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Abstract In this article, we study the Beilinson–Bloch–Kato conjecture for
motives associated to Rankin–Selberg products of conjugate self-dual auto-
morphic representations, within the framework of the Gan–Gross–Prasad
conjecture. We show that if the central critical value of the Rankin–Selberg
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L-function does not vanish, then the Bloch–Kato Selmer group with coeffi-
cients in a favorable field of the corresponding motive vanishes. We also show
that if the class in the Bloch–Kato Selmer group constructed from a certain
diagonal cycle does not vanish, which is conjecturally equivalent to the nonva-
nishing of the central critical first derivative of the Rankin–Selberg L-function,
then the Bloch–Kato Selmer group is of rank one.

Mathematics Subject Classification 11G05 · 11G18 · 11G40 · 11R34
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1 Introduction

In this article, we study the Beilinson–Bloch–Kato conjecture for motives
associated to Rankin–Selberg products of conjugate self-dual automorphic
representations of GLn(AF )× GLn+1(AF ) for a CM number field F , within
the framework of the Gan–Gross–Prasad conjecture [25] for the pair of unitary
groups U(n)×U(n + 1). For background on the Beilinson–Bloch–Kato con-
jecture, which is a generalization of the Birch and Swinnerton-Dyer conjecture
from elliptic curves to higher dimensional algebraic varieties, we refer to [7]
(see also the introduction of [46]).

1.1 Main results

Let F/F+ be a totally imaginary quadratic extension of a totally real number
field. We first state one of our main results that is least technical to understand.

Theorem 1.1.1 (Corollary 8.2.3) Let n � 2 be an integer. Let A and A′ be
two modular elliptic curves over F+ such that End(AF ) = End(A′

F
) = Z.

Suppose that
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110 Y. Liu et al.

(a) AF and A′
F

are not isogenous to each other;

(b) both Symn−1 A and Symn A′ are modular; and
(c) F+ �= Q.

If the (central critical) L-value L(n,Symn−1 AF ×Symn A′
F ) does not vanish,

then the Bloch–Kato Selmer group

H1
f (F,Sym

n−1 H1
ét(AF ,Q�)⊗Q�

Symn H1
ét(A

′
F
,Q�)(n))

vanishes for all but finitely many rational primes �.

Remark 1.1.2 The finite set of rational primes � that are excluded in Theo-
rem 1.1.1 can be effectively bounded. We now explain the three conditions in
Theorem 1.1.1.

(a) is necessary since otherwise (L3) and (L5) in Definition 8.1.1 fail for all
rational primes �.

(b) is necessary since our approach only applies to Galois representations
arising from automorphic representations. We summarise the current
knowledge on the modularity of symmetric powers of elliptic curves in
Remark 8.2.4.

(c) is necessary only for technical reasons. First, we do not know Hypothe-
sis 3.2.10, which concerns cohomology of unitary Shimura varieties, yet
for N � 4 if F+ = Q. Second, we do not have (an appropriate replace-
ment for) Proposition D.1.3, a result generalizing [12], when F+ = Q.
Indeed, as long as we have these results as expected, (c) can be lifted.

Theorem 1.1.1 is a special case of a more general result concerning the
Bloch–Kato Selmer groups of Galois representations associated to conjugate
self-dual automorphic representations. To reduce the burden of long and tech-
nical terminology in the future, we first introduce the following definition,
which will serve for the entire article.

Definition 1.1.3 We say that a complex representation � of GLN (AF ) with
N � 1 is relevant if

(1) � is an irreducible cuspidal automorphic representation;
(2) � ◦ c � �∨, where c ∈ Gal(F/F+) is the complex conjugation;
(3) for every archimedean placew of F ,�w is isomorphic to the (irreducible)

principal series representation induced by the characters (arg1−N , arg3−N ,

. . . , argN−3, argN−1), where arg : C
× → C

× is the argument character
defined by the formula arg(z) := z/

√
zz.

Remark 1.1.4 If � is relevant, then it is regular algebraic in the sense of [17,
Definition 3.12]. Moreover, it is well-known that L(s,�,As(−1)N ) is regular
at s = 1 (see, for example, [28, §6.1]).
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Now we can state our main result in the context of automorphic represen-
tations, of which Theorem 1.1.1 is a special case. Till the end of the next
subsection, we will take an integer n � 2, and denote by n0 and n1 the unique
even and odd numbers in {n, n + 1}, respectively.
Theorem 1.1.5 (Theorem 8.2.2) Let �0 and �1 be relevant representations
of GLn0(AF ) and GLn1(AF ), respectively. Let E ⊆ C be a strong coefficient
field of both�0 and�1 (Definition 3.2.5). Suppose that F+ �= Q. If L(12 ,�0×
�1) �= 0, then for all admissible primes λ of E with respect to (�0,�1), the
Bloch–Kato Selmer group H1

f (F, ρ�0,λ ⊗Eλ ρ�1,λ(n)) vanishes. Here, ρ�α,λ
is the Galois representation of F with coefficients in Eλ associated to�α for
α = 0, 1, as described in Proposition 3.2.4 and Definition 3.2.5.

Remark 1.1.6 The notion of admissible primes appearing in Theorem 1.1.5 is
introduced in Definition 8.1.1, which consists of a long list of assumptions,
some of which are rather technical. Here, we would like to comment on the
essence of these assumptions.

(L1,2) are elementary and exclude only finitely many primes λ.
(L3) is expected to hold for every prime λ if and only if the (conjectural) auto-

morphic product�0 ��1, as an irreducible admissible representation
of GLn(n+1)(AF ), remains cuspidal.

(L4) is expected to hold for all but finitely many primes λ.
(L5) is basically saying that, under (L4), the image of the pair of residual

Galois representations (ρ̄�0,λ, ρ̄�1,λ) contains an element of a particular
form. It is expected to hold for all but finitely many primes λ if the
two automorphic representations�0 and�1 are not correlated in some
manner. For example, when n = 2, we expect that as long as �1 is
not an automorphic twist of Sym2�0 after any base change, then (L5)
holds for all but finitely many primes λ.

(L6) is a technical assumption that is only used in the argument of an R=T
theorem concerning Galois deformations in [51]. It is expected to hold
for all but finitely many primes λ (see [51, §4.2]).

(L7) is a technical assumption for the vanishing of certain Hecke localized
cohomology of unitary Shimura varieties off middle degree. In fact,
when F+ �= Q, (L7) holds for all but finitely many primes λ by Corol-
lary D.1.4.

In fact, we have dedicated ourselves to obtaining the following family of
abstract examples in which all but finitely many primes are admissible. Note
that neither the following theorem nor Theorem 1.1.1 implies each other.

Theorem 1.1.7 (Corollary 8.2.5) Let �0, �1, and E be as in Theorem 1.1.5.
Suppose that
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112 Y. Liu et al.

(a) there exists a very special inert prime p of F+ (Definition 3.3.4) such
that �0,p is Steinberg, and �1,p is unramified whose Satake parameter
contains 1 exactly once;1

(b) for α = 0, 1, there exists a nonarchimedean place wα of F such that
�α,wα is supercuspidal; and

(c) F+ �= Q.

If L(12 ,�0 × �1) �= 0, then for all but finitely many primes λ of E, the
Bloch–Kato Selmer group H1

f (F, ρ�0,λ ⊗Eλ ρ�1,λ(n)) vanishes.

Remark 1.1.8 In (a) of Theorem 1.1.7, if the CM field F is Galois or contains
an imaginary quadratic field, then a very special inert prime of F+ is simply a
prime of F+ that is inert in F , of degree 1 over Q, whose underlying rational
prime is odd and unramified in F .

Now we state our result in the (Selmer) rank 1 case. Let �0 and �1 be
relevant representations of GLn0(AF ) andGLn1(AF ), respectively. Let E ⊆ C

be a strong coefficient field of both�0 and�1 (Definition 3.2.5). Suppose that
the global epsilon factor of �0 ×�1 is −1. Then the Beilinson–Bloch–Kato
conjecture predicts that if L ′(12 ,�0 ×�1) �= 0, then the Bloch–Kato Selmer
group H1

f (F, ρ�0,λ ⊗Eλ ρ�1,λ(n)) has rank 1. However, what we can prove
now is half of this implication. Namely, for every prime λ of E , we will
construct explicitly an element �λ in (the direct sum of finitely many copies
of) H1

f (F, ρ�0,λ ⊗Eλ ρ�1,λ(n)) in Sect. 8.3 as the image of the Abel–Jacobi
map of the diagonal cycle of the product unitary Shimura variety (see (8.10) for
the precise definition). In fact, by Conjecture 8.3.1 and Beilinson’s conjecture
on the injectivity of the �-adic Abel–Jacobi map, the nonvanishing of �λ is
equivalent to the nonvanishing of L ′(12 ,�0 ×�1). Our theorem in the rank 1
case reads as follows.

Theorem 1.1.9 (Theorem 8.3.2) Let�0 and�1 be relevant representations of
GLn0(AF ) andGLn1(AF ), respectively. Let E ⊆ C be a strong coefficient field
of both�0 and�1 (Definition 3.2.5). Suppose that F+ �= Q. For all admissible
primes λ of E with respect to (�0,�1), if �λ �= 0, then H1

f (F, ρ�0,λ ⊗Eλ
ρ�1,λ(n)) has dimension 1 over Eλ.

We also have an analogue of Theorem 1.1.7 in the rank 1 case, whose
statement we omit here.

1 Note that the Satake parameter of �1,p has to contain 1 at least once by Definition 1.1.3(2).
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Remark 1.1.10 In bothTheorems1.1.5 and 1.1.9, the assumption that F+ �= Q

if n � 3 can be lifted once Hypothesis 3.2.10 is known for N � 4 when
F+ = Q.
In fact, when n = 2, we have a slightly different argument that can lift the

restriction F+ �= Q, and the assumptions (L6) and (L7) in Definition 8.1.1 in
all the results above.

1.2 Road map for the article

The very basic idea of bounding Selmer groups as in our main theorems fol-
lows from Kolyvagin [38], namely, we construct a system of torsion Galois
cohomology classes serving as annihilators of (reduction of) Selmer groups.
However, our system is not a generalization of the Euler–Kolyvagin system
originally constructed by Kolyvagin. Instead, our system is constructed via
level-raising congruences,2 which was first introduced by Bertolini and Dar-
mon in the case of Heegner points in the study of certain Iwasawa main
conjecture of elliptic curves [5]. The first example where such level-raising
system was used to bound Selmer groups beyond the Heegner point case was
performed by one of us in [46], for the so-called twisted triple product auto-
morphic motives. In the sequels [47,50], the case of the so-called cubic triple
product automorphic motives was also studied. From this point of view, our
current article is a vast generalization of the previous results mentioned above.

The following is a road map for reading the main part of the article, where
we indicate the need from the four appendices in the parentheses.

Sect. 3 Sect. 4
(A.1)

Sect. 5
(A.2, B, C.2)

Sect. 6
(B, C, D) Sect. 2

Sects. 8.1 and 8.2
(D.1)

End of the rank 0 case Continue to the rank 1 case

Sects. 7.1 and 7.2

Sect. 4
(A.1)

Sect. 7.3
(C.3) Sect. 8.3

2 What we need from level-raising congruences is much more than merely the existence part.
In fact, we have to identify the level-raising explicitly through the geometry of the special fiber
of some Shimura variety, for which we call arithmetic level-raising.
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114 Y. Liu et al.

The proof of Theorem 1.1.9 is based on the proof of Theorem 1.1.5. We may
regard the transition from the rank 0 case to the rank 1 case as an induction
step. As seen from the road map, for the rank 0 case alone, Sects. 4, A.1, 7.3,
and, of course, Sect. 8.3 are not needed. However, we strongly recommend the
readers to go through Sect. 4 even if they are only interested in the rank 0 case,
as Sect. 4 is an appropriate warm-up for reading Sect. 5, which is parallel but
much more complicated.

In what follows, we explain the main steps in the proof of Theorem 1.1.5.
Some of the notations in the rest of this subsection are ad hoc, only for the
purpose of explaining ideas, hence will be obsolete or differ from the main
text.

The initial step (which althoughwill not appear until Sect. 8.2) is to translate
the condition that L(12 ,�0 ×�1) �= 0 into a more straightforward statement.
This is exactly the content of the global Gan–Gross–Prasad conjecture [25].
In fact, as stated in Lemma 8.2.1, we may construct a pair of hermitian spaces
(V◦

n,V
◦
n+1) over F (with respect to F/F+) in which V◦

n is totally positive
definite of rank n, and V◦

n+1 = V◦
n ⊕ F · 1 where 1 has norm 1. For α =

0, 1, put Sh(V◦
nα ) := U(V◦

nα )(F
+)\U(V◦

nα )(A
∞
F+) as a Shimura (pro-)set. We

may further find cuspidal automorphic representations π0 and π1 contained
in the space of locally constant functions on Sh(V◦

n0) and Sh(V◦
n1) satisfying

BC(π0) � �0 and BC(π1) � �1, respectively, such that

P( f0, f1) :=
∫
Sh(V◦

n)

f0(h) f1(h)dh �= 0 (1.1)

for some f0 ∈ π0 and f1 ∈ π1 valued in OE . Such result was first obtained by
one of us [77] under some local restrictions. Those restrictions are all lifted till
very recently through some new techniques in the study of trace formulae [6].
In what follows, we will fix open compact subgroups of U(V◦

n0)(A
∞
F+) and

U(V◦
n1)(A

∞
F+) that fix f0 and f1, respectively, and will carry them implicitly

in the notation.
The next step is to bring the set Sh(V◦

nα ) into arithmetic geometry so that
the period (1.1) can be related to certain Galois cohomology classes. Now we
choose a special inert prime p of F+ (see Definition 3.3.4) with sufficiently
large underlying rational prime p, such that all data appearing so far are unram-
ified above p. For α = 0, 1, we attach to V◦

nα canonically a strictly semistable
scheme Mp(V◦

nα ) over SpecZp2 of relative dimension nα−1, whose complex
generic fiber is non-canonically isomorphic to the disjoint union of finitely
many Shimura varieties attached to the nearby hermitian space of V◦

nα by
changing local components at p and one archimedean place. Moreover, we
can write its special fiber Mp(V◦

nα ) over SpecFp2 as the union of M◦
p(V

◦
nα )

and M•
p(V

◦
nα ), in which M◦

p(V
◦
nα ) is geometrically a P

nα−1-fibration over the
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On the Beilinson–Bloch–Kato conjecture 115

Shimura set Sh(V◦
nα ). The other stratumM•

p(V
◦
nα ), which is rather mysterious,

will also be involved in the later computation. In fact, one key effort wemake is
to show that only the basic locus of the stratumM•

p(V
◦
nα )will play a role in the

computation. For the basic locus, we show that its normalization is geometri-
cally a fibration over the Shimura set Sh(V◦

nα ) (butwith a slightly different level
structure at p) by certain Deligne–Lusztig varieties of dimension rα := �nα

2 �,
introduced in Sect. A.2. The study of various geometric aspects of the scheme
Mp(V◦

nα ), including its associated Rapoport–Zink spectral sequence and its
functorial behavior from n to n + 1, will be carried out in Sect. 5.

