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Abstract In this article, we study the Beilinson—Bloch—Kato conjecture for
motives associated to Rankin—Selberg products of conjugate self-dual auto-
morphic representations, within the framework of the Gan—Gross—Prasad
conjecture. We show that if the central critical value of the Rankin—Selberg
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L-function does not vanish, then the Bloch—Kato Selmer group with coeffi-
cients in a favorable field of the corresponding motive vanishes. We also show
that if the class in the Bloch—Kato Selmer group constructed from a certain
diagonal cycle does not vanish, which is conjecturally equivalent to the nonva-
nishing of the central critical first derivative of the Rankin—Selberg L-function,
then the Bloch—Kato Selmer group is of rank one.

Mathematics Subject Classification 11G05 - 11G18 - 11G40 - 11R34
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1 Introduction

In this article, we study the Beilinson—Bloch—Kato conjecture for motives
associated to Rankin—Selberg products of conjugate self-dual automorphic
representations of GL, (Ar) x GL,+1(AF) for a CM number field F', within
the framework of the Gan—Gross—Prasad conjecture [25] for the pair of unitary
groups U(n) x U(n + 1). For background on the Beilinson—Bloch—Kato con-
jecture, which is a generalization of the Birch and Swinnerton-Dyer conjecture
from elliptic curves to higher dimensional algebraic varieties, we refer to [7]
(see also the introduction of [46]).

1.1 Main results

Let F/F be a totally imaginary quadratic extension of a totally real number
field. We first state one of our main results that is least technical to understand.

Theorem 1.1.1 (Corollary 8.2.3) Let n > 2 be an integer. Let A and A’ be
two modular elliptic curves over F such that End(Az) = End(A/f) = Z.
Suppose that
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(a) Ay and A’f are not isogenous to each other;
(b) both Sym™~!' A and Sym" A’ are modular; and
(c) FT #Q.

Ifthe (central critical) L-value L(n, Sym”_1 Ap xSym”" A/F) does not vanish,
then the Bloch—Kato Selmer group

HY (F, Sym" ™' H{, (A7, Q¢) ®q, Sym" H{ (A%, Q) (n))

vanishes for all but finitely many rational primes £.

Remark 1.1.2 The finite set of rational primes £ that are excluded in Theo-
rem 1.1.1 can be effectively bounded. We now explain the three conditions in
Theorem 1.1.1.

(a) is necessary since otherwise (LL.3) and (L5) in Definition 8.1.1 fail for all
rational primes £.

(b) is necessary since our approach only applies to Galois representations
arising from automorphic representations. We summarise the current
knowledge on the modularity of symmetric powers of elliptic curves in
Remark 8.2.4.

(c) is necessary only for technical reasons. First, we do not know Hypothe-
sis 3.2.10, which concerns cohomology of unitary Shimura varieties, yet
for N > 4 if F™ = Q. Second, we do not have (an appropriate replace-
ment for) Proposition D.1.3, a result generalizing [12], when FT = Q.
Indeed, as long as we have these results as expected, (c) can be lifted.

Theorem 1.1.1 is a special case of a more general result concerning the
Bloch—Kato Selmer groups of Galois representations associated to conjugate
self-dual automorphic representations. To reduce the burden of long and tech-
nical terminology in the future, we first introduce the following definition,
which will serve for the entire article.

Definition 1.1.3 We say that a complex representation IT of GLy (A f) with
N > 11s relevant if

(1) ITis an irreducible cuspidal automorphic representation;

(2) Mo c >~ MY, where c € Gal(F/FT) is the complex conjugation;

(3) for every archimedean place w of F', I1,, is isomorphic to the (irreducible)
principal series representation induced by the characters (arg' ™, arg® =V,
..., argV 73 arg¥ 1), where arg: C* — C* is the argument character
defined by the formula arg(z) = z/v/zZ.

Remark 1.1.4 1f T1 is relevant, then it is regular algebraic in the sense of [17,

Definition 3.12]. Moreover, it is well-known that L(s, IT, As(*l)N) is regular
ats = 1 (see, for example, [28, §6.1]).
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On the Beilinson—-Bloch—Kato conjecture 111

Now we can state our main result in the context of automorphic represen-
tations, of which Theorem 1.1.1 is a special case. Till the end of the next
subsection, we will take an integer n > 2, and denote by no and n; the unique
even and odd numbers in {n, n 4+ 1}, respectively.

Theorem 1.1.5 (Theorem 8.2.2) Let T1g and I1; be relevant representations
of GL,,,(Af) and GL,, (AF), respectively. Let E C C be a strong coefficient
field of both Ty and T1| (Definition 3.2.5). Suppose that F™ # Q. IfL(%, I x
ITy) # O, then for all admissible primes ) of E with respect to (Ilg, I1y), the
Bloch—Kato Selmer group H}(F, Py, F, pm,,x(n)) vanishes. Here, pr, 1
is the Galois representation of F with coefficients in E, associated to I, for
o =0, 1, as described in Proposition 3.2.4 and Definition 3.2.5.

Remark 1.1.6 The notion of admissible primes appearing in Theorem 1.1.5 is
introduced in Definition 8.1.1, which consists of a long list of assumptions,
some of which are rather technical. Here, we would like to comment on the
essence of these assumptions.

(L1,2) are elementary and exclude only finitely many primes A.

(L3) isexpected to hold for every prime A if and only if the (conjectural) auto-
morphic product [Ty X [Ty, as an irreducible admissible representation
of GL,(4+1)(AF), remains cuspidal.

(L4) is expected to hold for all but finitely many primes A.

(L5) is basically saying that, under (L4), the image of the pair of residual
Galois representations (01,2, Or1,,5) contains an element of a particular
form. It is expected to hold for all but finitely many primes A if the
two automorphic representations 1y and IT; are not correlated in some
manner. For example, when n = 2, we expect that as long as Il is
not an automorphic twist of Sym? Iy after any base change, then (L5)
holds for all but finitely many primes A.

(L6) is a technical assumption that is only used in the argument of an R=T
theorem concerning Galois deformations in [51]. It is expected to hold
for all but finitely many primes A (see [51, §4.2]).

(L7) is a technical assumption for the vanishing of certain Hecke localized
cohomology of unitary Shimura varieties off middle degree. In fact,
when FT # Q, (L7) holds for all but finitely many primes A by Corol-
lary D.1.4.

In fact, we have dedicated ourselves to obtaining the following family of
abstract examples in which all but finitely many primes are admissible. Note
that neither the following theorem nor Theorem 1.1.1 implies each other.

Theorem 1.1.7 (Corollary 8.2.5) Let g, Iy, and E be as in Theorem 1.1.5.
Suppose that
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112 Y. Liu et al.

(a) there exists a very special inert prime p of F* (Definition 3.3.4) such
that Ty is Steinberg, and 11y y is unramified whose Satake parameter
contains 1 exactly once;!

(b) for « = 0, 1, there exists a nonarchimedean place wy of F such that
My, w, is supercuspidal; and

(c) Ft £Q.

If L(%, [Tg x I1y) # O, then for all but finitely many primes A of E, the
Bloch—Kato Selmer group H}(F, Prip,» ®F, pm,,x(n)) vanishes.

Remark 1.1.8 In (a) of Theorem 1.1.7, if the CM field F is Galois or contains
an imaginary quadratic field, then a very special inert prime of FT is simply a
prime of F that is inert in F, of degree 1 over Q, whose underlying rational
prime is odd and unramified in F'.

Now we state our result in the (Selmer) rank 1 case. Let ITy and IT; be
relevant representations of GL,,, (A r) and GL,, (A ), respectively. Let E € C
be a strong coefficient field of both [Ty and I1; (Definition 3.2.5). Suppose that
the global epsilon factor of [Ty x I1; is —1. Then the Beilinson—Bloch—Kato
conjecture predicts that if L’ (%, [Ty x I11) # 0, then the Bloch-Kato Selmer
group H}(F . Py, QF;, pr,,a(n)) has rank 1. However, what we can prove
now is half of this implication. Namely, for every prime A of E, we will
construct explicitly an element A in (the direct sum of finitely many copies
of) H}(F, Py, F; pr,,»(n)) in Sect. 8.3 as the image of the Abel-Jacobi
map of the diagonal cycle of the product unitary Shimura variety (see (8.10) for
the precise definition). In fact, by Conjecture 8.3.1 and Beilinson’s conjecture
on the injectivity of the £-adic Abel-Jacobi map, the nonvanishing of A, is
equivalent to the nonvanishing of L’ (%, ITg x ITy). Our theorem in the rank 1
case reads as follows.

Theorem 1.1.9 (Theorem 8.3.2) Let 1 and 1 be relevant representations of
GL,,(AFr) and GL,, (AF), respectively. Let E C C be a strong coefficient field
of both Ty and T1| (Definition 3.2.5). Suppose that F+ # Q. For all admissible
primes A of E with respect to (Ilgy, I11), if Ay # O, then H;-(F, Py, QF,

e, ,.(n)) has dimension 1 over E;.

We also have an analogue of Theorem 1.1.7 in the rank 1 case, whose
statement we omit here.

I Note that the Satake parameter of I1] p has to contain 1 at least once by Definition 1.1.3(2).
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On the Beilinson—-Bloch—Kato conjecture 113

Remark 1.1.10 Inboth Theorems 1.1.5and 1.1.9, the assumption that F ™ # Q
if n > 3 can be lifted once Hypothesis 3.2.10 is known for N > 4 when
Fr=Q.

In fact, when n = 2, we have a slightly different argument that can lift the
restriction F # @, and the assumptions (L6) and (L7) in Definition 8.1.1 in
all the results above.

1.2 Road map for the article

The very basic idea of bounding Selmer groups as in our main theorems fol-
lows from Kolyvagin [38], namely, we construct a system of torsion Galois
cohomology classes serving as annihilators of (reduction of) Selmer groups.
However, our system is not a generalization of the Euler—Kolyvagin system
originally constructed by Kolyvagin. Instead, our system is constructed via
level-raising congruences,? which was first introduced by Bertolini and Dar-
mon in the case of Heegner points in the study of certain Iwasawa main
conjecture of elliptic curves [5]. The first example where such level-raising
system was used to bound Selmer groups beyond the Heegner point case was
performed by one of us in [46], for the so-called twisted triple product auto-
morphic motives. In the sequels [47,50], the case of the so-called cubic triple
product automorphic motives was also studied. From this point of view, our
current article is a vast generalization of the previous results mentioned above.

The following is a road map for reading the main part of the article, where
we indicate the need from the four appendices in the parentheses.

N
(A1)
AN _ /

Sects. 8.1 and 8.2
(D.1)

End of the rank 0 case || Continue to the rank 1 case

2 What we need from level-raising congruences is much more than merely the existence part.
In fact, we have to identify the level-raising explicitly through the geometry of the special fiber
of some Shimura variety, for which we call arithmetic level-raising.
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The proof of Theorem 1.1.9 is based on the proof of Theorem 1.1.5. We may
regard the transition from the rank O case to the rank 1 case as an induction
step. As seen from the road map, for the rank O case alone, Sects. 4, A.1, 7.3,
and, of course, Sect. 8.3 are not needed. However, we strongly recommend the
readers to go through Sect. 4 even if they are only interested in the rank O case,
as Sect. 4 is an appropriate warm-up for reading Sect. 5, which is parallel but
much more complicated.

In what follows, we explain the main steps in the proof of Theorem 1.1.5.
Some of the notations in the rest of this subsection are ad hoc, only for the
purpose of explaining ideas, hence will be obsolete or differ from the main
text.

The initial step (which although will not appear until Sect. 8.2) is to translate
the condition that L(%, ITp x I11) # 0 into a more straightforward statement.
This is exactly the content of the global Gan—Gross—Prasad conjecture [25].
In fact, as stated in Lemma 8.2.1, we may construct a pair of hermitian spaces
(Vs V1) over F (with respect to F/F ) in which V, is totally positive
definite of rank n, and V; | = V7 @ F - 1 where 1 has norm 1. For o =
0, 1, put Sh(V,‘;a) = U(V;a)(FJr)\U(V,‘;a)(A%ﬁ) as a Shimura (pro-)set. We
may further find cuspidal automorphic representations 7y and 7 contained
in the space of locally constant functions on Sh(V} ) and Sh(V} ) satisfying
BC(mg) ~ I1p and BC(mry) =~ I1y, respectively, such that

Plfo. fi) = / Fo(h) f1(i)dh # 0 (L.1)

Sh(V9)

for some foy € mp and f1 € my valued in Ofg. Such result was first obtained by
one of us [77] under some local restrictions. Those restrictions are all lifted till
very recently through some new techniques in the study of trace formulae [6].
In what follows, we will fix open compact subgroups of U(V; )(AZ) and
UV, )(AR)) that fix fo and fi, respectively, and will carry them implicitly
in the notation.

The next step is to bring the set Sh(V; ) into arithmetic geometry so that
the period (1.1) can be related to certain Galois cohomology classes. Now we
choose a special inert prime p of FT (see Definition 3.3.4) with sufficiently
large underlying rational prime p, such that all data appearing so far are unram-
ified above p. Fora = 0, 1, we attach to V},  canonically a strictly semistable
scheme M, (V,‘;a) over Spec Z 2 of relative dimension ny, — 1, whose complex
generic fiber is non-canonically isomorphic to the disjoint union of finitely
many Shimura varieties attached to the nearby hermitian space of Vj by
changing local components at p and one archimedean place. Moreover, we
can write its special fiber My, (sza) over SpecIF p2 as the union of Mg (V,‘;a)

and M; (Vga), in which Mg (V;’la) is geometrically a P"«—!_fibration over the
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Shimura set Sh(V}, ). The other stratum M; (V},)> which is rather mysterious,
will also be involved in the later computation. In fact, one key effort we make is
to show that only the basic locus of the stratum My (V;, ) will play arole in the
computation. For the basic locus, we show that its normalization is geometri-
cally a fibration over the Shimura set Sh(VZa) (but with a slightly different level
structure at p) by certain Deligne—Lusztig varieties of dimension ry, = [ %],
introduced in Sect. A.2. The study of various geometric aspects of the scheme
M, (V},,), including its associated Rapoport—Zink spectral sequence and its
functorial behavior from n to n 4 1, will be carried out in Sect. 5.

The automorphic input will be thrown into the scheme My (V;, ) from the
third step, in Sect. 6, where we study the local Galois cohomology of certain
cohomology of My (V; ) localized at some Hecke ideals. More precisely, we
fix an admissible prime A of E with respect to (Ig, I11), and denote by O, and
kj. the ring of integers and the residue field of E;, respectively. For « = 0, 1,
the Satake parameters of Il, induce a homomorphism ¢y : T,,, — k; with
kernel m,, where T, is a certain abstract spherical Hecke algebra for unitary
groups of rank n,. When o = 0 (resp. « = 1), we need to study the singular
(resp. unramified) part of the local Galois cohomology

H'(Q,2, HE ' (M, (VS,), RW 0;.(76))im,)s (1.2)

where Mp (V° ) =M, (V° ) QF 2 [F,, and Hg denotes the certain invariant
part of the etale cohomology (a subtlety that can be ignored at this moment).
The question boils down to the arithmetic level-raising phenomenon (resp.
existence of Tate cycles) when o = 0 (resp. « = 1). However, in both cases,
we have to rely on the recent progress on the Tate conjecture for Shimura
varieties achieved by two of us [75]. Now we would like to continue the
discussion on the case where o« = 0, since it is more interesting and more
involved, and omit the case where « = 1. The first key point is to figure out
the correct condition such that the level-raising phenomenon (namely, from
unramified to mildly ramified at the place p) happens on the cohomology (1.2)
in a way that can be understood: we say that p is a level-raising prime with
respect to A if £ f p(p? — 1) where £ is the underlying rational prime of A, and
the mod A Satake parameter of Iy, contains the pair {p, p~ 1} exactly once
and does not contain the pair {—1, —1}. Suppose that p is such a prime, we
show that there is a canonical isomorphism

Hipe (Qp2, HY™ 1(Mp(V ), RU0;(r9))/mo) = O [Sh(V,)]/mo  (1.3)
of kj-vector spaces of finite dimension. Note that by our condition on p, the

right-hand side of (1.3) is nonvanishing, which implies that the left-hand side
is also nonvanishing; in other words, we see the level-raising phenomenon in
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H%O_l (Mp Q% 0), RW 0, (r9)). The proof of (1.3) is the technical heart of this
article (for example, it uses materials from all of the four appendices). Through
studying the geometry and intersection theory on the special fiber My, (V}; ) in
Sect. 5 and some of the appendices, we can conclude that OA[Sh(VZO)] /mo

is canonically a subquotient of Hgin o (Qp2, H%O_l (Mp (Vi) R¥ O (o)) /mp).
Thus, it remains to show that the two sides of (1.3) have the same cardinality.
For this, we use the theory of Galois deformations. We construct a global
Galois deformation ring R™* over 0, with two quotient rings RU™ and R™™,
together with a natural R""-module H"'™ and a natural R™™-module H™™.
They satisfy the following relation: if we put R®" := R"™ ®@gmix R™",

which is an Artinian ring over O, then we have natural isomorphisms

H'™ @gunr R™ @, ki, = 0[Sh(VS,)]/mo,
H™™ @guan R @0, kx = HYy o (@0, HEO ™ (M (VS,), RW 05 (r0)) /mo).

sing

Thus, we only need to show that H'™ and H™™ are both finite free over R"™
and R™™ | respectively, of the same rank. The finite-freeness follows from an
R=T theorem, proved in [51]. The comparison of ranks can be performed over
E,, which turns out to be an automorphic problem and is solved in Sect. 6.4
based on Sect. D.2. Summarizing the discussion above, we obtain (1.3). In
practice, we also need a mod A" version of (1.3).

The fourth step is to merge the study of (1.2) for ng and n; together, to
obtain the so-called first explicit reciprocity law for the Rankin—Selberg prod-
uct of Galois representations. As an application, we construct a system of
torsion Galois cohomology classes whose image in the singular part of the
local Galois cohomology at p of the product Galois representation is con-
trolled by the period integral (1.1). This step is sort of routine, once we have
enough knowledge on (1.2); it is completed in Sect. 7.2.

The final step of the proof of Theorem 1.1.5 will be performed in Sect. 8.2,
where we use the system of torsion Galois cohomology classes constructed in
the previous step, together with some Galois theoretical facts from Sect. 2, to
bound the Selmer group, which is possible due to the nonvanishing of (1.1).

1.3 Notations and conventions

In this subsection, we setup some common notations and conventions for the
entire article, including appendices, unless otherwise specified. The notations
in the previous two subsections will not be relied on from this moment, and
should not be kept for further reading.
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On the Beilinson—-Bloch—Kato conjecture 117

Generalities

e Denote by N = {0, 1, 2, 3, ...} the monoid of nonnegative integers.

e We only apply the operation / to positive real numbers, which takes
values in positive real numbers as well.

e For aset S, we denote by 1 the characteristic function of S.

e The eigenvalues or generalized eigenvalues of a matrix over a field k
are counted with multiplicity (namely, dimension of the corresponding
eigenspace or generalized eigenspace); in other words, they form a multi-
subset of an algebraic extension of k.

e For every rational prime p, we fix an algebraic closure @p of Q, with the
residue field E,. For every integer r > 1, we denote by Q- the subfield
of @p that is an unramified extension of Q,, of degree r, by Z - its ring of
integers, and by [F - its residue field.

e For a nonarchimedean place v of a number field K, we write ||v|| for the
cardinality of the residue field of K.

e We use standard notations from the category theory. The category of sets is
denoted by Set. For a category €, we denote by €°P its opposite category,
and denote by €, 4 the category of morphisms to A for an object A of €.
For another category ©, we denote by Fun(€, ©) the category of functors
from € to ®. In particular, we denote by P¢ := Fun(€°P, Set) the category
of presheaves on €, which contains € as a full subcategory by the Yoneda
embedding. Isomorphisms in a category will be indicated by ~. We also
use the symbol = to indicate a virtual object.

e For an algebra A, we denote by Mod(A) the category of left A-modules.

e All rings are commutative and unital; and ring homomorphisms preserve
units. For a (topological) ring L, a (topological) L-ring is a (topological)
ring R together with a (continuous) ring homomorphism from L to R. How-
ever, we use the word algebra in the general sense, which is not necessarily
commutative or unital.

e If a base ring is not specified in the tensor operation ®, then it is Z.

e Foraring L andaset S, denote by L[S] the L-module of L-valued functions
on S of finite support.

Algebraic geometry

e We denote by the category of schemes by Sch and its full subcategory
of locally Noetherian schemes by Sch’. For a scheme S (resp. Noetherian
scheme S), we denote by Schg (resp. Sch’/ ) the category of S-schemes
(resp. locally Noetherian S-schemes). If § = Spec R is affine, we also
write Schyg (resp. Sch’ z) for Schs (resp. Sch'g).
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e The structure sheaf of a scheme X is denoted by Oy.

e For a scheme X over an affine scheme Spec R and an R-ring S, we write
X ®pr S oreven Xg for X Xgpec g Spec S.

e For a scheme S in characteristic p for some rational prime p, we denote by
o: S — S the absolute p-power Frobenius morphism. For a perfect field
k of characteristic p, we denote by W (k) its Witt ring, and by abuse of
notation, o : W (k) — W (k) the canonical lifting of the p-power Frobenius
map.

e For asmooth morphism S — T of schemes, we denote by 7,7 the relative
tangent sheaf, which is a locally free Og-module.

e For a scheme S and a locally free Og-module V of finite rank, we denote
by P(V) — S the moduli scheme of quotient line bundles of V over S,
known as the projective fibration associated to V.

e For a scheme S and (sheaves of) Og-modules F and G, we denote by
Hom(F, G) the quasi-coherent sheaf of Og-linear homomorphisms from
Ftog.

e For two positive integers r, s, we denote by M, ¢ the scheme over Z of
r-by-s matrices, and put M, := M, , for short; we also denote by GL, €
M, the subscheme of invertible -by-r matrices. Then GL is simply the
multiplicative group G,, := Z[T, T~!']; but we will distinguish between
GL; and Gy, according to the context.

e For a number field K, a commutative group scheme G — S equipped
with an action by Ok over some base scheme S, and an ideal a C Ok, we
denote by G[a] the maximal closed subgroup scheme of G annihilated by
all elements in a.

e By a coefficient ring for étale cohomology, we mean either a finite ring, or
a finite extension of Qy, or the ring of integers of a finite extension of Q.
In the latter two cases, we regard the étale cohomology as the continuous
one. We say that a coefficient ring L is n-coprime for a positive integer n
if n is invertible in L in the first case, and £ 1 n in the latter two cases.

Group theory

Let G and T be groups, and I" a subgroup of I". Let L be a ring.

e Denote by I'*? the maximal abelian quotient of T".

e For a homomorphism p: I' — GL,(L) for some r > 1, we denote by
pY: T — GL,(L) the contragredient homomorphism, which is defined
by the formula pV (x) = ‘o (x)~! forevery x € I.

e For ahomomorphism p: I' — G and anelement y € I" that normalizes T,
welet p?” : I' = G be the homomorphism defined by p? (x) = p(yxy ™)
forevery x € I'.
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e We say that two homomorphisms p1, po: I' — G are conjugate if there
exists an element g € G such that py = go pp o g_l, that is, p;(x) =
gp2(x)g~! forevery x € T.

e The L-module L[G] is naturally an L-algebra, namely, the group algebra
of G with coefficients in L.

e Suppose that G is a locally compact and totally disconnected topological
group. For an open compact subgroup K of G, the L-module L[K\G /K]
(of bi- K -invariant compactly supported L-valued functions on G) is natu-
rally an L-algebra, where the algebra structure is given by the composition
of cosets. In particular, the unit element of L[K\G /K] is always 1g.

Combinatorics

Notation 1.3.1 We recall the g-analogues of binomial coefficients:

[0l =1, [nlg =

|:n:| B [n],!
m],  [n—mly!-[m],!

for integers 0 < m < n.Forr > 0 and g € N, we put

[n]g! = [nlg - [n —1lg - - - [1g,

,
2r+1

drg = (=128 + 1)q5<5+1>[ ] :

—-q

s r—=4
1 (—q) ! - 3 2r—1
ar, =——|\4d - 1 - (g™ D).
ra q+1<r,q+ . (@g+D@ +1D---(¢7 " +1
Ground fields

e Let ¢ € Aut(C/Q) be the complex conjugation.

e Throughout the article, we fix a subfield F C C that is a number field and
is stable under c; it is assumed to be a CM field except in Sect. 2.

e Let F™ C F be the maximal subfield on which c acts by the identity.

e Let F be the Galois closure of F in C. Put 'y := Gal(F/F) and ['p+ :=
Gal(F/F™).

e Denote by T (resp. ) the set of complex embeddings of F (resp. F™T)
with Too € Yo (resp. T, € Z;ro) the default one. For T € X, we denote
by 7€ the its complex conjugation.

e For every rational prime p, denote by E; the set of all p-adic places of
FT.
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e Denote by E;;d the union of Z; for all p that ramifies in F.

e Denote by np,p+: I'p+ — {£1} the character associated to the extension
F/FT.

e For every prime ¢, denote by €;: '+ — Z the £-adic cyclotomic char-
acter.

For every place v of F T, we

e put F, := F Qp+ F,"; and define §(v) to be 1 (resp. 2) if v splits (resp.
does not split) in F;

e fix an algebraic closure F; of F, containing F; and put T FF o=
Gal(F/F, ) as a subgroup of I'+;

e for ahomomorphism r from I' g+ to another group, denote by r,, the restric-
tion of 7 to the subgroup I" .+

For every nonarchimedean place w of F, we

e identify the Galois group I',, with I" .+ NI'p (resp. c¢(I' p+- NI" ) ), where
v is the underlying place of F T, if the embedding F < F" induces (resp.
does not induce) the place w;

e letlf, C I'f, be the inertia subgroup;

e let ky, be the residue field of F,, and identify its Galois group I',, with
U, /1F,;

e denote by ¢, € I, a lifting of the arithmetic Frobenius element in I’y .

Definition 1.3.2 We say that two subsets Efr and E; of nonarchimedean
places of FT are strongly disjoint if there is no common rational prime under-
lying the places from both sets.

2 Galois cohomology and Selmer groups

In this section, we make the Galois theoretical preparation for the proof of
the main theorems. Most discussions in this section are generalizations from
[46,47]. The material of this section will not be used until Sect. 6. In Sect. 2.1,
we collect some lemmas on ¢-adic modules with certain group actions. In
Sect. 2.2, we study local Galois cohomology. In Sect. 2.3, we perform the
discussion that is typical for Kolyvagin’s type of argument. The Selmer group
and its variant will be introduced in Sect. 2.4. In Sect. 2.5, we discuss exten-
sion of essentially conjugate self-dual representations. In Sect. 2.6, we study
localization of Selmer groups. In Sect. 2.7, we study an example related to the
Rankin—Selberg product.

We will start from a more general setup in order to make the discussion
applicable to the orthogonal case as well, which may be studied in the future.
Thus, we fix a subfield F C C that is a number field, not necessarily CM.
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We fix an odd rational prime £ that is unramified in ', and consider a finite
extension E; /Qyg, with the ring of integers O, and the maximal ideal A of O,.
We denote by B.is Fontaine’s crystalline period ring for Qg, and recall from
Sect. 1.3 that €y: I'p+ — Z/ is the £-adic cyclotomic character.

2.1 Preliminaries on £-adic modules with group actions

Let I" be a topological group and L a Z,-ring that is finite over either Z, or
Q. Note that in this case, every finitely generated L-module is equipped with
the natural ¢-adic topology.

Notation 2.1.1 We denote by Mod(I", L) the category of finitely generated L-
modules equipped with a continuous action of I", and by Mod(T", L) (resp.
Mod(T", L)) the full subcategory of Mod(T", L) consisting of those objects
whose underlying L-modules are torsion (resp. free).

Definition 2.1.2 We say that an L[I"]-module M is weakly semisimple if

(1) M is an object of Mod(T", L); and
(2) the natural map M" — Mr is an isomorphism.

Lemma 2.1.3 Suppose that T is isomorphic to Z. Let M be an object of
Mod(T, L). Then

(1) Mr = 0 implies M' =0;
(2) if the natural map M" — M is surjective, then M is weakly semisimple.

Proof Take a topological generator y of I.
For (1), we have the exact sequence

-1
0—>MF—>MV—>M—>M1~—>O.
Since Mr =0,y — 1: M — M is surjective. As M is Noetherian, it follows
that M = 0.
For (2), taking (continuous) I"'-cohomology of the short exact sequence
0> M > M- M/M" -0,
we obtain the sequence

(M/MF)F - M" > Mpr > (M/MF)F — 0.

Since M" — Mr is surjective, it follows that (M/M"). = 0. By (1), we

have (M/MF)F = 0, hence the map M — M is injective as well.
The lemma is proved. m|
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Lemma 2.1.4 Suppose that I is isomorphic to Z.

(1) A finite direct sum of weakly semisimple L[I"|-modules is weakly semisim-
ple.

(2) A subquotient L|T"]-module of a weakly semisimple L|I"]-module is weakly
semisimple.

Proof Part (1) is obvious.
For (2), let M be a weakly semisimple L[I"]-module and consider a short
exact sequence

O—>N->M-—>Q0—0

of L[I"]-module. We obtain the diagram

0 NT JT or (2.1)
Nr Mr Or 0

in which the middle vertical arrow is an isomorphism. It follows that
Q' — OQr is surjective, which implies that Q is weakly semisimple by
Lemma 2.1.3(2). It also follows that M" — QU is surjective, which implies
that Nr — M is injective. Thus, (2.1) is an isomorphism of exact sequences.
Part (2) is proved. O

Lemma 2.1.5 Suppose that T is isomorphic to 7. Let M be an object
of Mod(I", O0). Suppose that M ®o, O, /X is weakly semisimple, and
dimg, (M ®o, E)b > dimg, /3 (M ®0, OK/A)F. Then M is weakly semisim-
ple as well, and dimg, (M ®o, E)' = dimg, /»(M ®o, OA/A)F.

Proof Since M is afinitely generated free O;-module, both M and M/ M are
finitely generated free O;-modules. In particular, the map M" ®o0, Or/A —
(M ®o, 0, /0T is injective. As we have

dimo, s M" ®0, 0 /r = rankg, M" = dimg, (M ®0, E)",

the map M" ®o, Or/A — (M ®o, 0,/M)T is an isomorphism. It follows
that

dimg, (M ®0, Ex)" = dimo, /s (M ®0, 0,/M)".
It also follows that the maps

MY ®0, 05/h — (M ®¢, 0,/M)" = (M ®¢, 0, /M)r ~ Mr ®0, 0;/x

@ Springer



On the Beilinson—-Bloch—Kato conjecture 123

are isomorphisms since M ® g9, O /A is weakly semisimple. By Nakayama’s
lemma, the map M — Mr is surjective. By Lemma 2.1.3(2), M is weakly
semisimple. The lemma is proved. O

To end this subsection, we record the following definition which slightly
generalizes [46, Definition 5.1], and will be used in later sections.

Definition 2.1.6 Consider an O;-module M and an element x € M. We define
the exponent and the order of x to be

exp; (x, M) :=min{d € Z>o U {00} | Adx =0},

ord; (x, M) :=sup{d € Z>o | x € AdM},

respectively.

2.2 Local Galois cohomology

In this subsection, we study Galois cohomology locally at nonarchimedean
places of F. Let w be a nonarchimedean place of F. We recall from Sect. 1.3
various notations concerning F,.

Notation 2.2.1 For a Z,-ring L that is finite over either Z; or Q¢ and ? €
{, tor, fr}, we

(1) put Mod(Fy, L)? := Mod(I'f,, L)?;

(2) denote by =(j): Mod(F,, L) — Mod(F,, L)- the functor of j-th Tate
twist for j € Z; and

(3) denote by =" : Mod(F,, L)(?)p — Mod(F,, L) the functor sending M
to Hom; (M, L).

We also denote
—@: Mod(Fy, 05) — Mod(Fy, E;)
the base change functor sending M to M ®o, E;, and
—=*: Mod(F,,, 0;)pr. — Mod(F,,, 0y)

the Ej-Pontryagin duality functor sending M to Homg, (M, E;/O;). For

every pairm,m’ € {1,2, ..., 00} withm’ > m, we have a “reduction modulo
A functor
=M = =0, 04/A": MOd(F,, 05/A™) — Mod(F,, 0; /A™)
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(that is, it sends R to R?™).3 We usually write = for =,

For every object R € Mod(F,,, O,), we have the local Tate pairing

(. Yu: H'(Fy, R) x H'(Fy, R*(1)) = H2(F,, E;/0,(1)) ~ E; /0,
(2.2)

which we will study in the following. We will define a submodule functor
Hllls(Fw, —) of H!'(F,,, =) for every nonarchimedean place w of F, which
is usually denoted as Hlllr(Fw, —) and Hlf(Fw, =) when ¢ + w and ¢ | w,
respectively. We choose this unconventional notation only to uniformize the
two cases.

First, we study the case where £ t w.

Definition 2.2.2 For every object R in either Mod(F,,, E;) or Mod(Fy,, O,),
we put

H. . (Fy,R) :=H'(If,, R)w;

sing
and denote by H. (F,,, R) the kernel of the canonical map

dy: H'(Fyy, R) — HYjpo (Fy, R).
By the inflation-restriction exact sequence (see, for example,
[47, Lemma 2.6]), we know that d,, is surjective, and that HIIIS(F w, R) 1s canon-
ically isomorphic to H!(ky, RlFw).

Lemma 2.2.3 ForR € Mod(F,,, O))or, the restriction of the local Tate pair-
ing (, Yw (22) to HL.(F,, R) x H! (F,,, R*(1)) vanishes.

Proof This is well-known. In fact, the cup product of Hllls(Fw, R) and
HiS(Fw, R*(1)) factors through H?(ky,, R @ R*(1)!#), which is the zero
group. O

Second, we study the case where £ | w. In particular, Fy, is a finite unramified
extension of Q¢. Denote by —¢: Mod(F,,, O0;) — Mod(F,,, Z;) the obvious
forgetful functor.

Definition 2.2.4 Let a < b be two integers.

(1) For an object R € Mod(Fy,, Z¢)tor, We say that R is crystalline (with
Hodge-Tate weights in [a, b]) if R = R” /R’ where R" € R” are two ', -
stable Zy-lattices in a crystalline (Q;-representation of I'r, (with Hodge—
Tate weights in [a, b)).A

3 Here, 0;./A%° is understood as O;.
4 We adopt the convention that Q; (1) has Hodge—Tate weight —1.
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(2) ForanobjectR € Mod(Fy,, Z;), we say that R is crystalline (with Hodge—
Tate weights in [a, b]) if R/€™R is a torsion crystalline module (with
Hodge—Tate weights in [a, b]) for every integer m > 1.5

(3) ForanobjectR € Mod(F,, O,), we say that R is crystalline (with Hodge—
Tate weights in |a, b]) if Ry is.

Definition 2.2.5 [59, §4] For an object R € Mod(F,,, O,) that is crystalline,
we define H! (F,, R) to be the subset of H! (F,,, R) = H!(F,,, Ro) consisting
of elements s represented by an extension

0—-Ry—>R;—>7Z;—0

in the category Mod(F,,, Z) such that R; is crystalline.®
It follows that H,lls(Fw, R) is an Oy-submodule of H' (F,,, R).

Lemma 2.2.6 LetR be an object of Mod(Fy,, O))f such that Rq is crystalline
with Hodge-Tate weights in [a, bl witha < 0 < bandb —a < € — 2. Then
Hllqs(Fw, R) coincides with the preimage of

ker (H'(F,y, Rg) — H'(Fy, Rg ®q, Beris))

under the natural map H'(F,,R) — H'(F,, Ro).
Proof This is proved in [9, Proposition 6]. O

Lemma 2.2.7 Suppose that the integers a, b satisfya < 0 < band b —a <
%. Then for every R € Mod(Fy, O))wr that is crystalline with Hodge—
Tate weights in [a, b], the restriction of the local Tate pairing { , )y (2.2) to
HIIIS(Fw, R) x HIIIS(Fw, R*(1)) takes values in DZI/OA, where 0), C O, is the
different ideal of E) over Qq.

Proof We have a canonical map Tr: (R*)g — (Rp)* in the category
Mod(Fy, Z¢) induced by the trace map Trg,,q,, which induces a map
H!(F,,R*(1)) — H\(F,, (Rp)*(1)) under which the image of
HL (F,, R*(1)) is contained in H! (F,, (Rp)*(1)). Take arbitrary elements
x € H\ (F,,R) and y € H} (F,,, R*(1)). Then we have

TI'EA/Q[(OC, y>u)) = TrEx/Qg(-x’ y)w = <-xv Tr()’))w € QK/ZE-

However, (x, Tr(y)), = 0 by [59, Proposition 6.2]. The lemma follows. O

5 n fact, by Lemma 2.2.6 below, when a < 0 < band b —a < € — 2, an object R €
Mod(Fy, Zg)tr is crystalline with Hodge-Tate weights in [a, b] if and only if Ry is.

6 It is clear that if R is crystalline with Hodge—Tate weights in [a, b] for a < 0 < b, then R;
in the extension representing an element in Hrl,S(Fw, R) is also crystalline with Hodge—Tate
weights in [a, b].
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2.3 Some Galois-theoretical lemmas

In this subsection, we generalize some lemmas from [46]. For a finite set X of
places of F, we denote by I' 5 the Galois group of the maximal subextension
of F'/F that is unramified outside X.

Notation 2.3.1 For a Z,-ring L that is finite over either Z; or Q¢ and ? €
{, tor, fr}, we put

Mod(F, L)7 := 11_;)11 Mod(T'r,x, L)2,

where the colimit is taken over all finite sets X of places of F with inflation
as transition functors. We have functors =(j), =", -, =*, and =(m) gimilar
to those in Notation 2.2.1. For an object R € Mod(F, L) and i € Z, we put

i 13 i
H (F,R) ._h_;)nH (Tr.5. R).

Moreover, for every place w of F, we have the restriction functor Mod(F, L) —
Mod(F,, L); and denote

locy, : H (F,R) — H'(F,,R)
the localization map.

Definition 2.3.2 [46, Definition 5.1] Let G be a profinite group. For an object
R € Mod(G, 0;)tor, we define its reducibility depth to be the smallest integer
tr > 0 such that

(1) if R’ is a G-stable O;-submodule that is not contained in AR, then R’
contains A'RR;

(2) for every positive integer m, the group End g, (](R")/O;, - id is annihi-
lated by AR,

Note that if R/AR is absolutely irreducible, then tr = 0.

Lemma 2.3.3 Let R € Mod(F, O,,) be an object such that Rq is absolutely
irreducible. Then there exists an integer tr depending on R only, such that
R has reducibility depth at most tr for every positive integer m.

Proof The same argument in [46, Lemma 5.2] applies to our case as well, with
7./ p" replaced by O, /A™". O

Now we fix a positive integer m. Consider an object R € Mod(F, O; /X" ).
We denote by p: I'r — GL(R) the associated homomorphism. Let F),/ F be
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the Galois extension fixed by the kernel of p, and G := Gal(F,/F) the image
of p. we have the restriction map

Res,: H'(F,R) — H'(F,,R)¢ = Homg(Fat;, R), (2.3)

Where Fab := Gal(F} ab /7 p) with FJ ab C F the maximal abelian extension of

Wthh is equipped with the natural conjugation actionby G = Gal(F,/F).
The map Res, induces an O, -linear pairing

[, 1:H'(F,R) xT{ - R,

such that the action of G on FaFl; is compatible with that on R. Let S be a
finitely generated Oj /A" -submodule of H! (F, R), and let Fs/F, » be the finite
abelian extension such that Gal(F ;‘b / Fs) is the subgroup of FaFIZ consisting of

y satisfying [s, y] = 0O for every s € S. Then the above pairing induces an
injective map

Os: Gal(Fs/F,) — Homy, (S, R) (2.4)

of abelian groups that is compatible with G-actions.
As in [46, §5.1], we introduce a sequence f that is given by f(0) =
f)=1,72)=4,fr +1) =2(j@r) + 1) forr > 2.

Lemma 2.3.4 Let the notation be as above. Suppose that the map Res,, is
injective. If S is a free O, /N"-module of rank rg for some positive integer m,
then the O, -submodule of Homg, (S, R) generated by the image of 05 contains
Afrs)er Homy, (S, R), where tR is the reducibility depth of R.

Proof The same argument in [46, Lemma 5.4] applies to our case as well, with
7/ p™ replaced by O; /A" p. Note that the proof only uses the injectivity, not
the surjectivity, of the map Res,,. O

Concerning the injectivity of the map Res, (2.3), we have the following
lemma.

Lemma 2.3.5 Suppose that either one of the following two assumptions holds:

(@) the image of U'r in GL(R) contains a nontrivial scalar element;
(b) dlmok/kR < mln{e+1 -3}, Rlsasemmmple (O /MIT pl-module, and

moreover Hom(ok/x)[rF](End(R), R) =0.

Then Res,, is injective.
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Proof By the inflation-restriction exact sequence, it suffices to show that
H'(G,R) = 0.

In the situation (a), it follows that G contains a nontrivial scalar element of
order coprime to £. Then by the same argument in [29, Proposition 9.1], we
have H' (G, R) = 0. More precisely, let y € G be a nontrivial scalar element
of order coprime to £. Then we have H'(G/(y), R¥) = 0 and H' ((y), R) = 0,
which imply H'(G, R) = 0.

Now we consider the situation (b). We prove by induction that H' (G, R?)) =
0 for 1 < i < m. Suppose that H'(G,RY)) =0 for 1 < j <i < m. By the
short exact sequence

0 — RUTD ®0, /rit+! A/t 5 ROFD L RD 0

of 0,[G]-modules, in which R¢+D ®0, /ai+1 AL /A*1 is isomorphic to R, we
know that H' (G, R¢*+1D) = 0. Therefore, it remains to check the initial step
that H!'(G,R) = 0.

Let G' C G be the kernel of the composite homomorphism G — GL(R) —
GL(R®) for 1 < i < m, so we obtain a filtration 0 = G™ < G"~! C

. € G! € G of normal subgroups of G. We prove by induction that
H!(G/G',R) = 0.Fori = 1,sinceR is a faithful semlslmple(OA/)L)[G/G ]-
module, G/ G has no nontrivial normal £-subgroup. As dlmo)\ R <L=3,we
have H'(G/G!, R) = 0 by [30, Theorem A]. Suppose that H' (G/G7,R) = 0
for 1 < j <i < m. By the inflation-restriction exact sequence

0 - H'(G/G',R) - H'(G/G'™!,R) - Homg(G' /Gt R),

it suffices to show that Homg(G' /Gt R) = 0, or equivalently,
Hom(o, /1)(6)(G' /G ® 0;/1,R) = 0. Note that G'/G'*! is an F([G]-
submodule of End(R), hence (G‘/G’“) ® 0;. /A1 isan (0, /A)[G]-submodule
of End(R) ® (0, /1) ~ End(R)¢, where d := [0, /A : F¢] is the degree.
Since R is a semisimple (0;/A)[G]-module and 2dimp, s R < € + 2,
by [69, Corollaire 1], we know that End(R) is a semisimple (O, /A)[G]-
module. In particular, we have Hom(o, /1)(61(G'/G'T! ® 05/A,R) = 0 as
Homg (End(R), R) = 0.

The lemma is proved. O

2.4 Reduction of Selmer groups

We recall the following definition of the Bloch—Kato Selmer group from [7].
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Definition 2.4.1 (Bloch—Kato Selmer group) For an object R € Mod(F, E}),
we define the Bloch—Kato Selmer group H} (F, R) of R to be the E)-subspace

of H'(F,R) consisting of elements s such that

(1) locy(s) € Hlﬁs(Fw, R) (Definition 2.2.2) for every nonarchimedean place
w of F not above £; and

(2) locy(s) € ker (H1 (F,,R) - HY(F,,R ®q, IB%CﬁS)) for every place w of
F above £.

Definition 2.4.2 Consider an object R € Mod(F, O))¢:.

(1) We define the (integral) Bloch—Kato Selmer group H}(F ,R) of R to
be inverse image of H;(F , Rg) under the obvious map H!(F,R) —
H!(F,Rg). i

(2) For m € {1,2,...,00}, we define H};R(F, R™) to be the image of
H}(F, R) under the obvious map H'(F,R) — H!(F,R™).

Lemma 2.4.3 Consider an object R € Mod(F, O, ). Suppose that we are in
one of the two following cases

(1) w is a nonarchimedean place of F not above £ at which R is unramified.
(2) w is a place of F above £ at which Ry is crystalline with Hodge—Tate
weights in [a, bl witha <0< bandb —a < € —2.

Then for every positive integer m, the image of HlfR(F , R under the

localization map locy,: HY (F,R™) — HYF,,R™) is contained in
HL (F,, RM™).

Proof Case (1) follows from [65, Lemma 1.3.5 & Lemma 1.3.8]. Case (2)
follows from Lemma 2.2.6. O

We recall the notion of purity for a local Galois representation.

Definition 2.4.4 Let w be a nonarchimedean place of F not above £. Con-
sider an object R € Mod(Fy,, E;). Let WD(R) be the attached Weil-Deligne
representation, and gr, WD(R) the n-th graded piece of the monodromy fil-
tration on WD(R). For u € Z, we say that R is pure of weight v it gr, WD(R)
is strictly pure of weight u + n for each n, that is, all eigenvalues of ¢,, on
gr, WD(R) are Weil ||w|~**+"-numbers.’

From now to the end of this section, we suppose that the complex conjugation
c restricts to an automorphism of F (of order at most two). We adopt the

7 In particular, E; (1) is (strictly) pure of weight —2.
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notation concerning ground fields in Sect. 1.3; in particular, we put F* :=
F<=!_We also have a functor

—¢: Mod(F, L) — Mod(F, L)

induced by the conjugation by c.

Lemma 2.4.5 For every object R € MOd(F, E)), the functor =< induces an
isomorphism

H}(F,R) ~ H}(F.R®)
of Selmer groups.

Proof Regard elements in H' (F, =) as extensions. Then applying = to exten-
sions induces maps

H!(F,R) - H!(F,R®), H'(F,R°) - H!(F,R)

which are inverses to each other. It is clear that conditions (1) and (2) in
Definition 2.4.1 are preserved under such maps. The lemma follows. m|

Proposition 2.4.6 Let R be an object in Mod(F, O,)f:.

(1) Let S be a free O;-submodule of H},(F, R) whose image in H}(F, R)/
H}(F , R)or is saturated. For every positive integer m, if we denote by
S™) the image of S in H};R(F, R), then it is a free Oy /N"-module of
the same rank as S.

(2) Suppose that R satisfies R@ o~ R(\é(l) and such that Rq is pure of weight
—1 at every nonarchimedean place w of F not above {. For every finite
set X of places of F, there exists a positive integer my, depending on R
and X, such that for every S as in (1) and every integer m > my, we have
loc,, (A= S = 0 for every nonarchimedean place w € % not above X.

Proof For (1), let T be the image of H}(F, R)¢or In HI(F, R(m)), which is

contained in Hlf r(F, R™). Then we have a natural injective map

H(F, R)/H}(F. R)ior
A (H (F, R)/H} (F, R)tor)

— Hir(F,R™)/T.

Since the image of S in H} (F,R)/ H} (F, R)or s saturated, (1) follows imme-
diately.
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For (2), we look at the map

locy’: Hyp (F.R™) > & H'(F,.R™).

weX, wiool

For every w { oo, since Rq is of pure weight —1 at w, R@ and Ré(l) are

of pure weight of —1 at w as well. Thus, we have HO(F,, Rg) = 0 and
H?(F,, Rg) =~ HO(F,, R§(1)Y = 0, hence H'(F,,Rg) = 0 by the Euler
characteristic formula (see also the proof of [56, Proposition 4.2.2(1)]). Thus,
H!(F,, R)isannihilated by A" for some integer m,, > 0. We may enlarge 11,
such that A" also annihilates H2(F,,, R)ior. Then it follows that H! (F,,, R‘™)
is annihilated by A2 Now if we put my = max{2m, | w € X, w { col},
then (2) follows. This completes the proof of the proposition. |

2.5 Extension of essentially conjugate self-dual representations

In this subsection, we collect some notation and facts on the extension of
essentially conjugate self-dual representations.

Notation 2.5.1 When [F : FT] = 2, we introduce the group scheme ¥y from
[18, §1] as

gN = (GLN X GLI) A {1, C}
with ¢2 = 1 and
(g, we=(n'g™"
for (g, ) € GLy x GL1. Denote by v: ¥y — GL; the homomorphism such
that v|GLy x GL, 1S the projection to the factor GL; and that v(c) = —1.
When [F : FT] = 1, we put ¥y := GLy x GL and regard the symbol ¢

as the identity element. Denote by v: ¥y — GL the projection to the second
factor.

Notation 2.5.2 Let R be a topological ring. For a continuous homomorphism
r:Tp+ = 9v(R)
such that the image of r|r,. lies in GLy(R) x R, we denote
r?: Tp = GLN(R) x R* — GLy(R)

the composition of r|r, with the projection to GL y (R).
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To end this subsection, we recall the notion of extensions along ;-
polarizations. This has been introduced in [18, §1] when [F : F*] = 2.

Definition 2.5.3 For a Z,-ring L that is finite over either Z,; or Q¢, an integer
Jj, and an object R in Mod(F, L), a j-polarization of R is an isomorphism

Z: RS 5 RY(j)

in Mod(F, L), such that 2V (j) = (—=1)*=t/*1 . & for some ug € Z/27.
We say that R is j-polarizable if there exists a j-polarization.

Construction 2.5.4 Let R be a nonzero object in Mod(F, L)¢ with the
associated continuous homomorphism p: I'r — GL(R), equipped with a

j-polarization E: RS = RY(j). Choose an isomorphism R ~ L&V of the
underlying L-modules for a unique integer N > 1.

(1) When [F : FT] =1, we let
ot Tp+ — 9n(L)

be the continuous homomorphism sending ¢ € I'p+ = I'r to

(p(8), €/ (8)
(2) When [F : Ft] = 2, the j -polarization E gives rise to an element B €

GLy (L) satisfying p° = Boejp” o B~ and B'B~! = (—reti+l,
We let

p+: Cp+ — 9y (L)

be the continuous homomorphism given by the formula poi|r, =
(p, €/Irp, 1) and py (c) = (B, (=)= T ¢,

In both cases, we call p4 an extension of p.

2.6 Localization of Selmer groups

In this subsection, we study the behavior of Selmer groups under localization
maps.

Notation 2.6.1 We take a nonzero object R € Mod(F, O, )¢ with the asso-
ciated homomorphism p: I'r — GL(R), together with a j-polarization
E:R¢ > RY(j). We fix an isomorphism R =~ O?N. Let

p+: Tp+ = 9N (0y)
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be the extension of p from Construction 2.5.4. For every integer m > 1, we
have the induced homomorphisms

p"™: I'p — GL(R"™) =~ GLy (0, /A™),
‘( )i Tps — Gy (05 /0™,

and we omit the superscript (m) when m = 1.

We denote by F™ .= F 5om and FJ(rm) the subfields of F fixed by ker o
and ker,o , respectively. In particular, we have F C F™ C FJ(rm) C

(m)(Cem)-
Notation 2.6.2 For a positive integer m and an element
y € (GLN(O01/A™) x (03/X")*, ©) € Gn(03/AT),

we denote by h, € GLy(0;/A™) the first component of y[FF"]

GLN (03/A™) x (O3 /A") .

S

Now we fix a positive integer m and a finitely generated O, -submodule S of
(F R)). We have the finite abelian extension Fg /F M) from Sect. 2.3.

Con51der an element y as in Notation 2.6.2 that belongs to the image of ,o(m).

The following definition is essentially [46, Definition 5.6].

Definition 2.6.3 We say that a place wiln) of Fj_m) is y-associated if

o wSZ") is not above oo or ¢;

° w(j” is unramified over F1;

e its underlying place of F is unramified in Fs; and

e its arithmetic Frobenius substitution in Gal(FJ(rm)/ Ft) ~ im ,55;") coin-
cides with y.

Recall the injective map
0s: Gal(Fs/F™) — Homg, (S,R"™)

of abelian groups from (2.4) with p = 5, which is equivariant under the
action of Gal(F™ /F). Take a y-associated place wim) of FJ(Fm), and denote
by its underlying places of F™ and F by w and w, respectively. Since
Fs/F™ is abelian, w™ has a well-defined arithmetic Frobenius substitu-
tion W, ) € Gal(Fs/F"). Denote by G,y the subset of Gal(Fs/F"™) of

elements W, o for all y-associated places wi’").
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Lemma 2.6.4 Suppose that the order of v is coprime to £. Then we have
Gs,, = 65 Homo, (S, R™)").

Proof Note that the arithmetic Frobenius substitution of w in Gal(F ™ / F)
coincides with £,,, which implies that the action of /,, on Gal(Fs/F 0m)) fixes
W, . Thus, the image of G s, under 0y is contained in Hom, (S, (RUm)yhyy,

Conversely, suppose that W € Gal(Fs/F 0m)y satisfies Og(¥) e
Homg, (S, (R™)hy). We need to find a y-associated place wi”” such that
W =W, . Weregard y as an element in Gal(FJ(rm)/FJr) and h,, as an ele-
ment in Gal(F ™/ F). Let g be the order of h,,, whichis coprime to £. Consider
the element (g~ 'W)h, € Gal(Fs/F) = Gal(Fs/F™) x Gal(F™ /F). Let
F be the smallest subfield of C that is Galois over FT and contains Fs and
FJ(rm). Since y has order prime to ¢, it is easy to see that there is an element
7 € Gal(Fg/F1) lifting y such that the image of )7[F:F+] € Gal(Fg/F) in
Gal(Fs/F) coincides with (g ! W)h,, . By the Chebotarev density theorem, we
can find a place W of Fg whose arithmetic Frobenius substitution coincides

with y and whose underlying place wi”) of FJ(rm) is y-associated. Then it is
clearthat ¥ = W, (. O

By the above lemma, for every r € N, we have a map
05, : G%.,, — Homg, (S, (R"™)")®")

of abelian groups induced by 65.

Definition 2.6.5 Suppose that S is a free O, /A" ~"0-module of rank rg for
some mo € N and rg € N. We say that an rg-tuple (¥y, ..., ¥,,) € Ggfy is
(S, y)-abundant if the image of the homomorphism Ggfy (W1, ..., ¥,) con-
tains A0 H SR (ROM)1y)®7s wwhere tg and §(rs) are the integers appearing
in Lemmas 2.3.3 and 2.3.4, respectively.

The following proposition provides (S, y)-abundant tuples under certain
conditions.

Proposition 2.6.6 Suppose that S is a free O /X"~ -module of rank rs for
some mo € N and rg € N. Assume that the following are satisfied:

Rq is absolutely irreducible;

either one of the two assumptions in Lemma 2.3.5 is satisfied;
the order of v is coprime to £; and

Ry s free over Oy JA™ of rank 1.

Then (S, y)-abundant rs-tuple exists.
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Proof By Lemma 2.3.5, Res ;e is injective. By Lemmas 2.3.3 and 2.3.4, the
0, -submodule generated by the image of 65 contains AR Hom 0, (S, RM).
Since h,, has order coprime to £, Homg, (S, (R™)hy) is a direct summand of
Homy, (S, R™). Tt follows from Lemma 2.6.4 that the Oy -submodule gener-
ated by 05(Gs.,) contains Af"S)™® Hom, (S, (RU™)"7). As (RU™)r is free
0, /A" -module of rank 1 and S is a free O, /A"~ "™0-module of rank rg, the
proposition follows immediately. O

Proposition 2.6.7 Let the assumptions be as in Proposition 2.6.6 and put
r := rg for short. For every (S, y)-abundant r-tuple (1, ..., V,), one can
choose a basis {sy, ..., sy} of S such that 0s(V;)(s;) = 0ifi # j and

expy (50 (5), R™)'7) = m = mo = f)x.

Moreover, if we write W; = W ) with a y-associated place wl.(m) of Fj_m)for
1 <i < r, then we have locwi(iqj) =0ifi # jand

exp;, (locwi(si),H (Fu; s R(’”))) m —mgy — f(r)tg.

Note that by Definition 2.6.3 and Lemma 2.4.3, the image of locy, : § —
H!(F,,, R"™) is contained in H} (F,,., R™).

Proof The first part is obvious from Definition 2.6.5.
For the second part, note that H JFY (m) NG R) is canonically isomorphic

to R™ by evaluating on the element ¥; = W . By the definition of g, the

map Os(V;): S — R coincides with the composite map

Cw;
w;

lo _ B
s —5 H! (F,.,R™) — H} (FO@), ROM) ~ ROM

The second part follows immediately.
The proposition is proved. O

2.7 Case of Rankin-Selberg product

In this subsection, we discuss Galois modules that are related to Rankin—
Selberg products. We take objects R, € Mod(F, O, ) for @« = 0, 1 of rank
ny > 0 with the associated homomorphism p,: I'r — GL(Ry), together
with a (I — o)-polarization E,: RS = Ry (1 — ). We fix isomorphisms
Ry ~ 07" fora = 0, 1.
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We assume that ng = 2rg is even and n; = 2r; + 1 is odd. Put
R:=Ro®p, Ri, p:=p0® p1: 'r > GL(R),

and E := Ep® &1: R¢ = RY (1) which is a 1-polarization of R.

For a homomorphism p from I'r and a place w of F, we write p,, for
the restriction of p to the subgroup I'r, . Moreover, for clarity, we denote by
€ém) : T+ — (05 /X™)* the reduction of €, modulo A™ for a positive integer

m, and put €y := Eél) for simplicity.

Lemma 2.7.1 Let the notation be as above. Take a totally real finite Galois
extension F' /| F contained in C and a polynomial Z(T) € Z[T). For every
positive integer m, consider the following statement

(GI%’ ) The image of the restriction of the homomorphism
B, 5 &MY Tt = Gy (05 /A™) X Gy (03/37) X (O /X")

(see Notation 2.6.1 for the notation) to Gal(f/ F") contains an ele-
ment (Yo, y1, &) satisfying
(a) (&) is invertible in Oy /\";
(b) fora =0, 1, yy belongs to (GL,, (O3 /A™) x (O3 /A")*, ¢) with order
coprime to £;
(c) the kernels of hy, — 1, hy, — 1, and hy @ h,, — 1 (Notation 2.6.2) are
all free over O; /A of rank 1;
(d) if[F : F*] =2, then hy, does not have an eigenvalue that is equal to

—lin Oy /X,
(e) if [F : FT] =2, then hy, does not have an eigenvalue that is equal to
—&in O, /A
Then (GI;,“@) implies (GI’”,”@)for everym > 1.

Proof Take an element (yp, y1, &) obtained from (GIIF/ ) For every inte-

ger m > 2, we need to construct an element (y,, y{,£’) in the image of
(,6(():”_), ,5{’_’8, E,Em)) satisfying (a—e). First, we take (y§, y{, &) to be an arbitrary

lifting of (yo, y1, &) in the image of (,5(()"3, ,51("1) , Eém) ). Since the order of y,

is coprime to ¢, there exists a positive integer d, such that yada = Y4. On
the other hand, we can find a positive integer e, such that (yo’{)eea has order
coprime to £ and that 1 is an eigenvalue of &, . Replacing v, by (yo’l)zdaea ,

we obtain the desired element (y,, y{, &§'). The lemma follows. |

At the end of this section, we discuss an example using elliptic curves. Let
Ao and A be two elliptic curves over F. For a rational prime ¢ (that is odd
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and unramified in F), we put
Ry := (Symy ™ H (Aa, Z0))(re)

as a Z¢[T'r]-module for « = 0, 1. Then Ry is an object in Mod(F, Z¢)¢ of
rank n, with a canonical (I — «)-polarization E4: R = R)(1 — «). Put
R:=Rp®z, Riand E := E(p ® E; as above.

Proposition 2.7.2 Suppose that Aoz and A\ are not isogenous to each other
and End(Aoz) = End(A15) = Z. Take a totally real finite Galois extension

F'/F™ contained in C and a polynomial (T € Z|T). Then for sufficiently
large €, we have that

(1) the image of p: I'r — GL(R ® Fy) contains a nontrivial scalar element;
(2) all of po, p1, and po @ py are absolutely irreducible; and
3) (GI}W ) from Lemma 2.7.1 holds ( with the coefficient field E, = Q).

Proof For « = 0, 1 and every ¢, we have the homomorphism
paq.c: TF — GL(Hg (Aaz, Fr)) = GLo(Fy).

Then we have p, = (Sym”‘f1 PA,.)(rg) fora = 0, 1. By our assumption on
Aoz and Ay, and [68, Théoreme 6], for sufficiently large £, the image of the
homomorphism

(PAg.t5 PALe: €0): TF — GLa(Fyp) x GLy(Fg) x Ff

consists exactly of the elements (go, g1, £) satisfying det go = det g; = £~
Then both (1) and (2) follow immediately.

For (3), take an element g € I' r such that its image under (04,.¢, 0A,.¢, €¢)
is in the conjugacy class of

(6 (2

fora,b € F satisfying

o P #0,

o (a%(@b®)2HF"F™ £ 1 for (i, j) € {ro.ro — 1, ..., 1 — ro} x {r1,r1 —
1,..., —r1} except for (0, 0),

o (X HFF N £ _1forie{rg,ro—1,...,1—ro},and

o (@@b>2HIFF £ _Aforjelr,rm—1,...,—rh

Such pair (a, b) always exists for sufficiently large £. Then it is straightforward

to check that the image of gl* "“F7lc under (P0+, P1+, €¢) (under the notation
of Lemma 2.7.1) satisfies (a—e) of Lemma 2.7.1. In particular, (3) follows. O
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3 Preliminaries on hermitian structures

In this section, we collect some constructions and results concerning objects
carrying certain hermitian structures. In Sect. 3.1, we introduce hermitian
spaces, their associated unitary groups and unitary Hecke algebras. In Sect. 3.2,
we introduce unitary Shimura varieties and unitary Shimura sets. In Sect. 3.3,
we review the notion of (generalized) CM types. In Sect. 3.4, we collect some
facts about abelian schemes with hermitian structure, which will be parame-
terized by our unitary Shimura varieties. In Sect. 3.5, we introduce a moduli
scheme parameterizing CM abelian varieties, which is an auxiliary moduli
space in order to equip our unitary Shimura variety a moduli interpretation.
Let N > 1 be an integer.

3.1 Unitary Satake parameters and unitary Hecke algebras

We start by recalling the notion of the coefficient field for an automorphic
representation of GLy (AF). Let IT be an irreducible cuspidal automorphic
(complex) representation of GLy (AF).

Definition 3.1.1 (see [17, §3.1]) The coefficient field of I1 is defined to
be the smallest subfield of C, denoted by Q(IT), such that for every p €
Aut(C/Q(IT)), IT* and I1*° ®c,, C are isomorphic.

For a nonarchimedean place w of F such that IT,, is unramified, let
a(Ily) == {a(ly)1, ..., a(ly)y} € C

be the Satake parameter of IT,, and Q(IT,) C C be the subfield generated by
the coefficients of the polynomial

[T(7 —ay - iwl™™") ez

i=l

Lemma 3.1.2 Suppose that Il is regular algebraic [17, Definition 3.12]. Then
the coefficient field Q(I1) is a number field, and is the composition of Q(I1y,)
for all nonarchimedean places w of F such that T1,, is unramified.

Proof By [17, Théoreme 3.13], Q(IT) is a number field. Let Q(IT)" be the
composition of Q(I1,,) for such w.

By the construction of unramified principal series, it is clear that for every
y € Aut(C/Q(IT)") and every w such that IT, is unramified, I, and
Ty, ®c,, C have the same Satake parameter, hence are isomorphic. Since IT is
regular algebraic, by [17, Théoréme 3.13], there exists a cuspidal automorphic
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representation ¥ IT of GL y (A r) such that ¥ IT* ~ T1*° ®c , C. By the strong
multiplicity one property for GLy [60], we know that for y € Aut(C/Q(IT)"),
Y1 ~ I, hence IT* ®c,, C =~ II*°. It follows that Q(IT) is contained in
QD).

Conversely, for y € Aut(C/Q(I1)), IT,, and IT,, ®c,, C are isomorphic
for every w. When IT,, is unramified, Q(I1,,) is simply the field of definition
of IT,,, which implies that y fixes Q(IT,,). It follows that Q(IT") is contained
in Q(I1).

The lemma follows. O

Definition 3.1.3 (Abstract Satake parameter) Let L be a ring. For a multi-
subset & := {1, ..., an} C L, we put

N
Py(T) := H(T —a;) € L[T].
i=1

Consider a nonarchimedean place v of F* not in El;d.

(1) Suppose that v is inert in F'. We define an (abstract) Satake parameter in
L at v of rank N to be a multi-subset « C L of cardinality N. We say that
o is unitary if Py(T) = (=T)N - Po(T™1).

(2) Suppose that v splits in F'. We define an (abstract) Satake parameter in
L at v of rank N to be a pair @ := (&1; a2) of multi-subsets a1, r € L
of cardinality N, indexed by the two places w1, w» of F above v. We say
that ¢ is unitary if Py, (T) = c- TN. Paz(T_l) for some constant ¢ € L*.

For two Satake parameters «g and a1 in L at v of rank ng and n1, respectively,
we may form their tensor product eg ® ¢1 which is of rank ngn in the obvious
way. If «g and «| are both unitary, then so is ag ® 1.

Notation 3.1.4 We denote by EH the smallest (finite) set of nonarchimedean
places of FT containing E;;d such that IT,, is unramified for every nonar-
chimedean place w of F not above Eff[.

Take a nonarchimedean place v of F* not in Ef-[r.

(1) If visinertin F, then we put a(I1,) := a(I1,,) for the unique place w of
F above v.
(2) If v splits in F into two places w; and w», then we put a(I1,) :=

(a(TTyy); e (ITy,)).

