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Isolation of cuspidal spectrum,
with application to the

Gan–Gross–Prasad conjecture

By Raphaël Beuzart-Plessis, Yifeng Liu, Wei Zhang, and Xinwen Zhu

Abstract

We introduce a new technique for isolating components on the spectral
side of the trace formula. By applying it to the Jacquet–Rallis relative
trace formula, we complete the proof of the global Gan–Gross–Prasad con-
jecture and its refinement Ichino–Ikeda conjecture for U(n) × U(n + 1) in
the stable case.
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1. Introduction

1.1. Isolation of cuspidal spectrum. Let F be a number field and G a
connected reductive group over F . In this subsection, we describe a gen-
eral method for annihilating the non-cuspidal spectrum, while keeping certain
prescribed representations of G(AF ). We fix an open compact subgroup K

of G(A∞F ). Denote by S(G(AF ))K the space of bi-K-invariant Schwartz test
functions on G(AF ); that is, we allow the archimedean component to be a
Schwartz function rather than just a compactly supported smooth function.
Recall that a Schwartz function on G(F∞) is a smooth function f such that
Df is bounded for every algebraic differential operator D on G(F∞).1 Then
S(G(AF ))K is an algebra under convolution and acts continuously on the L2-
spectrum L2(G(F )\G(AF )/K) via the right regular representation R.

Theorem 1.1 (see Theorem 3.6 for a more general version). Let π = ⊗vπv
be an irreducible admissible representation of G(AF ) with unitary automorphic
central character ω . Suppose that there does not exist a pair (P, σ), where
P is a proper parabolic subgroup of G (defined over F ) and σ is a cuspidal
automorphic representation of M(AF ) with M the Levi quotient of P , such
that πv is a constituent of IndGP (σv) for all but finitely many places v of F .
Then there is a multiplier µ? of the algebra S(G(AF ))K such that for every
f ∈ S(G(AF ))K ,

(1) R(µ ? f) maps L2(G(F )\G(AF )/K, ω) into L2
cusp(G(F )\G(AF )/K, ω)π —

the π-nearly isotypic subspace of L2
cusp(G(F )\G(AF )/K, ω), that is, the

direct sum of K-invariants of irreducible subrepresentations π̃ such that
π̃v ' πv for all but finitely many places v of F ;

(2) π(µ ? f) = π(f).

Recall that a multiplier of a complex linear algebra S is a complex linear
operator µ? : S → S that commutes with both left and right multiplications.
Finding multipliers is most interesting when S, such as S(G(AF ))K , is non-
commutative and non-unital.

Remark 1.2. We have

1Readers should not confuse it with a Harish-Chandra Schwartz function, which is defined
by a much weaker condition.



ISOLATION OF CUSPIDAL SPECTRUM 521

(1) Theorem 1.1, together with its application to the stable case of the Gan–
Gross–Prasad conjecture discussed in the next subsection, breaks the long-
standing impression that to understand every (non-CAP) cuspidal auto-
morphic representation, one has to understand the full L2-spectrum on the
spectral side of the (relative) trace formula.

(2) When G is anisotropic modulo center, L2(G(F )\G(AF )/K, ω) coincides
with L2

cusp(G(F )\G(AF )/K, ω), which is a Hilbert direct sum of subspaces
of the form L2

cusp(G(F )\G(AF )/K, ω)π′ for irreducible (cuspidal) automor-
phic representations π′ of G(AF ) with central character ω and non-zero
K-invariants up to near equivalence. In this case, Theorem 1.1 implies
that one can use multipliers to modify f ∈ S(G(AF ))K such that the effect
is the same as composing the projection map to an arbitrarily given factor
of the form L2

cusp(G(F )\G(AF )/K, ω)π.
(3) It is crucial that we work with the algebra S(G(AF ))K of Schwartz test

functions in Theorem 1.1. The method does not work if one works with
compactly supported test functions.

(4) In Theorem 1.1, we do not even require π to be cuspidal automorphic. For
example, it is possible that πK 6= {0} but L2

cusp(G(F )\G(AF )/K, ω)π = 0.
Then the theorem provides a uniform way to modify f ∈ S(G(AF ))K ,
without changing its action on πK , but annihilating the entire L2-spectrum.

In fact, we also obtain a result for isolating general cuspidal components
of the L2-spectrum. For simplicity, here we only state the theorem for G =

ResF ′/F GLn for a finite extension F ′/F . For such G, we have the result on
the classification of automorphic representations [JS81, Th. 4.4].

Theorem 1.3 (special case of Theorem 3.19). In the situation of Theo-
rem 1.1, suppose that G = ResF ′/F GLn and that π is an irreducible constituent
of IndGP (σ) for a parabolic subgroup P of G and a cuspidal automorphic rep-
resentation σ of the Levi quotient of P . Then there is a multiplier µ? of the
algebra S(G(AF ))K such that for every f ∈ S(G(AF ))K ,
(1) R(µ ? f) maps L2(G(F )\G(AF )/K, ω) into L2

(M,σ)(G(F )\G(AF )/K, ω),
where the latter is the cuspidal component of L2(G(F )\G(AF )/K, ω) as-
sociated to (M,σ);

(2) π(µ ? f) = π(f).

In the process of proving Theorems 1.1 and 1.3, we need a sufficient sup-
ply for multipliers of the archimedean component of S(G(AF ))K . Now we
temporarily switch the notation so that G = G(R) for a connected reductive
algebraic group G over R. Let h∗ be the real vector space spanned by the
weight lattice of the abstract Cartan group of GC, and let W be the Weyl
group of GC, which acts on h∗. By the Harish-Chandra isomorphism, the infin-
itesimal character χπ of an irreducible admissible representation π of G gives
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rise to a W-orbit in h∗C. In Definition 2.8, we will define a spaceMθ∪{1}(h
∗
C) of

holomorphic functions on h∗C satisfying certain growth conditions, stable under
the action of W. Let S(G) be the convolution algebra of Schwartz functions on
G. The following is our theorem on multipliers of S(G).

Theorem 1.4 (Theorem 2.13). For every function µ ∈ Mθ∪{1}(h
∗
C)W ,

there is a unique linear operator µ? : S(G)→ S(G), such that

π(µ ? f) = µ(χπ) · π(f)

holds for every f ∈ S(G) and every irreducible admissible representation π of G.
In particular, µ? is a multiplier of S(G).

Now it is a good time to explain the crucial difference between S(G) and
C∞c (G). As pointed out in the final remark of the article [Del84], if G has no
compact factors, then the only W-invariant holomorphic functions on h∗C that
give rise to (continuous) multipliers of C∞c (G) are polynomials, that is, elements
in the center of the universal enveloping algebra. Even if one considers only the
subalgebra C∞c (G)(K) of bi-K-finite compactly supported smooth functions for
a fixed maximal compact subgroup K of G, the W-invariant holomorphic func-
tions on h∗C that give rise to (continuous) multipliers of C∞c (G)(K) have to be of
exponential type, a property not required for S(G). The removal of the restric-
tion of being of exponential type will vastly increase the collection of multipliers,
making it possible to obtain results like Theorem 1.1, as long as the Casimir
eigenvalues of cuspidal automorphic representations are distributed in a certain
discrete way, while the latter is indeed fulfilled by a result of Donnelly [Don82].

1.2. Application to the Gan–Gross–Prasad conjecture. In this subsection,
we describe the results obtained by applying Theorem 1.1 and its variants to the
Jacquet–Rallis relative trace formula [JR11], [Zyd20]. Let E/F be a quadratic
extension of number fields, with c the Galois involution. Let n > 1 be an
integer.

Definition 1.5. We let Π be an isobaric automorphic representation of
GLn(AE).
(1) We say that Π is conjugate self-dual if its contragredient Π∨ is isomorphic

to Π ◦ c.
(2) We say that Π is hermitian if Π is an isobaric sum of mutually non-

isomorphic cuspidal automorphic representations Π1, . . . ,Πd in which each
factor Πi is conjugate self-dual and satisfies that L(s,Πi,As(−1)n) is regular
at s = 1.

Let V be a (non-degenerate) hermitian space over E of rank n (with respect
to the involution c). Put G := U(V ), which is a reductive group over F .
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Definition 1.6. Let π be an irreducible admissible representation of G(AF ).
We say that an isobaric automorphic representation Π of GLn(AE) is a weak
automorphic base change of π if for all but finitely many places v of F split in E,
the (split) local base change of πv is isomorphic to Πv. If weak automorphic
base change of π exists, then it is unique up to isomorphism by [Ram18, Th. A];
we denote it by BC(π).

Remark 1.7. In most of the literature, weak automorphic base change of
π requires the local-global compatibility for all but finitely many places, so
in some sense our notion of weak automorphic base change should really be
“very weak automorphic base change,” though by the endoscopic classification
for unitary groups [Art13], [Mok15], [KMSW14], we now know that these two
definitions are equivalent. The reason we use this weaker notion is that we want
to make our argument independent of the endoscopic theory for unitary groups.
In fact, under our weaker notion of automorphic base change, we can prove, as
a byproduct of the Jacquet–Rallis relative trace formulae, the following result:
• The weak automorphic base change (in the sense of Definition 1.6) of π exists
as long as there exist infinitely many places v of F split in E such that πv
is generic.

Our proof is completely free of using endoscopic trace formulae. The method
can be used to show the local-global compatibility at all places where πv is
unramified as well, but the argument implicitly relies on [Mok15], [KMSW14].
See Remark 4.15 for more details.

The following theorem confirms the global Gan–Gross–Prasad conjecture
[GGP12] for U(n) × U(n + 1) in the stable case completely, which improves
previous results in [Zha14b], [Xue19], [BP20a].

Theorem 1.8. Let Πn and Πn+1 be hermitian cuspidal automorphic rep-
resentations of GLn(AE) and GLn+1(AE), respectively. Then the following two
statements are equivalent:
(1) We have L(1

2 ,Πn ×Πn+1) 6= 0.
(2) There exist

• a hermitian space Vn over E of rank n, which gives another hermitian
space Vn+1 := Vn ⊕ E.e over E of rank n+ 1 in which e has norm 1;
• for m = n, n+ 1, an irreducible subrepresentation πm ⊆ Acusp(Gm) of
Gm(AF ), where Gm := U(Vm), satisfying BC(πm) ' Πm , and a cusp
form ϕm ∈ πm ,

such that

P(ϕn, ϕn+1) :=

∫
Gn(F )\Gn(AF )

ϕn(h)ϕn+1(h) dh 6= 0,

where dh is the Tamagawa measure on Gn(AF ).
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Before our current work, the above theorem was known under the restric-
tion that both Πn and Πn+1 are supercuspidal at some prime of E that is
split over F . However, removing this (last) local restriction is crucial for arith-
metic application to certain motives like symmetric powers of elliptic curves;
see [LTX+19].

Using the above theorem, we can obtain the following non-vanishing result
on central L-values, which improves [Zha14b, Th. 1.2].

Theorem 1.9. Let Πn+1 be a hermitian cuspidal automorphic represen-
tation of GLn+1(AE). Then there exists a hermitian cuspidal automorphic rep-
resentation Πn of GLn(AE) such that

L(1
2 ,Πn ×Πn+1) 6= 0.

The last application is the Ichino–Ikeda conjecture [II10], which is a re-
finement of the Gan–Gross–Prasad conjecture by giving an explicit formula for
|P(ϕn, ϕn+1)|2. In the case of U(n) × U(n + 1), it is formulated in [Har14,
Conj. 1.2] (see also [Zha14a, Conj. 1.1]). The following theorem confirms the
Ichino–Ikeda conjecture for U(n)×U(n+1) in the stable case completely, which
improves previous results in [Zha14a], [BP20a], [BP21b].

Theorem 1.10. Let the situation be as in (2) of Theorem 1.8. If, more-
over, πn and πn+1 are both everywhere tempered, then the Ichino–Ikeda conjec-
ture holds for πn and πn+1 .

The proofs of Theorems 1.8, 1.9, and 1.10 will be given in Section 4.4.

Remark 1.11. The results on isolating components of the L2-spectrum ob-
tained in this article can vastly simplify the computation on the spectral side
toward the endoscopic case of the Gan–Gross–Prasad and the Ichino–Ikeda
conjectures for U(n) × U(n + 1) as well. Indeed, on the unitary side, by The-
orems 3.6 and 4.14, it suffices to understand the π-nearly isotypic subspace
of the L2-spectrum, which is contained in the cuspidal spectrum; on the gen-
eral linear side, by Theorem 3.19, it suffices to understand the single cuspidal
component of the L2-spectrum that corresponds to BC(π).2

Remark 1.12. Using similar ideas, one can improve the results on the Gan–
Gross–Prasad conjecture and the Ichino–Ikeda conjecture for U(n)×U(n) pre-
viously obtained by Hang Xue [Xue14], [Xue16], based on the relative trace
formulae developed in [Liu14], after establishing analogous results in [BP21b],
[CZ21], [Zyd20].

2In fact, during the referee process of the current article, the endoscopic case has already
been worked out in [BPCZ20].
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1.3. Strategy of proofs. The main part of the article has three sections,
responsible for three clusters of results: existence of multipliers of Schwartz
convolution algebras, isolation of cuspidal components in the L2-spectrum, and
confirmation of the Gan–Gross–Prasad conjecture in the stable case and related
results, respectively. In this subsection, we will briefly explain the strategy of
proving these results.

In Section 2, we prove Theorem 1.4. First, we give a slightly more precise
description of the spaceMθ∪{1}(h

∗
C). Let (X∗,Φ,X∗,Φ

∨) be the root datum of
GC so that h∗ = X∗⊗ZR. For every automorphism ϑ of (X∗,Φ,X∗,Φ

∨) of order
at most two, we can formulate two types of growth conditions — moderate
growth and rapid decay with respect to ϑ — for holomorphic functions on h∗C.
(See Definition 2.8 for the accurate definition.) In particular, when ϑ = 1,
they coincide with the usual notions of moderate growth and rapid decay on
vertical strips, respectively. The (inner form class) of G gives rise to a set
θ of automorphisms of (X∗,Φ,X∗,Φ

∨) of order at most two, stable under W-
conjugation. Then we define Mθ∪{1}(h

∗
C) (resp. Nθ∪{1}(h∗C)) to be the space

of holomorphic functions on h∗C that have moderate growth (resp. rapid decay)
with respect to all elements in θ∪{1}. It will be clear from the definition (and
suggested by the terminology) that Nθ∪{1}(h∗C) ⊆ Mθ∪{1}(h

∗
C). We will first

prove Theorem 1.4 for the smaller space Nθ∪{1}(h∗C)W (Proposition 2.24), and
then use a limit process to pass toMθ∪{1}(h

∗
C)W.

For Nθ∪{1}(h∗C)W, note that Nθ∪{1}(h∗C) is contained in N{1}(h∗C), the space
of holomorphic functions on h∗C that have rapid decay on vertical strips. Es-
sentially by a result of Delorme (Proposition A.1), elements in N{1}(h∗C)W will
give multipliers for the subalgebra S(G)(K) of S(G) of bi-K-finite Schwartz
functions. Therefore, to construct µ?f for µ ∈ Nθ∪{1}(h∗C)W and f ∈ S(G), we
may choose a sequence {fn} ⊆ C∞c (G)(K) approaching f in S(G) and show that
{µ?fn} converges. It is a crucial observation that the Fréchet topology of S(G)

is also induced from the semi-norms f 7→ ‖Df‖L2 for all algebraic differential
operators D on G. Thus, it suffices for us to show that ‖D(µ ? −)‖L2 is con-
tinuous on the subspace C∞c (G)(K) with respect to the subspace topology for
all D. When D is (left and right) invariant, we have D(µ?f) = µ?(Df), hence
the continuity is clear. It remains to consider the case where D is a polyno-
mial on G, or equivalently, a matrix coefficient of a finite dimensional algebraic
representation of G. In this case, we can show that there are finitely many
pairs (Si, Li), depending on the matrix coefficient presentation of D only, in
which Si is a linear operator of Nθ∪{1}(h∗C)W and Li is an algebraic differential
operator of S(G) preserving C∞c (G)(K), such that D(µ?f) =

∑
i Si(µ)?Li(f).

Thus, we obtain the desired continuity for ‖D(µ ? −)‖L2 , hence Theorem 1.4
for the smaller space Nθ∪{1}(h∗C)W is confirmed. However, in order to pass to
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Mθ∪{1}(h
∗
C)W, we will need more precise bounds on the linear operators Si with

respect to a certain natural family of semi-norms on Nθ∪{1}(h∗C), as stated in
Lemma 2.20.

In Section 3, we prove all results related to the isolation of the L2-spectrum.
To make the discussion here more explicit, we restrict ourselves to the number
field F = Q and the group G = PGLn,Q with n > 2, and we only consider
Theorem 1.1 with π cuspidal automorphic. In particular, Z = 1, and we will
omit the necessarily trivial character ω in the following notation. For every
tuple n = (n1, n2, . . . ) of integers 0 < n1 6 n2 6 · · · summing up to n, we let
Mn be the standard diagonal Levi subgroup of G of block sizes n and Wn the
subgroup of the Weyl group stabilizingMn. Then we have the coarse Langlands
decomposition

L2(G(Q)\G(A)/K) =
⊕̂

(M,σ)
L2

(M,σ)(G(Q)\G(A)/K),

where M = Mn for some n and σ is a cuspidal automorphic representation
of M(A) up to twist and Wn-conjugation. Our goal, in view of the strong
multiplicity one property, is to find µ such that for every f ∈ S(G(A))K ,
µ? f annihilates all components but L2

(G,π)(G(Q)\G(A)/K) and maintains the
action of f on π.

For the first step, it is not hard to construct a function µ0
∞ ∈Mθ∪{1}(h

∗
C)W

(notation with respect to the real reductive group G⊗QR) satisfying µ0
∞(χπ∞)

= 1 and the following condition: there exists a finite set T of K∞-types, where
K∞ is the standard maximal compact subgroup of G(R) = PGLn(R), such that
for every f ∈S(G(R)), µ0

∞?f annihilates the component L2
(M,σ)(G(Q)\G(A)/K)

if it has no K∞-types in T. This will exclude all but finitely many components
L2

(M,σ)(G(Q)\G(A)/K) when M ∈ {M(1,...,1),M(n)}. However, for other M ,
there are still infinitely many components remaining.

The second step is to annihilate all but finitely many components
L2

(M,σ)(G(Q)\G(A)/K)

with a K∞-type in T for everyM . To explain the idea, we consider the simplest
non-trivial case whereM = M(1,...,1,2) (hence n > 3). It is easy to see that there
exist a finite set TM of (K∞ ∩M(R))-types and an open compact subgroup
KM ⊆M(A∞) such that if L2

(M,σ)(G(Q)\G(A)/K) has a K∞-type in T, then σ
must have a (K∞ ∩M(R))-type in TM and non-trivial KM -invariants. Note
that there are infinitely many such σ up to twist and W(1,...,1,2)-conjugation!
However, we observe that the Casimir operator for the derived subgroup of M ,
which is simply SL2,Q, gives a polynomial function λ on h∗C. It is a well-known
result of Harish-Chandra that for any given λ0 ∈ C, there are only finitely
many cuspidal automorphic representations σ of M(A) up to twist that have a
(K∞∩M(R))-type in TM and non-trivialKM -invariants, such that λ(χσ∞)=λ0.
By another well-known result on the distribution of Casimir eigenvalues of SL2
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(or [Don82] for general semisimple groups), one can find a holomorphic func-
tion νM on h∗C that has moderate growth on vertical strips with zeros exactly
λ−1 (Λ \ λ(χπ∞)), where Λ ⊆ C is the set of Casimir eigenvalues of cuspidal
automorphic representations σ of M(A) that have a (K∞ ∩M(R))-type in TM
and non-trivial KM -invariants.3 Using νM , it is not hard to construct an ele-
ment µM∞ ∈Mθ∪{1}(h

∗
C)W such that for every f ∈ S(G(R)), µM∞ ? f annihilates

all but finitely components L2
(M,σ)(G(Q)\G(A)/K) with given M = M(1,...,1,2)

and maintains the action of f on π. In fact, we can achieve this for every M .
The last step is to annihilate, without changing π, every single com-

ponent L2
(M,σ)(G(Q)\G(A)/K) that is not isomorphic to π. This is easy if

M = M(n) = G, since we can use spherical Hecke operators at unramified (non-
archimedean) places. When M 6= G, L2

(M,σ)(G(Q)\G(A)/K) is a “continuous”
space of induced representations. However, there is a secret correlation between
(non-archimedean) Hecke eigenvalues and (archimedean) infinitesimal charac-
ters for all representations that contribute to L2

(M,σ)(G(Q)\G(A)/K). This
motivates us to construct, for every component L2

(M,σ)(G(Q)\G(A)/K) that
is not isomorphic to π, a multiplier µ(M,σ) that is “mixed” fromMθ∪{1}(h

∗
C)W

and spherical Hecke operators, such that for every f ∈ S(G(A))K , µ(M,σ) ? f

annihilates L2
(M,σ)(G(Q)\G(A)/K) and maintains the action of f on π. We

remark that this step is inspired by the work [LV07].
To conclude the proof of Theorem 1.1, we only need to take the product

of µ0
∞, {µM∞}M , and (finitely many) µ(M,σ).
In Section 4, we prove the Gan–Gross–Prasad conjecture in the stable

case and other related results. Here, we explain how to apply Theorem 1.1
to the Jacquet–Rallis relative trace formulae to attack the Gan–Gross–Prasad
conjecture. The Jacquet–Rallis relative trace formulae have two sides: the
group G′ := ResE/F GLn,E ×ResE/F GLn+1,E , and the group GV := U(Vn) ×
U(Vn+1) where V = (Vn, Vn+1) is a pair of hermitian spaces over E as in
Theorem 1.8. The two sides share the same space of orbits, which is an affine
variety B over F ; in other words, we have surjective morphisms G′ → B ← GV .
By Zydor’s extension of the Jacquet–Rallis relative trace formulae, we have a
relative trace formula on each side: For every f ′ ∈ S(G′(AF )) that annihilates
the entire non-cuspidal part of L2(G′(F )\G′(AF ), 1), we have the identity∑

Π cuspidal

IΠ(f ′) =
∑

γ∈B(F )

Iγ(f ′),

where IΠ and Iγ are certain invariant functionals on S(G′(AF )) associated to
a cuspidal automorphic representation Π and an element γ ∈ B(F ) defined

3However, we cannot require νM to be of exponential type at the same time.
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via relative characters and (regularized) relative orbital integrals, respectively.
Similarly, for every fV ∈ S(GV (AF )) that annihilates the entire non-cuspidal
part of L2(GV (F )\GV (AF ), 1), we have the identity∑

πV cuspidal

JπV (fV ) =
∑

δV ∈B(F )

JδV (fV ).