The automorphic input will be thrown into the scheme Mp(V◦
nα ) from the

third step, in Sect. 6, where we study the local Galois cohomology of certain
cohomology of Mp(V◦

nα ) localized at some Hecke ideals. More precisely, we
fix an admissible prime λ of E with respect to (�0,�1), and denote by Oλ and
kλ the ring of integers and the residue field of Eλ, respectively. For α = 0, 1,
the Satake parameters of �α induce a homomorphism φα : Tnα → kλ with
kernelmα , where Tnα is a certain abstract spherical Hecke algebra for unitary
groups of rank nα . When α = 0 (resp. α = 1), we need to study the singular
(resp. unramified) part of the local Galois cohomology

H1(Qp2,H
nα−1
T (Mp(V

◦
nα ),R	Oλ(rα))mα ), (1.2)

where Mp(V◦
nα ) := Mp(V◦

nα ) ⊗Fp2
Fp, and HT denotes the certain invariant

part of the étale cohomology (a subtlety that can be ignored at this moment).
The question boils down to the arithmetic level-raising phenomenon (resp.
existence of Tate cycles) when α = 0 (resp. α = 1). However, in both cases,
we have to rely on the recent progress on the Tate conjecture for Shimura
varieties achieved by two of us [75]. Now we would like to continue the
discussion on the case where α = 0, since it is more interesting and more
involved, and omit the case where α = 1. The first key point is to figure out
the correct condition such that the level-raising phenomenon (namely, from
unramified to mildly ramified at the place p) happens on the cohomology (1.2)
in a way that can be understood: we say that p is a level-raising prime with
respect to λ if � � p(p2 − 1) where � is the underlying rational prime of λ, and
the mod λ Satake parameter of �0,p contains the pair {p, p−1} exactly once
and does not contain the pair {−1,−1}. Suppose that p is such a prime, we
show that there is a canonical isomorphism

H1
sing(Qp2,H

n0−1
T (Mp(V

◦
n0),R	Oλ(r0))/m0) � Oλ[Sh(V◦

n0)]/m0 (1.3)

of kλ-vector spaces of finite dimension. Note that by our condition on p, the
right-hand side of (1.3) is nonvanishing, which implies that the left-hand side
is also nonvanishing; in other words, we see the level-raising phenomenon in
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Hn0−1
T (Mp(V◦

n0),R	Oλ(r0)). The proof of (1.3) is the technical heart of this
article (for example, it usesmaterials from all of the four appendices). Through
studying the geometry and intersection theory on the special fiber Mp(V◦

n0) in
Sect. 5 and some of the appendices, we can conclude that Oλ[Sh(V◦

n0)]/m0

is canonically a subquotient of H1
sing(Qp2,H

n0−1
T (Mp(V◦

n0),R	Oλ(r0))/m0).
Thus, it remains to show that the two sides of (1.3) have the same cardinality.
For this, we use the theory of Galois deformations. We construct a global
Galois deformation ring Rmix over Oλ with two quotient rings Runr and Rram,
together with a natural Runr-module Hunr and a natural Rram-module Hram.
They satisfy the following relation: if we put Rcong := Runr ⊗Rmix Rram,
which is an Artinian ring over Oλ, then we have natural isomorphisms

Hunr ⊗Runr Rcong ⊗Oλ kλ � Oλ[Sh(V◦
n0)]/m0,

Hram ⊗Rram Rcong ⊗Oλ kλ � H1
sing(Qp2,H

n0−1
T (Mp(V

◦
n0),R	Oλ(r0))/m0).

Thus, we only need to show that Hunr and Hram are both finite free over Runr

and Rram, respectively, of the same rank. The finite-freeness follows from an
R=T theorem, proved in [51]. The comparison of ranks can be performed over
Eλ, which turns out to be an automorphic problem and is solved in Sect. 6.4
based on Sect. D.2. Summarizing the discussion above, we obtain (1.3). In
practice, we also need a mod λm version of (1.3).

The fourth step is to merge the study of (1.2) for n0 and n1 together, to
obtain the so-called first explicit reciprocity law for the Rankin–Selberg prod-
uct of Galois representations. As an application, we construct a system of
torsion Galois cohomology classes whose image in the singular part of the
local Galois cohomology at p of the product Galois representation is con-
trolled by the period integral (1.1). This step is sort of routine, once we have
enough knowledge on (1.2); it is completed in Sect. 7.2.

The final step of the proof of Theorem 1.1.5 will be performed in Sect. 8.2,
where we use the system of torsion Galois cohomology classes constructed in
the previous step, together with some Galois theoretical facts from Sect. 2, to
bound the Selmer group, which is possible due to the nonvanishing of (1.1).

1.3 Notations and conventions

In this subsection, we setup some common notations and conventions for the
entire article, including appendices, unless otherwise specified. The notations
in the previous two subsections will not be relied on from this moment, and
should not be kept for further reading.
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Generalities

• Denote by N = {0, 1, 2, 3, . . . } the monoid of nonnegative integers.
• We only apply the operation

√
to positive real numbers, which takes

values in positive real numbers as well.
• For a set S, we denote by 1S the characteristic function of S.
• The eigenvalues or generalized eigenvalues of a matrix over a field k
are counted with multiplicity (namely, dimension of the corresponding
eigenspace or generalized eigenspace); in other words, they form a multi-
subset of an algebraic extension of k.

• For every rational prime p, we fix an algebraic closure Qp of Qp with the
residue field Fp. For every integer r � 1, we denote by Qpr the subfield
of Qp that is an unramified extension of Qp of degree r , by Zpr its ring of
integers, and by Fpr its residue field.

• For a nonarchimedean place v of a number field K , we write ‖v‖ for the
cardinality of the residue field of Kv .

• We use standard notations from the category theory. The category of sets is
denoted by Set. For a category C, we denote by Cop its opposite category,
and denote by C/A the category of morphisms to A for an object A of C.
For another categoryD, we denote by Fun(C,D) the category of functors
fromC toD. In particular, we denote byPC := Fun(Cop,Set) the category
of presheaves on C, which contains C as a full subcategory by the Yoneda
embedding. Isomorphisms in a category will be indicated by �. We also
use the symbol – to indicate a virtual object.

• For an algebra A, we denote by Mod(A) the category of left A-modules.
• All rings are commutative and unital; and ring homomorphisms preserve
units. For a (topological) ring L , a (topological) L-ring is a (topological)
ring R togetherwith a (continuous) ring homomorphism from L to R. How-
ever, we use the word algebra in the general sense, which is not necessarily
commutative or unital.

• If a base ring is not specified in the tensor operation ⊗, then it is Z.
• For a ring L and a set S, denote by L[S] the L-module of L-valued functions
on S of finite support.

Algebraic geometry

• We denote by the category of schemes by Sch and its full subcategory
of locally Noetherian schemes by Sch′. For a scheme S (resp. Noetherian
scheme S), we denote by Sch/S (resp. Sch′

/S) the category of S-schemes
(resp. locally Noetherian S-schemes). If S = Spec R is affine, we also
write Sch/R (resp. Sch′

/R) for Sch/S (resp. Sch′
/S).
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• The structure sheaf of a scheme X is denoted by OX .
• For a scheme X over an affine scheme Spec R and an R-ring S, we write

X ⊗R S or even X S for X ×Spec R Spec S.
• For a scheme S in characteristic p for some rational prime p, we denote by
σ : S → S the absolute p-power Frobenius morphism. For a perfect field
κ of characteristic p, we denote by W (κ) its Witt ring, and by abuse of
notation,σ : W (κ)→ W (κ) the canonical lifting of the p-power Frobenius
map.

• For a smoothmorphism S → T of schemes, we denote by TS/T the relative
tangent sheaf, which is a locally free OS-module.

• For a scheme S and a locally free OS-module V of finite rank, we denote
by P(V) → S the moduli scheme of quotient line bundles of V over S,
known as the projective fibration associated to V .

• For a scheme S and (sheaves of) OS-modules F and G, we denote by
Hom(F,G) the quasi-coherent sheaf of OS-linear homomorphisms from
F to G.

• For two positive integers r, s, we denote by Mr,s the scheme over Z of
r -by-s matrices, and put Mr := Mr,r for short; we also denote by GLr ⊆
Mr the subscheme of invertible r -by-r matrices. Then GL1 is simply the
multiplicative group Gm := Z[T, T −1]; but we will distinguish between
GL1 and Gm according to the context.

• For a number field K , a commutative group scheme G → S equipped
with an action by OK over some base scheme S, and an ideal a ⊂ OK , we
denote by G[a] the maximal closed subgroup scheme of G annihilated by
all elements in a.

• By a coefficient ring for étale cohomology, we mean either a finite ring, or
a finite extension of Q�, or the ring of integers of a finite extension of Q�.
In the latter two cases, we regard the étale cohomology as the continuous
one. We say that a coefficient ring L is n-coprime for a positive integer n
if n is invertible in L in the first case, and � � n in the latter two cases.

Group theory

Let G and �̃ be groups, and � a subgroup of �̃. Let L be a ring.

• Denote by �ab the maximal abelian quotient of �.
• For a homomorphism ρ : � → GLr (L) for some r � 1, we denote by
ρ∨ : � → GLr (L) the contragredient homomorphism, which is defined
by the formula ρ∨(x) = tρ(x)−1 for every x ∈ �.

• For a homomorphism ρ : � → G and an element γ ∈ �̃ that normalizes�,
we let ργ : � → G be the homomorphism defined by ργ (x) = ρ(γ xγ−1)

for every x ∈ �.
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• We say that two homomorphisms ρ1, ρ2 : � → G are conjugate if there
exists an element g ∈ G such that ρ1 = g ◦ ρ2 ◦ g−1, that is, ρ1(x) =
gρ2(x)g−1 for every x ∈ �.

• The L-module L[G] is naturally an L-algebra, namely, the group algebra
of G with coefficients in L .

• Suppose that G is a locally compact and totally disconnected topological
group. For an open compact subgroup K of G, the L-module L[K\G/K ]
(of bi-K -invariant compactly supported L-valued functions on G) is natu-
rally an L-algebra, where the algebra structure is given by the composition
of cosets. In particular, the unit element of L[K\G/K ] is always 1K .

Combinatorics

Notation 1.3.1 We recall the q-analogues of binomial coefficients:

[0]q = 1, [n]q = qn − 1

q − 1
, [n]q ! = [n]q · [n − 1]q · · · [1]q ,

[
n

m

]
q
= [n]q !

[n − m]q ! · [m]q !
for integers 0 � m � n. For r � 0 and q ∈ N, we put
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

dr,q :=
r∑
δ=0

(−1)δ(2δ + 1)qδ(δ+1)
[
2r + 1

r − δ
]
−q
,

d•
r,q := 1

q + 1

(
dr,q + (−q)r+1 − 1

q + 1
(q + 1)(q3 + 1) · · · (q2r−1 + 1)

)
.

Ground fields

• Let c ∈ Aut(C/Q) be the complex conjugation.
• Throughout the article, we fix a subfield F ⊆ C that is a number field and
is stable under c; it is assumed to be a CM field except in Sect. 2.

• Let F+ ⊆ F be the maximal subfield on which c acts by the identity.
• Let F be the Galois closure of F in C. Put �F := Gal(F/F) and �F+ :=
Gal(F/F+).

• Denote by�∞ (resp.�+∞) the set of complex embeddings of F (resp. F+)
with τ∞ ∈ �∞ (resp. τ∞ ∈ �+∞) the default one. For τ ∈ �∞, we denote
by τc the its complex conjugation.

• For every rational prime p, denote by �+
p the set of all p-adic places of

F+.
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• Denote by �+
bad the union of �

+
p for all p that ramifies in F .

• Denote by ηF/F+ : �F+ → {±1} the character associated to the extension
F/F+.

• For every prime �, denote by ε� : �F+ → Z
×
� the �-adic cyclotomic char-

acter.

For every place v of F+, we
• put Fv := F ⊗F+ F+

v ; and define δ(v) to be 1 (resp. 2) if v splits (resp.
does not split) in F ;

• fix an algebraic closure F+
v of F+

v containing F ; and put �F+
v

:=
Gal(F+

v /F+
v ) as a subgroup of �F+ ;

• for a homomorphism r from�F+ to another group, denote by rv the restric-
tion of r to the subgroup �F+

v
.

For every nonarchimedean place w of F , we

• identify the Galois group�Fw with�F+
v
∩�F (resp. c(�F+

v
∩�F )c), where

v is the underlying place of F+, if the embedding F ↪→ F+
v induces (resp.

does not induce) the place w;
• let IFw ⊆ �Fw be the inertia subgroup;
• let κw be the residue field of Fw, and identify its Galois group �κw with
�Fw/IFw ;• denote by φw ∈ �Fw a lifting of the arithmetic Frobenius element in �κw .

Definition 1.3.2 We say that two subsets �+
1 and �+

2 of nonarchimedean
places of F+ are strongly disjoint if there is no common rational prime under-
lying the places from both sets.

2 Galois cohomology and Selmer groups

In this section, we make the Galois theoretical preparation for the proof of
the main theorems. Most discussions in this section are generalizations from
[46,47]. The material of this section will not be used until Sect. 6. In Sect. 2.1,
we collect some lemmas on �-adic modules with certain group actions. In
Sect. 2.2, we study local Galois cohomology. In Sect. 2.3, we perform the
discussion that is typical for Kolyvagin’s type of argument. The Selmer group
and its variant will be introduced in Sect. 2.4. In Sect. 2.5, we discuss exten-
sion of essentially conjugate self-dual representations. In Sect. 2.6, we study
localization of Selmer groups. In Sect. 2.7, we study an example related to the
Rankin–Selberg product.

We will start from a more general setup in order to make the discussion
applicable to the orthogonal case as well, which may be studied in the future.
Thus, we fix a subfield F ⊆ C that is a number field, not necessarily CM.
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We fix an odd rational prime � that is unramified in F , and consider a finite
extension Eλ/Q�, with the ring of integers Oλ and the maximal ideal λ of Oλ.
We denote by Bcris Fontaine’s crystalline period ring for Q�, and recall from
Sect. 1.3 that ε� : �F+ → Z

×
� is the �-adic cyclotomic character.

2.1 Preliminaries on �-adic modules with group actions

Let � be a topological group and L a Z�-ring that is finite over either Z� or
Q�. Note that in this case, every finitely generated L-module is equipped with
the natural �-adic topology.

Notation 2.1.1 We denote byMod(�, L) the category of finitely generated L-
modules equipped with a continuous action of �, and by Mod(�, L)tor (resp.
Mod(�, L)fr) the full subcategory of Mod(�, L) consisting of those objects
whose underlying L-modules are torsion (resp. free).

Definition 2.1.2 We say that an L[�]-module M is weakly semisimple if

(1) M is an object ofMod(�, L); and
(2) the natural map M� → M� is an isomorphism.

Lemma 2.1.3 Suppose that � is isomorphic to Ẑ. Let M be an object of
Mod(�, L). Then

(1) M� = 0 implies M� = 0;
(2) if the natural map M� → M� is surjective, then M is weakly semisimple.

Proof Take a topological generator γ of �.
For (1), we have the exact sequence

0 → M� → M
γ−1−−→ M → M� → 0.

Since M� = 0, γ − 1 : M → M is surjective. As M is Noetherian, it follows
that M� = 0.

For (2), taking (continuous) �-cohomology of the short exact sequence

0 → M� → M → M/M� → 0,

we obtain the sequence

(
M/M�

)� → M� → M� → (M/M�
)
�
→ 0.

Since M� → M� is surjective, it follows that
(
M/M�

)
�

= 0. By (1), we

have
(
M/M�

)� = 0, hence the map M� → M� is injective as well.
The lemma is proved. ��
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Lemma 2.1.4 Suppose that � is isomorphic to Ẑ.