Thus, a(I1,) is a Satake parameter in C at v of rank N.

Definition 3.1.5 Let v be a nonarchimedean place of F* inert in F, and L
a ring in which ||v| is invertible. Let P € L[T] be a monic polynomial of
degree N satisfying P(T) = (=N . p(T 1.
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(1) When N is odd, we say that P is Tate generic at v if P’(1) is invertible in
L.

(2) When N is odd, we say that P is intertwining generic at v if P(—||v||) is
invertible in L.

(3) When N is even, we say that P is level-raising special at v if P(||v]])) =0
and P’(||v]]) is invertible in L.

(4) When N is even, we say that P is intertwining generic at v if P(—1) is
invertible in L.

Remark 3.1.6 Suppose that L is a field in Definition 3.1.5. It is easy to see that
in Definition 3.1.5, if P = P, for a unitary Satake parameter « in L at v, then

(1) means that 1 appears exactly once in «;

(2) means that the pair {—||v||, —|lv =1} does not appear in «;
(3) means that the pair {||v]||, ||v]| -1y appears exactly once in «;
(4) means that the pair {—1, —1} does not appear in a.

Here, we note that when N is odd, 1 appears in & and all other elements appear
in pairs of the form {o, «~'}; when N is even, elements in o appear in pairs
of the form {o, @™ '}.

We now introduce hermitian spaces.

Definition 3.1.7 (Hermitian space) Let R be an O g+ [(Z ad) - -ring. A her-
mitian space over O ®0,+ R of rank N is a projective OF ®0,+ R-module
V of rank N together with a perfect pairing

(. )v: VXV —> 0rQ®o,, R

that is Of ®0,.+ R-linear in the first variable and (Of ®o,+ R,c® idg)-
linear in the second variable, and satisfies (x, y)v = (y, x)5, forx, y € V. We
denote by U(V) the group of Or ®¢,, R-linear isometries of V, which is a
reductive group over R.

Moreover, we denote by V; the hermitian space V@& O ®¢,. R -1 where
1 has norm 1. For an O ®o,, R-linear isometry f: V — V', we have the
induced isometry f;: Vi — Vi.

Let v be a nonarchimedean place of F* notin E+ . Let Ay, be the unique
up to isomorphism hermitian space over Of, = 0 F ®0,+ Opt of rank N,
and Uy, its unitary group over O p+. Under a suitable basis, the associated
hermitian form of Ay, is given by the matrix

0---01
0---10
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Consider the local spherical Hecke algebra

TN,v = Z[UN,U(OFJ)\UN,U(F;F)/UN,I)(Opj)]-

According to our convention, the unit element of Ty ,, is ]lUNv(O +)- Let

Ap, be the maximal split diagonal subtorus of Uy ,, and X (Ay, U) be its
cocharacter group. Then there is a well-known Satake transform

Ty.o = ZHWIF P AN o (F/AN (0501 = ZI oK (AN 0)]
(3.1)

as a homomorphism of algebras. Choose a uniformizer @, of F,'.

Construction 3.1.8 Let L be a Z[||v|**®)/2]-ring. Let & be a unitary Satake
parameter in L at v of rank N. There are two cases.

(1) Suppose that v is inert in F. Then a set of representatives of Ay ,(F,")/
AN,U(OFJ) can be taken as

{diag(wm)', ..., @N) | t1, ..., tn € Zsatisfying t; + ty4+1-; =0
forall1 <i < N}
Choose an ordering of & as («y, ..., ay) satisfying ajanyy1-;i = 1; we

have a unique homomorphism
ZIIF AN o (F) /AN (0] — L

of Z[||v]|*®/2]-rings sending the class of diag(w', ..., w,") to
N

]_[L ZIJ a;'. Composing with the Satake transform (3.1), we obtain a ring
homomorphlsm

¢o: Tny—> L.
It is independent of the choices of the uniformizer @, and the ordering of
o.

(2) Suppose that v splits in F into two places w; and wj. Then a set of
representatives of AN,U(F;F)/AN,U(OFJ) can be taken as

{(diag(z, ..., &), diag(ew, ™, ..., o, ™M) |11, ..., tn € Z},

where the first diagonal matrix (resp. the second diagonal matrix)
is regarded as an element in Ay ,(Fy,) (resp. Ay y(Fy,)). Choose
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orders in &1 and a7 as (o1 1,...,a1,n) and (@21, ..., o2 n) satisfying
a1,;02 N+1—i = 1; we have a unique homomorphism

ZIIF O AN o (F) /AN (0] — L

of Z[||v||*®/?]-rings sending the class of <diag(w5‘, T,
diag(ew, ™, ..., wv_”)) to ]_[lN:1 aii’i. Composing with the Satake trans-

form (3.1), we obtain a ring homomorphism
¢a . TN,U — L.

It is independent of the choices of the uniformizer @, the order of the two
places of F above v, and the orders in o1 and 5.

Definition 3.1.9 (Abstract unitary Hecke algebra) For a finite set ™ of nonar-
chimedean places of F T containing E;;d, we define the abstract unitary Hecke
algebra away from 7 to be the restricted tensor product

/
T% = &) T
v

overall v ¢ £ U X with respect to unit elements. It is a ring.

Construction 3.1.10 Suppose that IT satisfies [T o ¢ ~ ITY. For v ¢ =i,
the Satake parameter «(I1,) is unitary. Thus by Construction 3.1.8, we have a
homomorphism

E+
on = ® ba(m,) ']I‘N“ — C,

vgBLUSh

where we regard C as a Z[||lv[|**®/?]-ring by sending [v[|¥®/% to

mia(v). If IT is regular algebraic, then ¢p takes values in Q(IT) by
Lemma 3.1.2. Furthermore, by [73, Proposition 4.1 & Remark 4.2], when
IT is relevant (Definition 1.1.3), ¢y takes values in Og). In particular, we
obtain a homomorphism

b TSN = 0
m: Ty Q-

At last, we introduce some categories of open compact subgroups, which
will be used later.
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Definition 3.1.11 Let V be a hermitian space over F of rank N. Let [] be a
finite set of nonarchimedean places of FT.

ey

2)

3)

(Neat subgroups) For a nonarchimedean place v of F' and an element
gv € U(V)(F,), let T'(gy) be the subgroup of (F;F)* generated by the
eigenvalues of g, (regarded as an element in GL(V)(F))), whose tor-
sion subgroup ' (gy)tors lies in Q*. We say an element ¢ = (g,) €
U(V)(A ) is neat if ﬂvgm I'(gv)ors = {1}, and a subgroup K C
Uu(v) (A ) is neat if all its elements are neat.

We define a category JQ(V)D whose objects are neat open compact sub-
groups K of U(V) (A ) and a morphism from K to K’ is an element
g € K\U(V)(A%™) /K satisfying g~'Kg € K'. Denote by &'(V)" the
subcategory of ﬁ(V)D that allows only identity double cosets as mor-
phisms.

We define a category R(V)g whose objects are pairs K = (K,,, K) where

K, is an object of R(V)H and K is an object of ﬁ(Vn)D such that K;, C
K ﬁU(V)(Aoo D) and a morphism from K = (K,, K3) to K" = (K, ’)
is an element g € K,\U(V)(A7} Hy /K] such that g~'K,g € K/ and
g 'K:g C Ké.g We have the obvious functors

= RV)g = AV, = R(V)g — R(V)"

sending K = (K, K¢) to K, and Ky, respectively. Note that ﬁ(V)SEI') 1sa
non-full subcategory of &(V)- x ﬁ(Vu)D.

When [ is the empty set, we suppress it from all the notations above.

3.2

Unitary Shimura varieties and sets

We introduce hermitian spaces over F that will be used in this article.

Definition 3.2.1 Let V be a hermitian space over F of rank N.

(D
2)

We say that V is standard definite if it has signature (NN, 0) at every place
inxl.

We say that V is standard indefinite if it has signature (N — 1, 1) at 7
and (N, 0) at other places in 1.

8 The subscript “sp” indicates that this notation will be related the special homomorphism of
Shimura varieties later.

@ Springer



144 Y. Liu et al.

First, we introduce unitary Shimura varieties. Take a standard indefinite
hermitian space V over F of rank N. We have a functor

Sh(V, =): &(V) — Sch/r
K — Sh(V, K)

of Shimura varieties associated to the reductive group Resp+,p U(V) and the
Deligne homomorphism

h: Resc/r G — (Resr+ /g UV) ®R = l_[ U(Vo)

exd

1ny—
zr—>(( N IZC/Z)’lN"”’lN)

cUWF ) ] uwEh,

TeXd AT,

where we have identified U(V)(F; + ) with a subgroup of GLy(C) via a
complex basis of V ®f . C under which the hermitian form is given by
In—1
-1
Second, we introduce unitary Shimura sets. Take a standard definite hermi-
tian space V over F of rank N. We have a functor

Sh(V, =): &(V) — Set
K > Sh(V, K) := U(V)(FO)\U(V)(AZ,)/K.

Remark 3.2.2 Whether the notion Sh(V, —) stands for a scheme or a set
depends on whether V is standard indefinite or standard definite; so there
will be no confusion about notation. Of course, one can equip Sh(V, =) with
a natural scheme structure when V is standard definite; but we will not take
this point of view in this article.

We now recall the notion of automorphic base change.

Definition 3.2.3 (Automorphic base change) Let V be a hermitian space over
F of rank N, and 7 an irreducible admissible representation of U(V) (A g+).
An automorphic base change of r is defined to be an automorphic representa-
tion BC(r) of GLy (AF) that is a finite isobaric sum of discrete automorphic
representations such that BC(r), >~ BC(mr,) holds for all but finitely many
nonarchimedean places v of F* such that 7, is unramified. By the strong
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multiplicity one property for GLy [60], if BC(sr) exists, then it is unique up
to isomorphism.

Proposition 3.2.4 Let I1 be a relevant representation of GLy(AF) (Defini-
tion 1.1.3).

(1) For every nonarchimedean place w of F, T1,, is tempered.

(2) For every rational prime € and every isomorphism 1y : C = Qy, thereis a
semisimple continuous homomorphism

pri,: TF — GLN(Qy),

unique up to conjugation, satisfying that for every nonarchimedean place
w of F, the Frobenius semisimplification of the associated Weil-Deligne

representation of pri,,|r Fy corresponds to the irreducible admissible
1N
representation 1;11,| det |,> of GLy (Fy,) under the local Langlands cor-

respondence. Moreover, pg ¥ and py Lg(l — N) are conjugate.

Proof Part (1) is [10, Theorem 1.2]. For (2), the Galois representation pr,,,
is constructed in [16, Theorem 3.2.3], and the local-global compatibility is
obtained in [10, Theorem 1.1] and [11, Theorem 1.1]. The last property in (2)
follows from the previous one and the Chebotarev density theorem. |

Definition 3.2.5 Let IT be a relevant representation of GL y (A r). We say that
a subfield E C C is a strong coefficient field of T1 if E is a number field
containing Q(IT) (Definition 3.1.1); and for every prime A of E, there exists a
continuous homomorphism

o, I'r — GLN(Ey),

necessarily unique up to conjugation, such that for every isomorphism
te: C = @g inducing the prime A, pn) QF, @g and pr1,, are conjugate,
where pry,,, is the homomorphism from Proposition 3.2.4(2).

Remark 3.2.6 By [16, Proposition 3.2.5], a strong coefficient field of IT exists
for I relevant. Moreover, under Hypothesis 3.2.10 below, Q(IT) is already a

strong coefficient field of IT if [T >~ BC(m) for a standard pair (V, ) (see
Definition 3.2.7 below) in which V is standard indefinite.

Definition 3.2.7 Consider a pair (V, 7) where V is a hermitian space over F
and 7 is a discrete automorphic representation of U(V)(Ag+). We say that
(V, m) is a standard pair if either one of the following two situations happens:

(1) V is standard definite, and 77 * appears in

lim  C[Sh(V,K)J;
Kef/(V)
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(2) V is standard indefinite, and 7 °° appears in

. —1 [ ray
h_n)l t, H (Sh(V, K)7, Qo)
Kegr (V)

for some isomorphism ¢;: C = @e and some i € Z.
Proposition 3.2.8 Ler (V, ) be a standard pair. Then BC(rr) exists.

Proof This is proved in [72, Theorem 1.11.° When V is standard definite, this
is also proved in [42, Corollaire 5.3]. O

Remark 3.2.9 Infact, in view of [72, Theorem 1.1], for a standard pair (V, ),
we have the associated Galois representation ppc(r),, similar to the one in
Proposition 3.2.4 as well, with N = dimg V.

Hypothesis 3.2.10 Consider an integer N > 1. For every standard indefinite
hermitian space V over F of rank N, every discrete automorphic representation
7 of U(V)(Ag+) such that BC(rr) exists and is a relevant representation of
GLy (AF), and every isomorphism ¢¢: C = @g, if pBC(x).i, 18 irreducible,
then

WNfl(j'[) = Hom@[U(V)(A;‘;)] L™, h_r>n Hg—l(Sh(V, K)f, @g)
£ (V)

is isomorphic to the underlying @Z[F F]-module of ng(n), L

Proposition 3.2.11 Hypothesis 3.2.10 holds for N < 3, and for N > 3 if
FT £Q.

Proof The case for N = 1 follows directly from the definition of the canonical
model of Shimura varieties over reflex fields. The case for N = 2 is proved
in [48, Theorem D.6(2)].10 The case for N = 3 when F+ = Q follows from
the main result of [64]. The case for N > 3 when F™ # Q will be proved in
[37]. O

9 In fact, in [72], the author considers the case for unitary similitude group and assumes that
F contains an imaginary quadratic field. However, we can obtain the result in our setup by
modifying the argument as in the proof of Proposition D.1.3.

10" Note that our Deligne homomorphism is conjugate to the one in [48, §C.1], which is respon-
sible for the c-conjugation in pﬁc(n) b
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3.3 Generalized CM type and reflexive closure

We denote by N[X ] the commutative monoid freely generated by the set
Y00, Which admits an action of Aut(C/Q) via the set Y.

Definition 3.3.1 A generalized CM type of rank N is an element

U= Z re7 € N[Zoo]

TEX

satisfying r; + rrc = N for every t € X . For such W, we define its reflex
field Fy C C to be the fixed subfield of the stabilizer of ¥ in Aut(C/Q). A
CM type is simply a generalized CM type of rank 1. For a CM type &, we say
that ® contains t if its coefficient r; equals 1.

Definition 3.3.2 We define the reflexive closure of F, denoted by Fiax, to be
the subfield of C generated by F and the intersection of Fg for all CM types
® of F.Put F i = (Fy)°~ .

Remark 3.3.3 It is clear that Fyqx is a CM field finite Galois over F’; Frng is
the maximal totally real subfield of Fiqx and is finite Galois over FT. In many
cases, we have Fy5x = F and hence F;ﬁx = F™, for example, when F is
Galois or contains an imaginary quadratic field.

Definition 3.3.4 We say that a prime p of F is special inert if the following
are satisfied:

(1) pisinertin F;

(2) the underlying rational prime p of p is odd and is unramified in F';

(3) p is of degree one over Q, that is, F,” = Qp.

By abuse of notation, we also denote by p for its induced prime of F'.

We say that a special inert prime p of F is very special inert if it is special
inert and splits completely in F;EX.“
Remark 3.3.5 In Definition 3.3.4, (3) is proposed only for the purpose of sim-
plifying computations on Dieudonné modules in Sects. 4 and 5; it is not really
necessary as results in these two sections should remain valid without (3).
However, dropping (3) will vastly increase the burden of notations and com-
putations in those two sections, where the technicality is already heavy.

In what follows in this article, we will often take a rational prime p that is
unramified in F, and an isomorphism ¢, : C 5 @p. By composing with ¢,
we regard Y also as the set of p-adic embeddings of F. We also regard Q,,

as a subfield of C via t;l.

1 This is equivalent to that for every prime q of F+ above p that is inert in F, [FCT 1 Qplis
odd.
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Notation 3.3.6 We introduce the following important notations.

(1) In what follows, whenever we introduce some finite unramified extension
Q?:, of Q,, we denote by Z; its ring of integers and put IF; = Zg/ng.

(2) For every T € X, we denote by @; C C the composition of t(F)
and Q,, which is unramified over Q. For a scheme S € Sch,z: and an
Og-module F with an action O — Ende,(F), we denote by F; the
maximal Og-submodule of F on which OF acts via the homomorphism
7: O — Z; — Og.

(3) We denote by Q? C C the composition of Q; for all T € X, which
is unramified over Q,. We can identify X, with Hom(OpF, Zg) =
Hom(Op, F 2). In particular, the p-power Frobenius map o acts on X.

(4) For a generalized CM type W of rank N, we denote by Q;’ C C the
composition of Q,, F', and Fy, which is contained in @g.

(5) For a (functor in) scheme over Zg written like Xo(- - -), we put Xo(- - +) 1=
Xo(-+) ®p2 IFZ and Xg(' -y i=Xo(-0) ®y2 QZ For a (functor in) scheme
over IF} written like X2(- - ), we put X5(- - ) := X3(- - ) ®p F,. Similar
conventions are applied to morphisms as well. ‘

3.4 Unitary abelian schemes

We first introduce some general notations about abelian schemes.

Notation 3.4.1 Let A be an abelian scheme over a scheme S. We denote by AY
the dual abelian variety of A over S. We denote by H‘liR(A /S) (resp. Lieys,
and wy,s) for the relative de Rham homology (resp. Lie algebra, and dual
Lie algebra) of A/S, all regarded as locally free Og-modules. We have the
following Hodge exact sequence

0 — wav;s — H{R(A/S) — Lieass — 0 (3.2)

of sheaves on S. When the base S is clear from the context, we sometimes
suppress it from the notation.

Definition 3.4.2 (Unitary abelian scheme) We prescribe a subring P C Q.
Let S be a scheme in Schp.

(1) An Op-abelian scheme over S is a pair (A, i) in which A is an abelian
scheme over Sandi: O — Endg(A)®Pisahomomorphism of algebras
sending 1 to the identity endomorphism.

(2) A unitary Op-abelian scheme over S is a triple (A, i, A) in which (A, i)
is an Op-abelian scheme over S, and A: A — AV is a quasi-polarization
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such that i (a®)¥ oA = Aoi(a) forevery a € O, and there exists ¢ € P*
making cA a polarization.

(3) For two Op-abelian schemes (A,i) and (A’,i’) over S, a (quasi-
)homomorphism from (A,i) to (A’,i’) is a (quasi-)homomorphism
¢: A — A’ such that ¢ o i(a) = i’(a) o ¢ for every a € Op. We will
usually refer to such ¢ as an Op-linear (quasi-)homomorphism.

Moreover, we will usually suppress the notion i if the argument is insensitive

to it.

Definition 3.4.3 (Signature type) Let W be a generalized CM type of rank N
(Definition 3.3.1). Consider a scheme S € Sch/¢ r, ®P- We say that an Op-
abelian scheme (A, i) over S has signature type W if for every a € Op, the
characteristic polynomial of i (a) on Lie s is given by

[] @ -x@)~ € 0osT].

TEX

Construction 3.4.4 Let K be an O, ® P-ring that is an algebraically closed
field. Suppose that we are given a unitary O r-abelian scheme (Ag, ig, Ag) over
K of signature type @ that is a CM type, and a unitary Op-abelian scheme
(A, i, 1) over K of signature type W. For every set [J of places of Q containing
oo and the characteristic of K, if not zero, we construct a hermitian space

Hom'0" | o (Hi' (40, A7), Hi'(A, A7)

over F ®q AP = Fops (FF ®Q AP, with the underlying F ®Q AP-module
HOH’IF®QAD (H‘i’t (Ag, AD), H?t(A, AD))
equipped with the pairing
(x,3) =i (o)™ 03V 0 ke 0x) € iy End g u0(H{ (Ao, A7)
= F ®gA".

Now we take a rational prime p that is unramified in F, and take the pre-
scribed subring I’ in Definition 3.4.2 to be Z ). We also choose anisomorphism

tp: C = @p and adopt Notation 3.3.6.

Definition 3.4.5 Let A and B be two abelian schemes over a scheme S €
Sch /Z,- We say that a quasi-homomorphism (resp. quasi-isogeny) ¢: A —
B is a quasi- p-homomorphism (resp. quasi-p-isogeny) if there exists some
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X
ceZ(p)

is prime-to-p if both ¢ and ¢~ are quasi-p-isogenies. We say that a quasi-
polarization A of A is p-principal if X is a prime-to- p quasi-isogeny.

such that cg is a homomorphism (resp. isogeny). A quasi-isogeny ¢
1

Note that for a unitary O g-abelian scheme (A, i, A), the quasi-polarization
A 1s a quasi-p-isogeny. To continue, take a generalized CM type ¥ =
> e, TeT of rank N.

Remark 3.4.6 Let A be an Op-abelian scheme of signature type W over a
scheme S € Sch /Z3, for some T € X. Then (3.2) induces a short exact
sequence

0 — wavs. — HIR(A/S); — Lieass: — 0

of locally free Og-modules of ranks N — r;, N, and r, respectively. If S

belongs to Sch 78 then we have decompositions
P

H®(A/8) = €D HR(A/S)..

TEX
LieA/s = @ LieA/S,r,
TEX
WA/S = @ WA/S,t
TEX

of locally free Og-modules.

Notation 3.4.7 Take 7 € X. Let (A, 1) be a unitary Op-abelian scheme of
signature type W over a scheme S € Sch /23 We denote

(, )i HR(A/S); x HR(A/S) e — Os

the Og-bilinear pairing induced by the quasi-polarization A, which is perfect if
and only if A is p-principal. Moreover, for an Og-submodule F C H‘fR (A/S)+,
we denote by F L c H‘liR(A /S)zc its (right) orthogonal complement under the
above pairing, if X is clear from the context.

Next we review some facts from the Serre—Tate theory [34] and the
Grothendieck—Messing theory [52], tailored to our application. Let W be a
generalized CM type of rank N such that min{r;, r;c} = 0 for every t not
above t_ . Consider a closed immersion § — S in SCh/Zl‘g’ on which p is
locally nilpotent, with its ideal sheaf equipped with a PD structure, and a uni-
tary O fr-abelian scheme (A, 1) of signature type W over S. We let HTriS(A /8)
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be the evaluation of the first relative crystalline homology of A/S at the PD-
thickening § < S, which is a locally free Oy ® O p-module. The polarization
A induces a pairing

(L )55 T HS(A/8)r, x H{™(4/8)-c — Os. (3.3)

AToo

We define two groupoids

e Def (S, 3‘; A, L), WhoseA objects are unitary O p-abelian schemes (A, )A\) of
signature type W over S that lift (A, 1);
e Def'(S, S; A, 1), whose objects are pairs (&, c?)foco) where for each 7 =

Too, 755, & C HS™(A/S), is asubbundle thatlifts wav /s ; € HIR(A/S),,
such that (&, @rgog{igoo =0.
Propgsi}ion 3.4.8 The functor from Def (S, S ; A, L) toDef’(S, S i A, )\) send-
ing (A, A) to (wgv/g to? AV /8.1 ) is a natural equivalence.

Proof By étale descent, we may replace S < S by S ®Z,‘§’ Zg < 8 ®Z,‘§’ Zg.
Then we have a decomposition

H{™(4/8) = P H{™(4/5).
TEX

similar to the one in Notation 3.3.6. Note that for T ¢ {1, T$}, the subbundle

w4V /s, has a unique lifting to either zero or the entire H?ris (A/ $);. Thus, the
proposition follows from the Serre-Tate and Grothendieck—Messing theories.
O

To end this subsection, we review some notation for abelian schemes in
characteristic p.

Notation 3.4.9 Let A be an abelian scheme over a scheme S € Schp ,- Put
AP .= A XSs.o S,

where o is the absolute Frobenius morphism of S. Then we have

(1) a canonical isomorphism H?R(A(P)/S) ~ a*H‘liR(A/S) of Og-modules;

(2) the Frobenius homomorphism Frg: A — AP) which induces the Ver-
schiebung map

Va = (Fra)«: HR(A/S) - HR(AP)/5)

of Og-modules;
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(3) the Verschiebung homomorphism Ver,: A”) — A which induces the
Frobenius map

Fy = (Vera).: HR(AP)/S) — HIR(A/S)

of Og-modules.

For a subbundle H of H‘llR (A/S), we denote by H” the subbundle of
H?R(A(P) /S) that corresponds to o * H under the isomorphism in (1). In what
follows, we will suppress A in the notations F4 and V4 if the reference to A
is clear.

In Notation 3.4.9, we haveker F = imV = OYXON and ker V = im F. Take
T € . For a scheme S € Sch /F% and an Op-abelian scheme A over S, we

have (HIR(A/S))P) = HR(AP)/S),, under Notations 3.3.6 and 3.4.9.

Notation 3.4.10 Suppose that S = Spec« for a field x of characteristic p.
Then we have a canonical isomorphism H?R(A(P)//c) o~ H?R(A/K) Q.o K.

(1) By abuse of notation, we have
e the (k, 0)-linear Frobenius map F: H‘liR(A k) — H‘liR(A /Kk) and
e if k is perfect, the (k, o ~!)-linear Verschiebung map V: H‘liR(A JK) —
H{R (A /).

(2) When « is perfect, recall that we have the covariant Dieudonné module
D(A) associated to the p-divisible group A[p°°], which is a free W (x)-
module, such that D(A)/pD(A) is canonically isomorphic to H‘liR(A JK).
Again by abuse of notation, we have

e the (W (x), o)-linear Frobenius map F: D(A) — D(A) lifting the one
above, and
e the (W(x), o~ 1)-linear Verschiebung map vV: D(A) — D(A) lifting
the one above,
respectively, satisfying FoV=VoF = p.

(3) When « is perfect and contains IE‘; for some T € X, applying Nota-
tion 3.3.6 to the W(k)-module D(A), we obtain W («x)-submodules
D(A),i, € D(A) for every i € Z. Thus, we obtain

e the (W (k), o)-linear Frobenius map F: D(A); — D(A),, and
e the (W(k), o~ -linear Verschiebung map V: D(A); — D(A),-1,
by restriction. We have canonical isomorphisms and inclusions:

VD(A)yr/pD(A); =~ wpv; € D(A);/pD(A); ~ HR(A),.

Notation 3.4.11 Take 7 € X . Let (A, A) be a unitary Op-abelian scheme
of signature type W over Spec « for a perfect field k containing F; We have
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a pairing
(, e D(A)r X D(A)re — Wi(k)

lifting the one in Notation 3.4.7. We denote by D(A).’ the W («x)-dual of D(A).,
as a submodule of D(A).c ® Q. In what follows, unless we specify, the dual
is always with respect to the default quasi-polarization.

The following lemma will be repeatedly used in later discussion.

Lemma 3.4.12 Suppose that F" is contained in Q, (via the embedding
: Ft < C ~ @p) with p the induced p-adic prime. Let w € Op+ be
an element such that valy(ww) = 1. Consider two O p-abelian schemes A and
B over a scheme S € SCh/sz. Leta: A — Band f: B — A be two Op-

linear quasi- p-isogenies (Definition 3.4.5) such that B o ¢ = @ -idy (hence
oo B =w -idp). Then

(1) Fort € {to0, TS}, the induced maps

o H{N(A/S): — H{X(B/S).,

Be: H{X(B/S): — H{X(A/S),
satisfy the relations ker o, ; = im By r and ker B, ; = im . ; and these
kernels and images are locally free Og-modules.

(2) We have

rankOS LieB/S,roo — rankos LieA/Syfoo
= rankog (ker oy 7,,) — rankog (ker oy 7c ).

(3) Let Aa and Ap be two quasi-polarizations on A and B, respectively, such
that (A, Ay) and (B, Ag) become unitary O g-abelian schemes of dimen-
sion N[F* : Q] for some integer N > 1. Suppose thata¥ olgoa = w 4.
(a) If both L4 and A p are p-principal, then we have

rank o (ker oy 7,,) + rankog (ker oy r¢ ) = N.
(b) If A4 is p-principal and ker A g[p™°] is of rank p?, then we have
rank o (ker oy 7)) + rankog(kero ¢ ) = N — 1.

(c) Ifker A 4[p™] is of rank p* and A is p-principal, then we have

rank o (ker oy 7)) +rankog(keray ;¢ ) = N + 1.
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(d) If both ker A4[p™] and ker Ag[p>°] are of rank p?, respectively, then
we have

rank o (ker oy 7)) + rankog (ker oy zc ) = N.

(4) Let Aa and Ap be two quasi-polarizations on A and B, respectively, such
that (A, Ay) and (B, Ap) become unitary OFp-abelian schemes of dimen-
sion N[F* : Q] for some integer N > 1. Suppose that a” o kg o o = Ay4.
Ifker A4[p®™] is of rank p* and Ap is p-principal, then we have

rankog (ker oy 7)) + rankog (ker oy 7 ) = 1.

Proof We may assume S connected. Up to replacing «, § and @ by a common
Z(X )—rnultiple, we may also assume that & and g are genuine isogenies.
For (1), it suffices to show that the induced maps

ay: HR(A/S) ®0,. Zp — H{R(B/S) ®0,, Z).
B.: HR(B/S) ®0,, Z, — HI}(A/S) ®0,. Z,

satisfy the relations ker o, = im S, and ker B, = im «,; and these kernels and
images are locally free Og-modules.

Note that A[p], B[p], ker «[p], and ker B[p] are all locally free finite group
schemes over S with an action by Or/pOF. By the relation among «, 8, @,
we may assume that A[p] and B[p] have degree p?; ker o[p] has degree p’;
and ker B[p] has degree pZd_’. As By oo, = 0 and oy o B, = O, it suffices
to show that both ker ., and im 8, (resp. both ker S, and im o) are locally
direct factors of H{R(A/S) ®o,, Z, (resp. H{R(B/S) ®0,., Zp) of rank r
(resp. 2d — r), which will follow if we can show that coker o, and coker B
are locally free Og-modules of rank r and 2d — r, respectively.

We now prove that coker «, is a locally free Og-modules of rank r; and the
other case is similar. We follow the argument in [23, Lemma 2.3]. Consider
the big crystalline site (S/Zp)cris With the structural sheaf Ogris. Denote by
D(A[p°°]) and D(B[p*°]) the covariant Dieudonné crystals on (S/Zp)cris of
p-divisible groups A[p°°] and B[p™°], respectively, which are locally free
Ogris—modules. We have a short exact sequence

0 — a DA™ /@ D(BIp™]) — D(BIp™]) /@ D(B[p™])
— D(BIp™D/axD(A[PT] — 0 (3.4)

and a surjective map

ax: D(APTD/BD(BIP™]) — aD(A[p™]) /@ D(B[p™]) (3.5
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of (’)gris-modules. To show that coker « is a locally free Og-module of rank r,
it suffices to show that D(B[p™]) /o D(A[p°]) is a locally free Ogris/p(’)gris—
module of rank r. By [4, Proposition 4.3.1], D(B[p*°])/w D(B[p°]) is a
locally free Ogris / p(’)gfis—module of rank 2d. Thus, by (3.4) and (3.5), it suf-
fices to show that the Ogris/pOgriS—modules aD(A[p*°])/D(B[p]) and
D(B[p®°]) /a D(A[p>°]) are locally generated by 2d —r and r sections, respec-
tively. However, this can be easily checked using classical Dieudonné modules
after base change to geometric points of S. Thus, (1) is proved.

For (2), we know from (1) that both ker oy -, and ker e, ¢ are locally free
Os-modules. We may assume that S = Spec « for a perfect field « containing
sz. Put r := dim, Liea ¢, and s := dim, Lieg ., ¢,,. Then we have

) VD(B).
= d \2 (o] d x© s
N im, (wp //c,too) 1my D(B)re
. . VD(A),
= d \ c = d o
r imy (wa /K,Too) 1My PD(A),<
Thus, we obtain
vVD(B VD(A
s —r = dimg 2B iy VDA (3.6)
pD(B)roco pD(A)roco

Regarding D(A) as a submodule of D(B) via s, it follows that

VD(B)z, pD(B)g . D(B), .  D(B)g
— — dimy ———= =dim, dim,
VD(A)z, PD(A)g, D(A)z, D(A)xg,

= dimy (ker oty 7)) — dim, (ker oty 7 ).

(3.6) = dim,

Thus, (2) is proved.

For (3), it suffices to show that S = Specx for an algebraically closed
field k containing Isz. We compare the degrees of (a” o Ap o a)[p>°] and
(@ Aa)[p™]. Putr := rankog (ker o ¢, ) + rankog (ker ey ¢ ). Then we have
deg a[p®>®] = degaV[p>°] = p" hence

2r +log,, deg Ap[p™] = 2N + log,, deg A a[p°].

All cases of (3) follow immediately.
The proof of (4) is similar to that of (3). |
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3.5 A CM moduli scheme

In this subsection, we introduce an auxiliary moduli scheme parameterizing
certain CM abelian varieties, which will be used in Sects. 4 and 5.

Definition 3.5.1 Let R be a Z[(disc F)~!]-ring.

(1) A rational skew-hermitian space over Or @ R of rank N is afree O Q R-
module W of rank N together with an R-bilinear skew-symmetric perfect
pairing

(, )'W: WXxW—>R

satisfying (ax, y)w = (x,ay)w foreverya € Or ® Rand x,y € W.

(2) Let W and W’ be two rational skew-hermitian spaces over Or ® R, a map
f: W — W'isasimilitudeif f isan O ® R-linear isomorphism such that
there exists some ¢(f) € R* satisfying (f(x), f(y))w = c(f){x, y)w
for every x, y € W.

(3) Two rational skew-hermitian spaces over Or @ R are similar if there exists
a similitude between them.

(4) For arational skew-hermitian space W over Or ® R, we denote by GU(W)
its group of similitude as a reductive group over R; it satisfies that for every
ring R’ over R, GU(W)(R’) is the set of self-similitude of the rational
skew-hermitian space W ® g R’ over O ® R'.

We define a subtorus To € (Resp,;z Gn) ® Z[(disc F )~ such that for
every Z[(disc F)_l]—ring R, we have

To(R) = {a € O ® R|Nmp/p+a € R).

Now we take a rational prime p that is unramified in F'. We take the pre-
scribed subring P in Definition 3.4.2 to be Z).

Remark 3.5.2 Let Wq be a rational skew-hermitian space over O & Zp)
of rank 1. Then GU(Wy) is canonically isomorphic to To ®zgisc 7)-1] Z(p)-
Moreover, the set of similarity classes of rational skew-hermitian spaces W/,
over O ® Zp) of rank 1 such that W6 Rz, A is similar to Wy ®z) A is
canonically isomorphic to

ker' (To) := ker | H'(Q, To) — [ [ H'(@,, To) |,

V<00

which is a finite abelian group.
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Definition 3.5.3 Let ® be a CM type. We say that a rational skew-hermitian
space Wy over Of ® Zp) of rank 1 has type @ if for every x € Wy and every
totally imaginary element a € F* satisfying Im7(a) > O for all T € ®, we
have (ax, x)w, = 0.

Definition 3.5.4 For a rational skew-hermitian space Wy over Of ® Zp)
of rank 1 and type ® and an open compact subgroup Kg C To(A™®7P), we
define a presheaf T}) (Wo, Kg ) on SCh'/OFq) ®Zy & follows: for every S €

Sch// Ory®Z ) Ve let T; (Wo, Ké’ )(S) be the set of equivalence classes of
triples (Ao, Ao, ng ), where

e (Ao, Xo) is a unitary Op-abelian scheme of signature type ® over S such
that Ag is p-principal;

° ng isa Kg -level structure, that is, for a chosen geometric point s on every
connected component of S, a 71 (S, s)-invariant K{)’ -orbit of similitude

nb s Wo ®z,,) AP — H{'(Agg, A7)

of rational skew-hermitian spaces over F ®A°>”, where H?t(Aos, A°OP)
is equipped with the rational skew-hermitian form induced by Ag.

Two triples (Ag, Ao, n(’; )and (Ag, Ag, ng ") are equivalent if there exists a prime-
to-p Op-linear quasi-isogeny ¢o: Ag — A} carrying (Ao, n3) to (cAf, ng/)
for some ¢ € Z(Xp).

For an object (Ag, Ao, ng ) € T}, (Wo, Kg )(C), its first homology
H(Ao(C), Z(p)) is a rational skew-hermitian space over Of ® Z,) induced
by A, which is of rank 1 and type &, and is everywhere locally similar to Wy.
Thus, by Remark 3.5.2, we obtain a map

w: T}, (Wo, K{)(C) — ker' (Tp)

sending (Ao, Ao, 1)) € T; (Wo, KI)(C) to the similarity class of
Hi(Ao(C), Z(p)).

It is known that when K{; is neat, T }, (W, Kg ) is represented by a scheme
finite and étale over Of, ® Z(,). We define T ,(Wo, Kg ) to be the minimal
open and closed subscheme of T}, (W, Kg ) containing w1 (Wy). The group
To(A>?) acts on T ,(Wo, Kg ) via the formula

a - (Ao, %o, n) = (Ao, ro, nf) 0 a)
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whose stabilizer is To(Z(,))K{ . In fact, To(A?) /To(Z(p))K{ is the Galois
group of the Galois morphism

T, (Wo, Kg) — Spec(OF, ® Zp)).

Definition 3.5.5 We denote by T the groupoid of To (A7) /To(Z p))Kp , that
is, a category with a single object « with Hom(x, x) = Ty (Aoo'p)/To(Z(p))Kg.

Remark 3.5.6 As T, (W, Ké’) is an object in SCh/OFq)@Z(,,) with an action
by TO(AOO’p)/To(Z(p))Ké’, it induces a functor from ¥ to SCh/0F¢®Z(p>,
which we still denote by T, (W, Kg ). In what follows, we may often have

another category ¢ and will regard T ,(Wo, Kg ) as a functor from € x ¥ to
Sch /Oy ®7 ) 35 the composition of the projection functor € x € — T and

the functor T,(Wo, K{)): T — Sch, OFg ®Lp)*

Notation 3.5.7 Forafunctor X : ¥ — Schanda coefficientring L, we denote
HE(X, L(j)) € HL (X (%), L(j)),  Hg (X, L(j)) € HL (X (%), L()))

the maximal L-submodules, respectively, on which T (A7) /To(Z p))K(’)’
acts trivially.

Definition 3.5.8 Let « be an algebraically closed field of characteristic p, and
L a p-coprime coefficient ring. For a functor X : ¥ — Sch/, such that X (x)

is smooth of finite type of dimension d and that ¥ acts freely on the set of
connected components of X (x), we define the T-trace map

T
/ HY (X (%), L(d)) > L
X
to be the composite map

H%,IC(X(*), L(d)) — Hfd(X(*), L(d)) — @Hgd(Y, L(d)) >otry L.
Y

where {Y} is a set of representatives of T-orbits on the connected components

of X (x), and the second map is the natural projection. It is clear that the above
composite map does not depend on the choice of {Y}.
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4 Unitary moduli schemes: smooth case

In this section, we define and study a certain smooth integral moduli scheme
whose generic fiber is the product of a unitary Shimura variety and an auxiliary
CM moduli. Since the materials in this section are strictly in the linear order,
we will leave the summary of contents to each subsection.

4.1 Initial setup

We fix a special inert prime (Definition 3.3.4) p of FT (with the underlying
rational prime p). We take the prescribed subring P in Definition 3.4.2 to be
Z(py. We choose the following data

e a CM type ® containing 7c;
e arational skew-hermitian space Wo over Of ® Zp) of rank 1 and type ®
(Definition 3.5.3);
e aneat open compact subgroup Kg C To(A%P);
e an isomorphism ¢, : C 5 @p such that ¢, o T : Ft — @p induces the
place p of F;
e an element w € Op+ that is totally positive and satisfies valy () = 1,
and valy (=) = 0 for every prime q # p of F T above p.
We adopt Notation 3.3.6. In particular, Fg’ contains I ». Since the argument
below is insensitive to the choices of Wy and K(’; , we will not include them
in all notations. However, we will keep the prime p in notations as, in later
application, we need to choose different primes in a crucial step. Put Ty, :=
T,(Wo, K() ®0, 07, Ly -

4.2 Construction of moduli schemes

In this subsection, we construct our initial moduli schemes. We start from the
datum (V, {Ag}q)p), where

e V is a standard indefinite hermitian space (Definition 3.2.1) over F of rank
N > 1, and
o Agisaself-dual O, -lattice in V ® Fy for every prime q of F * above p.
Before defining the moduli functor, we need the following lemma to make
sense of the later definition.

Lemma 4.2.1 The field @?j contains Fy with W = N® — 1o, + 15, which is
a generalized CM type of rank N, for every N > 1.

Proof Take p € Aut(C/Q?,’) C Aut(C/F). Then we have p® = & and
PToo = Too- Thus, we have p(N® — 700 + 7)) = N® — 15 + T, for every
N > 1. The lemma follows. O
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Recall that we have the category Sch//Zq; of locally Noetherian schemes
p

/

over Z%, and PSch’,,,, the category of presheaves on Sch’, .
p /2 /Ly

Definition 4.2.2 We define a functor
My(V,=): RAV)P x T — PSCh//Z?,’
K? = M, (V, KP)
such that for every S € Sch'/Z?;, M, (V, KP)(S) is the set of equivalence
classes of sextuples (Ao, Ao, ng; A, A, n?), where

o (Ag, Ao, n{;) is an element in T}, (5);
e (A, X) is a unitary Op-abelian scheme of signature type N® — 750 + 75
over S (Definitions 3.4.2 and 3.4.3) such that A is p-principal;
e 1? is a K”-level structure, that is, for a chosen geometric point s on every
connected component of S, a7 (S, s)-invariant K?-orbit of isomorphisms
0”1V g AP — Homyle ., (H{' (Ao, A7), H{' (A, A%P))
of hermitian spaces over F ®g AP = F Q@p+ A?;p . See Construc-
tion 3.4.4 (with U = {oo, p}) for the right-hand side.
Two sextuples (Ag, Ao, ng; A, A, nP) and (A, A, ng/; A, ), nP") are equiv-
alent if there are prime-to-p Op-linear quasi-isogenies ¢o: Ag — A and
¢: A — A’ such that
e (o carries ng to ng/;
o the(;e exists ¢ € Z(Xp) such that ¢ o Ay 0 @p = cAgand 9" o X' 0 ¢ = cA;
an
e the K”-orbit of maps v — @s o n”(v) o (@gx) ! forv € V ®q AP
coincides with n?’.
On the level of morphisms,
e a morphism g € Kp\U(V)(A;O’p)/Kp/ of A(V)? maps M, (V, K?)(S) to
M, (V, K?')(S) by changing n” to n” o g; and
e a morphism a of T acts on My, (V, K”)(S) by changing 77([)7 to ng oa.

We clearly have the forgetful morphism
M,(V,=) — T,y 4.1)

in Fun(R(V)? x ¥, F’SCh//ZqJ, the category of functors from K(V)? x ¥ to
P
PSCh//Zcp. Here, we regard T}, as an object in Fun(&(V)? x T, SCh//Zq>) as in
P P
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Remark 3.5.6. According to Notation 3.3.6, we shall denote by the base change
of (4.1) to Fg’ by My(V, =) — Ty, which is a morphism in Fun(&(V)? x
T, PSch//Fq)).

P

Theorem 4.2.3 The morphism (4.1) is represented by a quasi-projective
smooth scheme over Ty of relative dimension N — 1. Moreover, for every
K? € R(V)P, we have a canonical isomorphism

Im, (v.xr)/T, = Hom (@A 7 s HR(A). / WA )

of coherent sheaves on My (V, K?), where (A, Ao, ng; A, ©, nP) is the uni-
versal object over My(V, KP) and we recall that TMp (V,KP)/T, IS the relative
tangent sheaf. Moreover, (4.1) is projective if and only if its base change to

D -
Qp is.

Proof The first claim is proved in [62, Theorem 4.4]. It remains to com-
pute the tangent sheaf. Take an object K” € RK(V)”. Since both Kg and
K? are neat, My(V, K”) is an algebraic space. Thus, we have the univer-
sal object (Ao, Lo, ng; A, &, n?) over My(V, K?). By a standard argument
in deformation theory, using Proposition 3.4.8, we know that the morphism
M, (V, K?) — T, is separated and smooth; and we have a canonical isomor-
phism for the tangent sheaf

T, (v.kP)T, = Hom (047 7, H{R(A)./ 0 )
which is locally free of rank N — 1. The theorem is proved. |

Let K4 be the stabilizer of A for every q | p; and put K, := qu » Kg. As
shown in [62, §3.3], there is a canonical “moduli interpretation” isomorphism
of varieties over @g’

M, (V, =) = Sh(V, =K,) Xspec F Ty 4.2)

(Notation 3.3.6(5)) in Fun(A(V)? x ¥, Sch/(@%) /10> where ¥ acts on

Sh(V, =K,) Xspec F Tg through the second factor. See also Remark 4.2.5
below.

Lemma 4.2.4 Let L be a p-coprime coefficient ring. The two specialization
maps

H (Mp(V, =) ®z¢ Q). L) — Hy (My(V. =), L),
HE (M, (V. =) @79 Qp. L) — Hr(Mp(V, =), L),
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are both isomorphisms. In particular, (4.2) induces isomorphisms

H. (Sh(V,=K,)7, L) ~ HL (Mp(V, =), L),

et,c

HL (Sh(V, =K )7, L) =~ Hy (M, (V, =), L),

in FUn(&(V)?, Mod(L[Gal(Q,/Q)))) for every i € Z. Here, Gal(Q,/Q%)

is regarded as a subgroup of Gal(F / F) under our fixed isomorphism t p: C >

Qp.

Proof Since My, (V, =) is smooth over Zf;, we have a canonical isomorphism
L >~ RWL. When My, (V, =) is proper, this is simply the proper base change.
When My, (V, =) is not proper, this follows from [43, Corollary 5.20]. O

Remark 4.2.5 For the readers’ convenience, we describe the isomorphism
(4.2) on complex points, which determines the isomorphism uniquely. It suf-
fices to assign to every point

x = (Ao, 20,155 A, 2, ") € Mp(V, KP)(C)
a point in
Sh(V, KPK,)(C) = UV)(F )\ (V(O)-/C* x UV)(AZ:)/KPKp) ,
where V(C)_/C* is the set of negative definite complex lines in V@ ¢ C. Put
Vi :=Homp(H(Ao(C), Q), Hi(A(C), Q)
equipped with a pairing in the way similar to Construction 3.4.4, which
becomes a hermitian space over F of rank N. Moreover, it is standard indefi-

nite. By the comparison between singular homology and étale homology, we
have a canonical isometry of hermitian spaces

pi Vi @g AP = Homyly oo, (! (A0, A7), H{'(A, A1),

which implies that V, ®g A7 >~ V ®g A°? by the existence of the level
structure n”. On the other hand, we have a canonical decomposition

Homo, ez, (H{' (A0, Zp). H'(A, Z,)) = €D Axq
qlp

of OF ® Zp-modules in which Ay 4 is a self-dual lattice in V ® ¢ Fy for every
prime q of F above p. Thus, by the Hasse principle for hermitian spaces, this
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implies that hermitian spaces V, and V are isomorphic. Choose an isometry
Nrat: Vx — V. Thus, we obtain an isometry

g’ =nmop lon?:V ®g A®?P — V®g A™P

as an element in U(V) (A Py . For every q above p, there exists an element
gq € U(V)(F ) such that 8qAq = MratAy,q. Together, we obtain an element

gx = (g, (gq)qlp) € U(V)(AT}). Finally,
= {a € Homp (H{® (40/C), HY (A/0)) | (@, ¢,)) S @av 1.}

is a line in V;(C) such that n(I;) is an element in V(C)_/C*. Tt is easy to
check that the coset

UV)(FT) (rat (1), 8KPK )

does not depend on the choice of 7., hence gives rise an element in
Sh(V, K?K,)(C). It is clear that the action of a morphism a of T on x does
not change the above coset.

4.3 Basic correspondence for the special fiber

In this subsection, we construct and study the basic correspondence for the
special fiber My, (V, =). Recall that we have chosen an element & € O+ that
is totally positive and satisfies val, () = 1, and valg(@') = 0 for every prime
q # p of FT above p.

Definition 4.3.1 We define a functor

KP i Sp(V, K?)

such that forevery S € Sch’ Sp(V, KP)(S) is the set of equivalence classes

/Fcbs
of sextuples (Ao, Ao, 170; A*, ¥, nP*), where

e (Ao, Ao, n}y) is an element in Ty (S);

e (A*, A*)isaunitary O p-abelian scheme of signature type N ® over S such
that ker A*[ p°°] is trivial (resp. contained in A*[p] of rank pz) if N is odd
(resp. even);

e nP* is, for a chosen geometric point s on every connected component of S,
a (S, s)-invariant K”-orbit of isomorphisms

n*: Vg AP — Homp 20, (H' (Agy, A7), Hi' (A7, A7)
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00.p 12
F+ °

The equivalence relation and the action of morphisms in £(V)” x ¥ are defined
similarly as in Definition 4.2.2.

of hermitian spaces over F ®g A®? = F Qp+ A

We clearly have the forgetful morphism

inFun(R(V)? x ¥, PSCh’/]Fq> ), which is represented by finite and étale schemes
p

by [62, Theorem 4.4].
Now we take a point s* = (Ao, Ao, n}; A*, 1*, nP*) € Sp(V, KP) (k) where
. .« . q) * . . o e e
K is a‘ﬁeld contammg F,. Then AZ[p>]is a sppers.mgular p-d1V151b1'e group by
the signature condition and the fact that p is inert in /. From Notation 3.4.10,
we have the (k, o)-linear Frobenius map

F: H{R(A*/K) ey, = H{R(A* /) or, = H{R(A* i)z,
We define a pairing
{, Yoot HR(A* /1)y, x HR(A*/K) ey — K

by the formula {x, y}s := (Fx, y) TS (Notation 3.4.7). To ease notation, we
put

Yor := HIR(A* /i), .

Lemma 4.3.2 The pair (¥s«,{ , }s) is admissible of rank N (Defini-
tion A.1.1). In particular, the Deligne—Lusztig variety DLg~ := DL(¥4+, { , }s*,
(%1) (Definition A.1.2) is a geometrically irreducible projective smooth
scheme in Schy, of dimension L%J with a canonical isomorphism for its
tangent sheaf

T = Hom (H/H. (5w, /).

where H C (%*)DLS* is the universal subbundle.

Proof 1t follows from the construction that { , }s« is (k, o)-linear in the first
variable and k-linear in the second variable. By the signature condition Defini-
tion 4.3.1(2), the map F: H{R(A* /i), — H{R(A*/k).< is an isomorphism,

12 Note that here we are using @ A rather than )¢ in order to be consistent with the compatibility
condition for polarizations in the isogeny considered in Definition 4.3.3.
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and the pairing (F , )« rc has kernel of rank O (resp. 1) if N is odd (resp.
even). Thus, by Proposition A.1.3, it suffices to show that (¥, { , }s+) is
admissible.

Note that we have a canonical isomorphism (¥*)z = H?R (A*/K) 1y, ik =
H?R(A% /K)z.,, and that the (k, o')-linear Frobenius map F': H?R (AZ/K) 1y —
H‘liR (A% /) andthe (x, o~ 1)-linear Verschiebung map v : H?R(A% [K) e, —
H‘liR(A%/E)TOcO are both isomorphisms. Thus, we obtain a (k, o2)-linear iso-
morphism V'F: H?R(A%/E),OO — H‘llR (A%/K)z,,. Denote by ¥ the subset
of H?R(A% /K) ., on which v~!F = id, whichisan F pz—linear subspace. Since
the p-divisible group A%[p°°] is supersingular, by Dieudonné’s classification
of crystals, the canonical map % ®Fp2 K — H?R(A* /K)z, = (V)i is an
isomorphism. For x, y € ¥, we have

{.X, )’}s* = (F-x’ y))\-*,foco = <-xa vy)i*;roo = <X, Fy)i*,foo
= —(Fy, xﬁ»*,rgo = —{y, x}%.

Thus, (¥+, {, }s+) is admissible. The lemma follows. a

Definition 4.3.3 We define a functor
By(V,=): RAV)P x T — PSCh’/]F¢
P
K” > B,(V,K?)
/
/FE?
of decuples (Ag, Ao, ng; A, L, nP; A*, A%, nP*; a), where

o (Ag, Ao, ng; A, A, nP) is an element of My (V, K7)(S);
e (Ao, Ao, 0y A*, A*, nP*) is an element of Sp(V, K”)(S); and
e «: A — A*isan Op-linear quasi- p-isogeny (Definition 3.4.5) such that
(a) ker a[p®] is contained in A[p];
(b) wehave w - A = ¥ o A* o v; and
(c) the K”-orbit of maps v — ay o n”(v) for v € V ®g AP coincides
with nP*.
Two decuples (A, Ao, ng; A, A, Py A* A, P ) and (A, Ay, ng/; AN,
n?’; AY, A, nP*; o) are equivalent if there are prime-to-p O p-linear quasi-
isogenies ¢o: Ag = Ay, ¢: A - A’,and ¢*: A* — A* such that

such that forevery S € Sch Bp(V, K?)(S) is the set of equivalence classes

e (o carries ng to ng/;

e there exists ¢ € Z(Xw such that ¢ o A( 0 9o = cAg, ¢ oA’ 0 ¢ = cA, and
(p*v oA o w* — C)\.*;

e the K”-orbit of maps v — @5 o n”(v) o (@gx) "' forv € V ®q AP
coincides with n?’;
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e the K”-orbit of maps v — ¢} o nP*(v) o (pos) "' forv e V ®q AP
coincides with n?*';
e 9*oua = o ogholds.

On the level of morphisms,

e a morphism g € KP\U(V)(A;O’p)/KP’ of R(V)? maps By (V, K?)(S) to
B, (V, K?')(S) by changing n?, n* to n” o g, nP* o g, respectively; and
e a morphism a of T acts on M, (V, K”)(S) by changing ng to ng oa.

We obtain in the obvious way a correspondence
Sp(V, =) == Bp(V, =) ——=M,(V, =) (4.3)
in FUN(R(V)? x %, PSCh'/Fg,)/Tp.

Definition 4.3.4 (Basic correspondence) We refer to (4.3) as the basic cor-
respondence on My(V, =),!13 with S, (V, =) being the source of the basic
correspondence.

Theorem 4.3.5 In the diagram (4.3), take a point
s* = (Ao, ko, b3 A, A%, nP*) € Sp(V, KP) (k)

where k is a field containing IE‘;I,’. Put By = w~(s*), and denote by
(A, A, n?; a) the universal object over the fiber Bgs.

(1) The fiber Bg+ is a smooth scheme over k, with a canonical isomorphism
for its tangent bundle

T8, /c =~ Hom (a)-Avaoo’ ker O‘*,roo/wAV,roo) .

(2) The restriction of 1 to By~ is locally on Bs a closed immersion, with a
canonical isomorphism for its normal bundle

NyB,» = Hom (w4v 7, imay ) -

(3) The assignment sending a point (Ag, Ao, ng; A, A, nP A% A5, nP*a) €
B+ (S) for every S € SCh'/K to the subbundle

H = () '@avys.r,, CHR(A*/S).,
= HR(A*/K)r, ® Os = (Vir)s,

13 we adopt this terminology since the image of ¢ is in fact the basic locus of My (V, =).
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where &: A* — A is the (unique) O f-linear quasi-p-isogeny such that
aoa = w -idy, induces an isomorphism

fg+: Byr = DLy = DL(¥%o, {, }ov, [550).

In particular, Bg« is a geometrically irreducible projective smooth scheme
in Schy,c of dimension L%J by Lemma 4.3.2. In particular, ¢ is of pure

codimension I_%J .

Proof For an object (Ao, Ao, ng; A, 0 P A% A, P a) € Bp(V, KP)(S),

Definition 4.3.3(a) implies that there is a (unique) OFf-linear quasi-p-isogeny

a: A* — Asuchthat @ oo = @ -id4, hence o o @ = @ - id4+. Moreover,

we have the following properties from Definition 4.3.3:

(@) ker a[p®] is contained in A*[p];

(b") wehave w - A* =&Y oA od; and

(c/) the KP-orbit of maps v — @ &, 0n*P (v) forv € V®gA>? coincides
with n?.

First, we show (1). It is clear that By~ is a scheme of finite type over «.
Consider a closed immersion S <> § in Sch’, defined by an ideal sheaf 7
satisfying 7% = 0. Take a point x = (Ag, Ao, 10 A, A, nP; A*, A%, nP*; @) €
B+ (S). To compute lifting of x to S, we use the Serre—Tate and Grothendieck—
Messing theories. Note that lifting « is equivalent to lifting both @ and &,
satisfying (b,c) in Definition 4.3.3 and (b’,c’) above, respectively. Thus, by
Proposition 3.4.8, to lift x to an S -point is equivalent to lifting

® wpv/s 1., toasubbundle ®yv . of H?%S(A/é‘)roo (of rank 1),
® w4v/s,7g to asubbundle ®pv e of H{™(A/S):c (of rank N — 1),

subject to the following requirements

(@") ®pv ¢, and @AV ¢ are orthogonal under ( , )ififsoo (3.3); and
(b") Gy e H{™(A*/S) g is contained in @av < .

Since ( , )ififsoo is a perfect pairing, ®4v ;,, uniquely determines @4v c by
(a”). Moreover, by Property (b’) above, we know that ker a ;, and im &*sf&

are orthogonal complements to each other under ( |, )irifsoo. Thus, (b”) is
equivalent to

() c?)AY,foo is contained in the kernel of o, : H'fris(A/S‘)tOc —
H?I'IS(A*/S)TOO .
To summarize, lifting x to an S-point is equivalent to lifting w4 /8,10 O @

subbundle @4v ;. of ker ay . In other words, the subset of B (3’ ) above x is
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canonically a torsor over Hompg (w4 v
(1) follows.
Next, we show (2). By Theorem 4.2.3, we have a canonical isomorphism

(ker ay 1o, /@wav ) ®04 L). Thus,

»Too?

1T, (V.KP) B = Hom (04 1, H{R (A) e /047 2. »

and the induced map 7g . /i« — L:TMp (v.K?)/« |B,« 18 identified with the canon-
ical map

Hom (a)Av,foo, ker oz*,foo/wAv’roc) — Hom (‘UAV,TOO’ H?R(A)roo/wAV,roo) )
It is clearly injective, with cokernel canonically isomorphic to
Hom (wAV,roov im oc*,foo) .
Thus, (2) follows.
Finally, we show (3). We first show that ¢+ has the correct image, namely,

H is a locally free Og-module of rank [y ;’ 11, and satisfies (FH )L C H.
Lemma 3.4.12(1,2,3) implies that H is locally free, and

rank o (ker oy 7)) — rankog (ker oy ¢ ) = 1,

rank g (ker oy 7)) + rankog (ker oy ¢ ) = 2(%1 — 1.
Thus, we have rank o, (ker a4 7, ) = f%] and
rankog (ker &ty - .) = N — rankog(ker oy -, ) = |'NT_1'|.

On the other hand, as wpv s ¢, hasrank 1 and w»v /s ¢, hasrank 0, wav /s 7.
is contained in the kernel of «, ; , hence in the image of &, - . Together, we

obtain rankp, H = N+17. From the equalities
s 2 q

o o o - (p)
W, tg (FH(p)) = a*,rgoFA* ((a*,roo) 1C()A\’/S,toc)

v «(p) \—1
= Ol*,rgoFA* (Ol*,fgo) WAPIV/S 78

(p)

2] -1 _ _
*,T *, TS, wA(PW/S,tgo - FAC()A(fl’)\//S,‘rgo =0

=F 0 < (o
and the fact that FH P and ker 04 cg are both subbundles of H‘liR (A*/S) e
of rank [NTH], we know FH?) = ker &*’fc?o' By Definition 4.3.3(b) and the
definition of ¢, we have

v . v v dR
(ker (N o) lma*,rooh*,rgo = (Ol*,rgo ker CF Hj (A/S)too>k,rgo =0,
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which implies
ker & r,, = iM .z, S (ker @y rc) ™ = (FHP).

As both sides are subbundles of H?R(A* /S)z., of rank (%1 , we must have
ker &y o, = (FHP)L. In particular, we have (FHP)L C H. Thus, ¢ is
defined as we claim.

Since the target of g~ is smooth over k by Lemma 4.3.2, to see that {« is
an isomorphism, it suffices to check that for every algebraically closed field
k' containing «, the following statements hold:

(3-1) ¢+ induces a bijection on k’-points; and
(3-2) ¢+ induces an isomorphism on the tangent spaces at every «’-point.

To ease notation, we may assume that ” = «, hence is perfect in particular.

For (3—-1), we construct an inverse to the map s+ (k). Take a point y €
DL+ () represented by a «-linear subspace H C ¥+ = H‘liR(A* /K)z,- We
regard F and V as those sesquilinear maps in Notation 3.4.10. In particular,
we have (FH)L C H. For every T € %, we define a W (x)-submodule
Dyr € D(A*); as follows.

o If v ¢ {100, 75}, then Dy ; = D(A¥);.

e We set Dy, = vl H¢S, where H€ is the preimage of H- under the
reduction map D(A*) e — D(A*)g /pD(A*)e = H?R(A*)rgo.

o Weset Dy rc = FH, where H is the preimage of H under the reduction
map D(A*)r,, — D(A%)r,,/pD(A*)r, = H{R (A%,

Finally, put D4 := @re):oo Da.r as a W(x)-submodule of D(A*). We show
that it is stable under F and V. It suffices to show that both F and V stabilize
Dpr ®D ATS which breaks into checking that

® FDy ¢, C Da,rg, that is, Fv-lHS C FH. It suffices to show that
v I(HL) (as a subspace of H?R(A*)Too) is contained in H. However,
v—-l1(H1) = (FH)*, which is contained in H.

o FDp 1o C DA’roo,thatis,FFI:I C V_lﬁc.ltsufﬁcestoshoprI:I C HE,
which obviously holds.

® VDj 1, € Da rg, thatis, vv-lHCS C FH. it suffices to show H+ C FH
as subspaces of H?R(A*),go, which follows from (FH)L C H.

° VDAJOcO C D4z, that s, VFH - v—LH®, It is obvious as V"1 H€ con-
tains pD(A*),,.

Thus, (D4, F,V) is a Dieudonné module over W(x). By the Dieudonné
theory, there is an Op-abelian scheme A over x with D(A); = Dy . for
every T € X, and an Op-linear p-isogeny o: A — A* inducing the
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inclusion of Dieudonné modules D(A) = Dy C D(A*). Moreover, since
pD(A*) C D(A), we have ker a[ p™°] C A[p].

LetA: A — AV bethe unique quasi-polarization suchthat w A = a” oA*oa.
We claim that A is p-principal. It is enough to show the induced pairing

P it D(A)ry, X D(A)gg, — W(K)

(Notation 3.4.11) is non-degenerate. Since H is W (k)-dual to p~'H®, hence
D(A)rg, = FH is dual to V! (p~'H®) = p~lv~1H® = p_lD(A)TOO,
above pairing is non-degenerate.

Itis an easy consequence of Lemma 3.4.12(2,3) that the O r-abelian scheme
A has signature type N® — 7o, + t5,. Finally, let n” be the unique K?”-
level structure such that Definition 4.3.3(c) is satisfied. Putting together, we
obtain a point x = (Ao, Ao, ng; A, A, nP; A*, A5, nP*; a) € Bs (k) such that
C+(x) = y. It is easy to see that such assignment gives rise to an inverse of
Ls (1), hence (3—1) follows immediately.

For (3-2), let 7, and 7, be the tangent spaces at x and y as in (3-1),
respectively. By (1) and Lemma 4.3.2, we have canonical isomorphisms

7T, >~ Hom, (wuv -,
Ty ~ Hom,(H/(FH)*, H{} (A*).,, /H).

ker a*,foo/a)AV,roo)’

Moreover, by the definition of g+, the map (¢s+)«: 7y — 7, is induced by the
following two maps

1 v —1 o Oy 10
H/(FH)" = (a*,foo) wAV,roc/kera*,roo > WAV 14>

* * - — &*vfoo
HR(A*) . /H = HR (A" [ (Grs) " 0av 1y — kel 0y 1y, 0 av

»Too?
both being isomorphisms. Thus, (3—2) and hence (3) follow. |

Remark 4.3.6 In Theorem 4.3.5, when K? is sufficiently small, the restriction
of ¢ to By« is a closed immersion for every point s* € S, (V, K”) (k) and every
field k containing Ff,’.

4.4 Source of basic correspondence and Tate cycles

In this subsection, we study the source S, (V, =) of the basic correspondence.
We will describe the set Sp(V, =) (Fp) in terms of a certain Shimura set and
study its Galois action. Such a description is not canonical, which depends on
the choice of a definite uniformization datum defined as follows.
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Definition 4.4.1 We define a definite uniformization datum for V (at p) to be
a collection of (V*, 1, {AZ}qip), where

e V*is a standard definite hermitian space over F' of rank N;

o i: V®qyA®? — V*®g A7’ is an isometry;

e for every prime q of F above p other than p, Aj is a self-dual Of, -lattice
in V*®p Fy; and

° Ag s an OF, -lattice in V* ® p F, satisfying pA* C (A")v such that
(A*) / pA* has length O (resp. 1) if N is odd (resp even).

By the Hasse principle for hermitian spaces, there exists a definite uni-
formization datum for which we fix one. Let K} be the stabilizer of A} for
every qover p; and putK7 := qu » Kj. Theisometry 1 induces an equivalence

of categories 1 : R(V)? = RA(VHP.