In practice, we have to consider all pairs V up to isomorphism. The starting
point for the comparison of trace formulae is to find a pair of test functions
(f ′, {fV }V ) that have matching orbital integrals, so that Iγ(f ′) = JδV (fV )

when γ = δV . The common strategy of finding (f ′, {fV }V ) that annihilate
non-cuspidal spectra is to take f ′ such that f ′v annihilates all non-supercuspidal
representations at some non-archimedean place v of F split in E, and similarly
for fV . However, by doing this, we necessarily annihilate all cuspidal auto-
morphic representations that are nowhere supercuspidal. The new invention,
which is enabled by Theorem 1.1, is to modify an arbitrary pair (f ′, {fV }V )

of test functions that have matching orbital integrals by multipliers, so that
the resulting test functions annihilate non-cuspidal spectra and maintain their
actions on any prescribed representations (Π, {πV }) in which Π is cuspidal au-
tomorphic and is isomorphic to BC(πV ). Thus, it is a natural question to find
multipliers (µ′, {µV }V ) from Theorem 1.1, such that (µ′ ? f ′, {µV ? fV }V ) still
have matching orbital integrals. The answer turns out to be quite elegant:
there is a natural “base change” map from those multipliers for GV (obtained
in the way of Theorem 1.1) to those for G′; and we show in Proposition 4.8 that
if µ′ is the base change of µV for all V , then (µ′?f ′, {µV ?fV }V ) have matching
orbital integrals as long as (f ′, {fV }V ) do. Such multipliers (µ′, {µV }V ) are not
hard to find. Therefore, we can compare the above two relative trace formulae
without sacrificing any prescribed representations (Π, {πV }) as above. The rest
of the argument is a standard business in trace formulae approach.

The article has an appendix (Appendix A) in which we extend a result of
Delorme to reductive groups, which is only used in the proof of Proposition 2.24.

1.4. Notation and conventions.

• For a set S, we denote by 1S the characteristic function of S.
• In the main text, if we do not specify the base ring of a tensor product ⊗,
then the base ring is C.
• For a real vector space U , we put UC := U⊗RC, and iU := U⊗R iR, which is
a subspace of the underlying real vector space of UC. We have the R-linear
map Re: UC → U by taking the real part.
• For a finite dimensional complex vector space U , we denote by O(U) the
ring of holomorphic functions on U , Oexp(U) ⊆ O(U) the subring of holo-
morphic functions of exponential type, and C[U ] ⊆ Oexp(U) the subring of
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polynomial functions. A lattice (resp. full lattice) of U is a subgroup L of
U such that the induced map L⊗Z C→ U is injective (resp. bijective).
• For a complex linear algebra S, we denote by Mul(S) the C-algebra of
multipliers of S, that is, complex linear operators µ? : S → S satisfying
µ ? (f ∗ g) = (µ ? f) ∗ g = f ∗ (µ ? g) for every f, g ∈ S, where ∗ denotes the
multiplication in S.
• By a prime of a number field, we mean a non-archimedean place. In Sec-
tions 3 and 4, we will encounter various sets of places of a number field F .
To summarize,
– S will always be a finite set consisting of primes;
– T will always be a (possibly infinite) set consisting of primes;
– � will always be a finite set containing all archimedean places.

• For an algebraic group G over a number field F , we put G∞ := G(F ⊗Q R)

for short.
• A subgroup of an algebraic group defined over a field is by default defined
over the same field.
• Let P be a parabolic subgroup of a reductive group G.

– We denote by NP ⊆ P the unipotent radical.
– When σ is an admissible representation of P (R) for an appropriate

ring R for which admissibility makes sense, we denote by IGP (σ) the
normalized parabolic induction as an admissible representation of G(R).

– When σ is an admissible representation of M(R) for a Levi subgroup
M of P , we also write IGP (σ) by regarding σ as a representation of P (R)

through inflation.
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2. Multipliers of Schwartz convolution algebra

In this section, we construct sufficiently many multipliers of the convolution
algebra of Schwartz functions for a real connected reductive algebraic group.

In Section 2.1, we record some lemmas on constructing holomorphic func-
tions on complex vector spaces with special properties. In Section 2.2, we define
various spaces of functions related to the multipliers of Schwartz convolution
algebras. In Section 2.3, we state our result (Theorem 2.13) on the existence of
sufficiently many multipliers of Schwartz convolution algebras. In Section 2.4,
we prove Theorem 2.13, following the strategy described in Section 1.3.

2.1. Preliminaries on holomorphic functions. We first review some facts
about entire functions on the complex plane. Recall that the order of an entire
function Ψ: C→ C is defined as

inf{e ∈ [0,+∞) | ∃Ce > 0, such that |Ψ(z)| < Ceexp(|z|e) for all z ∈ C}.
Here, |z| =

√
zz. If the above set is empty, then we say that Ψ has infinite

order.
Next, we review the construction of entire functions with prescribed zeroes.

Let Λ be a subset of C, and let p > 0 be an integer. We define the (formal)
Weierstrass product

ΨΛ,p(z) := zδ
∏
λ∈Λ
λ 6=0

Ep(z/λ),

where Ep(z) := (1−z)exp(z+ · · ·+zp/p) is the elementary function, and δ = 1

(resp. δ = 0) if 0 belongs (resp. does not belong) to Λ.

Definition 2.1. Let p > 0 be an integer. We say that Λ has rank p if
(1) Λ is countable;
(2) p is the least non-negative integer such that

∑
λ∈Λ,λ 6=0 |λ|−(p+1) con-

verges.

Lemma 2.2. Let Λ ⊆ C be a subset of rank p for some integer p > 0. Then
ΨΛ,p is a well-defined entire function of (finite) order at most p + 1, with the
set of zeroes exactly Λ.

Proof. It is well known that there exist constants C,C ′ > 0 such that
|ΨΛ,p(z)| < Cexp(C ′|z|p+1) for z ∈ C. Thus, ΨΛ,p is of finite order at most
p+ 1 by definition. The set of zeroes is clear from the construction. �

Now we consider a finite dimensional real vector space U .

Definition 2.3. Let ν be a holomorphic function on UC. We say that ν has
moderate vertical growth if for every M > 0, there exists rM ∈ R such that

sup
‖Re z‖<M

|ν(z)| · (1 + ‖z‖)rM <∞

holds for some, hence every, Euclidean norm ‖ · ‖ on UC.
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Proposition 2.4. Let λ : UC → C be a polynomial function. For every
entire function Ψ of finite order, there exists a holomorphic function ν on UC
that has moderate vertical growth, such that the set of zeroes of ν is exactly the
inverse image of the set of zeroes of Ψ along λ.

Proof. We choose an isomorphism U ' Rr and write elements in UC as
z = (z1, . . . , zr). Suppose that Ψ is of order e and λ has degree d. Take an odd
integer q > de. Define ν by the formula

ν(z) := exp(z2q
1 + · · ·+ z2q

r ) ·Ψ(λ(z))

for z ∈ UC, which is holomorphic. It is straightforward to check that ν(z) has
moderate vertical growth. Moreover, we have ν(z) = 0 if and only if λ(z) is a
zero of Ψ. The proposition follows. �

Corollary 2.5. Let λ : UC → C be a polynomial function. For every
subset Λ ⊆ C of finite rank, there exists a holomorphic function ν on UC that
has moderate vertical growth and whose set of zeroes is exactly λ−1Λ.

Proof. The proof follows from Lemma 2.2 and Proposition 2.4. �

Corollary 2.6. Let L be a lattice of UC and A ⊆ UC a finite subset.
Then there exists a holomorphic function ν on UC that has moderate vertical
growth, vanishes on L \A, and is nowhere vanishing on A.

Proof. Let r be the dimension of U . We may choose linearly indepen-
dent complex linear maps λ1, . . . , λr : UC → C such that L is contained in⋂r
i=1 λ

−1
i Z. For every 1 6 i 6 r, the subset Z \ λi(A) ⊆ C is of finite rank. By

Corollary 2.5, we may find a holomorphic function νi on UC that has moderate
vertical growth, such that the set of zeroes of νi is exactly λ−1

i (Z \λi(A)). Put
ν :=

∏r
i=1 νi. Then ν has moderate vertical growth, vanishes on all but finitely

many elements in L, and is nowhere vanishing on A. Let z1, . . . , zs be the
finitely many elements in L\A at which ν is non-vanishing. For each 1 6 j 6 s,
we may choose an affine function lj : UC → C such that lj(zj) = 0 and that lj
is nowhere vanishing on A. Then the holomorphic function ν ·

∏s
j=1 lj satisfies

the requirement in the corollary. �

Remark 2.7. In fact, from the proof of Proposition 2.4, we may even re-
quire ν in Corollaries 2.5 and 2.6 to have exponential decay on vertical strips.
However, we do not need this in what follows.

2.2. Multiplier functions. In this subsection, we introduce the spaces of
multiplier functions that will give multipliers of the convolution algebra of
Schwartz functions. We fix a root datum (X∗,Φ,X∗,Φ

∨) and

• let W be the Weyl group of (X∗,Φ,X∗,Φ
∨);
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• let Aut(X∗,Φ,X∗,Φ
∨)♥ be the set of automorphisms of (X∗,Φ,X∗,Φ

∨) of
order at most 2, which is finite and stable under the conjugation action
of W;
• put h∗ := X∗ ⊗Z R;
• for every ϑ ∈ Aut(X∗,Φ,X∗,Φ

∨)♥, let h∗ϑ (resp. h∗−ϑ ) be the +1-eigenspace
(resp. −1-eigenspace) of the action of ϑ on h∗; and let Y∗ϑ be the projection
of ρ+ X∗ ⊆ h∗ onto h∗−ϑ , where ρ is the half sum of positive roots in Φ with
respect to an arbitrary base of Φ.4

It is clear that Y∗ϑ is a translation of a discrete subgroup of h∗−ϑ . Though Y∗ϑ
is not necessarily a subgroup, in what follows, we will sometimes write H⊕ Y∗ϑ
for a subgroup H of h∗ϑ,C as the subset of h∗C consisting of elements of the form
α+$ for α ∈ H and $ ∈ Y∗ϑ.

We take a subset θ ⊆ Aut(X∗,Φ,X∗,Φ
∨)♥ that is stable under the conju-

gation action of W. In the following definition, we introduce several important
spaces of holomorphic functions on h∗C that will be related to multipliers of
Schwartz convolution algebras.

Definition 2.8. We define several spaces of holomorphic functions on h∗C.
(1) DefineMθ(h

∗
C) to be the space of holomorphic functions µ on h∗C such that

for every ϑ ∈ θ and every M > 0, there exists rϑ,M ∈ R such that

sup
α∈h∗ϑ,C,‖Reα‖<M

$∈Y∗ϑ

|µ(α+$)| · (1 + ‖α+$‖)rϑ,M <∞(2.1)

holds for some, hence every, Euclidean norm ‖ · ‖ on h∗C.
(2) Define Nθ(h∗C) to be the space of holomorphic functions µ on h∗C such that

for every ϑ ∈ θ, every M > 0, and every r ∈ R,

sup
α∈h∗ϑ,C,‖Reα‖<M

$∈Y∗ϑ

|µ(α+$)| · (1 + ‖α+$‖)r <∞

holds for some, hence every, Euclidean norm ‖ · ‖ on h∗C.
(3) DefineM]

θ(h
∗
C) to be the subspace ofMθ∪{1}(h

∗
C) consisting of µ satisfying

that for every ϑ ∈ θ, µ|h∗ϑ,C+$ = 0 for all but finitely many elements$ ∈ Y∗ϑ.

When θ = {1}, we suppress it in the subscripts in the above notation.

Remark 2.9. We have the following concerning Definition 2.8:
(1) In (1) (resp. (2)), for every ϑ ∈ θ and every $ ∈ Y∗ϑ, the function α 7→

µ(α + $) has moderate vertical growth (Definition 2.3) (resp. has rapid
decay on vertical strips) on h∗ϑ,C. On the other hand, for every ϑ ∈ θ, if we

4It is easy to see that Y∗ϑ does not depend on the choice of the base.
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restrict the growth condition (2.1) to ih∗ϑ ⊕ Y∗ϑ, then it means that µ has
polynomial growth.

(2) The spacesMθ(h
∗
C), Nθ(h∗C), andM]

θ(h
∗
C) are all closed under multiplica-

tion and the action of W.
(3) If µ ∈ O(h∗C) has moderate vertical growth, then µ · M]

θ(h
∗
C) ⊆ M]

θ(h
∗
C).

In particular, we have M(h∗C) · M]
θ(h
∗
C) ⊆ M]

θ(h
∗
C). Note that M(h∗C) =

M{1}(h∗C) according to Definition 2.8.

The following lemma demonstrates the existence of elements inM]
θ(h
∗
C)W.

Lemma 2.10. For every element α0 ∈ h∗C , there exists an element µ ∈
M]

θ(h
∗
C)W such that µ(α0) 6= 0.

Proof. For each ϑ ∈ θ, we can find, by Corollary 2.6, a holomorphic func-
tion νϑ on h∗C that has moderate vertical growth and vanishes on h∗ϑ,C +$ for
all but finitely many elements $ ∈ Y∗ϑ, such that ν(wα0) 6= 0 for every w ∈W.
Now since θ is a finite set, we can take the product ν :=

∏
ϑ∈θ νϑ ∈ M

]
θ(h
∗
C),

satisfying ν(wα0) 6= 0 for every w ∈W. Put µ :=
∏
w∈W ν ◦w. Then µ belongs

toM]
θ(h
∗
C)W and satisfies µ(α0) 6= 0. The lemma follows. �

2.3. Multipliers of Schwartz algebra. We now consider a connected reduc-
tive algebraic group G over R. Let (X∗,Φ,X∗,Φ

∨) be the root datum associated
to GC, namely, X∗ and X∗ are the weight and coweight lattices of the abstract
Cartan group of GC, with Φ and Φ∨ the subsets of roots and coroots of GC,
respectively. We keep the notation in the previous subsection.

We let θ be the subset of Aut(X∗,Φ,X∗,Φ
∨)♥ consisting of elements of

the form wϑ in which w ∈ W and ϑ ∈ Aut(X∗,Φ,X∗,Φ
∨)♥ is an element that

induces the real form G of GC. Then θ is stable under the conjugation action
of W.

Denote by g the complex Lie algebra of GC and by U(g) the universal
enveloping algebra of g with the center Z(g). By the Harish-Chandra isomor-
phism Z(g) ' C[h∗C]W [HC51], we obtain a character χα of Z(g) for every
element α of h∗C. Conversely, every character χ of Z(g) gives rise to a W-orbit
in h∗C, hence µ(χ) is well defined for an element µ ∈ O(h∗C)W.

Put G := G(R). We fix a maximal compact subgroup K of G and a Haar
measure dg on G. Denote by C[G] and D[G] the complex algebras of algebraic
functions and algebraic differential operators on G, respectively.

By an admissible representation ofG, we mean a smooth admissible Fréchet
representation of moderate growth of G in the sense of Casselman–Wallach
([Cas89], [Wal92, §11]). The category of admissible representations of G is
equivalent to the category of Harish-Chandra (g,K)-modules by the functor of
taking K-finite vectors. For an irreducible admissible representation π of G,
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we denote by χπ : Z(g)→ C its infinitesimal character, which is identified with
a W-orbit in h∗C.

We recall some definitions and facts from [Wal83, §§2.5, 2.6]. A Schwartz
function on G is a smooth function f such that Df is bounded for every
D ∈ D(G). Let S(G) be the convolution algebra of Schwartz functions on G,
equipped with its natural Fréchet topology, under which the convolution prod-
uct ∗, defined by the formula

(f1 ∗ f2)(g) :=

∫
G

f1(gh−1)f2(h) dh,

is continuous. For every admissible representation (or more generally Fréchet
representation of moderate growth) (π, Vπ) of G, the expression

π(f)v :=

∫
G

f(g)π(g)v dg

is absolutely convergent for every f ∈ S(G) and v ∈ Vπ, hence defines a con-
tinuous operator π(f) ∈ End(Vπ).

Remark 2.11. We have S(G) ⊆
⋂
p>0 Cp(G), where Cp(G) denotes the con-

volution algebra of Harish-Chandra Lp-Schwartz functions on G; the inclusion
is an equality if and only if the center of G is compact.

Remark 2.12. Let L2(G) be the L2-space of G. Using the Sobolev lemma,
it is easy to see that S(G) is also the space of f ∈ L2(G) such that Df ∈ L2(G)

for every D ∈ D(G), where Df is understood in the sense of distributions.
Moreover, the Fréchet topology of S(G) is also induced from the semi-norms
f 7→ ‖Df‖L2 for all D ∈ D(G).

The following theorem provides many multipliers of the algebra S(G).

Theorem 2.13. For every element µ ∈ Mθ∪{1}(h
∗
C)W , there is a unique

linear operator
µ? : S(G)→ S(G),

such that
π(µ ? f) = µ(χπ) · π(f)

holds for every f ∈ S(G) and every irreducible admissible representation π of G.
In particular, µ? ∈ Mul(S(G)) is a multiplier of S(G).

The proof of this theorem will be given in the next subsection.

Remark 2.14. The subset θ defined above only determines the inner form
class of G. We may define a refined invariant θG associated to G to be the
subset of Aut(X∗,Φ,X∗,Φ

∨)♥ of elements induced from all maximal tori T of
G in the way described in Lemma 2.19 below, which is contained in θ and stable
under the conjugation action of W. Note that
• θG = θ if and only if G is quasi-split;
• θG contains 1 if and only if G is split;
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• θG contains −1 if and only if G admits an anisotropic maximal torus;
• θG = {−1} if and only if G is anisotropic.

Example 2.15. Suppose that GC = SL2,C. In this case, we may identity
X∗ with Z under which Φ = {2,−2}, hence W = Aut(X∗,Φ,X∗,Φ

∨) = {±1}.
There are two cases of G up to isomorphism.
(1) When G is split, we have θ = θG = {±1}. In this case, Mθ∪{1}(h

∗
C)W =

MθG(h∗C)W = M{±1}(h
∗
C)W, which consists of even holomorphic functions

on C that have moderate vertical growth, and have polynomial growth on
the subset Z ⊆ C.

(2) When G is anisotropic, we have θG = {−1} ⊆ θ = {±1}. In this case,
MθG(h∗C)W = M{−1}(h

∗
C)W, which consists of even holomorphic functions

on C that have polynomial growth on the subset Z ⊆ C.

