimal characters, hence Igo (0¢) ® 7 is itself semisimple. The lemma
follows. g

Now we deduce Theorem 2.13 from Proposition 2.24 by a limit process.

Proof of Theorem 2.13. First, we claim that there exists P € C[h]W that
is homogeneous and takes positive real values on (U,&egu{l} ihy @ f)ﬂ_) \ {0}.
Indeed, such a polynomial can be obtained as follows. Let Wy be the group of
linear automorphisms of h* generated by W and 6. Let Pi,..., Py be homoge-
neous generators of the kernel of R[h*]V¢ — R sending P to P(0) (as an ideal
of R[h*]We) with dj :== deg P; > 0 for 1 < j < N. Put

P=P g PN

—~

where d; = dy---dj---dy. Since P is homogeneous of degree 4d; ---dy, we
have P(io) = P(«) for every o € h. As the only common zero of Py,..., Py
is zero, it suffices to show that P; takes real values on b} @ ib}~ for every
1 <j <N andevery 9 € U {1}. Since d(a) = a for o € b} @ ib}~ and
since P; is ¥-invariant, we have Pj(a) = Pj(9(@)) = Pj(@) = Pj(«), hence
Pj(a) € R for a € b @ ibj .

We now choose such a polynomial P as above, of degree d > 0. It has the
following property: there exist 6 > 0 and € > 0 such that for every ¢ € U {1},
every a € by ¢, and every @ € by satisfying ||a + w|| = 1,

RePla+w) > ¢
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holds as long as ||Re | < . In particular, for every ¥ € 6 U {1} and M > 0,

Re P(a + @) = |ja+@|*  Re P (W) > el|a + ||’
lev + <o
holds if |[Rec| < M and || + @| > §'M. This implies the following state-
ments:

(1) For every M > 0 and every r < 0, there exists Cps,» > 0 such that
lexp (—P(a+ w))| < Carpr(1 + |l + w]|)"

holds for every ¥ € 8 U {1}, every a € b}, ~ with ||Real| < M, and every
weYs ’

(2) For every € > 0 that is sufficiently small and every M > 0, there exists
Ce,v > 0 such that

lexp (—P(a+w)) — 1| < Ce pl|ae + w]|€

holds for every ¢ € 0 U {1}, every a € b} with ||[Rea| < M, and every

w e Y.

Now we take an element u € Mgu{l}(bff:)w and define functions pu, for
every integer n > 1 by the formula

pn(@) =exp (<P (%)) -ul@), o eb.

By Definition 2.8(2), for every M > 0, we may choose ry; € R such that
PoM,ry (1) < 00 holds for every ¥ € § U {1}.

From (1), we obtain py ar(pin) < 0o for every ¥ € 0 U {1}, every M > 0,
every r > ry, and every n > 1. Thus, p, € ./\/'gu{l}(f](*c)w for every n > 1.
From (2), we obtain

lim pﬁ,M,r(Mn - N) =0
n—»00

for every ¢ € 6 U {1}, every M > 0, and every r < rp;. Then, by Proposi-
tion 2.24 and Remark 2.12, for every f € S(G), {pn*f }n>1 is a Cauchy sequence
in S(G); we denote its limit (in S(G)) by p* f. It follows immediately that
m(u* f) = u(xz) - 7(f) holds for every irreducible admissible representation
of G. The theorem is proved. O

Remark 2.26. In fact, from the proof of Theorem 2.13, we see that for every
p € Mgugiy(be), px is continuous and preserves the subalgebra S(G) k) of bi-
K-finite functions in S(G). Moreover, our argument of deducing Theorem 2.13
from Proposition 2.24 can be applied to deduce from Proposition A.1 that every
element of M(h) gives a multiplier of S(G) (k).
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3. Isolation of spectrum

In this section, we state and prove various results on the isolation of cus-
pidal components of the L?-spectrum. In Section 3.1, we introduce several
important definitions and state the results. In Section 3.2, we recall the coarse
Langlands decomposition, cuspidal data, and cuspidal components. In Sec-
tion 3.3, we show how to annihilate all but finitely many cuspidal components.
We finish the proof in Section 3.4.

Let F' be a number field.

3.1. Statement of results. We consider a connected reductive algebraic
group G over F. Let g be the complex Lie algebra of G ®g C, and let Z
be the maximal F-split torus in the center of G. Let Sg be the set of primes of
F such that G, is ramified. We fix a maximal compact subgroup Ky of G(Ar),
and a Haar measure dg = [[,dg, on G(Ap), such that Ky, is hyperspecial
maximal with volume 1 under dg, for every prime v not in Sq.

We first recall the definition of the L?-spectrum for G. Take a unitary
automorphic character

w: Z(AF) — C*.

We define L?(G(F)\G(AFr),w) to be the L? completion of the subspace of
smooth functions ¢ on G(Ap) satisfying

o o(279) = w(z)p(g) for every 2z € Z(Ar), v € G(F), and g € G(AF);
e |p|?, regarded as a function on Z(Ap)G(F)\G(AF), is integrable.

The group G(Ar) acts on L?(G(F)\G(A),w) via the right regular representa-
tion R, which preserves the subspace Lgusp(G(F J\G(A),w) of cuspidal func-
tions.

Definition 3.1. We define the space of Schwartz test functions to be
S(G(Ap)) = S(Gx) ® S(G(AF)),

which is endowed with the convolution product with respect to the fixed Haar
measure dg. Here, S(G(A%)) denotes the restricted tensor product of S(G(F))
for v { 0o, where S(G(F})) is nothing but C°(G(Fy)).

The algebra S(G(Ar)) acts on L?(G(F)\G(Ar),w) continuously via the
right regular representation R, with respect to the Haar measure dg.

Definition 3.2. We say a Schwartz test function f € S(G(Ap)) is w-quasi-
cuspidal (or simply quasi-cuspidal when w = 1 is the trivial character) if
the image of the endomorphism R(f) on L?(G(F)\G(Ar),w) is contained in
Liwsp(GFNG(Ap),w).
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For every prime v & S, we let
Ha,w = ClKow\G(Fy)/ Kol

be the spherical Hecke algebra of G, (with respect to Ko, ) with the unit 1g, .
For a (possibly infinite) set T of primes of F containing S¢;, we let 17, be the
restricted tensor product of H¢,, for primes v & T.

Definition 3.3. A T-character (for G) is a pair x = (Xoo, x°>7) in which

Xoo is & character of Z(g) and x> is a character of Hg,.°

For a T-character x and a prime v ¢ T, its v-component Y,, which is a
character of Hg ,, gives rise to a (K ,-)spherical (irreducible admissible) rep-
resentation of G(F}), unique up to isomorphism. For an irreducible admissible
representation m = ®,m, of G(Ar) such that o # {0} for every prime v & T,
we have the induced T-character x 1 = (X, XroooT)-

The following definition mimics the original notion of CAP representations
by Piatetski-Shapiro [PS82]. In this section, we will only use it for G' = G,

while the more general case will be used in Section 4.

Definition 3.4. Let G’ be an inner form of G (over F'). We say that a
T-character x is (G’,T)-CAP if there exist a proper parabolic subgroup P’ of
G’ and a cuspidal automorphic representation o of Mp/(Ar), where Mp: =
P’/Nps, such that for all but finitely many primes v of F not in T for which
G, ~ G, the spherical representation corresponding to x, is a constituent of
IIGJ;(UU). For an irreducible admissible representation 7 of G(Ar), we say that
7 is (G',T)-CAP if x,r is.

Now we fix

oo,T);

e a subset T of primes of F' containing S and a T-character x = (Yoo, X
e a finite set S of primes of I satisfying S¢ C S C T; and

e a subgroup K C K{° of finite index of the form K = Ky x vas Ko.
We denote by S(G(AY))k the subalgebra of S(G(A%)) of bi- K-invariant func-
tions, and we put

S(G(AR))k = S(Gso) ® S(G(AR)) k.

For 7 = (,cusp, let L3(G(F)\G(Ap)/K,w) C L}(G(F)\G(Ar),w) be the
subspace consisting of functions that are invariant under R(K), on which
S(G(AFr))xk acts continuously via the right regular representation R. We de-
note by

12

cusp

(GFNG(AR)/K,w)IX] € Ly (GF\G(AF) /K, w)

SWarning: T-characters are actually characters away from T; same for T-multipliers later.
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the maximal closed subspace of which Z(g) ® H{, acts on its smooth vectors
by the character yoo ® x>7T.

The connected reductive group G ®g R over R determines a root datum
(X*, ®,X,,®") and a subset § C Aut(X*, ®, X,,®")" as at the beginning of
Section 2.3. We adopt the notation from Section 2.2. For an element p €
O(h5)W ® HE,, we may evaluate p on Y to obtain a complex number wu(y).
Theorem 2.13 provides us with a linear map ./\/lg(h(*c)w — Mul(S(Gw)) (see
Remark 2.17).

Definition 3.5. A T-multiplier of S(G(AFr))k is an element in ./\/lg(b(’{j)w
® HE.
As M, is contained in the center of S(G(A¥))k, a T-multiplier 1 induces
a multiplier
px € Mul(S(G(Ar))k)

of S(G(Ar))kx. Now we can state our main results on the isolation of the
spectrum.

THEOREM 3.6. Suppose that x is not (G,T)-CAP (Definition 3.4). Then
there exists a T-multiplier p of S(G(Ar))k such that for every f € S(G(Ar))k
(1) R(px f) maps LH(G(F)\G(Ap)/K,w) into LE,,(GIFN\G(Ap)/ K, w)[x];
(2) () =1.

In particular, pxf is an w-quasi-cuspidal Schwartz test function (Definition 3.2).

In particular, Theorem 1.1 follows by taking T = S and x = x,r.
For general y, we have the following theorem. In fact, we will prove a
stronger result in Theorem 3.19 below.

THEOREM 3.7. There exists a T-multiplier p of S(G(AF))k such that for
every f € S(G(AFR))k,
(1) R f) maps Doy (GENG(Ap) /K, ) into L2y (GIFNG(Ar)/K, w)[\]:
(2) px) =1.

Remark 3.8. In the above two theorems, we do not require that x = x,r
for an irreducible admissible representation 7 of G(Ap).

The remaining part of this section will be devoted to the proof of the above
two theorems.