Construction 4.4.2 We now construct a uniformization map, denoted by the
Greek letter upsilon

v: Sp(V, =)(F,) — Sh(V*, (i=)K3) x Ty(F)) (4.4)

in Fun(R(V)? x ¥, Set) /T, F ) which turns out to be an isomorphism.
Take a point s* = (Ag, Ao, ng; A*, A%, nP*) € Sp(V, K”)(Fp). Let

Vi« := Homo, (Ap, A") ® Q
be the space of O r-linear quasi-homomorphisms. We equip V¢~ with a pairing
x,y)=w ! -Aal oy oA ox € Endp,(A) ®Q=F,

which becomes a hermitian space over F. Note that we have an extra factor
@ ~! in the above pairing. Moreover, for every prime q of FT above p, put

Ag+ q := Homo, (Ao[q™], A*[q°]),
which is an Or, -lattice in (V+)4 since A* is isogenous to A(])V .

Now we construct v, whose process is very similar to Remark 4.2.5. Note
that we have an isometry

p: Vi ®g AP = Homy 20, (H' (Ag, A% P), HY (A%, A7),

By Lemma 4.4.3 below, we can choose an isometry e : Vi+ — V*. Thus,
we obtain an isometry

g’ =nmop tonPoi~l: V¥ Qg A®?P — V* @g A™P
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as an element in U(V*)(A Py. By Lemma 4.4.3(1,2), for every q above p,
there exists anelement g4 € U(V*) (F ) such that qu* = NratAg+ 4. Together,
we obtain an element gg« := (g7, (gq)q| p) € U(V9)(AZ,) such that the double
coset U(V*)(F)g(iK? )K* depends only on the point s*. Thus, it allows us to
define

v(s") 1= (UCV(F)gse (LKPIK}, (Ao, 20,10
€ Sh(V*, (iKP)K%) x T, (F)).

Lemma 4.4.3 The hermitian spaces Vg and V* are isomorphic. Moreover,

(1) for every prime q of F* above p other than p, the lattice Ag» 4 is self-dual;
(2) the lattice A p satisfies pAgrpy S (Agep)” such that (Ag )Y /pAsep
has length O (resp. 1) if N is odd (resp. even).

Proof We first prove (1) and (2).

For (1), note that A*[q] is isomorphic to (Ao[q™])", equipped with the
polarization A*[q>°] that is principal. Thus, A 4 is self-dual as Ao[q>] is
principal and valy () = 0.

For (2), note that A*[p>°] is isomorphic to (Ao[p>])", equipped with the
polarization A*[p°°] satisfying such that ker A*[p>°] is trivial (resp. contained
in A*[p] of rank pz) if N is odd (resp. even). Thus, the statement follows as
Ao[p°°] is principal and val, () = 1.

Now to prove the main statement, it suffices to show that

(1) Vg~ is totally positive definite; and
(ii) the hermitian spaces Vg ®g A7 and V ®g AP are isomorphic.

For (i), it follows from the same argument in [40, Lemma 2.7].
For (ii), we have a map

Vi ®g AP — Hom 7200, (H{' (Ao, A7), Hi'(A*, A7)

of hermitian spaces, which is injective. As both sides have rank N and the
right-hand side is isomorphic to V ®g A7, (ii) follows. O

Proposition 4.4.4 The uniformization map v (4.4) is an isomorphism. More-

over, the induced action of Gal(Fp / Fg’) on the target of v factors through the
projection map

Sh(V*, (1 =)K}) x Ty(F,) — Tp(F ).
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Proof We first show that v is an isomorphism. Take a pointf = (Ag, Ao, 17(")7 ) €
Ty (Fp). It suffices to show that, for every K” € R(V)?, the restriction

v Sp(V,KP)(Fp);r — Sh(V*, (iK”)K?)

to the fiber over ¢ is an isomorphism. The injectivity follows directly
from the definition. For the surjectivity, it suffices to show that for every
g € U(V*)(A P), there is an object s* = (Ao, Ao, n; A*, ¥, nP*) €
Sp(V,KP) (Fp)/, whose image under v is the image of g in Sh(V*, (iK”)K;).
To construct s*, we take an Of-lattice A* in V* satisfying A* Qr F, = Aj}.
Put A* := Ag ®0, A*, which is equipped with a unique quasi-polarization A*
such that the canonical isomorphism

V* ®g AP = Hom pggacer (HS' (A9, AP), Hi'(A*, A®P))

of F ®g A°P-modules is an isometry of hermitian spaces. We let n”* be the
map

V ®g AP £ v gy AP
— Homifg‘) goo p(Het(AO, A p) Het(A* A% P))

Then v(s*) = g in Sh(V*, (iK”)K;). Thus, v is an isomorphism.

Since v is an isomorphism, the Galois group Gal(Fp/IFg’) acts on
the target of v. We show that it acts trivially on the first factor of
the target of v. Take an element ¢ € Gal(IFp/IFg)) and a point s* =

(Ao, Ao, ng; A*, A%, nP*) e Sp(V, Kp)(Fp). Then ¢s* is simply represented
by (A§, Ay, nb°; A*S, A*S, nP*S), the ¢-twist of the previous object. We then
have a canonical isomorphism

Vg = Homo, (A§, A*) ® Q >~ Homg, (Ag, A*) ® Q = V=

of hermitian spaces. Unraveling the definition, we see that g« = g.¢+. Thus,
we have

u(ss) i= (UV(F)gee (GKPKS, (AF, 28,15

The proposition follows. O

Next, we define an action of the Hecke algebra Z[K; \U(V*)(FpJr )/ K;] on
Sp(V, =) via finite étale correspondences, that is compatible with the uni-
formization map (4.4).
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Construction 4.4.5 For every element g € KJ \U(V’*)(Fp+ )/K?%, we define a
functor

Sp(V. =)gt AV)” x T — PSch/py
K? = Sp(V, KP),

/

/72 Sp(V,K?)¢(S) is the set of equivalence

classes of decuples (Ag, Ao, ng; A*, A*, P, A;, A;, ng*; ¢*), where

such that for every S € Sch

e (Ag, Ao, 0l A*, A*, nP*) and (Ao, Ao, n{; A%, A, ng’) are both elements
in Sy (V, K”)(S); and
e p*: A > A;, is an OF-linear quasi-isogeny such that

(@) ¢*V 0 1% 0 §* = A%,

(b) *[p™]: A*[p*>°] — A;[poo] is a quasi-isogeny of height zero under
which  the two lattices Homg, (Aos[p™], A5[p*°]) and
Homo,. (Aos[p°], A;S [p°°]) are at the relative position determined by
g for every geometric point s of S;

(c) ¢*[q°°] is an isomorphism for every prime q of F above p that is not
p; and

(d) the K”-orbit of maps v - ¢} o n”*(v) for v € V ®g A°>? coincides
with 775 *.

The equivalence relation and the action of morphisms in £(V)? x ¥ are defined
similarly as in Definition 4.3.3. Then we construct the Hecke correspondence
(of g) to be the morphism

Hkg: Sp(V, =)g = Sp(V, =) x Sp(V, =) 4.5)
in FUn(R(V)? x %, PSCh//]Fg) /Ty induced by the assignment
(Ao, Ao, g5 A*, A5, ™5 Ag, A, mg s %)
= (Ao, ko, 1195 A*, 15, n7*), (Ao, ko, 105 Ag, Ay 1g)).-

Here, the product in (4.5) is also taken in the category Fun(R(V)? x
<, PSCh//Fq;)/Tp, that is, Sp(V, =) x Sp(V, =) is a functor sending K7 to
p

Sp(V, KP) x1, Sp(V, KP) on which ¥ acts diagonally.

Proposition 4.4.6 For every g € K;\U(V*)(F;‘) /K3, we have

(1) The morphism Hkg (4.5) is finite étale; in particular, it is a morphism in
Fun(ﬁ(V)P x ‘g, SCh/F?’))/Tp.
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(2) The uniformization map v (4.4) lifts uniquely to an isomorphism making
the diagram

v

Sp(V, =) (Fp) Sh(V*, (=) (gKpe ™" NK})) x Ty (F)p)

Hk, (Fy) l

Sp(V. =) (Fp) X3, 5, Sp(V, D) (Fp) B (Sh(v*, (1=)K3) x Sh(V*, (i—)K;)) x Tp (Fp)

inFun(R(V)? x T, Set) /Ty Fp) commutative, where the right vertical map
is induced by the set-theoretical Hecke correspondence of g.

Proof For (1), it suffices to consider those K” € K(V)” that are sufficiently
small. Then the morphism Hk,: Sp(V, K”)g — Sp(V, K?”) x1, Sp(V, K?)
is closed, hence represented by a finite étale scheme. Part (2) follows directly
from the definition. O

Remark 4.4.7 In fact, the proof of Proposition 4.4.6(1) together with Propo-
sition 4.4.4 imply that Hk, is a local isomorphism.

Remark 4.4.8 Note that since K} is a special maximal open compact subgroup
of U(V*)(F,"), the algebra Z[K}\U(V*)(F,")/K}]is commutative. Moreover,
when N is odd, A+ p is a self-dual lattice under the pairing @ - (, )v+, hence
Z[K;\U(V*)(FPJr )/ Kg ] is canonically isomorphic to Ty .

Let L be a p-coprime coefficient ring. The uniformization map (4.4) induces
an isomorphism

L[Sh(V*, (1 =)K})] ~ HY(Sp(V, =), L) = HY(Sy(V, =), L)

in Fun(&(V)?, Mod(L [K;\U(V* QF Fp)/K;])) by Proposition 4.4.6. Recall
from Theorem 4.3.5(3) that the morphism ¢ in (4.3) is of pure codimension
L5,

Construction 4.4.9 Putr := L%J > 0. We construct a pair of maps

inc{: L[Sh(V*, (1=)K})] = HL(Sp(V, =), L)

> HY(By(V. =), L) = HY (My(V, =), L(r),
inct: HYV D (Mp(V, =), LN = r — 1))

[*

S HIY VBV, =) LIV = = 1))
= HY(Sp(V, =), L) = LISh(V*, (1=)K})],

@ Springer



176 Y. Liu et al.

in Fun(R(V)?, Mod(L)). In fact, the two maps are essentially Poincaré dual
to each other.

Theorem 4.4.10 Suppose that N = 2r + 1 is odd with r > 0. Then the
composite map inc; o incy is equal to the Hecke operator

.
* o —
Thyp = Zdr—&p “TN.p:s € Tvp
5=0

in which the numbers d,_s , are introduced in Notation 1.3.1, and the Hecke
operators Ty p.s are introduced in Notation B.2.1 (as T}, ).

Note that by Remark 4.4.8, L[Sh(V*, (i—)K;)] is a Ty p-module when N
is odd.

Proof This is [75, Theorem 9.3.5]. m|

4.5 Functoriality under special morphisms

In this subsection, we study the behavior of various moduli schemes under the
special morphisms, which is closely related to the Rankin—Selberg motives for
GL, x GL; 1. We start from the datum (V,,, {A;,q}q|p) as in the beginning of
Sect. 4.2, but with V,, of rank n > 1. We then have the induced datum

(Vat1, {An+1.9tq1p) == (Vi)g, {(An.g)ilqp)
of rank n + 1 by Definition 3.1.7. For N € {n,n + 1}, we let Ky 4 be the
stabilizer of Ay 4, and put Ky , := qup Ky 4. Recall the category R(V,,)fp
and functors =, = from Definition 3.1.11. To unify notation, we put =, :=
=y and =, 4 := —;. There are five stages of functoriality we will consider.
The first stage concerns Shimura varieties. The canonical inclusions
Vi = Vatt, {Ang = Autiqlqp
induce a morphism

shy: Sh(Vy, =nKn,p) = Sh(Vyp1, =n+1Knt1,p) (4.6)

in Fun(ﬁ(Vn)fp, Sch)r), known as the special morphism.
For the second stage of functoriality, we have a morphism

my: My (Vi, =) = Mp(Vagr, =nt1) 4.7)
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in Fun(ﬁ(Vn)fp x %, SCh/Zf;)/Tp sending an object (Ag, Ag, ng; A, x,nP) e

M, (V.. K7)(S) to the object (Ag, ko, nh; A x Ag, A x Lo, nP @ (iday)«) €
M, (Viti, Kf; +1)(S). We then have the following commutative diagram

4.2)
My (Vg1 =ns1) Sh(Vis1, =nt1Knt1,p) Xspecr Ty (4.8)

mm TshT xid

42)
Mg (Vs =n) Sh(Vy, =Ky, p) X Spec F Tg

in Fun(8(Vy)$p x T, Schyge) -
At the third stage of functoriality, we study the basic correspondence (4.3)

under the special morphisms. We will complete a commutative diagram in
Fun(R(V.)h x T, SCh/F;I;)/Tp as follows

Tn+1 tn+1
Sp(VtH—ls =n+1) Bp Vog1, =pg) —— Mp(Vn+ls =n+1)

: ;

Sp (Va, _)sp <~ Bp Vau, _)sp mt

4.9)

in which the lower-left square is Cartesian; and the lower (resp. upper) line is
the basic correspondences on My (V,,, =) (resp. My (V;,41, =,+1)) as intro-
duced in Definition 4.3.4.

Definition 4.5.1 We define a functor
Sp (Vs Dsp: RV)G X T — PSch
K? = Sp(V,, KP)gp
/
[FE
classes of decuples (Ao, 1o, ng; A*, A, nPr, AE, AE‘, né"; 8*), where

such that for every S € Sch Sp(Vi, KP)gp(S) is the set of equivalence

o (Ag, Ao, n(’;; A*, A*, nP*) is an element in Sy (V,,, K2 (S);

e (Ag, Ao, ng; AE, AE, né’*) is an element in Sp(V, 41, K,erl)(S); and

e "1 A* x A9 — A} is an Op-linear quasi-p-isogeny (Definition 3.4.5)
such that
(a) ker 8*[p®°] is contained in (A* x Ag)[p];
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(b) we have A* x wig =48 o A7 0 8*; and
(c) the K5+l—orbit of maps v = 85 o (n* @ (id4,)+) (V) forv € V41 ®qg
AP coincides with né) *

The equivalence relation and the action of morphisms in R(Vn)fp x % are
defined similarly as in Definition 4.3.3.

We clearly have the forgetful morphism S, (V,,, =)sp — Ty in Fun (ﬁ(Vn)gp
T, PSch’ /Fq;) which is represented by finite and étale schemes. By definition,

we have the two forgetful morphisms

S\L: Sp(vn, _)sp — Sp(Vn, _I’l)v
ST: Sp(Vn, _)sp — Sp(V}’H—l’ _n—H)

in Fun(&(Vy)$p x T, Sch ge) -

Lemma 4.5.2 We have the following properties concerning s, .

(1) When n is odd, s is an isomorphism, and the morphism

spos; Sy (Vi =) = Sp (Va1 =ns1)
is given by the assignment
(Ao, k0. nf s A* A%, nP*) > (Ao, ho, s A* X Ag, M x @ ko, nP* x (id ag ).

(2) When n is even, s is finite étale of degree p + 1.

Proof Take an object K” ofﬁ(Vn)fp, andapointx = (Ao, Ao, ng; A*, A*, nP*)
€ Sp(Vy, K%) (k) for some perfect field « containing F‘D

For (1), it suffices to show that the fibre s (x) consists of the smgle point
with the extra datum (A}, )t* nu ;8%) = (A* X Ag, A X w g, nP* x ’70’ id).
This follows from the fact that 8* as in Definition 4.5.1 induces an equivalence
between (A}, )t* p*) and (A* x Ag, A* X @ Ao, n”* X np)

For (2), we note first that a point in the fibre s (x) is determined by the
quasi- p-isogeny §*, which is in turn determined, up to equivalence, by a totally

isotropic (OF /p)-subgroup of ker(A* x @ Ag) of order p?. We classify such
subgroups by using Dieudonné theory. Let D(A* x Ag);. be the dual lattice

of D(A* x Ag)-g (Notation 3.4.11) but with respect to the quasi-polarization
A*x @ Ag. The quotient #; := D(A*x Ag) e /D(A* X Ag)z,, 18 k-vector space
of dimension 2 equipped with an induced nondegenerate hermitian pairing.
Then the hermitian space %4 is admissible in the sense of Definition A.1.1

with underlying hermitian space over F > given by #% o := V/XV_IFZI. Then
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Wy,01sanF 2-vector space of dimension 2. By the classical Dieudonné theory
for finite group schemes over «, the set of totally isotropic (O /p)-subgroups
of ker(A* x @ ig) of order p? is in natural bijection with the set of isotropic
[ 2-lines in % o, which has cardinality p + 1. O

Definition 4.5.3 We define B, (V,,, =)s to be the fiber product indicated in
the following Cartesian diagram

TTsp

Sp (Vs _)sp Bp(Vna _)sp

L

Sp (Vi =) i By (Vs =)

in Fun(R(Va)$p x T, Sch ge) r, .
Lemma 4.5.4 The assignment sending an object

((Ag, 2o, ms A, A, nP5 A% 2% nP*s @), (Ao, hos nfs A%, A%, nP*s A%, A% nl™5 8%)
Opr(Vn, Kp)sp(S) fo

(Ao, 20,103 A X Ag, & X Ao, 17 @ (idag)s; AL, A%, n)™5 8% o (o x ida,))
(4.10)

defines a morphism
in FUn(R&(Va)$p x T, Sch o) .

Proof The lemma amounts to showing that (4.10) is an object of
Bp(Vai1, K7 )(S). Put a; 1= 8% o (@ x idgy): A x Ag — A?. The only
nontrivial condition in Definition 4.3.3 to check is that ker o3[ p>°] is con-
tained in (A x Ag)[p]. For this, we may assume S = Spec « for a perfect field
K containing F.

Consider the following injective maps of Dieudonné modules

- Did o
D(A); ® D(Ag): — D(A"): ® D(Ag): —> D(A]):
for every T € ¥oo. We have the inclusion D(AE)T C D(A)® @ 'D(Ag),
(Notation 3.4.11). Thus, it suffices to show pD(A*)¥C C D(A); for every

T € Y. For 7 ¢ {100, 75}, we have D(A*)). = D(A),. It remains to
show pD(A*))c € D(A); for T € {100, S }. Recall the subspace H :=
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(&*,rw)_lwm/x,roc C H‘liR(A*//c),OO from Theorem 4.3.5. Under the notation
in proof of Theorem 4.3.5, since (FH)L C H, we have pD(A* }/c - FI,
hence p@(A*);/Oo C HC. Thus, we have
PD(AMe = pv ' (D(AM)) SV H® = D(A).,,
pD(AY),, = pF(D(A")}:) CFH = D(A)g.

The lemma follows. O

By the above lemma, we obtain our desired diagram (4.9). Moreover, we
have the following result.

Proposition 4.5.5 When n is even, the square

tn+1

Bp(Vn-H: —n+1) Mp(Vn—i-l’ _n+1)

tnoby

Bp (Vn, _)Sp Mp (Vn, _n)

extracted from the diagram (4.9) is Cartesian.

We remark that the above proposition is not correct on the nose when n is
odd and at least 3.

Proof The square in the proposition induces a morphism

lsp - Bp(vn, _)sp - Bp(vn—l—la =n+1) XMp (Vit1,=n+1) Mp(Vn, =n).

We need to prove that t5p is an isomorphism. By Theorem 4.3.5, we know that
tsp 1s locally for the Zariski topology on the source a closed immersion, such
that both the source and the target are smooth. Thus, it suffices to show that
for a given algebraically closed field x containing F®, we have that

(1) t5p(x) is an isomorphism in Fun(ﬁ(Vn)fp x T, Set); and
(2) for every K? € ﬁ(Vn)gp and every x € Byp(V,, K?)s(«), the induced

diagram
ln+1%
Toy ) To1 (61 () (4.11)
bT*T TmT*
L11*0b¢*
7y T, )

of tangent spaces is a Cartesian square of k-modules.
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For (1), we take an object K? € ﬁ(Vn)fp and construct an inverse of tgp (k).
Take a point

(Ao, 20, 1m0 A, &y 05 AL A 0] o)
in the target of tsp(«). Then a; induces an inclusion
D(A): ® D(Ag)r € D(A]).

of Dieudonné modules, which is an equality if 7 ¢ {1, 7S }. We put

DA* = @ DA*,r

TEX o

where Dpx ; = D(A); for T ¢ {100, 7} and Dy« = D(A;)T N p~'D(A);
for T € {Too, TS ). Then Dy~ is a Dieudonné module containing D(A). By the
Dieudonné theory, there is an Op-abelian scheme A* over k with D(A*); =
Dy, forevery T € X, and an Op-linear isogeny o: A — A* inducing the
inclusion of Dieudonné modules D(A) € D(A*). We factors ay as

aXidAO N §* N
AxAg— A xA0—>Au.

Itis clear that there is a unique quasi-polarization A* of A* suchthat A * xw Ao =
5*V o AE o 8*. Let nP* be the K7 -level structure induced from n” under ov. We
claim that the datum

((Ao, ko, ngs As 2y nPs A 0%, nP*5 @), (Ao, ho, g5 A™, A5, P AL, Az, nl"; 8%))

gives rise to an element in Byp(V,, K?)s (k). It suffices to show that
(Ag, Ao, ng; A*, A*, nP*)is anelementin Sy (V,, K2 (k). Moreover precisely,
we need to show that

(1-1) the Op-abelian scheme A* has signature type n®; and
(1-2) ker A*[p°°] is contained in A*[p] of degree p?.
To prove these, we add two auxiliary properties
(1-3) the composite map D(AE)T C p‘lD(A), &) p_ID(Ao)T —
p_lD(Ao)T is surjective for T € {700, TS }; and
(1-4) the cokernel of the inclusion D(A*); @ D(Ag); < D(AE), 1s isomor-
phic to « for 7 € {100, TS}
For (1-3), if not surjective, then we have D(A}); < p~I'D(A); @ D(Ap),
for both 7 € {100, T3 }. As WA X WAo = ozuv o A} o ay, this contradicts with
the fact that A} is p-principal.
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For (1-4), it follows (1-3) and the fact that the kernel of D(A}); —
p~ID(Ag); is D(A*), for T € {100, TS ).

For (1-1), it amounts to showing that F: D(A*); — D(A*).c is an iso-
morphism for every t € ®. This is obvious for 7 # T . When 7 = 1,
this follows from (1.4) and the fact that both F': D(A*u*)r — D(AE),C and
F: D(Ag): — D(Ap).c are isomorphisms.

For (1-2), it follows from (1-4) and the fact that AE‘ is p-principal.

Thus, (1) is proved.

For (2), the diagram (4.11) is identified with

Hom, (wav, ¢, ker dps o /@4 7, ) —= Homy (047 o, HR(A X Ag)ry /@4 1)

! !

Hom, (wav 1, Ker oty r, /@av 1., Homy (wav 7, HR (A) e /047 1,.)

by Theorem 4.2.3 and Theorem 4.3.5. However, it is an easy consequence of
(1-3) that ker oty 7., N H‘IIR(A)roo = ker oy ¢,,. Thus, the above diagram is
Cartesian; and (2) follows. O

At the fourth stage of functoriality, we compare the special morphisms for
basic correspondences and for Deligne—Lusztig varieties. Take a point

s* = (Ao, ko, 165 A, A%, 0P AL AL nf™5 8%) € Sp(Va, KP)gp (1)
for a field « containing Fg’. Put
sp=8,(%), sy =5p(s");

and denote by Bj-, Bs, and Bx; 1 their preimages under mgp, 7,, and
mh+1 in (4.9), respectively. By Lemma 4.3.2, we have admissible pairs
(Y., }sp) and (7/52+1’ {, }52+1)‘ As in Construction A.1.6, we extend the
pair (¥, {, }sp)to (¥5pe. ', }sp.¢)- Then the homomorphism §*: A*x Ag —
AE induces a x -linear map

Sgx — Y
SRR Spt1

satisfying {8+ (x), cSS*(y)}s;+1 = {x, y}s;.; for every x,y € ¥ . By Con-
struction A.1.6, we obtain a morphism
854+ DLy = DL(¥, {, Jsz» ["™51) — DLy |
=DL(%: . (s Jo, > 152D

Snt1”?

of the corresponding Deligne—Lusztig varieties.
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Proposition 4.5.6 Let the notation be as above. The following diagram

B {Sr:+l DL
Syi ~ Shl
bT T T(SS*T
{s,‘; oby
Bs* DLS;,‘

in Sch,. commutes, where ¢y and gyr,, are the isomorphisms in Theo-

rem 4.3.5(3). In particular, by : By» — BS*H is an isomorphism if n is odd,
n

and is a regular embedding of codimension one if n is even.

Proof Note that by Lemma 4.5.2, the restricted morphism b : By« — By
is an isomorphism. Thus, the last claim follows from the commutativity and
Proposition A.1.7.

When # is odd, the commutativity is obvious. When 7 is even, it suffices to
show that for every point

(Ao, 2o, nds A, Ay s A* A%, P ) € By (S),
we have

8% re (@n0) ' @av /s 1y @ HIN(A0/S)es) = (G ra) ™ @avsc 4y /8,10
4.12)

in view of the diagram

A X Ag

axidAOl
*

A* x Ag—— At

&XWidAOl l&u

AXA()*AXA()

A X Ag

iauzzs*o(axid%)

inwhich@ oo = @ -id4 and @y ooy = @ -id g« 4,. Since both sides of (4.12)
have the same rank, it suffices to show that

&1*,7-'00 (8;,1'00 ((&*sfoo)_lwAv/Sqfoo 57 H?R(AO/S)TOO)) g ('UAVXAX/S,‘EOO’

which is obvious as & annihilates H‘liR(Ao /S)z,.,. The proposition is proved.
O
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Atthe final stage of functoriality, we relate the special morphisms for sources
of basic correspondences to Shimura sets under the uniformization map v (4.4).

Notation 4.5.7 As in Definition 4.4.1, we choose a definite uniformization
datum (V};, i,, {A;’q}c” p) for V. We also fix a definite uniformization datum

(Viits Lnsts {4 gdaip) for Vi satisfying
o Vi = (V)sand i,41 = (1n)5
° AZ+1 q = (A}, ¢t for q # p; and
o (Ah):C A, S P (ALY

Let K» +14 be the stabilizer of A}, | a for every q over p; and put K7, | o’

qup g Moreover we put Ksp p = K* N K”Jrl p (as a subgroup of
Ko p) and K, 1= KG X [Toz K3

Remark 4.5.8 Whenn is odd, since (A}, p)v = pA} pWe must have A;H p=

(A}, p)g as well, hence K§, , = K57 . When n is even, the number of choices

ofA;Hprsp—f-l.

Similar to Construction 4.4.2, we may construct a uniformization map
Usp: Sp(Va, )Sp(Fp) — Sh(V}, (1, ,,)Ksp p) X Tp(Fp) (4.13)
in Fun(ﬁ(Vn)fp x T, Set) /T, (Fp) which is an isomorphism, whose details we
leave to the readers.
Proposition 4.5.9 The following diagram

Un+1

Sp(Vatt, =i 1) (Fp) — 15— Sh(Vy 1 (G =ns DKG L ) X Tp(F)p)
S¢(]F1,)T Tsh?xid

Sp(Va, =)sp(Fp) W Sh(Vyy, (in=w)K3p ) X Tp(F))

u(ﬂ%)i lshixid

Sp(Vars =) (F) Wi Sh(V}. (1a=)K} ) x Tp(Fp)

in Fun(ﬁ(V,,)fp x €, Set) /T, (F) commutes, where sh’i and sh% are obvious
maps on Shimura sets. Moreover, the induced actions of Gal(Fp /IF?;) on all
terms on the right-hand side factor through the projection to the factor Ty, (Fp).

Proof The commutativity follows directly from definition. The proof of the
last claim is same to Proposition 4.4.4. O
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4.6 Second geometric reciprocity law

In this subsection, we state and prove a theorem we call second geometric
reciprocity law, which can be regarded a geometric template for the second
explicit reciprocity law studied in Sect. 7.3 once throw the automorphic input.
We keep the setup in Sect. 4.5. However, we allow = = (=, =,41) tobe an
object of R(V,,)? x K(V,+1)?, rather than ﬁ(Vn)fp. Denote by ng and n; the
unique even and odd numbers in {n, n + 1}, respectively. Write ng = 2ro and
n1 = 2r1 + 1 for unique integers rq, 1 > 1. In particular, we have n = ro+r.
Let L be a p-coprime coefficient ring.
To ease notation, we put X;'la = X; (Vn,» =n,) for meaningful triples
X,?a)e {M,M,B, S} x{,n} x{0,1}.
Construction 4.6.1 We construct two maps and two graphs.

(1) For every integers i, j, we define
IOC;J : Higt(Sh(Vn()a _n()Kn(),p) X Spec F Sh(Vy,, _annl,p), L(j))
— HE(Myyy X1, My, L(j))
to be the composition of the localization map

locy : Hy (Sh(Vag. =noKing.p) Xspec F Sh(Vy, =1, Ky p). L(j)) —
HL (Sh(Vaag, =0Kng.p) XSpec F ShVir,, =, Ky ) ®F Q2. L)),
the pullback map
HY ((Sh(Ving. =noKng. p) Xspec 7 Sh(Vay, = Ky ) @ F Q7. L(j))
— Hz (M) >y MJ L L(j)
induced from (4.2), and the isomorphism

HE My, X1, My, RUL()) = HE My X1, My, L(j)

due to the fact L >~ RWL by Theorem 4.2.3.
(2) Analogous to Construction 4.4.9, we define the map

inc;"*: LISh(V},. (Lng=no)K}j, )1 ®L LISK(V}, . (L0, =nK}, )]
= HY(Sn. L) ® HY(Sny, L) = H(Sny X1, Sny, L)

(ﬂno Xy )"
_

0,pP

(lno Xlny )

HY (B, x1, By, L) HY (M, x1, My, L(n))

in FUN(R(V,)? x K(V,4+1)?, Mod(L)).
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Suppose that — is taken in the subcategory R(Vn)fp.

(3) We define A Sh(V,, =,K;, ;) to be the graph of the morphism shy (4.6),
as a closed subscheme of Sh(Vy,, =, Ky, p) Xspec # Sh(Vyy, =0, Kiy ),
which gives rise to a class

[A Sh(Vn’ _nKn,p)]
€ HZ' (Sh(Ving, =noKing.p) Xspec F Sh(Vny, = Ky p), L))

by the absolute cycle class map.
(4) We define A Sh(V7, (in—n)K;p, p) to be the graph of the correspondence
(sh7, sh’%), which is a subset of

Sh(V3, . Ging=n0) Ky ) X Sh(VE L (L =K, )
The following theorem, which we call the second geometric reciprocity law,

relates the class [A Sh(V,,, =,K;, ,)] with an explicit class coming from the
Shimura set.

Theorem 4.6.2 (Second geometric reciprocity law) Suppose that = is taken
in the subcategory ﬁ(Vn)spp. We have

T, p-(d X 71 01(Qd X 1)) *locy ([A Sh(Vy, =Ky, p)]) = (d X 70,)1(d X 1)) I0€} ™ (L4 Sh(v, (,=0)KE, )

Sp.p

in H%VO(MHO XT, Sny» L(ro)), where T;hp € Ty, p is the Hecke operator
appearing in Theorem 4.4.10.

Note that by Proposition 4.4.6 and Remark 4.4.8, H%r" My X1, Sy > L(10))
is a Ty, p-module. For the readers’ convenience, we illustrate the identity in
the above theorem through the following diagram

loc;, incl™*
H2"(Sh(Vang, =noKng. p) X pec 7 SH(Vy =, Ky p)y L) —= HZ (Mg X1, My, L)) =—— LISh(V3,, (Lng=ng)Kf )1 ®L LISV}, Gy =K}, )]
w ludxx”,)' w
[ASh(Vy, =Ky p)] HZ'(M,, x, By, L(n) 1 Sh(V. (iam=n)Key )

l(idxmv,h

n
H* (Mg x1, Suy, L(10))

Proof We denote
mpa: M, > M, XT, M1 =M, XT, M,,
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the diagonal morphism of the correspondence (id, m4) (4.7) in Fun(ﬁ(VH)fp X
%, Sch /Z;’) /1,- Then we have the identity

loc, (2 Sh(Va, =uKn,p)]) = maiMy] € HY' (M, x1, Mys1, L(n)

by the commutative diagram (4.8).
Put Bgp := By (Vy,, =)sp for short, and denote

ba i=(by, by): Bsp — By X1, Byt = By X1, By

the diagonal morphism of the correspondence (b, by). By Proposition 4.5.5
(resp. Lemma 4.5.2) when n = ng (resp. n = np), the following commutative
diagram

(tng xid)oba
"> My X1, B,

lid“"l
ma

Mn0 XTP Mn]

°
o
S
-~

M,

is Cartesian. Then by Proper Base Change, we have

Ty p- (i X 7)1 Gd X 6y)) mar[My,]
= T:ll,p-(id X nnl)!((tno x id) o ba)i(ty © b\L)*[Mn]
= T}, p-(d X 7 )1((tng X id) 0 ba)[Bsp].

The commutative diagram

(tnyy xid)oba

Bsp My, X1, B,

(idxnnl)obA\L \Lidxnl
tn0><id

Bn() XTp Snl Mn() XTp Snl

implies the identity

TZLP‘(id X 70011 ((tng % 1d) 0 ba)1[Bgp]
= Tzl,p-(‘no x id)1((id x 7,,) 0 ba)i[Bspl.
Now by the definition of By, (Definition 4.5.3), we have
((id x 7)) 0 baAN[Bspl = (g X id)* (LA Sh(VE. (1, =0)KE, )

Sp, p
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In all, we have

T, p-(id X 7)1 X 1)) M [M,]

= (tny X 1d)1(y X id)* (T}, 0. LA SRV, (20 =0)KE )

which, by Theorem 4.4.10, is equal to

(tny x 1d)1(7ry, x id)*(id x 7, 1(id X 1))*

(id X 1 )1(id X 700,) " (LA Sh(VE, (L0 =K )

= (id X 7,,)1(id X 1)) *inc; ™ (1 Sh(V3. (L =Kz, )

The theorem follows. O

5 Unitary moduli schemes: semistable case

In this section, we define and study a certain semistable integral moduli scheme
whose generic fiber is the product of a unitary Shimura variety and an auxiliary
CM moduli. Since the materials in this section are strictly in the linear order,
we will leave the summary of contents to each subsection.

5.1 Initial setup

We fix a special inert prime (Definition 3.3.4) p of FT (with the underlying
rational prime p). We take the prescribed subring [P in Definition 3.4.2 to be
Z(py. We choose following data

e a CM type ® containing 7c;

e arational skew-hermitian space Wy over Of ® Z(p) of rank 1 and type ®
(Definition 3.5.3);

e aneat open compact subgroup K(’; C To(A>P);

e an isomorphism ¢, : C = Q, such that ¢, oz : FT < Q, induces the
place p of F;

e an element w € Op+ that is totally positive and satisfies valy () = 1,
and valy () = 0 for every prime ¢ # p of FT above p.

We adopt Notation 3.3.6. In particular, Ff,’ contains [ ». Since the argument

below is insensitive to the choices of Wy and K, we will not include them

in all notations. However, we will keep the prime p in notations as later in

application, we need to choose different primes in a crucial step. Put Ty, :=
p @

Tp(WOs K()) ®0F®®Z(p) Z[) .
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5.2 Construction of moduli schemes

In this subsection, we construct our initial moduli schemes. We start from the
datum (V°, {A;}q“,), where

e V°is a standard definite hermitian space (Definition 3.2.1) over F of rank
N > 1, and
e for every prime q of FT above p, a self-dual O Fy-lattice Agin VO ®p Fq.

Definition 5.2.1 We define a functor
M, (V°, =) RV x T — PSCh//Zq)
14
K?”° > Mp(V°, K°)

such that for every S € SCh//Zq,, M, (V°, KP°)(S) is the set of equivalence
P

classes of sextuples (Ag, Ao, ng; A, A, nP), where

e (Ao, Lo, ng) is an element in Ty, (S);

e (A, A) is a unitary Op-abelian scheme of signature type N® — 70 + 75
over S (Definitions 3.4.2 and 3.4.3) such that ker A[p®°] is contained in
Alp] of rank p2;

e n? is a KP°-level structure, that is, for a chosen geometric point s on every
connected componentof S,a (S, s)-invariant K”°-orbit of isomorphisms

0”1 V° ®g A% — Homjy o, (HY (Aos, A7), Hi'(Ag, A7)

of hermitian spaces over F ®g A®? = F @p+ A;o;p . See Construc-
tion 3.4.4 (with J = {oo, p}) for the right-hand side.

The equivalence relation and the action of morphisms in £(V°)? x T are
defined similarly as in Definition 4.2.2.

Remark 5.2.2 In the definition of the moduli functor M, (V°, =), we use the
definite hermitian space V° to define the tame level structure — this is different
from the usual treatment. The reason for doing this is to make the uniformiza-
tion map (5.4) for a certain stratum in the special fiber of My, (V°, =) canonical,
since our main interest is the Shimura set Sh(V°, —K;), while the trade-off is
that the relation between the generic fiber of M, (V°, =) and unitary Shimura
varieties cannot be made canonical (see Definition 5.2.6).

We clearly have the forgetful morphism

M, (V°, =) > T, (5.1)
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in FUn(R(V°)? x %, PSch’/ZCD), which is representable by quasi-projective
P

schemes. According to Notation 3.3.6, we shall denote by the base change of

(5.1) to IF;’ by My(V®, =) — Ty, which is a morphism in Fun(&(V°)? x

(Z, SCh/IFg))

Definition 5.2.3 For every K”° € R(V°)?, let (Ao, Ao, n(’)’ i A, A, n?) be the

universal object over M, (V°, K7°). We define

(D) M; (V°, KP°) to be the locus of My, (V°, K”°) on which w 4v ., coincides
with H‘llR (A)Tloco, which we call the balloon stratum;'*

(2) M3(V°, KP°) to be the locus of My (V°, KP°) on which H{R (A);_ is a
line subbundle of w AV, TS s which we call the ground stratums;

3) M; (V°,KP°) to be Mp(Ve, K?°)N Mp(Vve, K?°), which we call the link

stratum.B

We denote
m'®: MV, =) — M3 (V°, =),
m'*: MJ(V°, =) — M3(V°, =),
the obvious inclusion morphisms.

Remark 5.2.4 When N = 1, the ground stratum and the link stratum are both
empty.

Theorem 5.2.5 For every KP° € R(V°)?, we have

(1) The scheme M, (V°, KP?) is quasi-projective and strictly semistable over
Ty, of relative dimension N — 1; and we have

M, (V°, KP°) = Mp(Ve, K?°) UM;(V", K?°).

Moreover, (5.1) is projective if and only if its base change to Qg’ is.

(2) The loci Mp(V®, K?°) and Mg (V®, K?°) are both closed subsets of
M, (V°, KP?), smooth over Ty, if we endow them with the induced reduced
scheme structure.

(3) We have a canonical isomorphism

TM; (Vo,Kro)/T, = Hom (“’AV,T&’ Liev“,fc?o)

14 This terminology is borrowed from an unpublished note by Kudla and Rapoport, where they
study the corresponding Rapoport—Zink space. The intuition becomes clear after Theorem 5.3.4
where we show that this stratum is a projective space fibration over a zero-dimensional scheme.

15 This is the stratum linking balloons to the ground.
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of coherent sheaves over My (V®, K?°) for the relative tangent sheaf.
(4) When N > 2, the relative tangent sheaf TM; (ve.Kre)/T, fits canonically
into an exact sequence

0 —— Hom (a)Avv,’Q, w}c\&r;#‘“ﬂ%) —— Ty, (ve ko)1, —= Hom (@7 ,zg /HR(A)L | Liegrg) —0

of coherent sheaves over M; (V°, KP?).
(5) When N > 2, the natural map TM; (Vo KPo)/T, — ’TM;1 (Ve,KP°)/T,, |M; (Vo KPo)

between relative tangent sheaves induces an isomorphism
) ~ dR €L :
Tygs ve ey r, = Hom <a) avre [HIR(A)L | Lie A,,go)

of coherent sheaves over Mg (V°, KP°) under the exact sequence in (4).

In particular, the exact sequence in (4) splits over Mg (V°, KP°).

Proof For (1), the (quasi-)projectiveness part is well-known. We consider
the remaining assertions. Take a point x = (Ao, Lo, ng; A, A, nP) €
M, (V°, KP?)(x) for a perfect field x containing IF;?, and denote by O, the
completed local ring of My (V°, KP°) at x. We have a W («)-bilinear pairing
(s )it D(A)r,, x D(A)re, — Wi(k) as in Notation 3.4.11. By Proposi-
tion 3.4.8, we have for every Artinian W («)-ring R that is a quotient of Oy,
that Homy () (Ox, R) is the set of pairs of R-subbundles

M, € D(A)r, ®w) R, Mg € D(A)rg @w) R

of ranks 1 and N — 1 lifting wpv /i ¢, and wav . 7 , respectively, such that
(Mr,, M:¢ )iz, = 0. We choose isomorphisms D(A),, =~ W (k)®N and

Too?

D(A)rg > W (x)®N under which the pairing ( , ).z, 1s given by

(1o XN, (V1 oo YN At = PX1Y1L +X2Y2 + - + XN YN

There are four possible cases.

() If wav)er, 1s generated by (1,0,...,0) and wpv/c e contains
(1,0, ..., 0), then possibly after changing coordinates, we may assume
thatwav /e re = {(y1, ..., yn—1, 0)}. Then we have Oy =2Ww)|lx1, ...,
xXN—1, Xn]1l/(x1xny — p). In this case, x must belong to M;(VO, K?°) (k).

(i) If wav i 7., 18 generated by (1,0, ..., 0) and wpv /i g does not contain
(1,0, ...,0), then possibly after changing coordinates, we may assume
that wav e, = {(0, y2, ..., yn)}. Itis clear that M, is determined by
Mg ;and Oy >~ W(k)[[x2, ..., xn]].
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(ii1) If wav /e 7y 18 DOt generated by (1,0, ...,0) and WAV Jie,78, contains
(1,0, ...,0), then possibly after changing coordinates, we may assume
that wav i 7., is generated by (0, ..., 0, 1). It is clear that M:¢ is deter-
mined by M._; and O, >~ W(k)[[x1, ..., xy-1]].

(iv) If wav e,z 18 noOt generated by (1,0,...,0) and WAV /i, 7€, does not
contain (1,0, ..., 0), then this would not happen.

Together with the fact that M, (V°, K”°) ® Q is smooth of dimension N — 1,
M, (V°, KP?) is strictly semistable over Ty, of relative dimension N — 1. More-
over, Mg (V°, KP?) is the locus where (i) or (ii) happens; and M; (V°,KP°)is
the locus where (i) or (iii) happens. Thus, both (1) and (2) follow.

For (3-5), we will use deformation theory. For common use, we consider a
closed immersion § < §in SCh'/Tp defined by an ideal sheaf Z with Z? = 0.
Take an S-point (Ag, Ao, ng ; A, A, n?) in various schemes we will consider. By
Proposition 3.4.8, we need to lift wav ¢, and wav ¢ to subbundles wav o, <
H?ris (A/ S )z, and @ Av.e © H?riS(A / §)ng, respectively, that are orthogonal
to each other under the pairing (3.3). . '

For (3), since we require (@4v .., H"™(A/S) g )if‘joo = (0, it remains to lift
1) AV 1€, without restriction. Thus, (3) follows by Remark 3.4.6.

For (4), we need to first find lifting @4v ¢ that contains H?riS(A / S‘)Tloo;

and then find lifting &4 ., satisfying (@av r,, ®av g )5 = 0. Thus, (4)
follows by Remark 3.4.6. ' .

For (5), we only need to find lifting @4v .c that contains H{™*(A/ S)TLOO,
which implies (5). |

In the remaining part of this subsection, we discuss the relation between
M, (V®, =) and certain unitary Shimura varieties. Since we use a standard
definite hermitian space to parameterize the level structures, such relation is
not canonical, which depends on the choice of an indefinite uniformization
datum defined as follows.

Definition 5.2.6 We define an indefinite uniformization datum for V° (at p)
to be a collection of (V’, 5, {Aa}c” »), where

e V'is a standard indefinite hermitian space over F of rank N;

j: Ve ®g A®? — V' ®g AP is an isometry;

for every prime q of F above p other than p, A; is a self-dual Op,-lattice

in V' ®F Fy; and

° A;J is an Op,-lattice in V' ®  Fy satisfying A; - (A;J)v and (A"J)V/A;J
has length 1.

By the Hasse principle for hermitian spaces, there exists an indefinite uni-
formization datum for which we fix one. Let Ka be the stabilizer of Aa for every
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q over p; and put K, := [, K. The isometry J induces an equivalence of

categories j: K(V°)? = AV,
Then similar to Remark 4.2.5, we obtain a “moduli interpretation” isomor-
phism

My (V°, =) = Sh(V', 3=K/)) xspec r Ty (5.2)

(Notation 3.3.6(5)) in Fun(R(V°)? x ¥, SCh/Q;‘,’)/T’;’ where € acts on
Sh(V’, 3=K/,) Xspec # Ty via the second factor.

Lemma 5.2.7 Let L be a p-coprime coefficient ring. The two specialization
maps

HE (Mp(V°®, =) ®z¢ Q). L) — Ht (M,(V°, =), RUL),
HE (Mp(Ve, =) ®z0 Qp, L) — Hr(My(V°, =), RWL),

are both isomorphisms. In particular, (5.2) induces isomorphisms

H, .(Sh(V', 3=K)))7, L) =~ HE .(My(V°, =), RWL),
H; (Sh(V', 3=K))7, L) = HE(My(V°®, =), RUL),

in FUn(&(V°)?, Mod(L[Gal(Q,/Q)))) for everyi € 7. Here, Gal(Q,/QS)
is regarded as a subgroup of Gal(F / F) under our fixed isomorphism t i C =
T,

Proof When M, (V, =) is proper, this is simply the proper base change. When
M, (V, =) is not proper, this follows from [43, Corollary 5.20]. O

Remark 5.2.8 When FT # Q, the Shimura variety Sh(V’, K”’K,) is proper
over F for K?" € R(V')?. We explain that Sh(V’, K”’ K;,) has proper smooth
reduction at every place w of F above E;‘\{p}.

Take a place w of F above E;\{p}. Choose a CM type @ containing T
and an isomorphism C =~ @p that induces w (not the unique place above p!).
Put T,, := T,(Wo, Kg) ® 0y O Zg’. We define a functor M, (V’, K?")

on SCh//Zq) such that for every S € Sch//Z¢, M, (V/, KP')(S) is the set of
p P

equivalence classes of sextuples (Ao, Ao, 77(1)7 ; A, L, nP), where
o (Ao, Lo, ng) is an element in T, (S);
e (A, A) is a unitary Op-abelian scheme of signature type N® — 7 + 75,

over S (Definitions 3.4.2 and 3.4.3) such that ker A[p®°] is contained in
Alp] of rank p2;
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e n? is a K”'-level structure, similarly defined as in Definition 5.2.1.

Then M, (V’, K?') is represented by a projective scheme over Z?. An easy
computation of the tangent sheaf as in Theorem 4.2.3 shows that M, (V’, K?")
is smooth of relative dimension N — 1. Moreover, we have a canonical iso-
morphism

M (V/,KP") ~ Sh(V/, K’”K;) Xspec F Th)

over Ty,. Thus, Sh(V’, K?’ K;,) has proper smooth reduction at w as Ty, is
finite étale over OF,, .

5.3 Basic correspondence for the balloon stratum

In this subsection, we construct and study the basic correspondence for the
balloon stratum M; Ve, =).

Definition 5.3.1 We define a functor
S;(VO, =): AV x T — PSCh//W
P
K?° Sg(Vo, K?°)
such that for every S € Sch//]Fq), Sg (V°,KP°)(S) is the set of equivalence
P
classes of sextuples (Ao, Ao, ng; A°, 1°, nP°), where
e (Ao, Lo, ng) is an element in Ty, (S5);
e (A°, A°) is aunitary Op-abelian scheme of signature type N ® over S such
that A° is p-principal;
e 1P° is, for a chosen geometric point s on every connected component of S,
a (S, s)-invariant K”°-orbit of isomorphisms

nP°: ve ®0 AP Hom};ﬁ%ngo,p (H?t(AOs, APy, H?t(Ag, A%PY)

of hermitian spaces over F ®g AP = F Qp+ A;ﬂ’p .

The equivalence relation and the action of morphisms in K(V°)? x ¥ are
defined similarly as in Definition 4.2.2.

We clearly have the forgetful morphism
Sp(Ve, =) = Ty

in Fun(R(V°)? x ¥, F’SCh’/]Fq,), which is represented by finite and étale
P
schemes by [62, Theorem 4.4].
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Now we take a point s° = (Ao, Ao, 755 A°, 1°, n7°) € Sy(V°, KP°)(k)
where « is a perfect field containing IF?;. Then AZ[p°°] is a supersingular

p-divisible by the signature condition and the fact that p is inert in F. The
(k, o ~1)-linear Verschiebung map

v: HIR(A° /i), — HIR(A° /), = HR(A°/K) g,

_]_L_OO

(Notation 3.4.10) is an isomorphism. Thus, we obtain a (k, o )-linear isomor-
phism

v HR(A%/K) e — HR(A /K-
We define a non-degenerate pairing
{+ Jse s H(A%/i)zg, x HIN(A%/i)eg, — &

by the formula {x, y}so 1= (V" 'x, y) 20,15, (Notation 3.4.7). To ease notation,
we put

Yo 1= H{N(A® /1) g,

By the same proof of Lemma 4.3.2, we know that (%50, { , }so) is admissible.
Thus, we have the Deligne—Lusztig variety DLgo := DL(¥40, { , }so, N — 1)
(Definition A.1.2).

Definition 5.3.2 We define a functor
B;(VO, =): AV x T — PSCh//]Fq,
P
K?° B;(Vo, K?°)
such that for every S € SCh’/W, BE (V°,KP°)(S) is the set of equivalence
p
classes of decuples (Ag, Ao, 77(1))2 A, x,nP; A°, A%, nP°; B), where
e (Ao, 20, np; A, &, nP) is an element of M (V°, KP°)(S);
o (Ao, ho, 743 A°, A°, 1P°) is an element of Sp(V°, KP°)(S); and
e f: A — A°isan Op-linear quasi- p-isogeny (Definition 3.4.5) such that
(a) ker B[p°°]is contained in A[p];
(b) we have A = BY o A° o B; and
(c) the KP°-orbit of maps v = By o n?(v) for v € V° ®g A°>? coincides
with n?°.
The equivalence relation and the action of morphisms in K(V°)? x % are
defined similarly as in Definition 4.3.3.
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We obtain in the obvious way a correspondence
Sp(V°, =) < Bg(V°, =) —= Mg (V°, -) (5.3)
in Fun(&(V°)? x %, PSch//Fg)) /Ty

Definition 5.3.3 (Basic correspondence) We refer to (5.3) as the basic corre-
spondence on the balloon stratum M; (V°, =), with S; (V°, =) being the source
of the basic correspondence.

Theorem 5.3.4 In the diagram (5.3), (° is an isomorphism. Moreover, for
every point s° = (Ao, Mo, ng; A°, L%, nP°) € S;(V", KP°) (k) where k is a
perfect field containing F®, if we put By, = 7°~1(s°), then the assignment
sending (Ag, Ao, ng; A, h,nP; A, 0%, nP°; B) € BSo(S) to the subbundle

H := By s 0av/s,ce, © H{R(A®/S)re, = HIR(A°/k)rg, @ O = (Y40)s

induces an isomorphism {3 : BS, 5 P(¥%e) satisfying that

(1) ¢ restricts to an isomorphism
£ B ()" M(V°, KP°) S DLy = DL(%e. { . }o. N — 1)
(2) we have an isomorphism
Hom (4% 1ss 051 1 /047 1) = (€2 O (—(p + 1),

In particular, BY, Lo_lM; (V°,KP?) is a Fermat hypersurface in Bj, >~
P(¥50).

Proof Take an object K”° € R(V°)?. It is clear that B;(VO, —) is a scheme.
We denote by (Ag, Ao, n(’;; A, A, nP; A°, A°, nP°; B) the universal object over
Bp(V°, KP?).

First, we show that (° is an isomorphism. It is an easy exercise from
Grothendieck—Messing theory that the canonical map %;(VO’KPO) /T, >
L°*TM;(VO,K,;O) /T, is an isomorphism. Thus, it suffices to show that N
is a bijection for every algebraically closed field «’ containing «. To ease
notation, we may assume k' = «. We construct an inverse of (°(«). Take a
point (Ag, Lo, ng; A, A, nP) € Mg (ve, K?°)(k). Write w4v ., the preim-
age of wyv o under the reduction map D(A),, — H?R(A/K)too. As
(wav H‘liR(A/K)fgo)A,,oo = 0, we have D(A);/oco = P_ICT)AV,TW Now we

»Too?
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put Dyo ; := D(A); for T # Too, and Dyo 1 := p~'@av . We claim that
Dpe := P,cx Dac.r is a Dieudonné module, which amounts to the inclu-
sions FDpe r,, € Dge rg and VDye o, © Dae rc . The first one is obvious;
and the second one is equivalent to the first one as Dye ., and D Ae,Tg, are
integrally dual under ( , )i“;oo Then by the Dieudonné theory, there is an
Or-abelian scheme A° over k with D(A°); = Dyo , for every v € X,
and an Op-linear isogeny B: A — A° inducing the inclusion of Dieudonné
modules D(A) € D(A°). By Lemma 3.4.12(2,4), the Op-abelian scheme A°
has signature type N ®. Let A° be the unique quasi-polarization of A° satis-
fying o = BY o 1° o B, which is p-principal as Dpe ;¢ = D, . Finally,
we let nP° be the map sending v € V° ®g A*? to By o n” (v). Thus, we
obtain an object (Ao, Ao, ng; A, A, nP; A%, A%, nP°; B) € S;(VO, KP°) (k). It
is straightforward to check that such assignment gives rise to an inverse of
1°(k).

Second, we show that {5 is well-defined, namely, H is a subbun-
dle of rank N — 1. By Lemma 3.4.12(2,4) and Definition 5.3.2(b), we
have rank o (ker By 7)) — rankog (ker By zc ) = 1 and rankpg (ker By 7)) +
rank o (ker ,B*,,go) = 1. Thus, ,3*,150 is an isomorphism, hence H is a subbun-
dle of rank N — 1.

Third, we show that {3 is an isomorphism. Denote by H C (750)p () the
universal subbundle (of rank N — 1). Then we have a canonical isomorphism

Tprye/x = Homoy, ) (HHIN (A% /k)eg /H) -

By Theorem 5.2.5(1) and the fact that B, ;¢ is an isomorphism, we obtain an
isomorphism

(B, b = 62 Tt

Thus, to show that {3 : Bj, — [P(7¥{.) is an isomorphism, it suffices to
construct an inverse of ¢ (k') for every algebraically closed field «" con-
taining . To ease notation, we may assume k’ = k. Take a k-linear subspace
H C Vo = H‘liR(A")rocO of rank N — 1. Let H denote by its preimage under the
reductionmap D(A°) e — H?R(AO)TO%.WeputDA,T ;= D(A®) fort # 10,
and Dy ., = vlH C D(A®),,. It is clear that Dy := @reEoo Dy isa
Dieudonné module. By the Dieudonné theory, there is an Of-abelian scheme
A over k with D(A); = Dy ; for every T € ¥, and an OFf-linear isogeny
B: A — A° inducing the inclusion of Dieudonné modules D(A) € D(A°).
By a similar argument as for (°, we obtain a point (A, A, n”; B) € B{.(«); and
it follows that such assignment is an inverse of {3 (k).
Finally, we check the two properties of .
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For (1), we check that the closed subscheme ¢z (BJ. N LO*IME (V°,KP?))

coincides with DL(750, {, }so, N — 1). Recall that M; (V°, KP°) is define by
the condition

Hir(A/S), S @avys.cs.
Note that we have H = By rcwavscc and V- HP) = g, . H{R(A/S),,

whichimplies (V"' H ")+ = (B, o, HIR(A/S) 1) = Brre (HIg(A/S)%).
Applying the isomorphism S rc , the above condition is equivalent to

v 'HPYL cH,

which is the condition defining DL(¥o, {, }so, N — 1).
For (2), we have

wav 1y, = Ker By, = HIR(A°/S) . /B HIR(A/S) 1,
=H{R(A°/S), /v IHP

and

wi_vvfcfo/wAvvroo = 'B*Joowjv,rgo = (ﬂ*,rgowAv/s,rgo)J' =H'.
Thus, we have

WAV 1y = Lo Op(0) (D), wjvvfgo/w‘Avvroc ~ £ Opym (—1)

from which (2) follows.
The theorem is all proved. O

Corollary 5.3.5 When N > 2, the normal bundle of the closed immersion
m'®: My (V°, KP°) — M3 (V°, K

is isomorphic to (mTO)*(’)M; ve.kroy(=(p 4+ 1)).

Proof By Theorem 5.2.5(4,5), we have that the normal bundle is isomorphic
to

Hom (wAV,roo’ ij,rgo/a’Av,roo) .
Thus, the claim follows from Theorem 5.3.4. We can also argue that the normal

bundle of m™ is dual to the normal bundle of m™ which is isomorphic to
(mTo)*OMg(VO,Kpo)(p + 1) by Theorem 5.3.4. O
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Construction 5.3.6 Let K7 be the stabilizer of A for every q | p; and put

K7 = ]_[q| » K§. Similar to Construction 4.4.2, we may construct a uniformiza-

tion map, canonical this time,
v Sp(Ve, =) (F)) = Sh(Vve, —K%) x Tp(F)) (5.4)

in Fun(R(V°)? x ¥, Set) /T, ) which is an isomorphism, under which the

induced action of Gal(Fp /IE‘;I,’) on the target is trivial on Sh(V®, —K;).
Moreover, similar to Construction 4.4.5 and Proposition 4.4.6, for every
g€ K;;\U(VO)(FPJr )/K;, we may construct the Hecke correspondence

Hk,: S3(V°, =)g — SI(V°, =) x Sp(V°, =)

as a morphism in Fun(8(V°)? x ¥, Sch /IF;‘;) /T, thatis finite étale and com-
patible with the uniformization map.

5.4 Basic correspondence for the ground stratum

In this subsection, we construct and study the basic correspondence for the
ground stratum M; (Ve, =). We assume N > 2.

Definition 5.4.1 We define a functor
S;(V", =): AV x T — PSCh//Fq,
P
K?° — S;(Vo, K?°)
such that for every S € Sch’/]Fq,, S;(VO, K?°)(S) is the set of equivalence
P
classes of sextuples (Ag, Ao, ng; A®, 1%, nP*®), where

o (Ag, Ao, 77([))) is an element in Ty (S);

e (A®, 1*)isaunitary Of-abelian scheme of signature type N ® over S such
that ker A*[ p®°] is trivial (resp. contained in A®[p] of rank pz) if N is even
(resp. odd);

e 1P* is, for a chosen geometric point s on every connected component of S,
a (S, s)-invariant K”*-orbit of isomorphisms

nP*: Vo @g AP — Hom%gg;,p(H?(AOS, A% P) HSU (AL, A®P))

,P 16

of hermitian spaces over F ®g A®? = F @p+ A 7",

16 Note that here we are using @ A rather than )¢ in order to be consistent with the compatibility
condition for polarizations in the isogeny considered in Definition 5.4.2.
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The equivalence relation and the action of morphisms in K(V°)” x ¥ are
defined similarly as in Definition 4.2.2.

We clearly have the forgetful morphism
Sp(Ve, =) = Ty

in Fun(&(V°)? x ¥, PSCh//]Fq,), which is represented by finite and étale
P

schemes by [62, Theorem 4.41.17

Now we take a point s* = (Ao, Ao, ng; A® A%, nP®) € S(Ve, KP9) (k)
where « is a perfect field containing Ff,’. Then A2[p°°] is a supersingular
p-divisible by the signature condition and the fact that p is inert in F. The
(k, o ~1)-linear Verschiebung map

v: HR(A® /i), — HIR(A® /i), = H{R(A® /i) g,

(Notation 3.4.10) is an isomorphism. Thus, we obtain a (k, o )-linear isomor-
phism

v HR (A% /i) e — HRA® /K-
We define a pairing
{, Je: HIR(A® /i) x H{R(A®/K)re —

by the formula {x, y}s := v lx, Y)ae z., (Notation 3.4.7). To ease notation,
we put

Yo 1= H{R(A® /i) g,

By the same proof of Lemma 4.3.2, we know that (#., { , }s¢) is admissible.
Thus, we have the Deligne-Lusztig variety DL, := DL®* (7, { , };) (Defi-
nition A.2.1). Moreover, dim, ”f/s.l is equal to O (resp. 1) when N is even (resp.
odd).

Definition 5.4.2 We define a functor

By (Ve =): AV x ¥ — PSCh//]Fq)
p

K’ > B} (V°, K)

7 n fact, [62, Theorem 4.4] only considers the case where the polarization is p-principal
(namely, ker A*[ p®°] is trivial), but its proof works in the case where ker 1°[ p®°] is contained
in A®[p] of rank p2 as well since the computation of the tangent space is the same.
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such that for every S € Sch’/F¢, BR(Ve, K?°)(S) is the set of equivalence
P

classes of decuples (Ag, Ao, ng; A, x,nP; A% A%, nP®; y), where

o (Ag, Ao, ng; A, A, n?) is an element ofM;(Vo, K?°)(S);
o (Ag, Ao, ng; A®, 1°, nP®) is an element of S;(VO, K?°)(S); and
e y: A — A°®isan Of-linear quasi- p-isogeny (Definition 3.4.5) such that
(a) ker y[p]is contained in A[p];
(b) (ker y*,,oo)J- is contained in WAV /8,185
(c) ker Y ¢, contains H‘ljR(A / S)i-Occ 18
(d) wehave w - A = yY oA® o y; and
(e) the KP°-orbit of maps v = y, o n”(v) for v € V° ®g A°>? coincides
with n?°.
The equivalence relation and the action of morphisms in K(V°)? x ¥ are
defined similarly as in Definition 4.3.3.

We obtain in the obvious way a correspondence
Sp(Ve, =) < B3(V°, =) —= M3 (V°, -) (5.5)
in Fun(&(V°)? x %, PSch//F?) /Ty

Definition 5.4.3 (Basic correspondence) We refer to (5.5) as the basic corre-
spondence on the ground stratum M; (Ve, =), with S; (V°, =) being the source
of the basic correspondence.

Theorem 5.4.4 In the diagram (5.5), take a point
s* = (Ao, 2o, ns A%, A%, nP%) € SH(V°, KP°) (k)

: P O] e .__ _e—l/ e
where k is a perfect field containing F p- Put Bl :=m (s*®), and denote by
(A, X, nP; y) the universal object over the fiber BS..

(1) The fiber BS. is a smooth scheme over k, whose tangent sheaf Tge, /. fits
A
canonically into an exact sequence

0 — Hom (a)AvJOO, wjvy,&/wAV,rO» - 7]3;.//<

— Hom <a)Av’,go/(ker y*,%o)l, LieAV,rgo) — 0.

I8 This condition is implied by the others when N is even.
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(2) The restriction of 1y to BS. is locally on BS. a closed immersion, with a
canonical isomorphism for its normal sheaf

Nigje, = Hom ((ker Vor)T/HIR (AL | Lie Av,,&)
~ (im y*,tw) ®0ge, Liegv cc -
(3) We have vy re (ker vy r,) = = H{R(A*/S)L .

(4) The assignment sending (Ao, Ao, ng; A, A, P A% A%, 0P y) € BL.(S)
to the subbundles

Hy = (i) " @avys,e)™ S HIR(A®/S) e
= H{R(A*/i)rg, ®¢ Os = (Yo)s,
Hy = Yy o 0av /5.0, © HIR(A®/S)e = H{R(A®/k)g, ®c Os = (Y4e)s,

where y: A®* — A is the (unique) O p-linear quasi- p-isogeny such that
y oy = w -idy, induces an isomorphism

{S..: B;o :) DL;O - DL.(%'? { ) }S')'

In particular, B, is a geometrically irreducible projective smooth scheme
in Schy, of dimension L%J.

(5) If we denote by (Hse1, Hye2) the universal object over DLS., then there is
a canonical isomorphism

e (Mh /Hown) = Lieacg
of line bundles on Bg,.
Proof By Lemma 3.4.12(2,3) and Definition 5.4.2, we have

rankog (ker s z,.) + rankoy (ker i rg ) = 2| 5] + 1,
rank o (ker yy r,,) — rankog(ker yy z¢ ) = 1,

which imply
— N+l _ rN-1
rankog (ker ye.,)) = [, rankog (ker yirg) =[50, (5.6)

Note that under Definitions 5.4.2(a,b,d), 5.4.2(c) is equivalent to that
(Ker ¥4z, )" is a subbundle of HYR(A/S) ¢ of rank [51].

For an object (Ao, Ao, ng; A, A, NP A% A%, 0P y) € B;(VO, K?°)(S),
Definition 5.4.2(a) implies that there is a (unique) OFf-linear quasi-p-isogeny
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y: A®* — Asuchthat y oy = @ -ida, hence y o y = @w - id4o. Moreover,

we have the following properties from Definition 5.4.2:

(a") ker y[p°°] is contained in A®[p];

(b)) (im Px 7, )" is contained in w4v r< ;

(/) im Jx ., contains H{® (/)5 ;

(d) wehave w - A* =y oo y;and

(¢/) the KP-orbitof maps v > @~ !y, 0n*” (v) forv € Ve ®g AP coincides
with n?.

First, we show (1). It is clear that B§. is a scheme of finite type over k.
Consider a closed immersion S <> § in Sch’, defined by an ideal sheaf 7
satisfying 72 = 0. Take a point x = (Aq, Ao, nd; A, A, nP; A®, A%, nP% y) €
B3. (S). To compute lifting of x to S, we use the Serre—Tate and Grothendieck—
Messing theories. Note that lifting y is equivalent to lifting both y and y,
satisfying (b—e) in Definition 5.4.2 and (b’—e’) above, respectively. Thus, by
Proposition 3.4.8, to lift x to an S-point is equivalent to lifting

o wav/s.1,, toasubbundle &4v o of HS™(A/8), (of rank 1),

® wpv/s g toa subbundle C,(\)AV’Té:O of H‘{ris(A/S),gO (of rank N — 1),
subject to the following requirements
(@") v r,, and @4v ¢ are orthogonal under (, )§™ (3.3);
(") ()ZMOOH?iS (A'/S’)TOO)J- is contained in @4v ¢ .
AS Vi 1 HSS (A% /8) ., = ket Vi ro, € HS™(A/8),, (b7) is equivalent to
)J_

(c”) (ker yx,z,,)™ is contained in WAV ¢ .