Remark 2.16. It is natural to ask when a holomorphic function µ on h∗C
gives a multiplier as in Theorem 2.13. We conjecture that µ does this if and
only if it belongs to MθG(h∗C)W; in particular, the conjecture gives rise to a
homomorphismMθG(h∗C)W → Mul(S(G)) of complex algebras. By a result of
Harish-Chandra, the subset of h∗C of all infinitesimal characters of irreducible
admissible representations of G is the union

⋃
ϑ∈θG h∗ϑ,C ⊕ Y∗ϑ. Thus, the ker-

nel of the previous homomorphism consists exactly of those µ that vanish on⋃
ϑ∈θG h∗ϑ,C ⊕ Y∗ϑ.

This conjecture can be easily checked when G is anisotropic, that is, when
G is compact. On the other hand, when G is split, Theorem 2.13 implies
the existence of the homomorphism MθG(h∗C)W → Mul(S(G)), as in this case
θ ∪ {1} = θ = θG (Remark 2.14). We also remark that when G = SL2,R, this
conjecture was known as a consequence of the work [Bar88].

Remark 2.17. Theorem 2.13 together with Definition 2.8(3) provide us
with a homomorphism

M]
θ(h
∗
C)W → Mul(S(G))

of complex algebras.

To end this subsection, we record a property for elements in M]
θ(h
∗
C)W

that will be used later. As usual, by a K-type, we mean an isomorphism class
of irreducible smooth representations of K.

Lemma 2.18. Let µ be an element inM]
θ(h
∗
C)W . Then there is a finite set

T(µ) of K-types such that for every irreducible admissible representation π of
G satisfying µ(χπ) 6= 0, we have that π|K contains some member from T(µ).

Proof. By Definition 2.8(3) together with Harish-Chandra’s description of
the infinitesimal characters of discrete series of Levi subgroups of G [HC66],
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there are only finitely many pairs (M,σ) where M is a Levi subgroup of G and
σ is an irreducible discrete series representation of M , up to conjugation and
unramified twists, such that µ is non-vanishing on the infinitesimal character
of the parabolic induction of (M,σ). By the Langlands classification and the
fact that for a standard module, the Langlands quotient inherits its minimal
K-types [Kna01, Th. 15.10], we can take T(µ) to be the minimal K-types of
the parabolic induction of those finitely many pairs (M,σ). �

2.4. Proof of Theorem 2.13. In this subsection, we prove Theorem 2.13.
We fix a W-invariant Euclidean norm ‖ · ‖ on h∗C. For ϑ ∈ Aut(X∗,Φ,X∗,Φ

∨)♥,
M > 0, and r ∈ R, we put

pϑ,M,r(µ) := sup
α∈h∗ϑ,C,‖Reα‖<M

$∈Y∗ϑ

|µ(α+$)| · (1 + ‖α+$‖)r

for µ ∈ O(h∗C). Clearly, we have pϑ,M,r(µ) 6 pϑ,M ′,r(µ) if M 6 M ′ and
pϑ,M,r(µ) 6 pϑ,M,r′(µ) if r 6 r′.

We start with some discussion on maximal tori of G. LetH be the abstract
Cartan group of GC, whose weight lattice is X∗. Recall that the abstract Cartan
group H of GC represents the presheaf on the opposite category of complex
tori whose value on (a complex torus) S is the set of collections {qB : B → S}
of homomorphisms for every Borel subgroup B of GC satisfying that qB =

qB′ ◦ αB,B′ for every inner automorphism αB,B′ of GC mapping B into B′. In
particular, for every maximal torus T of G, there is a canonical W-conjugacy
class of isomorphisms TC

∼−→ H from the universal object, which we refer as
universal isomorphisms.

Let T be a maximal torus of G. Put T := T (R). Then T admits a
decomposition T = ATTc in which AT and Tc are the maximal split and the
anisotropic (analytic) sub-tori, respectively; it induces a decomposition t =

aT ⊕ tc for the corresponding Lie algebras.

Lemma 2.19. For every universal isomorphism TC
∼−→ H , which induces a

decomposition h∗ = a∗T ⊕ it∗c , there is a unique element ϑ ∈ θ such that a∗T = h∗ϑ
and it∗c = h∗−ϑ .

Proof. We define an automorphism ϑT of T as follows. Let d be the rank
of T , and fix an isomorphism ιT : TC

∼−→ Gd
m,C. Then we set ϑT := ιT

−1 ◦ ιT ,
where ιT denotes the complex conjugate of ιT .

It is easy to see that ϑT does not depend on the choice of ιT and, moreover,
that on the Lie algebra t of T , ϑT acts by +1 on aT and by −1 on tc. Take
a universal isomorphism TC

∼−→ H, which gives rise to a decomposition h∗ =

a∗T ⊕ it∗c . Then ϑT induces an element ϑ ∈ Aut(X∗,Φ,X∗,Φ
∨) that belongs to θ,

which satisfies a∗T = h∗ϑ and it∗c = h∗−ϑ . The lemma is proved as the uniqueness
is clear. �
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As we have explained in Section 1.3, the key step is to bound ‖D(µ?f)‖L2

when D ∈ D(G) is a polynomial, which boils down to the study of certain linear
operators on Nθ∪{1}(h∗C)W. Those operators turn out to be from the algebra
S below, which we study now.

Denote by ‹W := X∗ oW the extended affine Weyl group and by ‹W♥ ⊆ ‹W
the subset of reflections. Recall that an element s ∈ ‹W is a reflection if the
locus Hs of fixed points of s on h∗C is an affine hyperplane. For every s ∈ ‹W♥,
we fix an affine function `s on h∗C with zero locus Hs.

For every w ∈ ‹W, we denote by tw the operator on C[h∗C] given by
(twP )(α) = P (w−1α). Let R be the algebra of endomorphisms of C[h∗C] gener-
ated by tw for all w ∈ ‹W and multiplications by elements of C[h∗C]. We consider
R as a left C[h∗C]-module in the obvious way. Put

S := C[h∗C][`−1
s | s ∈ ‹W♥]⊗C[h∗C] R,

T := C(h∗C)⊗C[h∗C] R,

where C(h∗C) denotes the function field of C[h∗C]. We have natural maps R →
S → T of algebras. The algebra S is independent of the choices of {`s | s ∈‹W♥}. The algebra T can be considered as the algebra of endomorphisms of
C(h∗C) generated by tw for all w ∈ ‹W and multiplications by elements of C(h∗C).

The following lemma tells us when an element S ∈ S extends to a linear
operator on Nθ∪{1}(h∗C) and how it behaves with respect to the family of semi-
norms {pϑ,M,r}.

Lemma 2.20. Let S ∈ S be an element satisfying SC[h∗C] ⊂ C[h∗C]. Then
S extends uniquely to a continuous endomorphism of O(h∗C) with respect to the
topology of uniform convergence on compact subsets, which we still denote by S .
Moreover, there exist MS > 0 and rS > 0 such that for every M > 0 and every
r ∈ R, there exists CS,M,r > 0 such that

p1,M,r(Sµ) 6 CS,M,r · p1,M+MS ,r+rS (µ),

max
ϑ∈θ

pϑ,M,r(Sµ) 6 CS,M,r ·max
ϑ∈θ

pϑ,M+MS ,r+rS (µ)

hold for every µ ∈ O(h∗C). In particular,
(1) S preserves the subspace Nθ∪{1}(h∗C);
(2) if SC[h∗C] ⊂ C[h∗C]W , then S preserves the subspace Nθ∪{1}(h∗C)W .

Proof. Note that for the topology of uniform convergence on compact sub-
sets, the subspace C[h∗C] is dense in O(h∗C), hence the uniqueness of the exten-
sion is clear.

Now we show the existence of the extension, with the estimate on pϑ,M,r(Sµ)

together. By definition, S is of the form Θ−1S′, where S′ ∈ R and Θ is a finite
product (possibly with multiplicities) of `s for s ∈ ‹W♥. It is immediate that
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the action of S′ on C[h∗C] extends by continuity to an action on O(h∗C) with the
following property: there exist MS′ > 0 and rS′ > 0 such that for every M > 0

and every r ∈ R, there exists CS′,M,r > 0 such that

p1,M,r(S
′µ) 6 CS′,M,r · p1,M+MS′ ,r+rS′ (µ),

max
ϑ∈θ

pϑ,M,r(S
′µ) 6 CS′,M,r ·max

ϑ∈θ
pϑ,M+MS′ ,r+rS′ (µ)

hold for every µ ∈ O(h∗C). In particular, S′ preserves the subspace Nθ∪{1}(h∗C).
Now the similar properties for S follow from Lemma 2.21 below.

For the last two claims, (1) is an immediate consequence of the estimate
on pϑ,M,r(Sµ), and (2) follows from the uniqueness of the extension. �

Lemma 2.21. For every s ∈ ‹W♥ , there exists Ms > 0 such that for every
M > 0 and every r ∈ R, there exists Cs,M,r > 0 such that

p1,M,r(`
−1
s µ) 6 Cs,M,r · p1,M+Ms,r(µ),

max
ϑ∈θ

pϑ,M,r(`
−1
s µ) 6 Cs,M,r ·max

ϑ∈θ
pϑ,M+Ms,r(µ)

hold for every µ ∈ O(h∗C) that vanishes on Hs . In particular, for a (holomor-
phic) function µ ∈ Nθ∪{1}(h∗C) that vanishes on Hs , the function `−1

s µ belongs
to Nθ∪{1}(h∗C) as well.

Proof. For every fixed ϑ ∈ θ∪{1}, we claim that there exists Ms > 0 such
that for every M > 0 and r ∈ R, there exists Cs,M,r > 0 such that

pϑ,M,r(`
−1
s µ) 6

{
Cs,M,r · pϑ,M+Ms,r(µ) if ϑ = 1,

Cs,M,r ·max
ϑ′∈θ

pϑ′,M+Ms,r(µ) if ϑ 6= 1

holds for every µ ∈ O(h∗C) that vanishes on Hs. The lemma then follows from
this claim.

To prove the claim, let `◦s be the linear part of `s. Take a function µ ∈
Nθ∪{1}(h∗C) that vanishes on Hs.

First suppose that `◦s|h∗ϑ,C 6= 0. Then the claim is an easy consequence
of Cauchy’s integral formula. Indeed, take an element αs ∈ h∗ϑ,C such that
`◦s(αs) = 1. When |`s(α+$)| > 1/2, we have∣∣∣∣ µ(α+$)

`s(α+$)

∣∣∣∣ 6 2|µ(α+$)|,

whereas when |`s(α+$)| 6 1/2, we have∣∣∣∣ µ(α+$)

`s(α+$)

∣∣∣∣ =

∣∣∣∣∣
∫
u∈C×,|u|=1

µ(α+ uαs +$)

`s(α+ uαs +$)
du

∣∣∣∣∣ 6 2 sup
u∈C×,|u|=1

|µ(α+uαs+$)|.
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Together, we obtain∣∣∣∣ µ(α+$)

`s(α+$)

∣∣∣∣ 6 2 sup
|u|61

‖µ(α+ uαs +$)‖.(2.2)

Choose Cs,M,r > 0 such that

2(1 + ‖α+$‖)r 6 Cs,M,r · min
u∈C×,|u|=1

(1 + ‖α+ uαs +$‖)r

holds for every α ∈ h∗ϑ,C with ‖Reα‖ < M and every $ ∈ Y∗ϑ. Then we have

pϑ,M,r(`
−1
s µ) 6 Cs,M,r · pϑ,M+Ms,r(µ)

with Ms := ‖αs‖ depending only on s. Thus, the claim holds.
Now suppose that `◦s|h∗ϑ,C = 0, hence ϑ 6= 1. Since the image of h∗ϑ,C ⊕ Y∗ϑ

under `s is a discrete subset of C, there exists Cs > 0 such that |`s| > Cs on
(h∗ϑ,C ⊕ Y∗ϑ) \Hs. It follows that

sup
α∈h∗ϑ,C,‖Reα‖<M
$∈Y∗ϑ,α+$ 6∈Hs

∣∣∣∣ µ(α+$)

`s(α+$)

∣∣∣∣ · (1 + ‖α+$‖)r 6 C−1
s · pϑ,M,r(µ).(2.3)

It remains to bound `−1
s µ on vertical strips of h∗ϑ,C⊕(Y∗ϑ∩Hs) = (h∗ϑ,C⊕Y∗ϑ)∩Hs.

Let ws ∈ ‹W♥ ∩W be the reflection that is the linear part of s. As `◦s|h∗ϑ,C = 0,
the actions of ws and ϑ on h∗C commute. Thus, the element ϑ′ := wsϑ satisfies
ϑ′2 = 1, hence belongs to θ. However for ϑ′, we have h∗−ϑ′,C = h∗−ϑ,C ∩ ker `◦s and
h∗ϑ,C ⊆ h∗ϑ′,C.

Since the map `◦s induces an isomorphism h∗ϑ′,C ∩ h∗−ϑ,C
∼−→ C, there exists

an element α′s ∈ h∗ϑ′,C such that $′ := $ − α′s ∈ h∗−ϑ′,C for every $ ∈ Y∗ϑ ∩Hs.
Since `◦s|h∗ϑ′,C 6= 0, we obtain from (2.2) that there exists αs ∈ h∗ϑ′,C such that∣∣∣∣ µ(α+$)

`s(α+$)

∣∣∣∣ 6 2 sup
|u|61

|µ(α+ uαs + α′s +$′)|

holds for α + $ ∈ (h∗ϑ,C ⊕ Y∗ϑ) ∩ ker `s. Note that the projection of Y∗ϑ onto
h∗−ϑ′,C coincides with Y∗ϑ′ . Thus, as in the previous case, we may find a constant
Cs,M,r > C−1

s such that

sup
α∈h∗ϑ,C,‖Reα‖<M
$∈Y∗ϑ,α+$∈Hs

∣∣∣∣ µ(α+$)

`s(α+$)

∣∣∣∣ · (1 + ‖α+$‖)r 6 Cs,M,r · pϑ′,M+Ms,r(µ)

with Ms := ‖αs‖+‖α′s‖. Thus, the claim holds after combining with (2.3). �

Now we relate the algebra S to finite dimensional algebraic representations
of G. Let (τ,Wτ ) be a finite dimensional algebraic representation of G, and let

δ : U(g)→ U(g)⊗ End(Wτ )
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be the homomorphism that sends X ∈ g to X ⊗ 1 + 1⊗ τ(X). Let Rτ be the
centralizer of the image of δ. By [Kos75, Th. 4.8], Rτ is a finitely generated
free Z(g)-module, where Z(g) acts on U(g) ⊗ End(Wτ ) by z · (u ⊗ A) = (zu)

⊗A. Recall that we have identified Z(g) with C[h∗C]W via the Harish-Chandra
isomorphism.

Lemma 2.22. For every basis v1, . . . , vr of the finite free Z(g)-module Rτ ,
there exist elements S1, . . . , Sr ∈ S sending C[h∗C] to C[h∗C]W such that

δ(z) =
r∑
i=1

Si(z)vi

for every z ∈ Z(g).

Proof. The basis v1, . . . , vr induces an isomorphism Rτ ' Z(g)⊕r, through
which the right multiplication by δ(z) for z ∈ Z(g) is represented by a matrix
S(z) = (Si,j(z))16i,j6r ∈ Matr(Z(g)). By Lemma 2.23 below, it suffices to
show that for every 1 6 i, j 6 r, the map z ∈ Z(g) 7→ Si,j(z) is induced from
an element of T sending C[h∗C] to C[h∗C]W.

Let Λ(τ) ⊂ X∗ be the set of weights of τ . For every z ∈ Z(g), put

Pz(X) :=
∏

λ∈Λ(τ)

(X − tλz),

which belongs to Z(g)[X] = C[h∗C]W[X], as Λ(τ) is W-invariant. According
to [Kos75, Th. 4.9], we have Pz(δ(z)) = 0, or equivalently Pz(S(z)) = 0 for
every z ∈ Z(g). As the characters z ∈ Z(g) 7→ tλz ∈ C[h∗C] for λ ∈ Λ(τ) are
all distinct, there exist an element P ∈ GLr(C(h∗C)) and a family of weights
λ1, . . . , λr ∈ Λ(τ) such that

S(z) = P

Ö
tλ1z

. . .
tλrz

è
P−1

holds in Matr(C(h∗C)) for every z ∈ Z(g). This shows that for every 1 6 i, j 6 r,
the map Si,j is induced from an element S′i,j ∈ T sending C[h∗C]W to C[h∗C]W.
However, up to replacing S′i,j by |W|−1∑

w∈W S′i,jtw, we see that S
′
i,j also sends

C[h∗C] to C[h∗C]W.
The lemma is proved. �

Lemma 2.23. If an element T ∈ T satisfies TC[h∗C] ⊂ C[h∗C], then T is
contained in the image of S → T .

This lemma is essentially [KK86, Lemma 4.9]. For the readers’ conve-
nience, we give a detailed proof.
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Proof. The lemma amounts to the following: For an irreducible polynomial
P ∈ C[h∗C], and a family (Pw)

w∈W̃ of elements of C[h∗C] with Pw = 0 for all but
finitely many w, if Ñ∑

w∈W̃

Pwtw

é
C[h∗C] ⊂ PC[h∗C],

then either P divides Pw for every w ∈ ‹W, or P ∈ `sC[h∗C] for some s ∈ ‹W♥.
Suppose that P 6∈ `sC[h∗C] for every s ∈ ‹W♥. Then, the zero set of P is not

contained in the union
⋃
w∈W̃\{1} ker(w− 1). This implies that the stabilizer of

a generic element of the zero set Z(P ) := {α ∈ h∗C | P (α) = 0} in ‹W is trivial.
Let α ∈ Z(P ) be such an element. Note that for every Q ∈ C[h∗C], we have∑

w∈W̃

Pw(α)Q(w−1α) = 0.

As the linear forms Q 7→ Q(w−1α) on C[h∗C] are linearly independent, it follows
that Pw(α) = 0 for every generic element α ∈ Z(P ). Thus, P divides Pw for
every w ∈ ‹W. The lemma is proved. �

As we have explained in Section 1.3, we will first prove Theorem 2.13 for
the smaller space Nθ∪{1}(h∗C)W, together with bounds on ‖D(µ ? f)‖L2 , which
is the content of the next proposition.

Proposition 2.24. Theorem 2.13 holds for µ ∈ Nθ∪{1}(h∗C)W . Moreover,
for every D ∈ D(G), there exists a real number MD > 0 such that for every
f ∈ S(G) and every r ∈ R, there exists CD,f,r > 0 such that

‖D(µ ? f)‖L2 6 CD,f,r ·max
ϑ∈θ

pϑ,MD,r(µ)

holds for every µ ∈ Nθ∪{1}(h∗C)W .

Proof. Let C∞c (G)(K) be the subalgebra of C∞c (G) of bi-K-finite func-
tions. As Nθ∪{1}(h∗C)W ⊆ N (h∗C)W, the existence of the function µ ? f for
f ∈ C∞c (G)(K) was essentially proved by Delorme (see Proposition A.1). As
C∞c (G)(K) is dense in S(G), it suggests we show that the map C∞c (G)(K) →
S(G), f 7→ µ ? f , extends continuously to an endomorphism of S(G).

We claim that for every D ∈ D(G), there exists MD > 0 such that for
every r ∈ R, there exists a continuous semi-norm νD,r on S(G) such that

‖D(µ ? f)‖L2 6 νD,r(f) ·max
ϑ∈θ

pϑ,MD,r(µ)(2.4)

holds for every µ ∈ Nθ∪{1}(h∗C)W and f ∈ C∞c (G)(K).
We deduce the proposition assuming the claim. Fix µ ∈ Nθ∪{1}(h∗C)W, and

for every f ∈ S(G), choose a sequence {fn} in C∞c (G)(K) that converges to f .
Then by Remark 2.12, (2.4) implies that µ?fn converges to an element in S(G),
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which we denote by µ ? f . It is easy to see that the map µ? : S(G) → S(G)

satisfies the requirement in Theorem 2.13. The second part of the proposition
follows from (2.4) by taking CD,f,r = νD,r(f).

Now we show the claim. Note that we have a canonical isomorphism
C[G]⊗ U(g) ' D(G) given by P ⊗X 7→ P · L(X), where L(X) stands for the
left invariant differential operator on G associated to X. For X ∈ U(g), we
have L(X)(µ ? f) = µ ? L(X)f . Since the action of L(X) preserves the set of
continuous semi-norms on S(G), it suffices to show (2.4) for D = P ∈ C[G].