3.2. Cuspidal data and cuspidal components. We recall the notion of cus-
pidal data and cuspidal components for the group G. We fix
e a minimal Levi subgroup M of (a parabolic subgroup of) Gj
e a minimal parabolic subgroup Py of G containing Mj; and
e a maximal torus 7' of G ®g R over R that is contained in My ®g R.
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Without lost of generality, we assume that the fixed maximal compact subgroup
Ky of G(AF) is admissible relative to My(Ar) (in the sense of [Art81, §1]). We
identify X* with the weight lattice of T¢. Let W(G, My) be the Weyl group of
the pair (G, My). We say that a subgroup M of G is a standard Levi subgroup if
there exists a parabolic subgroup of G containing Py, of which M is the unique
Levi subgroup containing M.

For a standard Levi subgroup M of GG, we denote by

e Z)s the center of M (in particular, Z is the maximal F-split torus in Zg);

e Py the unique parabolic subgroup of G containing Py, of which M is a Levi
subgroup;

e Qy/(w) the set of unitary automorphic characters wys: Zy(Ap) — C* sat-
isfying war|z(ap) = w;

e M(Ar)! the intersection of the kernels of all automorphic characters M (Af)
— R%, and

e ay; the real vector space Z(Ap)M(Ap)'\M(Afp).5

For s € a}; ¢, we denote by &: Z(Ap)M(Ap)'\M(Ar) — C* the correspond-
ing (automorphic) character obtained by composing s with the exponential
map exp: C — C*, which is unitary if and only if s € ia},. For an admissible
representation o of M (Afp), we put o5 := 0 ® & for s € ahsc-

Definition 3.9. For a cuspidal automorphic representation o of M(Ap)
with central character wys € Qpr(w), we denote by

L*(M,0) C Ly (M(F)\M (AF), war)

cusp

the maximal closed o-isotypic subspace.

We define €(M,w) to be the set of isomorphism classes of cuspidal auto-
morphic representations of M (Afr) whose central character belongs to Q7 (w),
and an equivalence relation ~ on €(M,w) by the following rule: o ~ ¢’ if there
exists s €iaj, such that o’ =05. Let €(M,w)” be the quotient of €(M,w) by ~.

We define ©(G,w) to be the set of pairs (M, o), where M is a standard
Levi subgroup of G and ¢ € €(M,w), and an equivalence relation ~ on ®(G, w)
by the following rule: (M, o) ~ (M’,o’) if there exists w € W(G, M) such that
M’ = M" and ¢’ ~ ¢ in the sense above. We denote by ®(G,w)® the quotient
of D(G,w) by =~.

By [Lan76, Lemma 4.6(i)] or [MW95, I1.2.4], we have the decomposition

—

(3.1) L(GP\G(Ap),w) = D Liyy(GIEN\G(AR),w)
(M,0)€D(G,w)®

SIn fact, aas is usually denoted by a§; (for example in [Art05, Art13]); it is the real Lie
algebra of the maximal Q-split torus contained in Resp/q Z\M.
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of Hilbert spaces, known as the coarse Langlands decomposition. We call an ele-
ment (M, o) in ®(G,w)" a cuspidal datum, and we call L(QMJ)(G(F)\G(AF), w)
the (automorphic) cuspidal component associated to (M, o).

For the readers’ convenience, we recall the construction of the cuspi-
dal component L%M,U)(G(F)\G(AF),w). For (M,0) € ®(G,w), we denote by
.A(GM’U) the space of R(Kj)-finite smooth functions ¢ on Np,, (Ar)\G(AF) sat-

isfying that for every x € Ky, the function ¢,: m +— 5;}\1/ 2(m)gb(ma:) is an

automorphic form on M(Af) contained in L?(M, o), where &p,, is the modu-
lus character of Py;. For every Paley—Wiener function

* G
®: ajrc = Al

valued in a finite dimensional subspace of .A(GM,U), we put

Bg) = [ @u(9) &lmlg)) ds
W0,

for g € P(F)\G(Ar), where m(g) € Z(Arp)M(Ar)'\M(AF) denotes the image

of the M(Ap)-component of g under the Iwasawa decomposition G(Ap) =

Np,,(Ap)M(Ap)Ko. We have the pseudo-Eisenstein series

E(g,®):= Y  ®(y9),

YEP(F)\G(F)

which belongs to L?(G(F)\G(Ar),w). Then L%M o) G(F)\G(AF),w) is defined
to be the closure of the subspace spanned by E(—,®) for all Paley—Wiener

functions ® as above. We have that
Lino) (GG (AF),w) = Ly o1 (GF)\G(AR), w)

if and only if (M, o) ~ (M', o).

Let L?Mﬂ)(G(F)\G(AF)/K,w) C L%MJ)(G(F)\G(AF),OJ) be the sub-
space consisting of functions that are invariant under R(K). Taking R(K)-
invariants, (3.1) induces the following decomposition of Hilbert spaces:

—

(32) L(GU\GAp)/K.w) = @ Ll (GENGAF)/K,w).
(M,0)e®D(G,w)®

3.3. Annihilation of all but finitely many components. We start to prove
the results in Section 3.1. In particular, we fix the T-character x = (oo, X>*7),
the subsets S¢ € S C T of primes of F', and the subgroup K C K§°. In this
subsection, we construct an element uX, € Mg(h(*c)w satisfying pX(Xoo) # 0
and such that R(u& * f) annihilates all but finitely many cuspidal components
in (3.2).

Take a standard Levi subgroup M of G. Let My, be the derived subgroup
of M. Let X3}, be the weight lattice of (TNMger®gR)c, and put by, = X3,@zR.
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Then we have a canonical map X* — Xj,, which induces a surjective map
h* — b},. Denote by ¢}, the kernel of h* — b7, which canonically contains aj,.

Remark 3.10. In fact, ¢},/a}, is canonically the real cotangent space of
Zy(Ar) Z(Ap) at the identity. Thus, ¢%, = a%, holds if and only if Z = 1 and
Zy(Ap)! is discrete, and ¢}, = a}, holds for every standard Levi subgroup M
if and only if G is semisimple and split over Q.

Denote by var: h* — b*/a}, the quotient map. We have a canonical

decomposition h* = ¢}, @ b},, which gives rise to two linear maps
b o /ain i b b

so that vy = ’y;\r/[ ®7,;- Let Wy be the Weyl group of the pair (M ®q C, T¢),
which is canonically a subgroup of W and acts on ¢}, trivially. For every
element 0 € ¢(M,w) and every s € aj; ¢, the infinitesimal character x,, .,
is a Wyy-orbit in b, satisfying that vya/(Xo, ..) € b&/a}; ¢ does not depend
on s, hence only on the class of o in €(M,w)”. We also denote by chri ., the
infinitesimal character of IndgM(ngyoo), which is simply the W-orbit of x., .
in bE.

The Casimir operator for My ®g R defines a map

)\Mi b?\LC — (C,

which is a W-invariant polynomial function.

Definition 3.11. We say that an element o € €(M,w)? is Yoo-typical if
both

* Mi1(Xow) € 1ir(Xeo) and

* M (Yar(Xowe)) € At (V21 (Xoo))

hold. Denote by C(M,w)ioo the subset of €(M,w)" consisting of Yso-typical
elements.

Informally speaking, y~o-typical elements are those whose infinitesimal
characters cannot be distinguished from x via the two maps 7}& and Aps 0 vy,
hence their associated cuspidal components will not be annihilated by the
method described below in this subsection.

Now we start the construction of pio, following the strategy (the first two
steps) described in Section 1.3. We first choose an element pl € ./\/lg(h(*c)w
such that ul (Xoo) # 0, which is possible by Lemma 2.10. We denote by
T := T(ud,) the finite set of Ko so-types from Lemma 2.18. For every standard
Levi subgroup M of G, we

e put Ké‘f)o = My N Ko, which is a maximal compact subgroup of M;
e fix a finite set Tps of Ké‘?oo—types satisfying the following property: if o is an
irreducible admissible representation of My, such that IIGDM (0)| k., contains
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a member from T, then o] K contains a member from ¥j; (when M = G,
we take Ty = T);

e fix an open compact subgroup Ky s of M (Fs) satisfying the following prop-
erty: if o is an irreducible admissible representation of M (Fs) such that
IgM(a)KS # {0}, then o%Ms £ {0} (when M = G, we take Ky s = Ks);

e put Ky, = M(F,) N K, for every prime v of F' not in S, which is a
hyperspecial maximal subgroup of M (F,);

o put Ky == Ky g X Hves K.

Let €(M,w; Kpr, Tar) be the subset of €(M,w) consisting of o satisfying
o £ 10} and that o K contains a member from Tjps. It is clear that
C(M,w; Ky, Tpy) is closed under the equivalence relation ~ in Definition 3.9.
Let €(M,w; Ky, Tar)Y be the quotient of €(M,w; Kyr, Tas) by ~.

Put Ky, = K N Maer(A%) and K5 = K} 0 Meroo. Let Tny,,,
be the (finite) set of Ké\? Jer_types that appear in the restriction of members in
T to Ké\i‘ioe“. Denote by €(Mger; Ky, Ty, ) the set of isomorphism classes
of cuspidal automorphic representations ¢ of Mye:(Ap) satisfying ¢/ Maer # {0}
and that ¢ KeMer contains a member from Ty, .

The following lemma is crucial for us to construct functions in M ()W
that vanish on x4, for ¢ not y.o-typical.

LEMMA 3.12. The subset
AM, w; Kn, Tar) = {2 (73 (X)) | 0 € €(M,w; Ky, Tar)} € C
is of finite rank (Definition 2.1).

Proof. Tt suffices to show that the subset of Casimir eigenvalues of elements
in €(Maer; K., , Ty, ) is of finite rank. As Ty, is a finite set, this is a direct
consequence of [Don82, Th. 9.1]. O

The following lemma shows that there are only finitely many yo-typical
elements in €(M,w; Ky, Tar)®.

LEMMA 3.13. The set €(M,w; Kur, Tar)¥ ﬂ(’:(M,w)Soo is finite.

Proof. There are only finitely many elements in €(Maer; Ky, Ty, )
whose Casimir eigenvalue belongs to the set Aar(v,;(Xsc)) by [Don82, Th. 9.1].
It follows that there are only finitely many elements in €(M,w; Ky, Tar)Y
that are yso-typical. In other words, the set €(M,w; Ky, Tar)¥ ﬂQ(M,w);?OO
is finite. ([

The following lemma achieves the goal in the second step of the strategy
described in Section 1.3.