To summarize, lifting x to an S -point is equivalent to lifting wav /s ¢ to a
subbundle G)Av,fgo of H‘fﬁs(A / S‘),go containing (ker y*,foo)L, and then lifting
WAV/S, 7 t0 a subbundle @4v o of d)f\v,f&' Thus, (1) follows.

Next, we show (2). By Theorem 5.2.5(4), the map 7]3:. e =
L.*TM; (Ve KPo) /i |B;. is induced by the canonical map

Hom (.47, eg,/(ker V) Lieav oz

— Hom (a) Ao HR (AL | Lie Av,r&) .
It is clearly injective, whose cokernel is canonically isomorphic to

Hom ((ker Var)THIR (AL | Lie Av,,&)

>~ Hom ((im Vitss) s LieAV,rgo) o~ (im y*,foo) ®0ge, Lie gv rg -

@ Springer



204 Y. Liu et al.

We obtain (2).
Next, we show (3). By Definition 5.4.2(d) and the definition of ¥, we have
Loy =y oA®, which implies

(ker v r) " = ¥, pe (H{R(A®/S)5). (5.7)

It remains to show that HdR(A‘ / S)L is contained in im yj, g = ker yy, 7S -
By Definition 5.4.2(c), we know that y* ! (HdR(A / S),c) is a subbundle
of HdR(A /S),oo of rank [47. Similarly to (5.7), we have (ker y; -¢)*
Vit (H{R(A/8)32 ), which is also a subbundle of H{R (A®/ ), of rank (%1.
Thus, ker y. V.18, contains H‘l1R (A*/S )TLOO.

Next, we show (4). We first show that ¢ has the correct image, namely, we
check

e rankp, H| = [%1 and rankpg Hy = [%'l — 1: By 5.6, we obtain
rankpg Hy = [%1. Since ker yy e < (kery*,,oo)l C waAv)s,1g, W
have H, = y* 1S WAV/S.1s, = waAvys.e [/ Ker yy rg . Thus, we obtain

rank g 2—|' 1—1.

o H{R(A*/S){ < H):ByDefinition 5.4.2(b), H; contains yx rc (ker vy )"
in which the latter coincides with H‘liR(A' / S)TLoo by (3).

e Hy C Hi: Asioy =yY oA®, we have

. ~1
((Vrto0) ™ WAY/S, 100> Vit DAY /8,78 ) A% oo

y y —1
= (V*,roc(y*,roo) WAV /S 155 CUAV/S,rgo>A,TOO =0.

Thus, we have H, C Hj.
e H) C Hl_': Note that we have

im yy re = ker yx g

= (ere) '@ 5 ) S F(Grrn) 0avys.c) = F(HT)).

Thus, (F((Hl(p))L))L C (im y*,rgo)l, which in turn implies Hl(p) C
V((im yx r¢ )1), which further implies V="' H” C (im ys .c)*, which
implies im yx ;¢ € H 1_' By comparing ranks via (5.6), we obtain

: _ g

imyy e = Hy. (5.8)

In particular, Hﬁ contains Hj as im yy ¢ does.
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o Hi C H;'": Note that H\" = Virroo (VHIR(A/8)z) = V(im yury,) =
v(ker Py r.,) S V(Hll). Thus, V_le(p) - Hll, which implies H; C
VI HP)E = Hy.

° Hl_| - Hz_': This follows from Hy, C H;.

Since the target of & is smooth over « by Proposition A.2.2, to see that ¢
is an isomorphism, it suffices to check that for every algebraically closed field
k' containing «, the following statements hold:

(4-1) ¢& induces a bijection on «’-points; and
(4-2) ¢J induces an isomorphism on the tangent spaces at every k-point.

To ease notation, we may assume ' = k.
For (4-1), we construct an inverse to the map ¢% (k). Take a point y €
DLS. («) represented by «-linear subspaces

H{R(A®); € Hy € H) € ¥+ = H{X(A%)¢.

We regard F and V as those sesquilinear maps in Notation 3.4.10. For every
T € Yoo, we define a W (x)-submodule Dy ; € D(A®); as follows.

o If 7 ¢ {100, 75}, then Dy r = D(A®)-.
o We set Dy ¢, = V*Iﬁz, where 1:12 is the preimage of H» under the
reduction map D(A®)re — D(A®)rc /pD(A®) e = H‘liR(A')foco.
o WesetDy ¢ = FFIIC, where I:I]c is the preimage of H IJ- under the reduc-
tion map D(A®).,, — D(A®)../pD(A®)., = H?R(A'),OO.
Finally, put Dy := @reioo Dy ¢ as a W(k)-submodule of D(A®). We show

that it is stable under F and V. It suffices to show that both F and V stabilize
DA vy, ® D4, g, which breaks into checking that

e FDy 1, € Da 1, thatis, FVlH, C Fﬁf It suffices to show that V—! H,
(as a subspace of H‘liR(A')roo) is contained in H IL, which follow from the
relation H; C Hz_'.

e FDp g € Da ¢y, thatis, FFﬁf C v~ H,. 1t suffices to show pFI:IIc C
H,, which obviously holds.

e VDy ., C DA,T&’ that is, W_II:IQ - Fﬁf it suffices to show H, C
FH IJ-, which follows from the identity F H IJ- = (V"' H})* and the relation
H, € H;'.

e VDA e C Dy ., thatis, VFI:I]C C V*II:IZ. It is obvious as V*II:IZ con-
tains pD(A®). .

Thus, (D4, F, V) is a Dieudonné module over W (k). By the Dieudonné the-
ory, there is an Op-abelian scheme A over k with D(A); = Dy . for every
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T € Yo, and an Op-linear isogeny y: A — A® inducing the inclusion of
Dieudonné modules D(A) = Dy € D(A®). Moreover, since pD(A®) C
D(A), we have ker y[p™°] € A[p]. Now we check that (ker y*ffoo)l s con-
tained in wav/s -, which is equivalent to that pD(A®); N D(A)e C
VD(A)., . However, as H, contains H?R(A‘)tloo, we have pD(A‘)ZOO C Hy =
VD(A)+,,.

LetA: A — AY be the unique quasi-polarization such that wA = ¥ oA® o
y. We claim that A[ p®°] is a polarization whose kernel is contained in A[p] of
rank p2. Since H, € Hj, we have (Flf, FIg)A-,TOO C pW(x), which implies
(D(A)r, D(A)1g )iz © PW(k). It is enough to show that the inclusion
D(A)rg, — D(A);’oo induced from ( , );e , hascokernel oflength N+-1. This
follows from the facts that the cokernel of D(A®);¢ — D(A‘);’Oo has length
N — ZL%J, and the cokernel of D(A);,, ® D(A)rg, < D(A®),, ® D(A®) g
has length ZL%J + 1.

It is an easy consequence of Lemma 3.4.12(2) that the O-abelian scheme
A has signature type N® — 7o + t5,. Finally, let n” be the unique K?”-
level structure such that Definition 4.3.3(d) is satisfied. Putting together, we
obtain a point x = (Ag, Ao, né’; A, A, nP; A% A%, nP% y) € Bl (k) such that
{0 (x) = y. Itis easy to see that such assignment gives rise to an inverse of
2 (k), hence (4-1) follows immediately.

For (4-2), let 7, and 7, be the tangent spaces at x and y as in (4-1),
respectively. By Proposition A.2.2 and the construction, the induced map
(%)« Ty — 7T, fits into a commutative diagram

Hom, (047 s @F e /07 e, ) —> T ——> Hom, (@47 g /(Ker v, ), Lieav g )

T

Hom, (H1/H,, H;'/H,) Ty Hom, (Hy/ 7, H{'/Hp)

in Mod(x). The right vertical arrow is induced by maps

Vi, 1§
1 =
AV, zs [(Ker Yy 1)) ——> Hy/Vd,

- dR Yotk 4
Lieav re @ H{"(A)rg /wav g — H /H>

which are both isomorphisms by (5.7) and (5.8), respectively. The left vertical
arrow is the composition

1
Hom,, (wAV,foo’ wAV,rgc/a’AV,foo)

— Homy (H{/V™" Hy, Hi/Hi") = Hom, (Hy/Ha, Hy'/H) )
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in which the first arrow is induced by maps

VYx,100

L -1 : 1 Pero L
Hi" )V 'Hy == wpv . Hy /Hj T Wav,eg /0AY

which are both isomorphisms as f*’foo(Hlj-) = WA 10> Voo V' Hy)) =0,
and 77*,%0(H2J-) = a)kv’fgo. Thus, ({%)«: Tx — 7, is an isomorphism by the
Five Lemma, hence (4-2) and (4) follow.

Finally, (5) is a consequence of (5.8). O

Remark 5.4.5 We have the following remarks concerning Theorem 5.4.4.

(1) When K?° is sufficiently small, the restriction of ¢y to B, is a closed
immersion for every point s® € S‘(V° K?”°)(x) and every perfect field «

containing F;‘;

(2) In fact, one can show that the union of M; (V°,KP°) and the image
of (*: B;(VO,KP") — M;(V",K”O) is exactly the basic locus of
M;(VO,KPO). In particular, as long as N > 5, the basic locus of
Mp(Ve, K?°) is not equidimensional.

Construction 5.4.6 To construct a uniformization map for S;(VO, -), we
need to choose an O Fp-lattice A; in V° @F F, satisfying

o Ay S AJC p‘lAo and
° pA‘ C (A‘)v such that (A‘) /p Ay has length O (resp. 1) if N is even
(resp odd).

Let KJ be the stabilizer of AJ; and put K7 := Kg x qu .q#p
Constructlon 4.4.2, we may construct a umformzzatzon map

KE’I . Similar to

v®: Sp(Ve, =)(Fp) = Sh(V°, =K?%) x Ty(F) (5.9)
in Fun(&(V°)? x %, Set) /T, ) which is an isomorphism, under which the
induced action of Gal(Fp / IF;?) on the target is trivial on Sh(V®, =K?7).

Moreover, similar to Construction 4.4.5 and Proposition 4.4.6, for every
g€ K;\U(V")(FpJr )/K3, we may construct the Hecke correspondence

Hkg: S5(V®, =)g — Sp(V°, =) x S5(V, =)

as a morphism in Fun(&(V°)? x ¥, Sch /IF}I,’) /T, thatis finite étale and com-
patible with the uniformization map.
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5.5 Basic correspondence for the link stratum

In this subsection, we construct and study the basic correspondence for the
link stratum Mg (V°, =). We also discuss its relation with the two previously
constructed basic correspondences. We assume N > 2.

Definition 5.5.1 We define a functor
SHV®, =): R(VO)? x T — PSch'y
p
KP® > S(Ve, KP°)

such that for every § € SCh/ﬂF@, S; (V°,KP°)(S) is the set of equivalence
4

classes of decuples (Ag, Ao, ng; A°, A°, nP°; A%, A®, nP°; ), where

o (Ao, Ao, nh; A°, A%, 1P°) is an element in S;(V°, KP°)(S);
e (Ag, Ao, n; A®, A*, nP*) is an element in Sp(Vo, KP°)(8); and
e : A° — A°isan Op-linear quasi- p-isogeny (Definition 3.4.5) such that
(a) ker y[p°°] is contained in A°[p];
(b) wehave @ - A° = /¥ o A® o ¥; and
(c) the KP°-orbit of maps v = ¥, o nP°(v) for v € V° ®g A°” coincides
with n?°.

The equivalence relation and the action of morphisms in K(V°)? x T are
defined similarly as in Definition 4.3.3.

We clearly have the forgetful morphism
Sj(Ve, =) = Ty

in Fun(R(V°)? x %, PSCh//qu,), which is represented by finite and étale
P

schemes.
By definition, we have the two forgetful morphisms

s SHVe, =) = Sp(Ve, =), s Sf(Ve, =) — Sh(Ve, =)

in Fun(ﬁ(Vo)p X ‘3:, SCh/F?;)/Tp .
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Definition 5.5.2 We define Bg (V°, =) to be the limit of the following diagram

0(\O o 7° O(\/O o— © O(\/O w—
S3(Ve, =) <X B(Ve, =) — T M (V®, =)

e fa

SHve, =) M (V°, =)

S

e VO b4 ® /O — L /O —
in the category FUn(&(V°)? x ¥, SCh/Fg)/Tp-
From the definition above, we have the following commutative diagram

S3(V°, =) <" B3 (V°, =) ——= M5 (V°, =) (5.10)

shve, =) <Z— Bl (ve, =) ——= M}, (v°, =)

Sp(Ve, =) <" B (V®, =) ——= Mp(V°, =)

in Fun(R(V°)? x ¥, Sch /RO )T, together with the four new morphisms from

Bz (V°, =) as indicated. It will be clear in Sect. 5.10 why we draw the diagram
oblique.

Theorem 5.5.3 In the diagram (5.10), we have

(1) The square is a Cartesian diagram.

Bj(V°, =) ——= M} (V°, =)

-

. 0 L (/O —
By(V°, =) = M3V, -)
(2) Take a point
sT= (Ao, ho, nf; A% 0%, 0P A* 0%, 0P ¥) € S§(V°, KP°) (k)

where k is a perfect field containing ]F;?. Put B;fT = 1(sT) and Vet ==
(im Yy ¢ )/ H?R(A' / K)TLoo which has dimension L%J . Then the assignment
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sending

((Ao, R0, mg: A,y 05 A, 2%, 0% B),
(Ao, R0, s A, 2. nPs A%, 0%, 0P y)) € BL(S)

(withy =¥ o ) to (V*,rgowAV/S,rgo)/H?R(AVS)%OO induces an isomor-
phism

¢ Bl S P

Proof For (1), unravelling all the definitions, it suffices to show that for every
object

((Ao, 2o, m{s AL &, P A% 0°, 7% B), (Ao, ko, ms A, A nP5 A% A%, 0P y)
of MZ(VO, KP°)(S) X Mg (Vo,KPo)(S) BR(Ve, KPo)(S) = Bp(Ve, K?7°)(S)
X M, (Ve,KP°)(S) B;(V", K?°)(S), the quasi-isogeny i := y o ﬂ_l tA°— A°
is a quasi-p-isogeny. However, since B r¢c : H‘ilR(A),go — H‘liR(AO),go is an
isomorphism and ker By ., = wav 1, it suffices to show that w4v . is con-

tained in ker y, which is clear as wpev o = 0.
For (2), we first show that for a point

x* = (Ao, ko, 195 A, &, 5 A% 0%, 0P y) € Bp(Ve, KP°)(S),

t*(x*) belongs to M; (V°,KP°)(S) if and only if H] = Hl_', where we recall
from Theorem 5.4.4 that H; := ((f*,too)*la)Av,too)J—. In fact, by Defini-
tion 5.2.3, (*(x®) € M;(V°, K?°)(S) if and only if wpv = HéR(A)Tlgo. In
the proof of Theorem 5.4.4, we see im yy rc = Hl_' (5.8).Ashoy =y Y oA®,
we have (im yy ¢ )" = ()7*,,00)—‘H31R(A),l§o. Thus, if wav = HQR(A)TL&,
then H; = ((im y*,rgo)J-)J- which equals im y, ;¢ = H, as im Vi,1g, CON-
tains H{R (A®):L . On the other hand, if H; = H{', then (J r,) " 'wav 1, =
(im )/*,tgc)l = (?*,,w)_lHéR(A)Tlgo, which implies easily that wuv . =
HéR(A)rlgo-

Second, we show H| = im v, ;¢ ifx*® € BZT (S). Since y = ¥ o B, we have
Im yy re ©im Yy rc . Asim yy re = Hl_' = Hj, we have H; C im ¥/, r¢ . On
the other hand, it follows easily from Lemma 3.4.12(2,3) that im v, ¢ has
rank (%1. Thus, we must have H; = im Vs 1g -

The above two claims together with Theorem 5.4.4(4) imply (2). O

Remark 5.5.4 Tt follows from the proof of Theorem 5.5.3 that for every s e
s;(VO, K?°)(k), if we put s° := s7°(s7) and s® := s7*(s7), then

@ Springer



On the Beilinson—-Bloch—Kato conjecture 211

(1) the morphism ¢ o b o ({fT)*1 identifies P(7+) as a closed subscheme
of P(750) induced by the obvious «-linear (surjective) map o — ¥+;
and

(2) the morphism 5% ob™o (;sﬁ)—l identifies P(%+) as a closed subscheme (of

codimension one) of DL® (7., { , }se) defined by the condition H; = H 1"

Construction 5.5.5 Put K; = K;’, N K;,. Similar to Construction 4.4.2, we
construct a uniformization map

v Sive, =) (F,) = Sh(v°, —K}) x Tp(F)p) (5.11)

in Fun(R(V°)? x ¥, Set) /T, F)) which is an isomorphism, under which the
induced action of Gal(Fp / IF?,’) on the target is trivial on Sh(V®, —K]T,).

5.6 Cohomology of the link stratum

In this subsection, we study the cohomology of the link stratum. We assume
N > 2.

We first construct certain Hecke correspondences for By (V°, =) extending
Construction 5.3.6. Unlike the functor S; (V°, =), the natural action of K; =
U(A;)(O Fp+) on the functor Bg (V°, =) is nontrivial. However, as we will see,

such action factors through the quotient U(A;)(O FJ) — U(A;) (Fp). Let K;’ |
be the kernel of the reduction map K; = U(A;)(OF;) — U(A;)(Fp).

Construction 5.6.1 We first define a functor

Sp1(Ve, =) RV x T — PSch//]Fg,

K?° SE(VO, K?°)
such that for every S € Sch//]Fcp, S;l(V", KP?°)(S) is the set of equivalence
P

classes of septuples (Ao, Ao, ng; A°, \°, nP°; ng), where

o (Ag, Ao, ng; A°, 1°, nP°) is an element in S;(Vo, KP?°)(S);
e 1), is, for a chosen geometric point s on every connected component of S,
an isomorphism

7’];: A; ® ]Fp — HomOF (AOS[p]’ A?[p])
of hermitian spaces over Of, ® F),, where Homo, (Aos[pl, ASlp]) is

equipped with the hermitian form constructed similarly as in Construc-
tion 3.4.4 with respect to (Ao, A°).
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The equivalence relation and the action of morphisms in K(V°)? x T are defined
similarly as in Definition 4.2.2. In fact, we have a further action of U(Ag) (F,)
on S;l (V°, =). Moreover, similar to Construction 4.4.5 and Proposition 4.4.6,

for every g € K;l\U(V")(FpJr )/ K;l, we may construct the Hecke correspon-
dence

Hkg: S5V, =) — S21(V®, =) x S (V°, =) (5.12)

as a morphism in Fun(&(V°)? x ¥, Sch /ch) /1, thatis finite étale.
On the other hand, Theorem 5.3.4 implies that we have a canonical isomor-
phism

o] (e} o) o U(A;)(]Fp) o
Bo(Ve, =) =S5 (Ve, =) x  P(AS®F))

in the category FUn(R(V°)? x %, Sch /]F;q;) /1, Thus, forevery g € K;l\U(V")
(Fp+) / K;l, we obtain from (5.12) the Hecke correspondence

Hk, : B;(VO, =g = B;(VO, -) x B;(VO, -)
as a morphism in Fun(&(V°)? x ¥, Sch /]Ff;) /T, that is finite étale.

Now we study cohomology.

Lemma 5.6.2 Consider a p-coprime coefficient ring L.

(1) If p + 1 is invertible in L, then the restriction map
(m™)*: HE(M3(V®, =), L) — HE(M](V®, =), L)

is an isomorphism for every integer i ¢ {N — 2,2N — 2}. In particular,
HE(M((V°, =), L) and H (Mg (V°, =), L) vanish if i is odd and different
from N — 2.

(2) Foreveryi € Z, both H’T(M; (Ve, =), L) and H%(M; (V°, =), L) are free
L-modules.

(3) When N is even, the action ofGal(Fp/]Fg’) on Hg_z(ﬁg Ve, =), L(NT_z))
is trivial.

Proof By Theorem 5.3.4, for every K’° € RK(V°)? and every s° €
S; (ve, Kpo)(Fp), the restriction of (m')* to the fibers over s° is a morphism
appearing in Lemma A.1.4.

Part (1) then follows from Lemma A.1.4(2). Part (2) follows from
Lemma A.1.4(3). Part (3) follows from Lemma A.1.4(4) and Construc-
tion 5.3.6. |
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Definition 5.6.3 Let £ € H2 (B (V°, =), L(1)) be the first Chern class of

the tautological quotient line bundle on B°(V° —) (that is, in the situation
of Theorem 5.3.4, the restriction of & to B is isomorphic to ¢ Op(y;.) (1)
for every KP° € K(V°)? and every s° € Sg(Vo, Kpo)(IFp)). We define the
primitive cohomology HP''™ (M; (V°, =), L(i)) to be the kernel of the map

Um*2E): HY “2(M (V°, =), L) — HY (M (V°, =), LG + 1)),

which is canonically a direct summand of Hg _Z(Mg (V°, =), L(Q)).

Proposition 5.6.4 Take an object KP° € R(V°)?, a rational prime £ # p,
and an isomorphism 1y : C >~ Qq. Then we have an isomorphism

G HPIM MY (Ve, KP°), Qp)

~ Mapg: | UV (FO\UV)(AF) /K [] X5 o (5.13)
qlp.g#p

of C[KP°K? ol \U(VO) (AT, )/KP OKO -modules, where Qpy is the Tate—
Thompson representanon of Ky mtroduced in Sect. C.2. Moreover, let %P be
anirreducible admissible representation of U(V°) (A Py such that (7w %P )Kp

is a constituent of LZI gprim (M; (V°, KP°), Q¢). Then one can complete 7P
to an automorphic representation 1 = 1P Q@ oo ® qup g of UV®)(Ap+)
such that w is trivial; g is unramified for q # p; and

(1) when N is even, my is a constituent of an unramified principal series;
(2) when N is odd, BC(my) is a constituent of an unramified principal series
of GLy (Fy) whose Satake parameter contains {—p, —p~
Proof P_ut KO1 = Kgl X qup qstp K. By Construction 5.6.1, the cohomology
HN_Z(MT(VO K?°), Q) is an Qg[K”"KO U(V°) (AT )/KPPK? ]-module
T p 1 pl
for which HP™ (M (V°, K°), Q) is a submodule.

In the uniformization map (5.4), we let 5o € Sg (Ve,KP C’)(FP) be the point
corresponding to the unit element on the right-hand side. Put

HY™ (M} (Ve, KP°), Qo)
HP™ (M (V°, KP°), Qo) (| HY 2(MJ (Vo KP%) N 27 (s0), Qo).

Then Hﬁfim (Mg (V°,KP°), Q) is a representation of U(Ag)(Fp) KO/Kpl,
which is (isomorphic to) t¢2y. Thus, we obtain (5.13).
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For the remaining part, note that the right-hand side of (5.13) is a
(C[Kf”"K;’71 \U(V°)(A%ﬂ)/K”"K;l]—submodule of  Map(U(V°)(F1)\
U(VO)(A%‘}) /KPOKZI, C). In particular, we can complete 7°°:# to an auto-
morphic representation 7 = 1P @ 50 ® ]_[q‘ p q Of U(V°)(Ag+) such that
oo 18 trivial; 7y is unramified for q # p; and 7y, |K; contains Qy.

In case (1), by Proposition C.2.1(2), we know that €2 has nonzero Borel
fixed vectors. Thus, my is a constituent of an unramified principal series.

In case (2), we first consider the case where N = 3. As 7y, |K§ contains 23, it
has to be c-Ind% Q3 by Proposition C.2.1(3) and [55, Theorem 6.11(2)]. Thus,
by [55, Proposition 6.6], J'rle'c; is irreducible supercuspidal, which is actu-
ally the unique supercuspidal unipotent representation of U(V°) (F,;r ). In fact,
c—Ind% Q3 is the representation 7 * (1) appearing in [63, Proposition 13.1.3(d)],
after identifying Q, with C. By [63, Proposition 13.2.2(c)], BC(x* (1)) is the
tempered constituent of the unramified principal series of GL3(F}) with the
Satake parameter {—p, 1, —p~!}. Now for general N = 2r + 1, as np|K;
contains 2y, by Proposition C.2.1(4) and [55, Theorem 6.11(2)], 7y, is a con-
stituent the normalized parabolic induction of 75 (1) X 1 X - - x,. 1 for some
unramified characters xi, ..., x,—1 of F*. Therefore, by the compatibility of
local base change and induction, BC(mrp) is a constituent of an unramified
principal series of GL y (F},) whose Satake parameter contains {—p, — p‘l}.

The proposition is proved. O

5.7 Intersection on the ground stratum

In this subsection, we describe a certain scheme-theoretical intersection on the
ground stratum, which will be used in the next subsection. We assume N > 2.
Take an object K”° € R(V°)”. Given two (possibly same) points s}, 55 €
Sp(ve, KP°)(k) for a perfect field « containing F®, we put
B;;,sg = B;; X Mp (Ve KPo), B;;
as the (possibly empty) fiber product of ¢, | B;l. and ¢, | B;S' To describe B;fvsi’

we need to use some particular cases of the Hecke correspondences introduced
in Construction 5.4.6. We now give more details.

Definition 5.7.1 For every integer 0 < j < N, we define a functor
Sp(Ve, =) RV x T — PSCh//]Fg)
K?° Sp(ve, K”°);
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such that for every S € Sch’ /]Fq;, Sp(Ve, KP°);(S) is the set of equivalence
classes of decuples (Ag, Ao, 170, AT AT, ’71 s ASL A, n2 ; ¢°), where

e (Ao, Lo, ng; AP, A7, nf') fori = 1, 2 are two elements in S;(VO, KP?°)(S);
and
e ¢°: A} — AJis an Op-linear quasi-isogeny such that
(a) po®o )\rl is a quasi- p-isogeny; and ker(p¢*®)[p] has rank p
(b) ¢*[q*°] is an isomorphism for every prime q of F T above p that is not
p;
(c) we have ¢*¥ o 15 0 ¢* = A}; and
(d) the KP°-orbit of maps v — ¢ o nf'(v) forv € V° ®g A7 coincides
with 775'.

2(N=j),

The equivalence relation and the action of morphisms in £(V°)? x T are
defined similarly as in Definition 4.3.3. Finally, we denote

Hk;: S3(V®, =); — Sp(Ve, =) x Sp(V°, =)
the morphism in Fun(K(V°)? x ¥, Sch /[Ff;) /1, induced by the assignment
(Ao, 2o, g: AT AT, 07" A A5, 13" %)
= ((A09 )"Ov 770v . 19 nl )v (A09 )"Ov 7]0, AE: A-zv 7]5.))
Remark 5.7.2 When K?° is sufficiently small, the morphism
Hk;: S3(V®, K?P?); — Sp(Ve, K?°) x Sp(Ve, K?°)

is a closed immersion for every j; and the images of Hk ; for all j are mutually
disjoint.

Now we take a point s* = (Ag, Ao, 170, Al AT, ’71 ,A’ A3, 172 *. 9°) €
S;(VO,K”") j(k) where « is a perfect ﬁeld containing IF?,’. By Defini-
tion 5.7.1(c), we have (p¢*® o A;_I)V =po*lo AE_I. Thus, p¢*~! o )Lz_l,
hence p¢*~! are quasi-p-isogenies as well. In particular, for every 7 € T,
we may consider

ker(pg®*)ur = ker ((pg®)sc: HIR(A}/K)e — H{R(A3/K0):),
im(pg* iz i=1im ((pg° D HIR(A3/K): — HIR(AS/K0)7) .

Lemma 5.7.3 We have

(1) im(p¢._1)*,r c ker(qu')*,ffor every T € Yoo,
(2) dim, ker(p@®)sr = N — j for v € {10, T}
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(3) im(pgp* 1), NHR(A /)L =0 for T € {tc, TSN
@) (im(pg* 1))t = ker(pg®)s e for T € {To0, TS} and
(5) dim, im(p@* Ny = jfor v € {100, TS )

In particular, S§(V°, KP®); is empty if j > L%J.

Proof For (1), it is obvious since (p¢*®) o (p(l)‘_l) = p2.

For (2), by Definition 5.7.1(a), we have dim,ker(p¢®)sr, +
dimy ker(p¢*®)« e = 2(N—j). Using the isomorphisms V: H‘flR(AI/K),OO —
H{R(AS/k)zc, and V: H{R(AS/k)r, — H{R(A3/k)zc, we have
dimy ker(p9*®)« 7., = dim, ker(p@*®). ¢ , hence both are equal to N — j.

For (3), it suffices to consider T = t4 due to the isomorphism V. Via
¢°, we regard D(AJ) as a lattice in D(A})qg. By Definition 5.7.1(a), we
have pD(A%)., € D(A})r, < D(AE)TVOco (Notation 3.4.11). Suppose that
H?R(A;/K)Tlgo N im(p@* sz, # 0. Then one can find x € D(AS)r,
and x; € D(A} Xc \D(A})ry, such that px; = pxp. It follows that
(x2, Vx2) Moo = (xlo,onl) Ao does not belong to W (x'), which is a contra-
diction. Here, we regard V as Verschiebung maps on for Dieudonné modules
of A} and A3, which are isomorphisms.

For (4),as A{ o Pl =9V o A3, we have for T € {10, 75} that

(m(pg* N 0)" = (pd*)sre) ' HIR(AS/i0)7,
which equals ker(p¢®). .= by (3).
For (5), by (2,3,4), we have dim, im(qu'_l)*J = jfort € {te0, T}
The last claim follows from (1,2,5). |

By Lemma 5.7.3(1,4), for T € {7, TS}, we may put

ker(pg®)s.c |

dR/ e .
e = e s

and we have the induced «-bilinear pairing

(2 )atien  HIR (@) ey x HIR(9%)rg — k.
On the other hand, the (x, o —1)-linear Verschiebung map V: H‘fR (AY/K) ey —
H?R(A; [K)g, induces a (x, o —!)-linear isomorphism V: H‘liR @), —
H‘liR (¢°)zg . We define a pairing

{, Jse: HR(¢%)re x HR(¢*)re — &
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by the formula {x, y}e 1= (V" 'x, Y)23.7,- TO ease notation, we put
Yso :=HR (¢%)re..

Lemma 5.7.4 Suppose that j < L | — 1. The pair (Vge,{, }se) is admissi-
ble of rank N — 2j (Definition A.1.1) satisfying dim, ”I/sﬂ =N — ZL%J. In
particular, we have the geometrically irreducible smooth projective scheme
DL® (%0, { , }s) € Schy. of dimension L%J — J as introduced in Defini-
tion A.2.1.

Proof By Lemma 5.7.3(2,5), we have dim,%. = N — 2j. By
Lemma 5.7.3(3,4), we have dim, ”//s:' =N — ZL%J. The lemma follows by
Proposition A.2.2. O

Now consider a connected scheme S € Sch’ . and a point x € B;l. sg(S)
represented by a quattuordecuple

(AOa)\'O7 ngsA’)\'anpaA.’ I r]l ayls 25)\'2sn2 ,)/2)

Lemma 5.7.5 There exists a unique integer j satisfying 0<j |_N ] =1
such that s® = (Ao, Ao, ng; AT AT, '71 s ASL A, r]2 ,qb ) is an element in
S; (V°,KP?);(S), where ¢* :=y 0y, . ' Moreover, we have

im(p¢*")ire C Ho € Hy C ker(pd®)s g . (5.14)

where Hy € H| C H?R (AY/S8)<g are subbundles in Theorem 5.4.4 for the
image of x in B;]. (S).

Proof First, by definition, we have ker(p¢®)[p] = ker(yz o y1)[p], which is
an Op-stable finite flat subgroup of A{[p]. Thus, as § is connected, there is

a unique integer j satisfying 0 < j < N such that ker(p¢®)[p] has rank
2(N=j)
p .

Second, we show that p¢® o )\rl is a quasi-p-isogeny, that is, y» o
y1 o AI_I is a quasi-p-isogeny. By Theorem 5.4.4(4), yix:g®av/s g
contains HdR(A') ~_» which implies fl*,rch?R(AT)rLoo = 0 hence (y; o
Pxre HIR(ADL = 0. On the other hand, as yi.r H{R(ADL <
HdR(A)TC , we have (12 o Y1), rooHdR(A')TC = 0 by Definition 5.4.2(c). In
other words, ker A{[p>°] is contained in ker(y o y1)[p°]. Thus, p¢® o AI_I =
Y2 0p] 0 kI‘l a quasi- p-isogeny.

Third, we show that j is at most LN ] — 1. (Note that Lemma 5.7.3
already implies that j < L 1.) Theorem 5.4.4(4) implies rankpg Hy + 1 =
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rankpg Hy and H‘liR(AI/S)TLoo C H,. Lemma 5.7.3(3) implies rankpg Hy >
rankog im(qu‘_l)*,,go + 1. Thus, by Lemma 5.7.3(2,5) and (5.14), we have
(N —j)—j =2 thatis, j < [§] — 1.

Definition 5.7.1(b,c,d) are obvious. Thus, it remains to check (5.14). On
one hand, we have

im(pd’.il)*,rgo = im(y; o )72)*,150 = Vl*,rgo);%,rgoH(liR(AE/S)rgo

= V1e1g V2x 18 @asY /8,8, S Vikrg @atvys g, = Ho.

On the other hand, since Y1 1., im(qu‘_l)*,TOO = Vls1o, IM(Y1 © Y21y =
0, we have the inclusion im(be'_l)*,rw C (fl*,,m)_la)Av’rm. Thus,
H = ((P1s.1,) '@av o )" is contained in (im(p¢*~')s ., )+, which is

ker(p¢*®)« ¢ by Lemma 5.7.3(4). The lemma is proved. |

Definition 5.7.6 By Lemma 5.7.5, we have a morphism

B o3 — HK (7, 53).
j=0

For a point s°® € Hk;1 (s7,59) (k) for some 0 < j < L%J — 1, we denote by
B3. the inverse image under the above morphism, which is an open and closed

subscheme of B;. e
1°°2

Theorem 5.7.7 Let s7,s7 € Sy(V°®, K?°) (k) be two points for a perfect field
k containing F g’. We have

B ;s = 11 B:..

0 seeHk; ' (57,83 (0)

~.
Il

Take s* = (Ao, ho, 1§ AT, A, n{"5 A3, 23, 15%; ¢*) € HK; ' (57, 53)(c) for
some 0 < j < L%J — 1

(1) Denote by H; the image of H; in H‘fR(qﬁ')fgo Qi Os = (Vgo)s fori =1, 2.
Then the assignment sending (Ao, Lo, n(’;; A, A, nP; AT, AL nf'; Y1: A3,
A3, nf'; y2) € BL.($) 1o (H\, H>) induces an isomorphism

(oot Bye — DL* (5o, {, }s)

(Definition A.2.1) in Sch,.
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(2) The cokernel of the map
TB;]. e IBe, D 7?3;5 JelBe, = T (ve kro) /il Be,
is canonically isomorphic to

o ((‘7 Hye2) BOpLe 7.1, 1,0 (7:[;'-1/7'_(r2>>

where (Hge1, Hye2) is the universal object over DL® (Ve { , }se).

Proof The decomposition of B, 3 follows directly from the definition and
57

the fact that Hk;1 (s7, s7) is isomorphic to a finite disjoint union of Spec k.

First, we show (1). We first notice that Lemma 5.7.3 implies that (I:I 1, H>)
is an element in DL® (¥, {, }5¢)(S).

Since the target of ¢ is smooth over «k by Lemma 5.7.4, to see that ¢ is
an isomorphism, it suffices to check that for every algebraically closed field
k' containing k

(1-1) ¢& induces a bijection on «’-points; and
(1-2) ¢& induces an isomorphism on the tangent spaces at every «’-point.

To ease notation, we may assume ' = k.

For (1-1), we construct an inverse to the map ¢ (k). Take a point Yy €
DL* (74, { , }s*)(k) represented by «-linear subspaces 7. JCc H, CH C
Yo, or equivalently, subspaces

im(pg®~")wcc ®HR(AY/K)EL, © Hy © Hy C ker(pg®)scc, © HIR(AS/K)cs .

These give rise to a point y; € DL®*(%s, {, }s¢) (k). By Theorem 5.4.4(4), we
obtain a unique point x| = (Ao, Ao, ng; A, A, P AL AT, nf'; Y1) € B’ (k)
such that ;“ (x1) = y1. Put y :== ¢® o y;: A — A3. We claim that yz is a

quasi- p- 1sogeny Infact,as Aoy =y, oA}, (im yi4 7, im Vl*,fo%hl,roo = 0.
Thus, we have

: : 1 —1 1 .
m yYrs,78 C (im Vl*,roo) = (Vv Vl*,rgowAV,rgo) = Hz - ker(p¢>')*,rgo~

By the isomorphisms V: H{R(A}/k), —  H{R(A}/k);c and

V: HR(AS/k) 1z, — HIR(AS/k) e, we obtainim yi -, € ker(p®)y r... In
partlcular im(pp®oyr)sr = Oforeveryr € Y.o;inother words, y» is a quasi-
p-isogeny. Now we show that x» := (Ao, Ao, ng; A, A, nP; AS, A3, né"; 12)
satisfies Definition 5.4.2(a—e).
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For (a), it suffices to show that pyz_l is a quasi-p-isogeny, equivalently,
yfl o (pp*~1) is a quasi- p-isogeny. However, we have im(p¢°_1)* T =
vl im(qu'_l)*,focC c v''H, = imyj4.,, hence 1m(p¢’ D e C
im y14 rg using the action of v, which together imply that V1 o (pp*™h
is a quasi- p-isogeny.

For (b), we identify D(A) as submodules of both D(AY) and D(AY) via
y1 and y», respectively. Then we need to show that pD(AJ )v ND(A)g
VD(A)r,. As pp®™ Io Az is a quasi-p-isogeny, we have pD(Az)Zoo
D(A})<g,- Moreover, the image of pD(AE)!OO in D(AY)ze /pD(A})g,
H{R(A$).¢ is contained in im(pp*~ ')y e @ H{R(A}/k)L , which is fur-
ther contamed in H,. Thus, pD(A3 )V N D(A),_—c C VD(A)too as VD(A),,
is the inverse image of H; in D(A} )f§o'

For (c), suppose that HClR (A)L is not contained in ker y2 7., . Since ya4 ¢,
dR dR dR/ 4y.L dR 4e\.L

maps Hj (A).[c into H{™ (A3 ).[c ,Wehave Vos, oo H (A)ze NHIT (A= # 0.

On the other hand, since HdR(A)roo is contained in ker y14 r,, = im P14 7.,

[N Iﬂ

we have VZ*,IOOH?R(A){LOCQ C im(y2 © Y1)s,1ee = IM(PP*®)s. 1. Thus, im(y, o
VD stao N H?R(Ag)ﬁgo # 0, which contradicts with 5.7.3(3) (with ¢* replaced
by ¢*1).

For (d) and (e), they follow obviously.

To summarize, x; belongs to B;2' (k); and x := (x1, x2) is an element in
B3$. (k) such that {5 (x) = y. It is easy to see that such assignment gives rise
to an inverse of ¢ («), hence (1-1) follows immediately.

For (1-2), let 7, and 7, be the tangent spaces at x and y as in (1-1),
respectively. By Theorem 5.4.4(1), we have a canonical short exact sequence

1
WV rg
0 — Hom, | wav 7,

WAV 15
WAV 1§,
(ker Vl*,roo)J' + (ker VZ*,IOO)J'

— 7, — Hom, ( ’LieAV,rgo> — 0.

Then by Proposition A.2.2 and the construction, the induced map (£ %)« : 7, —
7, fits into a commutative diagram

1
Wyv e ( DAY, 78 . )
Hom, | wav ¢, = T, Hom, ,Liegv ;c
N ( Al wAV,zw> ! (ker Vix, ro<,)L + (ker V2x, rog)L AT
\L ‘/({ ) l
7. . g0 T s
Hom, (H/H,, H;'/Hy) T, Hom, (Ha/ 7,4, H{'/ H2)
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in Mod(x). The left vertical arrow is the composition

HOI’I’IK (a)Avaoo’ wzj‘l_v,rgo/wf\v,l’oc)
— Hom, (Hli/v—‘Hz, H /HE)
> Hom, <H1/H2, H;/H1> ~ Hom, (Fll/f_lz, H;/Fll) :

which is an isomorphism. The right vertical arrow is induced by maps

WAV 78 Yis1S, H;
(Ker V14,70 + (Ker yos 7,)+ im(p@*=")src ® H{R(AS/K0)E
~ Hy/ ¥, (5.15)
. dR Vet pr- 7 17
Lieav e > H{N(A)rg /oav,re ——> Hy'/Hy >~ H;'/H,. (5.16)

Note that in (5.15), we have used Lemma 5.7.3(3) to write the direct sum.

We show that (5.15) is well-defined and is an isomorphism. It is clear that
ker y14,7c is contained in (ker Vl*,roo)J_- Thus, it suffices to show that the
image of (ker y14,r,) " + (ker yau rp)™ under iy rc is im(p@* '), rc @
H{R(A}/k)L . By Theorem 5.4.4(3), we have yi.rg(keryis o)t =
H?R(AI /K)TLOO. It is easy to see that yj. rc (ker VQ*,TOO)J_ is contained in
ker(ys o );l)i_,foo = ker(pgb')ijroo, which coincides with im(pgb'_l)*,roco @
H{R (A% /k)L_ by Lemma 5.7.3(3,4). On the other hand, 14 z¢ (ker yay r,,)*
contains yiy, g (Ker y2uze) = im(y1 0 ¥2)x rg, which is im(pg* 1), o . It
follows that (5.15) is an isomorphism.

By Theorem 5.4.4(5), (5.16) is an isomorphism as well. Thus, (£%)«: 7, —
7, is an isomorphism by the Five Lemma, hence (1-2) and (1) follow.

Next, we show (2). Theorem 5.4.4(2) implies that the cokernel of the map

7]3;.//c |B;. @%;,/HB;, — L.*TM;(VO,KPO)/K|B;.
1 ’ 2 ’
is canonically isomorphic to
Hom ((ker Vi e + Ker yan 2 ) /HR (AL Lie Av,roco) RENCRT)

where we recall from Definition 5.2.3 that A is (part of) the universal object
over M (V°, KP°). As ker yoy r,, = im y24 ¢, We have

H(liR (A)too N im V1%, 100 . im Y1k, 100
ker Vik,to T ker V2%, 100 im(y; o )\/‘2)*,%0 im(pd)'_‘ )*,‘[oo
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~ Vim V1%, 100
Vim(P(ﬁ._])*,roo'

(5.18)

However, we have Vim 14 1, = (Vix,rc®A,xc)?) and Vim(pp®* 1), o, =
(im(p@* 1),z )P, Thus, (5.18) is isomorphic to o*H,e2, hence

(5.17) =~ Hom ((6*Hye2)", Liegv z¢))

= (0*7—_{3'2) ®ODL°('7/X.,{ ge) <7:[S_|'1/7:{S.2> ’

where we use Theorem 5.4.4(5) for the last isomorphism. We have proved (2)
and the theorem. O

We also need a description for
Bl :=B®. X Ms (Ve KP) M; (V°, KP?)
for s® € Hk;1 (7, 57) (). Itis clear that if we put

le_. = Bl Xty (ve ke Mp(V®, KP?)

fori =1, 2, then

T _ Rt , T
By =By Xyt (ve kre) Big-

By definition, for every S € Schy,, Bz. (S) is the set of equivalence classes of
unvigintuples

(Ao, 2o, 153 Ay Ay nPs A% A0, P A, AL, by AS A8, 8% By vi, v, Vi, Y2, )

rendering the diagram

[ ] 4). [ ]
Al ———=AF
A

Y1 A

J/ﬂ
AO
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commute. Here, the letters remain the same meaning as in our previous moduli
problems. Put

S:' = {S'} XS;(VO,KPO)XS;(VO,KI’O) (S;(VO, K]’O) X S;(VO, KPO)>
X58(ve,Kro)xsg (ve,kro) Sy (V, KP?)

where S/ (V°, K?°) — Sp(ve, KP°) x Sp(ve, K?°) is the diagonal morphism.
Then we have a canonical map

71:.: BI. - S:.
of k-schemes by forgetting (A, A, n?) and related morphisms.

Theorem 5.7.8 Let s7, 55 € S§(V°, KP°)(k) be two points for a perfect field
K containing Fg’. Take s® Hk;l(sl', s7) (k) for some 0 < j < I_%J — 1.

N, .
Then the scheme S:. is a disjoint of (p + 1)(p> +1)--- (172L7J72]71 + 1)
copies of Speck.
Take a point

1T = (Ao, ho, s A% A%, 0P AT A 0T AS S % W 2, 0°) € ST ().
(1) The assignment sending

(Ao, ko, 0l A, APy A% 00, nPo; A, A5, nds A3, A3, nd®;
B.v1, v2, U1, 2, 8%) € BL.(S)

to Hz/(im(qu'_l)*,rgo + H?R(AT/S)ﬁ-OO) induces an isomorphism
¢he i e S P

where we put

Y. m)« g
= o—1 HdR A®/S)L
im(p¢ )*,rgo+ 1 (AY/ )foo

which has dimension L%J —J.
(2) The cokernel of the map

. .* .
Tyt e liy1am) @%j./x'(nj.)—la*) = Tyt ve ey i1
1 2
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is canonically isomorphic to
&7 (" H11) ®0sy,, Opr (1)

where H,+ is the universal object, namely, the tautological bundle on
P(¥4).

Proof In fact, the assignment sending (Ao, Ao, ng; A°, A%, nPe AL, AL, nf';
AS A3, 175'; Vi, Yo, 9°) € SI.(S) to im(@/fl)*’tcoo induces a bijection from
SI.(S) to the subbundles H < HIR(A? /S)ze of rank [ satisfying
im(pp* e @ Os € H S ker(pg®)sre, ®c Os and (V-'H, H)rc = 0.
Thus, we know that S is a disjoint of (p + 1)(p> + 1) - -- (p2L51=2i=1 4 1)
copies of Speck.

For (1), we denote by slT the image of T in S; (V°, KP°) (k) in the first factor.

Then a point (Ao, Ao, 15 A, &, 17; A%, 2, 7% A}, 35, n{"; B, 1) € B, (8)
1

belongs to BI. (S) if and only if H, contains im(qu'*l)*,,oco Qi Os. Thus, (1)
follows from Theorem 5.5.3(2).
For (2), it follows from Theorem 5.7.7(2) and the isomorphism

(ﬂs_"l/?—_{s’Z) Ipers) = (Hye1/Hse2) Py = Opr (D).

5.8 Incidence maps on the ground stratum

In this subsection, we define and study the incidence maps on ground stratum.
We assume N > 2. In order to have a uniformization map for S; Ve, =), we
also choose data as in Construction 5.4.6.

Definition 5.8.1 We denote

e T§ , the Hecke algebra Z[Kp\U (V) (F;")/K};

e T}, the Hecke algebra Z[K3\U (V) (F;")/K};

o T%, € ZIK;\U(V°)(F,")/K;] the characteristic function of K3K}; and
o T, € ZIKP\U(V)(F,)/K}] the characteristic function of KFK;.

Moreover, we define the intertwining Hecke operator to be
o .__ moe [1e] o
IN”p -o— TN’p o TN’p E TN’p
where the composition is taken as composition of cosets.
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Remark 5.8.2 We remind the readers that according to our convention, the
unit elements of Z[Ky\U(V°)(F,")/Ky] and Z[K$\U(V°)(F,")/K3] are T
and ]lK;, respectively. However, when N is odd, Kg and K; have different

volumes under a common Haar measure on U(VO)(FP+); in other words, the
convolution products on the two Hecke algebras are not induced by the same
Haar measure on U(VO)(FP+).

Let L be a p-coprime coefficient ring. By Constructions 5.3.6 and 5.4.6, we
have canonical isomorphisms

LISh(V®, =K%)] >~ H}(S;(V°, =), L),
L[Sh(V®, =K?%)] ~ H3 (S} (V°, =), L),

in Fun(&(V°)”, Mod(L[K\U(V°)(F,)/KS]) and in  Fun(&(V®)?,
Mod(L[Kg\U(V")(F,j’)/K;])), induced by v° (5.4) and v°® (5.9), respectively.

Construction 5.8.3 Recall from Definition5.6.3 theclass& € H%(Eg Ve, =),
L(1)), which is the first Chern class of the tautological quotient line bun-
dle on Eg (V°,=). Putr := L%J > 1. We construct three pairs of maps in
Fun(A(V°)?, Mod(L)) as follows:

inc{ : L[Sh(V°®, =K$)] — HY(S;(V°, =), L) LN HY (B (V°, =), L)

N-r—1 _
= BBV, =), LN — = 1))

S NI MO Ve, =), LV — = 1),
inc}: HY (Mp(V°, =), L(r)) L HY (B;(V°, =), L(r))

U%-N—r—l . — o
——— HZV T VBVE, =) LN — 1)

25 HYSS(Ve, =), L) S LISh(V®, =K3)];
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inc/: L[Sh(V®, =K3)] = HY(S3(V°, =), L) LN HY (B (V°, =), L)

N—-r-2 _
L HENTTIB(VR, =), LN — 1 —2))
L HEN T M Ve, =), LN — - —2))

m%o*

= HY TP (MG(VO, =), LN = = 2))
= BN M (Ve =), LV = — 1),
inct: HY (MIS(V°, =), L(r) "> HY M} (V°, =), L(r)
T . ‘I p ) 3 KI' p k) ’
m;i'o

— H"V(VG(Ve, =), L+ 1)

lo*

S HV BV, =), Lo+ )
U D@V, ), LN — 1)

L HYEVE, =), L) > LISh(V°, =K3)1:
incf: L[Sh(V®, =K$)] — HY(S3(V°, =), L) AN HY (B} (V°, =), L)

i

S HEM UMy (Ve =), LN = r = 1)),

*

inc}: HY (Mp(V°, =), L(r)) = HY (B3 (V°, =), L(r))

iR HY(Sp(V°, =), L) > L[Sh(V°, =K3)].

Note that the construction of the second pair only makes sense when N > 3;

and when N = 2, we regard inc;f and inc’ as zero maps. In fact, the two maps

in each pair are essentially Poincaré dual to each other.

Definition 5.8.4 Suppose that N = 2r 4 1 is odd with » > 1. We define the
incidence map (on the ground stratum) to be the map

inc: L[Sh(V®, =K3)] @ L[Sh(V°, =K?)]
— L[Sh(V°, =K$)] @ L[Sh(V®, =K?)]

in Fun(R(V®)”, Mod(L)) given by the matrix

<inc¢ o inc:f inc? o inc,')

inc} o inc/ inc} o incy
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if we write elements in the column form.

Remark 5.8.5 The construction of the incidence map can be encoded in the
following diagram

L[Sh(V°, —K;)] L[Sh(V°, —K;)]
g2 (MI (Ve, =), L(r — 1)) HO (E' (Ve,=), L)
T p(V7 =), g (Bp (V5. =),

HY (M3 (V°, =), L(r))

HZ (M, (V°. =), L(r)) HZ (By,(V°, =), L(r)
L[Sh(V°, —K;’,)] L[Sh(V°, —K;,)]

in Fun(&(V°)?, Mod(L)).

Proposition 5.8.6 Suppose that N = 2r + 1 is odd with r > 1. Then the
incidence map inc is given by the matrix

( (p+ 17215, )
Tﬁp T&p
where

Thp = & sy Thys

in which the numbers A3 _ 5,p are introduced in Notation 1.3.1, and the Hecke
operators TY; .. are mtroduced in Notation B.2.1 (as T% N ).

N.p;
Proof Take an object KP° € R(V°)?.
First, we show inci’(< ) in(:!T = —(p + 1)%. Since mTO*OMg(VO’Kpo)(I) has
degree p + 1, it follows from Corollary 5.3.5.
Second, we show inc% o incy = Ty, and i inc} o 1nc,Jr Ty ,- However,

these are consequences of Theorem 5.5.3 and Constructlon 5.5. 5
Finally, we show incj o inc} = TN,p. By Theorem 5.7.7(1), it suffices to

show that for every s7, 55 € Sg(Vo, Kpo)(ﬁp) and every s°® € Hk;1 (7,83
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the intersection multiplicity of B’. and B' at the component BS, equals d?_ ip

This is true by Theorem 5.7. 7(2) Proposmon A.2.4(1), and the excess inter-
section formula.

The proposition is proved. m|

Now we assume that N = 2r is even with r > 2. The readers may
have noticed that the situation is different from Definition 5.8.4 since now
M; (V°, =) has dimension 2r — 1 while B; (Ve°, =) still has dimension r. Thus
to obtain a similar diagram as in Remark 5.8.5, we have to insert a map

©: HY *(Mp(V°, =), L(r — 1)) —> HY (M3(V°, =), L(r))

to obtain a diagram like

LISh(V°, =K3)] LISh(Ve, =Kl
HZ (M, (V°, =), L — 2) He B, (V7. ). 1)

HZ2(M3, (V°, =), L(r — 1))

HZ (M}, (V°, =), L(r))

HY (M, (V°, =), L(r)) HZ (B}, (V°. =), L(r)
L[Sh(V®, =K})] L[Sh(V®, =K3)].

Definition 5.8.7 For every line bundle £ on M; (ve, —),19 we denote
Op: HY 2(M3(V®, =), L(r — 1)) > HF (M3(V°, =), L(r))

the map by taking cup product with c¢((L), and define the L-incidence map
(on the ground stratum) to be the map

inc: L[Sh(V®, =K$)] @ LI[Sh(V°®, =K?)]

19°A line bundle £ on M; (V°,=) is a collection of a line bundle L£(KP”°) on every
Mg (Ve, KP?), compatible with respect to pullbacks.

@ Springer



On the Beilinson—Bloch—Kato conjecture 229

— L[Sh(V°, =K5)1 @D LISh(V°, =K3)]

in Fun(R(V°)?, Mod(L)) given by the matrix

3

inc? 0®ro inc,T incir‘ 0 ®, oinc?
. . . . ’
inc} o ®, oing, inc) o O oincy

if we write elements in the column form.

We now compute ® ¢ for two natural choices of £, namely, (’)(M; Ve, =)
and Lie ATS -

Proposition 5.8.8 Suppose that N = 2r is even withr > 2. Let L be a p-
coprime coefficient ring. For L = (9(M;TJ (V°, =)), the incidence map inc is
given by

9’

< P+ —(p+ l)T?V',p)
—(p+ DTV, RN

where

r—1

. 1—(—p) 8- .
Ripi= 2 —— (D +3) DT
=0

in which the Hecke operators T, pio are introduced in Notation B.2.1 (as
TY.5)-

Proof Take an object K € R(V)P.

First, we show inci o © o inc!T = (p+1)3. Since mTO*(’)Mg (Vo,K,,o)(l) has
degree p + 1, it follows from Corollary 5.3.5.

Second, we show inci o O o inc = —(p + l)Tj’\;,p and inc o O, o

inc;r = —(p + DT} - However, these are consequences of Corollary 5.3.5,
Theorem 5.5.3, and Construction 5.5.5.

It remains to compute inc} o ©, o incy. By Theorem 5.7.7(1), it suffices to
show that for every s7, s5 € S;(VO, Kpo)(ﬁp) and every s°® € Hk;1 (57,55,

the intersection multiplicity of B', and B, at the component B, equals
N 1 S2 s

1= (=p)~

P DE 3P D,
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By Theorem 5.7.8 and the excess intersection formula, such intersection mul-
tiplicity equals

Z / Cr—j—1 ((G*Hﬁ) Q0p(y ) O]P’(V/ﬁ)(l)> :
S PO ’
tlessn(F[J)

A simple exercise shows that

/ Cr_i_q <(G*H *) ®o OIP’ v )(1)) — ﬂ
PO 1R TR p+1
for every it e Sj,. (Fp). Thus, the claim follows from Theorem 5.7.8. ]

Proposition 5.8.9 Suppose that N = 2r is even withr > 2. Let L be a p-
coprime coefficient ring. For L = Lie 4 ¢, the incidence map inc. is given

by
(p + 1)2 Too
T.O’ T. ’ ’

where

Th.p = Zdrap TN p:o

in which the numbers A3 _ 5.p are introduced in Notation 1.3.1, and the Hecke
operators TY, s @re mtroduced in Notation B.2.1 (as TN s)

Proof Take an object K”° € K(V°)P. By Theorem 5.3.4, we have an isomor-
phism

** Lie_A,-[oco =~ mTO*OMg(Vovao)(l) (519)

of line bundles on Mg (V°, KP°).
First, we show inc; 0B, o inc!T =—(p+ 1)2. This is a consequence of
(5.19), Corollary 5.3.5 and the fact that mT°*(’)MO (Ve.KPo) (1) has degree p+1.

Second, we show i 1ncJr 0 Ogoincy = Ty, and i inci o®r o 1nc, = T’°
These are consequences of (5.19) and Corollary 5.3. 5 Theorem 5.5.3, and
Construction 5.5.5.
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It remains to compute incjo® coincy. By Theorem 5.7.7 and the excess inter-
section formula, it suffices to show that for every s7,s3 € Sp(V®, KPO)(FP)
and every s°® € Hk;1 (s7,55), we have

/DL.(%.’{ . Cro1 ((o*ﬂs-z) ®Opie(s (. 1,0 (ﬂj.l/ﬂs.Q))

ce1 ((¢e)x Liearg) =dr_; ,, (5.20)

where (He1, Hye2) is the universal objectover DL® (”_f/so, {, }s»). However, by
Theorem 5.4.4(5), we have (£ &)« Lie g, rg = H;l/Hsoz. Thus, (5.20) follows
from Proposition A.2.4(2). The proposition is proved. m|

5.9 Weight spectral sequence

In this subsection, we study the weight spectral sequence associated to
M, (V°, =). Our goal is to express certain important terms of the weight spec-
tral sequence in terms of Sh(V?, —Kg) and Sh(V°, —Kg). We keep the setup

in Sect. 5.8. In particular, N is an integer at least 2 with r := L%J > 1, and

L is a p-coprime coefficient ring. To ease notation, we put X}"V = X; (Ve,=)
for meaningful pairs (X, ?) € {M, M, B, S} x {, o, e, {}.

Construction 5.9.1 By Theorem 5.2.5(1), we have the weight spectral
sequence (E/*?, df"?), with terms in the category L[Gal(FF,, /Fg’)], abutting

to the cohomology H§+q My, RWL(r)). In particular, we have
0,2d N 1O SV L]
E)* = H My, L(r) @D HEY My, L(r)).
Thus, the six maps in Construction 5.8.3 give rise to another six maps

Inc{: L[Sh(V®, =K9)] — EP? V"D (v —2r — 1),
Inc/ : L[Sh(V°, =K2)] — E VPV —2r — 1),
Incf: L[Sh(V®, =K})] — E{?V V(v —2r — 1),
Inct: B — L[Sh(V°, =K1,
Inct: B — L[Sh(V°, =K1,
Inci: EP" — L[Sh(V°, =K})],

in FUn(K(V°)?, Mod(L)).
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In the future, we will have to study the composite maps

Inc
Inc (Incf Inc!T Inc?) ,
Inc

Inc

i
=
o

@ H—+%O % @ X—+%O0 %

o d1—1,2r o d(l),zr—z(_l) ° <1an Inc!T Inc,')
Inc

when N is odd and even, respectively. In the next two lemmas, we will study the
spectral sequence and prove two formulae related to the above maps, according
to the parity of N.

Lemma 5.9.2 Suppose that N = 2r + 1 is odd withr > 1.
(1) The first page of EP*? is as follows:

q=>2r+2
2r—1 At R p— 241 7o T p—
g=2r+1 HY 7'My, L(r — 1)) —— HY "' (MY, L) @ HY 7' (MY, L) —— HY T (M}, L(r)
. ahr - o 02 .
q=2r HY2(My, L(r — 1)) ———> HZ (M3, L(r) ® HZ (M}, L(r)) ———> HZ (M}, L(r)
—1,2r—1 0.2r—1

o BE3GT L — 1y) 2 2r—1 o 2r—1 e 4 21 ot
q=2r 23 (Ml, Lr — 1)) —— HY 7' (M3, L(r) @ HY ™' (M3, L(r)) —— HZ ™' M}, L(r)
q<2r—2

ED? p=-1 p=0 p=1

with dl_l’i = (m,°, —m,T'), d(l)’i = (m")* — (m"®)* for everyi € Z; and
EP? =0if|p| > L

(2) We have
Inc} 1 0 0
Inc (Incf Inc, Inc!’) =|0=(p+1)? TN
Inc} 0 TI.\?,p T?v,p

(3) We have (T3¢, o Inct + (p + 1)?Inc}) o a7 =o.

Proof Part (1) is immediate. Part (2) is a consequence of Proposition 5.8.6.
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For (3), note that under the composite isomorphism
~ _ ox . r—1 _
i LISh(V°, =K3)] = HY (. L) 2o HY(BY, L) —— HY 2By, L(r — 1)
° _ Fox — _
L HE MG, L — 1) 25 HE2(M, Lir — 1) = E; 1Y,

the map dl_l’zr oi: L[Sh(V°, =K9)] — E(l)’zr coincides with (p + 1)Inc; —
Inc!T. Thus, (3) follows by (2) as we have

1 0 0 p+1
(03, (p+12) [0+ 12750, | | =1 | =0.
0 T;}’yp T?v,p 0
The lemma is proved. O

For N even, we first recall that there is an (increasing) monodromy filtration
F RW L (r)of RWL(r).Such filtration induces a filtration F, H’g My, RWL(r))

of H%(MN,RWL(r)), and a corresponding filtration F.HI(IQ?;,H"T(MN,
RWL(r))) of the quotient module H! (ge. HE My, RUL(r))).

Lemma 5.9.3 Suppose that N = 2r is even withr > 1.
(1) The first page of EP*? is as follows:

q=2r+1

q=2r HZ2(M},. L(r — 1) e, HZ (MS,, L(r)) & HZ (MY, L(r)) e, HZ (M}, L(r)
g=2r—1 0 HY (MY, L(r) 0
qg=2r-2 HZ M}, LG — 1) L HZ2(M$,, L(r)) @ HX (M}, L(r)) d(‘)*; HZ2(M},, L))
q<2r—3

EP? p=—1 p=0 p=1

with d; = (m]°, —m/®), &' = (m°)* — (m'*)* for every i € Z; and
EV? =0if|p| > 1.
(2) The spectral sequence EY*? degenerates at the second page.
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(3) In the (three-step) filtration F.H%r_l(MN, RWYL(r)), we have canonical
isomorphisms

F_{HZ ~'(My, RWL(r)) = Ey* % = cokerd"> 2,
FoHZ ~'(My, RUL(r)) 021 L —.
e ~ E)Y ! = HY UMY, L)),
F_{HZ ~'(My, RWL(r))
HZ'My, RUL(r
12 (1 A (r) ~ B = kerd M,
FoHY ™' (My, RWL(r))

in FUN(&(V°)?, Mod(L[Gal(F,/F)])).
(4) The monodromy map on H%r _I(MN, RWL(r)) is trivial on
FOH‘Z{ “Y(My, RUL(r)) and is given by the composite map

E; " 5 EyY % < HY 7'My, RWL(r))

in view of (3), where w is the map induced from the identity map on
HY “2(M, L(r — 1)).
(5) We have a canonical isomorphism

1,2r—2
F_1H'(gg. HY ™' (My, RUL())) = ( ;_1 2r> (-1
7257

in Fun(&(vV°)?, MOd(L[Gal(Fp/Ff;)])); and the map dl_l’zr induces an
isomorphism

1,2r—2 . —1,2r
E, imd; >
(2—) (1) ~ 1
7

E2—1,2r im(d1—1,2r od(l),Zr—Z(_l))

in FUN(&(V°)?, Mod(L[Gal(F,/F)])).
(6) If p* — 1 is invertible in L, then we have a canonical short exact sequence

0—s F,]H'(IW.H?I’"(MN, RWL(r)) —— HY,, (@F, HY ™' My, RVL())) — HY ' My, L(- — 1))GIE/ED

in Fun(R(V°)?, Mod(L)).
(7) The composite map

Inc
Inc

o d1—1,2r o d(l),zr—z(_l) o <Inc§’ Inc!T Inc!'>
Inc

® ¥—+ %O %
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coincides with

p+1l  (p+1)? —T, p+10-T3,
(p+1> @+ —-(p+DTY, ], 0 0 0
_Tﬁ,p —(p+ 1)T;\;,p R;V,p _T;\;},P 0 R;\’,P

when N > 4 and when N = 2, respectively.
(8) The image of the map

(T3 o Inc? + (p + DInck) o d " 0 d)> (1) o (Inc} + Inc; + Inc}):
LISh(V°, =K})]1®2 € LISh(V°®, =K$)] — L[Sh(V°®, =K})]

is exactly ((p + 1)R7\7,p — Ty\}”p o Tj’vip)L[Sh(Vo, —K;)], where R;V,p is
introduced in Proposition 5.8.8.

Proof For (1), note that by Lemma 5.6.2(1), both H (M}, L) and HL. (M5, L)
vanish for i odd. Thus, (1) follows.

Parts (2—4) follow directly from the description of Ef 1 and [66, Corol-
lary 2.8(2)] for the description of the monodromy map (which does not require
the scheme to be proper over the base). Part (5) follows from (1-4).