(1) A finite direct sum of weakly semisimple L[�]-modules is weakly semisim-
ple.

(2) A subquotient L[�]-module of a weakly semisimple L[�]-module is weakly
semisimple.

Proof Part (1) is obvious.
For (2), let M be a weakly semisimple L[�]-module and consider a short

exact sequence

0 → N → M → Q → 0

of L[�]-module. We obtain the diagram

0 N� M�

�
Q�

N� M� Q� 0

(2.1)

in which the middle vertical arrow is an isomorphism. It follows that
Q� → Q� is surjective, which implies that Q is weakly semisimple by
Lemma 2.1.3(2). It also follows that M� → Q� is surjective, which implies
that N� → M� is injective. Thus, (2.1) is an isomorphism of exact sequences.
Part (2) is proved. ��
Lemma 2.1.5 Suppose that � is isomorphic to Ẑ. Let M be an object
of Mod(�, Oλ)fr. Suppose that M ⊗Oλ Oλ/λ is weakly semisimple, and
dimEλ(M ⊗Oλ Eλ)� � dimOλ/λ(M ⊗Oλ Oλ/λ)� . Then M is weakly semisim-
ple as well, and dimEλ(M ⊗Oλ Eλ)� = dimOλ/λ(M ⊗Oλ Oλ/λ)� .

Proof Since M is a finitely generated free Oλ-module, both M� and M/M� are
finitely generated free Oλ-modules. In particular, the map M� ⊗Oλ Oλ/λ→
(M ⊗Oλ Oλ/λ)� is injective. As we have

dimOλ/λ M� ⊗Oλ Oλ/λ = rankOλ M� = dimEλ(M ⊗Oλ Eλ)
�,

the map M� ⊗Oλ Oλ/λ → (M ⊗Oλ Oλ/λ)� is an isomorphism. It follows
that

dimEλ(M ⊗Oλ Eλ)
� = dimOλ/λ(M ⊗Oλ Oλ/λ)

�.

It also follows that the maps

M� ⊗Oλ Oλ/λ→ (M ⊗Oλ Oλ/λ)
� → (M ⊗Oλ Oλ/λ)� � M� ⊗Oλ Oλ/λ
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are isomorphisms since M ⊗Oλ Oλ/λ is weakly semisimple. By Nakayama’s
lemma, the map M� → M� is surjective. By Lemma 2.1.3(2), M is weakly
semisimple. The lemma is proved. ��

To end this subsection, we record the following definition which slightly
generalizes [46, Definition 5.1], and will be used in later sections.

Definition 2.1.6 Consider an Oλ-module M and an element x ∈ M .We define
the exponent and the order of x to be

expλ(x,M) := min{d ∈ Z�0 ∪ {∞} | λd x = 0},
ordλ(x,M) := sup{d ∈ Z�0 | x ∈ λd M},

respectively.

2.2 Local Galois cohomology

In this subsection, we study Galois cohomology locally at nonarchimedean
places of F . Let w be a nonarchimedean place of F . We recall from Sect. 1.3
various notations concerning Fw.

Notation 2.2.1 For a Z�-ring L that is finite over either Z� or Q� and ? ∈
{ , tor, fr}, we
(1) put Mod(Fw, L)? := Mod(�Fw, L)?;
(2) denote by–( j) : Mod(Fw, L)? → Mod(Fw, L)? the functor of j-th Tate

twist for j ∈ Z; and
(3) denote by –∨ : Mod(Fw, L)op? → Mod(Fw, L)? the functor sending M

to HomL(M, L).

We also denote

–Q : Mod(Fw, Oλ)→ Mod(Fw, Eλ)

the base change functor sending M to M ⊗Oλ Eλ, and

–∗ : Mod(Fw, Oλ)
op
tor → Mod(Fw, Oλ)

the Eλ-Pontryagin duality functor sending M to HomOλ(M, Eλ/Oλ). For
every pair m,m′ ∈ {1, 2, . . . ,∞} with m′ � m, we have a “reduction modulo
λm” functor

–̄(m) := –⊗Oλ Oλ/λ
m : Mod(Fw, Oλ/λ

m′
)→ Mod(Fw, Oλ/λ

m)
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(that is, it sends R to R̄(m)).3 We usually write –̄ for –̄(1).
For every object R ∈ Mod(Fw, Oλ), we have the local Tate pairing

〈 , 〉w : H1(Fw,R)× H1(Fw,R
∗(1)) ∪−→ H2(Fw, Eλ/Oλ(1)) � Eλ/Oλ,

(2.2)

which we will study in the following. We will define a submodule functor
H1
ns(Fw,–) of H1(Fw,–) for every nonarchimedean place w of F , which

is usually denoted as H1
ur(Fw,–) and H1

f (Fw,–) when � � w and � | w,
respectively. We choose this unconventional notation only to uniformize the
two cases.

First, we study the case where � � w.

Definition 2.2.2 For every object R in eitherMod(Fw, Eλ) orMod(Fw, Oλ),
we put

H1
sing(Fw,R) := H1(IFw,R)

�κw ;

and denote by H1
ns(Fw,R) the kernel of the canonical map

∂w : H1(Fw,R)→ H1
sing(Fw,R).

By the inflation-restriction exact sequence (see, for example,
[47, Lemma 2.6]), we know that ∂w is surjective, and that H1

ns(Fw,R) is canon-
ically isomorphic to H1(κw,RIFw ).

Lemma 2.2.3 For R ∈ Mod(Fw, Oλ)tor, the restriction of the local Tate pair-
ing 〈 , 〉w (2.2) to H1

ns(Fw,R)× H1
ns(Fw,R

∗(1)) vanishes.

Proof This is well-known. In fact, the cup product of H1
ns(Fw,R) and

H1
ns(Fw,R

∗(1)) factors through H2(κw,RIFw ⊗ R∗(1)IFw ), which is the zero
group. ��

Second,we study the casewhere � | w. In particular, Fw is a finite unramified
extension of Q�. Denote by–0 : Mod(Fw, Oλ)→ Mod(Fw,Z�) the obvious
forgetful functor.

Definition 2.2.4 Let a � b be two integers.

(1) For an object R ∈ Mod(Fw,Z�)tor, we say that R is crystalline (with
Hodge–Tate weights in [a, b]) if R = R′′/R′ where R′ ⊆ R′′ are two �Fw -
stable Z�-lattices in a crystalline Q�-representation of �Fw (with Hodge–
Tate weights in [a, b]).4

3 Here, Oλ/λ
∞ is understood as Oλ.

4 We adopt the convention that Q�(1) has Hodge–Tate weight −1.
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(2) For an object R ∈ Mod(Fw,Z�), we say that R is crystalline (with Hodge–
Tate weights in [a, b]) if R/�mR is a torsion crystalline module (with
Hodge–Tate weights in [a, b]) for every integer m � 1.5

(3) For an object R ∈ Mod(Fw, Oλ), we say that R is crystalline (with Hodge–
Tate weights in [a, b]) if R0 is.

Definition 2.2.5 [59, §4] For an object R ∈ Mod(Fw, Oλ) that is crystalline,
we define H1

ns(Fw,R) to be the subset of H
1(Fw,R) = H1(Fw,R0) consisting

of elements s represented by an extension

0 → R0 → Rs → Z� → 0

in the categoryMod(Fw,Z�) such that Rs is crystalline.6

It follows that H1
ns(Fw,R) is an Oλ-submodule of H1(Fw,R).

Lemma 2.2.6 LetR be an object ofMod(Fw, Oλ)fr such thatRQ is crystalline
with Hodge–Tate weights in [a, b] with a � 0 � b and b − a � � − 2. Then
H1
ns(Fw,R) coincides with the preimage of

ker
(
H1(Fw,RQ)→ H1(Fw,RQ ⊗Q�

Bcris)
)

under the natural map H1(Fw,R)→ H1(Fw,RQ).

Proof This is proved in [9, Proposition 6]. ��
Lemma 2.2.7 Suppose that the integers a, b satisfy a < 0 � b and b − a �
�−2
2 . Then for every R ∈ Mod(Fw, Oλ)tor that is crystalline with Hodge–

Tate weights in [a, b], the restriction of the local Tate pairing 〈 , 〉w (2.2) to
H1
ns(Fw,R)×H1

ns(Fw,R
∗(1)) takes values in d−1

λ /Oλ, where dλ ⊆ Oλ is the
different ideal of Eλ over Q�.

Proof We have a canonical map Tr : (R∗)0 → (R0)
∗ in the category

Mod(Fw,Z�) induced by the trace map TrEλ/Q� , which induces a map
H1(Fw,R∗(1)) → H1(Fw, (R0)

∗(1)) under which the image of
H1
ns(Fw,R

∗(1)) is contained in H1
ns(Fw, (R0)

∗(1)). Take arbitrary elements
x ∈ H1

ns(Fw,R) and y ∈ H1
ns(Fw,R

∗(1)). Then we have

TrEλ/Q�(〈x, y〉w) = TrEλ/Q�〈x, y〉w = 〈x,Tr(y)〉w ∈ Q�/Z�.

However, 〈x,Tr(y)〉w = 0 by [59, Proposition 6.2]. The lemma follows. ��
5 In fact, by Lemma 2.2.6 below, when a � 0 � b and b − a � � − 2, an object R ∈
Mod(Fw,Z�)fr is crystalline with Hodge–Tate weights in [a, b] if and only if RQ is.
6 It is clear that if R is crystalline with Hodge–Tate weights in [a, b] for a � 0 � b, then Rs
in the extension representing an element in H1

ns(Fw,R) is also crystalline with Hodge–Tate
weights in [a, b].
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2.3 Some Galois-theoretical lemmas

In this subsection, we generalize some lemmas from [46]. For a finite set� of
places of F , we denote by �F,� the Galois group of the maximal subextension
of F/F that is unramified outside �.

Notation 2.3.1 For a Z�-ring L that is finite over either Z� or Q� and ? ∈
{ , tor, fr}, we put

Mod(F, L)? := lim−→
�

Mod(�F,�, L)?,

where the colimit is taken over all finite sets � of places of F with inflation
as transition functors. We have functors –( j), –∨, –Q, –∗, and –̄(m) similar
to those in Notation 2.2.1. For an object R ∈ Mod(F, L) and i ∈ Z, we put

Hi (F,R) := lim−→
�

Hi (�F,�,R).

Moreover, for everyplacew of F ,wehave the restriction functorMod(F, L)→
Mod(Fw, L); and denote

locw : Hi (F,R)→ Hi (Fw,R)

the localization map.

Definition 2.3.2 [46, Definition 5.1] Let G be a profinite group. For an object
R ∈ Mod(G, Oλ)tor, we define its reducibility depth to be the smallest integer
rR � 0 such that

(1) if R′ is a G-stable Oλ-submodule that is not contained in λR, then R′
contains λrRR;

(2) for every positive integer m, the group EndOλ[G](R̄(m))/Oλ · id is annihi-
lated by λrR .

Note that if R/λR is absolutely irreducible, then rR = 0.

Lemma 2.3.3 Let R ∈ Mod(F, Oλ) be an object such that RQ is absolutely
irreducible. Then there exists an integer rR depending on R only, such that
R̄(m) has reducibility depth at most rR for every positive integer m.

Proof The same argument in [46, Lemma 5.2] applies to our case as well, with
Z/pn replaced by Oλ/λm . ��

Nowwe fix a positive integerm. Consider an object R ∈ Mod(F, Oλ/λm)fr.
We denote by ρ : �F → GL(R) the associated homomorphism. Let Fρ/F be
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the Galois extension fixed by the kernel of ρ, and G := Gal(Fρ/F) the image
of ρ. we have the restriction map

Resρ : H1(F,R)→ H1(Fρ,R)
G = HomG(�

ab
Fρ ,R), (2.3)

where �ab
Fρ

:= Gal(Fab
ρ /Fρ) with Fab

ρ ⊆ F the maximal abelian extension of
Fρ , which is equippedwith the natural conjugation action by G = Gal(Fρ/F).
The map Resρ induces an Oλ-linear pairing

[ , ] : H1(F,R)× �ab
Fρ → R,

such that the action of G on �ab
Fρ

is compatible with that on R. Let S be a

finitely generated Oλ/λm-submodule of H1(F,R), and let FS/Fρ be the finite
abelian extension such that Gal(Fab

ρ /FS) is the subgroup of �ab
Fρ

consisting of
γ satisfying [s, γ ] = 0 for every s ∈ S. Then the above pairing induces an
injective map

θS : Gal(FS/Fρ)→ HomOλ(S,R) (2.4)

of abelian groups that is compatible with G-actions.
As in [46, §5.1], we introduce a sequence f that is given by f(0) = 1,

f(1) = 1, f(2) = 4, f(r + 1) = 2(f(r)+ 1) for r � 2.

Lemma 2.3.4 Let the notation be as above. Suppose that the map Resρ is
injective. If S is a free Oλ/λm-module of rank rS for some positive integer m,
then the Oλ-submodule ofHomOλ(S,R) generated by the image of θS contains
λf(rS)rR HomOλ(S,R), where rR is the reducibility depth of R.

Proof The same argument in [46, Lemma 5.4] applies to our case as well, with
Z/pn replaced by Oλ/λm p. Note that the proof only uses the injectivity, not
the surjectivity, of the map Resρ . ��

Concerning the injectivity of the map Resρ (2.3), we have the following
lemma.

Lemma 2.3.5 Suppose that either one of the following two assumptions holds:

(a) the image of �F in GL(R̄) contains a nontrivial scalar element;
(b) dimOλ/λ R̄ � min{ �+1

2 , �−3}, R̄ is a semisimple (Oλ/λ)[�F ]-module, and
moreover Hom(Oλ/λ)[�F ](End(R̄), R̄) = 0.

Then Resρ is injective.
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Proof By the inflation-restriction exact sequence, it suffices to show that
H1(G,R) = 0.

In the situation (a), it follows that G contains a nontrivial scalar element of
order coprime to �. Then by the same argument in [29, Proposition 9.1], we
have H1(G,R) = 0. More precisely, let γ ∈ G be a nontrivial scalar element
of order coprime to �. Then we have H1(G/〈γ 〉,Rγ ) = 0 and H1(〈γ 〉,R) = 0,
which imply H1(G,R) = 0.

Nowweconsider the situation (b).Weproveby induction thatH1(G, R̄(i)) =
0 for 1 � i � m. Suppose that H1(G, R̄( j)) = 0 for 1 � j � i < m. By the
short exact sequence

0 → R̄(i+1) ⊗Oλ/λi+1 λ
i/λi+1 → R̄(i+1) → R̄(i) → 0

of Oλ[G]-modules, in which R̄(i+1) ⊗Oλ/λi+1 λi/λi+1 is isomorphic to R̄, we
know that H1(G, R̄(i+1)) = 0. Therefore, it remains to check the initial step
that H1(G, R̄) = 0.