554 RAPHAEL BEUZART-PLESSIS, YIFENG LIU, WEI ZHANG, and XINWEN ZHU

LEMMA 3.14. For every standard Levi subgroup M of G, there exists an
element pM € Mg(f)(*c)w satisfying pM (xeo) # 0, and such that for every
o€ C(M,w; K, %)Y\ Q(M,w);?oo, p vanishes on X%w, the infinitesimal
character of IndgM (0s5,00), for every s € aj; c.

Proof. We first consider the special case where ¢yy = ays. In this case, we
have ypr = 73, b* — b}, By Lemma 3.12, we may apply Corollary 2.5 to
the subset A = A(M, w; Knr, Tar) \ A (7ar(Xoo)), hence obtain a holomorphic
function v on b}kwc that has moderate vertical growth, and vanishes exactly on
Nyf (MM, w; Kpr, Far) \ Anr(7ar(Xoo))). We regard v as a function on b via
the quotient map v : bg — b}k\/l,C' By construction, v is nowhere vanishing on
Xoo, and vanishes on X, _ for every o € €(M,w; K, Tar)¥ \ Q(M,w)goo and
s € U'?W,C' Finally, put

M ._ 0
Moo = Moo - H vouw,
weW

which belongs to /\/lg(f)(*c)w by Remark 2.9(3); it satisfies the requirements in
the lemma.

Now we treat the general case where ¢y /aps might be non-trivial. The ex-
tra work is to treat the factor 'y]J\}. For every element o € €(M,w; Ky, SM)Q,
the restriction of the central character of o5 to Zy(Ap)'Z(AR), say we, is
independent of s. Moreover, the infinitesimal character of ws o, Which is
canonically an element in ¢}, -/a}; ¢ by Remark 3.10, is simply 73, (Xo,. ..)-
Since welzap) = w, Wy is invariant under Zyu(F) - (Ky N Zy(AY)), and
Zu(F)\Zy(Ap)t/ Ky N Zp(AY) is a compact abelian real Lie group, there
exists a lattice Ly of ¢}, /a}; ¢ such that Y11 (Xo,..) is contained in Ly for ev-
ery o € €(M,w; Ky, Tar)¥. Applying Corollary 2.6 to U = /s L= Ly,
and A = v7,(X0), We obtain a holomorphic function v+ on ¢irc/ @) c that has
moderate vertical growth, vanishes on Lys \ 73, (Xoo), and is nowhere vanishing
on ’y;{/[(xoo). On the other hand, similar to the special case, we have a holo-
morphic function v~ on [’}kw,(c that has moderate vertical growth, and vanishes

exactly on ApH(A(M, w; Kar, Tar) \ Aar (737 (xeo)))- Pt

V= V+ XV C*M7c/a}kw7(c (%) b*M,(C — (C,

which we regard as a function on hg via the quotient map hg — hg/aj, ¢ As
in the special case, we put

M ._ 0
Moo = Moo * H vouw,
weW

which belongs to ./\/lg(b(*c)w and satisfies the requirements in the lemma. [
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By definition, we have an identification [[,; €(M,w) = D(G,w), which

induces a surjective map

(3.3) [[e(,w)® = 2(G,w)”
M

by passing to the equivalence relations. We denote by ®(G, w; K, %)Y the image
of

]_[Q(M,W;KM,TM)QQ
M

under the map (3.3), and by ©(G,w; K, T)Soo we denote the image of

[T e, w; Kar, Tan)¥ ne(M,w)
M

under the map (3.3). Now we can construct the desired function g in the
following proposition.

PropoSITION 3.15. The function

poo = pily - [ [ 12,
M
in which the product is taken over standard Levi subgroups of G and p! is a
function obtained from Lemma 3.14,7 belongs to Mg(h(*c)w and satisfies fioo(Xoo)
# 0. Moreover, for every f € S(G(Ar))k, the endomorphism R(ueo * f) of
L*(G(F)\G(Ar)/K,w) annihilates the subspace L?M’J)(G(F)\G(AF)/K,M) if
(M, o) does not belong to (G, w; K, ‘3);900.

Note that by Lemma 3.13, D(G,w; K, T)Soo is a finite set.

Proof. The first statement is clear from the construction.

By the description of L%Mya)(G(F)\G(AF)/K, w) recalled in the last sub-
section, it suffices to show that R(ueo x f)E(—, ®) = 0 for every Paley—~Wiener
function ®. By Remark 2.26, it suffices to consider the case where f, hence
oo * f, are bi- K oo-finite. Then since R(poo * f)E(—, ®) = E(—, R(ttoo * ) D),
it suffices to show that IndgM (05)(poo * f) = 0 for every s € aj; . Note that
we have

1§, (0)(toe ) = 1 6E, ) - Ind$, (02) ().
Take an element (M, o) € (G, w) whose image in (G, w)" does not belong
to (G, w; K, ‘Z);?OO. If %M = {0}, then we have IndgM (05)(f) = 0 by our
choice of K. If o] K does not contain any member from ¥jp;, then we

have ,uoo(xfsm) = ,ugo(xfsm) = 0 for every s € aj; ¢ by our choice of Ty

"In fact, it suffices to take the product over a set of representatives of standard Levi
subgroups of G with respect to the conjugation action of W(G, My).
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Otherwise, we must have ,uoo(xg*;’oo) = 0 for every s € aj; ¢ by the property of
p from Lemma 3.14. The proposition follows. U

3.4. Proof of results. To annihilate components L?M o) (G(F)\G(Ar)/K,w)
in which o is possibly yoo-typical, mixed multipliers from both archimedean
and non-archimedean places are needed.

Definition 3.16. For an element (M, o) € D(G,w), we say the T-character
x occurs in (M, o) if there exists s € a}, ¢ such that
® X500 = Xoos
e for every prime v of F' not in T, the spherical representation corresponding
to xp is a constituent of IndIGDM (Osw)-

It is clear that such property depends only on the equivalence class of (M, o) in
D(G,w)”. We denote by ’D(G,w)g the subset of ®(G,w)" in which x occurs.

We need to annihilate every element (M,o0) € ®(G,w) in which x does
not occur, which is possible by the following proposition.

PROPOSITION 3.17. Let (M, o) be an element in ©(G,w). Assume that x
does not occur in (M, o). Then there exists a T-multiplier p(rr,») of S(G(AF)) K
satisfying
(1) the endomorphism R(purey * f) of LAG(F)\G(Ap)/K,w), for every f €
S(G(Ar)) K, annihilates L%M U)(G(F)\G(AF)/K,LU);
(2) prey(x) # 0.

Proof. We may assume that o™ #£ {0}; otherwise
L%M,o’)(G(F)\G(AF)/Kaw) - {0}7

hence the proposition is trivial. Then for every s € aj, and every prime
v of F not in T, we have IgM (0s0)5%» # {0}, which gives rise to a character
Xgi .+ Hgp — C. Then we have a character

ngo;: He — C.

We also recall the infinitesimal character Xc(r;s,oo of IIGDM (0s,00), which is simply
the W-orbit of x,, ., in hg. Thus, we obtain a T-character sz = (XUGW,XSSO,T)
for G. We suppress the superscript G when M = G.

We first consider the easy case where M = G. Since x does not oc-
cur in (G, o), we have either X, # Xoo O Xgoor # X°T. In the first
case, by Lemma 2.10, we can find an element p 7 ,) € Mg(h(*c)w satisfying
p(m,e)(Xoo) # 0. After multiplying by a suitable element in C[b(’E]W, we may
further require that ji(57»)(Xoo,) = 0. In the second case, we can certainly find
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an element fi(y,) € He, satisfying p(azq)(Xooer) = 0 but g (x>T) # 0.
The proposition follows.

We now consider the hard case where M is a proper standard Levi sub-
group. Recall that aj, is canonically a subspace of h*. We fix

e an element o, in X, C b,

e an element o, in X C b,

e a linear splitting map £: h* — aj, of the subspace aj,; C b*.

For w € W, put s, = l(wa,) — l(as) € a};c. Since x does not occur in
(M, o), for every w € W, we can take v[w] to be either co or a prime of F' not
in T such that Xg*‘%v[w] # Xo[w]- 1t allows us to choose an element vy, € He yfu)

(we regard He oo as C[hE]W) such that

(3‘4> ’/w(Xv[w]) 7é Vw(XS

sw,v[w]

).

Note that for every w' € W, the function a — 14,( is of

XS )
i Tp(w! a)—t(ag),v[w]
exponential type, hence belongs to Oexp(bg). We put

] —
Vip ! = Vi — Va (

G
X%w%—)—fz(aa),v[w] )

regarded as an element in Oexp (he)@HE. Then (3.4) simply says VLw(ax, x>T)

# 0. From this, it is elementary to see that there exist complex constants
{Cuw}wew such that

Z Cw”;fu,w/(axa XOO’T) #0

weW
for every w’ € W. Put , ,
Uy = Z Cw”w,w’
weW
Then put
i = H l/i),,
w' eW

which is an element in Oex, (hi)W @ HE,, satisfying vf(x) # 0.
Now we claim that VT(XUGT) = 0 for every s € aj; . Note that the element

o, + s € b belongs to styoo. Since we have

vi(ao + s, XUGSO,T) = Z CwyLl(ag + s, xioo,T)
weW

G G
- Z Cu (”“’(Xffs,v[w]) - Vw(XJe<aa+s>—e<ao>,v[w])) =0,
weW

the claim follows. It is easy to find an element puf € M(h{'&)w satisfying uf(xoo)
# 0, and such that u' - v belongs to M(h5)"W ® HE,. Then by Remark 2.9(3),

H(M,o) = :U’go : /’LT : VT

is a T-multiplier of S(G(Ar)) K, satisfying p(ar,0)(x) # 0.
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It remains to show that for every f € S(G(Ar))k, the endomorphism
R(p a0y * f) annihilates L?Myg)(G(F)\G(AF)/K,w). However, this follows
from the same argument as in the proof of Proposition 3.15 since for every
$ € ajyy ¢, We have iy o) (X ) = 0. Thus, the proposition follows. O

Remark 3.18. The idea of constructing the element v! in the proof of
Proposition 3.17 is inspired by [LV07]|. The similar construction also appeared
in [YZ17] in the case where G = PGLy and F' is a function field.

The following theorem is the most general form on isolating cuspidal com-
ponents, from which we will deduce Theorems 3.6 and 3.7.

THEOREM 3.19. Let x be a T-character. There exists a T-multiplier v of
S(G(AF)) K such that

(1) for every f € S(G(AF))k, the image of the endomorphism
R(ux f): LP(G(F)\G(Ar)/K,w) = L*(G(F)\G(Ap)/K,w)

1s contained in

@ L?M,a) (G(F)\G(Afr)/K,w)

(M,0)€D(G W)Y,
under the decomposition (3.9), where @(G,w)g is as introduced in Defini-
tion 3.16;
(2) n(x) =1.