First, we consider the case P = 1. By the Plancherel formula of Harish-
Chandra [HC76], there exists a Borel measure dπ on the tempered dual Temp(G)

of G such that

‖f‖2L2 =

∫
Temp(G)

‖π(f)‖2HS dπ

for every f ∈ S(G), where ‖ · ‖HS stands for the Hilbert-Schmidt norm. Thus,
we have

‖µ ? f‖2L2 =

∫
Temp(G)

|µ(χπ)|2‖π(f)‖2HS dπ

for every f ∈ C∞c (G)(K). Let θG be the subset of θ obtained from maximal tori
of G in the way of Lemma 2.19 (see also Remark 2.14). By Harish-Chandra’s
description of the infinitesimal characters of tempered representations [HC75],
the union of χπ for π ∈ Temp(G) is exactly the W-stable subset⋃

ϑ∈θG

ih∗ϑ ⊕ Y∗ϑ

of h∗C. In particular, we have

|µ(χπ)| 6
Å

max
ϑ∈θG

pϑ,1,r(µ)

ã
· (1 + ‖χπ‖)−r

for every π ∈ Temp(G). Choose elements z1, . . . , zN ∈ C[h∗C]W = Z(g) (de-
pending on r) such that

(1 + ‖χπ‖)−2r 6 |z1(χπ)|2 + · · ·+ |zN (χπ)|2

holds for every π ∈ Temp(G). It follows that

‖µ ? f‖2L2 6
Å

max
ϑ∈θG

pϑ,1,r(µ)

ã2 N∑
i=1

∫
Temp(G)

|zi(χπ)|2 · ‖π(f)‖2HS dπ

=

Å
max
ϑ∈θG

pϑ,1,r(µ)

ã2 N∑
i=1

‖zi ? f‖2L2
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for every f ∈ C∞c (G)(K). Thus, we obtain (2.4) with the semi-norm ν1,r given
by

ν1,r(f) :=

(
N∑
i=1

‖zi ? f‖2L2

) 1
2

.

Now we treat the case for general P ∈ C[G]. As P is a finite sum of
matrix coefficients of finite dimensional algebraic representations of G, by lin-
earity, we may as well assume that there exists a finite dimensional algebraic
representation (τ,Wτ ) of G, w ∈Wτ and w∗ ∈W ∗τ such that

P (g) = 〈τ(g)w,w∗〉, g ∈ G.

Let v1, . . . , vr be a basis of the finite free Z(g)-module Rτ , and let S1, . . . , Sr
be elements of S as in Lemma 2.22. By Lemma 2.20, S1, . . . , Sr extend con-
tinuously to endomorphisms of O(h∗C)W for the topology of uniform conver-
gence on compact subsets, which preserve Nθ∪{1}(h∗C)W, for which we use the
same notation. Since the map U(g) ⊗ End(Wτ ) → U(g) ⊗ End(Wτ ) given by
u ⊗ A 7→ (1 ⊗ A)δ(u) is an isomorphism, each element vi in the basis can be
written as a finite sum

vi =
∑
j

(1⊗Aij)δ(uij)(2.5)

for some Aij ∈ End(Wτ ) and uij ∈ U(g). Let Pij ∈ C[G] be the element defined
by Pij(g) := 〈Aijτ(g)w,w∗〉 for g ∈ G. Note that Si, uij , and Pij depend on
the data (τ,Wτ , w, w

∗) only. We make the following claim:

(∗) For every f ∈ C∞c (G)(K),

P (µ ? f) =
∑
i,j

Si(µ) ? PijL(uij)f

holds.

Assuming (∗), by the P = 1 case, we have

‖P (µ ? f)‖L2 6
∑
i,j

‖Si(µ) ? PijL(uij)f‖L2

6
∑
i,j

ν1,r′(PijL(uij)f) ·max
ϑ∈θ

pϑ,1,r′(Si(µ))

for every f ∈ C∞c (G)(K) and every r′ ∈ R. By Lemma 2.20, there existMP > 1,
rP > 0, and CP > 0 such that

max
ϑ∈θ

pϑ,1,r−rP (Si(µ)) 6 CP ·max
ϑ∈θ

pϑ,MP ,r(µ)
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holds for every i and every µ ∈ Nθ∪{1}(h∗C)W. Thus, we obtain (2.4) with the
semi-norm νP,r given by

νP,r(f) := CP
∑
i,j

ν1,r−rP (PijL(uij)f).

It remains to confirm (∗). By the injectivity of the operator valued Fourier
transform, it suffices to check that

π(P (µ ? f)) =
∑
i,j

π(Si(µ) ? PijL(uij)f) =
∑
i,j

Si(µ)(χπ) · π(PijL(uij)f)

(2.6)

for every irreducible admissible representation π of G. By the subquotient the-
orem, it is enough to check (2.6) when π is a principal series whose underlying
space we denote by Vπ. We have the equality

π(P (µ ? f)) = cw∗ ◦ (π ⊗ τ)(µ ? f) ◦ bw(2.7)

in End(Vπ), where bw : Vπ → Vπ ⊗Wτ is the map defined by bw(v) = v ⊗ w,
and cw∗ : Vπ ⊗Wτ → Vπ is the map defined by cw∗(v ⊗ w′) = 〈w′, w∗〉v. By a
density argument, it is even sufficient to establish (2.6) for a principal series in
general position, for which, by Lemma 2.25 below, we can assume that π ⊗ τ
is semisimple.

Assume now that π⊗ τ is semisimple. Let (zn)n be a sequence of elements
of Z(g) converging to µ for the topology of uniform convergence on compact
subsets. As π ⊗ τ decomposes as a direct sum of irreducible admissible repre-
sentations of G, (π ⊗ τ)(zn ? f) converges to (π ⊗ τ)(µ ? f) for the topology
of pointwise convergence. The action of G induces an action of U(g) on (the
smooth vectors in) Vπ, which further induces an action ofRτ ⊆ U(g)⊗End(Wτ )

on Vπ ⊗Wτ . Note that under this action, δ(u) acts by (π ⊗ τ)(u) for every
u ∈ U(g), and z⊗ 1 acts by π(z)⊗ 1Wτ for every z ∈ Z(g). Thus, by (2.5) and
Lemma 2.22, we have

(π ⊗ τ)(zn) = δ(zn) =
r∑
i=1

Si(zn)vi =
∑
i,j

Si(zn)(1⊗Aij)δ(uij)

=
∑
i,j

(π(Si(zn))⊗ 1Wτ ) ◦ (1Vπ ⊗Aij) ◦ (π ⊗ τ)(uij)

=
∑
i,j

Si(zn)(χπ) · (1Vπ ⊗Aij) ◦ (π ⊗ τ)(uij)

in End(Vπ ⊗Wτ ). Pre-composing (π ⊗ τ)(f) and passing to the limit, we get

(π ⊗ τ)(µ ? f) =
∑
i,j

Si(µ)(χπ) · (1Vπ ⊗Aij) ◦ (π ⊗ τ)(L(uij)f),

which, together with (2.7), implies (2.6). The claim (∗) is proved.
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The proof of the proposition is now complete. �

Lemma 2.25. Let P0 = M0N0 be a minimal parabolic subgroup of G, σ an
irreducible (finite dimensional) representation of M0 , and put σξ := σ⊗ ξ for ξ
an unramified character of M0 . Then for ξ in general position, the admissible
representation IGP0

(σξ) ⊗ τ is semisimple, that is, a direct sum of irreducible
admissible representations.

Proof. By the Frobenius reciprocity, IGP0
(σξ)⊗ τ is isomorphic to IGP0

(σξ ⊗
τ |P0), where τ |P0 denotes the restriction of τ to P0 (so that the inducing repre-
sentation is now non-trivial on N0). Let A0 be the split center of M0 and a0 its
Lie algebra. The representation σ ⊗ τ |P0 of P0 admits a filtration indexed by
the characters of a0 for the partial order defined by the cone of positive roots
with respect to P0, such that in the associated graded vector space

⊕
λ∈a∗0,C Vλ,

a0 acts on Vλ by the character λ. This implies that N0 acts trivially on each
of the graded pieces. Thus, {Vλ | λ ∈ a∗0,C} are semisimple representations of
M0 with distinct central characters. Therefore, IGP0

(σξ)⊗ τ admits a filtration
with associated graded representations

⊕
λ∈a∗0,C IGP0

(Vλ ⊗ ξ), and for generic ξ,
the representations {IGP0

(Vλ ⊗ ξ) | λ ∈ a∗0,C} are all semisimple with distinct
infinitesimal characters, hence IGP0

(σξ) ⊗ τ is itself semisimple. The lemma
follows. �

Now we deduce Theorem 2.13 from Proposition 2.24 by a limit process.

Proof of Theorem 2.13. First, we claim that there exists P ∈ C[h∗C]W that
is homogeneous and takes positive real values on

Ä⋃
ϑ∈θ∪{1} ih

∗
ϑ ⊕ h∗−ϑ

ä
\ {0}.

Indeed, such a polynomial can be obtained as follows. Let Wθ be the group of
linear automorphisms of h∗ generated by W and θ. Let P1, . . . , PN be homoge-
neous generators of the kernel of R[h∗]Wθ → R sending P to P (0) (as an ideal
of R[h∗]Wθ) with dj := degPj > 0 for 1 6 j 6 N . Put

P := P
4d′1
1 + · · ·+ P

4d′N
N ,

where d′j := d1 · · · “dj · · · dN . Since P is homogeneous of degree 4d1 · · · dN , we
have P (iα) = P (α) for every α ∈ h∗C. As the only common zero of P1, . . . , PN
is zero, it suffices to show that Pj takes real values on h∗ϑ ⊕ ih∗−ϑ for every
1 6 j 6 N and every ϑ ∈ θ ∪ {1}. Since ϑ(α) = α for α ∈ h∗ϑ ⊕ ih

∗−
ϑ and

since Pj is ϑ-invariant, we have Pj(α) = Pj(ϑ(α)) = Pj(α) = Pj(α), hence
Pj(α) ∈ R for α ∈ h∗ϑ ⊕ ih

∗−
ϑ .

We now choose such a polynomial P as above, of degree d > 0. It has the
following property: there exist δ > 0 and ε > 0 such that for every ϑ ∈ θ∪{1},
every α ∈ h∗ϑ,C, and every $ ∈ h∗−ϑ satisfying ‖α+$‖ = 1,

ReP (α+$) > ε
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holds as long as ‖Reα‖ 6 δ. In particular, for every ϑ ∈ θ ∪ {1} and M > 0,

ReP (α+$) = ‖α+$‖d · ReP

Å
α+$

‖α+$‖

ã
> ε‖α+$‖d

holds if ‖Reα‖ < M and ‖α + $‖ > δ−1M . This implies the following state-
ments:

(1) For every M > 0 and every r < 0, there exists CM,r > 0 such that

|exp (−P (α+$))| < CM,r(1 + ‖α+$‖)r

holds for every ϑ ∈ θ ∪ {1}, every α ∈ h∗ϑ,C with ‖Reα‖ < M , and every
$ ∈ Y∗ϑ.

(2) For every ε > 0 that is sufficiently small and every M > 0, there exists
Cε,M > 0 such that

|exp (−P (α+$))− 1| 6 Cε,M‖α+$‖ε

holds for every ϑ ∈ θ ∪ {1}, every α ∈ h∗ϑ,C with ‖Reα‖ < M , and every
$ ∈ Y∗ϑ.

Now we take an element µ ∈ Mθ∪{1}(h
∗
C)W and define functions µn for

every integer n > 1 by the formula

µn(α) = exp
(
−P

(α
n

))
· µ(α), α ∈ h∗C.

By Definition 2.8(2), for every M > 0, we may choose rM ∈ R such that
pϑ,M,rM (µ) <∞ holds for every ϑ ∈ θ ∪ {1}.

From (1), we obtain pϑ,M,r(µn) < ∞ for every ϑ ∈ θ ∪ {1}, every M > 0,
every r > rM , and every n > 1. Thus, µn ∈ Nθ∪{1}(h∗C)W for every n > 1.
From (2), we obtain

lim
n→∞

pϑ,M,r(µn − µ) = 0

for every ϑ ∈ θ ∪ {1}, every M > 0, and every r < rM . Then, by Proposi-
tion 2.24 and Remark 2.12, for every f ∈ S(G), {µn?f}n>1 is a Cauchy sequence
in S(G); we denote its limit (in S(G)) by µ ? f . It follows immediately that
π(µ ? f) = µ(χπ) · π(f) holds for every irreducible admissible representation π
of G. The theorem is proved. �

Remark 2.26. In fact, from the proof of Theorem 2.13, we see that for every
µ ∈Mθ∪{1}(h

∗
C), µ? is continuous and preserves the subalgebra S(G)(K) of bi-

K-finite functions in S(G). Moreover, our argument of deducing Theorem 2.13
from Proposition 2.24 can be applied to deduce from Proposition A.1 that every
element ofM(h∗C) gives a multiplier of S(G)(K).
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3. Isolation of spectrum

In this section, we state and prove various results on the isolation of cus-
pidal components of the L2-spectrum. In Section 3.1, we introduce several
important definitions and state the results. In Section 3.2, we recall the coarse
Langlands decomposition, cuspidal data, and cuspidal components. In Sec-
tion 3.3, we show how to annihilate all but finitely many cuspidal components.
We finish the proof in Section 3.4.

Let F be a number field.

3.1. Statement of results. We consider a connected reductive algebraic
group G over F . Let g be the complex Lie algebra of G ⊗Q C, and let Z
be the maximal F -split torus in the center of G. Let SG be the set of primes of
F such that Gv is ramified. We fix a maximal compact subgroup K0 of G(AF ),
and a Haar measure dg =

∏
v dgv on G(AF ), such that K0,v is hyperspecial

maximal with volume 1 under dgv for every prime v not in SG.
We first recall the definition of the L2-spectrum for G. Take a unitary

automorphic character

ω : Z(AF )→ C×.

We define L2(G(F )\G(AF ), ω) to be the L2 completion of the subspace of
smooth functions ϕ on G(AF ) satisfying

• ϕ(zγg) = ω(z)ϕ(g) for every z ∈ Z(AF ), γ ∈ G(F ), and g ∈ G(AF );
• |ϕ|2, regarded as a function on Z(AF )G(F )\G(AF ), is integrable.

The group G(AF ) acts on L2(G(F )\G(A), ω) via the right regular representa-
tion R, which preserves the subspace L2

cusp(G(F )\G(A), ω) of cuspidal func-
tions.

Definition 3.1. We define the space of Schwartz test functions to be

S(G(AF )) := S(G∞)⊗ S(G(A∞F )),

which is endowed with the convolution product with respect to the fixed Haar
measure dg. Here, S(G(A∞F )) denotes the restricted tensor product of S(G(Fv))

for v -∞, where S(G(Fv)) is nothing but C∞c (G(Fv)).

The algebra S(G(AF )) acts on L2(G(F )\G(AF ), ω) continuously via the
right regular representation R, with respect to the Haar measure dg.

Definition 3.2.We say a Schwartz test function f ∈S(G(AF )) is ω-quasi-
cuspidal (or simply quasi-cuspidal when ω = 1 is the trivial character) if
the image of the endomorphism R(f) on L2(G(F )\G(AF ), ω) is contained in
L2

cusp(G(F )\G(AF ), ω).
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For every prime v 6∈ SG, we let

HG,v := C[K0,v\G(Fv)/K0,v]

be the spherical Hecke algebra of Gv (with respect to K0,v) with the unit 1K0,v .
For a (possibly infinite) set T of primes of F containing SG, we let HT

G be the
restricted tensor product of HG,v for primes v 6∈ T.

Definition 3.3. A T-character (for G) is a pair χ = (χ∞, χ
∞,T) in which

χ∞ is a character of Z(g) and χ∞,T is a character of HT
G.

5

For a T-character χ and a prime v 6∈ T, its v-component χv, which is a
character of HG,v, gives rise to a (K0,v-)spherical (irreducible admissible) rep-
resentation of G(Fv), unique up to isomorphism. For an irreducible admissible
representation π = ⊗vπv of G(AF ) such that πK0,v

v 6= {0} for every prime v 6∈ T,
we have the induced T-character χπT = (χπ∞ , χπ∞,T).

The following definition mimics the original notion of CAP representations
by Piatetski-Shapiro [PS82]. In this section, we will only use it for G′ = G,
while the more general case will be used in Section 4.

Definition 3.4. Let G′ be an inner form of G (over F ). We say that a
T-character χ is (G′, T)-CAP if there exist a proper parabolic subgroup P ′ of
G′ and a cuspidal automorphic representation σ of MP ′(AF ), where MP ′ :=

P ′/NP ′ , such that for all but finitely many primes v of F not in T for which
Gv ' G′v, the spherical representation corresponding to χv is a constituent of
IG
′

P ′(σv). For an irreducible admissible representation π of G(AF ), we say that
π is (G′, T)-CAP if χπT is.

Now we fix
• a subset T of primes of F containing SG and a T-character χ = (χ∞, χ

∞,T);
• a finite set S of primes of F satisfying SG ⊆ S ⊆ T; and
• a subgroup K ⊆ K∞0 of finite index of the form K = KS ×

∏
v 6∈SK0,v.

We denote by S(G(A∞F ))K the subalgebra of S(G(A∞F )) of bi-K-invariant func-
tions, and we put

S(G(AF ))K := S(G∞)⊗ S(G(A∞F ))K .

For ? = ∅, cusp, let L2
?(G(F )\G(AF )/K, ω) ⊆ L2

?(G(F )\G(AF ), ω) be the
subspace consisting of functions that are invariant under R(K), on which
S(G(AF ))K acts continuously via the right regular representation R. We de-
note by

L2
cusp(G(F )\G(AF )/K, ω)[χ] ⊆ L2

cusp(G(F )\G(AF )/K, ω)

5Warning: T-characters are actually characters away from T; same for T-multipliers later.
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the maximal closed subspace of which Z(g) ⊗ HT
G acts on its smooth vectors

by the character χ∞ ⊗ χ∞,T.
The connected reductive group G ⊗Q R over R determines a root datum

(X∗,Φ,X∗,Φ
∨) and a subset θ ⊆ Aut(X∗,Φ,X∗,Φ

∨)♥ as at the beginning of
Section 2.3. We adopt the notation from Section 2.2. For an element µ ∈
O(h∗C)W ⊗ HT

G, we may evaluate µ on χ to obtain a complex number µ(χ).
Theorem 2.13 provides us with a linear map M]

θ(h
∗
C)W → Mul(S(G∞)) (see

Remark 2.17).

Definition 3.5. A T-multiplier of S(G(AF ))K is an element in M]
θ(h
∗
C)W

⊗HT
G.

As HT
G is contained in the center of S(G(A∞F ))K , a T-multiplier µ induces

a multiplier
µ? ∈ Mul(S(G(AF ))K)

of S(G(AF ))K . Now we can state our main results on the isolation of the
spectrum.

Theorem 3.6. Suppose that χ is not (G, T)-CAP (Definition 3.4). Then
there exists a T-multiplier µ of S(G(AF ))K such that for every f ∈ S(G(AF ))K ,
(1) R(µ ? f) maps L2(G(F )\G(AF )/K, ω) into L2

cusp(G(F )\G(AF )/K, ω)[χ];
(2) µ(χ) = 1.
In particular, µ?f is an ω-quasi-cuspidal Schwartz test function (Definition 3.2).

In particular, Theorem 1.1 follows by taking T = S and χ = χπT .
For general χ, we have the following theorem. In fact, we will prove a

stronger result in Theorem 3.19 below.

Theorem 3.7. There exists a T-multiplier µ of S(G(AF ))K such that for
every f ∈ S(G(AF ))K ,
(1) R(µ?f) maps L2

cusp(G(F )\G(AF )/K, ω) into L2
cusp(G(F )\G(AF )/K, ω)[χ];

(2) µ(χ) = 1.

Remark 3.8. In the above two theorems, we do not require that χ = χπT

for an irreducible admissible representation π of G(AF ).

The remaining part of this section will be devoted to the proof of the above
two theorems.

3.2. Cuspidal data and cuspidal components. We recall the notion of cus-
pidal data and cuspidal components for the group G. We fix
• a minimal Levi subgroup M0 of (a parabolic subgroup of) G;
• a minimal parabolic subgroup P0 of G containing M0; and
• a maximal torus T of G⊗Q R over R that is contained in M0 ⊗Q R.
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Without lost of generality, we assume that the fixed maximal compact subgroup
K0 of G(AF ) is admissible relative to M0(AF ) (in the sense of [Art81, §1]). We
identify X∗ with the weight lattice of TC. Let W(G,M0) be the Weyl group of
the pair (G,M0). We say that a subgroupM of G is a standard Levi subgroup if
there exists a parabolic subgroup of G containing P0, of which M is the unique
Levi subgroup containing M0.