LetGi ⊆ G be the kernel of the composite homomorphismG → GL(R)→
GL(R̄(i)) for 1 � i � m, so we obtain a filtration 0 = Gm ⊆ Gm−1 ⊆
· · · ⊆ G1 ⊆ G of normal subgroups of G. We prove by induction that
H1(G/Gi , R̄) = 0. For i = 1, since R̄ is a faithful semisimple (Oλ/λ)[G/G1]-
module,G/G1 has nonontrivial normal �-subgroup.As dimOλ/λ R̄ � �−3,we
have H1(G/G1, R̄) = 0 by [30, TheoremA]. Suppose that H1(G/G j , R̄) = 0
for 1 � j � i < m. By the inflation-restriction exact sequence

0 → H1(G/Gi , R̄)→ H1(G/Gi+1, R̄)→ HomG(G
i/Gi+1, R̄),

it suffices to show that HomG(Gi/Gi+1, R̄) = 0, or equivalently,
Hom(Oλ/λ)[G](Gi/Gi+1 ⊗ Oλ/λ, R̄) = 0. Note that Gi/Gi+1 is an F�[G]-
submodule of End(R̄), hence (Gi/Gi+1)⊗Oλ/λ is an (Oλ/λ)[G]-submodule
of End(R̄) ⊗ (Oλ/λ) � End(R̄)d , where d := [Oλ/λ : F�] is the degree.
Since R̄ is a semisimple (Oλ/λ)[G]-module and 2 dimOλ/λ R̄ < � + 2,
by [69, Corollaire 1], we know that End(R̄) is a semisimple (Oλ/λ)[G]-
module. In particular, we have Hom(Oλ/λ)[G](Gi/Gi+1 ⊗ Oλ/λ, R̄) = 0 as
HomG(End(R̄), R̄) = 0.

The lemma is proved. ��

2.4 Reduction of Selmer groups

We recall the following definition of the Bloch–Kato Selmer group from [7].
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Definition 2.4.1 (Bloch–Kato Selmer group) For an object R ∈ Mod(F, Eλ),
we define the Bloch–Kato Selmer group H1

f (F,R) of R to be the Eλ-subspace

of H1(F,R) consisting of elements s such that

(1) locw(s) ∈ H1
ns(Fw,R) (Definition 2.2.2) for every nonarchimedean place

w of F not above �; and
(2) locw(s) ∈ ker

(
H1(Fw,R)→ H1(Fw,R ⊗Q�

Bcris)
)
for every place w of

F above �.

Definition 2.4.2 Consider an object R ∈ Mod(F, Oλ)fr.

(1) We define the (integral) Bloch–Kato Selmer group H1
f (F,R) of R to

be inverse image of H1
f (F,RQ) under the obvious map H1(F,R) →

H1(F,RQ).
(2) For m ∈ {1, 2, . . . ,∞}, we define H1

f,R(F, R̄
(m)) to be the image of

H1
f (F,R) under the obvious map H1(F,R)→ H1(F, R̄(m)).

Lemma 2.4.3 Consider an object R ∈ Mod(F, Oλ)fr. Suppose that we are in
one of the two following cases

(1) w is a nonarchimedean place of F not above � at which R is unramified.
(2) w is a place of F above � at which RQ is crystalline with Hodge–Tate

weights in [a, b] with a � 0 � b and b − a � �− 2.

Then for every positive integer m, the image of H1
f,R(F, R̄

(m)) under the

localization map locw : H1(F, R̄(m)) → H1(Fw, R̄(m)) is contained in
H1
ns(Fw, R̄

(m)).

Proof Case (1) follows from [65, Lemma 1.3.5 & Lemma 1.3.8]. Case (2)
follows from Lemma 2.2.6. ��

We recall the notion of purity for a local Galois representation.

Definition 2.4.4 Let w be a nonarchimedean place of F not above �. Con-
sider an object R ∈ Mod(Fw, Eλ). Let WD(R) be the attached Weil–Deligne
representation, and grn WD(R) the n-th graded piece of the monodromy fil-
tration onWD(R). For μ ∈ Z, we say that R is pure of weight μ if grn WD(R)
is strictly pure of weight μ + n for each n, that is, all eigenvalues of φw on
grn WD(R) are Weil ‖w‖−(μ+n)-numbers.7

Fromnow to the endof this section,we suppose that the complex conjugation
c restricts to an automorphism of F (of order at most two). We adopt the

7 In particular, Eλ(1) is (strictly) pure of weight −2.
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notation concerning ground fields in Sect. 1.3; in particular, we put F+ :=
Fc=1. We also have a functor

–c : Mod(F, L)→ Mod(F, L)

induced by the conjugation by c.

Lemma 2.4.5 For every object R ∈ Mod(F, Eλ), the functor –c induces an
isomorphism

H1
f (F,R) � H1

f (F,R
c)

of Selmer groups.

Proof Regard elements inH1(F,–) as extensions. Then applying–c to exten-
sions induces maps

H1(F,R)→ H1(F,Rc), H1(F,Rc)→ H1(F,R)

which are inverses to each other. It is clear that conditions (1) and (2) in
Definition 2.4.1 are preserved under such maps. The lemma follows. ��
Proposition 2.4.6 Let R be an object in Mod(F, Oλ)fr.

(1) Let S be a free Oλ-submodule of H1
f (F,R) whose image in H1

f (F,R)/

H1
f (F,R)tor is saturated. For every positive integer m, if we denote by

S(m) the image of S in H1
f,R(F, R̄

(m)), then it is a free Oλ/λm-module of
the same rank as S.

(2) Suppose that R satisfies Rc
Q

� R∨
Q
(1) and such that RQ is pure of weight

−1 at every nonarchimedean place w of F not above �. For every finite
set � of places of F, there exists a positive integer m� , depending on R
and�, such that for every S as in (1) and every integer m > m� , we have
locw(λm� S(m)) = 0 for every nonarchimedean place w ∈ � not above �.

Proof For (1), let T be the image of H1
f (F,R)tor in H1(F, R̄(m)), which is

contained in H1
f,R(F, R̄

(m)). Then we have a natural injective map

H1
f (F,R)/H

1
f (F,R)tor

λm(H1
f (F,R)/H

1
f (F,R)tor)

→ H1
f,R(F, R̄

(m))/T.

Since the image of S in H1
f (F,R)/H

1
f (F,R)tor is saturated, (1) follows imme-

diately.
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For (2), we look at the map

loc∞�� : H1
f,R(F, R̄

(m))→
⊕

w∈�,w�∞�
H1(Fw, R̄

(m)).

For every w � ∞�, since RQ is of pure weight −1 at w, Rc
Q
and R∨

Q
(1) are

of pure weight of −1 at w as well. Thus, we have H0(Fw,RQ) = 0 and
H2(Fw,RQ) � H0(Fw,R∨

Q
(1))∨ = 0, hence H1(Fw,RQ) = 0 by the Euler

characteristic formula (see also the proof of [56, Proposition 4.2.2(1)]). Thus,
H1(Fw,R) is annihilated byλmw for some integermw � 0.Wemayenlargemw
such that λmw also annihilatesH2(Fw,R)tor. Then it follows that H1(Fw, R̄(m))
is annihilated by λ2mw . Now if we put m� := max{2mw | w ∈ �,w � ∞�},
then (2) follows. This completes the proof of the proposition. ��

2.5 Extension of essentially conjugate self-dual representations

In this subsection, we collect some notation and facts on the extension of
essentially conjugate self-dual representations.

Notation 2.5.1 When [F : F+] = 2, we introduce the group schemeGN from
[18, §1] as

GN := (GLN ×GL1)� {1, c}
with c2 = 1 and

c(g, μ)c = (μ tg−1, μ)

for (g, μ) ∈ GLN ×GL1. Denote by ν : GN → GL1 the homomorphism such
that ν|GLN ×GL1 is the projection to the factor GL1 and that ν(c) = −1.

When [F : F+] = 1, we put GN := GLN ×GL1 and regard the symbol c
as the identity element. Denote by ν : GN → GL1 the projection to the second
factor.

Notation 2.5.2 Let R be a topological ring. For a continuous homomorphism

r : �F+ → GN (R)

such that the image of r |�F lies in GLN (R)× R×, we denote

r � : �F → GLN (R)× R× → GLN (R)

the composition of r |�F with the projection to GLN (R).
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To end this subsection, we recall the notion of extensions along j-
polarizations. This has been introduced in [18, §1] when [F : F+] = 2.

Definition 2.5.3 For a Z�-ring L that is finite over either Z� or Q�, an integer
j , and an object R in Mod(F, L), a j-polarization of R is an isomorphism

� : Rc ∼−→ R∨( j)

in Mod(F, L), such that �c,∨( j) = (−1)μ�+ j+1 · � for some μ� ∈ Z/2Z.
We say that R is j-polarizable if there exists a j-polarization.

Construction 2.5.4 Let R be a nonzero object in Mod(F, L)fr with the
associated continuous homomorphism ρ : �F → GL(R), equipped with a
j-polarization � : Rc ∼−→ R∨( j). Choose an isomorphism R � L⊕N of the
underlying L-modules for a unique integer N � 1.

(1) When [F : F+] = 1, we let

ρ+ : �F+ → GN (L)

be the continuous homomorphism sending g ∈ �F+ = �F to
(ρ(g), ε j

� (g)).
(2) When [F : F+] = 2, the j-polarization � gives rise to an element B ∈

GLN (L) satisfying ρc = B ◦ ε j
� ρ

∨ ◦ B−1 and B tB−1 = (−1)μ�+ j+1.
We let

ρ+ : �F+ → GN (L)

be the continuous homomorphism given by the formula ρ+|�F =
(ρ, ε

j
� |�F , 1) and ρ+(c) = (B, (−1)μ�+ j+1, c).

In both cases, we call ρ+ an extension of ρ.

2.6 Localization of Selmer groups

In this subsection, we study the behavior of Selmer groups under localization
maps.

Notation 2.6.1 We take a nonzero object R ∈ Mod(F, Oλ)fr with the asso-
ciated homomorphism ρ : �F → GL(R), together with a j-polarization
� : Rc ∼−→ R∨( j). We fix an isomorphism R � O⊕N

λ . Let

ρ+ : �F+ → GN (Oλ)
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be the extension of ρ from Construction 2.5.4. For every integer m � 1, we
have the induced homomorphisms

ρ̄(m) : �F → GL(R̄(m)) � GLN (Oλ/λ
m),

ρ̄
(m)
+ : �F+ → GN (Oλ/λ

m),

and we omit the superscript (m) when m = 1.

We denote by F (m) := Fρ̄(m) and F (m)+ the subfields of F fixed by ker ρ̄(m)

and ker ρ̄(m)+ , respectively. In particular, we have F ⊆ F (m) ⊆ F (m)+ ⊆
F (m)(ζ�m ).

Notation 2.6.2 For a positive integer m and an element

γ ∈ (GLN (Oλ/λ
m)× (Oλ/λm)×, c) ⊆ GN (Oλ/λ

m),

we denote by hγ ∈ GLN (Oλ/λm) the first component of γ [F :F+] ∈
GLN (Oλ/λm)× (Oλ/λm)×.

Nowwe fix a positive integer m and a finitely generated Oλ-submodule S of
H1

f,R(F, R̄
(m)). We have the finite abelian extension FS/F (m) from Sect. 2.3.

Consider an element γ as in Notation 2.6.2 that belongs to the image of ρ̄(m)+ .
The following definition is essentially [46, Definition 5.6].

Definition 2.6.3 We say that a place w(m)+ of F (m)+ is γ -associated if

• w(m)+ is not above ∞ or �;

• w(m)+ is unramified over F+;
• its underlying place of F (m) is unramified in FS; and
• its arithmetic Frobenius substitution in Gal(F (m)+ /F+) � im ρ̄(m)+ coin-
cides with γ .

Recall the injective map

θS : Gal(FS/F (m))→ HomOλ(S, R̄
(m))

of abelian groups from (2.4) with ρ = ρ̄(m), which is equivariant under the
action of Gal(F (m)/F). Take a γ -associated place w(m)+ of F (m)+ , and denote
by its underlying places of F (m) and F by w(m) and w, respectively. Since
FS/F (m) is abelian, w(m) has a well-defined arithmetic Frobenius substitu-
tion 	w(m) ∈ Gal(FS/F (m)). Denote by GS,γ the subset of Gal(FS/F (m)) of

elements 	w(m) for all γ -associated places w
(m)
+ .
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Lemma 2.6.4 Suppose that the order of γ is coprime to �. Then we have

GS,γ = θ−1
S HomOλ(S, (R̄

(m))hγ ).

Proof Note that the arithmetic Frobenius substitution ofw(m) in Gal(F (m)/F)
coincides with hγ , which implies that the action of hγ on Gal(FS/F (m)) fixes
	w(m) . Thus, the image of GS,γ under θS is contained in HomOλ(S, (R̄

(m))hγ ).
Conversely, suppose that 	 ∈ Gal(FS/F (m)) satisfies θS(	) ∈

HomOλ(S, (R̄
(m))hγ ). We need to find a γ -associated place w(m)+ such that

	 = 	w(m) . We regard γ as an element in Gal(F (m)+ /F+) and hγ as an ele-
ment inGal(F (m)/F). Let g be the order of hγ , which is coprime to �. Consider
the element (g−1	)hγ ∈ Gal(FS/F) = Gal(FS/F (m)) � Gal(F (m)/F). Let
F̃S be the smallest subfield of C that is Galois over F+ and contains FS and
F (m)+ . Since γ has order prime to �, it is easy to see that there is an element

γ̃ ∈ Gal(F̃S/F+) lifting γ such that the image of γ̃ [F :F+] ∈ Gal(F̃S/F) in
Gal(FS/F) coincides with (g−1	)hγ . By the Chebotarev density theorem, we
can find a place w̃ of F̃S whose arithmetic Frobenius substitution coincides
with γ and whose underlying place w(m)+ of F (m)+ is γ -associated. Then it is
clear that 	 = 	w(m) . ��

By the above lemma, for every r ∈ N, we have a map

θr
S,γ : Gr

S,γ → HomOλ(S, ((R̄
(m))hγ )⊕r )

of abelian groups induced by θS .

Definition 2.6.5 Suppose that S is a free Oλ/λm−m0-module of rank rS for
some m0 ∈ N and rS ∈ N. We say that an rS-tuple (	1, . . . , 	rS ) ∈ GrS

S,γ is

(S, γ )-abundant if the image of the homomorphism θrS
S,γ (	1, . . . , 	rS ) con-

tains λm0+f(rS)rR((R̄(m))hγ )⊕rS , where rR and f(rS) are the integers appearing
in Lemmas 2.3.3 and 2.3.4, respectively.

The following proposition provides (S, γ )-abundant tuples under certain
conditions.

Proposition 2.6.6 Suppose that S is a free Oλ/λm−m0-module of rank rS for
some m0 ∈ N and rS ∈ N. Assume that the following are satisfied:

• RQ is absolutely irreducible;
• either one of the two assumptions in Lemma 2.3.5 is satisfied;
• the order of γ is coprime to �; and
• (R̄(m))hγ is free over Oλ/λm of rank 1.

Then (S, γ )-abundant rS-tuple exists.
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Proof By Lemma 2.3.5, Resρ̄(m) is injective. By Lemmas 2.3.3 and 2.3.4, the
Oλ-submodule generatedby the imageof θS containsλf(rS)rR HomOλ(S, R̄

(m)).
Since hγ has order coprime to �, HomOλ(S, (R̄

(m))hγ ) is a direct summand of
HomOλ(S, R̄

(m)). It follows from Lemma 2.6.4 that the Oλ-submodule gener-
ated by θS(GS,γ ) contains λf(rS)rR HomOλ(S, (R̄

(m))hγ ). As (R̄(m))hγ is free
Oλ/λm-module of rank 1 and S is a free Oλ/λm−m0-module of rank rS , the
proposition follows immediately. ��
Proposition 2.6.7 Let the assumptions be as in Proposition 2.6.6 and put
r := rS for short. For every (S, γ )-abundant r-tuple (	1, . . . , 	r ), one can
choose a basis {s1, . . . , sr } of S such that θS(	i )(s j ) = 0 if i �= j and

expλ
(
θS(	 j )(s j ), (R̄

(m))hγ
)

� m − m0 − f(r)rR.