In particular, Theorem 1.3 follows by taking T = S and x = x,r, and the
strong multiplicity one property for G = Respr/p GL;, [PS79].

Proof. By Lemma 3.13, we know that ©(G, w; K, ‘Z) is a finite set. Thus,
we may choose a finite subset ® C D (G, w) that maps surJectlvely to the (finite)
set D(G,w; K, 7)Y\ D(G,w)y. Now we put

pi=poo | e
(M,0)e®D

from Propositions 3.15 and 3.17, which is a T-multiplier of S(G(AFr))x. Then
(1) is satisfied. For (2), we only need to replace u by p(x) ‘'p as u(x) # 0.
The theorem follows. O

Proof of Theorems 3.6 and 3.7. Note that the intersection
L usp (GIFN\G(AR) /K, w) ) @ L) (G(F)\G(AF) /K, w)
(M,0)€D(Gw)Y

is exactly Cusp( (F)\G(Ar)/K,w)[x]. Thus, Theorem 3.7 immediately fol-
lows from Theorem 3.19. Moreover, Theorem 3.6 follows from Theorem 3.19
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and the relation

—_

P Lo (GIENG(AR)/K,w) C L2, (GIF)\G(Ap)/K,w)
(M,0)eD(G,w)Y

since x is not G-CAP. O

Remark 3.20. In fact, we may use the Langlands decomposition of the
L?-spectrum [Lan76] (as formulated in [Art05, Th. 7.2]) instead of the de-
composition (3.1), and [Miil89, Th. 0.1] instead of [Don82, Th. 9.1] in the
proof of Lemma 3.12, to obtain a version of Theorem 3.19 in terms of the
Langlands components, which is slightly stronger than the current version of
Theorem 3.19.

More precisely, let ®'(G,w) be the set of pairs (M, o) in which o is now
a discrete automorphic representation of M (Ap) whose central character be-
longs to Qps(w), with a similarly defined equivalence relation ~. We have the
following Langlands decomposition,

—

LAGINGAR),w) = D Liue(GING(AR),w),
(M,0)e®’ (G,w)®
which refines (3.1), in which L%M’U)(G(F)\G(Ap),w)’ denotes the Langlands
component associated to (M,o). The conclusion of Theorem 3.19 can be
strengthened to that there exists a T-multiplier p of S(G(Ar))x such that
for every f € S(G(Ar))k,

(1) R(u* f) maps L*(G(F)\G(Ar)/K,w) into

—

B L) (G\GAR)/K,w)
(M,0)eD' (G w)y
in which CD/(G,w);Q is similarly defined as ®(G, w);? in Definition 3.16;
(2) ulx) =1
Note that we have the inclusion

—

P L) (GIN\GAR)/K, w)
(M,O')GCDI(G,M);?

—

C P L GR\GAR)/Kw).
(M,U)E:D(G,w)g

However, it could be strict. For example, when G = PGLy, M is the standard
diagonal Levi subgroup, and o is the trivial character, we have

Lirg oy (GIFN\G(AR) /K, 1) = Ly o (GIF\G(Ap) /K, 1)
® Lig 5 (G(F\G(AF) /K, 1),
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where & is the trivial character of G(Ap). It is possible to find x such that
(M,0) € @’(G,w)g, hence (M, o) € @(G,w)g, but (G,0) ¢ ’D’(G,w);?. How-
ever, one cannot find y such that (G,&) € @’(G,w);9 but (M,c) & @'(G,w)g.

4. Application to the Gan—Gross—Prasad conjecture

In this section, we discuss the application of the results in previous sections
to the global Gan—Gross—Prasad conjecture and the Ichino-Tkeda conjecture
for U(n) x U(n + 1) in the stable case. In Section 4.1, we recall the Jacquet—
Rallis relative trace formulae and their extension by Zydor. In Section 4.2, we
introduce the notion of smooth transfer and study its relation with multipliers.
In Section 4.3, we deduce some results concerning weak base change using
Jacquet—Rallis relative trace formulae, which are necessary for the proof of the
Gan—Gross—Prasad conjecture. In Section 4.4, we prove the Gan—Gross—Prasad
conjecture in the stable case and other related results.

Let E/F be a quadratic extension of number fields and ng/p: Aj — C*
the associated quadratic automorphic character. Let n > 1 be an integer.

4.1. Jacquet—Rallis relative trace formulae, d’aprés Zydor. In this subsec-
tion, we collect some results from Zydor’s extension of the Jacquet—Rallis rel-
ative trace formulae. We start with the general linear groups. Put

Gl = Resg/r GLn B, G;LH = Resg/r GLn+1,8, G =Gl x G;H.

We have two reductive subgroups Hj and H) of G’ as at the beginning of
[BP20a, §3], in which H] is the graph of the natural embedding G;, — G},
via the first n coordinates, and Hj is the subgroup GL, r X GLj41 . Let
G, C G’ be the Zariski open subset of regular semisimple elements. Recall that
an element v of G’ is regular semisimple if H{yH) is Zariski closed in G’ and
the natural map Hj| x H) — H{~vH} is an isomorphism. Put B’ .= H{\G'/H},
which is an affine variety over F, and let B, C B’ be the image of G.,. Let Z’
be the maximal F-split center of G’, which is also the center of Hj. We denote
by
n: HQ(AF) = GLn(AF) X GLn+1(AF) — C*

the character (ngﬁj o det) M (1, p © det), which is trivial on Z'(Ap)HL(F).
For every element IT € €(G’, 1) (Definition 3.9), there is a distribution Ity

on S(G'(AF)) [BP20a, §3.1] such that for f' € S(G'(Ar)),

= ( /H IRC R0 dh1>

peB(I0)

(4.1)
- ( / ¢(h2)n(hz)dh2)
Z'(Ap)HL(F)\H5(AF)
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for an arbitrary orthonormal basis B(II) of IT with respect to the Peterson inner
product over G'/Z’. Here, dh; and dhg are the Tamagawa measures on H{(Ap)
and Z'(Ap)\H5(AF), respectively.

For every element v € B'(F'), there is a distribution I, on S(G'(Af))
[Zyd20, Th. 5.9].% When v € B/(F), I, is defined by relative orbital integrals;
more precisely, for f' € S(G'(Ar)) we have

42 L) =0yF. 1) = / £ (hy ha)n(he) dhy dha,
Hi(AF)XHé(AF)

where 7 € G4 (F') is an arbitrary lift of 7. In general, the distribution I, is
a certain regularization of relative orbital integrals, whose precise definition is
complicated and will not be used in our later discussion, hence we will not
discuss it here. The following proposition is Zydor’s extension of the Jacquet—
Rallis trace formula for G.

PROPOSITION 4.1. Let f' € S(G'(AF)) be a quasi-cuspidal Schwartz test
function (Definition 3.2). Then we have the following identity of absolutely
convergent sums:

Yo ()= D> L)

ee(G 1) ~EB!(F)

Proof. This follows from the same proof of [Zyd20, Th. 5.10]. O

Now we consider unitary groups. We denote by U the set of isomorphism
classes of pairs V = (V,,, V;,11) of (non-degenerate) hermitian spaces over FE,
where V,, has rank n and V,,41 = V,, @ F.e in which e has norm 1. For every
place v of F', we have a local analogue U, and a localization map U — U,
sending V' to V,,. For every V € U, put

Gy =U(Va), GT‘L/+1 =U(Vat1), GY =Gy x GZ—H'

We have a reductive subgroup H" of GV as at the beginning of [BP20a, §3],
which is the graph of the natural embedding G, — Gy . Let G}, C GV be the
Zariski open subset of regular semisimple elements. Recall that an element 6"
of GV is regular semisimple if HV 6V H" is Zariski closed in GV and the natural
map HY x HY — HV§VHV is an isomorphism. Put BV = H"\GY/HV,
which is an affine variety over F, and let BY, C BY be the image of GY.

8 Although [Zyd20, Th. 5.9] only states for test functions in C2°(G’(AF)), its proof works
for S(G'(AF)) as well. We have a similar situation below concerning [Zyd20, Th. 6.6].
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For every element 7 € ¢(GY,1) (Definition 3.9), there is a distribution
J.v on S(GV(Ar)) [BP20a, §3.1] such that for fV € S(GY(AF)),

Vy 7_[_V 1%
()= Y )( R IO

peB(TY

(/ ot an)
HY(F)\HV (Ar)

for an arbitrary orthonormal basis B(r"") of 7V with respect to the Peterson
inner product over GV'. Here, dh is the Tamagawa measure on H" (Ar).

For every element " € BY (F), there is a distribution Jsv on S(GY (Ar))
[Zyd20, Th. 6.6]. When 6V € BY.(F), Jyv is defined by relative orbital integrals;
more precisely, we have for fV € S(GY(Ar)),

(4.3)

(44) Ty (fV)=00", V) = / £V (h'6Y ha) dhy dho,
HV(Arp)xHV (AR)

where 8" € GY.(F) is an arbitrary lift of V.9 In general, the distribution I,

is a certain regularization of relative orbital integrals, whose precise definition

is complicated and will not be used in our later discussion; hence we will not

discuss it here. The following proposition is Zydor’s extension of the Jacquet—

Rallis trace formula for GV.

PROPOSITION 4.2. Let f¥V € S(GV(Ar)) be a quasi-cuspidal Schwartz
test function (Definition 3.2). Then we have the following identity of absolutely
convergent sums:

Yo T ()= D> T ()
vV ee(GV 1) §VeBV(F)

Proof. This follows from the same proof of [Zyd20, Th. 6.7]. O

The affine varieties B’ and BY are canonically isomorphic (see [Zhal4b,
§3.1]). For an F-algebra R, we say that v € G/ (R) and 6V € GY(R) are a
matching pair if their images in B'(R) = BV (R) coincide.

4.2. Smooth transfer of Schwartz test functions. We now discuss the smooth
transfer of Schwartz test functions. We keep the notation from the previous
subsection.

Definition 4.3. Let v be a non-archimedean place of F' that is unramified
in . We say that

°In this case, the map GY,(F) — BY.(F) is not surjective. If " does not lift, then we
simply set Jsv (fV) = 0.
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e K is a relative hyperspecial mazimal subgroup of G'(F,) if it is GL,(Op,) %
GLn+1(0g, );

e K is a relative hyperspecial mazimal subgroup of GV (F,) if it is of the
form U(Ly) x U(Lyp41) in which Ly, is a self-dual lattice of V;,, and Ly, 11 =
L,® OEq, .€.