For a standard Levi subgroup M of G, we denote by

• ZM the center of M (in particular, Z is the maximal F -split torus in ZG);
• PM the unique parabolic subgroup of G containing P0, of which M is a Levi
subgroup;
• ΩM (ω) the set of unitary automorphic characters ωM : ZM (AF ) → C× sat-
isfying ωM |Z(AF ) = ω;
• M(AF )1 the intersection of the kernels of all automorphic charactersM(AF )

→ R×+, and
• aM the real vector space Z(AF )M(AF )1\M(AF ).6

For s ∈ a∗M,C, we denote by ξs : Z(AF )M(AF )1\M(AF )→ C× the correspond-
ing (automorphic) character obtained by composing s with the exponential
map exp: C→ C×, which is unitary if and only if s ∈ ia∗M . For an admissible
representation σ of M(AF ), we put σs := σ ⊗ ξs for s ∈ a∗M,C.

Definition 3.9. For a cuspidal automorphic representation σ of M(AF )

with central character ωM ∈ ΩM (ω), we denote by

L2(M,σ) ⊆ L2
cusp(M(F )\M(AF ), ωM )

the maximal closed σ-isotypic subspace.
We define C(M,ω) to be the set of isomorphism classes of cuspidal auto-

morphic representations of M(AF ) whose central character belongs to ΩM (ω),
and an equivalence relation ∼ on C(M,ω) by the following rule: σ ∼ σ′ if there
exists s∈ ia∗M such that σ′=σs. Let C(M,ω)♥ be the quotient of C(M,ω) by ∼.

We define D(G,ω) to be the set of pairs (M,σ), where M is a standard
Levi subgroup of G and σ ∈ C(M,ω), and an equivalence relation ≈ on D(G,ω)

by the following rule: (M,σ) ≈ (M ′, σ′) if there exists w ∈W(G,M0) such that
M ′ = Mw and σ′ ∼ σw in the sense above. We denote byD(G,ω)♥ the quotient
of D(G,ω) by ≈.

By [Lan76, Lemma 4.6(i)] or [MW95, II.2.4], we have the decomposition

L2(G(F )\G(AF ), ω) =
⊕̂

(M,σ)∈D(G,ω)♥

L2
(M,σ)(G(F )\G(AF ), ω)(3.1)

6In fact, aM is usually denoted by aGM (for example in [Art05, Art13]); it is the real Lie
algebra of the maximal Q-split torus contained in ResF/Q Z\M .
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of Hilbert spaces, known as the coarse Langlands decomposition. We call an ele-
ment (M,σ) inD(G,ω)♥ a cuspidal datum, and we call L2

(M,σ)(G(F )\G(AF ), ω)

the (automorphic) cuspidal component associated to (M,σ).
For the readers’ convenience, we recall the construction of the cuspi-

dal component L2
(M,σ)(G(F )\G(AF ), ω). For (M,σ) ∈ D(G,ω), we denote by

AG(M,σ) the space of R(K0)-finite smooth functions φ on NPM (AF )\G(AF ) sat-

isfying that for every x ∈ K0, the function φx : m 7→ δ
−1/2
PM

(m)φ(mx) is an
automorphic form on M(AF ) contained in L2(M,σ), where δPM is the modu-
lus character of PM . For every Paley–Wiener function

Φ: a∗M,C → AG(M,σ)

valued in a finite dimensional subspace of AG(M,σ), we put

Φ̃(g) :=

∫
ia∗M

Φs(g) · ξs(m(g)) ds

for g ∈ P (F )\G(AF ), where m(g) ∈ Z(AF )M(AF )1\M(AF ) denotes the image
of the M(AF )-component of g under the Iwasawa decomposition G(AF ) =

NPM (AF )M(AF )K0. We have the pseudo-Eisenstein series

E(g,Φ) :=
∑

γ∈P (F )\G(F )

Φ̃(γg),

which belongs to L2(G(F )\G(AF ), ω). Then L2
(M,σ)(G(F )\G(AF ), ω) is defined

to be the closure of the subspace spanned by E(−,Φ) for all Paley–Wiener
functions Φ as above. We have that

L2
(M,σ)(G(F )\G(AF ), ω) = L2

(M ′,σ′)(G(F )\G(AF ), ω)

if and only if (M,σ) ≈ (M ′, σ′).
Let L2

(M,σ)(G(F )\G(AF )/K, ω) ⊆ L2
(M,σ)(G(F )\G(AF ), ω) be the sub-

space consisting of functions that are invariant under R(K). Taking R(K)-
invariants, (3.1) induces the following decomposition of Hilbert spaces:

L2(G(F )\G(AF )/K, ω) =
⊕̂

(M,σ)∈D(G,ω)♥

L2
(M,σ)(G(F )\G(AF )/K, ω).(3.2)

3.3. Annihilation of all but finitely many components . We start to prove
the results in Section 3.1. In particular, we fix the T-character χ = (χ∞, χ

∞,T),
the subsets SG ⊆ S ⊆ T of primes of F , and the subgroup K ⊆ K∞0 . In this
subsection, we construct an element µχ∞ ∈ M]

θ(h
∗
C)W satisfying µχ∞(χ∞) 6= 0

and such that R(µχ∞ ? f) annihilates all but finitely many cuspidal components
in (3.2).

Take a standard Levi subgroupM of G. LetMder be the derived subgroup
ofM . Let X∗M be the weight lattice of (T∩Mder⊗QR)C, and put b∗M := X∗M⊗ZR.
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Then we have a canonical map X∗ → X∗M , which induces a surjective map
h∗ → b∗M . Denote by c∗M the kernel of h∗ → b∗M , which canonically contains a∗M .

Remark 3.10. In fact, c∗M/a
∗
M is canonically the real cotangent space of

ZM (AF )1Z(AF ) at the identity. Thus, c∗M = a∗M holds if and only if Z = 1 and
ZM (AF )1 is discrete, and c∗M = a∗M holds for every standard Levi subgroup M
if and only if G is semisimple and split over Q.

Denote by γM : h∗ → h∗/a∗M the quotient map. We have a canonical
decomposition h∗ = c∗M ⊕ b∗M , which gives rise to two linear maps

γ+
M : h∗ → c∗M/a

∗
M , γ−M : h∗ → b∗M ,

so that γM = γ+
M ⊕ γ

−
M . Let WM be the Weyl group of the pair (M ⊗Q C, TC),

which is canonically a subgroup of W and acts on c∗M trivially. For every
element σ ∈ C(M,ω) and every s ∈ a∗M,C, the infinitesimal character χσs,∞
is a WM -orbit in h∗C, satisfying that γM (χσs,∞) ⊆ h∗C/a

∗
M,C does not depend

on s, hence only on the class of σ in C(M,ω)♥. We also denote by χGσs,∞ the
infinitesimal character of IndGPM (χσs,∞), which is simply the W-orbit of χσs,∞
in h∗C.

The Casimir operator for Mder ⊗Q R defines a map

λM : b∗M,C → C,

which is a WM -invariant polynomial function.

Definition 3.11. We say that an element σ ∈ C(M,ω)♥ is χ∞-typical if
both
• γ+

M (χσ∞) ∈ γ+
M (χ∞) and

• λM (γ−M (χσ∞)) ∈ λM (γ−M (χ∞))

hold. Denote by C(M,ω)♥χ∞ the subset of C(M,ω)♥ consisting of χ∞-typical
elements.

Informally speaking, χ∞-typical elements are those whose infinitesimal
characters cannot be distinguished from χ∞ via the two maps γ+

M and λM ◦ γ−M ,
hence their associated cuspidal components will not be annihilated by the
method described below in this subsection.

Now we start the construction of µ∞, following the strategy (the first two
steps) described in Section 1.3. We first choose an element µ0

∞ ∈ M
]
θ(h
∗
C)W

such that µ0
∞(χ∞) 6= 0, which is possible by Lemma 2.10. We denote by

T := T(µ0
∞) the finite set of K0,∞-types from Lemma 2.18. For every standard

Levi subgroup M of G, we
• put KM

0,∞ := M∞ ∩K0,∞, which is a maximal compact subgroup of M∞;
• fix a finite set TM of KM

0,∞-types satisfying the following property: if σ is an
irreducible admissible representation of M∞ such that IGPM (σ)|K∞ contains
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a member from T, then σ|KM
0,∞

contains a member from TM (when M = G,
we take TM = T);
• fix an open compact subgroup KM,S of M(FS) satisfying the following prop-
erty: if σ is an irreducible admissible representation of M(FS) such that
IGPM (σ)KS 6= {0}, then σKM,S 6= {0} (when M = G, we take KM,S = KS);
• put KM,v := M(Fv) ∩ Kv for every prime v of F not in S, which is a
hyperspecial maximal subgroup of M(Fv);
• put KM := KM,S ×

∏
v 6∈SKM,v.

Let C(M,ω;KM ,TM ) be the subset of C(M,ω) consisting of σ satisfying
σKM 6= {0} and that σ|KM

0,∞
contains a member from TM . It is clear that

C(M,ω;KM ,TM ) is closed under the equivalence relation ∼ in Definition 3.9.
Let C(M,ω;KM ,TM )♥ be the quotient of C(M,ω;KM ,TM ) by ∼.

Put KMder
:= KM ∩Mder(A∞F ) and KMder

0,∞ := KM
0,∞ ∩Mder,∞. Let TMder

be the (finite) set of KMder
0,∞ -types that appear in the restriction of members in

TM to KMder
0,∞ . Denote by C(Mder;KMder

,TMder
) the set of isomorphism classes

of cuspidal automorphic representations ς of Mder(AF ) satisfying ςKMder 6= {0}
and that ς|

K
Mder
0,∞

contains a member from TMder
.

The following lemma is crucial for us to construct functions in M(h∗C)W

that vanish on χσ∞ for σ not χ∞-typical.

Lemma 3.12. The subset

Λ(M,ω;KM ,TM ) := {λM (γ−M (χσ∞)) | σ ∈ C(M,ω;KM ,TM )} ⊆ C

is of finite rank (Definition 2.1).

Proof. It suffices to show that the subset of Casimir eigenvalues of elements
in C(Mder;KMder

,TMder
) is of finite rank. As TMder

is a finite set, this is a direct
consequence of [Don82, Th. 9.1]. �

The following lemma shows that there are only finitely many χ∞-typical
elements in C(M,ω;KM ,TM )♥.

Lemma 3.13. The set C(M,ω;KM ,TM )♥
⋂

C(M,ω)♥χ∞ is finite.

Proof. There are only finitely many elements in C(Mder;KMder
,TMder

)

whose Casimir eigenvalue belongs to the set λM (γ−M (χ∞)) by [Don82, Th. 9.1].
It follows that there are only finitely many elements in C(M,ω;KM ,TM )♥

that are χ∞-typical. In other words, the set C(M,ω;KM ,TM )♥
⋂
C(M,ω)♥χ∞

is finite. �

The following lemma achieves the goal in the second step of the strategy
described in Section 1.3.
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Lemma 3.14. For every standard Levi subgroup M of G, there exists an
element µM∞ ∈ M

]
θ(h
∗
C)W satisfying µM∞(χ∞) 6= 0, and such that for every

σ ∈ C(M,ω;KM ,TM )♥ \ C(M,ω)♥χ∞ , µM∞ vanishes on χGσs,∞ , the infinitesimal
character of IndGPM (σs,∞), for every s ∈ a∗M,C .

Proof. We first consider the special case where cM = aM . In this case, we
have γM = γ−M : h∗ → b∗M . By Lemma 3.12, we may apply Corollary 2.5 to
the subset Λ = Λ(M,ω;KM ,TM ) \ λM (γM (χ∞)), hence obtain a holomorphic
function ν on b∗M,C that has moderate vertical growth, and vanishes exactly on
λ−1
M (Λ(M,ω;KM ,TM ) \ λM (γM (χ∞))). We regard ν as a function on h∗C via

the quotient map γM : h∗C → b∗M,C. By construction, ν is nowhere vanishing on
χ∞, and vanishes on χσs,∞ for every σ ∈ C(M,ω;KM ,TM )♥ \ C(M,ω)♥χ∞ and
s ∈ a∗M,C. Finally, put

µM∞ := µ0
∞ ·

∏
w∈W

ν ◦ w,

which belongs to M]
θ(h
∗
C)W by Remark 2.9(3); it satisfies the requirements in

the lemma.
Now we treat the general case where cM/aM might be non-trivial. The ex-

tra work is to treat the factor γ+
M . For every element σ ∈ C(M,ω;KM ,TM )♥,

the restriction of the central character of σs to ZM (AF )1Z(AF ), say ωσ, is
independent of s. Moreover, the infinitesimal character of ωσ,∞, which is
canonically an element in c∗M,C/a

∗
M,C by Remark 3.10, is simply γ+

M (χσs,∞).
Since ωσ|Z(AF ) = ω, ωσ is invariant under ZM (F ) · (KM ∩ ZM (A∞F )), and
ZM (F )\ZM (AF )1/KM ∩ ZM (A∞F ) is a compact abelian real Lie group, there
exists a lattice LM of c∗M,C/a

∗
M,C such that γ+

M (χσs,∞) is contained in LM for ev-
ery σ ∈ C(M,ω;KM ,TM )♥. Applying Corollary 2.6 to U = c∗M/a

∗
M , L = LM ,

and A = γ+
M (χ∞), we obtain a holomorphic function ν+ on c∗M,C/a

∗
M,C that has

moderate vertical growth, vanishes on LM \γ+
M (χ∞), and is nowhere vanishing

on γ+
M (χ∞). On the other hand, similar to the special case, we have a holo-

morphic function ν− on b∗M,C that has moderate vertical growth, and vanishes
exactly on λ−1

M (Λ(M,ω;KM ,TM ) \ λM (γ−M (χ∞))). Put

ν := ν+ × ν− : c∗M,C/a
∗
M,C ⊕ b∗M,C → C,

which we regard as a function on h∗C via the quotient map h∗C → h∗C/a
∗
M,C. As

in the special case, we put

µM∞ := µ0
∞ ·

∏
w∈W

ν ◦ w,

which belongs toM]
θ(h
∗
C)W and satisfies the requirements in the lemma. �



ISOLATION OF CUSPIDAL SPECTRUM 555

By definition, we have an identification
∐
M C(M,ω) = D(G,ω), which

induces a surjective map ∐
M

C(M,ω)♥ → D(G,ω)♥(3.3)

by passing to the equivalence relations. We denote by D(G,ω;K,T)♥ the image
of ∐

M

C(M,ω;KM ,TM )♥

under the map (3.3), and by D(G,ω;K,T)♥χ∞ we denote the image of∐
M

C(M,ω;KM ,TM )♥ ∩ C(M,ω)♥χ∞

under the map (3.3). Now we can construct the desired function µ∞ in the
following proposition.

Proposition 3.15. The function

µ∞ := µ0
∞ ·
∏
M

µM∞ ,

in which the product is taken over standard Levi subgroups of G and µM∞ is a
function obtained from Lemma 3.14,7 belongs toM]

θ(h
∗
C)W and satisfies µ∞(χ∞)

6= 0. Moreover, for every f ∈ S(G(AF ))K , the endomorphism R(µ∞ ? f) of
L2(G(F )\G(AF )/K, ω) annihilates the subspace L2

(M,σ)(G(F )\G(AF )/K, ω) if
(M,σ) does not belong to D(G,ω;K,T)♥χ∞ .

Note that by Lemma 3.13, D(G,ω;K,T)♥χ∞ is a finite set.

Proof. The first statement is clear from the construction.
By the description of L2

(M,σ)(G(F )\G(AF )/K, ω) recalled in the last sub-
section, it suffices to show that R(µ∞ ? f)E(−,Φ) = 0 for every Paley–Wiener
function Φ. By Remark 2.26, it suffices to consider the case where f , hence
µ∞ ? f , are bi-K0,∞-finite. Then since R(µ∞ ? f)E(−,Φ) = E(−,R(µ∞ ? f)Φ),
it suffices to show that IndGPM (σs)(µ∞ ? f) = 0 for every s ∈ a∗M,C. Note that
we have

IndGPM (σs)(µ∞ ? f) = µ∞(χGσs,∞) · IndGPM (σs)(f).

Take an element (M,σ) ∈ D(G,ω) whose image in D(G,ω)♥ does not belong
to D(G,ω;K,T)♥χ∞ . If σKM = {0}, then we have IndGPM (σs)(f) = 0 by our
choice of KM . If σ|KM

0,∞
does not contain any member from TM , then we

have µ∞(χGσs,∞) = µ0
∞(χGσs,∞) = 0 for every s ∈ a∗M,C by our choice of TM .

7In fact, it suffices to take the product over a set of representatives of standard Levi
subgroups of G with respect to the conjugation action of W(G,M0).
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Otherwise, we must have µ∞(χGσs,∞) = 0 for every s ∈ a∗M,C by the property of
µM∞ from Lemma 3.14. The proposition follows. �

3.4. Proof of results. To annihilate components L2
(M,σ)(G(F )\G(AF )/K, ω)

in which σ is possibly χ∞-typical, mixed multipliers from both archimedean
and non-archimedean places are needed.

Definition 3.16. For an element (M,σ) ∈ D(G,ω), we say the T-character
χ occurs in (M,σ) if there exists s ∈ a∗M,C such that

• χGσs,∞ = χ∞;
• for every prime v of F not in T, the spherical representation corresponding
to χv is a constituent of IndGPM (σs,v).

It is clear that such property depends only on the equivalence class of (M,σ) in
D(G,ω)♥. We denote by D(G,ω)♥χ the subset of D(G,ω)♥ in which χ occurs.

We need to annihilate every element (M,σ) ∈ D(G,ω) in which χ does
not occur, which is possible by the following proposition.

Proposition 3.17. Let (M,σ) be an element in D(G,ω). Assume that χ
does not occur in (M,σ). Then there exists a T-multiplier µ(M,σ) of S(G(AF ))K
satisfying

(1) the endomorphism R(µ(M,σ) ? f) of L2(G(F )\G(AF )/K, ω), for every f ∈
S(G(AF ))K , annihilates L2

(M,σ)(G(F )\G(AF )/K, ω);
(2) µ(M,σ)(χ) 6= 0.

Proof. We may assume that σKM 6= {0}; otherwise

L2
(M,σ)(G(F )\G(AF )/K, ω) = {0},

hence the proposition is trivial. Then for every s ∈ a∗M,C and every prime
v of F not in T, we have IGPM (σs,v)

Kv 6= {0}, which gives rise to a character
χGσs,v : HG,v → C. Then we have a character

χG
σ∞,Ts

: HT
G → C.

We also recall the infinitesimal character χGσs,∞ of IGPM (σs,∞), which is simply
the W-orbit of χσs,∞ in h∗C. Thus, we obtain a T-character χGσTs = (χGσs,∞ , χ

G
σ∞,Ts

)

for G. We suppress the superscript G when M = G.
We first consider the easy case where M = G. Since χ does not oc-

cur in (G, σ), we have either χσ∞ 6= χ∞ or χσ∞,T 6= χ∞,T. In the first
case, by Lemma 2.10, we can find an element µ(M,σ) ∈ M

]
θ(h
∗
C)W satisfying

µ(M,σ)(χ∞) 6= 0. After multiplying by a suitable element in C[h∗C]W, we may
further require that µ(M,σ)(χσ∞) = 0. In the second case, we can certainly find
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an element µ(M,σ) ∈ HT
G satisfying µ(M,σ)(χσ∞,T) = 0 but µ(M,σ)(χ

∞,T) 6= 0.
The proposition follows.

We now consider the hard case where M is a proper standard Levi sub-
group. Recall that a∗M is canonically a subspace of h∗. We fix
• an element ασ in χσ∞ ⊆ h∗C,
• an element αχ in χ∞ ⊆ h∗C,
• a linear splitting map ` : h∗ → a∗M of the subspace a∗M ⊆ h∗.
For w ∈ W, put sw := `(wαχ) − `(ασ) ∈ a∗M,C. Since χ does not occur in
(M,σ), for every w ∈W, we can take v[w] to be either ∞ or a prime of F not
in T such that χGσsw,v[w]

6= χv[w]. It allows us to choose an element νw ∈ HG,v[w]

(we regard HG,∞ as C[h∗C]W) such that

νw(χv[w]) 6= νw(χGσsw,v[w]
).(3.4)

Note that for every w′ ∈ W, the function α 7→ νw(χGσ`(w′α)−`(ασ),v[w]
) is of

exponential type, hence belongs to Oexp(h∗C). We put

ν†w,w′ := νw − νw(χGσ`◦w′(−)−`(ασ),v[w]
),

regarded as an element inOexp(h∗C)⊗HT
G. Then (3.4) simply says ν†w,w(αχ, χ

∞,T)

6= 0. From this, it is elementary to see that there exist complex constants
{Cw}w∈W such that ∑

w∈W
Cwν

†
w,w′(αχ, χ

∞,T) 6= 0

for every w′ ∈W. Put
ν†w′ :=

∑
w∈W

Cwν
†
w,w′ .