Moreover, if we write	i = 	
w
(m)
i

with a γ -associated place w(m)i of F (m)+ for

1 � i � r , then we have locwi (s j ) = 0 if i �= j and

expλ
(
locwi (si ),H

1
ns(Fwi , R̄

(m))
)

� m − m0 − f(r)rR.

Note that by Definition 2.6.3 and Lemma 2.4.3, the image of locwi : S →
H1(Fwi , R̄

(m)) is contained in H1
ns(Fwi , R̄

(m)).

Proof The first part is obvious from Definition 2.6.5.
For the second part, note that H1

ns(F
(m)

w
(m)
i

, R̄(m)) is canonically isomorphic

to R̄(m) by evaluating on the element 	i = 	
w
(m)
i

. By the definition of θS , the

map θS(	i ) : S → R̄(m) coincides with the composite map

S
locwi−−−→ H1

ns(Fwi , R̄
(m))→ H1

ns(F
(m)

w
(m)
i

, R̄(m)) � R̄(m).

The second part follows immediately.
The proposition is proved. ��

2.7 Case of Rankin–Selberg product

In this subsection, we discuss Galois modules that are related to Rankin–
Selberg products. We take objects Rα ∈ Mod(F, Oλ)fr for α = 0, 1 of rank
nα > 0 with the associated homomorphism ρα : �F → GL(Rα), together
with a (1 − α)-polarization �α : Rc

α

∼−→ R∨
α (1 − α). We fix isomorphisms

Rα � O⊕nα
λ for α = 0, 1.
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We assume that n0 = 2r0 is even and n1 = 2r1 + 1 is odd. Put

R := R0 ⊗Oλ R1, ρ := ρ0 ⊗ ρ1 : �F → GL(R),

and � := �0 ⊗�1 : Rc ∼−→ R∨(1) which is a 1-polarization of R.
For a homomorphism ρ from �F and a place w of F , we write ρw for

the restriction of ρ to the subgroup �Fw . Moreover, for clarity, we denote by
ε̄
(m)
� : �F+ → (Oλ/λm)× the reduction of ε� modulo λm for a positive integer

m, and put ε̄� := ε̄(1)� for simplicity.

Lemma 2.7.1 Let the notation be as above. Take a totally real finite Galois
extension F ′/F+ contained in C and a polynomial P(T ) ∈ Z[T ]. For every
positive integer m, consider the following statement

(GImF ′,P) The image of the restriction of the homomorphism

(ρ̄
(m)
0+ , ρ̄

(m)
1+ , ε̄

(m)
� ) : �F+ → Gn0(Oλ/λ

m)× Gn1(Oλ/λ
m)× (Oλ/λm)×

(see Notation 2.6.1 for the notation) to Gal(F/F ′) contains an ele-
ment (γ0, γ1, ξ) satisfying

(a) P(ξ) is invertible in Oλ/λm;
(b) for α = 0, 1, γα belongs to (GLnα (Oλ/λ

m)× (Oλ/λm)×, c) with order
coprime to �;

(c) the kernels of hγ0 − 1, hγ1 − 1, and hγ0 ⊗ hγ1 − 1 (Notation 2.6.2) are
all free over Oλ/λm of rank 1;

(d) if [F : F+] = 2, then hγ0 does not have an eigenvalue that is equal to
−1 in Oλ/λ;

(e) if [F : F+] = 2, then hγ1 does not have an eigenvalue that is equal to
−ξ in Oλ/λ.

Then (GI1F ′,P) implies (GImF ′,P) for every m � 1.

Proof Take an element (γ0, γ1, ξ) obtained from (GI1F ′,P). For every inte-
ger m � 2, we need to construct an element (γ ′

0, γ
′
1, ξ

′) in the image of

(ρ̄
(m)
0+ , ρ̄

(m)
1+ , ε̄

(m)
� ) satisfying (a–e). First, we take (γ ′

0, γ
′
1, ξ

′) to be an arbitrary
lifting of (γ0, γ1, ξ) in the image of (ρ̄(m)0+ , ρ̄

(m)
1+ , ε̄

(m)
� ). Since the order of γα

is coprime to �, there exists a positive integer dα such that γ �
dα
α = γα . On

the other hand, we can find a positive integer eα such that (γ ′
α)
�eα has order

coprime to � and that 1 is an eigenvalue of h(γ ′
α)
�eα . Replacing γ ′

α by (γ
′
α)
�dαeα ,

we obtain the desired element (γ ′
0, γ

′
1, ξ

′). The lemma follows. ��
At the end of this section, we discuss an example using elliptic curves. Let

A0 and A1 be two elliptic curves over F+. For a rational prime � (that is odd
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and unramified in F), we put

Rα := (Symnα−1
Z�

H1
ét(AαF ,Z�))(rα)

as a Z�[�F ]-module for α = 0, 1. Then Rα is an object in Mod(F,Z�)fr of
rank nα with a canonical (1 − α)-polarization �α : Rc

α

∼−→ R∨
α (1 − α). Put

R := R0 ⊗Z�
R1 and � := �0 ⊗�1 as above.

Proposition 2.7.2 Suppose that A0F and A1F are not isogenous to each other
and End(A0F ) = End(A1F ) = Z. Take a totally real finite Galois extension
F ′/F+ contained in C and a polynomial P(T ) ∈ Z[T ]. Then for sufficiently
large �, we have that

(1) the image of ρ̄ : �F → GL(R⊗ F�) contains a nontrivial scalar element;
(2) all of ρ̄0, ρ̄1, and ρ̄0 ⊗ ρ̄1 are absolutely irreducible; and
(3) (GI1F ′,P) from Lemma 2.7.1 holds (with the coefficient field Eλ = Q�).

Proof For α = 0, 1 and every �, we have the homomorphism

ρ̄Aα,� : �F → GL(H1
ét(AαF ,F�)) � GL2(F�).

Then we have ρ̄α = (Symnα−1 ρ̄Aα,�)(rα) for α = 0, 1. By our assumption on
A0F and A1F , and [68, Théorème 6], for sufficiently large �, the image of the
homomorphism

(ρ̄A0,�, ρ̄A1,�, ε̄�) : �F → GL2(F�)× GL2(F�)× F
×
�

consists exactly of the elements (g0, g1, ξ) satisfying det g0 = det g1 = ξ−1.
Then both (1) and (2) follow immediately.

For (3), take an element g ∈ �F such that its image under (ρ̄A0,�, ρ̄A1,�, ε̄�)

is in the conjugacy class of
((

a 0
0 1

)
,

(
ab 0
0 b−1

)
, a−1
)

for a, b ∈ F
×
� satisfying

• P(a−1) �= 0,
• (a2i (ab2)2 j )[F ′:F+] �= 1 for (i, j) ∈ {r0, r0 − 1, . . . , 1 − r0} × {r1, r1 −
1, . . . ,−r1} except for (0, 0),

• (a2i−1)[F ′:F+] �= −1 for i ∈ {r0, r0 − 1, . . . , 1− r0}, and
• (a(ab2)2 j )[F ′:F+] �= −1 for j ∈ {r1, r1 − 1, . . . ,−r1}.
Such pair (a, b) always exists for sufficiently large �. Then it is straightforward
to check that the image of g[F ′:F+]c under (ρ̄0+, ρ̄1+, ε̄�) (under the notation
of Lemma 2.7.1) satisfies (a–e) of Lemma 2.7.1. In particular, (3) follows. ��
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3 Preliminaries on hermitian structures

In this section, we collect some constructions and results concerning objects
carrying certain hermitian structures. In Sect. 3.1, we introduce hermitian
spaces, their associated unitary groups and unitaryHecke algebras. In Sect. 3.2,
we introduce unitary Shimura varieties and unitary Shimura sets. In Sect. 3.3,
we review the notion of (generalized) CM types. In Sect. 3.4, we collect some
facts about abelian schemes with hermitian structure, which will be parame-
terized by our unitary Shimura varieties. In Sect. 3.5, we introduce a moduli
scheme parameterizing CM abelian varieties, which is an auxiliary moduli
space in order to equip our unitary Shimura variety a moduli interpretation.

Let N � 1 be an integer.

3.1 Unitary Satake parameters and unitary Hecke algebras

We start by recalling the notion of the coefficient field for an automorphic
representation of GLN (AF ). Let � be an irreducible cuspidal automorphic
(complex) representation of GLN (AF ).

Definition 3.1.1 (see [17, §3.1]) The coefficient field of � is defined to
be the smallest subfield of C, denoted by Q(�), such that for every ρ ∈
Aut(C/Q(�)), �∞ and �∞ ⊗C,ρ C are isomorphic.

For a nonarchimedean place w of F such that�w is unramified, let

α(�w) := {α(�w)1, . . . , α(�w)N } ⊆ C

be the Satake parameter of�w and Q(�w) ⊆ C be the subfield generated by
the coefficients of the polynomial

N∏
i=1

(
T − α(�w)i ·

√‖w‖N−1) ∈ C[T ].

Lemma 3.1.2 Suppose that� is regular algebraic [17, Definition 3.12]. Then
the coefficient field Q(�) is a number field, and is the composition of Q(�w)

for all nonarchimedean places w of F such that�w is unramified.

Proof By [17, Théorème 3.13], Q(�) is a number field. Let Q(�)′ be the
composition of Q(�w) for such w.

By the construction of unramified principal series, it is clear that for every
γ ∈ Aut(C/Q(�)′) and every w such that �w is unramified, �w and
�w⊗C,γ C have the same Satake parameter, hence are isomorphic. Since� is
regular algebraic, by [17, Théorème 3.13], there exists a cuspidal automorphic
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representation γ� of GLN (AF ) such that γ�∞ � �∞⊗C,γ C. By the strong
multiplicity one property for GLN [60], we know that for γ ∈ Aut(C/Q(�)′),
γ� � �, hence �∞ ⊗C,γ C � �∞. It follows that Q(�) is contained in
Q(�)′.

Conversely, for γ ∈ Aut(C/Q(�)), �w and �w ⊗C,γ C are isomorphic
for every w. When �w is unramified, Q(�w) is simply the field of definition
of �w, which implies that γ fixes Q(�w). It follows that Q(�′) is contained
in Q(�).

The lemma follows. ��
Definition 3.1.3 (Abstract Satake parameter) Let L be a ring. For a multi-
subset α := {α1, . . . , αN } ⊆ L , we put

Pα(T ) :=
N∏

i=1

(T − αi ) ∈ L[T ].

Consider a nonarchimedean place v of F+ not in �+
bad.

(1) Suppose that v is inert in F . We define an (abstract) Satake parameter in
L at v of rank N to be a multi-subset α ⊆ L of cardinality N . We say that
α is unitary if Pα(T ) = (−T )N · Pα(T −1).

(2) Suppose that v splits in F . We define an (abstract) Satake parameter in
L at v of rank N to be a pair α := (α1;α2) of multi-subsets α1,α2 ⊆ L
of cardinality N , indexed by the two places w1, w2 of F above v. We say
that α is unitary if Pα1(T ) = c ·T N · Pα2(T

−1) for some constant c ∈ L×.
For two Satake parameters α0 and α1 in L at v of rank n0 and n1, respectively,
we may form their tensor product α0⊗α1 which is of rank n0n1 in the obvious
way. If α0 and α1 are both unitary, then so is α0 ⊗ α1.

Notation 3.1.4 We denote by �+
� the smallest (finite) set of nonarchimedean

places of F+ containing �+
bad such that �w is unramified for every nonar-

chimedean place w of F not above �+
�.

Take a nonarchimedean place v of F+ not in �+
�.

(1) If v is inert in F , then we put α(�v) := α(�w) for the unique place w of
F above v.

(2) If v splits in F into two places w1 and w2, then we put α(�v) :=
(α(�w1);α(�w2)).

Thus, α(�v) is a Satake parameter in C at v of rank N .

Definition 3.1.5 Let v be a nonarchimedean place of F+ inert in F , and L
a ring in which ‖v‖ is invertible. Let P ∈ L[T ] be a monic polynomial of
degree N satisfying P(T ) = (−T )N · P(T −1).
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(1) When N is odd, we say that P is Tate generic at v if P ′(1) is invertible in
L .

(2) When N is odd, we say that P is intertwining generic at v if P(−‖v‖) is
invertible in L .

(3) When N is even, we say that P is level-raising special at v if P(‖v‖) = 0
and P ′(‖v‖) is invertible in L .

(4) When N is even, we say that P is intertwining generic at v if P(−1) is
invertible in L .

Remark 3.1.6 Suppose that L is a field in Definition 3.1.5. It is easy to see that
in Definition 3.1.5, if P = Pα for a unitary Satake parameter α in L at v, then

(1) means that 1 appears exactly once in α;
(2) means that the pair {−‖v‖,−‖v‖−1} does not appear in α;
(3) means that the pair {‖v‖, ‖v‖−1} appears exactly once in α;
(4) means that the pair {−1,−1} does not appear in α.

Here, we note that when N is odd, 1 appears in α and all other elements appear
in pairs of the form {α, α−1}; when N is even, elements in α appear in pairs
of the form {α, α−1}.

We now introduce hermitian spaces.

Definition 3.1.7 (Hermitian space) Let R be an OF+[(�+
bad)

−1]-ring. A her-
mitian space over OF ⊗OF+ R of rank N is a projective OF ⊗OF+ R-module
V of rank N together with a perfect pairing

( , )V : V× V → OF ⊗OF+ R

that is OF ⊗OF+ R-linear in the first variable and (OF ⊗OF+ R,c ⊗ idR)-
linear in the second variable, and satisfies (x, y)V = (y, x)cV for x, y ∈ V. We
denote by U(V) the group of OF ⊗OF+ R-linear isometries of V, which is a
reductive group over R.

Moreover, we denote by V� the hermitian space V⊕ OF ⊗OF+ R · 1 where
1 has norm 1. For an OF ⊗OF+ R-linear isometry f : V → V′, we have the
induced isometry f� : V� → V′

�.

Let v be a nonarchimedean place of F+ not in�+
bad. Let�N ,v be the unique

up to isomorphism hermitian space over OFv = OF ⊗OF+ OF+
v
of rank N ,

and UN ,v its unitary group over OF+
v
. Under a suitable basis, the associated

hermitian form of �N ,v is given by the matrix

⎛
⎜⎜⎝
0 · · · 0 1
0 · · · 1 0
... . .
. ...
...

1 · · · 0 0

⎞
⎟⎟⎠ .
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Consider the local spherical Hecke algebra

TN ,v := Z[UN ,v(OF+
v
)\UN ,v(F

+
v )/UN ,v(OF+

v
)].

According to our convention, the unit element of TN ,v is 1UN ,v(OF+
v
). Let

AN ,v be the maximal split diagonal subtorus of UN ,v , and X∗(AN ,v) be its
cocharacter group. Then there is a well-known Satake transform

TN ,v → Z[‖v‖±δ(v)/2][AN ,v(F
+
v )/AN ,v(OF+

v
)] � Z[‖v‖±δ(v)/2][X∗(AN ,v)]

(3.1)

as a homomorphism of algebras. Choose a uniformizer�v of F+
v .