For (6), by Lemma 5.6.2(3), we know that the action of Gal(Fp /IF?,’)
on Ei’zr_z(—l) is trivial. As p? — 1 is invertible in L, we further have

E;l,Zr(_l)Gal(Fp/Ff,’) —0and
H'(Gal(F,/F}), F-1H'(Ige. HY ' My, RUL(1)))) = 0.
In particular, we have the isomorphism
HL,, (QF, HY ™! (My, RWL (1)) ~ H' (g, HY ! My, RUL @) S/ ~ FoH! (g, HY ™! My, RUL() /D)

and that (6) follows from the induced long exact sequence.

For (7), when N > 4 (thatis, r > 2), it follows from Theorem 5.3.4(2) and
Proposition 5.8.8; when N = 2, it follows from a direct computation.

For (8), we have the identity

Inc
(T]’\}”p 0p+1)|Inc
Inc

=(00(p+ DRy, — TV, °TX )

o dl_l’zr o d(l)’zr_z(—l) o <Inc!c> Inc? Inc!'>

® ¥ — %0 %

by (7), which implies (8). |
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Construction 5.9.4 We construct
(1) when N = 2r + 1 is odd, the map

v EYY - LISh(V$, K3)]

to be the restriction of the map Tﬁ,p o Inci’(‘ + (p + 1)%Inck: E?’Z'

L[Sh(VS,,K$%)] to ker d(l)’zr , which factors through Eg,zr by
Lemma 5.9.2(3), composed with the map Tj’\,"p: L[Sh(V},K})] —
L[Sh(V}, K1

(2) when N = 2r is even, the map

v0: kerd?® — L[Sh(VS, K$)]

to be the restriction of the map T}/, o Incg + (p + Dlncg: E(l)’zr —

L[Sh(V%,, K})] in Lemma 5.9.3(8) to ker d(l)’zr, composed with the map
T p: LISh(VY, K3)] — LISh(VY, KR)1.
Remark 5.9.5 By the descriptions of the Galois actions in Construction 5.3.6
and Construction 5.4.6, the map V! factors through the quotient map Eg’zr —

0,2r
(E; )Gal(?p /F®)

To temporarily end the discussion on weight spectral sequences, we record
the following easy lemma, which will be used later.

Lemma 5.9.6 Suppose that N > 3. The following diagram

(Incg,Inct, Incy)

E)? LISh(V°, =K9)1®2 @ L[Sh(V°, =K})]
d?’zrl (p+1,-1,0)
Ep? L[Sh(V®, =K2)]

is commutative, where the lower horizontal arrow is the composite map

fo
N m NAC (\/O
HZ (M} (V°, =), L(r)) — H3 VM2 (Ve, =), L(r + 1)
(0%

S HTY @BV, ). L+ 1)

N—r—2 _ ‘o _
NI (ve, =), LN — 1) s HLSI(VE, =), L)
— L[Sh(V°, =K5)],

which is an isomorphism.
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0,2r __
dl

Proof The commutativity of the diagram follows from the formula
(m™®)* — (m"®)*, and the fact that Mg (V°, =) is a hypersurface in My (V°, =)
of degree p 4+ 1 by Theorem 5.3.4 and Lemma A.1.4(1). By Lemma 5.6.2 and
the Poincaré duality theorem, the lower horizontal arrow is an isomorphism.

O

5.10 Functoriality under special morphisms

In this subsection, we study the behavior of various moduli schemes under the
special morphisms, which is closely related to the Rankin—Selberg motives for
GL, x GL,,4. We start from the datum (V;, {A,‘;’q}q“,) as in the beginning of
Sect. 5.2, but with V; of rank n > 2. (See Remark 5.10.15 below for the case
n = 1.) We then have the induced datum

n+l’ {An+1 q}qlp) = (Vs {(A; q)ﬁ}qlp)

of rank n + 1 by Definition 3.1.7. For N € {n,n + 1}, we let K} be the

stabilizer of A%, N.q° and put K%, ]_[ K% 4 Recall the category ﬁ(VO)Sp
and functors =, = from Deﬁn1t10n 3. 1 11 To unify notation, we put —, :=
=y and =41 := =—. Similar to the case of smooth moduli schemes considered

in Sect. 4.5, there are five stages of functoriality we will consider.
The first stage concerns Shimura varieties.

Notation 5.10.1 We choose an indefinite uniformization datum
(Vs 3 A, q}alp) for V7 as in Definition 5.2.6. PutV, . = (Vs Jnt1 =
(3n)g, and An+1 g = (An q)ﬁ Then (Vn+1’ Jn+1, {Athl q}UIIP) is an indefi-
nite uniformization datum for V¢, .. For N € {n,n + 1}, we let KE\, . be the

n—l—l
/ /
stabilizer of Ay . and put Ky, N = =] |q|p K

We obtain a morphism
shy: Sh(V},, 3,=4K}, ,) = Sh(V}, 1, Ins1=n+1K 11 )

in Fun(&(V9)%,, Schyp).
For the second stage of functoriality, we have a morphism

my: My(VS, =) = Mp(Va, |, =) (5.21)

in Fun(ﬁi(V")fp X T, SCh/Z;P)/Tp sending an object (Ag, Ao, ng; A, A, nP) e
M, (Vg, K7°)(S) to the object (Ag, ko, n); A X Ag, A X Ao, nP @ (ida,)s) €
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M, (V). Kfl’il)(S). It is clear that my restricts to three morphisms

my . ME(VZ’ _n) - Mg(V;Cf)H-lv _n+1),
P MYV, =) = MI(VEL 1 =ns),s (5.22)

m%: M;(V;, - — M;(VZ_H, =n+1)-

—> O

m

S

Moreover, we have the following commutative diagram

(5.2)

. U
Mg(VZ_H, —n+1) Sh(V;_H, ]n-i-l_n—i-lK,/H_l’p) X Spec F Tp

m?T Tsh%xid
M (Ve, — 62 Sh(V., 3u =K/ T
p(Vn9 I’Z) ( n’ In=n n’p) XSpeCF p
(5.23)

in Fun(&(V;)$ x T, Schyge) .-

At the third stage of functoriality, we study the basic correspondence dia-
gram (5.10) for N = n, n 4+ 1 under the special morphisms. We will complete
a commutative diagram in Fun(ﬁ(V;)fp x ¥, Sch /IF?) /T, as follows
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(5.24)

SEVE, 1 =)

Tl

BE(VE, 1 =nit)

Sp(VE. 1 =ns1)

My

M (VS =)

st
b3
. i . o
ml<“. “sp w1<m. —sp
5
S3(Vi =sp =~ s
b
By (Vs =)
s b
u

m]

My (Vs, =)

MS(VE, =)

m{

Sp(V3. =)

B3(VE. =)

M3 (V. =)

pringer

A's
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in which the bottom (resp. top) layer is the basic correspondence diagram
(5.10) for My (Vy, =n) (resp. Mp(V, 1, =n+1))-
First, we consider the basic correspondences on the balloon strata, that is,
the back layer of the diagram (5.24).
We define s S°(V - — S°(V
an object

nils —n+1) tO be the morphism sending

(Ao, Ao, g5 A%, 2%, 1P°) € Sy (V5 Ki°)(S)
to the object
(Ao, A0, 105 A° X Ag, A° X X0, n7° @ (idag)«) € Sp(Voiy, KPL ().
Remark 5.10.2 The canonical inclusions
Vo — VvV, {Apqg = A,

n+1° n+1, q}qlp

induce a morphism
in Fun(ﬁ(V;)fp, Set). It is clear that the following diagram
S22, = D) L Sh(VE, | =iKSsy ) X Ty(F))

5? (Fp) T Tsh?~ XidTp (ﬁp)

Se(Ve. =) ([F)) Sh(Vy, =K; ) x Tp(F)p)

. p _ . .
in Fun(&(V;)sp, Set) JT,(Fp) commutes, where vy 41 and v, are uniformiza-
tion maps in Construction 5.3.6.

We define b$ : B(V5, =1) — By (V;,
an object

n+1> —n-+1) tobe the morphism sending

(Ao, ko, nds A, k0P A% 1°,nP%; B) € Bo(Vi, KP°)(S)
to the object

(Ao, ko, b A x Ag, A x ho, nP @ (idag)s;
A® X Ag, 1% x A0, nP° @ (idag)s; B x iday) € By(V; 1y, K22 ().
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Second, we consider the basic correspondences on the ground strata, that
is, the front layer of the diagram (5.24).

Definition 5.10.3 We define a functor

S3(Vi Dspt RVL, x T — PSchy
KP° > Sp(Vp, K"

such that for every S € SCh/IFq,, S’ (V5 KP9)sp(S) is the set of equivalence
classes of decuples (Ag, Ao, 170, A®,A®, nPe; A‘ A‘ ryu ®. 8°), where
e (Ao, Lo, ’70’ A, A0, nl") is an element in S3(Vy, Ki°)(S);
o (Ao, Ao, ) A2 A8, r] ®) is an element in S'(Vn+1, K??)(S); and
e 5°: A® x Ap —> A' is an OFf-linear quasi-p-isogeny (Definition 3.4.5)
such that
(a) ker 8°[p°°] is contained in (A® x Ag)[p];
(b) we have A* x wip = §*" o A? 0 8°; and

(c) the Kn+1—0rbit0fmaps V> 8so(nP*@®(id4,)s) (v) forv € V§®QA°°”’
coincides with né’ ‘.

The equivalence relation and the action of morphisms in ﬁ(V;)fp x T are
defined similarly as in Definition 4.3.3.

We clearly have the forgetful morphism

in Fun(ﬁ(Vo)p x %, PSCh’F¢), which is represented by finite and étale

schemes. By definition, we have the two forgetful morphisms
Si: S;(V}?p _)sp - S;(VZ, =), S$5 S;(V )sp - S.(Vn.Hy ~n+1)
in Fun(R(V)%, x T, Sch JF2)/Ty-
Lemma 5.10.4 We have the following properties concerning si.
(1) When n is even, Sl is an isomorphism, and the morphism
s{os] S’(V =n) = Sg(Vi1s =nt1)
is given by the assignment

(Ao, 2o, nfs A% A%, nP*)
> (Ao, Ao, 0y A® X Ag, A° x @A, n7® x (idag)s)-
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(2) When n is odd, si is finite étale of degree p + 1.

Proof The proofis very similar to Lemma 4.5.2, which we leave to the readers.
O

Definition 5.10.5 We define B; (V. =)sp to be the fiber product indicated in
the following Cartesian diagram

S; (pr _)Sp B; (V,c;, _)sp

u

in Fun(R&(V9)L x T, Sch/]F?;)/Tp. We define

b% : B;(V )qp — B; (V;/H_l» I’L+1)
to be the morphism sending an object

((Ao, hos nds A, A, Py A% 2%, nP% ),
(Ao, o, mh: A® A%, nP®  ASL A, "u 18%) € BR(V;, KP)g(S)

to (Ao, 1o, 0 s A x Ag, & X Ao, nP @ (idag)s; A2, A, "u *18% o (y x iday)),

whichis anobject of B}, (V Kp | +(S)bya s1m11ar argument of Lemma4.5.4.

n+1’

We have the following result.

Proposition 5.10.6 When n is odd, the square

B.(Vn+] ’ n+1) M.(Vn+], n+1)
b;T Tm;
YAV t'.’Obl Yavs)
Bp (Vn’ _)sp Mp (Vn» _n)

extracted from the diagram (5.24) is Cartesian.

Proof The proof is very similar to Proposition 4.5.5, which we leave to the
readers. O

Third, we consider the basic correspondences on the link strata, that is, the
middle (vertical) layer of the diagram (5.24).
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Definition 5.10.7 We define S; (V},, =)sp to be the fiber product indicated in
the following Cartesian diagram

ST.

SH(Vs. =) S5(Vs. =)sp

-{‘ L]
3| ;
e

Sn ° o
Sp(VE, =) ——"——=S8(VS, =)

in Fun(ﬁ(V;’)fp x T, SCh/F?)/Tp. By Lemma 5.10.4, we know that SI is an
isomorphism (resp. finite étale of degree p + 1) when n is even (resp. odd).
We define 51 : S;(V —)sp —> S! p(V 1> —n+1) to be the morphism sending
an object

n+l1>

((Ao, 2o, nps A%, A%, P A 05, nP%; ),
(Ao, ko, 1 A A%, 175 AS, 35, 1" 6%)) € Sy(Vy, KP)ip(S)

to the object

(Ao, 2o, m{3 A° x Ag, A° X Ao, nP° @ (idag)s; A2, A, 77J ;8% 0 (Y xiday))
€ SHVe 1 KPS ().

Lemma 5.10.8 We have

(1) When n is even, the square

'{'.
Snt1
n+1° n+l)H‘S.(Vn+1» ~n+1)

TSIT s%
SI;

S; (VZ, _)sp S; (Vyol? _)sp

Sp(Ve

extracted from (5.24) is a Cartesian diagram.
(2) When n is odd, the square

'{'o

SI(VE, 1 =t ) = SEVE, L =)
%‘T’ TS%
SZOT
SV, =) SHVS, =)sp

extracted from (5.24) is a Cartesian diagram.
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Proof Let Sg (V. =)sp be the actual fiber product in both cases. Take
an object KP° € ﬁ(V;)fp. We have to show that the natural morphism
st Sg(V;‘l, KP®)gp — SE(V;’,, K??)gp is an isomorphism. Since st is a mor-
phism of étale schemes over Ff,’, it suffices to show that s* (k) is an isomorphism
for every perfect field ¥ containing IF?,’. ‘

For (1), by Lemma 5.10.4(1), an object in S%(Vz, KP?)sp(S) is given by a
pair of objects:

(Ao, Ao, nhs A% A%, nP%5 A® x Ag, A* x @ Ao, nP* x (idag)s)
€S (V° Kpo)sp(/()

(Ao, X0, i AS, AL, r)D % A® X Ag, A* X @ Ao, nP* x (iday)«; ¥y)
€ SHVe 1 K ) (K).

Let A° be the cokernel of the kernel of the composite map A7 ﬂ A®* x Ay —
A®,and: A° — A°®theinduced map. Let A° be the unique quasi-polarization
of A° satisfying @ - A° = ¥¥ o A® o ¢ Since )\E’ is p-principal and we have

@A = V" o (A* X @ - Ag) o Y3, the composite map A7 L A® x Ag — Ag
splits. Thus, the natural map AE’ — A° X Ag is an isomorphism. Then A° is
p-principal, and we obtain an object

(Ao, o, s A% 2%, 0P A, A%, nP*; ¥ € SHVE, KLY ()
= S} (Ve, KP)gp(k),

where 1?° is chosen such that Definition 5.5.1(c) is satisfied. In other words, we
obtain a morphism from Sﬁ (V5. KP9)gp (k) to S; (V5 KP9)gp (). It is straight-
forward to check that it is an inverse to the morphism ¥ (k).

For (2), an object in S£ (V. KP?)gp (k) is given by a pair of objects:

(Ao, Ao, 12 A% 1°,nP°) € Sp(Vy . Ki*) (i),
(AOv )"0 770’ A X A07 )" X )“0’ 77p X (ldA())*a . 57 rlu ’ Wu)
€ SHVe 1 K ) (K).

vlv
Let A® be the cokernel of the kernel of the composite map AEV —5 A%V x

Ay — A°Y,and V: A°Y — A®Y the induced map. Taking dual, we obtain
amap ¥ : A° — A® and an induced map §°: A®* x Ag — A7. Let A* be the
unique quasi-polarization of A® satisfying @ - A° = ¥ o A® o . Since Af is
p-principal and we have A®* x @ - 19 = §*Y o AE 048°, we know that ker A®*[ p®°]
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is contained in A®[p] of rank p?, and we obtain an object
((Ao, 2o, n{s A, 20, 0P A% A%, 0P ),
(A()a )\'01 ng; A‘v }\'.7 np.; AEv )\'Ea nf.; 5’)) € S;(VZ’ Kpo)Sp(K)7

where 1”* is chosen such that Definition 5.5.1(c) is satisfied. In other words, we
obtain a morphism from S;j (V5, KP9)gp(x) to S; (V5 KP9)gp (k). It is straight-
forward to check that it is an inverse to the morphism st (x). |

Definition 5.10.9 We define Bg (V},, =)sp to be the fiber product indicated in
the following Cartesian diagram

.
Ty
BJ(VS, —)sp . I\

T T
b¢l ls¢

.
Ty o
B (VS, =) Sp(VS, =)

in Fun(&(V9)%, x T, Sch /F®) /Ty
By the universal property of Cartesian diagrams, we obtain a unique mor-
phism
bie: Bi(VE. =) — BL(VE, =)

rendering the front lower-left cube of (5.24) commute. Finally, an easy diagram
chasing indicates that we have a unique morphism

bl BY(Ve. =)sp = Bi(Vip. =t1)
rendering the entire diagram (5.24) commute. Thus, we obtain our desired
diagram (5.24).

Remark 5.10.10 By Proposition 5.10.6 and Theorem 5.5.3(1), one can show
that when # is odd, the square

¥
tht1

By (V2,1 =nt1) M] (Ve |, =ns1)
b;T Tm;
fob!

T yo % Toyo
Bp (Vyp _)Sp Mp (Vn’ _n)

extracted from the diagram (5.24) is Cartesian.

@ Springer



246 Y. Liu et al.

Remark 5.10.11 By Lemma 5.10.4(1), Definitions 5.10.5, 5.10.7, and 5.10.9,
the four downward arrows in the diagram (5.24) are isomorphisms when 7 is
even.

At the fourth stage of functoriality, we compare the special morphisms
for basic correspondences and for Deligne-Lusztig varieties. Take a point
st e Sg (V;,, KP?)gp (k) for a perfect field « containing F;‘,’. Put

s; = si(sT), sZH = SJ%(ST);

o

Sp 1= S:zo(s;)’ Syl = Sj:rl(srlrl);
s*i=slph, spi=siteh, st =it 6.
Denote by BZ, BT.I., B
s Sp St

under JTSTP, n,f , n; L1 T,

T [¢] [e] [ ] L] L] 3 T
g Bs;;’ B, ., Bg., BS., and BS. their preimages
1 n+l1 n n+1

sp?
Proposition 5.10.12 Let the notation be as above. The following diagram

T n+1°

7y, and 7 respectively.

[e]
’ nn+17

o n+1
B, B(%s..)
b'O
n+1
\ . CJTH \
B, P(%: )
Snt1 B “n+l
bl.
b \":‘ \
)
%
B, ”“ DL:.
“n+1 Snt1
bl
4
%
Bf P(¥5s)
h be L See
b:;ook 1 g‘fobl \ s®1
T Sn
Bs'l' P(”VS}:)
h £oobt \
. n °
B®. DL:,

in Sch, commutes, where

e {and {5 are the isomorphisms in Theorem 5.3.4;

o {hand s  are the isomorphisms in Theorem 5.4.4(4);
on “n+

° g“TT and ¢ TT are the isomorphisms in Theorem 5.5.3(2);
Sn Snt1
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° IP’(”//ST) — IP’(”//S;;) and ]P’(“//s+ ) — P(7/s°+l) are closed embeddings in
n n+1 n

Remark 5.5.4(1);
oIP’("f/) — DL = DL*(7.{ }s)and]P’(”I/ ) — DL'

DL* (7/ 520 {, } ) are closed embeddings in Remark 5.5.4(2);

° IP’(”//S;;) — P(7; 500 ) is the morphism induced by the obvious k -linear (sur-
Jective) map 7/S§+1 — Vo,

® 8se4 is the morphism in Construction A.2.3 with respect to the map
Oge - 7/s,;,n — ”I/s’:ﬂ induced by §°: A®* x Ay — AE; and

° IP)(“//SE) — IP’(”//SI ) is the restriction of 8ge4, in view of Remark 5.5.4(2).

In particular, b; : Be — BS. is an isomorphism when n is even.

n+1

Proof The proof is very similar to Proposition 4.5.6, which we leave to the
readers. The last assertion follows as b‘ : Bfe — B'. is always an isomor-
phism, and d;+4 is an isomorphism When n is even. |

Atthe final stage of functoriality, we relate the special morphisms for sources
of basic correspondences to Shimura sets under the uniformization maps v°
(5.4), v® (5.9), and v (5.11). Recall that we have data Vo, {Afl,q}qlp) and

(Vn+1’ {AZ+1,q}q\p)-

Notation 5.10.13 We choose a lattice chain A}, S A}, C p‘lszp of
V;, ®F Fy and a lattice chain An+1 p S A,‘ZH,p C p_lAZH’p ofVZJrl ®F Fp
satlsfylng the requirements in Construction 5.4.6 for N = n, n + 1, for which
we assume that (Ay p)ﬁ C AnJrl p S C p_l(A p)n holds. We now introduce
various open compact subgroups at p.

e For N € {n,n + 1}, we have K}, » from Construction 5.3.6, K%, » from

Construction 5.4. 6 and KT = K% ﬂ K% from Construction 5.5.5.
e PutKg , :=K7, (as a subgroup of K3 p)and Kg, ) := K§

SPP
a1, q#pK
o PutkK, , := Kspp nK;.,

n+1 p
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For later use, we also introduce natural maps

shS @ Sh(Vg, =K2 ) = Sh(VE . =n+1K3ep ).
sh%: Sh(VS, —=,K$, ) — Sh(Vn+1, n+1Kn+1 )

sh?: Sh(Vy, —nK' ») = Sh(Vy, = Kg ),
sh'IT': Sh(Vy, =K, ,) — Sh(Vn+1’ n+1Kn+1 »)
shi = Sh(Vg, =, ,”,) — Sh(Vy, =K ).
sh‘° Sh(Vy. =K} ) = Sh(Vy, =K ),

sh’®: Sh(ve, — KT ) = Sh(Vy, =K} ),
shi%: Sh(Vy, ). —n+1K,1'+1 ) = Sh(Vo, | = Ky ),
Shz:i-l Sh(vn—H’ ”+1Kn+1 p) - Sh(vn+1’ ﬂ+1Kn+l p)

shis: Sh(Vy, =K, ,) = Sh(V;, =K$, ).

in Fun(ﬁ(Vo)fp, Set). Note that sh? has already appeared in Remark 5.10.2.

Similar to Construction 4.4.2, we may construct two uniformization maps

vyt SV, =)p(Fp) = Sh(VE, =K, ) x Ty(F,), (5.25)
vl SH(Vs. P @Fp) — Sh(Vy, =K, ) x Tp(Fp) (5.26)

in Fun(ﬁ(V;’l)é’p x T, Set) JT, ) which are isomorphisms. We leave the
details to the readers.
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Proposition 5.10.14 The following diagram

3
» =0
= 53
S i
| - |
é‘ Kl t
b 3
Kl
I <
- 5=
Zl= 2|7
£ -
=
:I .;.
il <
G S o Gle
1%}
=2
3
Kl
i
~ 2
X X
E
5
Kl
2 B|s 2|1
g g
=z =
S 55
J J
z 2z
o _ Fas
x X x
g - -
= =
Z2 Z2
= 3
J J
= Fel
g z £ B
X ’5 ; 2‘
5 S X z
&l =
< *

in Fun(ﬁ(v,‘;)g’p x T, Set) /T, F ) commutes (in which all uniformization maps
are isomorphisms). Moreover, the induced actions of Gal(Fp / Fg)) on all terms

on the right-hand side factor through the projection to the factor Ty (Fp).

Proof This follows from Constructions 5.3.6, 5.4.6, and 5.5.5. O
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Remark 5.10.15 When n = 1, we have the diagram (5.24) in which all terms
not in the top or back layers are empty. Propositions 5.10.12 and 5.10.14 can
be modified in the obvious way.

5.11 First geometric reciprocity law

In this subsection, we state and prove a theorem we call first geometric reci-
procity law, which can be regarded a geometric template for the first explicit
reciprocity law studied in Sect. 7.2 once we plug in the automorphic input.

We maintain the setup in Sect. 5.10. However, we allow — = (=, —,11)
to be an object of R(V;)? x K(V;_ ), rather than ﬁ(V;’)fp. Denote by ng
and n the unique even and odd numbers in {n, n + 1}, respectively. Write
ng = 2rg and ny = 2r; 4 1 for unique integers ro, r; > 1. In particular, we
have n = ro + r1. Let L be a p-coprime coefficient ring.

To ease notation, we put X;';a = X; (Vy,» —n,) for meaningful triples
X,?2,a0) e {M,M,B, S} x{,n,0,e, T} x {0, 1}.

Notation 5.11.1 We introduce following objects.

(1) PutP :=M,, XT, M,,.
(2) For (%, 1) € {o, e, T}% put Pt := M;% x1, M1, which is a closed
subscheme of P.20

(3) Let 0: Q — P be the blow-up along the subscheme P°°, which is a
morphism in FUn(&(V;)? x &(V, )7 x T, SCh/Z?)/TP.

n
(4) For (29, 1) € {o, o, 1}2, let Q70”1 be the strict transform of P?:”1 under

o, wh?ict)l is a closed subscheme of Q.

(5) Lety,”,': P’0-”t — P”"I be the closed embedding if P01 is contained

%,

in P%"1, and 5:50’3/11 . Q% — Q%" the closed embedding if Q71 is
contained in Q%*?/l .

Suppose that — is taken in the subcategory R(V;’Z)fp.

(6) LetPx bethe graphofmy: M,, — M, 41 (5.21)over Ty in Fun(ﬁ(VZ)fp X
T, SCh/Z?;)/Tp, as a closed subscheme of P.

(7) For ? = e, o, let P’ be the graph of m%: M} — M’ (5.22) over Ty in
Fun(ﬁ(V;)fp x T, SCh/Fg)/Tp, as a closed subscheme of P*”.

(8) Let Qa be the strict transform of P under o, which is a closed subscheme

of Q.

20 Recall from Notation 3.3.6(5) that P is P ® 0 Fi.
)4
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Lemma 5.11.2 The two specialization maps

HE ,(Q®z, Q). L) > HE (Q RYL),
Hz(Q®z, Qp. L) — Hz(Q.RVL),

are both isomorphisms.

Proof When Q is proper, this is simply the proper base change. When Q is
not proper, this again follows from [43, Corollary 5.20]. O

Lemma 5.11.3 The scheme Q (valued at any object of R(V;)é’p ) is strictly
semistable over Zg) of relative dimension 2n — 1. Moreover, we have
(1) The reduction graph of Q is as follows

®,0 QT,O 0,0
Q* Q>

Qc,omQ’{‘,‘{'

Q.’+

Q" o Q>

so that

Q(O) — Qo,o ]_[ Qo,. ]_[ Q.,. ]_[ Qo,o’

Q(l) — Qo,”r L[ QT,- L[ Qo,T L[ QT,o L[ QT,T,
Q? =@ nQ"H[J@>*nQ"H,

Q9 =g, forc>3.

Here, Q) denotes the disjoint union of the strata of Q of codimension c.
(2) For the morphism o, we have that
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e the induced morphismo : Q71 — P07\ js an isomorphism if 2 #71;
e the induced morphism o : Q’0"t — P01 is the blow-up along P™T if
(20, 71) € {(0, 0), (o, )};
e the induced morphism o : QT’Jr — PYT s a trivial P'-bundle;
e the induced morphisms o : Q*° N Q" = P ando: Qo*NQH" —
P"T are both isomorphisms.
(3) The natural map

o Hy (P, 0,) - Hz@Q™™, 0;)

is injective, and moreover an isomorphism if 79 #7y.
(4) For (70, 71) € {(o, 0), (e, @)}, the map

5,55 )10 0™ HE2(P™T, 04(=1)) - HE @™, 03)
is injective; and we have
HL Q™" 0,) = o "HE®™ ™, 0,) P 6], o HE 2P, 01(=1)).

(5) Ifwedenotebyj € H%(QT’T, 0;,.(1)) the cycle class of an arbitrary T-orbit
of sections of the trivial P'-fibration: Q" — P"7, then the map

(fU) o o*: HE (P, 0,(~1)) — HL(@Q"T, 05)
is injective; and we have
HL@Q"', 0,) = o*HL(P™', 0,) @ fUo*HE 2 (@™, 0,(-1)).

Proof Parts (1,2) follow from a standard computation of blow-up. Parts (3-5)
follow from (2). a

Let (iE‘f 1 dl"7) be the weight spectral sequence abutting to the cohomology
Hf;Lq (Q, R¥ 0;.(n)),?! whose first page is as follows:

21 Strictly speaking, the differential maps d?*¢ depend on the choice of the ordering of (types
of) irreducible components of Q, which we choose to be the clockwise order Q%° < Q°® <

Qo,o < Q.’O.
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(5.27)

< < < <
n I I < v
& © S © Il ©
2 & S ¥ n ¥
| | | 3 +
w N - z
oo = T
R g AL
1 o 1
< Ql < Ql
1l = = =
| ) S )
8 S S S
s 8 s
| | I
] ) ]
<. <, =
L 8 £
oy B
= = =
i % 5%
1 o o
~ Ql 2 Ql
I 'C ‘: 'C
| ) S )
L S S S
s 8 s
| | I
< % €
s E I
= = o]
L WE 3
i v I “y
= P a3 =
Qo Q< a 3
= I ST
I B El D= . S
=) - S N S >
() = Q = =
= T = s 32
) g <
s s =
© 5 B
l L l i l E
4';-!':8 j‘; oo}
g g &
5 L I
> El =l 2
- ® 2 2
B B g
3 L3 -
o
T =
i % )
L L oE
~ 3l 2l <
I o © -z
" o S 2
% B g

with EP? = 0if |p| > 2.

Construction 5.11.4 Fora =0, 1, let &, € H%(Ega, L(1)) be the first Chern
class of the tautological quotient line bundle on EZ . We construct four new

pairs of maps in FUN(R(Vy)” x &(V; )7, MOd(LOS) as follows:
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incy": L [Sh(VnO, Ky, 1@ LISh(Vy = Ko, )]

(S”O’ L) ®LH (SnI»L) (Sno XT n1’L)
(jT"O i )* 0 RO
0 HY(BS, o, BY,. L)
U%_r() 1 Srl 1 2 ) =
(Z(n )(Bno X nl’ L(n—2))
(g Xty )v 2 2
0 LM, xp, My, L(n = 2))
(id xm,°)*
1 2(n 2)(Mn0 XTp ﬂl’ L(n—2))
. o
(1d><m,11)v 2(n D(M L(n B 1))
? nl’

H"™ 1>(P°° L(n — 1))
inc? . : H%”(P"‘ L(n)) = HY' (M}, X, M . L(n))

(idxm,ll)* n
HY' (M, xp, MY, L(n)

(idxm,1),
B —

HY P2 (M3, x5, My, L(n + 1))

*
(tzo ><L,°11)

HY 2By, x73, By, L(n+ 1)

U U r = 1
V% HY'™ Z(Bno xT L(2n — 1))

nl’

o o
(15 X708 )1

Hy(Sp, x7, Sp,» L) = Hy(S;. L) ®L Hy (55, L)

LISh(Vy,. =n, n0p>l®LL[Sh(Vn.» n Ky )l
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inc{"®: L[Sh(Vy,. = K3, )] ®L LISh(Vy, . = K}, p)]
— Hg<s;;0, L)®. HY(S;, . L) = HY(S;, x5, Sp,. L)

*
(71’10 Xnnl )

HY(B;, x5 By . L)
St 71
2 1

o HY"0™ )(B”0 xr, By L(ro — 1)
(tpe Xt 1

0 1 2(n 1)(M nl’ L(n _ 1))

) — H2(n 1)(PO,. L(n _ 1))
inc? ,: H%”(P“ L(n)) = H2"(Mn0 X, M . L(n))

(W Xtn )"

HY' (B, x7, B}, L(n))

ug0! _
s "™ 1+r‘)(Bn0 xg, By, Lo — 1 411))

(g XTI

—— Hy(S;, x1, Sp» L) = Hy(S;, L) ® Hy (S}, L)
LISh(Vys =no Koy, p)1 ®1 LISK(Vy, s = K5, )
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inc;"": LISh(VE,, = Ks )1®L LISh(Vy , = Ky, ,,)]

— HY(S;,. L) ® HX(S;,. L) = HY (S}, x7

no’

L)

n1’

(nl‘l Xn}‘l )* —.
~—— HI(B;, x1 B; . L)
ug1 ™!

HY' 7*(B], <7, By, L(ri = 1)

np’
(idxt, N -2 =
— H{'7°(By, xg, M, L(ri — 1))
(dxm;5)* o —
— H{'°(B}, prM L(ri— 1)

ni’

( "0 anl)'

"V, xq, My, L(n = 1)

n1’
H"~ 1>(P“ L(n—1)),
inc} ; : H%”(P" L(n)) = HY' (M}, x5, M}, , L(n))

HE;(E;O xT nl, L(n))

HY 2By, x3, My, L(n + 1))

(X )" s =
—> HF"7° (B}, x5, By, L(n + 1))

Ust‘lfl
—— H Ot 1>(Bn0 xx, By, L(ro +n1 — 1))

(X7

"0—>H0<§; X7 L) =HXS:, ,L)® HYS; , L)

I’l]’

®r LISh(V,,, = K, I

nps ni,p

no’ ny’

LISh(VS,, = K3, ,,)]
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incy: [Sh(VnO, K3 )1 ®1 LISh(V, |, =, K3, )]
(SnO,L) ®. HY(S;,. L) = HY(S], T, Sp.. L)
g >T)* o =
_rorr Hz (B}, X7, nl’ L)
(e Xt )v
0 2(11 1)(Mn0 XT n]’ L(l’l _ 1))
2(n 1)(Po * L(n—1)),
inct ,: H%”(P' *. L(n) = HZ”(MnO M; . L(n))
(n, xep )*
> HY' (B, x5, By, L(n)
(n,joxn') 0 <o B 0 0
-2 N H T(Sp, ¥7, Sp,» L) = Hg(Sp,. L) ®1 H(Sp, . L)
L[Sh(Vy . =Ky, ,,)] ®r LISh(V; . = K5, )]

In fact, the two maps in each pair are Poincaré dual to each other.

Theorem 5.11.5 (First geometric reciprocity law) Take an object KP° €
ﬁ(Vo)sp For the class cl(P}) € Hz” (P**, L(n)), we have

(1) For f € LISh(Vy,, KigKp )1 ®L LISh(Vy, , KiTKy )], the identity
T ;
[ aenuingion = Y @i, ehe. i)
’ seSh(Vg KKs, p)
holds.
(2) For f € LISh(Vy,, KigKp )1 ®L LISh(Vy,  KiTKs )], the identity
T
[ aenuing (= Y @, eh i)
’ seSh(Vy KI°Ks, )
holds.
(3) For f € LISh(Vy,, Kio Ky )1 ®1 LISh(Vy , Ky Ky, )], the identity

T
/ cl(Py) U (mc, T(T,'lg p @I )+ (p+ 1)? inc)” (T,',;’ p ® Tt pf))

= > (T ®Thy pf)s,sh3(s)

seSh(Vg, K1 Kg )

holds.
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Here, fg,. denotes the T-trace map in Definition 3.5.8; and sh3, sh%, and shi
are maps in Notation 5.10.13.

The intersection number in (3) is the actual one that is responsible for the
first explicit reciprocity law which will be discussed in Sect. 7.2.

Proof We first show (3) assuming (1) and (2). By (1), (2), and Lemma B.4.4,
we have for f € L[Sh(V;,, KigKs )1 ®r LISh(V;,, KiTKy )],

no’ no,p

T
[ e o (in @z, @ 55, £+ (4 1Pin @l @78, )

= Y (T, ® (T, 0I5, ) f)hS(s), shi(s)

seSh(Vg Ki°Kg, ,)
°0 2me ° °
- > (e, ®(p+ DT, 0T ) F)(shS (), shi(s))
seSh(Vg, KI°Ks, ,)
= > (T, ® (T, 0Ty ) f)(sh](s), shi(s))
seSh(Vg KI°Kg, ,)
+ Y (T, ® (T 0Ty — The Lo Th ) )(shY(s), sh}(s))
seSh(Vg Ki°Kg, ,)
= D (T ® (T 0 Th ) )(sh](s), sh3(s))
seSh(Vg KI°Ks, ,)

which, by Lemma 5.11.6 below, equals

> (Tpyp ® Toy p (s, sh3(s)).

seSh(Vg, Ky Kg )

Thus, (3) is proved.
Now we consider (1) and (2) simultaneously. Similar to the maps incy and

inc,Jr in Construction 5.8.3, we have maps

incy: LISh(VE, . KAeKS )] — Hae ™ VM? | L(rg + o — 1),
incl,: LISh(V],  KAeKS )] — Ha e D(M? | L(rg + o — 1)),

for o = 0, 1. Note that we now take Hg .. for the target of the maps rather than
Hsz. Moreover, in the calculation below, we will frequently use the following
formula for intersection number pairings: for a finite morphismi: X — Y of
smooth schemes over an algebraically closed field, and proper smooth sub-
schemes X’ of X and Y’ of Y, we have

(Xn, X' x Y xsy = (X0, X' x Y xriy = (ix X', Y')y
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where X 5 and X', denote by the graphs of i and i | X', respectively. The proof
for (1) and (2) differs by the parity of n.

We first consider the case where n = ng is even. By Lemma 5.10.4(1)
and Proposition 5.10.14, shl is an isomorphism. Take a point s; €

Sh(V, Ky °K?. »)- Let s° be the unique element in Sh(Vy, K? OKS‘p’ ,) such

ﬂ.lé'lt sy = shl (s*), and put 52 4= sh; (s*). By (the last assertion in) Propo-
sition 5.10.12, we have

m%linc(’)(ls’;) = inc{(ls;+1 ).

For (1), we have for every s/, | € Sh(V¢, |, K2 K?

ni1 Ko ”H’p) the identity

T T
/ cl(Py) U inc;’T(l(sr.“s;H)) = / <m$!inc(')(lsr7)> U incI(lsr/lH)
pee Mo
* i
= f inc(')(ls,',H) UinC1(1s;+1)-
M
Thus, (1) follows from Proposition 5.8.6. For (2), we have for every s, 41 €
Sh(Vy,, Ky7 K, ) the identity
T T
/ cl(P) U inc!'"(l(sr.l’séﬂ)) = / (m%linca(ls;l)> U incI(lS;H)
pe.¢ M::+1

T
:f inch(1s_ ) Uinej(ly ).
My

Thus, (2) follows from Proposition 5.8.6.

We then consider the case where n = n; is odd. Take a point s, 41 €
Sh(VZH, K}filK;Jer). By Propositions 5.10.6, 5.10.12, and 5.10.14, we
have

m%*inca(ls;H) = inc{(shl!shf Lss. -
For (1), we have for every s, € Sh(V?, K7 OKZ’ p) the identity
T

T
/ cl(Py) Uine! (1 (se | ) = /

ok: @ T
oo o (mT mCO(lS;H)) Uinc (1y)

T
. . ° ° [ 23 1 T
= /M. incy(shf,shi" L ) Uinc(Iy).

n
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Thus, (1) follows from Proposition 5.8.6. For (2), we have for every s, €
Sh(Vy, Ki°Kp ) the identity

T

T
/ cl(Py) U ian.’.(l(s;H,s;l)) = /

(133 ° . °
- - (mT mCO(lS;H)) Uinci(ly)

T
. . ° ° [ 13 1 b4
= /M. incy(shf,shi" L ) Uinci(ly).

n

Thus, (1) follows from Proposition 5.8.6.
The theorem is proved. O

Lemma 5.11.6 For every

f € LISh(Vy,, Kig K3 )1 ®r LISh(Vy  KITKy )],

no’ no,p np’ ni,p

we have

Do (@ shY(s), sh3(s) = Do (The (s, sh3(s)).

seSh(Vy.KI°Kg, ) seSh(Vg. KI°Ks )

Proof There are two cases.
When # is even, by Lemma 5.10.8(1) and Proposition 5.10.14, we have

> (T, )(shY(s), shi(s))

seSh(Vg, K7 KS, )

= > fGhi*h]()). shi% (shl(s))

seSh(Ve, KK, )

= > fGhi*h(s), sh3(shi*(sh] (),

seSh(VS, KK, )
which, by Lemma 5.10.4(1), Definition 5.10.7, and Proposition 5.10.14, equals
> f(shi®(s). sh3 (shf*(5))) = > (Tpe » £)(s. sh3 ().

seSh(Ve,KLKS ) seSh(Ve.K°Kg )
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When 7 is odd, by Definition 5.10.7 and Proposition 5.10.14, we have

Z Ty, o) (sh] (s), sh(s))

seSh(Vg, K7 KS, 1,)

— > f(shT"(sh (5)). sh} (shiz(s)))

seSh(Ve,KL°KY, )

= Y fGhi°h] (), shi%, (sh] (),

seSh(Ve,KL°K, )

which, by Lemma 5.10.8(2) and Proposition 5.10.14, equals

> (T, (s sh(s)).

seSh(Vg, K7 Kg )

The lemma is proved. O

Construction 5.11.7 We constructs maps
Incj ; H%”@“’) L(n) — HY'@Q>*, L(n)) = HF'(P>*, L(n))

L[Sh(V ®r L[Sh(V, , =, K> )],

no’ no p)] nl’ ni,p

Inc},: HZ"(G((’) L(n) — H%”(Q"", L(n)) % HY'(P>*, L(n))

o,e

_> L[Sh(V; )] QL L[Sh(an, KE ],

niy,p
Inc} ,: HZ”(Q(O) L(n)) — HZ"(Q“ L(n)) 3 HZ(P**, L(n))

ng> ”0 p

L[Sh(V =K, )]®LL[Sh(Vn1,— K> )1,

no’ no,p ni,p

Inc} ,: HY' QY. L(n)) — HY'(Q**, L(n)) 2 HZ (P, L(n))

H *

—% LISh(V;, =K}, )] ®1 LISh(Vy |, = K3 )],

Define the map

V:HY' QY. L(n)) — LISh(V;,. =K}, )] ®L LISh(V;, . = K}, )]

to be the sum of the following four maps
(Iflo,p X I;)ll,p) o Il’lCz ¥ (p + 1) (Iﬂo P X Tn1 P) o Inci.,
*

(p+ D(Tpo p ® Izl,p) olncy:, (p+ 13 (T, p ® T p) o Incg .
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At last, we recall the construction of potential map from [47, §2.2]. For
r € Z, put

B (Q. L) := ker (35‘: HY Q©, L(r)) — HX QW L(r))>
and

B,(Q, L) := coker <31, L H2O D @QW, Ln —r —2))
— B2 D QO Ln - r - 1))) .
Here, in our case,
85 = (8D — (D + LD — @Iy + @rhr = 6D+ ©6l)*
L NI RE S CIO RE 0
81 = (D — B+ G5 — G5+ Gy — @D+ 610
— 5O+ 65D = 65D

We define B" (Q, L) and By,_,_ 1(Q, L) to be the kernel and the cokernel
of the tautological map

Br(Qv L) - B2n7r71 (Q» L)’
respectively. By [47, Lemma 2.4], the composite map

Q)

HZ V@O, L(r — 1)) % HE D QY. Lir — 1)) 25 HY @, L)

factors through a unique map
Byy-r(Q, L)o — B"(Q. L)’
in Fun(&(V;)? x &V, )?, Mod(L[Gal(Fp/}Ff;)])). Put

Gal(F,/F$)

Cr(Q. L) =B, Q, L), . CQL) = B"Q L)y, poy

Then we obtain the potential map

A" C—r(Q, L) - C"(Q, L) (5.28)
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in Fun(R(Vy)? x &(V,_)?, Mod(L)). 22 We will be most interested in the
case where r = n.

Remark 5.11.8 By the descriptions of the Galois actions in Constructions 5.3.6
and 5.4.6, the map V in Construction 5.11.7 factors through the quotient map

HY QY. L) - HE Q™. L0))ga g, re).
hence restricts to a map

V: C"(Q, L) — L[Sh(V;, =Ky )1 ®L LISh(Vy,, = K}, )]

in FUn(R(V)? x R(VS, |
thgn (Q(O)» L(”))Gal(]}?p/[ﬁ?;)'

)?, Mod(L)), via the canonical map C"(Q, L) —

6 Tate classes and arithmetic level-raising

In this section, we study two important arithmetic properties of semistable

moduli schemes introduced in Sect. 5. The first is the existence of Tate cycles

when the rank is odd, studied in Sect. 6.2. The second is the arithmetic level-

raising when the rank is even, studied in Sects. 6.3 and 6.4. In Sect. 6.1, we

collect some preliminaries on automorphic representations and their motives.
Let N > 2 be an integer with r := L%J.

6.1 Preliminaries on automorphic representations

In this subsection, we consider

e arelevant representation I1 of GLy (Ar) (Definition 1.1.3),
e a strong coefficient field £ C C of IT (Definition 3.2.5),

e a finite set Z;;m of nonarchimedean places of F* containing EIJ{ (Nota-

tion 3.1.4),
e a (possibly empty) finite set Efrr of nonarchimedean places of F that are
inert in F,?* strongly disjoint from Z;in (Definition 1.3.2),

e a finite set ¥ of nonarchimedean places of Ft containing E;m U Z+

We then have, by Construction 3.1.10, the homomorphism

¢n2 TIE\:;L — OE.

22 In [47], C"(Q, L) and C,(Q, L) are denoted by A" (Q, L)? and A, (Q, L), respectively.
23 Here, the subscript “Ir” standards for “level-raising”.
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For every prime A of E, we have a continuous homomorphism
e I'r — GLy(Ey)

from Proposition 3.2.4(2) and Definition 3.2.5, such that ,019[’ , and ,OIYL , (1=N)
are conjugate.
We choose

e aprime A of E, whose underlying rational prime ¢ satisfies E;m N Z+ =0
and £ 1 ||v]|(Jlv]|*> = 1) for every v € £:F

e a positive integer m,

e astandard definite hermitian space V%, of rank N over F, together with a

. siuzt ust

self-dual ]_[v¢2+ Uzt us Op,-lattice AS, in V§, @ Ap> "™ sat-
isfying that (V%) is not split for v € E+ when N is even,

e an object K}, € R(VY) of the form

Ir>

Ky= [ ®Kux [ UG,
vez Uzt vgSLUnt unh

satisfying that when N is even, (K3%), is a transferable open compact
subgroup of U(VY,) (F;, ) (Definition D.2.1)%* forv € Z;m and is a special
maximal subgroup of U(V$)(F, ) forv e Elr ,
e aspecial inert prime (Definition 3.3.4) p of F* (with the underlying rational
prime p) satisfying
(P1) = does not contain p-adic places;
(P2) ¢ does not divide p(p2 —1);
(P3) there exists a CM type ® containing 7 as in the initial setup of
Sect. 5 satisfying Qg) =Q,
(P4) if N is even, then Py (1) mod A" is level-raising special at p
(Definition 3.1.5); if N is odd, then Poy(r1,) mod X is Tate generic at
p (Definition 3.1.5);
(P5) Py (r1,) mod A is intertwining generic at p (Definition 3.1.5);
(P6) if N is even, the natural map

(Oe/AMISh(Viy. Kl (Oe/A™)ISh(Vy. Ky)]

DIRU)ops k
Ty " Nkergn er fr

is an isomorphism;
(Sowe canand will apply the setup in Sect. 5 to the datum (V§,, {Af, q Halp)-)

24 By Lemma D.2.2(3), every sufficiently small (K3%;)y is transferable. So the readers may
ignore this technical requirement.
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e remaining data in Sect. 5.1 with Qg’ =Q,2;

e data as in Construction 5.4.6, which in particular give the open compact
subgroup K*; and

e an ipdeﬁnite uniformization datum (V'y, j v, {ALL ~Jalp) for V§, as in Def-
inition 5.2.6.

Put KK,O = (K})? and K}, := KK,O X K]’,. As in Sect. 5.9, we put X}’V =
X;(Vo ,KJIZ,O) for meaningful pairs (X,?) € {M,M, B, S} x { ,n,0, e, {}.
Let (Ef_’q , d?"?) be the weight spectral sequence abutting to the cohomology
HE™ My, RV 0, (r)) from Sect. 5.9.

Remark 6.1.1 By Construction 3.1.10 and (P2) (namely, £ # p), we know
that Po(r1y) is a polynomial with coefficients in O;.

Remark 6.1.2 Note that when N = 2, (P2) and (P4) together imply (P5).

. ) L tuxt
Notation 6.1.3 We introduce the following ideals of T,

»tuxt
mi=Ty * Nker ("ﬂ‘fv+ M 0p — OE/A>,

n:= Tf,mz; N ker (']1‘1%,+ ﬂ O — OE/Am) .
We then introduce the following assumptions.
Assumption 6.1.4 We have H-(My, R¥ 0) = 0 fori # N — 1, and that
Hg_l My, R¥ O;)y is a finite free O;-module.
Remark 6.1.5 Assumption 6.1.4 holds, for example, when the composite

homomorphism "]1‘%;r ﬂ O — Og/A is cohomologically generic (Defi-

nition D.1.1). This follows from Lemma 5.2.7 and the universal coefficient
theorem.

Assumption 6.1.6 The Galois representation oy, is residually absolutely
irreducible.

Remark 6.1.7 Under Assumption 6.1.6, we obtain a homomorphism

pr,: I'r — GLy (03 /1)
from the residual homomorphism of pry ;, which is unique to conjugation,
absolutely irreducible, and (1 — N)-polarizable (Definition 2.5.3). Applying
Construction 2.5.4, we obtain an extension

P+ Dp+e — 9N (05 /0)

of pr1a-
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We now fix an isomorphism ¢, : C ~ Q, that induces the prime A of E, till
the end of this section.

Definition 6.1.8 We say that a standard pair (V, ) (Definition 3.2.7) with
dimp V = N is I[1-congruent (outside £ U 2;) if for every nonarchimedean

place v of F* notin X1t U E;; U EZ, 7T, is unramified; and the two homomor-

phisms t¢¢BC(r,)) and ty@erm,) from Ty , to Qp, which in fact take values
in Zg, coincide in [Fy.

Lemma 6.1.9 The two maps

TX o OE[Sh(VY, K§)lm = O£[Sh(VY, K3)]m
TN p: Oe[Sh(Vy, K{)Im — Op[Sh(VY, K{)lm

are both isomorphisms, where TR, and T3 pare introduced in Definition 5.8.1.

Proof By Proposition B.4.3(1) (resp. Proposition B.3.5(1)) when N is odd
(resp. even) and (P5), we know that the endomorphism I%, = T% Np© TV Np of
Og[Sh(VY, K§)Im is an 1somorphlsm Thus, it sufﬁces to show that the free
0;-modules OE[Sh(VO , K{)Im and Og[Sh(V},, K},)]n have the same rank.

We show that Og[Sh(V$,, K)Im ®0, Q¢ and Og[Sh(V$, K¥)1m ®0, Q¢
have the same dimension. We have

OE[Sh(VY, K3 Tm ®0, Q¢ =~ @m(n) X

OE[Sh(V§y, K3)In ®0, Qr ~ @m(n) T

where 7 runs over all irreducible adm1s51ble representations of U(V,)(Af+)
with coefficients in Qg such that (VS,, ¢, ¢ n) is a [1-congruent standard pair
(Definition 6.1.8); and m (7r) denotes the automorphic multiplicity of 7.2 It

suffices to show that if in the second direct sum nf #* {0} which has to

be of dimension one since KY; is special maximal, then np #£ {0} as well.
Moreover, the Satake parameter a of 7, does not contain the pair {—1, —1}
(resp. {—p, — p_l}) when N is even (resp. odd) by (P5). Let 7'[;, be the unique

constituent of the principal series of & such that (né)K;/ # {0}, then by Propo-
sition B.4.3(1) (resp. Proposition B.3.5(1)) when N is odd (resp. even) again,
we see that (Jr,;)KI.V # {0}. Thus, we must have 7, = 75; as KY% is special
maximal. The lemma follows. |

25 Although we know that m(r) = 1 by Proposition C.3.1(2), we do not need this fact here.
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Lemma 6.1.10 Let (V,7) be a Il-congruent standard pair. If Assump-
tion 6.1.6 holds, then BC(1r), which exists by Proposition 3.2.8, is a relevant
representation of GLy(AFr) (Definition 1.1.3); and moreover, ppc(x),., is
residually irreducible.

Proof Let ppc(n),,: I'r — GLN(QE) be the associated Galois represen-
tation (Remark 3.2.9). Since 7 is I1-congruent, by the Chebotarev density
theorem, ppc(r),,, admits a lattice whose residual representation is isomor-
phic to o1, ®o, /x Fy, which is irreducible. If BC(r) is not cuspidal, then
PBC(n),i, 18 decomposable, which is a contradiction. Thus, BC(7r) is cuspidal.
Together with [72, Theorem 1.1(iii,iv)], we obtain that BC(77) is relevant. The
lemma follows. O

Lemma 6.1.11 Assume Assumption 6.1.6. Then the natural maps

(Sh(Vly. INKYK), \) 5. On)m — HE (Sh(Viy, INKEK), )7, O,
HE (MY, 05)m — HE (MY, O3)m.

etc

are both isomorphisms for every i € Z.

Proof By Lemma 5.2.7, and the description of the weight spectral sequence
(EF9,dP7) in Lemmas 5.9.2 (for N odd) and 5.9.3 (for N even), it suffices
to show that the natural map

(Sh(Vly, INKLK), 3\ 7. O0)m — HL (Sh(Vy, 38KEK) V)5, Op)m
(6.1)

CtC

is an isomorphism for every i € Z. This is trivial when Sh(V’,, NKK,OKP )
is proper.

If Sh(V'y, nKE OK/ _v) is not proper, then the Witt index of V) is 1. In
this case, the Shlmura variety Sh(V'y, J NKp OK’ _v) has a unique toroidal

compactification [2], which we denote by Sh(V/ ,J NKp K; ~)» since the
choice of the relevant combinatorial data is unique (see also [44] for more
details in the case where N = 3); it is smooth over F. As j NKK,OK; N
is neat, the boundary Z := Sh(Vy, INKL'K/ )\ Sh(V}y, S8KK) 1) is
geometrically isomorphic to a disjoint union of abelian varieties (of dimension
— 2). In particular, H' (ZF, 01) is a free O,-module (of finite rank). Let
1'% be an irreducible adm1331ble representation of U(V )(A ’, ) that appears

in Hét(Z 7 01 ® 07! C. Then 7'*° extends to an automorphic representa-
(4

tion 7’ of U(V?V)(A F+) that is a subquotient of the parabolic induction of a
cuspidal automorphic representation of L(A g+) where L is the unique proper
Levi subgroup of U(V’) up to conjugation. In particular, BC(r") exists and
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is not cuspidal. Thus, by (the same argument of) Lemma 6.1.10, we have
Hlét(Zf, O;)m = Oforeveryi € Z. This implies that (6.1) is an isomorphism.
0

6.2 Tate classes in the odd rank case

In this section, we assume that N = 2r 4 1 is odd with r > 1. We study the
properties of the localized spectral sequence EZf, after Lemma 5.9.2.

Lemma 6.2.1 We have
HE(MY, 0))m =0
for every odd integer i.

Proof For i # 2r — 1, it follows from Lemma 5.6.2(1). Now we assume
i=2r—1.

Suppose that 7°” is an irreducible admissible representation of
U(V}’\,)(A%O;p ) that appears in the cohomology H?;fl (MJr , Oo)m ®0)“l[—l C.
By Proposition 5.6.4, we may complete 7 °°- to an automorphic representation
7 of U(V})(Ap+) as in that proposition, such that (V},, 7) is a [1-congruent
standard pair, and that BC(rrp) is a constituent of an unramified principal
series of GLy (Fy), whose Satake parameter contains {—p, — p~ 1} which is
then different from a(Iy) in F, by (P5).

On the other hand, by the Chebotarev density theorem, both pgc(x),, and
o, ®k, Qg each admits a lattice such that their reductions are isomorphic. In
particular, the residual representations of ppc(xr),,, and pn ) ®F, @g have the
same Frobenius eigenvalues at the unique place of F above p. However, this is
not possible by Proposition C.3.1(2) and Proposition 3.2.4(2). Therefore, we
must have H%’ _1(MT , 03)m = 0. The lemma is proved. O

Lemma 6.2.2 Assume Assumption 6.1.4. We have

() EY' =0ifq is odd;

2) Ef\i is a free Oy-module for every (p, q) € 7%;

3) Egnq1 = O unless (p, q) = (0, 2r);

4) Egir is canonically isomorphic to H%’ My, R¥O;.(r))m, which is a free
O;.-module;

%) E?”,%f degenerates at the second page.

Proof Part (1) follows from Lemma 6.2.1 and Assumption 6.1.4. Part (3)
follows since dl_l’zr is injective and d(l)’zr is surjective. The remaining parts
are immediate consequences of (1) and Assumption 6.1.4. O
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Theorem 6.2.3 The map

Vit EYY — 0:[Sh(V},. K3 Im

m

(Construction 5.9.4) is surjective. Moreover, if we assume Assumptions 6.1.4,
6.1.6, and Hypothesis 3.2.10 for N, then we have

(1) The generalized Frobenius eigenvalues of the (OA/A)[Gal(F,,/Isz)]-
module Egg{ ®o0, Oy/A is contained in the set of roots of Py(r1,) mod A in
a finite extension of Oy /.

(2) The 0,[Gal(F,/F ,2)]-module By is weakly semisimple (Definition 2.1.2).

(3) The map VIL induces an isomorphism

1. 0,2 ~ o o
Vot B G, 2y — OlSH(Vi. K3l

2,m

By Remark 5.9.5, the map V& always factors through the quotient map

0,2r 0,2r o
Eyn = By )Gal(]Fp/]sz)'

Proof We first show that V&l is surjective. From Construction 5.9.1, we have
a map

(Inc}, Inc], Incf o T§°) := O4[Sh(Vy, K3)1®* — E)

which induces a map
ker (d(l)’zr o (Incy, Inc!T, Inc} o T;°)> — ker d(l)’zr.

However, by Lemma 5.9.6, the former kernel is simply the kernel of the map

Inc
(p+1-10)|Inc

<Inc§° Inc;( Inc!‘ o Tgo) .
Inc

® ¥— %0 %

Now since (p + 1, —1, 0) and (0, Tg' o T;O, (p+ 1)2T;') ® O, are linearly
independent, by Nakayama’s lemma, Vél is surjective if the following matrix

Inc}
inc; | (Tncp Inc Tncf o 73°)

Tp® o Inc]
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in ’]I‘j’\,’p is nondegenerate modulo m. However, by Lemma 5.9.2(2), the above
matrix equals

1 0 0

2 o
O _(p0+ 1) oe Iiv’p [ Jo) ’
0 IN,p TN,pOTN,pOTN,p

whose non-degeneracy modulo m follows from Lemma B.4.4, Proposi-
tion B.4.3, and (P4,P5).
Now we consider the three remaining assertions. By Lemmas 5.2.7
and 6.2.2, we have an isomorphism
Eyy ~ HZ (Sh(V', INKEK), \) 7. 02(r))m

of Ox[Gal(@p/sz)]—modules. By Lemmas 6.1.10, 6.1.11,
Proposition C.3.1(2), and Hypothesis 3.2.10, we have

HZ (Sh(V', INKEK), \)F. 00.0))m ®0, Qr = @D oy, ™

7[/

of representations of I'r with coefficients in Qp, where d(z') :=

. PO . . .
dim(77/°P)I¥Ky": and the direct sum is taken over all automorphic repre-
sentations 77’ of U(V’)(A +) satisfying:

° (V/ 7') is a TT-congruent standard pair;

e 77/ is a holomorphic discrete series representatlon of UV’ )(F + ) with
the > Harish-Chandra parameter {—r, 1 — —1,r}; and

e 7. is trivial for every archimedean place g ;é 1 o

For the proof of (1-3), we may replace Ej by a finite extension inside Q;
such that ppc(ry,,, is defined over E; for every " appearing in the previ-
ous direct sum. Now we regard ppc(r/),,, as a representation over Ej. Then
PBC(x")., () admits a I p-stable O -lattice Rpc (), unique up to homothety,
whose reduction RBC(N/) is isomorphic to pr ;. (r). Moreover, we have an
inclusion

ESo ~ H2 (Sh(V, 3y KFK), \)7 040 ))m € @(Rw )4
of 0, [Gal(F,, /F pz)]—modules. This already implies (1).
By (P4), we know that pp ; (r) is weakly semisimple and

Gal(Fp/IFPQ)

CliInO)L/)L ﬁlc—:[’)\(r) =1.
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On the other hand, we have

. Gal(F,/F
dimpg, 'OEC(JT/)M(F) alFp/F 2) > 1.

Thus by Lemma 2.1.5, for every 7’ in the previous direct sum, RS

BC(n’ )
weakly semisimple, and

. Gal(F,/F
dimg, pgc(n/)’u(r) al®p/F2) _ .

This implies (2) by Lemma 2.1.4(1).
The above discussion also implies that, for (3), it suffices to show

Zd(n) dimg, 0;[Sh(V$, K3)m ®0, Ea

where 7/ is taken over the same set as in the previous direct sum. However,
this follows from Corollary C.3.3 and Lemma 6.1.9. The theorem is proved. O

6.3 Arithmetic level-raising in the even rank case

In this subsection, we assume that N = 2r is even with r > 1. We study the
properties of the localized spectral sequence Ef‘?,’l‘rql, after Lemma 5.9.3.

Proposition 6.3.1 Assume Assumptions 6.1.4, 6.1.6, and Hypothesis 3.2.10
for N. Then we have

(1) The maps

(Inc§ + Inc, + Inc})m: OA[Sh(V3,. K32 EP 0:[Sh(Vy. K3)Im

02r ( 1)
(10 Tt OLSHVE, Kl D a8 (Vi K Im
N EO 2r— (_1)
from Construction 5.9.1 are isomorphisms when N > 4 and N = 2,
respectively.

(2) The maps
(Inc?, Inc}, Inc})m: By — O4[Sh(V3,. K32 P 0:[Sh(Vy. K})Im
(Inc¥, Inc¥)p: E?’Z’ — O:[Sh(Vy. K3)Im @ 0:[Sh(V3 K3l

,m
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from_Construction 5.9.1 are surjective with kernel the Oy-torsion of
H%’ MYy, O;(r))m when N > 4 and N = 2, respectively.

(3) Themap V3 : kerd{sr — O.[Sh(VSy, K31 (Construction 5.9.4) is sur-
Jective.
(4) The map Vg od; ]11{2}’ induces a map

F_iH'(Ig,,, HY ™' (My, R¥ 0;.(r))m)
— O, [Sh(Vy, K{)Im/((p + I)R?V,p - I?V,p)

which_is surjective, whose kernel is canonically the O,-torsion of
HZ MY, 0,.(r)m.

Proof We only prove the proposition when N > 4, and leave the much easier

case where N = 2 to the readers.
We first claim that the map

(inc/ +inc} o T% Jm: O:[Sh(V}. K3)IS? — HY 2(MYy, 01(r — D)

is an isomorphism. In fact, by Lemma 6.3.2 below, it suffices to find a line
bundle £ as in Definition 5.8.7 such that (inc/)y, is surjective, where

inc. := (incf, TN p © inc})o®r o (inc!T +incy o TY )
in which ©, is defined in Definition 5.8.7. We take £ to be (9(Mj'\,)®2 &

(Lie A,,&)®P+l. Then by Proposition 5.8.8 and Proposition 5.8.9, the endo-
morphism inc, is given the matrix

( (p+1° —(p+ D1y, )
—(p+ DI}, Ta, 0 Ry, + Ry, + (P + DT} ) 0 TH

in ’]T})V,p' Now, by Lemma B.3.6 and Proposition B.3.5, the determinant of the
above matrix mod m is equal to

2 1 2 2 1 1 3 241 2 1 1
—p (a,+ai+2><((p+l)p'||<ai+m—p—p)+(p+l) (=) Y] R

i=1 i=1 j=li=1
i#]

where {«;, ..., ay, ozfl, R a;l} are the roots of Pa(nNyp) mod A 1in a finite
extension of O, /A. By (P2), we have

prz(p + 1)3 (pr2+1 _ pr2,1) i 0 mod )\"
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by (P4), we have

r

1 1
H(ai+——p——)50 mod A,
o;

i=1 p
r r 1 1
ZH o+ ——p——]#0 modA;
j=1i=1 i p
i#]

and by (P5), we have

r

1
]_[(a,-+—+2)¢o mod A.
o

i=1 !

In particular, the matrix representing inc, is nondegenerate modulo m, hence
the claim follows from Nakayama’s lemma.

Part (1) follows immediately from the above claim and Lemma 6.1.9. Part (2)
follows from (1) by the Poincaré duality theorem, together with Lemma 6.1.11.