Then put
ν† :=

∏
w′∈W

ν†w′ ,

which is an element in Oexp(h∗C)W ⊗HT
G, satisfying ν

†(χ) 6= 0.
Now we claim that ν†(χGσTs) = 0 for every s ∈ a∗M,C. Note that the element

ασ + s ∈ h∗C belongs to χGσs,∞ . Since we have

ν†1(ασ + s, χG
σ∞,Ts

) =
∑
w∈W

Cwν
†
w,1(ασ + s, χG

σ∞,Ts
)

=
∑
w∈W

Cw
Ä
νw(χGσs,v[w]

)− νw(χGσ`(ασ+s)−`(ασ),v[w]
)
ä

= 0,

the claim follows. It is easy to find an element µ† ∈M(h∗C)W satisfying µ†(χ∞)

6= 0, and such that µ† · ν† belongs toM(h∗C)W ⊗HT
G. Then by Remark 2.9(3),

µ(M,σ) := µ0
∞ · µ† · ν†

is a T-multiplier of S(G(AF ))K , satisfying µ(M,σ)(χ) 6= 0.
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It remains to show that for every f ∈ S(G(AF ))K , the endomorphism
R(µ(M,σ) ? f) annihilates L2

(M,σ)(G(F )\G(AF )/K, ω). However, this follows
from the same argument as in the proof of Proposition 3.15 since for every
s ∈ a∗M,C, we have µ(M,σ)(χ

G
σTs

) = 0. Thus, the proposition follows. �

Remark 3.18. The idea of constructing the element ν† in the proof of
Proposition 3.17 is inspired by [LV07]. The similar construction also appeared
in [YZ17] in the case where G = PGL2 and F is a function field.

The following theorem is the most general form on isolating cuspidal com-
ponents, from which we will deduce Theorems 3.6 and 3.7.

Theorem 3.19. Let χ be a T-character. There exists a T-multiplier µ of
S(G(AF ))K such that
(1) for every f ∈ S(G(AF ))K , the image of the endomorphism

R(µ ? f) : L2(G(F )\G(AF )/K, ω)→ L2(G(F )\G(AF )/K, ω)

is contained in ⊕
(M,σ)∈D(G,ω)♥χ

L2
(M,σ)(G(F )\G(AF )/K, ω)

under the decomposition (3.9), where D(G,ω)♥χ is as introduced in Defini-
tion 3.16;

(2) µ(χ) = 1.

In particular, Theorem 1.3 follows by taking T = S and χ = χπT , and the
strong multiplicity one property for G = ResF ′/F GLn [PS79].

Proof. By Lemma 3.13, we know thatD(G,ω;K,T)♥χ∞ is a finite set. Thus,
we may choose a finite subsetD ⊆ D(G,ω) that maps surjectively to the (finite)
set D(G,ω;K,T)♥χ∞ \D(G,ω)♥χ . Now we put

µ := µ∞ ·
∏

(M,σ)∈D

µ(M,σ)

from Propositions 3.15 and 3.17, which is a T-multiplier of S(G(AF ))K . Then
(1) is satisfied. For (2), we only need to replace µ by µ(χ)−1µ as µ(χ) 6= 0.
The theorem follows. �

Proof of Theorems 3.6 and 3.7. Note that the intersection

L2
cusp(G(F )\G(AF )/K, ω)

⋂ ⊕̂
(M,σ)∈D(G,ω)♥χ

L2
(M,σ)(G(F )\G(AF )/K, ω)

is exactly L2
cusp(G(F )\G(AF )/K, ω)[χ]. Thus, Theorem 3.7 immediately fol-

lows from Theorem 3.19. Moreover, Theorem 3.6 follows from Theorem 3.19
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and the relation⊕̂
(M,σ)∈D(G,ω)♥χ

L2
(M,σ)(G(F )\G(AF )/K, ω) ⊆ L2

cusp(G(F )\G(AF )/K, ω)

since χ is not G-CAP. �

Remark 3.20. In fact, we may use the Langlands decomposition of the
L2-spectrum [Lan76] (as formulated in [Art05, Th. 7.2]) instead of the de-
composition (3.1), and [Mül89, Th. 0.1] instead of [Don82, Th. 9.1] in the
proof of Lemma 3.12, to obtain a version of Theorem 3.19 in terms of the
Langlands components, which is slightly stronger than the current version of
Theorem 3.19.

More precisely, let D′(G,ω) be the set of pairs (M,σ) in which σ is now
a discrete automorphic representation of M(AF ) whose central character be-
longs to ΩM (ω), with a similarly defined equivalence relation ≈. We have the
following Langlands decomposition,

L2(G(F )\G(AF ), ω) =
⊕̂

(M,σ)∈D′(G,ω)♥

L2
(M,σ)(G(F )\G(AF ), ω)′,

which refines (3.1), in which L2
(M,σ)(G(F )\G(AF ), ω)′ denotes the Langlands

component associated to (M,σ). The conclusion of Theorem 3.19 can be
strengthened to that there exists a T-multiplier µ of S(G(AF ))K such that
for every f ∈ S(G(AF ))K ,

(1) R(µ ? f) maps L2(G(F )\G(AF )/K, ω) into⊕̂
(M,σ)∈D′(G,ω)♥χ

L2
(M,σ)(G(F )\G(AF )/K, ω)′

in which D′(G,ω)♥χ is similarly defined as D(G,ω)♥χ in Definition 3.16;
(2) µ(χ) = 1.
Note that we have the inclusion⊕̂

(M,σ)∈D′(G,ω)♥χ

L2
(M,σ)(G(F )\G(AF )/K, ω)′

⊆
⊕̂

(M,σ)∈D(G,ω)♥χ

L2
(M,σ)(G(F )\G(AF )/K, ω).

However, it could be strict. For example, when G = PGL2, M is the standard
diagonal Levi subgroup, and σ is the trivial character, we have

L2
(M,σ)(G(F )\G(AF )/K, 1) = L2

(M,σ)(G(F )\G(AF )/K, 1)′

⊕ L2
(G,σ̃)(G(F )\G(AF )/K, 1)′,
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where σ̃ is the trivial character of G(AF ). It is possible to find χ such that
(M,σ) ∈ D′(G,ω)♥χ , hence (M,σ) ∈ D(G,ω)♥χ , but (G, σ̃) 6∈ D′(G,ω)♥χ . How-
ever, one cannot find χ such that (G, σ̃) ∈ D′(G,ω)♥χ but (M,σ) 6∈ D′(G,ω)♥χ .

4. Application to the Gan–Gross–Prasad conjecture

In this section, we discuss the application of the results in previous sections
to the global Gan–Gross–Prasad conjecture and the Ichino–Ikeda conjecture
for U(n) × U(n + 1) in the stable case. In Section 4.1, we recall the Jacquet–
Rallis relative trace formulae and their extension by Zydor. In Section 4.2, we
introduce the notion of smooth transfer and study its relation with multipliers.
In Section 4.3, we deduce some results concerning weak base change using
Jacquet–Rallis relative trace formulae, which are necessary for the proof of the
Gan–Gross–Prasad conjecture. In Section 4.4, we prove the Gan–Gross–Prasad
conjecture in the stable case and other related results.

Let E/F be a quadratic extension of number fields and ηE/F : A×F → C×
the associated quadratic automorphic character. Let n > 1 be an integer.

4.1. Jacquet–Rallis relative trace formulae, d’après Zydor. In this subsec-
tion, we collect some results from Zydor’s extension of the Jacquet–Rallis rel-
ative trace formulae. We start with the general linear groups. Put

G′n := ResE/F GLn,E , G′n+1 := ResE/F GLn+1,E , G′ := G′n ×G′n+1.

We have two reductive subgroups H ′1 and H ′2 of G′ as at the beginning of
[BP20a, §3], in which H ′1 is the graph of the natural embedding G′n → G′n+1

via the first n coordinates, and H ′2 is the subgroup GLn,F ×GLn+1,F . Let
G′rs ⊆ G′ be the Zariski open subset of regular semisimple elements. Recall that
an element γ of G′ is regular semisimple if H ′1γH ′2 is Zariski closed in G′ and
the natural map H ′1 ×H ′2 → H ′1γH

′
2 is an isomorphism. Put B′ := H ′1\G′/H ′2,

which is an affine variety over F , and let B′rs ⊆ B′ be the image of G′rs. Let Z ′

be the maximal F -split center of G′, which is also the center of H ′2. We denote
by

η : H ′2(AF ) = GLn(AF )×GLn+1(AF )→ C×

the character (ηn−1
E/F ◦ det)� (ηnE/F ◦ det), which is trivial on Z ′(AF )H ′2(F ).

For every element Π ∈ C(G′, 1) (Definition 3.9), there is a distribution IΠ

on S(G′(AF )) [BP20a, §3.1] such that for f ′ ∈ S(G′(AF )),

IΠ(f ′) =
∑

φ∈B(Π)

Ç∫
H′1(F )\H′1(AF )

(Π(f ′)φ)(h1) dh1

å
·
Ç∫

Z′(AF )H′2(F )\H′2(AF )

φ(h2)η(h2) dh2

å(4.1)
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for an arbitrary orthonormal basis B(Π) of Π with respect to the Peterson inner
product over G′/Z ′. Here, dh1 and dh2 are the Tamagawa measures on H ′1(AF )

and Z ′(AF )\H ′2(AF ), respectively.
For every element γ ∈ B′(F ), there is a distribution Iγ on S(G′(AF ))

[Zyd20, Th. 5.9].8 When γ ∈ B′rs(F ), Iγ is defined by relative orbital integrals;
more precisely, for f ′ ∈ S(G′(AF )) we have

Iγ(f ′) = Oη(γ̃, f
′) :=

∫
H′1(AF )×H′2(AF )

f ′(h−1
1 γ̃h2)η(h2) dh1 dh2,(4.2)

where γ̃ ∈ G′rs(F ) is an arbitrary lift of γ. In general, the distribution Iγ is
a certain regularization of relative orbital integrals, whose precise definition is
complicated and will not be used in our later discussion, hence we will not
discuss it here. The following proposition is Zydor’s extension of the Jacquet–
Rallis trace formula for G′.

Proposition 4.1. Let f ′ ∈ S(G′(AF )) be a quasi-cuspidal Schwartz test
function (Definition 3.2). Then we have the following identity of absolutely
convergent sums: ∑

Π∈C(G′,1)

IΠ(f ′) =
∑

γ∈B′(F )

Iγ(f ′).

Proof. This follows from the same proof of [Zyd20, Th. 5.10]. �

Now we consider unitary groups. We denote by V the set of isomorphism
classes of pairs V = (Vn, Vn+1) of (non-degenerate) hermitian spaces over E,
where Vn has rank n and Vn+1 = Vn ⊕ E.e in which e has norm 1. For every
place v of F , we have a local analogue Vv and a localization map V → Vv

sending V to Vv. For every V ∈ V, put

GVn := U(Vn), GVn+1 := U(Vn+1), GV := GVn ×GVn+1.

We have a reductive subgroup HV of GV as at the beginning of [BP20a, §3],
which is the graph of the natural embedding GVn → GVn+1. Let GVrs ⊆ GV be the
Zariski open subset of regular semisimple elements. Recall that an element δV

of GV is regular semisimple if HV δVHV is Zariski closed in GV and the natural
map HV × HV → HV δVHV is an isomorphism. Put BV := HV \GV /HV ,
which is an affine variety over F , and let BV

rs ⊆ BV be the image of GVrs.

8Although [Zyd20, Th. 5.9] only states for test functions in C∞c (G′(AF )), its proof works
for S(G′(AF )) as well. We have a similar situation below concerning [Zyd20, Th. 6.6].
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For every element πV ∈ C(GV , 1) (Definition 3.9), there is a distribution
JπV on S(GV (AF )) [BP20a, §3.1] such that for fV ∈ S(GV (AF )),

JπV (fV ) =
∑

ϕ∈B(πV )

Ç∫
HV (F )\HV (AF )

(πV (fV )ϕ)(h) dh

å
·
Ç∫

HV (F )\HV (AF )

ϕ(h) dh

å(4.3)

for an arbitrary orthonormal basis B(πV ) of πV with respect to the Peterson
inner product over GV . Here, dh is the Tamagawa measure on HV (AF ).

For every element δV ∈ BV (F ), there is a distribution JδV on S(GV (AF ))

[Zyd20, Th. 6.6]. When δV ∈ BV
rs(F ), JδV is defined by relative orbital integrals;

more precisely, we have for fV ∈ S(GV (AF )),

JδV (fV ) = O(δ̃V , fV ) :=

∫
HV (AF )×HV (AF )

fV (h−1
1 δ̃V h2) dh1 dh2,(4.4)

where δ̃V ∈ GVrs(F ) is an arbitrary lift of δV .9 In general, the distribution Iγ
is a certain regularization of relative orbital integrals, whose precise definition
is complicated and will not be used in our later discussion; hence we will not
discuss it here. The following proposition is Zydor’s extension of the Jacquet–
Rallis trace formula for GV .

Proposition 4.2. Let fV ∈ S(GV (AF )) be a quasi-cuspidal Schwartz
test function (Definition 3.2). Then we have the following identity of absolutely
convergent sums: ∑

πV ∈C(GV ,1)

JπV (fV ) =
∑

δV ∈BV (F )

JδV (fV ).

Proof. This follows from the same proof of [Zyd20, Th. 6.7]. �

The affine varieties B′ and BV are canonically isomorphic (see [Zha14b,
§3.1]). For an F -algebra R, we say that γ ∈ G′rs(R) and δV ∈ GVrs(R) are a
matching pair if their images in B′(R) = BV (R) coincide.

4.2. Smooth transfer of Schwartz test functions.We now discuss the smooth
transfer of Schwartz test functions. We keep the notation from the previous
subsection.

Definition 4.3. Let v be a non-archimedean place of F that is unramified
in E. We say that

9In this case, the map GVrs(F ) → BVrs(F ) is not surjective. If δV does not lift, then we
simply set JδV (fV ) = 0.
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• K ′v is a relative hyperspecial maximal subgroup of G′(Fv) if it is GLn(OEv)×
GLn+1(OEv);
• KV

v is a relative hyperspecial maximal subgroup of GV (Fv) if it is of the
form U(Ln)×U(Ln+1) in which Ln is a self-dual lattice of Vn,v and Ln+1 =

Ln ⊕OEv .e.

For G ∈ {G′, GV } and every finite set � of places of F containing all
archimedean ones, we define the algebra

S(G(F�)) := S(G∞)⊗
⊗

v∈�,v-∞

S(G(Fv)).

The following definition slightly extends the notion of smooth transfer for
Schwartz test functions that are not necessarily pure tensors.

Definition 4.4 (Smooth transfer). Let f ′ ∈ S(G′(AF )) be a Schwartz test
function that is not necessarily a pure tensor.

(1) Let � be a finite set of places of F containing all archimedean ones, and take
V ∈ V. We say that f ′� ∈ S(G′(F�)) and fV� ∈ S(GV (F�)) have matching
orbital integrals if for every matching pair γ ∈ G′rs(F�) and δV ∈ GVrs(F�),
we have

O(δV , fV� ) = Ω�(γ) ·Oη(γ, f ′�).

Here, O(δV , fV� ) and Oη(γ, f
′
�) are relative orbital integrals defined in the

same way as (4.4) and (4.2) after replacing AF by F�, respectively; and
Ω�(γ) :=

∏
v∈�Ωv(γv) ∈ {±1} is a certain transfer factor (see [BP20a,

§§3.3, 3.4] for more details).
(2) For V ∈ V and a Schwartz test function fV ∈ S(GV (AF )), we say that f ′

and fV are smooth transfer if there exists a sufficiently large finite set � of
places of F containing all archimedean ones and those ramified in E such
that
(a) f ′ = f ′�⊗

⊗
v 6∈� 1K′v with f ′� ∈ S(G′(F�)) and K ′v a relative hyperspe-

cial maximal subgroup of G′(Fv);
(b) fV = fV� ⊗

⊗
v 6∈� 1KV

v
with fV� ∈ S(GV (F�)) and KV

v a relative hy-
perspecial maximal subgroup of GV (Fv);

(c) f ′� ∈ S(G′(F�)) and fV� ∈ S(GV (F�)) have matching orbital integrals
in the sense of (1).

(3) Given a collection (fV )V ∈V with fV ∈ S(GV (AF )) among which all but
finitely many are zero, we say that f ′ and (fV )V ∈V are complete smooth
transfer if f ′ and fV are smooth transfer for every V ∈ V.

Remark 4.5. By the relative fundamental lemma [Yun11, BP21a], Defini-
tion 4.4(2) is independent of the choice of �.

The existence of smooth transfer is ensured by the following proposition.
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Proposition 4.6. Let v be a place of F .
(1) There is a dense subspaces Str(G

′(Fv)) of S(G′(Fv)), equal to S(G′(Fv)) if
v is non-archimedean or split in E , such that for every f ′v ∈ Str(G

′(Fv)),
one can find (fVvv )Vv∈Vv with fVvv ∈ S(GVv(Fv)) such that f ′v and fVvv have
matching orbital integrals for every Vv ∈ Vv .

(2) For every Vv ∈ Vv , there is a dense subspace Str(G
Vv(Fv)) of S(GVv(Fv)),

equal to S(GVv(Fv)) if v is non-archimedean or split in E , such that for every
fVvv ∈ Str(G

Vv(Fv)), one can find f ′v ∈ S(G′(Fv)) such that f ′v and fWv
v have

matching orbital integrals for every Wv ∈ Vv where fWv
v = 0 for Wv 6= Vv .

Proof. This follows from the combination of [Zha14b, Th. 2.6] (for v non-
archimedean) and [Xue19, Th. 2.7] (for v archimedean). �

The following proposition is a deep theorem of Chaudouard and Zydor.

Proposition 4.7. Suppose that f ′ and (fV )V ∈V are complete smooth
transfer in the sense of Definition 4.4(3). Then we have∑

γ∈B′(F )

Iγ(f ′) =
∑
V ∈V

∑
δV ∈BV (F )

JδV (fV ),

in which the summation over V is in fact finite.

Proof. This is [CZ21, Th. 16.2.4.1]. Note that the authors in [CZ21] only
prove this for pure tensor Schwartz test functions, but their proof works for
general Schwartz test functions as well, using the fact that

⊗
v|∞ S(G′(Fv))

and
⊗

v|∞ S(GV (Fv)) are dense in S(G′∞) and S(GV∞), respectively, by [AG10,
Cor. 2.6.3]. �

Now we study smooth transfer of Schwartz test functions under the action
of T-multipliers. Let T0 be the set of primes of F that are non-split in E. We
take
• a finite set S of primes of F containing those ramified in E;
• an open compact subgroup K ′ ⊆ G′(A∞F ) of the form K ′ = K ′S ×

∏
v 6∈SK

′
v

in which K ′v is a relative hyperspecial maximal subgroup of G′(Fv) for every
prime v 6∈ S;
• an element V ∈ V; and
• an open compact subgroup KV ⊆ GV (A∞F ) of the form

KV = KV
S ×

∏
v 6∈S

KV
v

in which KV
v is a relative hyperspecial maximal subgroup of GV (Fv) for

every prime v 6∈ S.
Put T := S ∪ T0.
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The connected real reductive group G′ ⊗Q R determines a root datum
(X′∗,Φ′,X′∗,Φ

′∨) and a subset θ′ ⊆ Aut(X′∗,Φ′,X′∗,Φ
′∨)♥ as at the beginning of

Section 2.3, together with h′∗ and W′ from Section 2.2. Similarly, for GV ⊗QR,
we have corresponding objects (XV ∗,ΦV ,XV∗ ,Φ

V ∨), θV , hV ∗, and WV .10 By
the base change homomorphism on the dual groups, we have a canonical map
hV ∗ → h′∗ that is injective, by which we will identify hV ∗ as a subspace of h′∗.
Moreover, taking restriction induces a ring homomorphism

bcV∞ : O(h′∗C )W
′ → O(hV ∗C )W

V
.(4.5)

For primes away from T, we have a similar homomorphism

bcTV : HT
G′ → HT

GV(4.6)

given by unramified base change (which is simply a convolution product since
primes away from T are all split in E). Taking tensor product, we obtain a
homomorphism

bcV := bcV∞ ⊗ bcTV : O(h′∗C )W
′ ⊗HT

G′ → O(hV ∗C )W
V ⊗HT

GV .(4.7)

Proposition 4.8. Let f ′ =
⊗

v f
′
v ∈ S(G′(AF ))K′ and fV =

⊗
v f

V
v ∈

S(GV (AF ))KV be two pure tensor Schwartz test functions such that f ′v and
fVv have matching orbital integrals for every place v of F . Let µ′ and µV be
T-multipliers of S(G′(AF ))K′ and S(GV (AF ))KV (Definition 3.5), respectively,
such that µV = bcV (µ′). Then µ′ ? f ′ and µV ? fV are smooth transfer in the
sense of Definition 4.4(2).