For G € {G',GV} and every finite set O of places of I containing all
archimedean ones, we define the algebra

S(G(Fn) = 8(G) @ Q) S(G(F)).

ved,vfoo

The following definition slightly extends the notion of smooth transfer for
Schwartz test functions that are not necessarily pure tensors.

Definition 4.4 (Smooth transfer). Let f' € S(G'(Ar)) be a Schwartz test
function that is not necessarily a pure tensor.

(1) Let O be a finite set of places of F' containing all archimedean ones, and take
V € 0. We say that f5 € S(G'(Fhy)) and fY € S(GY (Fh)) have matching
orbital integrals if for every matching pair v € Gi(Fh) and §V € GY.(Fh),
we have

O((SV, fg) = QD(’Y) ’ 077(77 fllj)
Here, O(5", fg ) and Oy (7, fl;) are relative orbital integrals defined in the
same way as (4.4) and (4.2) after replacing Ap by Fh, respectively; and
Qo(y) = [loeo Qw(1w) € {£1} is a certain transfer factor (see [BP20a,
§83.3, 3.4| for more details).

(2) For V € U and a Schwartz test function fV € S(GV(Af)), we say that f’
and fV are smooth transfer if there exists a sufficiently large finite set O of
places of F' containing all archimedean ones and those ramified in E such
that

(a) [ = f5© Qugn 1k, with ff; € S(G'(Fh)) and K, a relative hyperspe-
cial maximal subgroup of G'(F);

b) f¥ =y e Quvgo 1gy with Y € S(GY(Fh)) and K\ a relative hy-
perspecial maximal subgroup of GV (F,);

(¢) f4 € S(G'(Fn)) and fY € S(GV(Fh)) have matching orbital integrals
in the sense of (1).

(3) Given a collection (fV)yey with fV € S(GY(Ar)) among which all but
finitely many are zero, we say that f’ and (fY)yey are complete smooth
transfer if f' and fV are smooth transfer for every V € 9.

Remark 4.5. By the relative fundamental lemma [Yunll, BP21a|, Defini-
tion 4.4(2) is independent of the choice of [I.

The existence of smooth transfer is ensured by the following proposition.
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PROPOSITION 4.6. Let v be a place of F'.

(1) There is a dense subspaces Si(G'(Fy)) of S(G'(Fy)), equal to S(G'(Fy)) if
v is non-archimedean or split in E, such that for every f € Su(G'(Fy)),
one can find (fYV")v,ew, with ¥ € S(GV*(F,)) such that f! and f)* have
matching orbital integrals for every V,, € 0,.

(2) For every V, € B, there is a dense subspace Si;(GV*(F,)) of S(GV*(F,)),
equal to S(GV*(F,)) if v is non-archimedean or split in E, such that for every

Vo € 8 (GY(Fy)), one can find fl € S(G'(F,)) such that f, and fV* have
matching orbital integrals for every W, € B, where fVo =0 for W, # V,,.

Proof. This follows from the combination of [Zhal4b, Th. 2.6] (for v non-
archimedean) and [Xuel9, Th. 2.7] (for v archimedean). O

The following proposition is a deep theorem of Chaudouard and Zydor.

PROPOSITION 4.7. Suppose that f' and (fV)vey are complete smooth
transfer in the sense of Definition 4.4(3). Then we have

Sonih=Y Y i)
(F)

~EB'(F) VeusvVeBY
in which the summation over V is in fact finite.

Proof. This is [CZ21, Th. 16.2.4.1]. Note that the authors in [CZ21] only
prove this for pure tensor Schwartz test functions, but their proof works for
general Schwartz test functions as well, using the fact that @, S(G'(Fy))
and @0 S(GY(F,)) are dense in S(G".) and S(GY.), respectively, by [AG10,
Cor. 2.6.3]. O

Now we study smooth transfer of Schwartz test functions under the action
of T-multipliers. Let Ty be the set of primes of F' that are non-split in . We
take
e a finite set S of primes of F' containing those ramified in F;

e an open compact subgroup K’ C G'(A¥) of the form K’ = Kg x [],q¢s K,
in which K] is a relative hyperspecial maximal subgroup of G’(F,) for every
prime v & S;

e an element V € *U; and

e an open compact subgroup KV C GV (A%) of the form

KY =Ky x [[K)
V¢S

in which K is a relative hyperspecial maximal subgroup of GV (F,) for
every prime v ¢ S.

Put T:=SUT,.
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The connected real reductive group G’ ®g R determines a root datum
(X™*, @, X, ®") and a subset  C Aut(X™*, ®, X, V)" as at the beginning of
Section 2.3, together with b and W’ from Section 2.2. Similarly, for GV ®q R,
we have corresponding objects (XV*, &V XV ®VV) 0V pV* and WV.1' By
the base change homomorphism on the dual groups, we have a canonical map
hV* — h’* that is injective, by which we will identify h¥* as a subspace of h’*.
Moreover, taking restriction induces a ring homomorphism

*\ W/ s\ WV
(4.5) bel: O(6)™ — O(he™)™.
For primes away from T, we have a similar homomorphism
(4.6) bei s Hew — Hiw

given by unramified base change (which is simply a convolution product since
primes away from T are all split in F). Taking tensor product, we obtain a
homomorphism

47 b == bl @bl OmE)W @ HE = OHEIW @ HLy.

PROPOSITION 4.8. Let f' = ®, fi € S(G'(Ap))k: and f¥V = R, fV €
S(GV(AR)) v be two pure tensor Schwartz test functions such that f! and
1Y have matching orbital integrals for every place v of F. Let p/ and " be
T-multipliers of S(G'(Ar)) kg and S(GV (Ap)) kv (Definition 3.5), respectively,
such that 1V = bc” (1), Then i/ x f' and p % fV are smooth transfer in the
sense of Definition 4.4(2).

Informally speaking, the proposition asserts that multipliers that are com-
patible under base change preserve smooth transfer.

Proof. Let O be a sufficiently large finite set of places of F' containing
all archimedean ones and disjoint from T, so that p/ and p" are of the form
ph ® (®U¢TU51 K{)) and ug ® (®U€TU51 KX) respectively. Below we only care
about O-components, hence will write p’ for u5 and p" for pY, respectively.

Let S(G'(Fn)) k' be the subalgebra of S(G'(Fn)) consisting of functions
that are bi-invariant under [],em 00 £, and similarly for S (GV(Fh))gv. To
prove the proposition, it is enough to show that if f' € S(G'(Fh))ks and
fV € S(GV(Fh)) kv have matching orbital integrals (in the sense of Defini-
tion 4.4(1)), then p'% f" and p¥ * f¥ have matching orbital integrals as well. In
fact, by Lemma 4.9 below, f' and f" have matching relative characters. Since
1V = bc” (1), by Theorem 2.13, we know that u/ » f' and p"  fV also have

%7n fact, the objects (XV*,®Y, XY ®VV), 0V, pV*, and WY do not depend on V. However,
we still keep V' in superscripts in order to make notation more consistent.
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matching relative characters. Thus again by Lemma 4.9 below, we know that
W f and ¥« fV have matching orbital integrals. The proposition follows. [

LEMMA 4.9. Let O be a finite set of places of F' containing all archimedean
ones, in which all primes are split in E. Take f' € S(G'(Fh)) and fV €
S(GY(Fh)). Then f' and fV have matching orbital integrals (in the sense of
Definition 4.4(1)) if and only if they have matching relative characters, that is,

v Jx(fY) = Incm) (f)
for every m € TempHg (GY), where we follow the notation in [BP21b, Th. 5.4.1].

The term kv = [[,eq KV, is a constant depending only on Vg, and the
distributions J,;(f") and Igc(r)(f') are local analogues of (4.3) and (4.1), which
depend linearly on 7(fY) and BC(7)(f’), respectively.

Proof. As @00 S(G'(Fy)) is dense in S(GY,) by [AG10, Cor. 2.6.3|, ap-
plying [BP21b, (5.5.10)| to local fields F,, for v € O and by continuity, we
obtain a similar identity

. )On(%f{)On(% f3) dvy
(48) rs\ 0 . .
o —n(n—l)/z/ I f/ ﬁh’ (0,7, Ad, )| d

= |T T P T
71 (i sty 2 ) (D Be@ (f2) 5

for every f1, f3 € S(G'(Fn)). Similarly, as @00 S(GY (Fy)) is dense in S(GY,)
by [AG10, Cor. 2.6.3], applying [BP21b, (5.5.3)] to local fields F, for v € O
and by continuity, we obtain a similar identity

(4.9)
/ 06, f1)0(V, 1Y) ds" = /
BY.(F)

TempH\D/ (GY)

Te(F)Tx (£ gy () dm

for every fY, fy € S(GV (Ih)).!!
We have the following observations:
(1) On the geometric side, we may identify BY. (F1) as a subspace, say Bl (Fh)y,
of Bl,(F) under which the measures are compatible.
(2) On the spectral side, by the local Gan—Gross—Prasad at places in [ [BP20b],
the local Jacquet—Langlands transfer map

Temp v (GY) — Temp(GE)/stab

"We remark that in (4.8), the product O,(v, f1)On (v, f5) descends to a function on
Bl(Fn), while in (4.9), both O(§Y, f{) and O(8V, fY) descend to functions on BY (Fn).
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is injective, under which the restriction of the measure w dm co-
incides with %‘5 (m)dm by [BP21b, Th. 5.4.3]. We also note that ky Ry =

Il
Now we show the lemma.

First, suppose that f' and fY have matching orbital integrals. Take
7V € Ruen Su(GY(Fy)), and let ¢’ € Qe S(G'(F,)) be an element that
has matching orbital integrals with (¢",0,...) from Proposition 4.6(2). By
[BP21b, Th. 5.4.1], ¢’ and (¢",0,...) have matching relative characters as
well. In particular, O,(v,g¢’) = 0 unless v € Bi(Fh)v, and Igg(r)(g') = 0 un-
less m € Temp v (GY). Then combining (4.8) and (4.9) and using the condition

that f’ and f¥ have matching orbital integrals, we obtain

/TempHE (GY

Kvg JW(fV)JW(QV),“*GE (m)dm

0)

_ / Tncn (/)T (g" )iy () dm
Temp ;v (GY) =

for every g" € ®uer Str(GY (F,)). Now we can use the technique in [BP21b,
§5.7.3] to separate , so that we obtain kyyJx(f") = Igc(xy(f') for every 7 €
Temp HY (GY). In other words, f’ and f" have matching relative characters.