Construction 3.1.8 Let L be a Z[‖v‖±δ(v)/2]-ring. Let α be a unitary Satake
parameter in L at v of rank N . There are two cases.

(1) Suppose that v is inert in F . Then a set of representatives of AN ,v(F+
v )/

AN ,v(OF+
v
) can be taken as

{diag(� t1
v , . . . ,�

tN
v ) | t1, . . . , tN ∈ Z satisfying ti + tN+1−i = 0

for all 1 � i � N }.
Choose an ordering of α as (α1, . . . , αN ) satisfying αiαN+1−i = 1; we
have a unique homomorphism

Z[‖v‖±δ(v)/2][AN ,v(F
+
v )/AN ,v(OF+

v
)] → L

of Z[‖v‖±δ(v)/2]-rings sending the class of diag(� t1
v , . . . ,�

tN
v ) to

∏� N
2 �

i=1 α
ti
i . Composing with the Satake transform (3.1), we obtain a ring

homomorphism

φα : TN ,v → L .

It is independent of the choices of the uniformizer�v and the ordering of
α.

(2) Suppose that v splits in F into two places w1 and w2. Then a set of
representatives of AN ,v(F+

v )/AN ,v(OF+
v
) can be taken as

{(
diag(� t1

v , . . . ,�
tN
v ), diag(�

−tN
v , . . . ,�−t1

v )
)∣∣ t1, . . . , tN ∈ Z

}
,

where the first diagonal matrix (resp. the second diagonal matrix)
is regarded as an element in AN ,v(Fw1) (resp. AN ,v(Fw2)). Choose

123



142 Y. Liu et al.

orders in α1 and α2 as (α1,1, . . . , α1,N ) and (α2,1, . . . , α2,N ) satisfying
α1,iα2,N+1−i = 1; we have a unique homomorphism

Z[‖v‖±δ(v)/2][AN ,v(F
+
v )/AN ,v(OF+

v
)] → L

of Z[‖v‖±δ(v)/2]-rings sending the class of
(
diag(� t1

v , . . . ,�
tN
v ),

diag(�−tN
v , . . . ,�

−t1
v )
)
to
∏N

i=1 α
ti
1,i . Composing with the Satake trans-

form (3.1), we obtain a ring homomorphism

φα : TN ,v → L .

It is independent of the choices of the uniformizer�v , the order of the two
places of F above v, and the orders in α1 and α2.

Definition 3.1.9 (Abstract unitary Hecke algebra) For a finite set�+ of nonar-
chimedean places of F+ containing�+

bad, we define the abstract unitary Hecke
algebra away from �+ to be the restricted tensor product

T
�+
N :=

⊗
v

′
TN ,v

over all v /∈ �+∞ ∪�+ with respect to unit elements. It is a ring.

Construction 3.1.10 Suppose that � satisfies � ◦ c � �∨. For v /∈ �+
�,

the Satake parameter α(�v) is unitary. Thus by Construction 3.1.8, we have a
homomorphism

φ� :=
⊗

v /∈�+∞∪�+
�

φα(�v) : T
�+
�

N → C,

where we regard C as a Z[‖v‖±δ(v)/2]-ring by sending ‖v‖±δ(v)/2 to√‖v‖±δ(v). If � is regular algebraic, then φ� takes values in Q(�) by
Lemma 3.1.2. Furthermore, by [73, Proposition 4.1 & Remark 4.2], when
� is relevant (Definition 1.1.3), φ� takes values in OQ(�). In particular, we
obtain a homomorphism

φ� : T
�+
�

N → OQ(�).

At last, we introduce some categories of open compact subgroups, which
will be used later.
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Definition 3.1.11 Let V be a hermitian space over F of rank N . Let � be a
finite set of nonarchimedean places of F+.

(1) (Neat subgroups) For a nonarchimedean place v of F+ and an element
gv ∈ U(V)(F+

v ), let �(gv) be the subgroup of (F+
v )

× generated by the
eigenvalues of gv (regarded as an element in GL(V)(Fv)), whose tor-
sion subgroup �(gv)tors lies in Q

×. We say an element g = (gv) ∈
U(V)(A∞,�

F+ ) is neat if
⋂
v /∈� �(gv)tors = {1}, and a subgroup K ⊆

U(V)(A∞,�
F+ ) is neat if all its elements are neat.

(2) We define a category K(V)� whose objects are neat open compact sub-
groups K of U(V)(A∞,�

F+ ), and a morphism from K to K′ is an element

g ∈ K\U(V)(A∞,�
F+ )/K′ satisfying g−1Kg ⊆ K′. Denote by K′(V)� the

subcategory of K(V)� that allows only identity double cosets as mor-
phisms.

(3) We define a categoryK(V)�sp whose objects are pairs K = (K�,K�)where
K� is an object of K(V)� and K� is an object of K(V�)� such that K� ⊆
K�∩U(V)(A∞,�

F+ ), and a morphism fromK = (K�,K�) to K′ = (K′
�,K

′
�)

is an element g ∈ K�\U(V)(A∞,�
F+ )/K′

� such that g−1K�g ⊆ K′
� and

g−1K�g ⊆ K′
�.
8 We have the obvious functors

–� : K(V)�sp → K(V)�, –� : K(V)�sp → K(V�)
�

sending K = (K�,K�) to K� and K�, respectively. Note that K(V)�sp is a

non-full subcategory of K(V)� × K(V�)�.

When � is the empty set, we suppress it from all the notations above.

3.2 Unitary Shimura varieties and sets

We introduce hermitian spaces over F that will be used in this article.

Definition 3.2.1 Let V be a hermitian space over F of rank N .

(1) We say that V is standard definite if it has signature (N , 0) at every place
in �+∞.

(2) We say that V is standard indefinite if it has signature (N − 1, 1) at τ∞
and (N , 0) at other places in �+∞.

8 The subscript “sp” indicates that this notation will be related the special homomorphism of
Shimura varieties later.
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First, we introduce unitary Shimura varieties. Take a standard indefinite
hermitian space V over F of rank N . We have a functor

Sh(V,–) : K(V)→ Sch/F

K �→ Sh(V,K)

of Shimura varieties associated to the reductive group ResF+/Q U(V) and the
Deligne homomorphism

h : ResC/R Gm → (ResF+/Q U(V))⊗Q R =
∏
τ∈�+∞

U(Vτ )

z �→
((

1N−1
zc/z

)
, 1N , . . . , 1N

)

∈ U(V)(F+
τ∞)

∏
τ∈�+∞,τ �=τ∞

U(V)(F+
τ ),

where we have identified U(V)(F+
τ∞) with a subgroup of GLN (C) via a

complex basis of V ⊗F,τ∞ C under which the hermitian form is given by(
1N−1

−1

)
.

Second, we introduce unitary Shimura sets. Take a standard definite hermi-
tian space V over F of rank N . We have a functor

Sh(V,–) : K(V)→ Set

K �→ Sh(V,K) := U(V)(F+)\U(V)(A∞
F+)/K.

Remark 3.2.2 Whether the notion Sh(V,–) stands for a scheme or a set
depends on whether V is standard indefinite or standard definite; so there
will be no confusion about notation. Of course, one can equip Sh(V,–) with
a natural scheme structure when V is standard definite; but we will not take
this point of view in this article.

We now recall the notion of automorphic base change.

Definition 3.2.3 (Automorphic base change) Let V be a hermitian space over
F of rank N , and π an irreducible admissible representation of U(V)(AF+).
An automorphic base change of π is defined to be an automorphic representa-
tion BC(π) of GLN (AF ) that is a finite isobaric sum of discrete automorphic
representations such that BC(π)v � BC(πv) holds for all but finitely many
nonarchimedean places v of F+ such that πv is unramified. By the strong
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multiplicity one property for GLN [60], if BC(π) exists, then it is unique up
to isomorphism.

Proposition 3.2.4 Let � be a relevant representation of GLN (AF ) (Defini-
tion 1.1.3).

(1) For every nonarchimedean place w of F, �w is tempered.
(2) For every rational prime � and every isomorphism ι� : C

∼−→ Q�, there is a
semisimple continuous homomorphism

ρ�,ι� : �F → GLN (Q�),

unique up to conjugation, satisfying that for every nonarchimedean place
w of F, the Frobenius semisimplification of the associated Weil–Deligne
representation of ρ�,ι� |�Fw

corresponds to the irreducible admissible

representation ι��w| det |
1−N
2
w of GLN (Fw) under the local Langlands cor-

respondence. Moreover, ρc�,ι� and ρ∨�,ι�(1− N ) are conjugate.

Proof Part (1) is [10, Theorem 1.2]. For (2), the Galois representation ρ�,ι�
is constructed in [16, Theorem 3.2.3], and the local-global compatibility is
obtained in [10, Theorem 1.1] and [11, Theorem 1.1]. The last property in (2)
follows from the previous one and the Chebotarev density theorem. ��
Definition 3.2.5 Let� be a relevant representation of GLN (AF ). We say that
a subfield E ⊆ C is a strong coefficient field of � if E is a number field
containing Q(�) (Definition 3.1.1); and for every prime λ of E , there exists a
continuous homomorphism

ρ�,λ : �F → GLN (Eλ),

necessarily unique up to conjugation, such that for every isomorphism
ι� : C

∼−→ Q� inducing the prime λ, ρ�,λ ⊗Eλ Q� and ρ�,ι� are conjugate,
where ρ�,ι� is the homomorphism from Proposition 3.2.4(2).

Remark 3.2.6 By [16, Proposition 3.2.5], a strong coefficient field of� exists
for � relevant. Moreover, under Hypothesis 3.2.10 below, Q(�) is already a
strong coefficient field of � if � � BC(π) for a standard pair (V, π) (see
Definition 3.2.7 below) in which V is standard indefinite.

Definition 3.2.7 Consider a pair (V, π) where V is a hermitian space over F
and π is a discrete automorphic representation of U(V)(AF+). We say that
(V, π) is a standard pair if either one of the following two situations happens:

(1) V is standard definite, and π∞ appears in

lim−→
K∈K′(V)

C[Sh(V,K)];
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(2) V is standard indefinite, and π∞ appears in

lim−→
K∈K′(V)

ι−1
� Hi

ét(Sh(V,K)F ,Q�)

for some isomorphism ι� : C
∼−→ Q� and some i ∈ Z.

Proposition 3.2.8 Let (V, π) be a standard pair. Then BC(π) exists.

Proof This is proved in [72, Theorem 1.1].9 When V is standard definite, this
is also proved in [42, Corollaire 5.3]. ��
Remark 3.2.9 In fact, in view of [72, Theorem 1.1], for a standard pair (V, π),
we have the associated Galois representation ρBC(π),ι� similar to the one in
Proposition 3.2.4 as well, with N = dimF V.

Hypothesis 3.2.10 Consider an integer N � 1. For every standard indefinite
hermitian spaceV over F of rank N , every discrete automorphic representation
π of U(V)(AF+) such that BC(π) exists and is a relevant representation of
GLN (AF ), and every isomorphism ι� : C

∼−→ Q�, if ρBC(π),ι� is irreducible,
then

W N−1(π) := Hom
Q�[U(V)(A∞

F+ )]

⎛
⎝ι�π∞, lim−→

K′(V)
HN−1
ét (Sh(V,K)F ,Q�)

⎞
⎠

is isomorphic to the underlying Q�[�F ]-module of ρcBC(π),ι� .

Proposition 3.2.11 Hypothesis 3.2.10 holds for N � 3, and for N > 3 if
F+ �= Q.

Proof The case for N = 1 follows directly from the definition of the canonical
model of Shimura varieties over reflex fields. The case for N = 2 is proved
in [48, Theorem D.6(2)].10 The case for N = 3 when F+ = Q follows from
the main result of [64]. The case for N � 3 when F+ �= Q will be proved in
[37]. ��

9 In fact, in [72], the author considers the case for unitary similitude group and assumes that
F contains an imaginary quadratic field. However, we can obtain the result in our setup by
modifying the argument as in the proof of Proposition D.1.3.
10 Note that our Deligne homomorphism is conjugate to the one in [48, §C.1], which is respon-
sible for the c-conjugation in ρcBC(π),ι� .
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3.3 Generalized CM type and reflexive closure

We denote by N[�∞] the commutative monoid freely generated by the set
�∞, which admits an action of Aut(C/Q) via the set �∞.

Definition 3.3.1 A generalized CM type of rank N is an element

	 =
∑
τ∈�∞

rτ τ ∈ N[�∞]

satisfying rτ + rτc = N for every τ ∈ �∞. For such 	, we define its reflex
field F	 ⊆ C to be the fixed subfield of the stabilizer of 	 in Aut(C/Q). A
CM type is simply a generalized CM type of rank 1. For a CM type , we say
that  contains τ if its coefficient rτ equals 1.

Definition 3.3.2 We define the reflexive closure of F , denoted by Frflx, to be
the subfield of C generated by F and the intersection of F for all CM types
 of F . Put F+

rflx := (Frflx)
c=1.

Remark 3.3.3 It is clear that Frflx is a CM field finite Galois over F ; F+
rflx is

the maximal totally real subfield of Frflx and is finite Galois over F+. In many
cases, we have Frflx = F and hence F+

rflx = F+, for example, when F is
Galois or contains an imaginary quadratic field.

Definition 3.3.4 We say that a prime p of F+ is special inert if the following
are satisfied:

(1) p is inert in F ;
(2) the underlying rational prime p of p is odd and is unramified in F ;
(3) p is of degree one over Q, that is, F+

p = Qp.

By abuse of notation, we also denote by p for its induced prime of F .
We say that a special inert prime p of F+ is very special inert if it is special

inert and splits completely in F+
rflx.

11

Remark 3.3.5 In Definition 3.3.4, (3) is proposed only for the purpose of sim-
plifying computations on Dieudonné modules in Sects. 4 and 5; it is not really
necessary as results in these two sections should remain valid without (3).
However, dropping (3) will vastly increase the burden of notations and com-
putations in those two sections, where the technicality is already heavy.

In what follows in this article, we will often take a rational prime p that is
unramified in F , and an isomorphism ιp : C

∼−→ Qp. By composing with ιp,
we regard �∞ also as the set of p-adic embeddings of F . We also regard Qp
as a subfield of C via ι−1

p .

11 This is equivalent to that for every prime q of F+ above p that is inert in F , [F+
q : Qp] is

odd.
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Notation 3.3.6 We introduce the following important notations.

(1) In what follows, whenever we introduce some finite unramified extension
Q

?
? of Qp, we denote by Z

?
? its ring of integers and put F

?
? := Z

?
?/pZ

?
?.

(2) For every τ ∈ �∞, we denote by Q
τ
p ⊆ C the composition of τ(F)

and Qp, which is unramified over Qp. For a scheme S ∈ Sch/Zτp and an
OS-module F with an action OF → EndOS (F), we denote by Fτ the
maximal OS-submodule of F on which OF acts via the homomorphism
τ : OF → Z

τ
p → OS .

(3) We denote by Q
♦
p ⊆ C the composition of Q

τ
p for all τ ∈ �∞, which

is unramified over Qp. We can identify �∞ with Hom(OF ,Z
♦
p ) =

Hom(OF ,F
♦
p ). In particular, the p-power Frobenius map σ acts on �∞.

(4) For a generalized CM type 	 of rank N , we denote by Q
	
p ⊆ C the

composition of Qp, F , and F	 , which is contained in Q
♦
p .