Informally speaking, the proposition asserts that multipliers that are com-
patible under base change preserve smooth transfer.

Proof. Let � be a sufficiently large finite set of places of F containing
all archimedean ones and disjoint from T, so that µ′ and µV are of the form
µ′� ⊗

(
⊗v 6∈T∪�1K′v

)
and µV� ⊗

Ä
⊗v 6∈T∪�1KV

v

ä
respectively. Below we only care

about �-components, hence will write µ′ for µ′� and µV for µV� , respectively.
Let S(G′(F�))K′ be the subalgebra of S(G′(F�)) consisting of functions

that are bi-invariant under
∏
v∈�,v-∞K

′
v, and similarly for S(GV (F�))KV . To

prove the proposition, it is enough to show that if f ′ ∈ S(G′(F�))K′ and
fV ∈ S(GV (F�))KV have matching orbital integrals (in the sense of Defini-
tion 4.4(1)), then µ′ ?f ′ and µV ?fV have matching orbital integrals as well. In
fact, by Lemma 4.9 below, f ′ and fV have matching relative characters. Since
µV = bcV (µ′), by Theorem 2.13, we know that µ′ ? f ′ and µV ? fV also have

10In fact, the objects (XV ∗,ΦV ,XV∗ ,Φ
V ∨), θV , hV ∗, andWV do not depend on V . However,

we still keep V in superscripts in order to make notation more consistent.
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matching relative characters. Thus again by Lemma 4.9 below, we know that
µ′?f ′ and µV ?fV have matching orbital integrals. The proposition follows. �

Lemma 4.9. Let � be a finite set of places of F containing all archimedean
ones, in which all primes are split in E . Take f ′ ∈ S(G′(F�)) and fV ∈
S(GV (F�)). Then f ′ and fV have matching orbital integrals (in the sense of
Definition 4.4(1)) if and only if they have matching relative characters, that is,

κV�Jπ(fV ) = IBC(π)(f
′)

for every π ∈ TempHV
�

(GV�), where we follow the notation in [BP21b, Th. 5.4.1].

The term κV� :=
∏
v∈� κVv is a constant depending only on V�, and the

distributions Jπ(fV ) and IBC(π)(f
′) are local analogues of (4.3) and (4.1), which

depend linearly on π(fV ) and BC(π)(f ′), respectively.

Proof. As
⊗

v|∞ S(G′(Fv)) is dense in S(G′∞) by [AG10, Cor. 2.6.3], ap-
plying [BP21b, (5.5.10)] to local fields Fv for v ∈ � and by continuity, we
obtain a similar identity∫

B′rs(F�)

Oη(γ, f
′
1)Oη(γ, f ′2) dγ

= |τ |−n(n−1)/2
E�

∫
Temp(Gqs

� )/stab

IBC(π)(f
′
1)IBC(π)(f

′
2)
|γ∗(0, π,Ad, ψ′)|

|Sπ|
dπ

(4.8)

for every f ′1, f ′2 ∈ S(G′(F�)). Similarly, as
⊗

v|∞ S(GV (Fv)) is dense in S(GV∞)

by [AG10, Cor. 2.6.3], applying [BP21b, (5.5.3)] to local fields Fv for v ∈ �
and by continuity, we obtain a similar identity

∫
BVrs (F�)

O(δV , fV1 )O(δV , fV2 ) dδV =

∫
Temp

HV�
(GV� )

Jπ(fV1 )Jπ(fV2 )µ∗
GV�

(π) dπ

(4.9)

for every fV1 , fV2 ∈ S(GV (F�)).11

We have the following observations:

(1) On the geometric side, we may identify BV
rs(F�) as a subspace, say B′rs(F�)V ,

of B′rs(F�) under which the measures are compatible.
(2) On the spectral side, by the local Gan–Gross–Prasad at places in � [BP20b],

the local Jacquet–Langlands transfer map

TempHV
�

(GV�)→ Temp(Gqs
� )/stab

11We remark that in (4.8), the product Oη(γ, f ′1)Oη(γ, f ′2) descends to a function on
B′rs(F�), while in (4.9), both O(δV , fV1 ) and O(δV , fV2 ) descend to functions on BVrs(F�).
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is injective, under which the restriction of the measure |γ
∗(0,π,Ad,ψ′)|
|Sπ | dπ co-

incides with µ∗
GV�

(π) dπ by [BP21b, Th. 5.4.3]. We also note that κV�κV� =

|τ |n(n−1)/2
E�

.

Now we show the lemma.
First, suppose that f ′ and fV have matching orbital integrals. Take

gV ∈
⊗

v∈� Str(G
V (Fv)), and let g′ ∈

⊗
v∈� S(G′(Fv)) be an element that

has matching orbital integrals with (gV , 0, . . . ) from Proposition 4.6(2). By
[BP21b, Th. 5.4.1], g′ and (gV , 0, . . . ) have matching relative characters as
well. In particular, Oη(γ, g′) = 0 unless γ ∈ B′rs(F�)V , and IBC(π)(g

′) = 0 un-
less π ∈ TempHV

�
(GV�). Then combining (4.8) and (4.9) and using the condition

that f ′ and fV have matching orbital integrals, we obtain∫
Temp

HV�
(GV� )

κV�Jπ(fV )Jπ(gV )µ∗
GV�

(π) dπ

=

∫
Temp

HV�
(GV� )

IBC(π)(f
′)Jπ(gV )µ∗

GV�
(π) dπ

for every gV ∈
⊗

v∈� Str(G
V (Fv)). Now we can use the technique in [BP21b,

§5.7.3] to separate π, so that we obtain κV�Jπ(fV ) = IBC(π)(f
′) for every π ∈

TempHV
�

(GV�). In other words, f ′ and fV have matching relative characters.
Second, suppose that f ′ and fV have matching relative characters. The

proof is similar, and we arrive at the identity∫
BVrs (F�)

O(δV , fV )O(δV , gV ) dδV

=

∫
BVrs (F�)

Ω�(γ(δV ))O(γ(δV ), f ′)O(δV , gV ) dδV

for every gV ∈
⊗

v∈� Str(G
V (Fv)). Here, γ(δV ) ∈ G′rs(F�) is an arbitrary

element whose image in B′(F�) coincides with δV . Moreover, it is clear that
the term Ω�(γ(δV ))O(γ(δV ), f ′) is independent of the choice of such γ(δV ). It
is easy to see that locally at every given δV ∈ BV

rs(F�), the functions O(−, gV )

for gV ∈
⊗

v∈� Str(G
V (Fv)) span a dense subset in the L2-space of BV

rs(F�).
Thus, we have O(δV , fV ) = Ω�(γ(δV ))O(γ(δV ), f ′) for every δV ∈ BV

rs(F�),
as both sides are continuous functions in δV . In other words, f ′ and fV have
matching orbital integrals.

The lemma is proved. �

Remark 4.10. Lemma 4.9 holds by the same proof without assuming that
primes in � are split in E. However, in this case, the argument (more precisely,
[BP21b, Th. 5.4.1]) relies on results from [Mok15], [KMSW14].
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The following proposition will not be used in this article, but might be
useful for other purposes. In particular, it shows the existence of Gaussian test
functions (in the space of Schwartz functions) in the sense of [RSZ20, Def. 7.9].
We record it here as it is essentially a corollary of Proposition 4.8.

Proposition 4.11. In the situation of Proposition 4.6(2), when v is an
archimedean place of F that is non-split in E and Vv is positive definite, the
subspace Str(G

Vv(Fv)) contains fVvv as long as Jπv(fVvv ) = 0 for all but finitely
many (tempered) irreducible admissible representations πv of GVv(Fv).

Proof. Since the question is local, we may just assume that E is imaginary
quadratic, hence v = ∞ is the unique archimedean place of F = Q. To ease
notation, we suppress v in the proof. By linearity, it suffices to consider fV

such that Jπ(fV ) 6= 0 for exactly one irreducible admissible representation π0

of GV (F ) and that Jπ0(fV ) = 1.
By Proposition 4.6(2), we may find an element fV1 ∈ Str(G

V (F )) satisfying
Jπ0(fV ) = 1, so that we may take an element f ′1 ∈ S(G′(F )) such that f ′1 and
fW1 have matching orbital integrals for everyW ∈ V where fW1 = 0 forW 6= V .
Now since GV (F ) is compact, the set of infinitesimal characters of irreducible
representations of GV (F ) is a lattice. It follows easily from Corollary 2.6 that
we can find an element µ′ ∈M]

θ(h
∗
C)W such that if we put µV := bcV (µ′), then

µV (χπ) 6= 0 only when π = π0 and µV (χπ0) = 1. By Theorem 2.13, we have
new elements fV2 := µV ? fV1 ∈ S(GV (F )) and f ′2 := µ′ ? f ′1 ∈ S(G′(F )). By
Lemma 4.9 (for � = {∞}), f ′1 and fW1 have matching relative characters, so
for f ′2 and fW2 where fW2 = 0 for W 6= V , hence f ′2 and fW2 have matching
orbital integrals. Now since Jπ(fV ) = Jπ(fV2 ) for every irreducible admissible
representation π of GV (F ), using Lemma 4.9 twice, we know that f ′2 and fW

have matching orbital integrals for every W ∈ V where fW = 0 for W 6= V . In
other words, fV belongs to Str(G

V (F )).
The proposition is proved. �

4.3. Weak automorphic base change. We keep the setup from the previous
subsection.

We denote by V(S) the subset of V consisting of V such that GVv is un-
ramified for every prime v of F not in S. Then V(S) is a finite set, and for
V,W ∈ V(S), we have Vv = Wv ∈ Vv for every prime v of F not in S. We
consider

• a non-empty subset V◦(S) of V(S);
• a T-character χ′ for G′ (Definition 3.3); and
• for each V ∈ V◦(S), a T-character χV for GV (Definition 3.3) such that the
base change of χV coincides with χ′, and also we fix an open compact sub-
group KV ⊆ GV (A∞F ) as in the previous subsection.
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The following lemma tells us how to find multipliers that are compatible
under base change.

Lemma 4.12. Given a T-multiplier µ′ of S(G′(AF ))K′ satisfying µ′(χ′) = 1

and a T-multiplier µV of S(GV (AF ))KV satisfying µV (χV ) = 1 for each V ∈
V◦(S) , we can find new T-multipliers µ̃′ of S(G′(AF ))K′ and µ̃V of S(GV (AF ))KV

for each V ∈ V◦(S) satisfying the following:

(1) µ̃′(χ′) = 1, and µ̃′ is a multiple of µ′ by a T-multiplier of S(G′(AF ))K′ ;
(2) for every V ∈ V◦(S) , µ̃

V (χV ) = 1, µ̃V is a multiple of µV by a T-multiplier of
S(GV (AF ))KV , and µ̃V = bcV (µ̃′).

Proof. For every V ∈ V◦(S), recall the maps bcV∞ (4.5), bcTV (4.6), and bcV

(4.7) from the previous subsection, which are all surjective. We choose a section

cbTV : HT
GV → H

T
G′

of the linear map bcTV of vector spaces. We may choose a linear splitting map
`V : h′∗ → hV ∗ of the subspace hV ∗ ⊆ h′∗ that sends every W′-orbit into a
WV -orbit, which induces a section

cbV∞ : O(hV ∗C )W
V → O(h′∗C )W

′

of the linear map bcV∞ of vector spaces. Taking tensor product, we obtain a
linear map

cbV := cbV∞ ⊗ cbTV : O(hV ∗C )W
V ⊗HT

GV → O(h′∗C )W
′ ⊗HT

G′ ,

which is a section of bcV . To construct the desired T-multipliers, we define

µ̃′ := (µ′)2 ·
∏

V ∈V◦
(S)

cbV ((µV )2), µ̃V := bcV (µ̃′).

Note that bcV∞ sends M(h′∗C )W
′ into M(hV ∗C )W

V , and cbV∞ sends M(hV ∗C )W
V

into M(h′∗C )W
′ . Then it follows easily from Remark 2.9(3) that µ̃′ and µ̃V for

V ∈ V◦(S) are T-multipliers satisfying (1) and (2). The lemma is proved. �

The next proposition reveals a relation between the Gan–Gross–Prasad
period integral and weak automorphic base change.

Proposition 4.13. Consider an element V ∈ V(S) and an element πV ∈
C(GV , 1). Suppose that we can find a cuspidal automorphic form ϕ∈L2(GV , πV )

satisfying

P(ϕ) :=

∫
HV (F )\HV (AF )

ϕ(h) dh 6= 0,

where dh is the Tamagawa measure on HV (AF ). Assume that either one of the
following two assumptions holds:
(a) πV is not (GV , T)-CAP (Definition 3.4);
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(b) there is a prime v0 of F split in E such that πVv0 is supercuspidal.

Then weak automorphic base change of πV (Definition 1.6), as an isobaric auto-
morphic representation of G′(AF ) = GLn(AE)×GLn+1(AE), exists. Moreover,
if we put Π := BC(πV ) = Πn �Πn+1 , then

(1) the base change of χπV∞ is χΠ∞ ;
(2) in the situation (b), Πm is cuspidal and hermitian (Definition 1.5) for m =

n, n+ 1.

Proof. In the beginning of this subsection, we take V◦(S) = {V }, χV =

χ(πV )T , and χ′ to be the base change of χV .
Suppose that weak automorphic base change of πV does not exist. Then

χ′ is not (G′, T)-CAP and L2
cusp(G′(F )\G′(AF )/K ′, 1)[χ′] = {0}. By our as-

sumption on the non-vanishing of P on πV , for every place v of F either
archimedean or in S, we can choose an element fVv ∈ S(GV (Fv)) of positive type
(see the definition of positive type functions above [Zha14b, Prop. 2.12]) such
that JπVv (fVv ) > 0. Moreover, we may assume that fVv0 is a supercuspidal matrix
coefficient in the situation of (b). For a prime v not in S, we take fVv := 1KV

v
.

Put fV :=
⊗

v f
V
v , and shrinkKV

S if necessary so that fV ∈ S(GV (AF ))KV . By
our choice of fV , we have JπV (fV ) > 0, and Jπ(fV ) > 0 for every π ∈ C(GV , 1).
Note that the set

C := {π ∈ C(GV , 1) | L2(GV , π) ∩ L2
cusp(GV (F )\GV (AF )/KV , 1)[χV ] 6= {0}}

is finite, by a well-known result of Harish-Chandra that there are only finitely
(up to isomorphism) cuspidal automorphic representations of GV (AF ) with a
given infinitesimal character and non-trivial KV -invariants [HC68]. Thus, we
may replace fVv by an element in the dense subspace Str(G

V (Fv)) for each
archimedean place v non-split in E, such that∑

π∈C
Jπ(fV ) 6= 0.

Now we can apply Proposition 4.6(2) to fVv for every place v of F either
archimedean or in S, to obtain an element f ′v ∈ S(G′(Fv)) as in that propo-
sition. We may also assume that f ′v0 is a supercuspidal matrix coefficient in the
situation (b). For a prime v not in S, we take f ′v := 1K′v . Put f

′ :=
⊗

v f
′
v, which

is an element of S(G′(AF ))K′ after shrinking K ′S if necessary. Then by the rel-
ative fundamental lemma [Yun11, BP21a], we know that f ′ and (fV , 0, . . . ) are
complete smooth transfer in the sense of Definition 4.4(3).

We claim that there is a T-multiplier µ′ of S(G′(AF ))K′ satisfying µ′(χ′)=1

and such that R(µ′ ? f ′) sends L2(G′(F )\G′(AF )/K ′, 1) into

L2
cusp(G′(F )\G′(AF )/K ′, 1)[χ′].



ISOLATION OF CUSPIDAL SPECTRUM 571

In the situation (a), this follows from Theorem 3.6 since χ′ is not (G′, T)-
CAP. In the situation (b), this follows from Theorem 3.7, and the observa-
tion that R(µ′ ? f ′) automatically annihilates the orthogonal complement of
L2

cusp(G′(F )\G′(AF )/K ′, 1) in L2(G′(F )\G′(AF )/K ′, 1) since f ′v0 is a supercus-
pidal matrix coefficient. Similarly, there is a T-multiplier µV of S(GV (AF ))KV

satisfying µV (χV ) = 1, such that R(µV ?fV ) sends L2(GV (F )\GV (AF )/KV , 1)

into L2
cusp(GV (F )\GV (AF )/KV , 1)[χV ]. Moreover, by Lemma 4.12, we may

further assume that µV = bcV (µ′). Thus, by Proposition 4.8, µ′ ? f ′ and
(µV ? fV , 0, . . . ) are complete smooth transfer as well.

Now we run relative trace formulae from the unitary side to the general
linear side. We have∑

π∈C(GV ,1)

Jπ(µV ? fV ) =
∑
π∈C

Jπ(µV ? fV ) =
∑
π∈C

Jπ(fV ) 6= 0.

Since µV ? fV is quasi-cuspidal, we have∑
δV ∈BV (F )

JδV (µV ? fV ) =
∑

π∈C(GV ,1)

Jπ(µV ? fV ) 6= 0

by Proposition 4.2. By Proposition 4.7, we have∑
γ∈B′(F )

Iγ(µ′ ? f ′) =
∑

δV ∈BV (F )

JδV (µV ? fV ) 6= 0.

Since µ′ ? f ′ is quasi-cuspidal, we have∑
Π̃∈C(G′,1)

IΠ̃(µ′ ? f ′) =
∑

γ∈B′(F )

Iγ(µ′ ? f ′) 6= 0

by Proposition 4.1. However, this is a contradiction since the image of R(µ′ ? f ′)

is contained in L2
cusp(G′(F )\G′(AF )/K ′, 1)[χ′], which is zero. Thus D(G′, 1)♥χ′

6= ∅; that is, weak automorphic base change of πV exists. It remains to show
the two additional claims.

For (1), it follows from the fact that D(G′, 1)♥χ′ 6= ∅.
For (2), note that in the situation (b), we did not use the assumption

that χ′ is not (G′, T)-CAP in the main argument above. Thus, we should have
L2

cusp(G′(F )\G′(AF )/K ′, 1)[χ′] 6= {0}; in other words, Π := BC(πV ) is cuspidal
and we have IΠ(µ′ ? f ′) 6= 0. By (4.1),∫

Z′(AF )H′2(F )\H′2(AF )

φ(h2)η(h2) dh2 6= 0

for some cusp form φ in Π. Then by the main theorem of [Fli88], we know that
L(s,Πm,As(−1)m+1

) has a pole at s = 1 for m = n, n + 1, which implies that
Πm is hermitian.

The proposition is proved. �
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The last theorem of this subsection contains results on weak automorphic
base change, proved using Gan–Gross–Prasad period integrals.

Theorem 4.14. Let V ◦ be a hermitian space over E with G◦ := U(V ◦),
and let π = ⊗vπv be an irreducible admissible representation of G◦(AF ).

(1) If π is cuspidal automorphic satisfying that there exist infinitely many primes
v of F split in E such that πv is generic, then weak automorphic base change
of π exists.

(2) If π is cuspidal automorphic satisfying that there exists a prime v of F split
in E such that πv is supercuspidal, then weak automorphic base change of π
exists and is cuspidal and hermitian (Definition 1.5).

(3) If weak automorphic base change of π exists and is hermitian, then π is not
(G•, T0)-CAP (Definition 3.4) for every pure inner form G• of G◦ .

(4) If weak automorphic base change of π exists and is hermitian, then the base
change of χπ∞ is χBC(π)∞ .

Part (3) of the above theorem is consistent with the so-called CAP con-
jecture [Jia10, Conj. 6.1] (for unitary groups).

Proof. We prove the four statements at once via the induction on the rank
of V ◦. The statements are all trivial when the rank of V ◦ is 1. Assume that
(1)–(4) are all known for all V ◦ of rank at most n.