Second, suppose that f’ and fY have matching relative characters. The
proof is similar, and we arrive at the identity

[ o6 o7 g

B (Fb)

= [ a0 )06EY). 067 g7 ds”
BY(Fb)

for every ¢V € ®uen Su(GY (F,)). Here, v(6Y) € Gi(Fh) is an arbitrary
element whose image in B’(Fh) coincides with 6"'. Moreover, it is clear that
the term Qo (v(6Y))O(y(8Y), f/) is independent of the choice of such (V). It
is easy to see that locally at every given 6V € BY,(Fh), the functions O(—, g")
for ¢V € ®uer Sur(GY (F,)) span a dense subset in the L2-space of BY(Fh).
Thus, we have O(6, fV) = Qa(v(6V))O(y(8V), f') for every 6V € BY.(Fp),
as both sides are continuous functions in 6. In other words, f' and f¥ have
matching orbital integrals.

The lemma is proved. O

Remark 4.10. Lemma 4.9 holds by the same proof without assuming that
primes in O are split in E. However, in this case, the argument (more precisely,
[BP21b, Th. 5.4.1]) relies on results from [Mok15|, [KMSW14].
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The following proposition will not be used in this article, but might be
useful for other purposes. In particular, it shows the existence of Gaussian test
functions (in the space of Schwartz functions) in the sense of [RSZ20, Def. 7.9].
We record it here as it is essentially a corollary of Proposition 4.8.

PROPOSITION 4.11. In the situation of Proposition 4.6(2), when v is an
archimedean place of F that is non-split in E and V,, is positive definite, the
subspace Sy (GV*(F,)) contains f)* as long as J,(fY) = 0 for all but finitely
many (tempered) irreducible admissible representations m, of GV (F,).

Proof. Since the question is local, we may just assume that E is imaginary
quadratic, hence v = oo is the unique archimedean place of F' = Q. To ease
notation, we suppress v in the proof. By linearity, it suffices to consider fV
such that J,(f") # 0 for exactly one irreducible admissible representation g
of GV(F) and that J,,(fV) = 1.

By Proposition 4.6(2), we may find an element f{” € Si(GY (F)) satisfying
Jro(fV) =1, so that we may take an element f] € S(G'(F)) such that f] and

IV have matching orbital integrals for every W € 2 where f}¥ = 0 for W # V.
Now since GV (F') is compact, the set of infinitesimal characters of irreducible
representations of GV (F) is a lattice. It follows easily from Corollary 2.6 that
we can find an element i’ € ./\/lg(h(*c)w such that if we put " = bc" (i), then
1Y (Xx) # 0 only when m = 7y and " (xx,) = 1. By Theorem 2.13, we have
new elements fy = u" % fV € S(GY(F)) and f} = p/ x f| € S(G'(F)). By
Lemma 4.9 (for 0 = {c0}), fi and f}V have matching relative characters, so
for f5 and £}V where f3¥ = 0 for W # V, hence f} and f}V have matching
orbital integrals. Now since J(f") = J.(fy') for every irreducible admissible
representation 7 of GV (F), using Lemma 4.9 twice, we know that f; and f"
have matching orbital integrals for every W € 90 where fV =0 for W # V. In
other words, f¥ belongs to S (G (F)).

The proposition is proved. ([

4.3. Weak automorphic base change. We keep the setup from the previous
subsection.

We denote by U(g) the subset of U consisting of V' such that GV is un-
ramified for every prime v of F not in 8. Then Ug) is a finite set, and for
V,\W € U, we have V,, = W, € U, for every prime v of F' not in S. We
consider

e a non-empty subset ‘U?S) of Vs);

e a T-character x’ for G’ (Definition 3.3); and

o for each V' € Uy, a T-character xV for GV (Definition 3.3) such that the
base change of ¥ coincides with x’, and also we fix an open compact sub-
group KV C GV(A%) as in the previous subsection.
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The following lemma tells us how to find multipliers that are compatible
under base change.

LEMMA 4.12. Given a T-multiplier i/ of S(G'(Ar))k+ satisfying 1/ (x') = 1
and a T-multiplier 1V of S(GV (Ap)) kv satisfying 1" (xV') = 1 for each V €
Vs, we can find new T-multipliers i of S(G'"(Ap)) g and iV of S(GY (AF)) kv
for each V € mg’s) satisfying the following:
(1) @/ (X') =1, and i’ is a multiple of ' by a T-multiplier of S(G'(Ar))k;
(2) for every V € D) » BV (xXY) =1, 1" is a multiple of 1V by a T-multiplier of

S(GY(AR))gev , and iV = beY (i),

Proof. For every V' € U, recall the maps bc’, (4.5), bel, (4.6), and bc”
(4.7) from the previous subsection, which are all surjective. We choose a section

Cb"r/l %TGV — HB/

of the linear map bcj, of vector spaces. We may choose a linear splitting map
ly: §™* — hV* of the subspace h¥* C b that sends every W'-orbit into a
WV —orbit, which induces a section

cbl: OEN™ = ()™
of the linear map bc‘o/O of vector spaces. Taking tensor product, we obtain a
linear map
bV == bl @ bl : O(EIW @ MLy — OV © HE,
which is a section of bc”. To construct the desired T-multipliers, we define
fo= )2 T (W), A =be" ().
Ve,

Note that bc?, sends M(h7)W' into M(hg*)wv, and cb?, sends M(h(‘é*)wv
into M(h7)"W'. Then it follows easily from Remark 2.9(3) that i’ and " for
V' € U, are T-multipliers satisfying (1) and (2). The lemma is proved. O

The next proposition reveals a relation between the Gan—Gross—Prasad
period integral and weak automorphic base change.

PROPOSITION 4.13. Consider an element V € U(s) and an element v e
¢(GY,1). Suppose that we can find a cuspidal automorphic form o€ L*(GV,7")
satisfying

P(p) = ¢(h)dh # 0,

/HV(F)\HV(AF)
where dh is the Tamagawa measure on HY (Ap). Assume that either one of the
following two assumptions holds:

(a) 7V is not (GV,T)-CAP (Definition 3.4);
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(b) there is a prime vy of F split in E such that 77,})/(; is supercuspidal.

Then weak automorphic base change of v (Definition 1.6), as an isobaric auto-
morphic representation of G'(Ap) = GL,(Ag) X GLy41(Ag), exists. Moreover,
if we put 11 := BC(7Y) = I1,, X 11,41, then

(1) the base change of Xrv is XI..;
(2) in the situation (b), I, is cuspidal and hermitian (Definition 1.5) for m =
n,n+ 1.

Proof. In the beginning of this subsection, we take QT‘(’S) = {V}, xV =
X(=vyr, and X' to be the base change of V.

Suppose that weak automorphic base change of 7 does not exist. Then
X' is not (G',T)-CAP and L2, (G'(F)\G'(Ar)/K',1)[x'] = {0}. By our as-
sumption on the non-vanishing of & on 7V, for every place v of F either
archimedean or in S, we can choose an element fY € S(GV (F,)) of positive type
(see the definition of positive type functions above [Zhal4b, Prop. 2.12]) such
that Jv ( f¥) > 0. Moreover, we may assume that f) is a supercuspidal matrix
coefficient in the situation of (b). For a prime v not in S, we take f) = 1gv.
Put fV = ®, fY, and shrink K if necessary so that f¥' € S(GV (Ar))xv. By
our choice of fV', we have J,v (f) > 0, and J.(f") > 0 for every 7 € €(G", 1).
Note that the set

C={re (G, 1) | L*(G",m) N L (G (F\G" (Ap)/KY , 1)[X"] # {0}}

cusp

is finite, by a well-known result of Harish-Chandra that there are only finitely
(up to isomorphism) cuspidal automorphic representations of GV (Ar) with a
given infinitesimal character and non-trivial Ky -invariants [HC68|. Thus, we
may replace f) by an element in the dense subspace S (GY(F,)) for each
archimedean place v non-split in F, such that

pPATASEA

Tel

Now we can apply Proposition 4.6(2) to f) for every place v of F either
archimedean or in S, to obtain an element f; € S(G'(F,)) as in that propo-
sition. We may also assume that f; is a supercuspidal matrix coefficient in the
situation (b). For a prime v not in S, we take f;, := 1x:. Put f’ :== @), f,, which
is an element of S(G'(Ap)) g after shrinking K if necessary. Then by the rel-
ative fundamental lemma [Yun11, BP21a], we know that f’ and (fV,0,...) are
complete smooth transfer in the sense of Definition 4.4(3).

We claim that there is a T-multiplier p’ of S(G'(Ar)) g+ satisfying ' (x') =1
and such that R(y  f') sends L*(G'(F)\G'(Ar)/K’,1) into

Liusp(G'(FO\G'(AR) /K", DX].

cusp
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In the situation (a), this follows from Theorem 3.6 since x’ is not (G’,T)-
CAP. In the situation (b), this follows from Theorem 3.7, and the observa-
tion that R(y' * f’) automatically annihilates the orthogonal complement of
L2, (G'(F)\G'(Ap)/K', 1) in L*(G'(F)\G'(AF)/K',1) since f]  is a supercus-
pidal matrix coefficient. Similarly, there is a T-multiplier " of S(GY (Ar)) gv
satisfying 1" (x"') = 1, such that R(u" x fV) sends L2(GYV (F)\GY (Ar)/ K"V, 1)
into Lgusp(GV(F)\GV(AF)/KV, 1)[x"]. Moreover, by Lemma 4.12, we may
further assume that ;" = bc"(i/). Thus, by Proposition 4.8, i/  f’ and
(¥ % fV,0,...) are complete smooth transfer as well.

Now we run relative trace formulae from the unitary side to the general

linear side. We have

Yo x =Y Sl x f) =) (£ £0.

me€(GV 1) med Ted

Since pY + fV is quasi-cuspidal, we have

Yo I )= > T fY) £ 0

sVeBY(F) TeC(GV,1)

by Proposition 4.2. By Proposition 4.7, we have

SooLwxfy= Y Jp +fY)#0.

~EB!(F) §VEBV (F)

Since p’ x f is quasi-cuspidal, we have

o o IgW )= D L xf)#0
ee(G,1) YEB'(F)

by Proposition 4.1. However, this is a contradiction since the image of R(u’ * f”)
is contained in L2, (G'(F)\G'(Ar)/K’,1)[x], which is zero. Thus (G, 1);9,
# (); that is, weak automorphic base change of 7" exists. It remains to show
the two additional claims.