For (3), by definition, Vg is the restriction to ker d?’i{ of the composition
of

(T, 0 Ty © Inc?, Inct, T3, o Inc)m: Eo — 0;[Sh(V3,. K31

and the obviously surjective map
(1,0, p+1): O4[Sh(V}. K§)IE* — 0:[Sh(V},. K}l

By (2) and Lemma 6.1.9, the map (TE’\;,p o Tﬁ,p o Inc¥, Inc”T‘, Tj’\,ﬁp oInc)m is
surjective. On the other hand, the restriction of d?’zr to H%’ (M2, 0,.(r)) coin-
cides with inck (Construction 5.8.3), after composing with the isomorphism
H%’ (MT , O05(r)) 5 0, [Sh(V%,, K§)] as in the construction of inc; Thus,
by (2), the restriction of d(l)ﬁf to H%’ M2, O;.(r)m is surjective, hence Agl is
surjective.
. 0,2r 0,2r

Now we consider (4). Let (El,m Lm o
Which_is simply the quotient by the O, -torsion (H?I’ (M2, O5,(r)m)ior Of
H%’ (M$%;, O;(r))m. Thus by (2), we obtain an isomorphism

)ir be the free O,-quotient of E

(Inc}, Inc}, IncHm: (EY'o )i = O2[Sh(Vyy. K312 €D OAISh(V3. K3)Im

through which we identify the two sides. If we let (ker d?ﬁf )ir be the free

d0,2r

Oj-quotient of kerd;’ ',

then by Lemma 5.9.6, the above isomorphism maps
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the submodule (ker d?ﬁf )fr to the kernel of the map

(p+1,—1,0): O:[Sh(Vy, KIS @D 0:[Sh(V§y, K})Im
— O3[Sh(VY, K} m-
= ker d?:ﬁf . Combining

By Assumption 6.1.4, we have imdl_’lln’zr

Lemma 5.9.3(5), we see that the map dl_,ln’zr induces a canonical isomorphism
. —1,2r

im dl,m

im(d; > od)y 3 (—1))

F_iH'(Ig,, HY 7' (My, R¥ 03 (1)) =

0,2r
_ ker dl’m

Cim(d, Y o dP T (1)

induced by dl_;;zr. Thus, we have a canonical surjective map

(ker 42y,

1,m

im(d; 7 o d) 2 2 (=1))

F_iH' (g, HY ™' My, R¥ 05.())m) —

whose kernel is

(H¥ (M3, 02("))m)tor
(HZ (M3, 05.(r)m)ior Nim(d] 17 0 d)2 2 (=1))

1,m

By Lemma 6.1.9 and Lemma 5.9.3(7), we see that (ker d?:ﬁ:)ﬁ N ker Vr% is

o . 12r 0202 0.2
contained in the image d| " o d}’;7" " (—1), as modules of (E;";")s. Thus,

by (3), the map V](,)1 induces an isomorphism

(ker d)"2r)g; ~ 0,[Sh(V, K3 Im
im(d; 7 od) 2 (=) im(Vody 7 od)r A(=1)

By Lemma 5.9.3(8), im(V, o dj ;> o d{"’ ~*(~1)) coincides with the sub-
module

(T}’V"p o ((p+ DRy, — TH, 0 TX,) 0 T;Vﬁp> .0,[Sh(Vy, K3) .
Note that, by Lemma B.3.6, we have

T8, 0 (0 + DEY, = T, 0 TR,p) 0 TR, = Ty (0 + DRY, — T3y ).
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Thus, to conclude (4), it remains to show that
(HY (MY, O3(M)mor Nim(dy > 0 dP e 2(=1) =0.  (6.2)

By Lemma 5.2.7, Hypothesis 3.2.10, Lemma_6.1.10, Lemma 6.1.11,_and
Proposition C.3.1(2), we know that the Q¢[I"f]-module H%r_l(MN,

RY O, (r)m®o, Q, is isomorphic to a direct sumof pry ,, () for some relevant
representations I1" of GL y (A r). By Proposition 3.2.4 and [74, Lemma 1.4(3)],
we know that pry ,, (r) is pure of weight —1 at p (Definition 2.4.4). In particu-
lar, we have H! (sz, pmv ., (r)) = 0 by [56, Proposition 4.2.2(1)], hence that
both sides of the inclusion

F_iH'(Ig,,, HY ™' My, R¥ 05.(1))m)
C Hyo (@2, HY ™' (My, RW 0;.(r))m)

sing
are torsion O;-modules. Thus, the Oj-rank of im(d; ; L2r d0 =2 1)) is
equal to the O, -rank of ker dO , which in turn is equal to the sum of Oy-
ranks of O, [Sh(V?} ,K}’V)]m and O;\[Sh(VO »Kz.v)]m However, the source of

themapd; L.2r d0 2r=2(_1), WthhlSEO 2r= /mdl,}nQr 2 isalso a free Oy -

module of’ the same rank Therefore, we must have (6.2). Part (4) is proved.
O

Lemma 6.3.2 Suppose that N > 4. Assume Assumptions 6.1.4, 6.1.6, and
Hypothesis 3.2.10 for N. Then H%r_z(ﬁ’ , O))m is a free Oy-module;
and its rank over O; is at most twice the rank of the (free) Oj;-module
O;[Sh(V, K})Im.

Proof By Assumption 6.1.4, Lemmas 5.9.3(2), and 5.6.2(2), we have an injec-
tive map

HY 2(MY, 03)m <> HY 2(M}, O)m
induced by d?’zr_z. For the target, we have an isomorphism

HY “2(MJ, O1)m == OA[Sh(Vy, K{)lm & HPM (MY, O3

Inparticular, H%’ _Z(MT , O3)m,hence H%r_z(ﬁ' , O))m are free Oy -modules.

Suppose that 7°7 1is an irreducible admissible representation of
U(V})(AR:") that appears in HY > (MY, O)m ®, -1 C. Then, by Propo-
sition 5.6.4, one can complete JTOO P to an automorphlc representation 7 =
TP Q@ Moo ® qup mq such that m is trivial; 7rq is unramified for g ;é P;

@ Springer



276 Y. Liu et al.

and y is a constituent of an unramified principal series. Moreover, (V3,, )
is a [T-congruent standard pair. By Assumption 6.1.6 and Lemma 6.1.10, we
know that BC(7r) is relevant.

To prove the lemma, it suffices to show that for such 7 as above, we have

dimg, HY > (M}, Qo)leew™] < 2dimg, QeISh(V},, Ki)llen™]. (63)
Recall from Proposition 5.6.4 that we have an isomorphism
—lgyprim 37T 7
t, HPE My, Qo)

~Maps | UVREONUNVIDAF)/KE T KR g
alp.a#p
(6.4)

By Proposition C.3.1(2), we have BC(rry) >~ BC(r)y. Let ppc(n),i: ['r —
GLy (@g} be the associated Galois representation. Since (V$,,m) is II-
congruent, by the Chebotarev density theorem, ppc(r),., admits a lattice whose
residual representation is isomorphic to o 3 ®, /x F,, which is irreducible by
Assumption 6.1.6. Thus, by Proposition 3.2.4(2), a(BC(iry)) does not contain
{—1, —1} due to (P5) and contains {p, p‘l} with multiplicity at most one by
(P4). We now have three cases.

Case 1 7y is unramified. Then (6.3) follows by (6.4) and the fact that the
multiplicity of Q2 in 7y, |K?v,p is at most 1 by Proposition C.2.1(2).

Case 2 7y is not unramified and , ¢ S, where S is introduced in Propo-
sition C.2.5. Then by Lemma C.2.2(1), nphqup does not contain 2. Thus,
both sides of (6.3) are zero by (6.4).

Case 3 7, belongs to S. Then we have Q¢[Sh(VS,, K3)1[ter®] = 0, hence
an inclusion

 HE 2 (MY, Qo)™

= Mapgs | UVROFEONUNVIAFI/KE T K g v | (%]
alp.q#p
(6.5)

by (6.4). Note that, by Proposition C.2.1(2), the multiplicity of Qy in 7y ks ,
is one, hence we have '
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Map;, [ UVIYEONUVIIAF)/KY [T Kig v | 2]
qlp.a#p
~ (o P)KY
by Proposition C.3.1(2).
On the other hand, by Lemma 6.1.11, Proposition C.3.1(2), Corollary C.3.2,
and Hypothesis 3.2.10, we know that the @( [I" #]-module

HZ ' (Sh(Vly. InKE K, )7 Qo)™ P

is isomorphic to dim (> p)Kg" copies of P - By Proposition 3.2.4(2),
PEC ).t Gal @,/Q.2) has nontrivial monodromy action. Thus, by Lemma 5.2.7
’ P

and the spectral sequence E??, the cokernel of (6.5) has dimension
dim (7 °°? )K/[z'c, which forces the source of (6.5) to vanish. In particular, (6.3)
holds.

The lemma is proved. O

Before stating the main theorem on the arithmetic level raising, we recall
the following definition from [51, §3.6].

Definition 6.3.3 Let 7: I'p+ — 9n (0, /1) be a continuous homomorphism
subject to the relation 7~ (GLy (05 /1) x (03/A)*) = Trand v o7 =
ng/FJrel}_N. We say that 7 is rigid for (ST Eer) if the following are satisfied:

min’

(1) For v in Z&m every lifting of r, is minimally ramified [51, Defini-
tion 3.4.8]. B

(2) For v in E”:, the generalized eigenvalues of FE (¢w) in [Fy contain the pair
{IlvlI=N, lv]~N*2} exactly once, where w is the unique place of F above
v.

(3) For v in I 175 is regular Fontaine—Laffaille crystalline [51, Defini-
tion 3.2.4].

(4) For a nonarchimedean place v of F* not in E;in U Efrr U EZ’, the homo-
morphism 7, is unramified.

Here, all liftings are with respect to the similitude character ng JF+€ l}*N

Recall that we have fixed a positive integer m at the beginning of Sect. 6.1.

Theorem 6.3.4 Assume Assumptions 6.1.4, 6.1.6, and Hypothesis 3.2.10 for
N. We further assume that

(@) £ > 2(N + 1) and £ is unramified in F;
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(b) pria+ (Remark 6.1.7) is rigid for (1. . E5) (Definition 6.3.3), and

min’
P Gal(F/F 20y B absolutely irreducible;

(c) the composite homomorphism "IFE,+ ﬂ) O — Og/M\ is cohomologically
generic (Definition D.1.1); and
(d) Ox[Sh(VY, K})]m is nontrivial.

Then we have

(D) H%(M’ , O\ is a free Oy-module for every i € 7.
(2) E2? is a free Oy-module, and vanishes if (p,q) ¢ {(—1,2r), (0, 2r —

2,m
1), (1,2r —2)}.
(3) If we denote by {alﬂ, .. .,aril} the roots of Pyi,ymodA in a finite

extension of O, /), then the generalized Frobenius eigenvalues of the
(05,/M)[Gal(F, /F ,2)-module HY ~'(M%. 0:.(r)m ®0, O3/ is con-
tained in {pafl, e pozril}\{l, P2

(4) The map in Proposition 6.3.1(4) factors through a map

Vi F_lHl(Isz, HY ~'(My, RV 0;.())/n) — O0:[Sh(V3, K3)1/n

which is an isomorphism, where n is the ideal in Notation 6.1.3. The map
Jfrom Lemma 5.9.3(6) induces a canonical isomorphism

F_1H'(Ig,,. HY ' My, R 0:(n)/m)
= Hlpe Q2 HY 7'My, RWO,.(r)) /).

(5) There exists a positive integer |u such that
HZ =L (Sh(V)y, S KEK! )7, O ~ (Rome) ™"
&t » INKy p,N)F’ a(r))/m >~

of O,|I" r]-modules, where R is the I p-stable O, -lattice in pry . (r), unique
up to homothety.

The proof of this theorem will occupy the next subsection.

At the end of this subsection, we give an amazing corollary of Proposi-
tion 6.3.1, which will not be used in this article. Suppose that £ { p ]_[lN: 1€ pi—
(—D?%). Then the Tate—Thompson representation of Qy from Sect. C.2 of
K%, p has a model 2 N.F, Over Fy, which is again an irreducible summand of

K¢ —
Inng:zﬂKz'v,p Fy. Thus, we obtain a natural map
i: Fo[Sh(VS, K]

@ Springer
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— Mapyg; | U(VY YFINUNVIDAFH/KY T Kg @,
alp.q7#p

— Tuxt . . .
of F¢[T,, ”1-modules as the composition of the inclusion map

Fo[Sh(VS, K1 — Fe[Sh(VS, K NKWI,
the tautological isomorphism
Fo[Sh(V}, K NKR)]

— Mapy (U(VN)(F+)\U(VN)(A D/KY [T KR Ind N*’QK m),
qlp,a#p

and the projection map

K¢S —
+ po N.p
Map;,, | UV EONUVR) () /Ky |1_LpKN“’ ndg:” s, e
qip.q

— Mapg;, | [ UVR)(FINUVRIAFD/KY l_[# Ki.q @ 5,
qip.q

Corollary 6.3.5 Let the setup be as in Sect. 6.1 but replacing (P4) with a
weaker condition that a(I1ly) mod A contains the pair {p, p~ 1} at most once.
Assume Assumptions 6.1.4, 6.1.6, and Hypothesis 3.2.10 for N. Then iy, is
injective.

Note that this result can be regarded as an Thara type lemma for the definite
unitary Shimura sets.

Proof For simplicity, we only consider the case where N > 4, and leave the
much easier case where N = 2 to the readers. First, we point out that since
et pTIL,(pF = (=1)%), (5.13) holds with @ replaced by F¢, under which
the map i coincides with the composite map

IFg[Sh(VC’,KN)] H2’ 2MS,, Fo(r — 1))
Toyx T . _ _
O WX (M, For — 1) > HY™ (M, Fy).
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By Assumption 6.1.4, Lemma 5.9.3(2), and Lemma 5.6.2(2), the map
HY 2(My. 0;)m — HY 2(M};, O)m
induced by d?’zr_z is injective. Thus, it suffices to show that the map

(inc/ + incf)m : Fe[Sh(V3y, K3)Im @D FelSh(Vy. K} Im
— HY 2(My, Fe(r = D)m

is injective. When a(ITy) mod A contains the pair {p, ™'} (exactly once),
this follows from Proposition 6.3.1(1). When (IT,) mod A does not contain
the pair {p, p_l} it suffices to show that (incz )y, (Definition 5.8.7) is injective
with £ = O(M ) and the coefficients Fy. It is straightforward to see that such
injectivity follows from Proposition 5.8.8, Lemma 6.1.9, Proposition B.3.5(2),
and Lemma B.3.6. O

6.4 Proof of Theorem 6.3.4
We apply the discussion of [51, §3] to the pair (7, x), where
ri=pna+: pr = Gn(Oy /)

and x = Ez =N for the similitude character. Then 7 is rigid for (XF
and also for (X7, E+ U {p}) by (P4).

min’
For 7 = mix, unr, ram, consider a global deformation problem [51, Defini-

tion 3.1.6]

min’ lr)’

N s+ + +
S =G nF/F+6€ s Bin U By UIPI U A Db et usiupus;)

where

e forv e =T | 9, is the local deformation problem classifying all liftings
of ry;

o forv € Eer , 9y is the local deformation problem 2™™ of r, from [51,
Definition 3.5.1];

e for v =p, 9, is the local deformation problem 2" of i,y from [51, Defini-
tion 3.5.1];

e forv € Z;, 2, is the local deformation problem 9L of 7, from [51,

Definition 3.2.5].

min”®

Then we have the global universal deformation ring R‘ﬁ}%v from [51, Propo-

sition 3.1.7]. Put R’ R“;V for short. Then we have canonical surjective
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homomorphisms R™X — RU" and R™* — R™M of O, -rings. Finally, put
R := R"™ ®@gmix R™™.

We fix a universal lifting
Fmix: Dpe — 9y (R™)

of r, which induce a continuous homomorphism

mlx : T'r — GLy(R™X)
by restriction (Notation 2.5.2). By pushforward, R°°" also induces homomor-
phisms

Funr: Tp+ — gN(Runr)’ Fram: ['p+ — gN(Rram)'

Denote by P Ff the maximal closed subgroup of the inertia subgroup I i -

F+ of pro-order coprime to £. Then I' i /P P ~ 12t ¢>Z is a p-tame group
i

mix

[51, Definition 3.3.1]. By definition, the homomorphism r_ . is trivial on P B

Let v and V' be eigenvectors in (O, / 1)®N for rt(q}z) with eigenvalues p or

and p~2"1t2, respectively. By Hensel’s lemma, V and V' lift to eigenvectors
v and V' in (R™X)®N for rrunix(¢>[2)), with eigenvalues s and 8’ in R™X lifting

r 2r+2

p~ 2 and p~ , respectively. Let X € R™X be the unique element such
that rlunix(t)v’ = XV + V. Then we must have X(s — p~2") = 0. By [51,
Definition 3.5.1], we have

Runr — Rmix/(x)’ Rram _ Rmix/(s _ p—2r)7 Reong — lex/(s —2r7 X).

Let T""™ be the image of T§,+ in Endg, (0,[Sh(V},, K3)]). By (d) in
Theorem 6.3.4, we know that T)"" = 0. Thus by [51, Theorem 3.6.3], we
have a canonical isomorphism R"™ 5 To™ such that O [Sh(V},, K{)Im
is canonically a free R"™ -module of rank dy,, > 0.26 We may write the
characteristic polynomial of rlumr (¢§,) as (T —s)(T — p_4’ 25~ Q(T), with
Q(T) € R™[T] whose reduction in (O /A)[T] does not have p~2" or p~2' 12
as roots. By Proposition B.3.5(2), we have

((p+ DR, — Iy p)-OlSh(V K3 Im = (8 = p~*).04[Sh(V},, K} -

26 Here, we also need the easy fact that Thi" and O,[Sh(V§,, K})]Im do not change if we

stusiusf
replacemby mN T, .
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In particular, we have
0:[Sh(Vyy, Ki)Im/((p + DRy , — Iy p) = Oi[Sh(V, K{)lm ®@pur R,

which is a free R°°"8-module of rank dyy;.
+ﬂ2+

b _

On the other hand, let T be the image of T, " in Endo, (H%rf1 My,
RWY0,)). By Proposition 6.3.1(4) and Lemma 5.9.3(6), we know that TE™ #
0. Thus by Lemma 5.2.7 and [51, Theorem 3.6.3] (with (X ]Jrr ) replaced

by (Z;ln, Z+ U {p})), we have a canonical isomorphism R™™ — = — TE™ such

that HZ 2=l My, RWO))m is canonically a free R™™-module.?” Define the
Rram—module

mln’

H := Homr, ((Rram)EBN, H%r_l(MN, RW¥ 0A)m>

where 'z acts on (R™®™)®V via the homomorphism rruérf]. By the same argu-
ment for [67, Theorem 5.6] (using Proposition C.3.1 and Hypothesis 3.2.10
here), we have a canonical isomorphism

HY ™' (My, R¥ 03)m =~ H ®guam (RSN

of R™™[T" g]-modules. Since R™™ is a local ring, H is a free R™™-module, say
of rank dyam. If we still denote by v and V' for their projection in (R@™)®V
then it is easy to see that

Slng (@p (Rram)éBN (r)) = R™Mv/xv >~ R™™/(x) = R°"¢,
Thus, we obtain

(Qp2. HY 7'My, RV 0, (r)m)
Q2. R™™M® (1)) = H @pram R,

smg

~H ®Rram H

sing
which is a free R“°"8-module of rank dy,m > 0.

Proposition 6.4.1 Under the assumptions of Theorem 6.3.4, we have dyy =
dram. In particular, the two canonical maps

F_iH'(Ig,,, HY ™' My, R 0;.(1)m)
— O4[Sh(V},. K} Im/((p + DRy, — I )

2T Here, we also need the fact that THm and szr_l (Mpy, R¥ 0;)m do not change if we replace

stuzfusf o
mbymNT) , which is a consequence of Theorem 6.3.4(c).
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F_iH'(Ig,, HY 7' (My, R¥ 0;.(r)m)
— Hing (@2, HY ™ (M, RY 05, ()m),

from Proposition 6.3.1(4) and Lemma 5.9.3(6), respectively, are both isomor-
phisms.

Proof By Proposition 6.3.1(4), the first map is surjective. By Lemma 5.9.3(6),
the second map is injective. Thus, we must have dyay, = dynr > 0 by the
previous discussion.

Take a geometric point 7y € (Spec R"™)(Q,) in the support of
0,.[Sh(V}, K})]m, which corresponds to a relevant representation IT; of
GLy(AF) by Lemma 6.1.10, such that pr, ,, is residually isomorphic to
,51'I,A R0, /x Fg. Then we have

dunr = dim Q¢[Sh(V,, KR)1[teem, 1-

Take a geometric point 7, € (Spec R™)(Q,) in the support of
Hé’ -1 My, R¥ O; ), which corresponds to a relevant representation I, of
GLy(Af) by Lemma 6.1.10, such that pp, ,, is residually isomorphic to
o, 0, F@. Then we have

Ndram = dim HY ™' (My, RUQp)[te¢r, ]
= dimHZ ~'(Sh(V}y. InKE K, )7 Qo)leedm, ]

by Lemma 5.2.7. By Proposition D.2.3 and Lemma 6.4.2 below, we have
dunr = dram. The proposition follows. O

Lemma 6.4.2 Let I1{ and T, be two relevant representations of GLy (AF)
such that the associated Galois representations pn,,, and pn,,, are both
residually isomorphic to pri ) ®o, /. F[. For every v € E;;in (so that every
lifting of pn.x +.v is minimally ramified), if we realize 11y ,, and Il , on vec-
tor spaces V| and V, respectively, then there exist normalized intertwining
operators Ar, and An, , for Tl and Tlo , [71, §4.1], respectively, such
that we have an GL y (OF,)-equivariant isomorphism i: V; S5V satisfying
ioAm, =Am,ol.

Proof We will give the proof when v is nonsplit in F, and leave the other
similar case to the readers. Let w be the unique place of F above v.

By Proposition 3.2.4(1), both I1; ,, and Il ,, are tempered. Thus by the
Bernstein—Zelevinsky classification, for @ = 1, 2, we can write

GLy (Fy
Mo =155 (00,1 B K 05,1 K og,0 K 06,1 B+ Koy, )
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for some integer z, > 0, some standard parabolic subgroup P, € GLy (Fy),
and some (unitary) discrete series representations {0y, —,, - - ., Oa,z, } Satisfy-
ing 04, —; >~ 0,/. See Sect. C.1 for the notation on parabolic 1nduct10n

By [51, Propos1t1on 3.4.12(3)] and [3, Lemma 1.3.4(2)], we know that
P11 115, and Py .15, are conjugate. Thus, by [76, Lemma 3.6], we have
Py = P> (say P) and t; = 1 (say t), and we assume that there are unrami-
fied (unitary) characters {x—;, ..., x;} of F satisfying x_; >~ X,-_l such that
02 = 01, ® x;. For every i, we choose a vector space W; on which oy ;
realizes (and also realize 01 Fon W;viag — g —1.¢), and fix a linear map
A;j: W; — W_; intertwining o; and o7 satisfying A_; o A; = idy,. Put
o :=WX!__ oy, regarded as a representation of P by inflation, which realizes
on the space W : ® Wi;; and put A, = ®§:_1Ai € End(W). Choose
an element w € GLy (F,) satisfying w = w¢, that wPw~! N P is the stan-
dard Levi subgroup of P, and that for (a—;, ..., a;) € wPw~! N P, we have
wla—y, ..., a,)w_1 =(a;,...,a_;).

We realize I ,, on the space

i=—t

={f: GLy(Fy) = W | f(pg)
=57 (p)o(p) f(g), p € P, g € GLy(Fy)}.

Define a linear map Ay, ,: Vi — V) by the formula

(Am, () (@) = Ao (f(w'g™ ).

Then it is clear that A, is a intertwining operator for Iy, satisfying
A%—II , = L. Similarly, we realize IT5 ,, on the space

Vo i={f: GLy(Fy) — W | f(pg)
= 5})/2(p)x(p)6(p)f(g), p € P, g e GLy(Fy)},

where we put x := Ki__ x; regarded as a character of P. We define
Am,,: V2 = V, by the same formula, which is a normalized intertwining
operator for I15,,,. The desired isomorphism i is the map sending f € Vj to
the unique function i (f) such that i (f)(g) = f(g) for g € GLxy(OF,). The
lemma is proved. O

Now we can prove Theorem 6.3.4.

Proof of Theorem 6.3.4 For (1), Assumption 6.1'.4,_Lemma 5.6.2, and the
spectral sequence in Lemma 5.9.3 imply that Hz (MY, O))m is Oj-torsion
free for i # 2r — 1, 2r. By Proposition 6.3.1(4) and Proposition 6.4.1, we
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know that H%’ (M3, O;)wm is O;.-torsion free. By the Poincaré duality theorem
and Lemma 6.1.11, we have

rank o, HY My, O3)m = ranko, HY “>(M%, O3)m,
dimo, 3 HY (MY, 03/Mm = dimo, 5 HY >(MY, 0./2)m.,

which imply that H%r -1 (M2, O;)m is O;-torsion free as well by the universal
coefficient theorem.

Part (2) is animmediate consequence of (1), Assumption 6.1.4, Lemma5.6.2,
and the spectral sequence in Lemma 5.9.3.

Part (3) is a consequence of (1) and (P4) that Py ») mod A" is level-raising
special at p. In fact, we have an isomorphism

HZ ! (M¥, 0,.(r) ~ H @gran Ry (r)

of 0,[Gal(F,/F ,2)]-modules.
For (4), by Proposition 6.4.1 and (P6), it suffices to show that the two natural
maps

F_iH' (g, HY ™' (My, R¥ 0,.(r)m)/

— F_H'(Ig, . HY ' My, RV 0,.(1)/0),
Hlpe (Q2. HY ™' (My, RW 05 (r)m) /m

— HYjpo (Q,2, HY ' (My, RY0;.(r)) /),

are both isomorphisms. Note that we have a short exact sequence

HZ ' (My. R 03 (")m

N -0
F_HY ™ (M, RY 0, (r)m

0 — F_H'(Ig,,. HY ™' My, RW05.(n)m) — H'(Ig , . HY ™' My, RW O05.(1)m) —

+uUs+
of Tff zp -modules, which is split by considering Gal(Fp/]sz) actions
and (3). Thus, the first isomorphism is confirmed. The second one is also
confirmed as, by (3), one canreplace Gal(F »/F 2 )-invariants by Gal(F »/F 2 )-
coinvariants. Part (4) is proved.
For (5), we have

HZ ' (Sh(Vy. INKRK), )7 02(r)/n =~ H @peam s (R™™ /0)®N ()

by Lemma 5.2.7. Here, we regard n as its image in T2™, where the latter
is canonically isomorphic to R™". We claim that 0; /A" = R™"/n and
(Rram/n)@N (r) ~ RM< a5 (0, /XM"™)[T p]-modules, where we recall that I'

acts on (R™™ /n)®N via rrue{rfl. Since n satisfies n N O, = A™ O, the structure
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homomorphism O; — R™M induces an equality O, /A" = R™™ /n. Now by
the Chebotarev density theorem and [14, Théoréme 1], we know that the two
liftings (R™™ /n)®N () and R™€ of 5 , (r) to O3 /A™ have to be isomorphic.

Theorem 6.3.4 is all proved. ’ O

7 Explicit reciprocity laws for Rankin—Selberg motives

In this section, we state and prove the two explicit reciprocity laws for automor-
phic Rankin—Selberg motives. In Sect. 7.1, we setup the stage for automorphic
Rankin—Selberg motives. In Sects. 7.2 and 7.3, we state and prove our first and
second explicit reciprocity law, respectively.

7.1 Setup for automorphic Rankin-Selberg motives

Let n > 2 be an integer. We denote by ng and n the unique even and odd
numbers in {n, n + 1}, respectively. Write nyp = 2r¢ and n; = 2r; + 1 for
unique integers ro, r1 > 1. In particular, we have n = ro + ry.

In this and the next sections, we consider

e fora = 0, 1, arelevant representation I1, of GL,, (A ) (Definition 1.1.3),
e a strong coefficient field £ C C of both Iy and IT; (Definition 3.2.5).

Put =

min

= Eﬁo U Ef-[“l (Notation 3.1.4). We then have the homomorphism

pon
¢n,: Tp™" — Ok

for« = 0, 1. For « = 0, 1 and every prime A of E, we have a continuous
homomorphism

prg.n: I'r = GL,, (E;)

from Proposition 3.2.4(2) and Definition 3.2.5, such that pﬁa’ , and plY[a’ , (1=
ny) are conjugate.

Assumption 7.1.1 For o = 0, 1, the Galois representation pry,, 5 is residually
absolutely irreducible.

7.2 First explicit reciprocity law

We start by choosing

e aprime A of E, whose underlying rational prime £ satisfies Er_;in N E? =0,
£ > 2(ng + 1), and that ¢ is unramified in F,
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e a positive integer m,
e a (possibly empty) finite set E +1 of nonarchimedean places of F * that

are inert in F,?® strongly dlS]OlIlt from X (Definition 1.3.2), satisfying

2t vll(v))? = 1) forv € zlr,l,

e afinite set EI+ of nonarchimedean places of FT containing E;m U Efrr I
e a standard definite hermitian space V, of rank n over F, together with a
2:Jruzn-tm 21-1"—1
self-dual [, ¢ELUSH USH Or,-lattice A;, in V;, @r A, * (and
put V) 4= (V) and A := (A;)z), satisfying that the hermitian
space (V5 )y is not split for v e Elr ,

e objects K° € R(V;) and (K¢ +1) € R(V;)sp of the forms

min

sp?

K= [] ®pux J]  U”)©Og),

+ + + Ut +
ves ) US vgsLuzh usih

min Ir,I min
Ko= J] Ko x I1 U(A)(O 1),
uezjgmuzm vgéEOOUE[:mUZIJ;I
il = 1_[ Ky )v X 1_[ U(A, 1) (Op4),
uezgmuzﬁm V¢TI U E;mw:ljl

satisfying
- (Kg)v = (Kp)y forv e z;m,
- (K¢ )U C (K}), forv e Elrl, and

(Kn())v is a transferable open compact subgroup (Definition D.2.1)

of UVy ) (F) for v € TF
U(V;O)(Fv*) forv e Elr’l,

e aspecial inert prime (Definition 3.3.4) p of F* (with the underlying rational

prime p) satisfying

(P11) ZIJF does not contain p-adic places;
(PI2) ¢ does not divide p(p* — 1);
(PI3) there exists a CM type @ containing T as in the initial setup of
Sect. 5 satisfying Qg’ =Q,
(PI4) Po(r1g,p) mod A™ is level-raising special at p (Definition 3.1.5);
Py (1, ,) mod A is Tate generic at p (Definition 3.1.5);
(PIS) Py(r, ,) mod A is intertwining generic at p (Definition 3.1.5) for
a=0,1;

and is a special maximal subgroup of

28 Here, the subscript “Ir”” stands for “level-raising”, while the subscript “I” (Roman number
one) stands for the “first”. In the next subsection, we will have El'r 1 for the second reciprocity
law. '
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(P16) the natural map
(Og/2"™)[Sh(V,,, KZQ)] (Og/2™)[Sh(V, . K; )]
+ 5+
']I‘,i U A ker o, ']I‘,if N ker ¢r1,

is an isomorphism of nontrivial O /A"™-modules for o = 0, 1;
(PI7) Po(Mp ) @e (I p) mod A™ is level-raising special at p (Defini-
tion 3.1.5);

(So we can and will apply the setup in Sect. 5.10 to the datum
(V5 (A g alp)-)

e remaining data in Sect. 5.1 with ij =Q 25> and

e data as in Notation 5.10.13, which in particular give open compact sub-
groups K3, and K7

n+1,p*
Puth;)o : (K )1’ andK = KfpoxK'O p,putK,f; = (Kj )P andKj =
Ky, x Ky, fora =0, 1. As in Sect. 5.11, we put X; := X (Vy_. Ki")

for meamngful triples (X, 7, o) € (M, M, B, S} x {, n, o e, i} x {0, 1}. For
a = 0,1, let (“EP?, «dl q) be the weight spectral sequence abutting to the
cohomology ng (Mna, RW¥ 0, (ry)) from Sect. 5.9.

+Us+

oRE)>
Notation 7.2.1 We introduce the following ideals of T, 7, fora =0, 1

Tiust
mg =T, 7 Nker (’]I‘Z+ OF — OE/A>

zruz

ng i= T, " Nker (’]rf; e 0p — OE/)J">.

We then introduce the following assumptions.

Assumption 7.2.2 Under Assumption 7.1.1, pr, 5, + (Remark 6.1.7) is rigid
for (E;m, 2+I) (Definition 6.3.3); and pr,,, X|Ga1( F/F(&) is absolutely irre-

ducible.

Assumption 7.2.3 For « = 0, 1, we have Hg(ﬁna, RV Oj)m, = 0fori #
« — 1, and that H""‘_l (M, , RY Oy, is a finite free Oy -module.

¢
Assumption 7.2.4 The composite homomorphism ’]I‘,,Om‘“ o0 E— O/
is cohomologically generic (Definition D.1.1).

Now we apply constructions in Sect. 5.11, evaluating on the object
(K7, KP2)) of R(Vp)P x R(V¢, )P In particular, we have the blow-up mor-
phism o : Q — P from Notation 5.11.1, and the localized spectral sequence
(EP d”(mo mpy) from (5.27).

s,(mp,my)’
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Lemma 7.2.5 Assume Assumptions 7.1.1, 7.2.2, 7.2.3, 7.2.4 and Hypothe-
sis 3.2.10 for both n and n + 1. Then

(1) For (%, M) € {o, o, 1}2 and i € 7, we have a canonical isomorphism

He (P, 0 momn = @D HEM?, O0)my ®0, H (M}, Op)m,

io+i1=i

in Mod(Gal(F , /F ,2), O
(2) We have Eé’:(qm()’m]) =0 Uc(pa Q) ¢ {(_15 2]’1), (0’ 2n — 1)5 (17 2n — 2)};
and canonical isomorphisms

—1.2n ~ 0p—1.2r9 10,2r
2,(mg,my) — EZ,mo ®o0, E2,m1’

02n—1 ,_ 0p0.2r9—1 110,271
IEZ,(moyml)_ Elmo ®o0, EZ,ml’

1.2n—2  _ 0gl.2r0—2 1120,2
E) tmomn = Eolmg  ®0; Byl
in Mod(Gal(F , /F ,2), O
3) IfEi’znflfi)(—l) has a nontrivial subquotient on which Gal(Fp/sz) acts

2, (o, mp)
trivially, theni = 1.

4) For (2,7 € {o, 8,1} and i € Z, both HY (P""1, 0;.(i)) (mo,m,) and
H%’ (6?0’?1 , O05.(1)) (mg,m,) are weakly semisimple.

(5) We have HL(Q, RW O;) (mg,m)) = 0 fori # 2n — 1.

(6) The canonical map H’T?C(G(c), 03) (mg,m;) —> H%(G(C), 03) (mg,my) IS an
isomorphism for every integers ¢ and i.

Proof For (1), by Lemma 5.6.2, Lemma 6.2.2(2), Theorem 6.3.4(1), we know

that Hfg (M,Z‘;, Oj3)n, 1s a finitely generated free O;-module for @ = 0, 1 and
every iy € Z. Thus, (1) follows from Lemma 6.1.11 and the Kiinneth formula.

For (2), we first show that Ef ’gno m) degenerates at the second page. By
(1), Lemma 5.11.3(2), Lemma 5.6.2, and Lemma 6.2.1, the composition of
dl_’?r’fo’ my) and the natural projection

-1, -2 =+ -2 =i
El b wpy = HE @, 000 — D)) @ HL " @Q"°, 0100 — 1))

is injective for every ¢ € Z. Thus, a4 is injective, which implies

1,(1’110,1111)
EZ—jgo,ml) = 0 for every ¢ € Z. By a dual argument, we have Ei:?mo,ml) =0
forevery g € Z as well. For the degeneration, it suffices to show that dl—}rfo mp)

Coe . O,q
is injective and d;’ (mo.m1)

and 6.2.2(1), we have HL >(@Q", 0,(n — 1)) = HL >@Q*, 0,.(n — 1)) for

is surjective for ¢ odd. By Lemmas 5.11.3(2), 5.6.2,

@ Springer



290 Y. Liu et al.

—1l,q

g odd, which easily implies the injectivity of d, (mo.mp)"

0.9 . .
dl,(mo,ml) is surjective for g odd.

Now for every g € Z, the morphism ¢ induces a map

By a dual argument,

* 0z*.90 1g*.91 *,q
of: P ETD ®0, 'ETh —E

1,mp I,my 1,(mp,my)
qo+q1=q

of complexes of O, [Gal(F/IF pz)]—modules, hence a map

* 020,90 1 P1,91 P.q
0y - @ @ E2,m0 ®0, EZ,ml - EZ,(mo,ml)
po+p1=p qo+q1=q

of OA[Gal(F/IE"pz)]—modules for (p,q) € Z2. By Lemma 6.2.2 and Theo-
rem 6.3.4(2), to show (2), it suffices to show that )" is an isomorphism, or the
natural map

P HLM,y RYO0,.(0)my ®0, HE Moy, RY O, (1 )y
io+ir=i

— HL(Q, RY 05 (1) (mg.m))

induced by o is an isomorphism for every i € Z. By Lemma 5.2.7 and
Lemma 5.11.2, the above map is identified with

@ H%O(MZO ®QP2 @p, 01(r0))my @0, H%(le ®Qp2 @p’ O (r))my

io+i1=i
— Hz(Q"®g,, Qp. 01.(1)mo.my)-
which is an isomorphism by Lemma 6.1.11, and the Kiinneth formula. Thus,
(2) follows.
For (3), let {ag.....eq, ) and {og).....a) .1} be the roots of
Pa(noyp)mod)\ and Pa(n,’p)modk in a finite extension of O, /A, respec-
tively. By (PI4), we may assume o ,, = p. By (2), Theorem 6.2.3(1),

and Theorem 6.3.4(3), the generalized Frobenius eigenvalues of the (O, /1)
[Gal(F ,/F ,2)]-modules E; (i (—1) ®0, 0;/A and E) (v (—1) ®0,

2,(mp,
0, /) are contained in {p‘zaﬂ, e p‘zaﬂl, p~2} and {p_la(ﬂaﬂ, e

p_loz(ﬂoiloeﬁl }U{p_la(jf%, R p_lot(jfioil},respectively. By (P12), we have
p> # lin O5/r. By (PI7), we have ay;, ¢ {p? p~2} for 1 < ij < ry,
which implies 1 ¢ {p‘zaﬁ, R p‘zafil, p~2}. Again by (PI7), we have
Qp.ig®1,i; ¢ {p,p‘l} for 1 < ip < rpand 1 < iy < ry, which implies

L¢ {p~lagiof]..... p~ ey, o) ). By (PI4), we have ag iy ¢ {p. p~'}
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for 1 < ig < ro, which implies 1 ¢ {p~'og|. ..., p~'ag, _,}. Thus, (3)

follows.

For (4), by Lemma 5.11.3 (3-5) and Lemma 2.1.4(1), it suffices to show that
HZ (P"", 0;.(1)) (mg,m,) is weakly semisimple. By (1) and Lemma 6.2.2(1), it
suffices to show that H%io (MZ,%, 0,.(i0))my ® 0, Héil (M:,ll , 05.(i1))m, is weakly
semisimple for ig, i; € Z. By Lemma 5.6.2, the action of Gal(IF,,/sz) on
Hg“ (Mza, 0;.(ig))m, is trivial forae = 0, 1,? = o, T,and every i, € Z.Onthe
other hand, itis a consequence of Theorem 6.3.4(2) (forip) and Lemma 6.2.2(3)
(for i) that the action of Gal(Fp /sz) on H%i“ (M,’la, O0;.(ix))m, 1s trivial
if ip ¢ {ro — 1,ro} or i1 # ri. By Proposition 6.3.1(1,2) and Theo-
rem 6.3.4(1), the actions of Gal(F, /F ,2) on both HY* > (M}, 0;.(ro — 1)m,
and H2r0 (Mno, 0,.(r0))m, are also trivial. Thus, by Lemma 2.1.4(1), it remains
to show that Hzr1 (M*
from Theorem 6.2.3(2) as it is isomorphic to the direct sum of TEY2M1 and

2 2,my

z (M}, 03.(r1)m, -

Part (5) is a direct consequence of (2).

Part (6) follows from (1), Lemma 6.1.11, and Lemma 5.11.3(3-5). |

o 0,.(r1))m, is weakly semisimple, which follows

Remark 7.2.6 In fact, Lemma 7.2.5(5) holds under only Assumption 7.2.3;
and Lemma 7.2.5(6) holds under only Assumption 7.1.1.

Lemma 7.2.5(5) induces a coboundary map

Alg: Z2(Q") — H'(Q,2, HY 1 (@Q. RW 0;.(n)) (mo,m)))-

We also recall the singular quotient map

9: H'(Q,2. HY 1 (Q. R¥ 0. (1) (mp.m)))
- Hging(sz’ H%n_l (Q. RV 0;,.(n)) (mg.my)) (7.1)

from Definition 2.2.2.

By our choice of K} and (K, ), we obtain a morphism

sp? n+1
M, (V5. K3) — P

which is finite. Denote by P, the corresponding cycle; and let Qgp be the strict
transform of Pgp under o, which is a Tp-invariant cycle of Q. Our main goal
is to compute 8 Alg(Q%) in HY,, (Q,2, HY'™(Q, RW 05 (n))/(ng, n1)). The
cycle Qgp gives rise to a class cl(Qsp) € C"(Q, L), where C"(Q, L) is the
target of the map A" (5.28).
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Proposition 7.2.7 Assume Assumptions7.1.1,7.2.2,7.2.3,7.2.4, and Hypoth-
esis 3.2.10 for both n and n + 1. There is a canonical isomorphism

HYjpo (Q,2, HY'7'(Q. RW 05.(1)) (mg.my)) = coker Al

underwhich d Al (Qsp) coincides with the image of c1(Qgp) in coker A7 (mo.m1)"
Proof By [47, Theorem 2.16 and Theorem 2.18], 29 it suffices to show that Oy,
is a very nice coefficient ring for Ep (q mo.my) in the sense of [47, Definition 2.15].
Infact, in [47, Definition 2.15] (Nl) is satisfied due to Lemma 7.2.5(2); (N2) is
satisfied due to Lemma 7.2.5(3); and (N3) is satisfied due to Lemmas 7.2.5(4)
and 2.1.4(2).

The proposition is proved. |

By Construction 5.11.7 and Remark 5.11.8, we have a map

V: C"(Q, 0;) = O0[Sh(VS,, K2,)] ®0, O1[Sh(VS,, K21,

Theorem 7.2.8 (First explicit reciprocity law) Assume Assumptions 7.1.1,
7.2.2,7.2.3,7.2.4, and Hypothesis 3.2.10 for both n and n + 1.

(1) The image of the composite map V(m,, m) o A7 is contained in
1. OA[Sh(V5, Ks)lmg @0, O4Sh(V3,, K5 )Ty

(2) Inview of (1), the induced map is an lsomorphlsm

(mo,mp)

Viny/mo: coker A% /ng — O1[Sh(VS, . KS)1/m0 ®0, O:[Sh(VE,, K )lm,

is an isomorphism.
(3) Under the natural pairing

01[Sh(V5 - K5 )1/m0 ®0, 03[Sh(V5 K5 Mmy x (03 /A™ISh(Vs, . Ks 1IN0l @0, 05[Sh(V5 ,KS Dlmy = 0 /4"

obtained by taking inner product, the pairing of V mgny) (0 AlQ (QnA)) and
every function

£ € (03/XM)ISh(VE,, Kool ®o, (05 /A™)ISh(VS,, K2 ) In]

29 Although it is assumed that the underlying strictly semistable scheme X is proper over the
base in [47], the proof of relevant results works without change in our case even when Q is not
proper in view of Lemma 7.2.5(6).
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is equal to

P+ 1) dny(Tn ) om (Th ) Y. f(s,sh5(s)).

s€Sh(V.Kg)

Here, we regard 0 AJQ(QZP) as an element in coker A?mo,ml) (hence in

coker Ay, /no) via the canonical isomorphism in Proposition 7.2.7.

Proof We first consider (1). By Lemma 5.11.3(3,4), we have

2(n—1) ~
HZ" QY. 0501 = 1) (mo.m1)
2(n—1) 5
= @ O’*H(Z(n )(P?O’?l,Ox(n—l))(mo,m)

(20,7)€{o,0)?
2n-2)

P 6D HI T @, 041 = 2) o)
2(n=2) ~

PeiHie P, 0001 = 2)) o).

Thus, it suffices to show that

(1a) The image of
2(n—1) Ho,e 2n=1) pe,e
o HL" D (P, 0401 = D)o,y €D o HE" ™D B, 01,010 = 1) g,y

under the map (V o 811 o §)mem) 1 contained in
1. 03 [Sh(V},, Ki ) Img ®0; Or[Sh(V5 , Ki ) m; -
(1b) The image of

2(n—1) Ho,o 2(n=1) pe,o
o HL"™ D (P, 041 = D)o,y €D o HE" ™D (™, 01,01 = 1) g,y

under the map (V o §y5 0 86“)(m0’m1) is zero.

(1c) The image of (85:0)10*H3" "> (P"*, 04.(n — 2))(mg,m;) under the map
(V o 513 o 88)(mo,m1) is zero.

(1d) The image of (873)10*HZ" "> (P, 04(n — 2))(mo,my) under the map
(V 0811 08§) (mg,my) is zero.

For (1a), we have a commutative diagram
H2" %, 0400 — D).y D HE"®>*, 051 — D) mpumy) ———= "E} 202 @, HY' (M3, 03.(r))my
o
HY" D@, 010 = D)oy D HE" V@, 0301 = 1) mg.my) — Oa[Sh(VS, . K2y ®0, O21S(VS, KS ),

in which
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e the upper horizontal arrow is the map

HZ "D ™, 032 = D)mom) D"V, 051 = D)y
— HY"" VM, 0500 — D)my ®0, Hy' (V3L 04 (),
@Hwo 1)(Mn0’ 0,.(r0 — D)y ®0, %r‘ My, 04(rD)m,
=BV @0, HY' (M}, 04 (r1)m,

1,mp

given by Lemma 7.2.5(1) and the Kiinneth formula;
e the right vertical arrow is

(V00 0d 1270 6 0402072 (— 1))y ® (I3, 0inet + (p + DPTES , 0inci)m, ;

ni,p

and
e the lower horizontal arrow is (V o 811 o 83)(m07m]).

For (1a), by Proposition B.3.5(2) and (PI14), we have

((p+ DR — I5.)-OaISh(VS,, K ) Tmg S 10.031Sh(VS, , K2 ) mg-

Thus, (1a) follows from Proposition 6.3.1(4) and Lemma 5.11.3(3).
For (1b) and (1c¢), both images are actually contained in the sum of

o . oe o, 2 1 O,
(18, poinct o + (p+ D150 oinet )(rSHHR" P T, 0501 = 1) (mo.m)
and
(13, p oinel . + (p+ DTpe , oinck ) (veHHZ" ™V BT, 0500 — 1) (mpm))-

which by Lemma 7.2.5(1) coincide with

HY' (M2, 01.(r0))my @0,
((In1 o oInct + (p+ D21 oIned) 'd; 2 HA VM | 0 — 1)>m1)

and

HY' (M}, 05.(r0))my ®0,
((In] poInct + (p+ D25 o Inch) 'y T HA VMY 00 — 1))m1),

respectively. However, they vanish by Lemma 5.9.2(3). Thus, (1b) and (1c)
follow.
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For (1d), by [47, Lemma 2.4], it follows from (1c). Thus, (1) is proved.
Now we consider (2). We claim that the map V(y, m,) (with domain
C"(Q, 05)(mg,m,)) is surjective. In fact, consider the submodule

ker ") 30 @o, ke ' iT e D HTUENT 046 D amy

1,my
(20,71)€fo,0}2

in view of Lemma 7.2.5(1). Then o * (ker Odo 2r0 ®o, ker dO 2”) is contained
in C"(Q, 0;)mgy.m,)- On the other hand, the map V(mg.m;) © 0* (with domain

ker Odo 20 , ®o; ker 1dO 2r‘) coincides with VO ® V,}”, which is surjective by

Proposmon 6.3.1(3) and Theorem 6.2.3. The clalm follows.
Thus, it remains to show that the domain and the target of Vi, /n, have the
same cardinality. By Proposition 7.2.7, we have an isomorphism

coker A"ml/no = coker A?mo,ml)/no
~ Hjpg (Q2, HY'~'(Q, RW0;.(1)) (mg.m1)) /10 7.2)

of 0, /A™-modules. By Lemma 7.2.5(2,3) and Theorem 6.2.3(2), we have

o g I(F,/F
HYp Q2 HE M QR 0,(0) mo.mp) = HYo (@2, HY ™ (Mg, RY 05 (r0))mg) ®0, ((ES i) S Er/Er2),

Then by Theorems 6.2.3(3) and 6.3.4(4), we have
(7.2) = 0A[Sh(VZ,, K3)1/n0 ®0, O3[Sh(VS,, K )lm;-

Thus, (2) is proved.
Finally we consider (3). As Qsp does not intersect with Q°*, we have

V(cl(Qsp)) = V(cl(QR))
where cl(Q3) € H%” (Q**, 05(n)). Then by Construction 5.11.7, we have

V(Cl(Qsp)) =
((p+ (T , ® Iy ,)oincy . + (p + 1)3(T23’p ® Tyt ) oincy ,) (Cl(PS,)).

Applying Theorem 5.11.5(3) to the object (Kgp, K? +1) € R(V})sp followed

by pushforward, we know that the pairing between Vi, /n, (c1(Qsp)) and any
function

£ € (0,/2MISh(VS,, K)ol ®0, (05 /A™ISh(VS,, KS)1im ]
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is given by the formula

P+ 1) on,(Tp ) o, (Ty, ) Y f(s,sh(s))

seSh(V3.Kg)

in view of (PI6). We then obtain (3) by Proposition 7.2.7.
The theorem is proved. O

We state a corollary for later application. We choose an indefinite uni-
formization datum as in Notation 5.10.1,and put Sh;,  := Sh(V}, , 3, K5, K}, )
foraa =0, 1.

Assume Assumption 7.1.1 and Assumption 7.2.3. By Lemma 6.1.11,
Lemma 5.2.7, and the Kiinneth formula, we have Hgt((Sh; o XSpec F Sh;l )7
03)(mo,m;) = 01if i # 2n — 1. In particular, we obtain the Abel-Jacobi map

AJ: 7" (Sh;lo X Spec F Sh;ll)
— H'(F, H" 1 ((Sh},, X spec F S, )7, 03.(n))/(ng, n1)).

Let Shy, be the cycle given by the finite morphism Sh(V}, j,K{'K;, ) —

n
Shy, Xspec F Sh;, |, which is an element in Z" (Shy,| Xspec # Shy, ).
Corollary 7.2.9 Assume Assumptions 7.1.1,7.2.2,7.2.3,7.2.4, and Hypothe-
sis 3.2.10 for both n and n + 1. Then we have
exp;. (dplocy AT(SHy). Hjpy (Fy. B3~ ((Shy, xspec 7 S, )7 031/ (g, m1)))

= expy (Lsn(vs ) OAISR(Vg,, K5, x SV, K5 )1/ (o, m))

sp

where exp,_ is introduced in Definition 2.1.6. Here, we regard HSh(Vg,Kgp) as

the pushforward of the characteristic function along the map Sh(V;,, K¢ ) —

p
Sh(V;, Kp) x Sh(Vy_ . Ky ).

Proof Note that the isomorphism (5.2) induces a map
H?;tnil ((Sh:m X Spec F Sh;zl)f7 0)\ (n))(mo,ml) - H%nil (65 Rw¥ Ok(n))(mo,m])

of O, [Gal(@p /Q pz)]—modules, which is an isomorphism by Lemma 5.11.2.
Combining with the diagram (5.23), we have

expy (plocy AJ(Sh,), Hlng (Fp, HE' ! (Sh],, Xspec 7 S, ), 0,01/ (0, 1))

= exp, (9 AJQ(QY), Hlyy (02, HE '@ RW O, () / (0, 1))
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where 0 is the map (7.1). Now Theorem 7.2.8 implies

expy (9 AlQ(Ql), Hling (@2, HE '@ RWO,, (1) / (o, m1))

= exp; (P + Dy (T3, (T3, ) Lshevs ks
0,[Sh(V3,, K2,)1/n0 @0, OA[Sh(VS,, K3 )1/mi).

Note that (p + 1) is invertible in O, by (PI2); ¢n0(1n0 P) is invertible in O,
by (PI5) and Proposition B.3.5(1); and ¢, (T}, 1’p) is invertible in O, by (PI4)
and Proposition B.4.3(2). Thus, the corollary follows. O

7.3 Second explicit reciprocity law

We start by choosing

e aprime X of E, whose underlying rational prime £ satisfies me N EZF =0,

e a positive integer m,

e a (possibly empty) finite set EIJF 1 of nonarchimedean places of F™ that
are inert in F, strongly dlS]Olnt from Tt
et l(vl? = 1) forv e By,

e a finite set Eff of nonarchimedean places of F* containing £+ U X+

min Ir,11°
e a standard indefinite hermitian space V,, of rank n over F, together with a

ELUSL,USE,
self- dualnvgéfruzgmu):;l OF,-lattice A, inV, @ A, " (and

put Vo1 = (V) and Ay4q = (Ay)z), satisfying that the hermitian
space (V) is not split for v € 21?, e
e objects K, € A(V,,) and (Kp, K1) € R(V,)gp of the forms

(Definition 1.3.2), satisfying

min

Ke= ] ®uox [ U@,
vex L US vESLURE unt
Kp= [ &Kpwx [T U@n©e,
vex b usiy IE2AU) >U) g
Kipi= J]  Kipox [T  U@w0p),
vex L USH vgELUT L USE
satisfying

- (Kyp)y = (Kn)y forv e T

l'IllIl ’

- Ksp)v € (Ky)y forv e Elr,II’ and
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— (Kyp)v is a transferable open compact subgroup (Definition D.2.1)
of U(Vno)(FUJr ) for v € E;in and is a special maximal subgroup of
U(Vio)(FF) forv e T,

e aspecial inert prime (Definition 3.3.4) p of F* (with the underlying rational

prime p) satisfying>°

(PII1) ZIJI’ does not contain p-adic places;
(PII2) ¢ does not divide p(p? — 1);
(PII3) there exists a CM type ® containing T, as in the initial setup of
Sect. 5 satisfying Qg) =Q,
(PII4) Pu(r1g,p) mod A" is level-raising special at p (Definition 3.1.5);
Po(r1, ) mod A is Tate generic at p (Definition 3.1.5);
(PIX7) Py(r1y,)®e(r1;,) mod 2™ is level-raising special at p (Defini-
tion 3.1.5);

(Sowe canand will apply the setup in Sect. 4.5 to the datum (V,,, {Ay q}q1p)-)
e remaining data in Sect. 4.1 with Qg’ = Q,2; and
e a definite uniformization datum as in Notation 4.5.7, which in particular
gives open compact subgroups K7 . K} | » and K

n,p’ Sp,p*
PutKy, := (1,K&) x Ky, and Ky = (i,,K7,) x Ky fora =0, 1. Put
K2, o = (1,K&) x K, and K}y o) := (1,K7) x K, . As in Sect. 4.6, we

put X,?la = X; (Va,, K,’,’a) for meaningful triples (X, ?, @) € {M, M, B, S} x
{ . n} x {0, 1}.

Uzt
Notation 7.3.1 We introduce the following ideals m, and ny of T,,' " for
o = 0, 1 in the same way as in Notation 7.2.1 (but replacing EI+ with Eﬁ’ ).

We then introduce the following assumption.

Assumption 7.3.2 Fora = 0, 1, wehave Ht (M, O))m, = Ofori # nq—1,
and that H%‘”_l (Mna, Oj3)m, 1s a finite free O;-module.

Lemma 7.3.3 Assume Assumptions7.1.1,7.3.2, and Hypothesis 3.2.10 for n;.

(1) The O0;[Gal(F »/F pz)]—module Hér' (Mm , O.(r1))m, is weakly semisimple
(Definition 2.1.2).
(2) The map

2 — [—
7Tn1! o} LZI . (HIrl (Mi’ll s 0)\ (rl))ml)Gal(Fp/sz) —> H%(Snla Ok)ml

is an isomorphism.

30 In what follows, we will also regard p as the unique place of F above p, according to the
context.
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Proof The proof of the lemma is similar to Theorem 6.2.3. For the readers’
convenience, we reproduce the details under the current setup.
For (1), by Lemma 4.2.4, we have an isomorphism

HY' (My,, 05.(r1)m, = Ho'' (Sh(V,, Kn )7 Ox(r1))m,

of OX[Gal(@,,/sz)]—modules. By Lemmas 6.1.10, 6.1.11, Proposition
C.3.1(2), and Hypothesis 3.2.10, we have an isomorphism

2
HZ (Sh(Vay, K 01(r1))my ®0; Qe = P iy, 1) 2

T

. . . R . V4
of representations of I r with coefficients in Q;, where d (1) := dlm(nloo’ P)Kn .
Here, the direct sum is taken over all automorphic representations m; of
U(V,,)(Ap+) satisfying:

° (an, 1) is a ITj-congruent standard pair (Definition 6.1.8 with ¥+ =

EII)
® T is a holomorphic discrete series representatlon of U(V,,l)(F + ) with
the Harlsh Chandra parameter {—ry, 1 —ry,...,r1 — 1,r1}; and

e 1y is trivial for every archimedean place T # 7

We may replace E, by a finite extension inside @g such that ppc(r,),., 18
defined over E, for every m; appearing in the previous direct sum. Now we
regard pBC(x,),., as arepresentation over E;. Then ppc (), (r1) admits a I' -
stable O, -lattice Rgc (), unique up to homothety, whose reduction RBC(m)
is isomorphic to o, (r1). Moreover, we have an inclusion

Hgtrl (Sh(Vy, KuD 7, O0(ri))m, S @(Rﬁc(m))@d(m)

sl

of 0, [Gal(Fp /sz)]-modules. By (PII4), we know that ,519[]’ 5 (r1) is weakly
semisimple and

. - Gal(F,/F
dimo, /1 A, 5.(11) @ /F2) _

On the other hand, we have

. Gal(F, /F
dimg, Pﬁcmn,u(” ) al®p/Fp2) > 1.

Thus by Lemma 2.1.5, for every m; in the previous direct sum, REC(m)

is weakly semisimple. Thus, H%” My, 05.(r1))m, is weakly semisimple by
Lemma 2.1.4(1). Thus, (1) follows.
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For (2), we note that in (1) we have also proved that (Hér' (Mm,
Ol(rl))ml)Gal(F, /F ) is a free O;-module of rank Zm d(my). By Theo-
1 p

rem 4.4.10, Proposition B.4.3(2), and (PII4), we know that 7, o ¢} |18
surjective. Thus, it remains to show that

> d(my) < dimg, HY Sy, 00)my ®0, Es.
2

However, the above inequality is a consequence of Proposition 4.4.4 and Corol-
lary C.3.3.
The lemma is proved. O

We have a finite morphism
Sh(Vp, Ksp) = Sh(Vy, Kp) Xspec F Sh(Viy1, Kng1),
which gives rise to a class
[Sh(Vyy, Kep)] € HZ (Sh(Vig. Kig) Xspec 7 Sh(Viy Kiy), 05.(n))

by the absolute cycle class map.

Theorem 7.3.4 (Second explicit reciprocity law) Assume Assumptions 7.1.1,
7.3.2, and Hypothesis 3.2.10 for both n and n + 1. Then we have

exp;, (locy ([Sh(V,, Kep)]),
HZ ((Sh(Ving, King) Xspec £ Sh(Vay, K ) 0 02(1))/ (o, n1))
O,[Sh(V},,, K}) x Sh(V; , K} )1/ (no, m)) ,

< expy (ﬂSh(V;,K* 1o

sp.sp) ’

where locy is introduced in Construction 4.6.1; exp, is introduced in Defi-
nition 2.1.6; and the element 1 Sh(V3. K, ) is regarded as the pushforward of

the characteristic function along the map Sh(V}, K% ) — Sh(V},K)) x

n’ “*sp,sp
Sh(Vi, 1 Ky
Proof We claim that

(1) the action of T, , on Hér" (Mg X1, Snys 01 (r0)) (mg.m)) 18 invertible; and

(2) the composite map

(id x 7)1 0 (id X 1)* 1 HE' Mg X1, May, 03.(1)) (mg.m)

2
— ngo(Mno XT, Snys 05.(r0)) (mo,mi)

is an isomorphism.

@ Springer



On the Beilinson—-Bloch—Kato conjecture 301

We prove the theorem assuming these two claims. Take a uniformizer
Ao of E;. Suppose that )»8]1511(\/;;’](* y = 0 in O,[Sh(V; K;O) X

Sp,Sp no’

Sh(Vy,, K} )1/ (ng, ny) for some integer e > 0. Applying Theorem 4.6.2 to

np’

the object (Ksp, K;41) € R(V,)sp followed by pushforward, we have
ASTZl,p.(id X 7, 1 (id X Lnl)*loc;([Sh(Vn, Ksp)) =0
in H%” My X, Sny» 05 (n))/(ng, n1). By the above two claims, we must have
)L(e)loc;([Sh(V,,, K¢p)) =0
in HY' (Mg X1, My, 05.(n))/(ng, n1). Thus, we have
Aglocy ([Sh(V,, Kp)) =0
as the map H2Z'((Sh(Vig, Kuy) Xspecr Sh(Vay. Ku)p,. 02(0)  —
H%” My X1, Mypy, O1(n)) is an isomorphism. The theorem follows.

Now we consider the two claims. By the Hochschild—Serre spectral
sequence, we have a short exact sequence

Gdl(f,,/?/)z )

(mg.my) 0

0——=H'(F 2. HY'~ (Mg 7, My O5.(0))mg,mp)) = HZ" (Mg X1, May s 02 () .y == HF' My 7, My, 02.(0))

of Oj-modules. By the Kiinneth formula and (an analog of) Lemma 6.1.11,
we have

HEMoy x1, My, O)(mom = €D HE My, 05) ®0, HE (M, 0;)

io+i1=i
for every i € Z. This implies H%” (Mno X7, an 0,.(n)) (mg,m;) = 0 and
HY' ™ (Mg 7, Mays 05.(m) mg.mp)
2r0—1 57 2 AT
~ HY"™ My, 05.(r0))my ®0, HY' My, 05.(r1))m; -
In particular, we have a canonical isomorphism

HY' (Mg X1, My, 02(1)) (mg,m))
~ H'(F 2, HY* ™ (May. 01.(0))mo ®0, HY' Ma,, 03.(r1)my). (7.3)

Similarly, we have
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H‘ZIrO (Mno pr S”l’ O)L(TO))(mo,ml)
~ Hl(FpL H%ro_l(Mno’ 0)»("0))1110 ®o0; H%(gnl ’ O)L)ml)
= H'(F )2, HY" ™ Moy, 0,00)mg) 0, HESuy. Oy (74

For claim (1), note that the action of T, , on Hg;O(MnO XT, Snys
0,.(r0)) (mg,m,) factors through the second factor under the isomorphism (7.4).
By Proposition B.4.3(2) and (PII4), we know that the action of T;hp on
H%(Sy,, O3)m, is invertible. Thus, (1) follows.

For claim (2), by (PII7) and a similar argument for the proof of
Lemma 7.2.5(3), we know that the O,, [Gal(F,,/IE‘pz)]—module

HY"™ (Mg, 04(r0))my ®0,
ker ((HZ" (M. 02r1))m) = (HY' Moy, 0100 e, v )

has zero Gal(Fp /F ,2)-coinvariants. Combining with Lemma 7.3.3, we obtain
an isomorphism

HE (Mg 31, May, 030 mo.my) = H! (F 2, HE™ Mg, 03.00))mg) ® 0, (BT Moy, 020 )G, )

from (7.3), under which the map (id x 7, ) o (id X ¢,,)* coincides with
id ® (7,1 0 1,). Thus, (2) follows.
The theorem is proved. O

Remark 7.3.5 In fact, in Theorem 7.3.4, the element locy,([Sh(V,, K,)])
belongs to the O;-submodule

Hyr (Fp. HE' ((Sh(Ving, Kng) Xspec 7 Sh(Vays Kn D), + 03.(m)/ (o, m1)),
which can be viewed as the counterpart of Hslin in the first reciprocity law.
Then the theorem implies that the exponent of locy ([Sh(V,,, Ksp)]) in the above
submodule is bounded from above by the exponent of the diagonal distribution
LIsn(vy K, ) in Ox[Sh(VE K3 ) x Sh(V7 K7 )1/ (no, ny).

no’ ny’

8 Proof of main theorems

In the section, we prove our main theorems on bounding Selmer groups. In
Sect. 8.1, we introduce the notation of admissible primes for the coefficient
field, and make some additional preparation for the main theorems. In Sects. 8.2
and 8.3, we prove our main theorems in the (Selmer) rank O and 1 cases,
respectively.
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8.1 Admissible primes for coefficient fields

We keep the setup in Sect. 7.1.

Definition 8.1.1 We say that a prime A of E, with the underlying rational
prime ¢ (and the ring of integers O; of E}), is admissible (with respect to
(Mo, My)) if

(L1) £ > 4n and £ is unramified in F’;

L2) E;in does not contain ¢-adic places;

(L3) the Galois representation pr, 5 ®E, prm,,x is absolutely irreducible;

(L4) Assumption7.1.1is satisfied, thatis, both pr, ; and pr, ; areresidually
absolutely irreducible;

(L5) under (L4), for « = 0,1, we have a I'p-stable O,-lattice R, in

P2 (fe), unique up to homothety, that is (I — «)-polarizable, for
which we choose a (1 — )-polarization E, : R§ = R} (1 — ) and an
isomorphism R, =~ 0?"" of 0;-modules.3! After adopting the nota-
tion in Sect. 2.7, we have

(LL5-1) either one of the two assumptions in Lemma 2.3.5 is satisfied;
(L5-2) (GIL, ,,) from Lemma 2.7.1 holds with F’ = F. (Definition 3.3.2)

and 2(T) = T? — 1 (see Remark 8.1.2 below for a more explicit
description);

(L6) under (L4), the homomorphism pp, »,+ (Remark 6.1.7) is rigid for
(E;;in, #) (Definition 6.3.3), and I5H07)L|Gal(f/F(Q)) is absolutely irre-
ducible;

n
(L7) for o = 0, 1, the composite homomorphism ’]I‘,imi" $a, Op — Og/A
is cohomologically generic (Definition D.1.1).

Remark 8.1.2 In Definition 8.1.1, (L5-2) is equivalent to the following asser-
tion: the image of the restriction of the homomorphism

(P4, P14+ €0): Tpr = Gng(05/1) X Gy (O3 /2) x (02/0)

(see Notation 2.6.1 for the notation) to Gal(f/ FJ{X) contains an element

(Y0, 71, §) satisfying

(a) £2 — 1 #0;

(b) for « = 0,1, y, belongs to (GL,, (0, /1) x (Oy/1)*, ¢) with order
coprime to ¢;

(c) 1 appears in the eigenvalues of each of hy,, hy,, and hy, @ h,, (Nota-
tion 2.6.2) with multiplicity one;

31 In fact, (L5) does not depend on the choice of E, and the basis, since Ey is unique up to
units in O, _and the basis is unique up to conjugation in GLj, (O0;,).
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(d) hy, does not have an eigenvalue that is equal to —1in O;,/A;
(e) h,, does not have an eigenvalue that is equal to —& in O, /A.