Now take a hermitian space V ◦ of rank n + 1. By scaling the hermitian
form, we may assume that there is an element V = (Vn, Vn+1) ∈ V such that
V ◦ = Vn+1. We consider (1) and (2) first. Since π is cuspidal automorphic,
it gives an element πVn+1 ∈ C(GVn+1, 1). By the Burger–Sarnak trick [Zha14b,
Prop. 2.14], we can find another element πVn ∈ C(GVn , 1) such that

• P is non-zero on cuspidal automorphic forms in L2(GV , πV ), where πV :=

πVn � π
V
n+1 ∈ C(GV , 1);

• there is a prime v0 of F split in E such that πVn,v0 is supercuspidal, and
πVn+1,v0

is generic (resp. supercuspidal) in (1) (resp. (2)).

For (1), there are two cases. If π is (G◦, T0)-CAP, then by definition
there exist a proper parabolic subgroup P ◦ of G◦ and a cuspidal automorphic
representation σ of MP ◦(AF ), such that πv is a constituent of IG

◦
P ◦(σv) for all

but finitely many primes v of F split in E. WriteMP ◦ = U(W ◦)×M ′ for some
hermitian space W ◦ of rank at most n and M ′ for a product of general linear
groups, under which σ = σ◦ � σ′. Then there exist infinitely many primes v of
F split in E such that σ◦v is generic. By the induction hypothesis on (1), weak
automorphic base change of σ◦ exists, which implies that weak automorphic
base change of π exists as well. If π is not (G◦, T0)-CAP, then πVn+1 is not
(GVn+1, T0)-CAP. By the induction hypothesis on (2) and (3), we know that πVn
is not (GVn , T0)-CAP. Thus, πV is not (GV , T0)-CAP. By the situation (a) of
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Proposition 4.13, we know that weak automorphic base change of πV , hence
of π, exists.

For (2), by the situation (b) of Proposition 4.13, we know that weak auto-
morphic base change Π of πV , hence of π, exists and is cuspidal and hermitian.

We prove (3) by contradiction. If π is (G•, T)-CAP for some pure in-
ner form G• of G◦, then by definition there exist a hermitian space V • of
rank n + 1 such that G• = U(V •), a proper parabolic subgroup P • of G•,
and a cuspidal automorphic representation σ of MP •(AF ), such that πv is
a constituent of IG

•
P •(σv) for all but finitely many primes v of F split in E.

Write MP •=U(W •)×M ′ for some hermitian space W • of rank at most n and
M ′ a non-trivial product of general linear groups, under which σ = σ• � σ′.
Since BC(π) is an isobaric sum of cuspidal automorphic representations with
unitary central characters, BC(π)w is generic for every place w of E, which
implies that σ• satisfies the assumption in (1). Thus, by the induction hy-
pothesis on (1), weak automorphic base change of σ• exists. Thus, we have
BC(π) ' BC(σ•)� Π� (Π∨ ◦ c)� · · · , where c ∈ Gal(E/F ) is the involution,
for at least one non-trivial Π. This contradicts the fact that BC(π) is an iso-
baric sum of mutually non-isomorphic conjugate self-dual cuspidal automorphic
representations, as it is hermitian. Therefore, (3) is proved.

For (4), π is not (G◦, T0)-CAP by (3). In particular, by the induction
hypothesis, πV is not (GV , T0)-CAP. Then (4) follows from Proposition 4.13(1).

The theorem is proved. �

Remark 4.15. Theorem 4.14 already follows from [Mok15], [KMSW14] (see
the end of [KMSW14, §3.3]). However, our proof is different and does not use
any knowledge from the endoscopy theory for unitary groups. Furthermore,
our method can actually be used to show the local-global compatibility at all
places where πv is unramified as well, but the argument will implicitly relies on
[Mok15], [KMSW14] as we will need Lemma 4.9 for � containing primes inert
in E (see Remark 4.10).

4.4. Gan–Gross–Prasad and Ichino–Ikeda conjectures. In this subsection,
we complete the proofs of Theorem 1.8 (for the Gan–Gross–Prasad conjecture),
Theorem 1.9, and Theorem 1.10 (for the Ichino–Ikeda conjecture). We keep the
setup in the previous two subsections.

We start with the following lemma as a preliminary on the descent of
hermitian isobaric automorphic representations of GLm(AE).

Lemma 4.16. Let Π be a hermitian isobaric automorphic representation of
GLm(AE) (Definition 1.5) for some integer m > 1. Let V be a hermitian space
over E of rank m such that U(V ) is quasi-split. Then there exists a cuspidal
automorphic representation π of U(V )(AF ) satisfying that for every prime v of
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F split in E such that Πv is unramified, πv is unramified, and the base change
of χπv is χΠv . In particular, we have Π ' BC(π) and the base change of χπ∞
is χΠ∞ .

Proof. The existence of π follows from the automorphic descent construc-
tion [GRS11]. The last assertion follows from Theorem 4.14(4). �

Proof of Theorem 1.8. There are two directions.
(2)⇒(1): We take V = (Vn, Vn+1) ∈ V and πV := πn � πn+1 ∈ C(GV , 1).

Put Π := Πn�Πn+1 ∈ C(G′, 1). By Theorem 4.14(3), πV is not (GV , T0)-CAP.
Thus, by the same argument as for the situation (a) in Proposition 4.13, we
obtain ∑

Π̃∈C(G′,1)

IΠ̃(µ′ ? f ′) 6= 0,

in which the image of R(µ′?f ′) is contained in L2
cusp(G′(F )\G′(AF )/K ′, 1)[χΠT ].

However, by the strong multiplicity one property [Ram18, Th. A], we have

L2
cusp(G′(F )\G′(AF )/K ′, 1)[χΠT ] = L2(G′,Π).

Thus, we have IΠ(µ′ ? f ′) 6= 0. By (4.1),∫
H′1(F )\H′1(AF )

φ(h1) dh1 6= 0

for some cusp form φ in Π. Then by [JPSS83], we have L(1
2 ,Π) 6= 0.

(1)⇒(2): Again, put Π := Πn�Πn+1. Take S to be the finite set of primes
v of F at which either E or Π is ramified. For m = n, n + 1, since Πm is
hermitian, L(s,Πm,As(−1)m+1

) has a pole at s = 1, which implies that Πm

is ηm+1
E/F -distinguished by GLm(AF ). In particular, Π belongs to C(G′, 1), and

there exists a cusp form φ in Π that is fixed by
∏
v 6∈SK

′
v such that∫

Z′(AF )H′2(F )\H′2(AF )

φ(h2)η(h2) dh2 6= 0.

Since L(1
2 ,Π) 6= 0, by [JPSS83], there exists a cusp form φ′ in Π that is fixed

by
∏
v 6∈SK

′
v such that ∫

H′1(F )\H′1(AF )

φ′(h1) dh1 6= 0.

Together, we can find an element f ′=
⊗

v f
′
v ∈ S(G′(AF )) with f ′v∈Str(G

′(Fv))

for every archimedean place v of F and f ′v = 1K′v for every prime v of F not
in S, such that

IΠ(f ′) 6= 0

by (4.1). After shrinking K ′S if necessary, we may assume f ′ ∈ S(G′(AF ))K′ .
Now we can apply Proposition 4.6(1) to f ′v for every place v of F that is
either archimedean or in S, to obtain elements fVv ∈ S(GV (Fv)) as in that
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proposition. For V ∈ V(S) and a prime v not in S, we put fVv := 1KV
v
, hence

obtain an element fV :=
⊗

v f
V
v ∈ S(GV (AF ))KV for some KV

S . For V 6∈ V(S),
we put fV = 0. By the relative fundamental lemma [Yun11, BP21a], f ′ and
(fV )V ∈V are complete smooth transfer in the sense of Definition 4.4(3).

To pass to unitary groups, we consider V◦(S) = V(S), χ′ = χΠT , and a T-
character χV for GV whose base change is χ′ for every V ∈ V(S) (which is possi-
ble by Lemma 4.16), at the beginning of Section 4.3. By the strong multiplicity
one property [Ram18, Th. A], we know that χ′ is not G′-CAP. By Theorem 3.6,
there is a T-multiplier µ′ of S(G′(AF ))K′ satisfying µ′(χ′) = 1 and such that
R(µ′ ? f ′) sends L2(G′(F )\G′(AF )/K ′, 1) into L2

cusp(G′(F )\G′(AF )/K ′, 1)[χ′],
which coincides with L2(G′,Π). For each V ∈ V(S), we know that χV is not
GV -CAP, since otherwise πV ∗ would be (GV , T0)-CAP, which contradicts Theo-
rem 4.14(3); here V ∗ ∈ V is the unique element such that GV ∗ is quasi-split and
πV
∗ is a cuspidal automorphic representation of GV ∗(AF ) as in Lemma 4.16.

Then by Theorem 3.6, for every V ∈ V(S), there is a T-multiplier µV of
S(GV (AF ))KV satisfying µV (χV ) = 1 and such that R(µV ? fV ) sends

L2(GV (F )\GV (AF )/KV , 1)

into L2
cusp(GV (F )\GV (AF )/KV , 1)[χV ]. Moreover, by Lemma 4.12, we may

further assume that µV = bcV (µ′) for every V ∈ V(S). To summarize, we
conclude that µ′ ?f ′ and ((µV ?fV )V ∈V(S)

, 0, . . . ) are complete smooth transfer
by Proposition 4.8.

Now we run relative trace formulae from the general linear side to the
unitary side. We have∑

Π̃∈C(G′,1)

IΠ̃(µ′ ? f ′) = IΠ(µ′ ? f ′) = IΠ(f ′) 6= 0.

Since µ′ ? f ′ is quasi-cuspidal, we have∑
γ∈B′(F )

Iγ(µ′ ? f ′) =
∑

Π̃∈C(G′,1)

IΠ̃(µ′ ? f ′) 6= 0

by Proposition 4.1. By Proposition 4.7, we have∑
V ∈V◦

(S)

∑
δV ∈BV (F )

JδV (µV ? fV ) =
∑

γ∈B′(F )

Iγ(µ′ ? f ′) 6= 0.

Thus, we can choose some V ∈ V(S) such that∑
δV ∈BV (F )

JδV (µV ? fV ) 6= 0.
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Since µV ? fV is quasi-cuspidal, we have∑
π∈C(GV ,1)

Jπ(µV ? fV ) =
∑

δV ∈BV (F )

JδV (µV ? fV ) 6= 0

by Proposition 4.2. Therefore, by the property of µV ? fV , we can find some
element π ∈ C(GV , 1) satisfying

L2(GV , π) ∩ L2
cusp(GV (F )\GV (AF )/KV , 1)[χV ] 6= {0},

such that

Jπ(fV ) = Jπ(µV ? fV ) 6= 0.

In particular, the weak automorphic base change of π is isomorphic to Π, and P
is non-vanishing on cuspidal automorphic forms in L2(GV , π) by (4.3). Thus,
(2) is achieved.

Theorem 1.8 is proved. �

Remark 4.17. In the proof of Theorem 1.8, we actually obtain a stronger
statement in the direction (1)⇒(2) by further requiring in (2) that

• the base change of χπm,∞ is χΠm,∞ for m = n, n+ 1;
• the form ϕn⊗ϕn+1 is fixed by a relative hyperspecial maximal subgroup at
every prime v of F that is unramified in E and such that Πn,v ⊗ Πn+1,v is
unramified.

Proof of Theorem 1.9. Let V = (Vn, Vn+1) ∈ V be the unique element
such that GV is quasi-split. Since Πn+1 is hermitian, by Lemma 4.16, we have
an element πn+1 ∈ C(GVn+1, 1) such that BC(πn+1) ' Πn+1. By the Burger–
Sarnak trick [Zha14b, Prop. 2.14], we can find another element πn ∈ C(GVn , 1)

that is supercuspidal at some prime of F split in E, fulfilling the situation
in Theorem 1.8(2). By Theorem 4.14(2), BC(πn) exists and is cuspidal and
hermitian, which we denote by Πn. Moreover, we have

L(1
2 ,Πn ×Πn+1) 6= 0

by Theorem 1.8. The theorem is proved. �

Proof of Theorem 1.10. We continue the proof of Theorem 1.8. Using the
endoscopic classification for generic packets obtained in [Mok15], [KMSW14]
and the local Gan–Gross–Prasad [BP20b], we arrive at the identity

IΠ(f ′) = Jπ(fV ) 6= 0

for some f ′ =
⊗

v f
′
v ∈ S(G′(AF ))K′ and fV =

⊗
v f

V
v ∈ S(GV (AF ))KV such

that f ′v and fVv have matching orbital integrals for every place v. The remaining
argument is the same as in the proof of [BP21b, Th. 5]. �



ISOLATION OF CUSPIDAL SPECTRUM 577

Appendix A. Extending a result of Delorme to reductive groups

In this appendix, we extend a theorem of Delorme [Del86, Th. 1.7] from
semisimple groups to reductive groups. Let the setup be as in Section 2.3.
In particular, G = G(R) for a connected reductive algebraic group G over R.
Denote by C∞c (G)(K) and S(G)(K) the subalgebras of bi-K-finite functions in
C∞c (G) and S(G), respectively. Recall from Definition 2.8 that N (h∗C) is the
space of holomorphic functions on h∗C that have rapid decay on vertical strips.

Proposition A.1. For every element µ ∈ N (h∗C), there is a unique linear
operator

µ? : C∞c (G)(K) → S(G)(K),

such that
π(µ ? f) = µ(χπ) · π(f)

holds for every f ∈ C∞c (G)(K) and every irreducible admissible representation
π of G.

When G is semisimple, linear, and connected (in the analytic topology),
this is exactly [Del86, Th. 1.7]. In general, we need to show that there is a
bilinear map

N (h∗C)W × C∞c (G)(K) → S(G)(K)(A.1)

sending (µ, f) to µ ? f , satisfying the requirement in the proposition.
In what follows, for a real Lie group H, we denote by H0 its neutral con-

nected component. By the Iwasawa decomposition, the natural map K/K0 →
G/G0 is an isomorphism, which gives rise to a decomposition

C∞c (G)(K) =
⊕

k∈K/K0

C∞c (kG0)(K0).(A.2)

Here, C∞c (kG0)(K0) denotes the space of compactly supported smooth functions
on kG0 that are bi-K0-finite. We first reduce the construction of (A.1) to the
one for G0,

N (h∗C)W × C∞c (G0)(K0) → S(G0)(K0),(A.3)

sending (µ, f) to µ ? f , satisfying π(µ ? f) = µ(χπ) · π(f) for every irreducible
admissible representation π of G0. Indeed, once we have (A.3), we may define

µ ? f :=
∑

k∈K/K0

L(k)(µ ? L(k−1)fk)

for (µ, f) ∈ N (h∗C)W×C∞c (G)(K), where f =
∑

k∈K/K0 fk is the decomposition
of f under (A.2), and L denotes the left regular action. Since the restriction to
G0 of an irreducible admissible representation of G is a finite direct sum of irre-
ducible admissible representations of G0 with the same infinitesimal character,
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it is easy to check that the above bilinear map satisfies the requirement in the
proposition.

Now it remains to construct (A.3). Denote by Z and Gder the center and
the derived subgroup of G, respectively. Put Z := Z(R) and Gder := Gder(R).
Put K0

Z := K ∩ Z0, K0
der := K ∩ G0

der, and Z0
der := Z0 ∩ Gder = K0

Z ∩ K0
der.

Then Z0
der is a finite group, and the natural inclusions induce isomorphisms

(K0
Z ×K0

der)/Z
0
der

∼−→ K0 and

(Z0 ×G0
der)/Z

0
der

∼−→ G0.(A.4)

For finite subsets TZ and Tder of K0
Z-types and K0

der-types, respectively,
we define T to be the set of K0-types whose inflation to K0

Z×K0
der is an exterior

tensor product of elements in TZ and Tder. Similarly, for compact subsets ΩZ

and Ωder of Z0 and G0
der that are bi-invariant under K

0
Z and K0

der, respectively,
we let Ω be the image of ΩZ × Ωder under the isomorphism (A.4), which is a
compact subset of G0 bi-invariant under K0. Clearly, we have

C∞c (G0)(K0) =
⋃
Ω

⋃
T

C∞Ω (G0)(T),

where C∞Ω (G0)(T) denotes the subspace of smooth functions supported on Ω

of bi-K0-types in T. Thus, it suffices to construct (A.3) for a fixed subspace
C∞Ω (G0)(T) of C∞c (G0)(K0). The isomorphism (A.4) induces a natural isomor-
phism (

C∞ΩZ (Z0)(TZ)“⊗C∞Ωder
(G0

der)(Tder)

)Z0
der ∼−→ C∞Ω (G0)(T)(A.5)

of Fréchet spaces, where“⊗ stands for the projective completed tensor product.12

On the other hand, let z∗ and h∗der be the real vector spaces spanned by
the weight lattices of ZC and the abstract Cartan group of Gder,C, respectively.

Lemma A.2. The decomposition h∗ = z∗⊕h∗der induced from (A.4) induces
a natural isomorphism

N (z∗C)“⊗N (h∗der,C)W
∼−→ N (h∗C)W

of Fréchet spaces. Here,N (z∗C) and N (h∗der,C) are defined similarly as for N (h∗C).

Proof. Let Z0
sp, H0

der, and H
0 be the split real analytic tori whose cotan-

gent spaces are z∗, h∗der, and h∗, respectively. By the classical Paley–Wiener
theorem for Schwartz functions on split real analytic tori, we have canonical
isomorphisms

S(Z0
sp) ' N (z∗C), S(H0

der) ' N (h∗der,C), S(H0) ' N (h∗C)

12In general this is not correct if one does not fix the K0-types and the support.
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induced by Fourier transforms. Since H0 = Z0
sp × H0

der, the natural map
S(Z0

sp)“⊗S(H0
der) → S(H0) is an isomorphism of Fréchet spaces by [AG10,

Cor. 2.6.3]. By taking W-invariants, we obtain the isomorphism in the lemma.
�

Now take µ1 ∈ N (z∗C), µ2 ∈ N (h∗der,C)W, and put µ := µ1 ⊗ µ2 ∈ N (h∗C)W.
By [Del86, Th. 1.7], there is a linear map

µ2? : C∞Ωder
(G0

der)(Tder) → S(G0
der)(Tder)

sending f to µ2 ? f , satisfying πder(µ2 ? f) = µ2(χπder) · πder(f) for every irre-
ducible admissible representation πder of G0

der. Similarly, by [Sak18, Th. 2.1.2],
there is a linear map

µ1? : C∞ΩZ (Z0)(TZ) → S(Z0)(TZ)

sending f to µ1?f , satisfying ξ(µ1?f) = µ1(χξ)·ξ(f) for every smooth character
ξ of Z0. Moreover, by the injectivity of the (operator valued) Fourier transform
and the closed graph theorem, both µ1? and µ2? are continuous. Therefore,
(µ1?)⊗ (µ2?) extends uniquely to a continuous linear map

µ? : C∞Ω (G0)(T) '
(
C∞ΩZ (Z0)(TZ)“⊗C∞Ωder

(G0
der)(Tder)

)Z0
der

→
(
S(G0

der)(TZ)“⊗S(Z0)(Tder)

)Z0
der → S(G0)(T)

by (A.5). Let π be an irreducible admissible representation of G0. By the
decomposition (A.4), we may write the inflation of π to Z0 ×G0

der as ξ � πder,
where ξ is a smooth character of Z0 and πder is an irreducible admissible rep-
resentation of G0

der. By construction, we have π(µ ? f) = µ(χπ)π(f) for every
f ∈ C∞ΩZ (Z0)(TZ) ⊗ C∞Ωder

(G0
der)(Tder) that is Z0

der-invariant. Since the map
f ∈ C∞Ω (G0)(T) 7→ π(f) is continuous when we equip the space of continuous
endomorphisms of π with the topology of pointwise convergence, we deduce by
density that π(µ ? f) = µ(χπ)π(f) holds for every f ∈ C∞Ω (G0)(T). In sum-
mary, we have constructed our desired bilinear map from N (z∗C)⊗N (h∗der,C)W×
C∞Ω (G0)(T) to S(G0)(T). Now again by the injectivity of the (operator val-
ued) Fourier transform and the closed graph theorem, we know that, for every
f ∈ C∞Ω (G0)(T), the map

(A.6) ? f : N (z∗C)×N (h∗der,C)W → S(G0)(T)

sending (µ1, µ2) to (µ1⊗µ2)?f is a separately continuous bilinear map. There-
fore, (A.6) extends uniquely to a continuous map ?f : N (z∗C)“⊗N (h∗der,C)W →
S(G0)(T) by [Trè67, Th. 34.1]. By Lemma A.2, we obtain the desired bilin-
ear map N (h∗C)W × C∞Ω (G0)(T) → S(G0)(T) sending (µ, f) to µ ? f , satisfying
π(µ ? f) = µ(χπ) · π(f) for every irreducible admissible representation π of G0.
Taking union over all T and Ω, we obtain (A.3).

Proposition A.1 is proved.
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