For (1), it follows from the fact that D(G’, 1), # 0.

For (2), note that in the situation (b), we did not use the assumption
that x’ is not (G’, T)-CAP in the main argument above. Thus, we should have
L2, (G'(F)\G'(Ap)/K', 1)[x] # {0}; in other words, IT := BC(x") is cuspidal

and we have Itj(u' « f') # 0. By (4.1),

/ o(ha)n(ha) dha # 0
Z'(Ap)Hy(F)\H5(AF)
for some cusp form ¢ in II. Then by the main theorem of [F1i88], we know that
L(S,Hm,As(fl)mH) has a pole at s = 1 for m = n,n + 1, which implies that
I1,,, is hermitian.

The proposition is proved. U



572 RAPHAEL BEUZART-PLESSIS, YIFENG LIU, WEI ZHANG, and XINWEN ZHU

The last theorem of this subsection contains results on weak automorphic
base change, proved using Gan—Gross—Prasad period integrals.

THEOREM 4.14. Let V° be a hermitian space over E with G° = U(V°),
and let m = Ry, be an irreducible admissible representation of G°(Ap).

(1) If w is cuspidal automorphic satisfying that there exist infinitely many primes
v of F' split in E such that w, is generic, then weak automorphic base change
of m exists.

(2) If w is cuspidal automorphic satisfying that there exists a prime v of F split
in E such that m, is supercuspidal, then weak automorphic base change of ™
exists and is cuspidal and hermitian (Definition 1.5).

(3) If weak automorphic base change of m exists and is hermitian, then m is not
(G*,To)-CAP (Definition 3.4) for every pure inner form G® of G°.

(4) If weak automorphic base change of m exists and is hermitian, then the base
change of Xra, 18 XBC(r)os -

Part (3) of the above theorem is consistent with the so-called CAP con-
jecture [JialO, Conj. 6.1] (for unitary groups).

Proof. We prove the four statements at once via the induction on the rank
of V°. The statements are all trivial when the rank of V° is 1. Assume that
(1)—(4) are all known for all V° of rank at most n.

Now take a hermitian space V° of rank n + 1. By scaling the hermitian
form, we may assume that there is an element V = (V,,,V,,41) € U such that
V° = Vi41. We consider (1) and (2) first. Since 7 is cuspidal automorphic,
it gives an element 7, ; € €(GY,;,1). By the Burger Sarnak trick [Zhaldb,
Prop. 2.14], we can find another element 7} € €(GY, 1) such that

e 2 is non-zero on cuspidal automorphic forms in L2(GY, "), where 7" =

m, X 7T7‘1/+1 € ¢(GY,1);

e there is a prime vy of F split in E such that 7"

nwo 18 supercuspidal, and

04 41, 18 generic (resp. supercuspidal) in (1) (resp. (2)).

For (1), there are two cases. If m is (G°, Tp)-CAP, then by definition
there exist a proper parabolic subgroup P° of G° and a cuspidal automorphic
representation o of Mpo(Ar), such that 7, is a constituent of 1G. (o) for all
but finitely many primes v of F' split in E. Write Mpo = U(W*®) x M’ for some
hermitian space W° of rank at most n and M’ for a product of general linear
groups, under which ¢ = ¢° X ¢’. Then there exist infinitely many primes v of
F split in E such that o, is generic. By the induction hypothesis on (1), weak
automorphic base change of ¢° exists, which implies that weak automorphic
base change of 7 exists as well. If 7 is not (G°,Tg)-CAP, then m ; is not
(GY 1, To)-CAP. By the induction hypothesis on (2) and (3), we know that )’
is not (GY,Tg)-CAP. Thus, 7" is not (G, T)-CAP. By the situation (a) of
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Proposition 4.13, we know that weak automorphic base change of 7", hence
of m, exists.

For (2), by the situation (b) of Proposition 4.13, we know that weak auto-
morphic base change IT of 7V, hence of , exists and is cuspidal and hermitian.

We prove (3) by contradiction. If 7 is (G*,T)-CAP for some pure in-
ner form G® of G°, then by definition there exist a hermitian space V* of
rank n + 1 such that G* = U(V*®), a proper parabolic subgroup P*® of G°,
and a cuspidal automorphic representation o of Mpe(Afp), such that m, is
a constituent of 1%.(o,) for all but finitely many primes v of F split in E.
Write Mpe =U(W*)x M’ for some hermitian space W* of rank at most n and
M’ a non-trivial product of general linear groups, under which o = ¢* X o’.
Since BC(7) is an isobaric sum of cuspidal automorphic representations with
unitary central characters, BC(m),, is generic for every place w of E, which
implies that o* satisfies the assumption in (1). Thus, by the induction hy-
pothesis on (1), weak automorphic base change of o® exists. Thus, we have
BC(m) ~ BC(c®) BIIHE (IIV oc) B - - -, where ¢ € Gal(E/F) is the involution,
for at least one non-trivial II. This contradicts the fact that BC(7) is an iso-
baric sum of mutually non-isomorphic conjugate self-dual cuspidal automorphic
representations, as it is hermitian. Therefore, (3) is proved.

For (4), 7 is not (G°,To)-CAP by (3). In particular, by the induction
hypothesis, 7V is not (GY, To)-CAP. Then (4) follows from Proposition 4.13(1).

The theorem is proved. O

Remark 4.15. Theorem 4.14 already follows from [Mok15]|, [KMSW14] (see
the end of [KMSW14, §3.3]). However, our proof is different and does not use
any knowledge from the endoscopy theory for unitary groups. Furthermore,
our method can actually be used to show the local-global compatibility at all
places where 7, is unramified as well, but the argument will implicitly relies on
[Mok15], [KMSW14]| as we will need Lemma 4.9 for OJ containing primes inert
in E (see Remark 4.10).

4.4. Gan—-Gross—Prasad and Ichino—Ikeda conjectures. In this subsection,
we complete the proofs of Theorem 1.8 (for the Gan—Gross—Prasad conjecture),
Theorem 1.9, and Theorem 1.10 (for the Ichino-Ikeda conjecture). We keep the
setup in the previous two subsections.

We start with the following lemma as a preliminary on the descent of
hermitian isobaric automorphic representations of GLy,(Ag).

LEMMA 4.16. LetII be a hermitian isobaric automorphic representation of
GL(AEg) (Definition 1.5) for some integer m > 1. Let V' be a hermitian space
over E of rank m such that U(V') is quasi-split. Then there exists a cuspidal
automorphic representation w of U(V)(Ap) satisfying that for every prime v of
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F split in E such that 11, is unramified, m, is unramified, and the base change
of X, 18 X11,- In particular, we have 11 ~ BC(w) and the base change of Xr.,

'L.S XHoo °

Proof. The existence of 7 follows from the automorphic descent construc-
tion [GRS11|. The last assertion follows from Theorem 4.14(4). O

Proof of Theorem 1.8. There are two directions.

(2)=(1): We take V = (Vp,, Vsz1) € U and 77 == 7, K 7,41 € GV, 1).
Put 1T := I1,, K11, ;1 € €(G’,1). By Theorem 4.14(3), 7V is not (GV, To)-CAP.
Thus, by the same argument as for the situation (a) in Proposition 4.13, we

obtain
S Igl ) #0,
Mee(G,1)
in which the image of R(u/% f’) is contained in L2, (G'(F)\G'(Ar)/K’,1)[xm).

However, by the strong multiplicity one property [Ram18, Th. A|, we have
Liup(G'(PO\G'(Ap) /K. 1) [xm] = L*(G', 10).
Thus, we have Iri(p/ * f') # 0. By (4.1),

/ ¢(h1)dhy #0
Hi(F)\H1(AF)
for some cusp form ¢ in II. Then by [JPSS83], we have L(3,1I) # 0.

(1)=(2): Again, put I := II,, X1I,,; 1. Take S to be the finite set of primes
v of F at which either E or II is ramified. For m = n,n + 1, since 1I,, is
hermitian, L(S,Hm,As(fl)mH) has a pole at s = 1, which implies that II,,
is ng;%l—distinguished by GL,,(Ar). In particular, IT belongs to €(G’, 1), and

there exists a cusp form ¢ in II that is fixed by [],gs K, such that

/ B(ha)n(ha) dhy £ 0.
Z'(Ap)Hy(F)\H3(AF)

Since L(%,H) # 0, by [JPSS83]|, there exists a cusp form ¢’ in II that is fixed
by [Tugs K7 such that

/ & (hn) dhy # 0.
H{(F)\H{(AF)
Together, we can find an element /=), f, € S(G'(Ap)) with f; € S:(G'(Fy))
for every archimedean place v of F' and f, = 1/ for every prime v of F not
in 8, such that

In(f") #0
by (4.1). After shrinking K§ if necessary, we may assume f' € S(G'(Ap))k.
Now we can apply Proposition 4.6(1) to f/ for every place v of F that is
either archimedean or in S, to obtain elements f) € S(GY(F,)) as in that
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proposition. For V' € Ug) and a prime v not in S, we put f;/ = 1gv, hence
obtain an element ¥ = ®, f € S(GY(Ar))gv for some K§. For V & U,
we put fV = 0. By the relative fundamental lemma [Yunll, BP21a], f’ and
(fV)v ey are complete smooth transfer in the sense of Definition 4.4(3).

To pass to unitary groups, we consider QIE’S) = Yy, X = xmr, and a T-
character " for GV whose base change is x’ for every V & U(s) (Which is possi-
ble by Lemma 4.16), at the beginning of Section 4.3. By the strong multiplicity
one property [Ram18, Th. A|, we know that y’ is not G’-CAP. By Theorem 3.6,
there is a T-multiplier u/ of S(G'(AF))x satisfying p/(x’) = 1 and such that
R * ') sends LA(G/(F\G'(Ar)/K', 1) into L2,up(G'(F\G'(Ar) /K", D],
which coincides with L?(G/,II). For each V € Ug), we know that x" is not
GV -CAP, since otherwise 7V~ would be (G, To)-CAP, which contradicts Theo-
rem 4.14(3); here V* € 9 is the unique element such that G is quasi-split and
7V is a cuspidal automorphic representation of GV (Ar) as in Lemma 4.16.
Then by Theorem 3.6, for every V' € U, there is a T-multiplier u" of

S(GV(AF)) v satisfying 1" (x") = 1 and such that R(u"  fV) sends
LA(GY(F)\GY (AF)/K" 1)

into L2, (GV(F)\GY (Ar)/K"V,1)[x"]. Moreover, by Lemma 4.12, we may

cusp
further assume that " = bc" (i) for every V € U(g). To summarize, we
\4

conclude that p/x f and ((u *fV)VEQ;(S),O, ...) are complete smooth transfer
by Proposition 4.8.