Lemma 8.1.3 Suppose that F* # Q, that E = Q, and that there are two
elliptic curves Ay and Ay over F™ such that for every rational prime £ of E
and a = 0, 1, we have pr, ¢ = Sym”e~! Helt(Aaf, Qo)Irg- If Aoy and A5
are not isogenous to each other and End(Aoz) = End(A5) = Z, then all
but finitely many rational primes £ are admissible.

Proof We need to show that every condition in Definition 8.1.1 excludes only
finitely many ¢. By [68, Théoreme 6], for sufficiently large ¢, the homomor-
phisms

[p+ = GL(HY (Aaz, Fe)) = GLo(Fy)

are both surjective for @ = 0, 1. Thus, we may assume that this is the case.

For (1) and (L2), this is trivial.

For (L3), (L4), and (L5), this has been proved in Proposition 2.7.2.

For (L6), by [51, Corollary 4.1.2], the condition that o, ;, + is rigid for
(Z;in, #) excludes only finitely many £. It is clear that the remaining two
conditions also exclude only finitely many £.

For (L7), this follows from Corollary D.1.4. |

Lemma 8.1.4 Keep the setup in Sect. 7.1. Suppose that

(a) there exists a very special inert prime p of F* (Definition 3.3.4) such that
Iy, p is Steinberg, and Iy y is unramified whose Satake parameter contains
1 exactly once;

(b) fora = 0, 1, there exists a nonarchimedean place wy of F such that Iy ,,,
is supercuspidal; and

(c) FF #Q.
Then all but finitely many primes A of E are admissible.

Proof We need to show that every condition in Definition 8.1.1 excludes only
finitely many A.

For (1) and (L2), this is trivial.

For (L4), this follows from [51, Proposition 4.2.3(1)] by (b).

For (L3), this follows from Lemma 8.1.5 below by (L4) and (a).

For (L6), this follows from [51, Theorem 4.2.6] by (b).

For (L7), this follows from Corollary D.1.4 by (c).

For (L5-1), let A be a prime of E satisfying (LL4) and (L.6), whose underlying
rational prime is at least 2n(n + 1) — 1. Then by (a), pn,,» and pr, » satisfy
the assumptions in Lemma 8.1.5 below, with k = O, /A and I' = I'r. Thus,
by Lemma 8.1.5(2), assumption (b) of Lemma 2.3.5, hence (L5-1) hold.
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For (L5-2), take an arithmetic Frobenius element ¢, € T’ Fi By Defini-

tion 3.3.4, ¢, belongs to Gal(f/FrEx). Fora = 0,1, put rq := L%“J as
always. By (a), the Satake parameter of I p is {pil, R pi(zrofl)}; and we
may write the Satake parameter of IT; j, as {1, alil, R oz;'fl} in which «; is
an algebraic number other than 1 for 1 < i < ry. For our purpose, we may
replace E by a finite extension in C such that o; € E for 1 < i < ry. By
Proposition 3.2.4(1), we have |o;| = 1 for 1 < i < ry. Therefore, for all but
finitely many prime A of E, we have

e {p,ai, ..., }is contained in O,;
e {pT'modx, ..., pT?0=D mod A} consists of distinct elements and does
not contain —1;
e {ymod A |1 < i < ry}isdisjoint from {1, —p, —pil};
° {piloei mod)»,...,pi(zrofl)ai modA | 1 < i < r} is disjoint from
{p.p ')
Then for every prime A satisfying (L4) and the above properties, (L5-2)
(that is, (GI}F,, ) from Lemma 2.7.1) is satisfied by taking the element

(/60+’ ﬁl+a ée)(‘.bp)
The lemma is proved. O

For every integer m > 1, we denote by J,, the standard upper triangular
nilpotent Jordan block

010 ---0
01 ---0
01

or size m.

Lemma 8.1.5 Let I" be a group, and k a field of characteristic either zero or
at least 2n(n + 1) — 1. Let po: I' — GL,,(k) and p1: I' — GL,, (k) be two
homomorphisms that are absolutely irreducible. Suppose that there exists an
elementt € I' such that po(t) = 1+ Jy,, and p1(t) = 1. Then we have

(1) po ® p1 is absolutely irreducible;
(2) po ® p1 is not a subquotient of ad(py ® p1).

Proof We may assume that k is algebraically closed. For ¢ = 0, 1, let V; =
k®"i be the space which I' acts on through p,. By [69, Corollaire 1], we know
that both pg ® p1 and ad(pg ® p1) are semisimple.

For (1), we fix an element e € Vj such that the z-invariant subspace of Vj
is spanned by e. Then it is clear that the ¢-invariant subspace of Vy ®; Vi is
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k.e ®x V1. Now suppose that W is a nonzero direct summand of the k[I"]-
module Vo ®; Vi. Let V| € Vi be the subspace such that k.e ®; V| is the
t-invariant subspace of W. Then it is easy to see that V| is closed under the
action of I", which forces Vl/ = V| since p is irreducible. This further implies
that W = V ® V1 by looking at the Jordan decomposition of ¢ on W, hence
po ® pi is irreducible.

For (2), note that (pg ® p1)(¢) is conjugate to (1 + JHO)@’”. On the other
hand, ad(pg ® p1)(¢) is conjugate to

no

P + ip®i.
i=1

Since ng isevenand 1,3, ..., 2n9 — 1 are odd, pg ® p; is not a subquotient
of ad(pp ® p1) as ad(pg ® p1) is semisimple.
The lemma is proved. O

The following two lemmas will be used in later subsections.

Lemma 8.1.6 The representation pri, » ®k, pm,,+(n) is pure of weight —1 at
every nonarchimedean place w of F not above £ (Definition 2.4.4).

Proof It suffices to show that foro = 0, 1, pr1, Al Fu is pure of some weight.
By [74, Lemma 1.4(3)] and Proposition 3.2.4(2), it follows from the fact that
Iy, is tempered, which is ensured by Proposition 3.2.4(1). O

Lemma 8.1.7 Assume Hypothesis 3.2.10 for ny. Let V,, be a standard
indefinite hermitian space of rankny over I, A, a self-dual vaézg—ouz-&—. Or,-

o TLuz; . . .
lattice in Vy, @F Ap> ™, and ) a prime of E. Consider a finite set
B of special inert primes of F™ whose underlying rational primes are
distinct and coprime to E;in’ and an object K,,, € R(V,,) of the form

Kn)gr X vaéz;ouzntm U(An ) (Opy). Put

DIRIIU) o t o9

my = T,™ ¥ N ker (’]I‘,)flm‘“ AL O — OE/A)
where S is the union of 2;; for all underlying rational primes p of ‘B.
Suppose that Py (11, ,) mod A is intertwining generic (Definition 3.1.5) for every
t ¢
p € ‘B, and that the composite homomorphism ’]I‘flm‘“ AAiN O — Og/\is
cohomologically generic. Then for every special maximal subgroup K| Y of
HPE‘B U(V,“)(FPJr ) and every i € 7, we have an isomorphism
HL, (Sh(Vay, Kn ) g, O2)my =~ HE (Sh(Vy, KEK] 05, O2)m,
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of O, rl-modules.

Proof We firstnote thatforevery p € B, U(V,, )(F;) has two special maximal
subgroups up to conjugation, exact one of which is hyperspecial maximal.

For the lemma, it suffices to show the following: For every p € ‘B3, every spe-
cial maximal subgroup KZ,% of ]_[p,egm{p} U(an)(Fp’,L ), every hyperspecial
maximal subgroup K7, . of U(an)(Fer ), and every non-hyperspecial special
maximal subgroup K? P of U(Vy, )(Fp+ ), there is an isomorphism

H. (Sh(V,,,, KEK? (Ko p)F, O0)m,

= Hét(Sh(an’ K‘BK;,pl B nl p)[ﬁ Ok)ml
of 0,[I'r]-modules for every i € @
Fix an isomorphism ty: C >~ Q, that induces the prime A of E. Since

+ ¢
the composite homomorphism ']I‘f o o g — Og /A is cohomologically
generic, we have for ? € {o, e}, H’ (Sh(V,“, K:ﬁKﬂI T n1 p)F, Of/Mm, =0

for i # 2ry, hence Hét(Sh(Vn],K;ﬁKmm n1,p)F’ O3)m, 1s Oy -torsion free
for every i € Z. Thus, it suffices to show that there is an isomorphism

Hé[(Sh(an ’ KmK}/fl B ”l p)Fa OA.)ml ®0)L QZ
~ Hg (Sh(Vy,, KSBK,TI bt l,p)f, O))m, ®o, Qe (8.1)

of Q¢[I"r]-modules for every i € Z. Let A, P be the self-dual O Fp -lattice
in V,; ®F Fy whose stabilizer is K, .. Wlthout loss of generality, we may
assume that K7, . is the stabilizer of a lattice A7 satisfying Ay o C A7
and (A; p) /pAnl p = ~F p2- To show (8.1), it sufﬁces to show that for every
(necessarlly cuspidal) automorphlc representation w1 of U(V,,)(Ap+) that

appears in either side of (8.1), the maps

Kp K? Kp
[ 1o} ny.p ny.p oe " P ni.p
Toip Tip = Ty o TolpiTy, =Ty (8.2)

are both isomorphisms. Here, T?° . and T% , are introduced in Definition 5.8.1.

> TnLp ni,p
By the Chebotarev density theorem, ppc(r,)., and pm, ;. ®k, Q¢ have the
isomorphic (irreducible) residual representations. In particular, the Satake
parameter of BC(rr1), does not contain {—p, — p~ 1} by Proposition 3.2.4(2)
and the assumption that Py, ,) mod A is intertwining generic. Let 77 be an
(unramified) principal series representation of U(V,, )(FpJr ) that has 7y as
a constituent. By Proposition B.4.3(1) and the definition of the intertwining

Hecke operator I} := T}% ,oT,? ., from Definition 5.8.1 or Definition B.2.3,
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o o

~K Ko . . . . .
DroMeP — P is an isomorphism. Since

the composite map T;®, o T?°

ni,p ny,p:
o [ ]
both Knl,p and Knl,p

#%1p and 7%71» are one-dimensional. It follows that the constituent of 7 that
has nonzero K, ,-invariants is the same as the constituent that has nonzero
K» l’p—invariants, which further implies that the two maps in (8.2) are both
isomorphisms. Thus, we obtain the isomorphism (8.1).

The lemma is proved. O

are special maximal subgroups of U(V,,,)(F;’), both

8.2 Main theorem in the Selmer rank 0 case

The following lemma is a key ingredient in the proof of Theorem 8.2.2, which
is essentially the solution of the Gan—Gross—Prasad conjecture for 1y x IT;.

Lemma 8.2.1 Keep the setup in Sect. 7.1. IfL(%, [Tg x I1y) # O, then there
exist

e a standard definite hermitian space V, of rank n over F, together with
+Unt
a self-dual [],45+ 5+ Of,-lattice Ay in Vi ®F A?‘”UE"“" (and put
VZ+1 = (V) and AZH = (AD)s),
e an object (K;,, K 1) € R(V})sp in which Kza is of the form

K, = [T ®pox I vag)op

vex ™t vgstust

min min
fora =0,1,
such that

Y. fGshp(s) #0

seSh(Ve,K2)

for some element f € OE[Sh(V;’ZO, Kflo)][ker on,] ®op OE[Sh(V;'ll, Kfll)]
[ker ¢, 1.

Proof In view of Remark 1.1.4, this follows from the direction (1)=(2) of [6,
Theorem 1.8], together with [6, Remark 4.17]. Note that since our Iy and ITj
are relevant representations of GL,,(Ar) and GL,, (AF), respectively, both
members in the pair of hermitian spaces in (2) of [6, Theorem 1.8] have to be
standard definite. O

Theorem 8.2.2 Keep the setup in Sect. 7.1. Assume Hypothesis 3.2.10 for both
nandn+ 1. IfL(%, ITo x I[11) # O, then for all admissible primes A of E, we
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have

H} (F, prig.x ®F, pry.a(n) = 0.

Proof By Lemma 8.2.1, we may fix the choices of V;, A7, (K, K,‘;H) in that
lemma such that

> Fls.shi(s) #0
seSh(VS,K)

for some f € Og[Sh(V? K,‘;O)][kerqbno] ®o, Op[Sh(V; Kf,l)][ker¢n,].

no’ np’
Moreover, by Lemma D.2.2(3), we may assume that (K,‘;o)v is transferable

(Definition D.2.1) forv € T, .
We take a prime X of £ with the underlying rational prime £. We adopt nota-
tion in Sect. 2.7 with the initial data in Definition 8.1.1. Define two nonnegative

integers mper and myy as follows.

(1) Let mper be the largest (nonnegative) integer such that
>, flshy(s) € A0
s€Sh(Ve,K2)

for every

f € Oe[Sh(V; , K;)llker ¢yl ®o, Op[Sh(Vy,, Kj )llker ¢, ].
(2) We choose a standard indefinite hermitian space V,, over F of rank ni,
together with an identification U((V, 1 )®°) ~ U(Vﬁ‘l’) of reductive groups
over A;’,ﬂ.” In particular, we have the Shimura variety Sh(V,,, Kj; ). By

Hypothesis 3.2.10, we have an isomorphism
H; (Sh(V,. KO ). Ea(r))/ ket ¢, = (R§ ®0, E;) P
of E,[I" r]-modules for some integer ;11 > 0. We fix a map
H.' (Sh(V,,. K2 ). 01(r1))/ ker g, — (R)EM

of 0, [I" r]-modules whose kernel and cokernel are both O, -torsion. Then
we let myy be the smallest nonnegative integer such that both the kernel
and the cokernel are annihilated by A",

32 There are many choices of such V,;, and the isomorphism. We choose one only to get some
control on the discrepancy of the integral cohomology of Shimura varieties and the lattice
coming from Galois representations.
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Now we assume that A is admissible.
We start to prove the theorem by contradiction, hence assume

dimg, H}y(F, priga ®k, pria(n) > 1

Take a sufficiently large positive integer m which will be determined later. By
Lemma 8.1.6, we may apply Proposition 2.4.6 by taking X to be the set of
places of F above U E+ Then we obtain a submodule S of H1 r(F, R

min
that is free of rank 1 over O; /A™ ™% such that loc,|s = O for every nonar-
chimedean place w € ¥ notabove £. Now we apply the discussion in Sect. 2.3
to the submodule S € H!(F, R™). By (L5-1) and Lemma 2.3.4, we obtain

an injective map
0s: Gal(Fs/Fjsm) — Homg, (S, R"™)

whose image generates an OA—submodule containing AR Homy, (S, R,
which further contains A*™® Homy, (S, R™) by Lemma 2.3.3 and (L3). By
(L5-2) and Lemma 2.7.1, we may choose an element (y1, y», £) in the image

of (,6{:"_) ,5%:1_), Eém))|Ga1(f JFE) satisfying (a—e) in Lemma 2.7.1. It then gives

rise to an element y € (GL,,n, (O /A") x (O, /A™)*, ¢) as in Notation 2.6.2
such that (R)" is a free O, /A™-module of rank 1. Now we apply the
discussion in Sect. 2.6. By Proposition 2.6.6 (with my = my and rg = 1), we
may fix an (S, y)-abundant element ¥ € Gy, (Definition 2.6.5).

We apply the discussion and notation in Sect. 7.2 to our situation with A,
m, o =0, 5] = (Ve, Ap). Ky and (K7, K2 ). By the Chebotarev

density theorem, we can choose a y-associated place (Definition 2.6.3) w(+’”>

mll’l 2

of FJ(rm) satisfying W, = W and whose underlying prime p of F* (and the
underlying rational prime p) is a special inert prime satisfying (P11)—(PI7) and

(PI8) the natural map

+

i o 3fus?
HL (Sh(Vyy. K250 03 () /(Tt 7% (1 ker )
— H (Sh(Vy,, K3 )7, 01(r1))/ ker ¢,

is an isomorphism for every integer i.

We also choose remaining data in Sect. 5.1 with Qd’ Q 2, data as in Nota-
tion 5.10.13, and an indefinite uniformization datum asin N otation 5.10.1. By
the definition of mpe, we have

exp;, <]lSh(V° Ke)» Oe[Sh(Vy  Ki ) x Sh(V; , K )1/ (no, nl)) m — Mper,
(8.3)
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where we recall that
srus >t N
ng =T, 7 Nker <’]1‘noj“‘“ @» O — OE/)J")

fora = 0, 1. Here, ILSh(V;,K;’p) is nothing but the characteristic function of the
graph A Sh(Vy, K?) of the map Sh(V;,K?) — Sh(VZH, K;H).
We claim that there exists an element ¢; € H! (F, R¢) satisfying

expy (Aplocy(cr), Hlg(Fy, R™%)) = m — mper —miai; (3.4)

sing
and such that for every nonarchimedean place w of F not above =1 U {p},
locy (c1) € Hpg(Fy, R™°) (8.5)

holds.
We first prove the theorem assuming the existence of such ¢;. Fix a generator
of the submodule S C Hlf’R(F, R and denote by its image in H!(F, R™)

—~

by s1. We also identify R?¢ with (R)* via the polarization E. Now we
compute the local Tate pairing (s, ¢1)y (2.2) for every nonarchimedean place
w of F.

e Suppose that w is above Enfin. Then we have loc,, (s1) = 0 by our choice
of S. Thus, (s1, c1)w = 0.

e Suppose that w is above EZF. Then by (L2), Rq is crystalline with Hodge—
Tate weights in [—n,n — 1]. Thus, we have loc,, (s1) € HIIIS(Fw, R(’"))
by Lemma 2.4.3(2) and (L1). By (8.5), Lemma 2.2.7 and (L1), we have
At (51 c1)yw = 0 where 9, = A™dif C O, is the different ideal of E; over
Q.

e Suppose that w is not above Lt U EZ U{p}. Then by (L2), R is unramified.

min ~ <
Thus, we have loc,, (s1) € HL (F,, R™) by Lemma 2.4.3(1). By (8.5) and
Lemma 2.2.3, we have (s, ¢1)y = 0.
e Suppose that w is the unique place above p. By Proposition 2.6.7, we have

exp, <locw(s1), Hrlls(Fw, I_{(m))> >m—my — tR.
By (8.4) and Lemma 2.2.3 again, we have

€XP,, ((Sl, cws O)L/)\m) Z M — Mper — Mgt — My — TR.
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Therefore, as long as we take m such that m > mper + mia +ms + tr + majr,
we will have a contradiction to the relation

Y s erhw =0,

w

where the sum is taken over all nonarchimedean places w of F. The theorem
is proved.

Now we consider the claim on the existence of c;. First note that by
Remark 6.1.5, Assumption 7.2.3 is satisfied by Lemma 5.2.7 and (L7).

By (L4), (L6), and Theorem 6.3.4(5), we have an isomorphism

e oK — Do
B2 (V) 30K K] )7 Oaro))/mo = (RE™) (8.6)

of 0, [I"r]-modules, for some positive integer 1ig.
By Lemma 8.1.7, we have an isomorphism

H (Sh(V,. Ky ). Oo)m; ~ HL (Sh(V), . 30, KITK), )7 O3y

of 0, [I"r]-modules. Moreover, by (PI8), we may fix a map

r °K uzy
HZ Sh(V), 30 KEPK), )7 021/ (Tat O ker gm,) — (R) ™!

of 0, [I'r]-modules whose kernel and cokernel are both annihilated by A",
Taking quotient by A", we obtain a map

HZ SV}, 3 KETK, )5, Oa(r)) /g — (R“")C) (8.7)

of 0, [I"r]-modules whose kernel and cokernel are both annihilated by A/"t,
To continue, we adopt the notational abbreviation prior to Corollary 7.2.9.
By Lemma 6.1.11 and the Kiinneth formula, we obtain a map

_ _ DSurom1
T H (S, Xspec £ Sh) ). 0x(n))/(ng, ny) — (R<'">C) (8.8)

of 0, [I"r]-modules whose kernel and cokernel are both annihilated by A™t,
from (8.6) and (8.7). Recall that we have a class

AJ(Sh},) € H'(F, H' ' ((Sh), xspec £ Shy, ). O5.(1))/(no. n1)),
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where Shg, is nothing but the graph of the morphism Sh; — Sh; .. By
Corollary 7.2.9 and (8.3), we have

exp;. (aplocp AJ(Sh{y). Hip (Fyp, HZ' ™ ((Shy, X spec 7 Sh), ), 02(n))/ (o, nl)))
= m — Mper. (89)

Forevery 1 <i < popi, let
Yo H3 7 H((Sh), Xspec F S, )7, 01(n))/(ng, ny) — R°
be the composition of T (8.8) with the projection to the i-th factor; and put
ci == H'(F, Y;)(AJ(Shy)) € H!(F,R"™°).
Then (8.9) implies

max exp; <8plocp (ci), Héing(Fp, R(m)C)) = m — Mper — Miy.
1<i<popt

Without loss of generality, we obtain (8.4). On the other hand, as both Sh/, and
Sh;l 1 have smooth models over OF,, for which (an analogue of) Lemma 4.2.4
holds, we obtain (8.5). |

Now we deduce two concrete consequences from Theorem 8.2.2.

Corollary 8.2.3 Let n > 2 be an integer and denote by ng and n| the unique
even and odd numbers in {n, n+1}, respectively. Let Ay and A be two modular
elliptic curves over F such that End(Ao7) = End(A ) = Z. Suppose that

(a) Aoz and A are not isogenous to each other;
(b) both Sym”"_1 Ag and Sym’”_1 A1 are modular; and
() Ft #Qifn > 3.

If the (central critical) L-value L(n, Sym™ ™! Agp x Sym™ ~! A, ¢) does not
vanish, then we have

H(F, Sym™ ™! H (Aoz, Qp) ®g, Sym™ ™ Hg (A1, Qo) (1) =0

for all but finitely many rational primes .

Proof By (b)and[1], both Sym™~! Ay and Sym™ ~! Az are modular. Thus,
we may let I, be the (cuspidal) automorphic representation of GL,,(AF)
associated to Sym”ﬂ’_1 Aqp for « = 0, 1, which is a relevant representation
(Definition 1.1.3). We also have the identity

L(n+s,Sym™ ™" Agp x Sym™ ' Ay p) = L(3 +5, [o x ITy)
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of L-functions, and that the representation of I'r on Sym”‘%_1 Hét(Aaf, Qo)
is isomorphic to pr, ¢ for @ = 0, 1. By Proposition 3.2.11 and (c), Hypothe-
sis 3.2.10 is known in this case. Then the corollary follows immediately from
Theorem 8.2.2 and Lemma 8.1.3 (where we use (a) and (¢)) with E = Q. O

Remark 8.2.4 In this remark, we summarize the current knowledge on the
modularity of symmetric powers of elliptic curves, namely, condition (a)
in Corollary 8.2.3. Let A be a modular elliptic curve over F* such that
End(Af) = Z. We have

° Sym2 A is modular by [26];

° Sym3 A is modular by [36];

° Sym4 A is modular by [35];

° Sym5 A and Sym6 A are modular if F is linearly disjoint from Q(¢s) over
Q;

e Sym’ A is modular if F7 is linearly disjoint from Q(¢35) over Q;

e Sym® A is modular if F7 is linearly disjoint from Q(z7) over Q;

in which the last three cases are obtained in a series of recent work [19-21] of
Clozel and Thorne.

After we completed this article, we have learnt the groundbreaking result
of Newton—Thorne [57,58] where they prove the modularity of all symmetric
powers of elliptic curves over Q without complex multiplication. In particular,
it follows that Sym” A is modular if FT/Q is solvable and A is the base change
of an elliptic curve over Q.

Corollary 8.2.5 Keep the setup in Sect. 7.1. Suppose that

(a) there exists a very special inert prime p of F* (Definition 3.3.4) such that
Io,p is Steinberg, and Iy y is unramified whose Satake parameter contains
1 exactly once;

(b) fora =0, 1, there exists a nonarchimedean place wy of F such that Ty ),
is supercuspidal; and

() F* #Qifn > 3.
IfL(%, [Ty x I1y) # O, then for all but finitely many primes A of E, we have

H (F, prig.s. ®E; pry.a(m) = 0.

Proof This follows from Theorem 8.2.2 and Lemma 8.1.4. O

8.3 Main theorem in the Selmer rank 1 case

We state the following weak version of the arithmetic Gan—Gross—Prasad con-
jecture.
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Conjecture 8.3.1 Suppose that L(%, ITo x IT1) = O but L’(%, IMo x IT1) # 0.
Then there exist

e a standard indefinite hermitian space V,, of rank n over F, together with
+

+ .
a self-dual ]_[v¢2;ro us+ OF,-lattice A, in V, ®Fp A?’OUE““ (and put
Vn—H = (Vn)]j and An—H = (An)jj)a
e an object (K, K1) € R(V,)sp in which K;,, is of the form

Ko, =[] ®dvx ] U@n)(Op)

vex® v¢TLust

min min
fora =0,1,

such that for every prime A of E, the graph A Sh(V,,, K;,) of the morphism
shy: Sh(V,,K,) — Sh(V,41,K,41) (4.6) is nonvanishing in the quotient
Chow group

CH" (Sh(vno, Kno) X Spec F Sh(vnl , Km))E/(ker ¢l'[0» ker ¢l'[1)-

In the situation of the above conjecture, since both I1p and I1; are cuspidal,
we have

H ((Sh(V g, Kig) Xspec 7 Sh(Vay, Ku)) 7, Ex)/(ker ¢y, ker ¢r,) = 0

if i # 2n — 1. In particular, the Hochschild—Serre spectral sequence gives rise
to a coboundary map

AJ)\HO‘HI 2 2" (Sh(Vig. King) Xspec 7 Sh(Viy . Kiy)) —
H1 (F, Hegtn_l((sh(Vno, Kn()) XSpec F Sh(an 5 Knl))fa Ek(”))/(ker ¢1'10’ ker ¢l'11 ))

Theorem 8.3.2 Keep the setup in Sect. 7.1. Assume Hypothesis 3.2.10 for both
n and n + 1. Let A be a prime of E for which there exist

e a standard indefinite hermitian space V, of rank n over F, together with
+

+ .
a self-dual vaéE&UE* Or,-lattice A, in V, QF A?O"UE“‘”‘ (and put
Vig1 = (Vn)]j and A,y = (An)ﬁ),
e an object (K, Ky 1) € R(Vy,)sp in which Ky, is of the form

K= [] ®Kdvx ] U@

vex® verLust

min min
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for a =0, 1, satisfying that (K,,)y is a transferable open compact sub-
group (Definition D.2.1) of U(V; )(Fj)for vexXT

no min’

such that
Ayjlo T
) (ASh(V,, K,)) #0. (8.10)
If A is admissible, then we have
dimg, H}(F, Prip,x RF;, prya(n)) = 1.

Remark 8.3.3 In fact, (8.10) already implies that the global epsilon factor of
H() X H] is —1.

Proof of Theorem 8.3.2 We take an admissible prime A of E for which we
may choose data V,, A,, (K,, K,+1) as in the statement of the theorem
such that AJ™ (A Sh(V,,, K,)) # 0. Lemma 8.1.6 and (L2) imply that

AJ?O’Hl (A Sh(V,, K,)) belongs to the subspace

HY (F, HZ' ™ ((Sh(Virg. King) Xspec # Sh(Va,. K ). Es(m))/ (ker gy ker ¢, ))
and hence to the submodule

H}(F, HZ' 1 ((Sh(Vang. Kip) Xspec £ Sh(Vay, Ky ). Ox(n)/ (ker ¢y, Ker ¢, )
by Definition 2.4.2.

We adopt notation in Sect. 2.7 with the initial data in Definition 8.1.1. Define
two nonnegative integers mpe;r and miye as follows.

(1) By Hypothesis 3.2.10, we may choose a map
Hﬁg"l ((Sh(Vyg, Kng) Xspec F Sh(Viy, Ku))) 7, Os(n))/ (ker ¢, ker ¢pr,) — RE
of 0, [T p]-modules such that the induced image of AJ?O’ T (A Sh(V,, K,))
in H} (F,R®), denoted by s€, is non-torsion. Let s € H} (F, R) be the ele-

ment corresponding to s¢ under the isomorphism in Lemma 2.4.5. We
put

Miper 1= ordy. (5, H}-(F, R)/H(F, Ror )
(Definition 2.1.6), which is a nonnegative integer.
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(2) By Hypothesis 3.2.10, we have an isomorphism
H' (Sh(Va,, Kn) . Ea(r1))/ ker ¢m, = (Rf ®0, E;)
of E,[I"r]-modules for some integer 11 > 0. We fix a map
H (Sh(Vr,. Ku)g. 01(rD)/ ker g, — (R

of O, [I" r]-modules whose kernel and cokernel are both O, -torsion. Then
we let myy be the smallest nonnegative integer such that both the kernel
and the cokernel are annihilated by A",

Note that in (1), we obtain an element s € H}(F, R)g = H}(F, Rg) =
H}(F Py Ok, pm.a(m)) that is nonzero. In particular, we have

dimEA f(F PTlg, 1 ®E}L P11y, )»(n))
We start to prove the theorem by contradlctlon hence assume

dimg, Hy(F, prig.x ®E; pry (1) =2

Take a sufficiently large positive integer m which will be determined later. We
fix a uniformizer Ag of E;. By Lemma 8.1.6, we may apply Proposition 2.4.6
by taking X to be the set of places of F above E+ U E+ Then we obtain a

—m
Ps of order

0,33 that is free of rank 2 over O, /A~"% and such that loc,,|s = O for every
nonarchimedean place w € X not above £. Now we apply the discussion in
Sect. 2.3 to the submodule S € H!(F, R™). By (L5-1) and Lemma 2.3.4, we
obtain an injective map

submodule S of H! R(F R containing (the image of) )‘0

0s: Gal(Fs/Fzm) — Homg, (S,R™)

whose image generates an O, -submodule containing A% Rem Hom 0, (S, RM),
which further contains A*® Homy, (S, R™) by Lemma 2.3.3 and (L3). By
(L5-2) and Lemma 2.7.1, we may choose an element (y1, y2, &) in the image

of (,ol("i) pgf, eém))|Gal( F/FL) satisfying (a—e) in Lemma 2.7.1. It then gives

rise to an element y € (GLnOn1 (05 /M) x (0, /A™)*, ¢) as in Notation 2.6.2
such that (R(™)"r is a free 0;/A™-module of rank 1. Now we apply the
discussion in Sect. 2.6. By Proposition 2.6.6 (with mg = my and rg = 2),
we may fix an (S, y)-abundant pair (¥, ¥,) € G2 (Deﬁnltlon 2.6.5). By
Proposition 2.6.7, we may choose a basis {s1, s2} of S such that Og(W)(s2) =

—HMper )

33 Here, A(; "s is any element in H (F R) satisfying A oper (Ao S.
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Os(¥2)(s1) =0, and

expy (O5(W) ) RO ) >m—ms — 4 (8.11)
for j = 1,2. Moreover, without loss of generality, we may assume
)\gz_m"ers = ays1 + azsy in which a; € 0.

First, we apply the discussion and notation in Sect. 7.3 to our situation with A,
m, Efrrn =0, Eﬁr =3 (V,, An), K, and (K,,, K, +1). By the Chebotarev

min?
density theorem, we can choose a y-associated place (Definition 2.6.3) wi"i)
of FJ(rm) satisfying W = Wi and whose underlying prime p; of F * (and the
1

underlying rational prime p1) is a special inert prime satisfying (PII1)-(PII7)
and

(PII8) the natural map

; Eﬁ'UElfl
HL (Sh(V,,, K )7, 05.(r1))/ (T, Nker ¢r1,)
— HL (Sh(Vyy,, Ku)) 7, 0a(r1))/ ker ¢,

is an isomorphism for every integer i.

We also choose remaining data in Sect. 4.1 with Qg’] =Q p2 A definite uni-
formization datum (V}, , i,,,{A} . }qp,) for e = 0,1 as in Notation 4.5.7.

By (8.11) and our choice of S, we have
exp;, (s, H! (F,,. R(m>)) > m — Mper — 41,
which implies that
exp; (106p; (12 SH(V,o Kn) D, HE ((Sh(Ving, Ki) Xspec # Sh(Vays Kug))y + L)/ (0 11) ) > 1 — nper —
Here, we recall that

Thust s+ .
Ny = Tnf "IN ker (']I‘nu""" E—) O — OE/km)

for « = 0, 1. Note that, similar to Remark 6.1.5, Assumption 7.3.2 is satisfied
by Lemma 4.2.4 and (L7). Thus, we may apply Theorem 7.3.4, hence obtain

expy, <15h(V;,K;p), Og[Sh(V;,, K} ) x Sh(V}, , K}, )]/ (no, n1)>

> m — mper — 4tR. (8.12)
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Second, we apply the discussion and notation in Sect. 7.2 to our situa-
tion with A, m, £ = {pi}, T = £, U T, Ve = Vi, Ky = K;
and (Kg,, KP,|) = (K;p, K. 1)- By the Chebotarev density theorem, we can
choose a y-associated place ng_) of Fj(Lm) satisfying \pwé’”) = W, and whose
underlying prime p, of F* (and the underlying rational prime p;) is a special

inert prime satisfying (PI11)-(PI7), p» # p1, and
(PI8) the natural map

+Unt

2r DRIT) >n
H ' (Sh(Vay, Kn) 7, 00 (r1))/ (T, N er ér1,)
- Hitrl (Sh(Vy,, K ), 05.(r1))/ ker ¢,

is an isomorphism.

We claim that there exists an element ¢; € H! (F, R<) satisfying

exp; (a,gzloc,g2 (), HY  (Fp,. R<m>C)) > m = mper — 4tg — mig; (8.13)

sing
and such that for every nonarchimedean place w of F notabove XU {p1, p>},
locy (c2) € HL (F,,, RM™*) (8.14)

holds.

By Remark 4.4.8 and Remark 4.5.8, we know that there exists an isomor-
phism U((V;,)®) =~ U(V}?) sending K7 to K;,. Then the claim can be
proved by the exactly same argument for the parallel claim in the proof of The-
orem 8.2.2, using (8.12) and the fact that pry, ;4 is rigid for (E;in, 2;1)34

Now we deduce a contradiction. Replace s, by its image in H}(F ,R0M)y,
We also identify R”¢ with (R"))* via the polarization E. Now we compute
the local Tate pairing (s2, ¢2), (2.2) for every nonarchimedean place w of F.

_l’_

e Suppose that w is above X, .

of S. Thus, (s2, ¢3)y = 0.

e Suppose that w is above EZ. Then by (L2), R is crystalline with Hodge-
Tate weights in [1 — n, n]. Thus, we have loc,,(s2) € HL (F,, R™) by
Lemma 2.4.3(2) and (L1). By (8.14), Lemma 2.2.7 and (L.1), we have
A (g5 ¢p)y = 0 where 0, = A™dif C O, is the different ideal of E; over

Qe.

Then we have locy, (s2) = 0 by our choice

34 In fact, one needs to use the additional fact that when F # Q, both Shimura varieties
Sh;o and Sh,/ll have proper smooth reduction at every place w of F above 2;1\{;31}. See
Remark 5.2.8.
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e Suppose that w is not above 2$in U EZ U {p1, p2}. Then by (L2), R is
unramified. Thus, we have loc, (s2) € Hrlls(Fw, Rm) by Lemma 2.4.3(1).
By (8.14) and Lemma 2.2.3, we have (s2, ¢2)y = 0.

e Suppose that w is the unique place above p;. Then we have loc,, (s2) = 0
by Proposition 2.6.7. Thus, we have (s2, c2), = 0.

e Suppose that w is the unique place above p». Then by Proposition 2.6.7,

we have
exp; (locw(sz), H. (F,, R(””)) > m—my — drg.
By (8.13) and Lemma 2.2.3 again, we have
expy, ((s2, ¢2)w, Ox/A™) = m — Mmper — My — my — 8tg.

Therefore, as long as we take m such that m > mper +mia +my + 8tr +myjt,
we will have a contradiction to the relation

Y (52, 200 =0,

w

where the sum is taken over all nonarchimedean places w of F. The theorem
is proved. O

We also have an analogue of Corollary 8.2.5 in the rank 1 case, which we
leave to the readers to formulate.
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Appendix A. Unitary Deligne-Lusztig varieties

In this appendix, we study some unitary Deligne—Lusztig varieties in Sects. A.1
and A.2 for those used in Sects. 4 and 5, respectively.

We fix a rational prime p. Let « be a field containing I >. Recall from
Sect. 1.3 that we denote by o : S — S the absolute p-power Frobenius mor-
phism for schemes § in characteristic p.

A.1 Unitary Deligne-Lusztig varieties in the smooth case

In this subsection, we introduce certain Deligne—Lusztig varieties that appear
in the special fiber of the smooth integral model studied in Sect. 4.

Consider a pair (¥,{ , }) in which ¥ is a finite dimensional «-linear
space, and { , }: ¥ x ¥ — k is a (not necessarily non-degenerate) pairing
that is («, o)-linear in the first variable and «-linear in the second variable.
For every x-scheme S, put s := 7 ®, Os. Then there is a unique pairing
{, }s: 75 x Vs — Og extending { , } that is (Og, o)-linear in the first
variable and Og-linear in the second variable. For a subbundle H C 7§, we
denote by H 1 C ¥ its right orthogonal complement under { , }s.

Definition A.1.1 We say that a pair (¥, { , }) is admissible if there exists an
[ »-linear subspace Y C Y% such that the induced map %) ®F,)2 K — Y& is

an isomorphism, and {x, y} = —{y, x}° for every x, y € %).

Definition A.1.2 For a pair (7, {, }) and an integer 4, we define a presheaf
DL(7,{, }, h)

on Sch/, such that for every S € Schy, DL(7,{ , }, h)(S) is the set of
subbundles H of ¥s of rank 4 such that H € H. We call DL(¥, {, }, h)
the (unitary) Deligne—Lusztig variety (see Proposition A.1.3 below) attached
to (¥,{, }) of rank A.

Proposition A.1.3 Consider an admissible pair (¥, { , }). Put N := dim, ¥
and d := dim, 7.

(1) If2h < N +d orh > N, then DL(V, {, }, h) is empty.

(2) If N +d <2h < 2N, then DL(V, {, }, h) is represented by a projective
smooth scheme over k of dimension (2h — N —d)(N — h) with a canonical
isomorphism for its tangent sheaf

ToLr (. yyx = Hom (H/Hﬂ, DL (., },h)/H)
where H C YpLey (, 1.h) iS the universal subbundle.
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(3) If N+d <2h < 2N, then DL(Y, {, }, h) is geometrically irreducible.

Proof Part (1) is obvious from the definitions.

For (2), DL(7¥,{ , }, h) is a closed sub-presheaf of the Grassmannian
scheme Gr(7, h) classifying subbundles of ¥ of rank h, hence is repre-
sented by a projective scheme over k. Now we compute the tangent sheaf.
Consider a closed immersion S <> § in Sch /« defined by an ideal sheaf 7
with Z2 = 0. Take an object H C s in DL(V, {, }, h)(S). Let Dy and
G g be the subset of DL(7, { , 1, h)(S) and Gr(7/, h)(S) of elements that
reduce to H, respectively. It is well-known that G g is canonically a torsor
over Homp (H, (¥s/H) ®o,T). Since ZP = 0, the right orthogonal comple-
ment H™ depends only on H for every HeGy.In particular, the subset Dy
is canonically a torsor over the subgroup Home, (H/H_', (Vs/H) ®og T) of
Homo (H, (¥s/H) ®og Z). Thus, DL(¥, {, }, h) is smooth; and we have a
canonical isomorphism for the tangent sheaf

ToLr,(, by = Hom (H/H DL h)/H)

where H is the universal subbundle. Note that this is a locally free
ObL7 (, 1.ny-module of rank (22 — N —d)(N — h).

For (3), we may assume that « is algebraically closed. By Defini-
tions A.1.1 and A.1.2, we have a canonical isomorphism DL(¥, { , }, h) >~
DL(%,{ , }o, h) ®F,,2 k, where { , }o denotes the restriction of { , } to
4. Suppose that d = 0. Then { , }¢ is non-degenerate. By [8, Theorem 1],
we know that DL(70, { , }o, #) is geometrically irreducible. In general, we
consider 7 = %/ "//0_' equipped with a pairing { , };, induced from { , }o.
Then it is clear that the morphism DL(%9, { , }o,h) — DL(%{,{, };. h)
sending a point H € DL(%y,{ , }o,h)(S) to H/”//O_S' is an isomorphism.
Thus, DL(%9, { , }o, h) is geometrically irreducible by the previous case. The
proposition is proved. O

Lemma A.1.4 Consider a pair (V,{ , }) with dim,? = N > 2 and
dim, ¥ = 0, and a p-coprime coefficient ring L. Suppose that p + 1 is
invertible in L.

(1) The subscheme DL(Y',{, }, N — 1) is a hypersurface in P(¥) of degree
p+1L
(2) The restriction map

H. (P(#)e, L) — HL (DL(¥, {, }, N — ), L)

induced by the obvious inclusion DL(V,{, },N — 1) — P(¥) is an
isomorphism fori ¢ {N —2,2N — 2}.
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(3) Foreveryi € Z, Hét(DL(”f/, {, },N— 1D, L) is afree L-module.
(4) When N is even, the action of Gal(k/k) on Hg_z(DL(“//,{ , LN —
D, L(%52)) is trivial.

Proof The lemma is trivial if N = 2. Now we assume N > 3. Then § :=
DL(7,{, }, N — 1) is a geometrically connected smooth hypersurface in
P(7') by Proposition A.1.3.

Part (1) follows since S is defined by a homogenous polynomial of degree
p + 1, by its definition.

For (2), by the Lefschetz hyperplane theorem, the restriction map
Hét(IP’(”I/)g, L) — Hét(Sg, L) is an isomorphism for 0 < i < N — 3; and
the Gysin map Hét(Sz, L) — Hé:“z(IP(”I/)g, L(1)) is an isomorphism for
N —1<i<2(N —2).By (1), the composite map

HL (P()e, L) — HL (g, L) — HLP(R(Y g, L(1))

is given by the cup product with ¢1(Op(y)(p + 1)), which is an isomorphism
fori # 2N — 2 since p + 1 is invertible in L. Thus, (2) follows.

Part (3) is an immediate consequence of (2).

For (4), it suffices to consider the case where L = Q, for some ¢ # p
by (3). Then it is well-known that H), "*(DL(7, { , }, N — Dz, Q¢(252))
is spanned by Tate cycles over k (see, for example, [31]). In particular, (4)
follows. O

Proposition A.1.5 Suppose that k is algebraically closed. Consider an admis-
sible pair (7, {, }) over k with dim, ¥ = 2r + 1 for some integerr > 1 and
dim, ¥ = 0. Let H be the universal object over DL(¥,{, },r + 1). Then
we have

/ cr ((G*HF) QDL {, },r+1) (H/HF» =drp,
DL(Y,{, J,r+1)

where 4y, ), is the number introduced in Notation 1.3.1.
Proof This is [75, Proposition 9.3.10]. |

Now we construct the special morphisms between Deligne—Lusztig varieties
when rank increases.

Construction A.1.6 Let (¥,{ , }) be an admissible pair with dim, ¥ =
n > 1 satisfying dim 7~ =n + 1 — 2L%J. We put % = ¥ @ «1 and
extend { , } to a pairing { , }z on ¥ with {1, 1}; = 0. Suppose that we
have another admissible pair (74, { , };) with dim, ¥; = n + 1 satisfying
dim ”//u_' = n — 2| 7], together with a «-linear map &: #; — ¥} of corank
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dim 7~ such that {§(x), §(y)}; = {x, y}; for every x, y € #. We construct a
morphism

8y: DLV, {, }, [ — DL(%, {, }i, ["421)

by sending H € DL(7, {, }, (%1)(& to 8(H ® Og1). We call 84 a special
morphism.

Proposition A.1.7 The morphism & is well-defined, and is a regular embed-
ding.

Proof When n is odd, § is an isomorphism, which implies that §; is well-
defined an is an isomorphism.

When 7 is even, § is of corank 1. The identity {5(x),d(y)}; = {x, y}4
for every x,y € 7; implies ker§ C “//ﬁ_' = 77 @ «l. Take S € Schy,.
For H € DL(V,{, }, (”;W)(S), H & Og1 must contain “//u_' and hence
(ker 8) . It follows that § (H @ Og1) has the same rank as H, which is [”2i11 =
f%}. The identity {§(x), 8(y)}; = {x, y}: for every x, y € #; also implies
S(H™ @ Og1) C (§(H & Og1))™, which forces s(H @ Os1) = (§(H @
Og1))™ as both sides have the same rank 5. It follows that (§ (H @ Ogl) ™
§(H ® Ogl) as H' C H. In other words, 34 is well-defined. On the other
hand, for H; € DL(74,{ , }1, ["—JZFZD(S), whether (6k1)s € H C (67)s
holds is a closed condition; and once it does, there is a unique element H €
DL(7, {, }, T 1)(S) such that Hy = 8(H & Osl). Thus, §; is a regular
embedding by Proposition A.1.3(2).

The proposition is proved. O

A.2 Unitary Deligne-Lusztig varieties in the semistable case
In this subsection, we introduce certain Deligne—Lusztig varieties that appear
in the special fiber of the semistable integral model studied in Sect. 5. We keep

the notation from the previous subsection.

Definition A.2.1 Forapair (¥, {, }) withdim, ¥ = N, we define a presheaf
DL*(7.,{. D

on Schy, such that for every S € Sch,., DL*(7,{ , })(S) is the set of
pairs (Hy, H>) of subbundles of 75 of ranks [%1 and [%1 — 1, respectively,
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satisfying the following inclusion relations

of subbundles of ¥5.

Proposition A.2.2 Consider an admissible pair (¥, { , }). Put N := dim, ¥

and d := dim, ¥,

(1) Ifd >[5, then DL*(¥, {, }) is empty.

2) Ifd < [%1 — 1, then DL* (¥, {, }) is represented by a projective smooth
scheme over k., whose tangent sheaf fits canonically into an exact sequence

0 — Hom (H1/Ha, 15/ H1 ) = Tovsor.(.
— Hom(Ha/ Y1y (1 Hi/H2) = 0

6v;lhere 7/D_'L.(7/’{ s Ha € Hi € Pbre(y,(, ) are the universal subbun-

es.

B)IfN >2andd = N — ZI_%J, then DL*(7,{ , }) is geometrically
irreducible of dimension L%J.

Proof Part (1) is obvious from the definitions.

For (2), let Gr(7, r) denote by the Grassmannian variety that classifies
subspaces of ¥ of dimension r. Then DL*(¥, {, }) is a closed sub-presheaf
of Gr(7, f%]) x Gr(7, [%1 — 1), hence it is represented by a projective
scheme over k. Now we prove that DL*(%/,{ , }) is smooth and compute
its tangent sheaf. Consider a closed immersion S < S in Sch /c defined by
an ideal sheaf 7 with Z> = 0. Take an object “//S4 C H, C HH € Y5 in
DL*(¥, {, D(S). To lift (Hy, H>) to a pair (Hy, H») € DL*(¥,{, D(S),
we first lift H,, where the set of all possible lifts canonically form a torsor
under the group Homp (H>/ “//S", (Hl_| /H>2) ®o4 T) as 191_' depends only on
Hl_'. Once such a lift ﬁz is given, the possible lifts of H; form a torsor under
the group Homop, (H1/H>, (Hz_| /H1) ®og ). In particular, Zariski locally,
there is no obstruction to lifting (Hy, H), hence DL*(¥,{ , }) is smooth.
The statement on the tangent bundle of DL*(7/, { , }) follows immediately
from the above discussion applied to the universal object on DL* (¥, { , }).
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For (3), similar to the argument for Proposition A.1.3(3), we may assume
that NV is even this time. Then the statement follows again by [8, Theorem 1].
O

Construction A.2.3 Let (¥,{ , }) be an admissible pair with dim, ¥ =
n > 2 satisfying dim, ¥ = n — 2|5]. We put 7; := ¥ @ «1 and extend
{, }toapairing { , }; on #; with {1, 1}; = 0. Suppose that we have another
admissible pair (74, { , };) withdim, 7; = n+1 satisfying dim ”//j_' =n+1-—
2 L#J, together with a k-linear map §: #; — ¥; of corank dim # ' such that
{6(x),8(»)}y = {x, y}sforeveryx, y € #:.Thensimilarto Construction A.1.6
and Proposition A.1.7, we have a morphism

5’]‘: DL.(/V’ { s }) - DL.(%’ { s }u)

by sending (Hy, Hy) € DL*(7, {, D(S) to (§(H1 & Og1),5(H» & Og1)) €
DL* (74, {, }1)(S), which is a regular embedding.

Proposition A.2.4 Suppose that k is algebraically closed. Consider an admis-
sible pair (V',{ , }) over k. Let (Hi, Hy) be the universal object over
DL*(7., {, D.

(1) Suppose that dim, ¥ = 2r + 1 for some integer r > 1 and dim, ¥~ = 1.
Then we have

/DL.(%{ 0 Cr ((o*Hz) ®Oprer 1.y (Hf/Hz» =d,.

(2) Suppose that dim, ¥ = 2r for some integer r > 1 and dim, ¥~ = 0.
Then we have

/DL’("V,{ D Cr—1 ((G*HZ) QOprer (. ) (Hi/H2)) - Cl (Hl_'/'f'b) = d;,p.

Here, d;ﬁ » is the number introduced in Notation 1.3.1.
Note that DL* (7, { , }) isirreducible of dimension r, by Proposition A.2.2.

Proof For (1), we let ¥ be the quotient space ¥ /¥, equipped with the
induced pairing, which we still denote by { , }. Then we have a canonical
isomorphism DL*(7,{ , }) 5 DL'(“/7, { . } by sending a pair (Hy, H>)
to (Hi/7™, Hy/? ™). If we denote by (Hj, H>) the universal object over
DL'(”/7, {, }. Then we have
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cr ((G*HZ) QOpLer (. (’Hf/Hz))
e ((0*7'—(2) B0par | | (H /Hz)) e <ﬂ?/ﬂ2)

under the above isomorphism. Therefore, (1) follows from (2).

For (2), consider 7; := # @ «1 and extend { , } to a pairing { , }; on #;
with {1, 1}4 = 1. Then we have Deligne—Lusztig varieties DL(74, { , }:, h).
In what follows, we only need to study the one with & = r + 1, and will simply
write DL(7;) for DL(7;, { , }:,r + 1). Since we will work with two spaces,
we will denote by (-, -) for the (left,right) orthogonal complement for 7/,
and (F, =) for the (left,right) orthogonal complement for 7;.

We now define a correspondence

DL(%) & DL(¥) > DL*(¥)

of schemes over «. For every x-scheme S,

° ]3]:(“//)(5) is the set of pairs (H, H») where H is an element in DL(7%)(S)
and Hp is a subbundlgof H of rank r - 1 that is contained in ¥5;

e 7 sends (H, H) € DL(7')(S) to H € DL(¥)(S); and

e 7° sends (H, Hy) € DL(¥)(S) to (H;, Hy) € DL*(¥)(S) where H| :=
(HN¥s)".

It needs to show that 77 °® is well-defined, which amounts to the following four
statements:

e Hj is a subbundle of 5 of rank r: It suffices to show that the composite
map H — 75 — Ogsl is surjective, where the latter map is induced by
the projection 7z — « 1. If not, then there exists a geometric point s of S
such that H; is contained in ¥, which contradicts the inclusion Hs:' C H;.

e Hy C Hi: As HY C H by the definition of DL(%), we have H= € H
and {H", H}; = 0. Thus, {H™ N 5, H N ¥s} = 0, which implies H, C
H™ N5 C(HNY5)" = H

e Hi C H;: As HF C H, we have that Hl_| = H N Y5 contains H,, which
implies H; = (Hl_')'_ C H;

e H C Hz_': As H? C H, we have (HH)™@ N ¥ € H N ¥, which is
equivalent to (HFN¥5)™ € HN 5. As H is contained in HF N ¥%, we
have H_'_| CHNYs = Hl_', which implies H; C H_'

We denote by H, (H Hz) and (Hy, H>) the universal objects over DL(7%),
DL(7/) and DL*(7), respectively. By definition, we have H = 7*H and
7‘(2 = 7**H>.

We first study the morphism 7. We say that a point s € DL(%;) (k) repre-
sented by Hj is special if Hs': is a maximal isotropic subspace of ¥ satisfying
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Hs:1 = Hs':. Then there are exactly (p + 1)(p> + 1)--- (p?~! + 1) special
points. Let DL(%4)’ be the locus of special points. It is clear that for every
morphism S — DL(%4)\ DL(%2)’, 7 1S is a singleton; and for a special
point s, we have 7~ (s) = IP’(HS’:) o~ IP”K_ZI. In particular, 7 is a blow-up along
DL(%4)’, for which we denote by E € DL(7) the exceptional divisor. In par-
ticular, 77 is projective. Moreover, E is exactly the zero locus of the canonical
projection map

which implies
H/Hs ~ OpL(y)(—E). (A.1)

Next we study the morphism 7 °. We claim that 7 °® is generically finite of
degree p+ 1. Take a point s € DL®(7') (k) represented by (Hys, Has). Then by
construction, for every scheme S over {s} Xppe(y) 151(”/ ), ﬁ(”// )(S) consists
of subbundles H C 7;®, Og satistying Hy;®, Os C HF C Hi;®,0s®051
and HF C H. Note that we have an induced pairing

Hi;®kl Hiy®kl
. X —

{.}
* H2s H2s

K

that is o -linear in the first variable and linear in the second variable. Then it
is clear that when { , }; is perfect, {s} Xpre(y) 61(7/ ) is isomorphic to the
union of p 4 1 copies of Spec k. However, { , } fails to be perfect if and only
if Hﬁ = Hj. Thus, the locus where { , }; fails to be perfect is a finite union
of IP’Z_I. Therefore, * is generically finite of degree p + 1.

To proceed, we introduce two more bundles

&= (o*HF> ®DL(%) (H/HF>, E® = (0"Hz2) ®pLo(9) (Hf/Hz)

on DL(7;) and DL*(¥") of ranks r and r — 1, respectively.
We claim that

L= (Hi/Hz) ~ Opi (4)(~E) ®0p1,, (ﬁ/ﬁﬂ . (A2)
In fact, we have
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by definition. Thus, the claim follows from the following injective map

0 Ho T Ot (1 (—E) —=0
0—=HN TBL) H Opi ! 0

of short exact sequences of coherent sheaves on 151(”1/ ) by (A.1) and the Snake
Lemma.
By (A.1) and (A.2), we have

T (¢, (£))
= ¢, (7€)

=1 ((07T0) @0, (/1)) - c1 (Oseir) (P E) @0, (H/H))
= e ((0°F2) ®0p,, | £(E)) - 1 (£((1 = pE))

= et (7€ o, , Opior(B)) -1 (LA = P)E))

r—1
= (Cr—l (m*e®) + ZCI(E)iCr—i—] (ﬂ'*f')) (e (L) + (A = p)ei(E))
i—1
r—1 )
=cr_1 (7€) - c1(L) + ZCl(E)'Cl(C)Cr—i—l (m*e*)

i=l1

(U =p) Y erE) e (xE°)
i=1
r—1
=7 (e1E) -1 (H/H2) ) + Y 1 (BY 1 (L)er i (%)

i=1

+ (1= p) Y ci(E) e (nE%).

i=1

Since 7w and 7 *® are generically finite of degrees 1 and p + 1, respectively, it
follows that

a0 [ e () - [ e
DL* (%) DL (%)
— -1 E i i ok co
(p );/}51(7/)01( Veri (7€)
r—1

- Z/~ cl(EY c1(L)c,—i—1 (T**E°)
— JoL)
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r—1
=(p— I)Z/E(_U)icr—i—l (m**E%E)
i=0

r—2
=3 [ Enelpe i (e ) (A3)
i=0YE

where n = c1(Og(1)). As ﬁ/ﬁ': = 7x* (H/H':), we have L|g =~
OEg(—FE) = Og(1). On the other hand, H;| g is the tautological subbundle (of
rank » — 1), which satisfies the short exact sequence

0 — Halp — 02 — Op(1) - 0.

Thus, F := 7**E°| g, which equals (a*ﬁzlE) ®oy (L]E), satisfies the short
exact sequence

0= F— Or()¥® = Op(p+1) - 0.

Therefore, we have

r—1
a3=pY [ wiaia@ - [ o
i=0 7 E E

—p/cr (P 1))—/Ecr_1<f>
_ r—1 r 1 1_(_p)r r—1
p/( p) /E—p+1 n

_ )r+1 1 / nr—l
p+1 E

—p)y+tl 1
_ % - IDL(#%) ()|
—py+l _ 1
_ %(H DEP D (D, (A4)

By Proposition A.1.5, we have

/ (&) = &, (A.5)
DL(%)

Thus, (2) follows from (A.3), (A.4) and (A.5). The proposition is proved. O
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Appendix B. Computation in Hecke algebras

In this appendix, we compute several explicit formulae on the evaluation of
certain Hecke elements. In Sect. B.1, we prove some combinatorial formulae
on characters of the dual group (of a unitary group). In Sect. B.2, we introduce
the two unitary Hecke algebras and prove a formula for an intertwining operator
between the two Hecke algebras. In Sects. B.3 and B.4, we evaluate certain
Hecke operators under a Satake parameter in the even and odd rank cases,
respectively.

B.1 Characters of the dual group

Let N > 1 be an integer with r := L%J . We let GL v be the group of automor-
phism of the Z-module Z®" , which is a group scheme over Z. Let Ty € GLy
be the subgroup of diagonal matrices. The group of homomorphisms from Ty
to G,,, denoted by X%, is a free abelian group generated by {u1, ..., un}
where p; is the projection to the i-th factor. For u € X%, we denote by [u]
the corresponding element in Z[X}]. For 1 <i <r, we put

i =i — punt1—il + [Uns1—i — il € ZIXy 1.

For 0 < § < r, let 55 € Z[X}] be the elementary symmetric polynomial in
Ry, ..., m, of degree §. Finally, we denote by Z[X7, |*'™ the subring of Z[XY]
generated by {sq, ..., s,} over Z.

Now we consider GLS’\’,‘t := GLy {1, o} in which the involution o sends
A eGLy to

1 1

- A -
(_1)N72 (_1)N72
(_I)Nfl (_I)Nfl

For every algebraic representation p of GL?\’,‘t (over Z), we denote by x (o)
the restriction of the character of p to Ty o, regarded as an element in Z[Xj‘v].
Let py.sta be the standard representation of GLy and ,o]\\’,’std its dual. We
let {e1, ..., ey} be the standard basis of py a and {e),..., Y} the dual
basis of p]\\/’,std' For asubset I C {I,..., N}, weput (I) := > i, 1" :=
{N+1—iliel} e = Aere ande)] = A;ere;’ (in the increasing order
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of the indices). For 0 < 6 < r, put

) 8
PN;§ ‘= (/\ pN,std) ® (/\ pl\\//,std) ’

which extends uniquely to a representation of GL" such that o sends &/ ® e}/v
to (=D Vg; @ e,

Remark B.1.1 In the next subsection, we will study the unramified uni-
tary group U(Vy) over nonarchimedean local fields. Then GL?\’,“(C) is
simply the Langlands dual group of U(Vy), and we have Z[X} ™" =~

ZIX* GV ) TV,
Lemma B.1.2 We have

S r—3 +i ) )
Z ; “ 554, if N is odd,
= L5
x(pN:s) = g
2 (r—58+42j
( . ) 852, Iif N iseven.
j=0 /

In particular, x (pn;s) belongs to Z[X} ™.
Proof Note that for every t € Ty, to sends e7 ® e\J/v to
DI TT @ [ i) - 65 @ 6o
ielv jeJ

In particular, such term contributes to x (o s)(f0o) exactly when I = J. It
follows that

xons)to)y= > Jlwm@ " []m®

IC{l,...,N}|[|=8 il iel

= Z Hﬂi(t),U«NH—i(f)*l-

IC{l,..N},|[|=8 iel

To evaluate the above sum, we consider i := |I N 1|, which has to be even
when N is even. It is easy to see that for fixed 0 < i < § (that is even if N is
even), the contribution from those subsets / to the above sum is

r—6+1i
( 4] )'55"“)'
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Thus, the lemma follows. O

Lemma B.1.3 Suppose that N = 2r is even.
(1) We have

r

[TOA+2"+ ) = xCon:) + D x(onr—5) 0 +277)
i=1 s=1

in ZIX519™ ® Z[A, 171,
(2) We have

)\5
—1
Z (A2 + ) Z(S x(pzvra)k =

j=li=l1
i#]

in ZIX5 1% @ Z[A, 171,

Proof Part (1) is follows from Lemma B.1.2 by comparing coefficients of
powers of A. Part (2) follows from (1) by taking derivative with respect to A
and dividing both sides of the resulted equality by 1 — A2, O

Lemma B.1.4 Suppose that N = 2r + 1 is odd. We have

r

)\‘5-{—1_'_)\8
-1
E(x+x + 1) ZX(,ONra) P

in ZIX5 1™ @ Z[A, A7,
Proof By Lemma B.1.2, the right-hand side of the desired identity equals
T 4841 -5 r—8 :
AT 8+
ZWZ< 14 ) P Sr—d—is
8=0 i=0 ™ -2

which coincides with

Xr:(’X‘SAWJrrS( r—i ))5
7\ r=i=s i
i \izg A1 =

by substituting i by r — § — i. Thus, it remains to show that

k 5541
S () e

6=0
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for 0 < k < r. However, we have

k

M Ak
SZ At1 (L%J)
IO\ [akHL gk k4 —Gk=D
:(0)( P R W )
k Ak—l +)\—(k—2) )\k—Z +k_(k_3)
+ (1) ( P N S ) +

= <g) f 7+ (/1() O ED) 4

=+ 1~ Hk.

The lemma follows. O

B.2 Two Hecke algebras

From now to the end of this section, we fix an unramified quadratic extension
F/F™ of nonarchimedean local fields. Let g be the residue cardinality of F
and p the maximal ideal of OF.

Let N > 1 be an integer with r := L%J. Consider a hermitian space Vy
over F (with respect to F//FT) of rank N together with a basis {e_,, ..., e}
(with ep omitted if N is even) such that (e_;, e;)y, = §;; for 0 < i, j < r.
Via this basis, we identify U(V y) as a closed subgroup of Res/p+ GLy. We
study two lattices

A?V :0Fe—r @ s 69 OFer»
Ay=p e, ® - ®ple.1 ®Oreg® - ® Ore, (B.1)

of Viy. We have (A)Y = A%, pAYy S (A})Y, and that the Op-module
(A%)Y/pAY, has length N — 2r Let K%, and K' be the stabilizers of A%; and
A%, respectively, which are subgroups of U(V ~N)(F1). It is clear that K N s
hyperspemal maximal; K3, is special maximal and is hyperspecial if and only
if N is even. We have two commutative Hecke algebras

Ty = ZIKR\U(VV(F /K], Ty = ZIKZ\UVN) (F ) /KR ]

Recall that by our convention in Sect. 1.3, the units in T3, and T%; are Ige
and ]lK[-V, respectively. Let Ay (F™1) (resp. Ay(Op+)) be the subgroup of
U(Vy)(F*)thatactsone; by ascalarin F (resp. O p+)forevery —r <i <r.
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Notation B.2.1 For each element t = (t1,...,ty) € ZV satisfying t; +
tn+1—i = 0anda € F*,wehaveanelementa’ € Ay(F)suchthatal-e_; =
a'ri-ie_;j for0 <i <r.For0 <8 <r,putts:= (1°,072 (—=1)%). We let
T ¢ (resp. Ty\,; ;) be the element in T}, (resp. T},) corresponding to the double
coset K, @K, (resp. K w'K%,) for some uniformizer e of F; and simply
write T?v;a (resp. T;v;a) for T?V;tg (resp. T;\,;ts).

Remark B.2.2 The elements T},., € T}, and T},., € TY; do not depend on the
choice of the basis {e_,, ..., e,} satisfying (B.1).

Definition B.2.3 We denote

o Lat§, the set of all self-dual lattices in V y;

e Lat}, the set of all lattices L in V satisfying pL. € LY and that L /pL
has length N — ZL%J;

o TV € ZIKY\U(VN)(F )/ K% /1 the characteristic function of K3 K3;; and

o Ty € ZIKG\U(VN)(F )/ K3%/1 the characteristic function of K3 K3;.

Moreover, we define the intertwining Hecke operator
o .__ moe [Ye) o
Iy =Ty oTx € T}
where the composition is taken as composition of cosets.

Note that we have canonical injective homomorphisms
T% — Endz(Z[Laty]), T} — Endz(Z[Laty])

sending T}’\,,t to the endomorphism that takes f € Z[Lat}’v] to the function
T?N;tf satisfying (T?N;tf)(L) = > f(L') where the sum is taken over all
L’ € Lat}, such that L’ and L have relative position ' for ? = o, .

Lemma B.2.4 We have the identity

,
TR + @+ DTy + @+ D@+ DT, o+ +[[@ 7+ DTy, if N =2r;
o i=1
Iy = B
T3, + @ + DTy, + @+ D@ + DTy, o+ + [ [@ T + DTy, N =2r+1
i=1

. o
in ']TN.

Proof For a pair (L7, L3) € (Lat}’v)z, we denote by Disc(L{, L7) the sum of
the lengths of L] /(L{ N L5) and L5 /(L7 NL53).
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To compute IS, it suffices to compute its induced endomorphism on
Z[Lat$]. Now we take an element f* € Z[Lat5,]. Then

TRENNHLH = Y @xHLH= Y. >
L®eLat}, L®eLaty, LjeLaty
LjcLecp™'L} LycLecp™'Lf LcLocp'L3

for every L] € Latj,. Note that for pairs (L7,L7) € (L21t§’\,)2 appearing
in the formula above, we have pL; C L} C p_ng and Disc(L{,L3) €
{0,2,...,2r}.