(5) For a (functor in) scheme over Z
?
? written like X?(· · ·), we put X?(· · ·) :=

X?(· · ·)⊗Z
?
?
F
?
? and Xη? (· · ·) := X?(· · ·)⊗Z

?
?
Q

?
?. For a (functor in) scheme

over F
?
? written like X

?
?(· · ·), we put X?

?(· · ·) := X?
?(· · ·)⊗F

?
?
Fp. Similar

conventions are applied to morphisms as well.

3.4 Unitary abelian schemes

We first introduce some general notations about abelian schemes.

Notation 3.4.1 Let A be an abelian scheme over a scheme S.We denote by A∨
the dual abelian variety of A over S. We denote by HdR

1 (A/S) (resp. LieA/S ,
and ωA/S) for the relative de Rham homology (resp. Lie algebra, and dual
Lie algebra) of A/S, all regarded as locally free OS-modules. We have the
following Hodge exact sequence

0 → ωA∨/S → HdR
1 (A/S)→ LieA/S → 0 (3.2)

of sheaves on S. When the base S is clear from the context, we sometimes
suppress it from the notation.

Definition 3.4.2 (Unitary abelian scheme) We prescribe a subring P ⊆ Q.
Let S be a scheme in Sch/P.

(1) An OF -abelian scheme over S is a pair (A, i) in which A is an abelian
scheme over S and i : OF → EndS(A)⊗P is a homomorphism of algebras
sending 1 to the identity endomorphism.

(2) A unitary OF -abelian scheme over S is a triple (A, i, λ) in which (A, i)
is an OF -abelian scheme over S, and λ : A → A∨ is a quasi-polarization
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such that i(ac)∨ ◦λ = λ ◦ i(a) for every a ∈ OF , and there exists c ∈ P
×

making cλ a polarization.
(3) For two OF -abelian schemes (A, i) and (A′, i ′) over S, a (quasi-

)homomorphism from (A, i) to (A′, i ′) is a (quasi-)homomorphism
ϕ : A → A′ such that ϕ ◦ i(a) = i ′(a) ◦ ϕ for every a ∈ OF . We will
usually refer to such ϕ as an OF -linear (quasi-)homomorphism.

Moreover, we will usually suppress the notion i if the argument is insensitive
to it.

Definition 3.4.3 (Signature type) Let 	 be a generalized CM type of rank N
(Definition 3.3.1). Consider a scheme S ∈ Sch/OF	⊗P. We say that an OF -
abelian scheme (A, i) over S has signature type 	 if for every a ∈ OF , the
characteristic polynomial of i(a) on LieA/S is given by

∏
τ∈�∞

(T − τ(a))rτ ∈ OS[T ].

Construction 3.4.4 Let K be an OF	 ⊗P-ring that is an algebraically closed
field. Suppose that we are given a unitary OF -abelian scheme (A0, i0, λ0) over
K of signature type  that is a CM type, and a unitary OF -abelian scheme
(A, i, λ) over K of signature type	. For every set� of places ofQ containing
∞ and the characteristic of K , if not zero, we construct a hermitian space

Homλ0,λ
F⊗QA�(H

ét
1 (A0,A

�),Hét
1 (A,A

�))

over F ⊗Q A
� = F ⊗F+ (F+⊗Q A

�), with the underlying F ⊗Q A
�-module

HomF⊗QA�(Hét
1 (A0,A

�),Hét
1 (A,A

�))

equipped with the pairing

(x, y) := i−1
0

(
(λ0∗)−1 ◦ y∨ ◦ λ∗ ◦ x

) ∈ i−1
0 EndF⊗QA�(Hét

1 (A0,A
�))

= F ⊗Q A
�.

Now we take a rational prime p that is unramified in F , and take the pre-
scribed subringP inDefinition3.4.2 to beZ(p).Wealso choose an isomorphism

ιp : C
∼−→ Qp and adopt Notation 3.3.6.

Definition 3.4.5 Let A and B be two abelian schemes over a scheme S ∈
Sch/Z(p) . We say that a quasi-homomorphism (resp. quasi-isogeny) ϕ : A →
B is a quasi-p-homomorphism (resp. quasi-p-isogeny) if there exists some
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c ∈ Z
×
(p) such that cϕ is a homomorphism (resp. isogeny). A quasi-isogeny ϕ

is prime-to-p if both ϕ and ϕ−1 are quasi-p-isogenies. We say that a quasi-
polarization λ of A is p-principal if λ is a prime-to-p quasi-isogeny.

Note that for a unitary OF -abelian scheme (A, i, λ), the quasi-polarization
λ is a quasi-p-isogeny. To continue, take a generalized CM type 	 =∑
τ∈�∞ rτ τ of rank N .

Remark 3.4.6 Let A be an OF -abelian scheme of signature type 	 over a
scheme S ∈ Sch/Zτp for some τ ∈ �∞. Then (3.2) induces a short exact
sequence

0 → ωA∨/S,τ → HdR
1 (A/S)τ → LieA/S,τ → 0

of locally free OS-modules of ranks N − rτ , N , and rτ , respectively. If S
belongs to Sch

/Z
♦
p
, then we have decompositions

HdR
1 (A/S) =

⊕
τ∈�∞

HdR
1 (A/S)τ ,

LieA/S =
⊕
τ∈�∞

LieA/S,τ ,

ωA/S =
⊕
τ∈�∞

ωA/S,τ

of locally free OS-modules.

Notation 3.4.7 Take τ ∈ �∞. Let (A, λ) be a unitary OF -abelian scheme of
signature type 	 over a scheme S ∈ Sch/Zτp . We denote

〈 , 〉λ,τ : HdR
1 (A/S)τ × HdR

1 (A/S)τc → OS

theOS-bilinear pairing induced by the quasi-polarization λ, which is perfect if
and only ifλ is p-principal.Moreover, for anOS-submoduleF ⊆ HdR

1 (A/S)τ ,
we denote byF⊥ ⊆ HdR

1 (A/S)τc its (right) orthogonal complement under the
above pairing, if λ is clear from the context.

Next we review some facts from the Serre–Tate theory [34] and the
Grothendieck–Messing theory [52], tailored to our application. Let 	 be a
generalized CM type of rank N such that min{rτ , rτc} = 0 for every τ not
above τ∞. Consider a closed immersion S ↪→ Ŝ in Sch/Z	p on which p is
locally nilpotent, with its ideal sheaf equipped with a PD structure, and a uni-
tary OF -abelian scheme (A, λ) of signature type	 over S. We let Hcris

1 (A/Ŝ)
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be the evaluation of the first relative crystalline homology of A/S at the PD-
thickening S ↪→ Ŝ, which is a locally freeOŜ ⊗ OF -module. The polarization
λ induces a pairing

〈 , 〉crisλ,τ∞ : Hcris
1 (A/Ŝ)τ∞ × Hcris

1 (A/Ŝ)τc∞ → OŜ. (3.3)

We define two groupoids

• Def(S, Ŝ; A, λ), whose objects are unitary OF -abelian schemes ( Â, λ̂) of
signature type 	 over Ŝ that lift (A, λ);

• Def ′(S, Ŝ; A, λ), whose objects are pairs (ω̂τ∞, ω̂τc∞) where for each τ =
τ∞, τc∞, ω̂τ ⊆ Hcris

1 (A/Ŝ)τ is a subbundle that liftsωA∨/S,τ ⊆ HdR
1 (A/S)τ ,

such that 〈ω̂τ∞, ω̂τc∞〉crisλ,τ∞ = 0.

Proposition 3.4.8 The functor fromDef(S, Ŝ; A, λ) toDef ′(S, Ŝ; A, λ) send-
ing ( Â, λ̂) to (ω Â∨/Ŝ,τ∞, ω Â∨/Ŝ,τc∞

) is a natural equivalence.

Proof By étale descent, we may replace S ↪→ Ŝ by S ⊗Z	p
Z
♦
p ↪→ Ŝ ⊗Z	p

Z
♦
p .

Then we have a decomposition

Hcris
1 (A/Ŝ) =

⊕
τ∈�∞

Hcris
1 (A/Ŝ)τ

similar to the one in Notation 3.3.6. Note that for τ /∈ {τ∞, τc∞}, the subbundle
ωA∨/S,τ has a unique lifting to either zero or the entire Hcris

1 (A/Ŝ)τ . Thus, the
proposition follows from the Serre–Tate and Grothendieck–Messing theories.

��
To end this subsection, we review some notation for abelian schemes in

characteristic p.

Notation 3.4.9 Let A be an abelian scheme over a scheme S ∈ Sch/Fp . Put

A(p) := A ×S,σ S,

where σ is the absolute Frobenius morphism of S. Then we have

(1) a canonical isomorphism HdR
1 (A

(p)/S) � σ ∗HdR
1 (A/S) of OS-modules;

(2) the Frobenius homomorphism FrA : A → A(p) which induces the Ver-
schiebung map

VA := (FrA)∗ : HdR
1 (A/S)→ HdR

1 (A
(p)/S)

of OS-modules;
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(3) the Verschiebung homomorphism VerA : A(p) → A which induces the
Frobenius map

FA := (VerA)∗ : HdR
1 (A

(p)/S)→ HdR
1 (A/S)

of OS-modules.

For a subbundle H of HdR
1 (A/S), we denote by H (p) the subbundle of

HdR
1 (A

(p)/S) that corresponds to σ ∗H under the isomorphism in (1). In what
follows, we will suppress A in the notations FA and VA if the reference to A
is clear.

In Notation 3.4.9, we have ker F = im V = ωA(p)/S and ker V = im F. Take
τ ∈ �∞. For a scheme S ∈ Sch/Fτp and an OF -abelian scheme A over S, we

have (HdR
1 (A/S)τ )(p) = HdR

1 (A
(p)/S)στ under Notations 3.3.6 and 3.4.9.

Notation 3.4.10 Suppose that S = Spec κ for a field κ of characteristic p.
Then we have a canonical isomorphism HdR

1 (A
(p)/κ) � HdR

1 (A/κ)⊗κ,σ κ .
(1) By abuse of notation, we have

• the (κ, σ )-linear Frobenius map F : HdR
1 (A/κ)→ HdR

1 (A/κ) and
• if κ is perfect, the (κ, σ−1)-linear Verschiebung map V : HdR

1 (A/κ)→
HdR
1 (A/κ).

(2) When κ is perfect, recall that we have the covariant Dieudonné module
D(A) associated to the p-divisible group A[p∞], which is a free W (κ)-
module, such that D(A)/pD(A) is canonically isomorphic to HdR

1 (A/κ).
Again by abuse of notation, we have
• the (W (κ), σ )-linear Frobenius map F : D(A)→ D(A) lifting the one
above, and

• the (W (κ), σ−1)-linear Verschiebung map V : D(A) → D(A) lifting
the one above,

respectively, satisfying F ◦ V = V ◦ F = p.
(3) When κ is perfect and contains F

τ
p for some τ ∈ �∞, applying Nota-

tion 3.3.6 to the W (κ)-module D(A), we obtain W (κ)-submodules
D(A)σ i τ ⊆ D(A) for every i ∈ Z. Thus, we obtain
• the (W (κ), σ )-linear Frobenius map F : D(A)τ → D(A)στ and
• the (W (κ), σ−1)-linear Verschiebung map V : D(A)τ → D(A)σ−1τ

by restriction. We have canonical isomorphisms and inclusions:

VD(A)στ /pD(A)τ � ωA∨,τ ⊆ D(A)τ /pD(A)τ � HdR
1 (A)τ .

Notation 3.4.11 Take τ ∈ �∞. Let (A, λ) be a unitary OF -abelian scheme
of signature type 	 over Spec κ for a perfect field κ containing F

τ
p. We have
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a pairing

〈 , 〉λ,τ : D(A)τ ×D(A)τc → W (κ)

lifting the one inNotation 3.4.7.Wedenote byD(A)∨τ theW (κ)-dual ofD(A)τ ,
as a submodule of D(A)τc ⊗ Q. In what follows, unless we specify, the dual
is always with respect to the default quasi-polarization.

The following lemma will be repeatedly used in later discussion.

Lemma 3.4.12 Suppose that F+ is contained in Qp (via the embedding
τ : F+ ↪→ C � Qp) with p the induced p-adic prime. Let � ∈ OF+ be
an element such that valp(�) = 1. Consider two OF -abelian schemes A and
B over a scheme S ∈ Sch/Fp2

. Let α : A → B and β : B → A be two OF -
linear quasi-p-isogenies (Definition 3.4.5) such that β ◦ α = � · idA (hence
α ◦ β = � · idB). Then

(1) For τ ∈ {τ∞, τc∞}, the induced maps

α∗,τ : HdR
1 (A/S)τ → HdR

1 (B/S)τ ,

β∗,τ : HdR
1 (B/S)τ → HdR

1 (A/S)τ

satisfy the relations ker α∗,τ = im β∗,τ and ker β∗,τ = im α∗,τ ; and these
kernels and images are locally free OS-modules.

(2) We have

rankOS LieB/S,τ∞ − rankOS LieA/S,τ∞
= rankOS (ker α∗,τ∞)− rankOS (ker α∗,τc∞).

(3) Let λA and λB be two quasi-polarizations on A and B, respectively, such
that (A, λA) and (B, λB) become unitary OF -abelian schemes of dimen-
sion N [F+ : Q] for some integer N � 1. Suppose that α∨◦λB ◦α = �λA.
(a) If both λA and λB are p-principal, then we have

rankOS (ker α∗,τ∞)+ rankOS (ker α∗,τc∞) = N .

(b) If λA is p-principal and ker λB[p∞] is of rank p2, then we have

rankOS (ker α∗,τ∞)+ rankOS (ker α∗,τc∞) = N − 1.

(c) If ker λA[p∞] is of rank p2 and λB is p-principal, then we have

rankOS (ker α∗,τ∞)+ rankOS (ker α∗,τc∞) = N + 1.
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(d) If both ker λA[p∞] and ker λB[p∞] are of rank p2, respectively, then
we have

rankOS (ker α∗,τ∞)+ rankOS (ker α∗,τc∞) = N .

(4) Let λA and λB be two quasi-polarizations on A and B, respectively, such
that (A, λA) and (B, λB) become unitary OF -abelian schemes of dimen-
sion N [F+ : Q] for some integer N � 1. Suppose that α∨ ◦ λB ◦ α = λA.
If ker λA[p∞] is of rank p2 and λB is p-principal, then we have

rankOS (ker α∗,τ∞)+ rankOS (ker α∗,τc∞) = 1.

Proof Wemay assume S connected. Up to replacing α, β and� by a common
Z
×
(p)-multiple, we may also assume that α and β are genuine isogenies.
For (1), it suffices to show that the induced maps

α∗ : HdR
1 (A/S)⊗OF+ Zp → HdR

1 (B/S)⊗OF+ Zp,

β∗ : HdR
1 (B/S)⊗OF+ Zp → HdR

1 (A/S)⊗OF+ Zp

satisfy the relations ker α∗ = im β∗ and ker β∗ = im α∗; and these kernels and
images are locally free OS-modules.

Note that A[p], B[p], ker α[p], and ker β[p] are all locally free finite group
schemes over S with an action by OF/pOF . By the relation among α, β,� ,
we may assume that A[p] and B[p] have degree p2d ; ker α[p] has degree pr ;
and ker β[p] has degree p2d−r . As β∗ ◦ α∗ = 0 and α∗ ◦ β∗ = 0, it suffices
to show that both ker α∗ and im β∗ (resp. both ker β∗ and im α∗) are locally
direct factors of HdR

1 (A/S) ⊗OF+ Zp (resp. HdR
1 (B/S) ⊗OF+ Zp) of rank r

(resp. 2d − r ), which will follow if we can show that coker α∗ and coker β∗
are locally free OS-modules of rank r and 2d − r , respectively.