Now we run relative trace formulae from the general linear side to the
unitary side. We have

> InW/=f) = In( = f') = In(f') #0.
ee(G,1)
Since p’ x f is quasi-cuspidal, we have
Yo LW )= D> IgWxf)#0
YEB/(F) fee(a',1)

by Proposition 4.1. By Proposition 4.7, we have

Yoo InW )= >0 L) #0.

VeV §VeBY (F) ~EB/(F)

Thus, we can choose some V' € Ug) such that

> Jw (= fV) #0.

§VeBV(F)
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Since pY + fV is quasi-cuspidal, we have

o LW k)= > TV« V) #0
)

TeC(GV 1 sVeBV(F)

by Proposition 4.2. Therefore, by the property of p¥ % fV, we can find some
element 7 € €(GY, 1) satisfying

LGV, m) N LGV (FN\GY (Ap)/ KV, 1)[xV] # {0},
such that
J(f) = Je(u x V) #0.

In particular, the weak automorphic base change of 7 is isomorphic to II, and &
is non-vanishing on cuspidal automorphic forms in L?(G",7) by (4.3). Thus,
(2) is achieved.

Theorem 1.8 is proved. U

Remark 4.17. In the proof of Theorem 1.8, we actually obtain a stronger
statement in the direction (1)=-(2) by further requiring in (2) that
e the base change of xr,, ., i X11,,.. for m=mn,n+1;
e the form ¢, ® w,11 is fixed by a relative hyperspecial maximal subgroup at
every prime v of F' that is unramified in E and such that II,, , ® II, 11, is
unramified.

Proof of Theorem 1.9. Let V. = (V,,V,41) € U be the unique element
such that GV is quasi-split. Since II,,;1 is hermitian, by Lemma 4.16, we have
an element 7,11 € €(G7‘f+1, 1) such that BC(my41) ~ I,,11. By the Burger—
Sarnak trick [Zhal4b, Prop. 2.14], we can find another element 7, € €(GY 1)
that is supercuspidal at some prime of F' split in FE, fulfilling the situation
in Theorem 1.8(2). By Theorem 4.14(2), BC(7,,) exists and is cuspidal and
hermitian, which we denote by II,,. Moreover, we have

L(3,10, x Mpqq) #0
by Theorem 1.8. The theorem is proved. ([

Proof of Theorem 1.10. We continue the proof of Theorem 1.8. Using the
endoscopic classification for generic packets obtained in [Mok15], [KMSW14|
and the local Gan-Gross-Prasad [BP20b|, we arrive at the identity

In(f') = Jx(fV) #0
for some f' = ®, fi € S(G'(Ap))k and fV = ®, [y € S(GY(AF))gv such

that f/ and fY have matching orbital integrals for every place v. The remaining
argument is the same as in the proof of [BP21b, Th. 5]. O
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Appendix A. Extending a result of Delorme to reductive groups

In this appendix, we extend a theorem of Delorme [Del86, Th. 1.7] from
semisimple groups to reductive groups. Let the setup be as in Section 2.3.
In particular, G = G(R) for a connected reductive algebraic group G over R.
Denote by C°(G) k) and S(G) (k) the subalgebras of bi-K-finite functions in
C°(G) and S(G), respectively. Recall from Definition 2.8 that N (hg) is the
space of holomorphic functions on b that have rapid decay on vertical strips.

PROPOSITION A.1. For every element p € N'(h), there is a unique linear
operator
px: O (G) ) = S(G) xy.
such that
m(p* f) = plxx) - 7(f)
holds for every f € C°(G) (k) and every irreducible admissible representation

mof G.

When G is semisimple, linear, and connected (in the analytic topology),
this is exactly [Del86, Th. 1.7]. In general, we need to show that there is a
bilinear map

(A1) NG x C2(G)x) = S(G)(x)

sending (u, f) to u* f, satisfying the requirement in the proposition.

In what follows, for a real Lie group H, we denote by HY its neutral con-
nected component. By the Iwasawa decomposition, the natural map K/K° —
G/GY is an isomorphism, which gives rise to a decomposition

(A.2) CX (@)= P CZ(kG) (k0.
keK /KO

Here, C2° (k:GO)( ko) denotes the space of compactly supported smooth functions
on kG that are bi-K -finite. We first reduce the construction of (A.1) to the
one for GV,

(A.3) NOHE)Y x C2(G) 10y = S(G?) (ko).

sending (u, f) to pux f, satisfying m(p* f) = pu(xx) - 7(f) for every irreducible
admissible representation 7 of GY. Indeed, once we have (A.3), we may define

prfi= Y L) (ur (k™) fi)
keK /KO
for (u, ) € N(h)W x C(G)(k), where f =3 1ck /Ko fr is the decomposition
of f under (A.2), and L denotes the left regular action. Since the restriction to
GO of an irreducible admissible representation of G is a finite direct sum of irre-
ducible admissible representations of G° with the same infinitesimal character,
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it is easy to check that the above bilinear map satisfies the requirement in the
proposition.

Now it remains to construct (A.3). Denote by Z and Gy, the center and
the derived subgroup of G, respectively. Put Z := Z(R) and Gger == G 4o (R).
Put K% = KnZ° K, = KNGY,, and 23, == Z°N Gyer = K% N K,

Then der is a finite group, and the natural inclusions induce isomorphisms
(K9 x KY,,)/Z8,, = K° and

(A'4) (ZO X Gger)/der l> GO'

For finite subsets Tz and Tger of K%—types and K ger—types, respectively,
we define T to be the set of K%-types whose inflation to K % X ngr is an exterior
tensor product of elements in Tz and Tye,. Similarly, for compact subsets €1z
and Qger of Z9 and Gger that are bi-invariant under K% and ngr, respectively,
we let ) be the image of Q7 x Q4o under the isomorphism (A.4), which is a
compact subset of GO bi-invariant under K°. Clearly, we have

C2(G%) ko) = U CF(E) ),

Q %
where C§° (GO)(KI) denotes the subspace of smooth functions supported on €2
of bi-K-types in T. Thus, it suffices to construct (A.3) for a fixed subspace
CF(G)(g) of C° (GO)( x0)- The isomorphism (A.4) induces a natural isomor-
phism
—~ Z0  ~

(A.5) (G5, (Z2%) (3 @C&, (Gler) () " = CF(GY) ()
of Fréchet spaces, where ® stands for the projective completed tensor product.!?

On the other hand, let 3* and b}, be the real vector spaces spanned by
the weight lattices of Z¢ and the abstract Cartan group of Gy, ¢, respectively.

LEMMA A.2. The decomposition h* = 3* @b}, induced from (A.4) induces
a natural isomorphism

NGEEN (0er c)™ = N (7)Y
of Fréchet spaces. Here, N'(5z.) and N (b3, c) are defined similarly as for N'(hz.).

Proof. Let ng, ngr,

gent spaces are 3*, b, and bh*, respectively. By the classical Paley—~Wiener

and HY be the split real analytic tori whose cotan-

theorem for Schwartz functions on split real analytic tori, we have canonical
isomorphisms

S(Zgy) = NGL),  S(Hge) 2 N(bierc),  S(H®) = N(be)

12In general this is not correct if one does not fix the K°-types and the support.
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induced by Fourier transforms. Since H? = ng X ngr, the natural map
S(ng)@S (HY,,) — S(HY) is an isomorphism of Fréchet spaces by [AG10,
Cor. 2.6.3]. By taking W-invariants, we obtain the isomorphism in the lemma.

O

Now take p1 € N(35), 2 € N(hzer,c)w, and put p = p1 ® pa € N(h5)W.
By [Del86, Th. 1.7], there is a linear map

%k CSO)oder (Gger)(fder) - S(G?ier)(‘lder)
sending f to pg * f, satisfying maer (2 * f) = p2(Xrge,) * Tder (f) for every irre-

ducible admissible representation maer of G .. Similarly, by [Sak18, Th. 2.1.2],
there is a linear map

M1k CBOZ(ZO)(TZ) — S(ZO)(QZ)

sending f to pix f, satisfying (p1xf) = p1(xe)-§(f) for every smooth character
€ of Z°. Moreover, by the injectivity of the (operator valued) Fourier transform
and the closed graph theorem, both p;* and pex are continuous. Therefore,
(p1%) ® (pg*) extends uniquely to a continuous linear map

0o 0 00 0 100 0 der
pr: CF(GY)(z) ~ (CS,(2°) (5,0, (Gher) (Tawr))
—~ 70
= (8(Gler) (1) @S(2°) (g40) " = S(G%)()

by (A.5). Let 7 be an irreducible admissible representation of G°. By the
decomposition (A.4), we may write the inflation of 7 to Z° x Gger as & X mger,
where ¢ is a smooth character of Z° and 7ge, is an irreducible admissible rep-
resentation of GY, . By construction, we have m(u f) = u(xx)w(f) for every
f e O3 (2%, ® C& (Gler)(tq,) that is ZJ -invariant. Since the map
fe CBO(GO)(T) — 7(f) is continuous when we equip the space of continuous
endomorphisms of 7 with the topology of pointwise convergence, we deduce by
density that w(p* f) = pu(xx)7(f) holds for every f € CE%O(GO)(‘I). In sum-
mary, we have constructed our desired bilinear map from N (33) @ N (hfler,c)w X
CF(G) (g to S(GY)(g). Now again by the injectivity of the (operator val-
ued) Fourier transform and the closed graph theorem, we know that, for every
fe C&O(GO)(T), the map
(A.6) [ N(E) X N (Bier0)” = S(G%)x)
sending (p1, p2) to (1 ® o) * f is a separately continuous bilinear map. There-
fore, (A.6) extends uniquely to a continuous map *f: N(ﬁ%)@/\/(hger,@)w —
S(G) ) by [Tre67, Th. 34.1]. By Lemma A.2, we obtain the desired bilin-
ear map N (h5)W x CS%O(GO)(T) — S(GO)(‘I) sending (u, f) to p* f, satisfying
7(ux f) = p(xx) - m(f) for every irreducible admissible representation m of G°.
Taking union over all T and 2, we obtain (A.3).

Proposition A.1 is proved.
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