Now for a pair (L7,LJ) € (Lat‘[’v)2 satisfying pLy C L} C p_ng, we
consider the set

Lat}, (L7, L3) := {L* € Lat} [L§ S L* € p 'L}, Ly CL* S p~'L3).

It is easy to see that the cardinality of Lat} (L7, L5) depends only on
Disc(L7,L3). For 0 < 6 < r, we denote by cy s the cardinality of
Lat$, (L7, L5) with Disc(L{, L) = 2. Then the lemma is equivalent to show-
ing thatcy » = 1 and

r—=4
1_[(q2i_1 +1), 0<8<r, when N =2r;
i=1

CNS =,

1_[(612"Jrl +1), 0<8<r, whenN =2r+1.

i=1
Without loss of generality, we may assume L7 = A%, and

Lg = p_le—r DD p_le—r—HS—l @ Ore_r415 D

@D Ope,—5s DpOre,—511 D - DpOre;.

Whend = r, A}, is the only elementin Lat$, (L7, L5). Thus, we havecy , = 1.
For 0 < § < r, we have cy s = cy—2s,0- Thus, it suffices to show

P
H(qu—l +1) =@+ (¥ "+1), whenN =2r;
.

evo=1"

H(qu-H +1)= (C]3 +1)--- (q2r+l +1), when N =2r + 1.

i=1
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However, cy o is nothing but the number of maximal isotropic subspaces of
the hermitian space A}, ® o OF /p over O /p of dimension N, which is given
by the above formula. Thus, the lemma is proved. O

Now we recall Satake transforms. Denote by W  the Weyl group of Ay (F )
in U(Vy)(FT), which preserves Ay (O p+); and we have the two Satake trans-
forms

Sat%: TS — Zlg 'MAN(FT)/AN(Op+)IVY,
Saty: T% — Zlg 'MAN(FT)/AN(Op+)IVY.

In addition, we have an isomorphism
ZIg  NMAN(F ) /AN (O p) IV =~ Zlg~ Xy 1™

of Z[g~']-rings under which ss corresponds to the sum of elements in the
W y-orbit of Ay (Op+) for every 0 < 8 < r. In what follows, we will
regard Z[q‘l][Xj‘V]Sym as the target of both Satake transforms Sat$; and Sat$,.

Notation B.2.5 Let Z[q_l][X 1" be the Z[g~']-subring of Z[g _1][X ] gen-
erated by the subset {g;, ..., u,}. For every Z[q Y-ring L and every tuple

= (a1,...,ay) € LN satisfying o;oy+1—; = 1, we have a homomor—
phlsm b Z[q_l][X ]" — L sending u; to o; +a; -1 for 1 <i < r, similar
to Construction 3.1.8, and denote by

6 TS, 2N, Z[q‘l][xmsym c 20T 5 L,

° Sat —1 * 1Sym -1 / ¢a
ga: Th —> Zlg 'IIXHIY™ € Zg "X} = L,
the composite homomorphisms.
The following three lemmas will be used in later computation.
Lemma B.2.6 We have the identity
2 [N —2i
PN x(pn.s) = Z[ 5 ] Sat}y (Ty.;)
: -1 ]_
i=0 q
in ZIg X5 1Y™ for0 < 8 < r

Proof This is [75, Lemma 9.2.4]. m|
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Lemma B.2.7 For every integer k > 1, we have
Lol 2k
>4 — @+ D@+ D@+ D).
k—é8]1_,

S=—k

Proof For every integer k > 1, we have the Gauss polynomial identity
2k
2k
Z(—l)‘s[ s ] = (=1 =23 (1 =227
§=0 A

in Z[1].3 Now we specialize the identity to A = —g~'. Then we get

2k
Z(_1)8(_q)f(Zkfl)7(2k73)7-~~7(2k728+1) |:2k]
§=0 g -4
2 _
=q @+ D@+ D@+ D,
The lemma then follows by changing § to k — §. O

Lemma B.2.8 For every integer k > 1, we have

k k
2k 4+ 1 2 2k
—1)0s5g%° _ _1)08457 8
Y (=1%q c—s], > (=1)’sq —s)

S=—k—1 S=—k
=g+ D@+ @+,

Proof In fact, we have

k k
2k +1 2k
Z (—1)65q62+6[k +8] - Z (—1)55q82+5[k 3]
S=—k—1 T 0d=qg s— %
k
2 2k
— Z (—1)686]8 +5(_q)k+5+1|: :|
Pl k—58—1 —q
k
2k
— _1 k+1 k 8 _ 1 82[ :|
(—1) qszzk( )q (-5,

B A proof can be found at http://mathworld.wolfram.com/GausssPolynomialldentity.html.
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which, by Lemma B.2.7, equals
Lol 2%
) @+ D@+ D @+ D+ (=D Y 8¢ [k_a} :
S=—k -4

The lemma follows since

B.3 Enumeration of Hecke operators in the even rank case
In this subsection, we assume that N = 2r is even.

Lemma B.3.1 We have the identity
) r
q 1_[ (i +2)
i=1

= Sat (Ty.) + Y _(q+ D@ + 1)+ (g%~ +1) - Satyy (T3,,,_y)
5=1

in Zlq = X5 1™

Proof By Lemma B.1.3(1) and Lemma B.2.6, we have

r r
q" [T(i+2)= 0" x(on:) +q" > 2% (onir—s)
i=1 5=1

. [2r —2i o
=> | saTy

i=0 —-q

T e —2i
24° Sat%, (TS, ..

r—i

r .
s2| 2r —2i o o
= Saty (T.;),
S8 #] s

i=0 \8=—(r—i)
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which equals

-
Saty (T3.) + Y (g + D@ + 1)+ (q® " + 1) - Satd (T, _y)
5=1
by Lemma B.2.7. The lemma is proved. m|
Lemma B.3.2 We have the identity

" [Tk —a—a7") = Sa3(Ty,) + Y (~)’(q + D(@® + 1)
i=1 8=1

e (@® T D Saty, (T%.,_s)

in Z[g~[X% 1Y
Proof By Lemma B.1.3(1) and Lemma B.2.6, we have

.
" T]mi—a—a7")
i=1

=q" x(on:) +4" Y (=) + ) x (onir—s)
§=1

r r—48

" [2r —2i 2r —2i
[ o ’] Saty (Th) + 3. 3 ¢” (—) + <—q)—“)[r i _’i] Satg (T,)
0 —4 -

r
6=1i=0

2r —2i +’i( 1)5( o 52_3) 2r —2i Satt (T, )
r—i ], q q r—s—il_, NUEN;

=1

1

~

i=0

L& 2r —2i
—1)3gt 6 (TS
( Z (=D F—8—i L SaN( N.z)

i=0 \5=—(r—i)

Thus, the lemma follows from Lemma B.3.3 below by comparing coefficients.
O

Lemma B.3.3 For every integer k > 1, we have

k
2k
Y (— 1)t [k - 5} =" g+ D@+ D@+ D,
S=—k —-q

Proof By Lemma B.2.7, the lemma is equivalent to the identity
k

k
" Y q [k —5}_,, = 3:2_1(( D)q [k s

S=—k —-q
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However, we have

k

k 5 8246 2k
(—q) [ J Z ~1)’q [ _8]
5— k —-q —-q

2k
3 (~1yg 45 ()= — [ }
§=—k ( ) k=38l

2k — 1
Z( D" (g% ~ 1) [k ! 1]_q

§=—k
= (o™ 1) Z( 1’ 52+8[k2k8—11} E

Note that in the last summation, the term of § and the term of —§ — 1 cancel
with each other for —k < § < k — 1; and the term with § = k vanishes. Thus,
the above summation is zero; and the lemma follows. O

Lemma B.3.4 We have the identity

(q "I)Z]—[ i—qa—q7")

j=li=l1
i#]

r

=) ()@ + D@+ D@+ 1)
5=1

8
) 2,26+ 1
_ Z(_l)z(zi + 1)q12+z|: ) +' ] ) Saty (Ty.,_s)
i=0 —hdyg
in Zlgq = [X% 1™

Proof By Lemma B.1.3(2) and Lemma B.2.6, we have

(q )Z]_[ i—q—q ")

J=Li#]

=¢" Y 118" — 470 - x(oni—s)

6=1

d 2 A 2r =2
5—1 6 ) ) - o o
=2 (=1""'¢" 8¢° — 8q )Z[r_s_i}_antN(TN;,o

§=1 i=0
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r—1 /r—i .
2 -2
= Z (Z(_1)5—1q5 (6q (Sq_a)[ s _l } ) Sat})V(T(I)V;i)'
o=1 —q

i=0
Thus the lemma is equivalent to the identity
‘ 25 [2k + 1 ‘ . 2%
D (=128 + g ”[ } - (=1’q" (8¢’ &1‘3)[ ]
8=0 k=dly I 0l

= g+ D@+ D@+ D)

for every integer k > 1. In fact, we have

k k
1y eps| 2K+ 1| S8 8258 s 8| 2K
> (=D + g [k_8 . Z( D°q" (8q° —8q7)|

8=0 —q
k
2k + 1 2
— )85+ 3% s
> (=1)sq 5], Z()qq 8_
d=—k—1 s=—k q
= g+ D@+ D@+ D
by Lemma B.2.8. The lemma follows. O

Proposition B.3.5 Let L be a Z[q~']-ring. Consider an N-tuple o =
(ag,...,ay) € LN satisfying ojen+1—; = 1, which determines a homo-
morphism ¢g . T}, — L as in Notation B.2.5.

(1) We have

r

2 1
2120 =" [ (a,- ne +2) |
i=1 !
(2) We have
2 1
¢a((Q+1)RN_IN __qr <Olz+__q_5)
where

)r—8

o (—¢ —8)— °
R} :—Z—<q+1)<q+3>~--(q2<’ DD TR
=0 +1 ’
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(3) We have

r r
o o o 241 21 1 1
<z3m(RN+(q+1)TN)=—(q’+ —q" ) ]_[(aﬂra——q—g)
where

o
TN _Zdr —8,q ° TN;(S

in which the numbers 4° are introduced in Notation 1.3.1.

r—34,q

Proof Part (1) follows from Lemma B.2.4 and Lemma B.3.1. Part (2) follows
from Lemma B.2.4 and Lemma B.3.2. Part (3) follows from Lemma B.3.4. O

Lemma B.3.6 We have
TV oRy =Ry oTy, Ty oTy =TyoTy

in Z[KY, \U(VN)(F+)/K 1, where Ry, and Ty, are defined in Proposi-
tion B. 3 5(2) and (3), respectively, and

1 ( )r -8
Z AL LCE R A Vs 8

=0
—1

o .__ o °
Ty =2 & sq Ths
5=0

Proof In fact, by the same lattice counting argument as for Lemma B.2.4, we
have

[ Jeo} (o] [ ) 0
TN OTN;S = TN;S oTN

for every 0 < § < r. Then the lemma follows immediately. O

B.4 Enumeration of Hecke operators in the odd rank case

In this subsection, we assume that N = 2r + 1 is odd.
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Lemma B.4.1 We have the identity

r

" T +a+a7")
i=1

p
= Sat} (T3.,) + > (@ + D@ + 1)+ (@ F +1) - Sat} (TR, _s)
5=1
in Z[g~[X%, 1Y
Proof By Lemmas B.1.4 and B.2.6, we have

.

T +a+a7")
i=1

—§

r 5+1
2+r 9 tq" q
E X(ION;rfé)

r

§+1 -5

+ 2r+1—

J +,Zq q g 8)(r+1+6)§ :[ . ] Saty (Ty.;)
—q

= a+t 1 r—a46 —
r r—i .
2[2(r —i) + 1 o o

— (Z(q”“ +1)g’ [ s ] )SatN(TN;»

i=0 \6=0 —q

[ = e |:2(r — i)+ 1]

—_— Z q . Sat?\](TIOV’l)
q +1= S=—(r—i)—1 r—i=d ],

Thus the lemma is equivalent to the identity

k
2[2k+ 1
> q‘s[k_(s] =@+D@+D--- @+
S=—k—1 -4

for every integer k > 0. By Lemma B.2.7, we have

k+1
of 2642

2 [ } — @+ D@+ D (@ 1),
Pl k+1—-96 —q

Thus, it remains to show

’i 52[ 2%k 42 } Xk: 82[2k+1]
q = q .
S=—k—1 k+1-4]4 S=—k—1 k=51,
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However, the difference equals

% 32([ 2k+2} [2k+1] )
q [e—
= k+1-38]_, Lk-s],

o2, eis] 2k+1
=2 40 k+1-3
S=—k—1 —q

k+1
Nk s s2s| 2k+1
L LA DI GV PR I
S=—k—1 —-q

which equals zero as the term of 6 and the term of —§ + 1 cancel each other
for —k < 6 < k + 1 and the term with § = —k — 1 vanishes. The lemma
follows. o

Lemma B.4.2 We have the identity

r

r
qr2+r l_[ (ILi N 2) = Z dé,q ) Sat?V(T(l)V;r—(S)

i=1 §=0
inZ[qg~ '] [XN 1™, in which the numbers ds 4 are introduced in Notation 1.3.1.

Proof By Lemmas B.1.4 and B.2.6, we have

r

g [T —2)

i=1

=¢" Y 1P Q@8+ 1) - A (pwir—s)

=0
r r—=é
2 1—-2i
=g Y 1P @0 4 1) g ST T e (20 )
r—~86—1i |_ !
=0 =0 q
r r—i .
2(r — 1
- (Z(—U'S(zs + 1)qs<8+1>[ r=0+ } ) Sat$, (13,.,)
. r—i—=§8 |_ ’
i=0 \§=0 q
= dsg - Saty (T, ).
5=0
The lemma is proved. O

Proposition B.4.3 Let L be a Z[q_l]-ring. Consider an N-tuple ¢ =
(@1, ...,ay) € LN satisfying ajoun+1—; = 1, which determines a homo-
morphism ¢g . T}, — L as in Notation B.2.5.
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(1) We have
o o r2+r - 1 1
pe@) =q" " [[lei+—+g+-).
i=1 “i g
(2) We have
2 d 1
¢o (T =q" "] (ai +— - 2) :
i=1 !
where

,
o ._ o
TH = ) dr-sq - Tis

5=0

in which the numbers d,_s 4 are introduced in Notation 1.3.1.

Proof Part (1) follows from Lemmas B.2.4 and B.4.1. Part (2) follows from
Lemma B.4.2. O

Lemma B.4.4 We have
T o T3 = ((g + D*Tx + T¥ o T¥) o TV

in ZIKZ\U(Vn) (F“‘)/K;’v], where T, is defined in Proposition B.4.3(2), and

r—1
o . ° °
TN .— Z dr_(s’q * TN,(S'
§=0
This lemma is a hard exercise in combinatorics. In fact, our proof below is
by brutal force; it would be interesting to find a conceptual proof.

Proof Tt suffices to show that for every element f € Z[Lat}, ], we have

(g + DT + T¥ o TX) (TR () = TR (T} (/) (B.2)
in Z[Laty ]. Without loss of generality, we may just consider their values on
AYy.

N
For every L € Laty, and 0 < § < r, we denote

e c5(L) the number of L® € Lat}, satisfying L € L® and (L® + A})/AY =~
(OF/p)®?; and
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e c¢5(L) the number of L° € Lat§; satisfying L° € A%, and L/(L N L°) =~
(OF/P)®’.

We then have

(Thes (TR ONAY) = D (L) - f(L),

LeLat},

(TR (TR (PNAR) = Y 3@L) - f(L).

LeLat},

We claim the following identities

.
q<s—y)<8—y+2>[3 )’:] LA (L4 AY)/AY ~ (0F/p)®Y
—vl,

°(L) =
¢ @) for some 0 < y < §;
0, otherwise;
(B.3)
g@-7” [g - V} , if (L+ AY)/AY =~ (0p/p)®Y
(L) = q (B.4)

for some 0 < y < §;
0, otherwise.

For (B.3), we must have (L + A%)/A% € (L® + A%)/A% =~ (Op/p)®.
Thus, the otherwise case is conﬁrmed Suppose that L + AY/AY =
(Op/p)® for some 0 < y < 8. Then (pAY +L)/L is an 1sotroplc sub-
space of p~'L/L of dimension y. Moreover, cs (L) is the same as the number
of maximal isotropic subspaces of ((pA}, + L) JL)+/ ((pA% +L)/L) whose
intersection with (the image of) (p~'L N A% +L)/L, which itself is a maximal
isotropic subspace, has dimension r —§. Thus, we obtain (B.3) by Lemma B.4.5
below since ((pAY + L)/L)l/((pA‘ + L)/L) has dimension 2r + 1 — 2y.

For (B.4), we must have (L + A%,)/A% =~ L/(L N AY) which is a quotient
of L/(LNL®) ~ (Of/ p)®3 Thus, the otherwise case is confirmed. Suppose
that (L+A%)/A% =~ (Of/p)®” forsome 0 < y < 8. Then (L+A%)/A% is
an isotropic subspace of p~ 1AI'V /A% of dimension y. Moreover, c5(L) is the
same as the number of maximal isotropic subspaces of ((L+A%,)/ A4} )L /(L4
A%)/AY) whose intersection with (the image of) (p_lA' ﬂp_lL—i—A )/ AS,
which itself is a maximal isotropic subspace, has dimension r — §. Thus, we
obtain (B.4) by Lemma B.4.5 since ((L + AY)/AY )L/((L + AY)/AY) has
dimension 2r — 2y.
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Now we come back to the values of (B.2) on AY;. By a similar proof of
Lemma B.2.4, we have

TX o T = Th., + (¢ + DTh.,y + (g + (@ + DT,

,
+o+ [[@ T+ DTy
i=1

in TY;. Then under Notation 1.3.1, we have

((q + D?TH + T¥ o TX) o T¥

r—1
=Ty, 0TV + D> ((g+Ddr 54+ (=) " g+ D@’ +1)
=0
(PO 4 1)) Th.5 0 T - (B.5)

By (B.3), (B.4) and (B.5), the lemma is equivalent to that for every integer
k > 0, we have

k—1

k
2 [k _ 85— k
> b0’ [6] gD £ 3 (@ + Dty + ) g+ D@+ D @2 ET) q‘”“”[s} R
0 5=0 q

or equivalently,

k k

o[k _ SV (k. k
> 5 gq" M =Y (@4 Ddsg + 0 g+ D@+ D@+ D) g “Z)M .
I} q 5=1 q

(B.6)
By Lemma B.2.8, we have

)@+ D@+ D@+ D

)
28 +1 L T 28
=—q E (—1)) jgi* i +q Y (=) jg" .
6—1J —q 85— —q

j=—58—1 j==8
8
oo 26
=—qdsq +4q 2:(—1qu’+’[8_ } :
j= 714
Thus, (B.6) is equivalent to

k
2|k
oY
§=0

q2
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- ° 28 k
850 +q Z(_l)jquZ-i-j gk=Ok=5+2)
T 5—jl_ 81,
5=0 j=—8 q q

or equivalently,

k 2 k
E dB,qq(k_a) (q2(k_8) 1)
1) o

=0
k 8

=—> > (=1ijgit [ 2 ] q<”“>2[k] : (B.7)
§—j —q 1) o)

8=0 j=—3

However, we have

k 2 k
3 a5 g ® 0 (g2 — 1)[5]
§=0 @
k—1 .
=Y g (@ - 1)[ }
5=0 8142
k=1 5
o2, 26+ 1 52 _ k
=Y > g +’[a_ } q“ " (" ‘”—1)[8}
5=0 j=—o—1 Jd=q qa’
=1 s
S 28 +1 52 k
=) =1 jq’ +-’[8 } q“= ("M‘”[a 1]
5=0 j=——o—1 —Jly + 1
k=1 s
=2 2 (—l)qu(k‘5>2+-"2+f((—q)””—1)[28“.1 } [8"1]
5=0 j=—o—1 — A4l
k=1 s -
o » 25 +2 k
= (=) jq4 D (—g)° ! ‘”[5_ o [5+1]
§=0 j=—5-1 J P
kooo-l -
_ Z (_l)jjq(k+175)2+j2+j ((_q)s—j _ 1)|:8 268 :| |:/;
5=1 j=—s R
ko8 -
=303 (1) gl (g 1)[ 2 } [" .
ha 5—J —q S_qz

<
Il
[=}

~
Il

Thus, (B.7) is equivalent to

k )
s 28 k
33 (-1 g gy | 0,
5§—J —q 1) 7

5=0 j=—5
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which is obvious since
2. o[ 28
i T =0
j=—s Jd=q
The lemma is finally proved. |
Lemma B.4.5 Let V be a (nondegenerate) hermitian space over OFp/p of
dimension m > 1 withr = L%J, and Yo € V a maximal isotropic sub-

space. Then the number of maximal isotropic subspaces Y C V satisfying
dimo,/p(Y NYy) =r —s withQ < s < r is given by

qs“”’H . ifm=2r+1;
N qz

qsz [r] , ifm=2r.
S q2

Proof We will prove the case for m odd and leave the similar case for m even
to the readers. We fix an integer 0 < s < r. It is easy to see that the number
of choices of the intersection Y N Y (of dimension r — s) is

(q2r _ 1)(q2(r—]) _ 1) . (ql(r—S—H) _ 1) r
@* — D@D =1 (g>=1) [S]qz’
Then we count the number of Y with Y NY fixed. We take abasis {e_,, ..., e¢;}
of V such that (e_;,e;)y = §;j for 0 < i,j < r; Yy is spanned by
fe—r,...,e_1};and Y NYpis spanned by {e_,,...,e—_s_1}. Let{f1,..., fs}

be an element in Y* such that {e_,, ..., e_s_1, f1,..., fs} form abasis of Y.
Then since Y is isotropic, the coefficients on {es41, ..., e,} of each f; have to
be zero. In particular, there is unique such element { f1, ..., f;} € Y* thatis
of the form

oo f) = (01, o) + (e et, ) (Z‘)

with (uniquely determined) A € M ;(OFf/p)andv € M (OFf/p). Moreover,
the isotropic condition on Y is equivalent to that ‘A€ 4+ A + W° - v = 0, where
c denotes the Galois involution of F/F . It follows that the number for such
Y with given Y N Y (of dimension r — ) is ¢*“*+2). Thus, the lemma follows.

O
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Appendix C. Some representation theory for unitary groups

In this section, we prove several results for representations of unitary groups.
Unless specified otherwise, all representations will have coefficients in C. In
Sect. C.1, we recall some general facts about the local base change for unitary
groups. In Sect. C.2, we study the representation appearing in the cohomology
of Fermat hypersurfaces, and also compute the local base change of some
admissible representations with nonzero Iwahori fixed vectors. In Sect. C.3,
we collect everything we need from the endoscopic classification for unitary
groups in Proposition C.3.1 and derive two corollaries from it.

C.1 Local base change for unitary groups

In this subsection, we fix an unramified quadratic extension F/F™ of nonar-
chimedean local fields. For every element « € C*, we denote by o: F* —
C* the unramified character that sends every uniformizer to «.

Consider a hermitian space V over F (with respect to F/F™) of rank N.
Put G := U(V). For an irreducible admissible representation 7 of G(F ™), we
denote by BC(rr) its base change, which is an irreducible admissible repre-
sentation of GL y (F). Such local base change is defined by [63] when N < 3
and by [33,53] for general N.

We review the construction of BC (i) in certain special cases. For a parabolic
subgroup P of G and an admissible representation o of P(F ™), we denote by
Ig (o) the normalized parabolic induction, which is an admissible representa-
tion of G(F™). Fix a minimal parabolic subgroup Py, of G.

We first review Langlands classification of irreducible admissible repre-
sentations of G(F™) (see, for example, [39]). For an irreducible admissible
representation 7 of G(F™), there is a unique parabolic subgroup P of G
containing Ppi, with Levi quotient M p, a unique tempered representation
T of Mp(F™), and a unique strictly positive (unramified) character x of
P, (FT), such that 7 is isomorphic to the unique irreducible quotient of
Ig (7 x), which we denote by J IG) (%), known as the Langlands quotient. Sup-

pose that m ~J g (tx) is a Langlands quotient. Then we may write
Mp = Go x Resp/p+ GLy, x -+ x Resp,p+ GL,
with G the unitary factor, under which
x =1X (aj odet,,) M- X (e o dety,)

for unique real numbers 1 < o] < --- < oy, where det, denotes the deter-
minant on GL,(F). Suppose that t = 79 X 71 X - - - X 7; under the above
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decomposition. Consider a standard parabolic subgroup P’ of GLy whose
Leviis GL,, x --- x GL,; x GLy, x GL,, x - -+ x GL,,. Then BC(7) is iso-
morphic to

P/
Xt (a1 o dety,) ®--- K 7 (o o dety, )

I (7® (e odet, ) B+ B 7y (o ! o dety, ) KBC(mo)

which is a Langlands quotient of GLy (F'). Here, 7€ stands for 7 o c.

We then review the construction of tempered representations from discrete
series representations (see, for example, [32]). Let T be an irreducible admis-
sible tempered representation of G(F™). Then there is a unique parabolic
subgroup P of G containing Pyjy, and a discrete series representation o
of Mp(F™T) such that 7 is a direct summand of Ig (0). In fact, Ig (o) is a
direct sum of finitely many tempered representations of multiplicity one. Write
o =o09gXo; X---X oy, similar to the previous case. Then under the same
notation, we have

BC(7) = 19 (0,"° K --- K 0\ K BC(0p) Koy K --- K ay)

which is an irreducible admissible representation of GLy (F).

Finally, if 7 is an irreducible admissible representation of G (F™) that is a
constituent of an unramified principal series, then BC(rr) is a constituent of
an unramified principal series of GLy (F). Thus, it makes sense to talk about
the Satake parameter of BC(7r), denoted by a(BC(7)).

In what follows, we will suppress the parabolic subgroup P’ of GLy when
it is clear. We denote by Sty the Steinberg representation of GLy (F).

C.2 Tate-Thompson representations

In this subsection, let £/ F T be as in the previous subsection, with residue field
extension k /k *. Let ¢ be the residue cardinality of FT and p the maximal ideal
of O F.

Let N > 2 be an integer with r := L%J. Consider a hermitian space Vy
over F of rank N together with a self-dual lattice A y.Put Uy := U(Vy), and
let Ky be the stabilizer of A which is a hyperspecial maximal subgroup of
Un(F1). Put Ay := Ay ®0,, kT and Uy := U(Ay). Then we have the
reduction homomorphism Ky — Uy (™).
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Let Iso(Ay) S P(Ay) be the isotropic locus, that is, it parameterizes
hyperplanes H of A y satisfying H~ € H .3 Then Iso(A y) is a smooth hyper-
surface in P(A y), known as the Fermat hypersurface. In particular, Iso(A y)
has dimension N — 2 and admits a natural action by Uy («1). For a rational
prime ¢ that is invertible in «, put

Hprim(ISO(/_\N)F’ @4) = ker <UC1 (OP(I_\N)(I)) Hé\tliz(ISO(f_\N)F, @5)

— HY (Iso(A e, Te(1)))

It is well-known by Tate—Thompson that (see, for example, [31]) there is a
unique irreducible representation 2 of Uy (x1) such that Qy is isomorphic to
ty I yprim (Iso(An)e, Qp) as representations of Uy (k1) for every isomorphism
te: C = @g. We call Qy the Tate—Thompson representation. We often regard
Qy as arepresentation of Ky by inflation according to the context.

To describe 2y, we first recall some notation from parabolic induction of
finite reductive groups. For every N, we fix a Borel subgroup Py of Uy. For

positive integers ry, . . ., r; satisfying r{ 4+ - - - +r; < r, we obtain a parabolic
subgroup P%l """ ") of Uy containing Py, whose Levi quotient MY is iso-

morphic to I_JN_Z(HJF...JF”) xRes,/c+ GLy x - --xRes, .+ GL;,. Forexample,
we have P(l') = Py. Given a representation o of Mg\r,l""’”)(/cﬂ, we denote

by Ind"¥ .- O the parabolic induction, which is a representation of Upn(x™).

(r1
Now we suppose that N = 2r is even. The irreducible constituents of

Indgl’\;’ 1 are parameterized by irreducible representations of the Weyl group
Wy =~ {£1}" x &,. For every irreducible representation € of Wy, we denote
by PS(e) the corresponding irreducible representation of Un(x1). We now
specify a character eTT. Wy — {£1} as the extension of the product homo-
morphism {+1}" — {:l:l}, which is invariant under the &, -action, to W that
is trivial on {41} x &,

Proposition C.2.1 We have

(1) When N = 2r is even, the representation Q2 is isomorphic to PS(e Y
(2) When N = 2r is even, Qp is the unique nontrivial irreducible representa-

n Py (k) Pyt
tion of Uy (kt) satisfying dim Qy = dim Q
(3) The representation 23 is the (unique) cuspidal umpotem‘ representation of
Us(k™).

36 The precise definition of Iso(A ) is similar to Definition A.1.2 but with the right orthogonal
complement replaced by the left one as the hermitian pairing on A is «-linear in the first
variable and (k, o)-linear in the second variable.
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(4) When N = 2r+1isoddwithr > 1, the representation 2y is a multiplicity
Q3 X 11

[free constituent of Ind"V 1"~ 1)
Proof We recall some facts of Deligne—Lusztig characters. Let Gy be the
group of N-permutations, and 3 its conjugacy classes which is canonically
identified with the set of partitions of N. For every = € By, we let R; be the
Deligne—Lusztig character (of Uy (1)) [24, Corollary 4.3] associated to the
trivial representation of the maximal torus corresponding to 7. Let Ry be the
character of the representation Q. Then by [31, Theorem 1], we have

Ry = (-DV+ 30 N o (C.1)

TEPN e

where y is the character function (on 3 ) of the unique nontrivial subrepre-
sentation of the standard representation of Gy ; and N!/z is the cardinality of
the conjugacy class 7. By [24, Theorem 6.8], we have the following orthogo-
nality relation

0, ifm#n';

C2
Zr, ifm=n'. €2)

(Rr, Ryr) = {

We are ready to prove the proposition. In what follows, we write (s") for the
r-tuple (s, ..., s).

For (1), note that GITVT is the unique nontrivial character of Wy that is trivial
on {+1}" x &,. Thus, (1) follows from (2) by [22, Theorem 4.4.5].

For (2), we first show the umqueness of Q. The condition dim QPN Capp. =1

implies that €2y is a constituent of Ind [’VV 1 corresponding to a character of Wy .
However, there are only four characters of Wy, among which only the trivial
character and eTT will give constituents with nonzero P(r) (k1)-invariants.

Py (k) P(’)(fc+)
Thus, the uniqueness follows. For the identity dim €2); = dim Q"

Py(ct) P<r>(K+)
1, it suffices to show that dim €2 = land Q," # 0. Let R}, be the
character of IndP;: 1. Then by [24, Proposition 8.2], we have R}, = R(>r). By
(C.1) and (C.2), we have

(Ror, Rhy) = <— s @y R<z»~)> = (@) =D =1,

<
”eer T

which implies dim Qf\,"’ Capa. 1. Let Yy € Ay be the maximal isotropic
subspace stabilized by Pl(\r,). Then P(Yy) is contained in Iso(Ay), which
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gives rise to an element in CH" —1(Iso(Ay)). Tt is well-known that its
cohomology class subtracted by c; ((’)P( [\N)F(l)) is a nonzero element in
HP'™ (Iso(A v)e, Q¢) (r — 1), which is fixed by Px) (k) by construction. Thus,
we have Q;;’)(ﬁ) # 0; and (2) follows.

For (3), we have R3 = %(R(ls) — R(3)) by (C.1). Then as computed in [61,
Example 6.2], 23 is the unique cuspidal unipotent representation of Us(k ).

For (4), let R}, | be the character of Inde;,t'l) (923 X 1%7=1). Then by [24,
2r+1

Proposition 8.2], we have

Rér-}—l = (R(2r71,13) - R(2r71,3)) .

W | =

By (C.1) and (C.2), we have

xor+1G) 1
(Rari1, Ry yy) = < Y. Tk 3 (R = R<2f‘,3>)>

I
T E€Port1

1
=3 (x2r+1 (2771, 1%) = x2r41 (2771, 3))

_ 1o D) =1
=3@-Ch)=1L

Thus, (4) follows. ]
From now on, we assume that N = 2r is even.

Lemma C.2.2 Let 7t be an irreducible admissible representation of Ua, (F 1)
such that  |g,, contains Qp, (hence is a constituent of an unramified principal
series).

(1) Ifthe Satake parameter of BC(;r) contains neither {q, q_l} nor{—1, —1},
then m|x,, contains the trivial representation.

(2) If the Satake parameter of BC () contains {q,q~"}, then there exists an
element (ar, . .., ) € (C*) "V satisfying 1 < |aa| < -+ < ||, unique
up to permutation, such that BC(ir) is isomorphic to the unique irreducible
quotient of

1 (o' 8 Moy MSE MR- K ).
Proof We fix a decomposition
Ay =Ope_, @ --®Ofpe_1® Ofpe1 & ---® Orey,
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in which (e_;, ej) = §;j for1 <i, j <r.For0 <i <r,put
Voj:=Fe_;@---®Fe_1®Fei®---® Fe;,

which is a hermitian subspace of V,,. We take the minimal parabolic (Borel)
subgroup Ppin of G := Uy, to be the stabilizer of the flag Fe_, C

- C Fe_, @ ---® Fe_1. We also fix a Levi subgroup of Ppj, to be
RCSF/F+ GL(Fel) X oo X RGSF/F+ GL(Fer).

Put K := Ky,, which is a hyperspecial maximal subgroup of G(F™). Let
I be the subgroup of K of elements whose reduction modulo p stabilizes the
flag ke_, € --- € ke_, @ --- @ ke_1, which is an Iwahori subgroup of
G(F™). Let J be the subgroup of K of elements whose reduction modulo
p stabilizes the subspace ke_, @ - -- @ ke_1, which is a parahoric subgroup
of G(F*). We clearly have I € J C K. Now we realize the Weyl group
Wy, >~ {1} x G, explicitly as a subgroup of K. For 1 <i < r, we leti-th
—1 in Wy, correspond to the element that only switches e_; and e;, denoted
by w;. Forevery o € G,, welet (1", o) € W», correspond to the element that
sends e4; to €44 (;), denoted by w/ € J. Then {wy, wél’z), R wzrfl’r)} is a
set of distinguished generators of W»,. We recall the Bruhat decompositions

K = ]_[ Twl, K=]:[Jw1---w,-J.
0

weWs, i=

For w € Wy, we let 0 < i(w) < r be the unique integer such that w €
Jwr - wianJ.

By Proposition C.2.1(2), we have a K-equivariant embedding €2, <>
C[I\K], unique up to scalar, hence obtain a distinguished subspace Qér C
C[I\K /1] of dimension one. We would like to find a generator of Qé - Now we
compute the character of the C[/\ K /I]-module Qér. By Proposition C.2.1(2),
Qér is contained in C[J\ K /J]. It follows that the element 1, ; acts on Qér
by either ¢ or —1, in which the former case corresponds to the K-spherical
one, which is not our case by Proposition C.2.1(1). Thus, Qﬁr is spanned by
the following function:

fi= Y (=)™ 1y € CINK/IL.

weWs,

For every element & = («q, ..., ;) € (C*)", we have the projection map
Py: CINK/I - 18 (01 B Kay)
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defined at the beginning of [ 15, §2], which is C[/\ K /I ]-equivariant. Put ¢ :=
Pa(f).

Take an irreducible admissible representation 7 of Uy, (FT) such that 7| g
contains 27,. Then 7 is a constituent of an unramified principal series. Now
we separate the discussion.

Suppose that we are in the situation of (1). Then there exists an ele-
ment « = (1,...,a,) € (C*) satisfying 1 < |a1| < --- < || and
ai ¢ {—1,q}, unique up to permutation, such that = is a constituent of
1§ (a1 X---NMa,). There exist a unique nonnegative integer ro and unique
positive integers ry, . .., ry satisfying ro + - - - + r; = r, such that

1= |O[1| == ... = |0[r0| < |05r0+1| = ... = |ar0+r1| < < |ar0+---+r,,1—|—l|

= =]

holds. For every 1 <i < ¢, put

. GL,; —1
T =17 <0!ro+---+r,«,1+1 .- O‘ro+---+r,~> ® <|O‘ro+-~-+r,~| © detri> ’

which is an irreducible tempered representation of GL,, (F). Put Gy :=
U(V2,) and Pomin := Go N Prin. As o) X -+ K oy, is a discrete series
representation of Py (F 1), the parabolic induction

T = IIGJ(?min <a—1|Z| o ‘E%)

is a finite direct sum of irreducible tempered representations of Go(F™). As
{ar, ..., ay} does not contain —1, 7y is irreducible by [27, Theorem 1.4 &
Theorem 3.4]. In particular, we obtain a Langlands quotient

19 (703 (71 (It | 0 et ))).

where P is the parabolic subgroup of G containing Py whose Levi quotient is
isomorphic to Go X Resp/p+ GL; X - -+ X Resp,p+ GL,,. We claim that

do 70 €3G (108 (R_y7i (1orgtin | o detri>>> (oK)

Assuming this claim, then 7 is isomorphic to the above Langlands quotient,
which is the unique irreducible quotient of Igmin @ K- Na, ) In particular,
7|k, contains the trivial representation. Thus, (1) follows.

Now we prove (C.3). Let w € W», be the element acting trivially on Vo,
and switching e_ (g 4...4r;_;+j) With e;g 4.4y, 11— forevery 1 < j < r; and
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then every 1 < i < ¢t. By [39, Corollary 3.2], (C.3) is equivalent to

Tywa # 0, C4

where T, is the intertwining operator, which, in this case, is defined by an
absolutely convergent integral

(Twoe)(g) = f ¢o(w™'ng)dn,
N(F1)

where N is the unipotent radical of P and the integral is absolutely convergent
(see the discussion after [39, Proposition 2.2]). Since the eigenspace for the
character of Qér has dimension 1, we must have

Tw(ba = C(“)¢wa

for some complex number C («). By [15, Theorem 3.4] and the continuity, we
have

r

) i—1 )
q —q; Qi —q " aid; —q
C = —_— N
(cr) l_[ . 1) l_[ . . ]ljll oo — 1

a J—
izt \ 90 ot <]

o —
which is nonzero in the situation of (1). From this we obtain (C.4), hence (C.3).
Suppose that we are in the situation of (2). Then there exists an element

o =(q,a,...,a,) € (C*) satisfying 1 < |op| < -+ < ||, unique up to
permutation, such that 7 is a constituent of

Let Q be the parabolic subgroup of G stabilizing the flag Fe_, € --- C

Fe_, & --- @ Fe_p, whose Levi quotient is U(V2) x Resg p+ GL(Fe2) x
- x Resp,p+ GL(Fe,). Then we have a canonical inclusion

1§ (SpMap M-+ M) €1 (4R K- Hay),

where Sp, denotes the Steinberg representation of U(V2) (F ). As 1 Tw; 1 ACts
by —1 on ¢4, we have

bo €14 (Spy Moy K- R o) .

In particular, it follows that 7 is a constituent of Ig (Sp2 Nap - - - X &). To
proceed, there exist unique positive integers r, . . . , 7y satisfying ro+- - -+r; =
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r, such that

1= |062| == |O‘ro| < |05r0+1| == |05r0+r1| <- < |0[r0+-~+r,,1+1|
==

holds. For every 1 <i < ¢, put

T = IGLri <a7‘0+"‘+"i—1+1 X...X ar0+~~+r,~> ® <|ai%}i-'“+ri| o detrl.) s
which is an irreducible tempered representation of GL,, (F). Put Gy :=

U(Var) and Qo := Go N Q. As Spy Map X --- X ay, is a discrete series
representation of Qo (F ™), the parabolic induction

G
1G0 (Sp2 Moy B My

is a finite direct sum of irreducible tempered representations of Go(F ™). Let
70 be the unique direct summand such that ¢4 is contained in the subspace

19 (0 8 (%170 (Iotrytinl 0 dety, ) ) ) S 13 (Spy Men W+ M ay),
where P is the parabolic subgroup of G containing Py whose Levi quotient

is isomorphic to Go x Resp/p+ GL;| X - -- x Resp, g+ GL,,. In particular, we
obtain a Langlands quotient

Jg (‘L’() X (&5211}- (|oz,0+...+rl.| o detri>)) .
By the same proof of (C.3), we obtain
bo #0 €15 (708 (7 (gt o ety ))).

In fact, in this case, we have the formula

r -1 -2 il -2
q—0o o —q o —q T o —q
C(a): l_[ (‘_ll)l‘_ 1_[ l‘_ .j l.j._l
izro+1 | 4\%i o —q @ =y i

j>1
loej | <levi|

Then BC(rr) is isomorphic to the unique irreducible quotient of
16L2r <<®}:tﬂc <|a;0‘+,._ lo detrl.)) X BC(10)
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% (017 ([t 0 dety )))

However, BC(7p) is isomorphic to

~ 162 <a;)1x--maz‘letz&%&--Mum)

which is irreducible. Thus, (2) follows.
The lemma is proved. O

Remark C.2.3 In the situation of Lemma C.2.2, the proof actually shows that
if the Satake parameter of BC(7r) does not contain {g, ¢~} but possibly con-
tains {—1, —1}, then 7 is unramified with respect to either K, or the other
(conjugacy class of) hyperspecial maximal subgroup that is not conjugate to
K2r in U2r(F+)-

Let V), be another hermitian space over F together with a lattice A,
satisfying A5, € (A%,)" and (A5,)Y/A,, >~ k. Put U, = U(V),), and let
K/ be the stabilizer of A}, which is a special maximal subgroup of U} (F 7).

Lemma C.2.4 Let ' be an irreducible admissible representation of U (F ™)

such that (n’)K/Zr £ {0). Then there exists an element (a2, . . ., o) € (C*)" !
satisfying 1 < |ap| < - -+ < ||, unique up to permutation, such that BC(t”)
is isomorphic to the unique irreducible quotient of

IGLZr (

o M Mo WS R KK ).
Proof We fix a decomposition

Ay = Ope, @---®O0re 2 ® AN, ® Orer @--- @ OFey,
in which (e_;, e;) = 6;j for2 <i, j <r.For1 <i <r,put

Vyy=Fe i® - ®Fe ,®AN,Q0, FOFer ®--- @ Fe;,

which is a hermitian subspace of V/, .. We take the minimal parabolic subgroup
Prin of G 1= Ulzr to be the stabilizer of the flag Fe_, C--- C Fe_, @ --- @
Fe_». We also fix a Levi subgroup of Ppy;, to be U(V/z) x Resp,p+ GL(Fey) x

- x Respp+ GL(Fe,). We have a similar embedding W), < K/, of the

Weyl group W)~ W»,_5. For every element @ = (a2, ..., @) € (C*Hr-1,
we let ¢, be the element in Igmm (1, ¥y X XKa,) that takes value 1 on
K, , where 1), denotes the trivial representation of U(V})(F ™).
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Take an irreducible admissible representation 7’ of G(F™) such that
()% # 0. Then it is a constituent of an unramified principal series. In
other words, there exists an element & = {c2, . .., o} € (C*) ! satisfying

1 < |az| < -+ < ||, unique up to permutation, such that ' is a constituent
of

15 LMy Ha,).

To proceed, there exist unique positive integers ro, . . ., ry satisfying ro + - - - +
r; = r, such that

I =laz| = =lan| <lapmt+il = = |trgtr | < < |Wrgtetr_ +1]
== o]

holds. For every 1 < i <1, put

. GL,. —1
T = 7 <ar0+~~~+ri_1+1 X...X ar0+~~+ri> ® <|ar0+~~+ri| @) detri) s

which is an irreducible tempered representation of GL,, (F). Put Gy :=

U(V/Zm) and Pymin := Go N Pmin- As 1/2 Moy X--- Koy is a discrete series

representation of Pymin(F 1), the parabolic induction

1 (BRe®. Ba,)

Pomin
is a finite direct sum of irreducible tempered representations of Go(F ™). Let

70 be the unique direct summand with nonzero invariants under K’2 NGo(F ).
In particular, we obtain a Langlands quotient

Jg (ro X (&ﬁzlri (|ar0+...+rl.| o detrl.))) ,

where P is the parabolic subgroup of G containing Py whose Levi quotient is
isomorphic to Go X Resg/p+ GL; X -+ x Resg,p+ GL,,. We claim

1§ (ro < (&lf.:lq (|a,0+...+,[.| ° det,,.)))Ké’ £ {0}, (C.5)

Assuming this claim, then BC(x”) is isomorphic to the unique irreducible
quotient of

1CLar <<®}:tﬂc <|a;0‘+,._ lo detrl.)) X BC(10)
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% (017 ([t 0 dety )))

However, BC(7p) is isomorphic to

[6L2rg <a;)1 K- oy RBCI) Koy K- K am>

which is irreducible. The lemma follows.
Now we prove (C.5). Note that we have a canonical G(F™)-equivariant
inclusion

1§ (0 (Ri_y7i (Il o dety,))) S 16, (1 Rz @+ Ray),

under which ¢,, belongs to the former space by our choice of 7g. Let w € W,
be the element acting trivially on V/2r0 and switching e_(yy4...4r;_,+j) With
erot-tri+1—j for every 1 < j < r; and then every 1 < i < t. By [39,
Corollary 3.2], (C.5) is equivalent to

Tyl # 0. (C.6)

By [15, Theorem 3.1] and the continuity, we have T,,¢,, = C(«)¢,,,, Where

woe?

r -1 -2, i—l -2
o — g o —q Olj a,-aj—q
Cla) = _ ,
@=]] [1 po— ]1:[1 P

) o — 1
i=ro+1 loj <]l

which is nonzero. From this we obtain (C.6), hence (C.5). O

The following proposition exhibits an example of the local Jacquet—
Langlands correspondence.

Proposition C.2.5 Define

e S to be the set of isomorphism classes of irreducible admissible represen-
tations 7 of Ua, (FT) such that 7|k, contains Q2, and that the Satake
parameter of BC(1) contains {q, g~} (Remark 3.1.6);

o S’ 10 be the set of isomorphism classes of irreducible admissible represen-
tations 7’ of Uy (F) such that i’ ks, contains the trivial representation.

Then there is a unique bijection between S and S’ such that w and 7' corre-
spond if and only if BC(7r) ~ BC(x’).
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Proof We first note that both BC(r) and BC(rr”) are constituents of unram-
ified principal series. We define a correspondence between S and S’ via the
condition that the two Satake parameters a(BC (7)) and a(BC(7t”)) coincide.
By Lemmas C.2.2 and C.2.4, the previous correspondence is a bijection, and
we have BC(rr) >~ BC(r’) if w and 7’ correspond. The proposition is proved.

O

Remark C.2.6 In fact, for 7 € S and 7’ € S’ in Proposition C.2.5 that
correspond to each other, they should also correspond under the local theta
correspondence with respect to the trivial splitting character. When ¢ is odd,
this has been verified in [49].

C.3 Results from the endoscopic classification

Now F/F* will stand for a totally imaginary quadratic extension of a totally
real number field as in the main text. We state the following proposition, which
summarises all we need from the endoscopic classification for unitary groups
in this article. In particular, we will use the notion of local base change for
unitary groups defined over F," for every place v of F*, denoted by BC as
well, for which we have discussed some special cases when v is inert in F in
Sect. C.1.

Proposition C.3.1 Take a relevant representation (Definition 1.1.3) I1 of
GLy(AF). Let V be a standard definite or indefinite hermitian space over
F of rank N and 1 = ®,m, an irreducible admissible representation of
UV)(Ap+). We have

(1) If BC(mry) =~ T1, for every place v of F™, then the discrete automorphic
multiplicity of 7w is 1.

(2) If 7 is automorphic and 11 is its automorphic base change (Defini-
tion3.2.3), then BC (1) =~ I1, holds for every place v of F*. In particular,
the discrete automorphic multiplicity of w is 1 by (1).

(3) If v is archimedean but not T, then BC(m,) > I, if and only if 7 is the
trivial representation.

@ If v = T, then BC(my) == Il if and only if m, is the trivial repre-
sentation (resp. is one of the N discrete series representations with the
Harish-Chandra parameter {I_TN, 3_TN, R NT_3, NT_I}) when V is defi-
nite (resp. indefinite).

Proof Parts (1) and (2) are consequences of [33, Theorem 1.7.1] for generic
packets. Parts (3) and (4) follow from (1), (2), and the definition of relevant
representations. m|

The above proposition has the following two immediate corollaries as two
examples of the global Jacquet—Langlands correspondence.
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Corollary C.3.2 Take a prime p of F ¥ inertin F. Let V and V' be a standard
definite and a standard indefinite hermitian space over F, respectively, of even
rank N = 2r, satisfying V, > V', (for which we fix) for every place v of F*
other than T, and p. Let w be an automorphic representation of U(V)(Ap+)
such that m is trivial, that BC(1r) (Definition 3.2.3, which exists by Proposi-
tion 3.2.8) is cuspidal, and that 7ty belongs to the set S in Proposition C.2.5 (in
particular V® p+ F, F admits a self-dual lattice). Consider the representation
n = 71’ . ® 71 ® n TooP of U(V') (A p+) where

° 71{00 is a discrete series representation of U(V’ )(F;"OO) with the Harish-

Chandra parameter {% -, % — 7y ..., — %, r— %}; and

o m, € S is the representation of U(V’ )(Fp+ ) corresponding to mw, as in
Proposition C.2.5.

Then the discrete automorphic multiplicity of '’ is 1.

Proof PutI1 := BC(rr). By Proposition C.3.1 and Proposition C.2.5, we have
BC(x)) =~ I, for every place v of F*. The corollary follows by Proposi-
tion C.3.1(1). O

Corollary C.3.3 Tuake a prime p of F* inertin F. Let V and V' be a stan-
dard definite and a standard indefinite hermitian space over F, respectively,
of odd rank N = 2r + 1, satisfying V, =~ V;} (for which we fix) for every
place v of Ft other than T, and p. Let ' be an automorphic represen-
tation of UV')(Afp+) such that BC(r") exists and is cuspidal, that 7, is
a discrete series representation of U(V/ )(F + ) (Definition 3.2.3) wzth the
Harish-Chandra parameter {—r, 1 —r,...,r — 1,r}, that ©} is trivial for

every archimedean place T # T, and that nl; is unramified. Consider the
representation w := ;| ® mp ® (1')%F of U(V)(Af+) where

o my_ istrivial; and
o 1y is unramified satisfying BC(rmy) >~ BC(n‘;).

Then the discrete automorphic multiplicity of 7 is 1.
Proof PutIl’ := BC(x’). By Propositions C.3.1 and C.2.5, we have BC(7r,,) ~
IT), for every place v of FT. The corollary follows by Proposition C.3.1(1). O

Appendix D. Some trace formulae argument

This appendix has two goals. In Sect. D.1, we remove some conditions in
a theorem of Caraiani and Scholze [12]. In Sect. D.2, we prove a formula
computing the dimension of old forms in an L-packet for unitary groups.
These two subsections are independent on a logical level; we collect them
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together in one appendix mainly because the argument we use are similar,
namely, trace formulae.
We keep the setup in Sect. 3.

D.1 Vanishing of cohomology off middle degree

Definition D.1.1 Let N > 1 be an integer, and X a finite set of nonar-
chimedean places of F* containing EgLad. Consider a homomorphism

¢: ’]I‘E,Jr — Kk with k a field. We say that ¢ is cohomologically generic if

HL (Sh(V, K)7, D 0

Nker ¢ =

holds for

e cvery finite set ¥ of nonarchimedean places of F* containing T,
e cvery integeri = N — 1, and
e every standard indefinite hermitian space V over F of dimension N and
every object K € R(V) of the form K5+ x Hv¢2;u2+/ U(A)(OFU+) for a
+unt
self-dual [T, 5+ g OF,-lattice A in V@r Az~">".
The following definition is essentially [12, Definition 1.9].

Definition D.1.2 Let ¢: ']I‘I%,Jr — k be a homomorphism with « a field. For a
place w of FT notin X7 that splits in F, we say that ¢ is decomposed generic
at w if ¢ (Hy) € k[T] has distinct (nonzero) roots in which there is no pair
with ratio equal to ||w ||.37 Here, Hy, € Ty, ,»[T] is the Hecke polynomial.

Proposition D.1.3 Let N > 1 be an integer, and X a finite set of nonar-
chimedean places of F* containing E;;d. Let V be a standard indefinite
hermitian space over F of dimension N such that V, is splitforv ¢ 2L UZT.
Let ¢: 'IFE; — Fy be a homomorphism. Suppose that F+ # Q. Suppose that

there exists a place w of F not in ¥ U Z; that splits in F, such that ¢ is
decomposed generic at w. Then we have

H (Sh(V, K) 7, Fokerp = 0

for every integeri # N — 1, and every object K € R(V) of the form Ks+ X

Hu¢2jou2+ U(A)(Op+) for a self-dual Hu¢2§ou2+ OF,-lattice A in V QF
sruzt

Ap

37 In fact, as pointed out in [13, Remark 1.4], there is no need to assume that the roots are
distinct.
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Proof When F contains an imaginary quadratic field and every place in £+
splits in F (which implies F # Q), the proposition can be deduced from the
analogous statement for the unitary similitude group, namely Case 2 of [12,
Theorem 6.3.1(2)]. We now explain how to remove these restrictions.

In the statement of the proposition, let wg be the underlying rational prime of
w. We fix an isomorphism C =~ @wo that induces the place w of F*.Put G :=
Resp+,g U(V). We have the Deligne homomorphismh: Resc/r G — G®q
R as in Sect. 3.2. Put K, o 1= ]_[U‘w0 U(A)(OFU+), which is a hyperspecial
maximal subgroup of G(Qy,). We fix a character w: F*\Ay — C* that
is unramified outside X such that o | A%, is the quadratic character np,p+

associated to F/F*. Put X := {p | 2y N ZF # ¢}
We define a subtorus T C Resr/q G, such that for every Q-ring R,

T(R) = {(l S F®Q R | NmF/F+a S Rx}

We fix a CM type ® containing 74, satisfying that all elements in ® inducing
the place w of F induce the same place of F, and a sufficiently small open
compact subgroup Kt € T(A>) such that (Kt) , is maximal for every p ¢ X.
Then @ induces a Deligne homomorphism he: Resc/r Gy — T ®g R. We
also put T := T(A°¥0) /T(Z(wO))KT similar to Definition 3.5.5.

PutG := GxTandh := h x he. Then we have the Shimura datum
(G, h), which is of Hodge type. Its reflex field is the composition F.Fg C C.
Therefore, for every sufficiently small open compact subgroup K € G(A™),
we have the Shimura variety Sh(G, fl)KxKT, which is smooth projective (as
F* #£ Q) over F.Fg of dimension N — 1. When K is of the form K"Ky.0
it has a canonical smooth projective model . (G ﬁ)Kwo over W(Fwo) which
admits a moduli interpretation similar to the one introduced in Sect. 4.2. Note
that F.Fg is contained in W(]FwO)Q under the isomorphism C =~ Qwo

The discussion in [12], except in §5, is valid for all proper Shimura varieties
of Hodge type including the above one. Thus, we need to modify the argument
in [12, §5] for our case.

Let u and /i be the Hodge cocharacters corresponding to h and h, respec-
tively. We have the natural projection map B(G, i) — B(G, u) of Kottwitz
sets, which is a bijection. For every b € B(G, 1), we have the corresponding
Kottwitz groups Jp and Jp, with a canonical isomorphism Jb ~ Jp x T. For
every (sufficiently small) open compact subgroup K*° C G(A®*"0) and pos-
itive integer m, we have the Igusa variety fﬁam’KWO’ ,, for the integral model

57 (G, ﬁ)Kwo, which is a €-scheme over Fwo. Define

[He o (Agane Q)1 := @D lim H (Agng ko > Qo)

1 Kuo m
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which is a virtual representation of G(A®"0) x J;,(Qy,). The crucial point is
that our G is the honest unitary group, rather than the unitary similitude group.
Then [12, Theorem 5.2.3] is modified as

tr (¢ | He.o( A @) = Y (G HISTH(GM

(H,s,n)

where the sum is taken over equivalent classes of elliptic endoscopic triples
(H, s, n) of G; and we use the character @ for the Langlands—Shelstad transfer.
This formula can be proved in the same way as for [70, Theorem 7.2] since
our Shimura variety has a similar moduli interpretation as seen in Sect. 4.2,
although the Shimura datum (G, h) is not of PEL type in the sense of Kottwitz.
We can fix the representatives of the triples (H, s, ) as in [12, Page 734] but
without the similitude factor. In particular, [12, Corollary 5.2.5] is modified
as

tr (¢ 1 Hr.o(Apn Q) = I 4G, Gr)STE (9.

Gn

The next statement [12, Proposition 5.3.1] or rather [71, Corollary 4.7],

namely,

Ign? (f"0) = 7(Gn) " 'STO" (™)
holds as long as f™ and ¢™ are associated in the sense of [41, 3.2]. Here, Gy, is
the group Resr,q GL, x{1, 6}. Note that, for rational primes in X, we do not
have explicit local base change transfer. However, we will see shortly that there
are enough associated pairs at these primes to make the remaining argument
work, following an idea in [72].

For the test function ¢ € C2°(G(A*"0) x Jj,(Qyy)) in[12, Theorem 5.3.2],
if we assume ¢ = ¢y ® ¢ in which ¢y is the characteristic function of some
open compact subgroup Ky € G(Qyx), then for every Gy, ¢" is associated to
some function f™ in the sense above. This is shown in the claim in the proof
of [72, Proposition 1.4]. In particular, for such ¢, we have

tr (¢ 1 He,o(Apyn Q0)) = Y 4(G, G 1522 (170)

Gn

in view of the above identities and [12, (5.3.2)]. The remaining argument
toward [12, Theorem 5.5.7] is same as it is on the GL-side, for which it suffices
to use the above test functions ¢. In fact, our case is slightly easier as we do
not have the similitude factor.
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The argument towards Proposition D.1.3 or [12, Theorem 6.3.1(2)] only
uses [12, Theorem 5.5.7]. Therefore, the proposition holds. O

Corollary D.1.4 Let the situation be as in Sect. 6.1. Suppose that F* # Q.
Then for all but finitely many primes A of E, the composite homomorphism

T3 % 0p — 0p/n (D.1)

is cohomologically generic (Definition D.1.1).

Proof As pointed out in the proof of [16, Proposition 3.2.5], we can choose
a nonarchimedean place w of F such that IT,, is unramified whose Satake
parameter contains distinct elements oy, . . ., &, which are nonzero algebraic
numbers. Since IT,, is generic, we have «; /a; ¢ {1, ||w]|} fori # j. Thus, for
every sufficiently large rational prime £, we have «; /a; ¢ {1, |[w]|} fori # j
even in Fy. Let A be a prime of E above such a rational prime £. Applying
the Chebotarev density theorem to any residual Galois representation pry
of pm.x, we conclude that there are infinitely many nonarchimedean places
w of F© notin ¥t U E; that splits in F, such that (D.1) is decomposed
generic at w (Definition D.1.2). Thus, (D.1) is cohomologically generic by
Proposition D.1.3. The corollary follows. O

D.2 Dimension of old forms

Let N = 2r be an even positive integer. We consider

e arelevant representation IT of GLy (AF),
e two disjoint finite sets E+ and E+ of nonarchimedean places of FT such

that Zlfnn contains E;;d, E:lm U Z+ contains Z+ (Notation 3.1.4); and

every place in Zfrr is inert in F,

e a finite set ¥ of nonarchimedean places of F' containing Z:un U Zfr' ,

e a standard definite or indefinite hermitian space V over F of rank N such
that V, is not split for v € =T

Ir >
shuzt ust
e a self-dual Hv¢2+u2+ st Or,-lattice A in V@p Ap> "m0 70

min

e an object K € R(V) of the form

K= J] Kex J] U@,
vext Uzt vgziust unt

satisfying that K, is special maximal for v € Efrr .
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We have the homomorphism
+ —_—
on: Ty — Q

given by IT. Fix an isomorphism ¢, : C = Q.

Definition D.2.1 Let v be a nonarchimedean place of F*. We say that an
open compact subgroup K, of U(V)(F,") is transferable if the following two
conditions are satisfied.

(1) For every endoscopic group H of U(V,), there exist an endoscopic transfer
fI?v of 1k, to H and a compactly supported smooth function d)I}(lv on H(Fy)

such that fI?U and ¢Ev are associated in the sense of [41, §3.2].

(2) When H is the quasi-split unitary group of rank N, we can take ¢IP<IU to
be supported on a maximal open compact subgroup of H(F,) (which is
isomorphic to GLy (Fy)).®

We call the function ¢IP<IU in (2) an inertial transfer of K, if K, is transferable,
and will drop the superscript H in practice.

Lemma D.2.2 Let v be a nonarchimedean place of F™.

(1) If v splits in F, then every open compact subgroup K, is transferable.

(2) If vis not in £3, U E;in U Zfrr , then the characteristic function of the

hyperspecial maximal subgroup U(A)(O Fv+) is transferable and admits
1GLy(0p,) as an inertial transfer.

3) Ifvisin =T Uzt

) min Ir’
K, is transferable.

then every sufficiently small open compact subgroup

Proof Part (1) is trivial. Part (2) is the combination of the endoscopic funda-
mental lemma [45] and the base change fundamental lemma [41].

For (3), for sufficiently small K,,, condition (1) in Definition D.2.1 is proved
in [54, Lemma 8.4.1(1)]; and condition (2) can be achieved by [41, Proposi-
tion 3.1.7(2)] (see the proof of [41, Proposition 3.3.2]). O

Proposition D.2.3 Suppose that K, is transferable for v € E:;in.
vV E Efrr , let ¢, be equal to 1 (resp. 0) if one can (resp. cannot) find complex

numbers oy, . . ., o of norm one such that I, is isomorphic to the induction

For every

19 (o' Koy HSL o K- Ha)

38 In fact, this restriction is not necessary for Proposition D.2.3 below; it is only used in the
application of this proposition, namely, Proposition 6.4.1.
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(see Sect. C.1 for the notation of induced representations). Then we have the
identities

dim Q[Sh(V, K)lluepn] = | [] tr(Mu(gk,) 0 An) [ el

+ +
veX Lo vex

dimHY ' (Sh(V, K)z, Qo)luegnl = N | [ w(Mu(¢k,) o An,) [ el

veZn":in veElJrr
when V is definite and indefinite, respectively, for any inertial transfer ¢k,
for K, and any normalized intertwining operator An, for Iy, [71, §4.1], for
V€ E;;in.

Proof We only prove the case where V is indefinite, and leave the case where
V is definite (which is slightly easier) to the readers.

By Proposition 3.2.4(1), we know that IT is tempered everywhere. Moreover,
every discrete automorphic representation of U(V) (A g+) whose automorphic
base change is isomorphic to IT has to be cuspidal as well. Thus, we have
H,, (Sh(V, K)7, Qo)lee¢pn] =0 fori # N — 1.

If there exists v € Efr“ such that ¢, = 0, then by Lemma C.2.4 and the
above fact that I1, is tempered, we have Hé\t’ _I(Sh(V, K)#, @g)[tgqbn] = 0.
Thus, the proposition follows. In what follows, we assume ¢, = 1 for every
V€ Efrr .

By Proposition C.3.1 and Lemma C.2.4, we have

dimHg ™' (Sh(V. K)7 Qolugnl =N [ 3~ dim@)®,
UEE:;" BC(my)~I1,

where the sum is taken over isomorphism classes of irreducible admissible
representations i, of U(V)(Fv+ ) such that BC(w,) >~ II, (for v € E;in).
Thus, our goal is to show

[ > dim@)®=|[] e@u@x)oAn). D2

UEEI;“ BC(mry)xIT, vext

min

We choose a quadratic totally real extension F*/F* in C satisfying

e every prime in E:ﬁin splits in FT;
e every prime in Zfrr is inertin F'T;
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e the quadratic base change of I to F := F.F*, denoted by I1, remains
cuspidal (hence relevant).

By the same proof of [71, Proposition 7.4], we know that such F7 exists. Let
V be the standard definite hermitian space over F of rank N that is split at all
primes not above Emm and such that Vy ~ V, for every v € Emm and every
prime ¥ of F™ above v, which exists as [F+ : FT] = 2. Let Entm be the set

of primes of F* above T . . Take a finite set £ of primes of F* satisfying

+ + .
e X1 contains me,

e Il; is unramified for every prime of F* notin ¥+;
e every prime in T\ X splits in F.

min

By our choice of FT , such > exists. Take an object K e K(V) of the form
=[1Ks satlsfylng

o I§;, is hyperspecial maximal if ¥ ¢ %%;

e K; = K, under a chosen isomorphism Vy =~ V, if ¥ is above a prime

+ .
v € Emm,

 has nonzero K X K invariants if ¥ € E+\E;m

Then we have

dimQSh(V, K)llwggl= [ D dim (725)Ke. (D.3)

ven+ BC(iry)~I1;

On the other hand, by [72, (1.8) & (1.9)], we have

dim Qe[Sh(V, K)lleepg] = | [ ] or(@s(og,) o Ay )| - (D.4)
vex+
Here, for v € Z*’\Em1 , we take qSK to be 1y ,® I ; and it is easy to see
that
(M (g ) o Aﬁu)| = Y dimGN =1 (D.5)
BC () ~I1;

(in fact, the sum is taken over a singleton). Combining (D.3), (D.4), and (D.5),
we obtain

[T X dm@% =[] u(lseg,)oAm)|.

vest BC(ry)~Il; pext

min min
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which is nothing but
2 2
[T > dim@)™| =|[] «((¢x,)oAn,)
Uezrtin BC(my)~ITy ve):;;m
Thus, (D.2) follows. The proposition is proved. O
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