We now prove that coker α∗ is a locally freeOS-modules of rank r ; and the
other case is similar. We follow the argument in [23, Lemma 2.3]. Consider
the big crystalline site (S/Zp)cris with the structural sheaf Ocris

S . Denote by
D(A[p∞]) and D(B[p∞]) the covariant Dieudonné crystals on (S/Zp)cris of
p-divisible groups A[p∞] and B[p∞], respectively, which are locally free
Ocris

S -modules. We have a short exact sequence

0 → α∗D(A[p∞])/�D(B[p∞])→ D(B[p∞])/�D(B[p∞])
→ D(B[p∞])/α∗D(A[p∞])→ 0 (3.4)

and a surjective map

α∗ : D(A[p∞])/β∗D(B[p∞])→ α∗D(A[p∞])/�D(B[p∞]) (3.5)
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ofOcris
S -modules. To show that coker α∗ is a locally freeOS-module of rank r ,

it suffices to show thatD(B[p∞])/α∗D(A[p∞]) is a locally freeOcris
S /pOcris

S -
module of rank r . By [4, Proposition 4.3.1], D(B[p∞])/�D(B[p∞]) is a
locally free Ocris

S /pOcris
S -module of rank 2d. Thus, by (3.4) and (3.5), it suf-

fices to show that the Ocris
S /pOcris

S -modules α∗D(A[p∞])/�D(B[p∞]) and
D(B[p∞])/α∗D(A[p∞]) are locally generated by2d−r and r sections, respec-
tively. However, this can be easily checked using classical Dieudonnémodules
after base change to geometric points of S. Thus, (1) is proved.

For (2), we know from (1) that both ker α∗,τ∞ and ker α∗,τc∞ are locally free
OS-modules. We may assume that S = Spec κ for a perfect field κ containing
Fp2 . Put r := dimκ LieA/κ,τ∞ and s := dimκ LieB/κ,τ∞ . Then we have

s = dimκ(ωB∨/κ,τc∞) = dimκ
VD(B)τ∞
pD(B)τc∞

,

r = dimκ(ωA∨/κ,τc∞) = dimκ
VD(A)τ∞
pD(A)τc∞

.

Thus, we obtain

s − r = dimκ
VD(B)τ∞
pD(B)τc∞

− dimκ
VD(A)τ∞
pD(A)τc∞

. (3.6)

Regarding D(A) as a submodule of D(B) via α∗, it follows that

(3.6) = dimκ
VD(B)τ∞
VD(A)τ∞

− dimκ
pD(B)τc∞
pD(A)τc∞

=dimκ
D(B)τ∞
D(A)τ∞

−dimκ
D(B)τc∞
D(A)τc∞

= dimκ(ker α∗,τ∞)− dimκ(ker α∗,τc∞).

Thus, (2) is proved.
For (3), it suffices to show that S = Spec κ for an algebraically closed

field κ containing Fp2 . We compare the degrees of (α∨ ◦ λB ◦ α)[p∞] and
(�λA)[p∞]. Put r := rankOS (ker α∗,τ∞)+ rankOS (ker α∗,τc∞). Then we have
degα[p∞] = degα∨[p∞] = pr hence

2r + logp deg λB[p∞] = 2N + logp deg λA[p∞].

All cases of (3) follow immediately.
The proof of (4) is similar to that of (3). ��

123



156 Y. Liu et al.

3.5 A CM moduli scheme

In this subsection, we introduce an auxiliary moduli scheme parameterizing
certain CM abelian varieties, which will be used in Sects. 4 and 5.

Definition 3.5.1 Let R be a Z[(disc F)−1]-ring.
(1) A rational skew-hermitian space over OF ⊗ R of rank N is a free OF ⊗ R-

module W of rank N together with an R-bilinear skew-symmetric perfect
pairing

〈 , 〉W : W ×W → R

satisfying 〈ax, y〉W = 〈x, acy〉W for every a ∈ OF ⊗ R and x, y ∈ W.
(2) Let W andW′ be two rational skew-hermitian spaces over OF ⊗ R, a map

f : W → W′ is a similitude if f is an OF⊗R-linear isomorphism such that
there exists some c( f ) ∈ R× satisfying 〈 f (x), f (y)〉W′ = c( f )〈x, y〉W
for every x, y ∈ W.

(3) Two rational skew-hermitian spaces over OF ⊗R are similar if there exists
a similitude between them.

(4) For a rational skew-hermitian spaceW over OF ⊗R, we denote byGU(W)
its group of similitude as a reductive group over R; it satisfies that for every
ring R′ over R, GU(W)(R′) is the set of self-similitude of the rational
skew-hermitian space W ⊗R R′ over OF ⊗ R′.

We define a subtorus T0 ⊆ (ResOF/Z Gm) ⊗ Z[(disc F)−1] such that for
every Z[(disc F)−1]-ring R, we have

T0(R) = {a ∈ OF ⊗ R | NmF/F+ a ∈ R×}.

Now we take a rational prime p that is unramified in F . We take the pre-
scribed subring P in Definition 3.4.2 to be Z(p).

Remark 3.5.2 Let W0 be a rational skew-hermitian space over OF ⊗ Z(p)
of rank 1. Then GU(W0) is canonically isomorphic to T0 ⊗Z[(disc F)−1] Z(p).
Moreover, the set of similarity classes of rational skew-hermitian spaces W′

0
over OF ⊗ Z(p) of rank 1 such that W′

0 ⊗Z(p) A is similar to W0 ⊗Z(p) A is
canonically isomorphic to

ker1(T0) := ker

⎛
⎝H1(Q,T0)→

∏
v�∞

H1(Qv,T0)

⎞
⎠ ,

which is a finite abelian group.
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Definition 3.5.3 Let  be a CM type. We say that a rational skew-hermitian
space W0 over OF ⊗Z(p) of rank 1 has type if for every x ∈ W0 and every
totally imaginary element a ∈ F× satisfying Im τ(a) > 0 for all τ ∈  , we
have 〈ax, x〉W0 � 0.

Definition 3.5.4 For a rational skew-hermitian space W0 over OF ⊗ Z(p)
of rank 1 and type  and an open compact subgroup K p

0 ⊆ T0(A
∞,p), we

define a presheaf T1
p(W0,K

p
0 ) on Sch′

/OF ⊗Z(p)
as follows: for every S ∈

Sch′
/OF ⊗Z(p)

, we let T1
p(W0,K

p
0 )(S) be the set of equivalence classes of

triples (A0, λ0, η
p
0 ), where

• (A0, λ0) is a unitary OF -abelian scheme of signature type  over S such
that λ0 is p-principal;

• ηp
0 is a K p

0 -level structure, that is, for a chosen geometric point s on every
connected component of S, a π1(S, s)-invariant K

p
0 -orbit of similitude

η
p
0 : W0 ⊗Z(p) A

∞,p → Hét
1 (A0s,A

∞,p)

of rational skew-hermitian spaces over F⊗QA
∞,p, where Hét

1 (A0s,A
∞,p)

is equipped with the rational skew-hermitian form induced by λ0.

Two triples (A0, λ0, η
p
0 ) and (A

′
0, λ

′
0, η

p′
0 ) are equivalent if there exists a prime-

to-p OF -linear quasi-isogeny ϕ0 : A0 → A′
0 carrying (λ0, η

p
0 ) to (cλ

′
0, η

p′
0 )

for some c ∈ Z
×
(p).

For an object (A0, λ0, η
p
0 ) ∈ T1

p(W0,K
p
0 )(C), its first homology

H1(A0(C),Z(p)) is a rational skew-hermitian space over OF ⊗ Z(p) induced
by λ0, which is of rank 1 and type , and is everywhere locally similar to W0.
Thus, by Remark 3.5.2, we obtain a map

w : T1
p(W0,K

p
0 )(C)→ ker1(T0)

sending (A0, λ0, η
p
0 ) ∈ T1

p(W0,K
p
0 )(C) to the similarity class of

H1(A0(C),Z(p)).
It is known that when K p

0 is neat, T1
p(W0,K

p
0 ) is represented by a scheme

finite and étale over OF ⊗ Z(p). We define Tp(W0,K
p
0 ) to be the minimal

open and closed subscheme of T1
p(W0,K

p
0 ) containing w−1(W0). The group

T0(A
∞,p) acts on Tp(W0,K

p
0 ) via the formula

a · (A0, λ0, η
p
0 ) = (A0, λ0, η

p
0 ◦ a)
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whose stabilizer is T0(Z(p))K
p
0 . In fact, T0(A

∞,p)/T0(Z(p))K
p
0 is the Galois

group of the Galois morphism

Tp(W0,K
p
0 )→ Spec(OF ⊗ Z(p)).

Definition 3.5.5 Wedenote byT the groupoid of T0(A
∞,p)/T0(Z(p))K

p
0 , that

is, a categorywith a single object∗withHom(∗, ∗) = T0(A
∞,p)/T0(Z(p))K

p
0 .

Remark 3.5.6 As Tp(W0,K
p
0 ) is an object in Sch/OF ⊗Z(p) with an action

by T0(A
∞,p)/T0(Z(p))K

p
0 , it induces a functor from T to Sch/OF ⊗Z(p) ,

which we still denote by Tp(W0,K
p
0 ). In what follows, we may often have

another category C and will regard Tp(W0,K
p
0 ) as a functor from C × T to

Sch/OF ⊗Z(p) as the composition of the projection functor C × T → T and

the functor Tp(W0,K
p
0 ) : T → Sch/OF ⊗Z(p) .

Notation 3.5.7 For a functor X : T → Sch and a coefficient ring L , we denote

Hi
T(X, L( j)) ⊆ Hi

ét(X (∗), L( j)), Hi
T,c(X, L( j)) ⊆ Hi

ét,c(X (∗), L( j))

the maximal L-submodules, respectively, on which T0(A
∞,p)/T0(Z(p))K

p
0

acts trivially.

Definition 3.5.8 Let κ be an algebraically closed field of characteristic p, and
L a p-coprime coefficient ring. For a functor X : T → Sch/κ such that X (∗)
is smooth of finite type of dimension d and that T acts freely on the set of
connected components of X (∗), we define the T-trace map

∫ T

X
: H2d

T,c(X (∗), L(d))→ L

to be the composite map

H2d
T,c(X (∗), L(d)) ↪→ H2d

c (X (∗), L(d))→
⊕

Y

H2d
c (Y, L(d))

∑
trY−−−→ L ,

where {Y } is a set of representatives of T-orbits on the connected components
of X (∗), and the second map is the natural projection. It is clear that the above
composite map does not depend on the choice of {Y }.
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4 Unitary moduli schemes: smooth case

In this section, we define and study a certain smooth integral moduli scheme
whose generic fiber is the product of a unitary Shimura variety and an auxiliary
CM moduli. Since the materials in this section are strictly in the linear order,
we will leave the summary of contents to each subsection.

4.1 Initial setup

We fix a special inert prime (Definition 3.3.4) p of F+ (with the underlying
rational prime p). We take the prescribed subring P in Definition 3.4.2 to be
Z(p). We choose the following data

• a CM type  containing τ∞;
• a rational skew-hermitian space W0 over OF ⊗ Z(p) of rank 1 and type  
(Definition 3.5.3);

• a neat open compact subgroup K p
0 ⊆ T0(A

∞,p);
• an isomorphism ιp : C

∼−→ Qp such that ιp ◦ τ∞: F+ ↪→ Qp induces the
place p of F+;

• an element � ∈ OF+ that is totally positive and satisfies valp(�) = 1,
and valq(�) = 0 for every prime q �= p of F+ above p.

We adopt Notation 3.3.6. In particular, F
 
p contains Fp2 . Since the argument

below is insensitive to the choices of W0 and K p
0 , we will not include them

in all notations. However, we will keep the prime p in notations as, in later
application, we need to choose different primes in a crucial step. Put Tp :=
Tp(W0,K

p
0 )⊗OF ⊗Z(p) Z

 
p .

4.2 Construction of moduli schemes

In this subsection, we construct our initial moduli schemes. We start from the
datum (V, {�q}q|p), where
• V is a standard indefinite hermitian space (Definition 3.2.1) over F of rank

N � 1, and
• �q is a self-dual OFq-lattice in V⊗F Fq for every prime q of F+ above p.

Before defining the moduli functor, we need the following lemma to make
sense of the later definition.

Lemma 4.2.1 The field Q
 
p contains F	 with	 = N − τ∞ + τc∞, which is

a generalized CM type of rank N, for every N � 1.

Proof Take ρ ∈ Aut(C/Q p ) ⊆ Aut(C/F). Then we have ρ =  and
ρτ∞ = τ∞. Thus, we have ρ(N − τ∞ + τc∞) = N − τ∞ + τc∞ for every
N � 1. The lemma follows. ��
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Recall that we have the category Sch′
/Z p

of locally Noetherian schemes

over Z
 
p , and PSch

′
/Z p

the category of presheaves on Sch′
/Z p

.

Definition 4.2.2 We define a functor

Mp(V,–) : K(V)p × T → PSch′
/Z p

K p �→ Mp(V,K p)

such that for every S ∈ Sch′
/Z p

, Mp(V,K p)(S) is the set of equivalence

classes of sextuples (A0, λ0, η
p
0 ; A, λ, ηp), where

• (A0, λ0, η
p
0 ) is an element in Tp(S);

• (A, λ) is a unitary OF -abelian scheme of signature type N − τ∞ + τc∞
over S (Definitions 3.4.2 and 3.4.3) such that λ is p-principal;

• ηp is a K p-level structure, that is, for a chosen geometric point s on every
connected component of S, a π1(S, s)-invariant K p-orbit of isomorphisms

ηp : V⊗Q A
∞,p → Homλ0,λF⊗QA∞,p(Hét

1 (A0s,A
∞,p),Hét

1 (As,A
∞,p))

of hermitian spaces over F ⊗Q A
∞,p = F ⊗F+ A

∞,p
F+ . See Construc-

tion 3.4.4 (with � = {∞, p}) for the right-hand side.
Two sextuples (A0, λ0, η

p
0 ; A, λ, ηp) and (A′

0, λ
′
0, η

p′
0 ; A′, λ′, ηp′) are equiv-

alent if there are prime-to-p OF -linear quasi-isogenies ϕ0 : A0 → A′
0 and

ϕ : A → A′ such that
• ϕ0 carries ηp

0 to ηp′
0 ;

• there exists c ∈ Z
×
(p) such that ϕ∨0 ◦ λ′0 ◦ ϕ0 = cλ0 and ϕ∨ ◦ λ′ ◦ ϕ = cλ;

and
• the K p-orbit of maps v �→ ϕ∗ ◦ ηp(v) ◦ (ϕ0∗)−1 for v ∈ V ⊗Q A

∞,p
coincides with ηp′.

On the level of morphisms,

• a morphism g ∈ K p\U(V)(A∞,p
F )/K p′ of K(V)p maps Mp(V,K p)(S) to

Mp(V,K p′)(S) by changing ηp to ηp ◦ g; and
• a morphism a of T acts on Mp(V,K p)(S) by changing ηp

0 to ηp
0 ◦ a.

We clearly have the forgetful morphism

Mp(V,–)→ Tp (4.1)

in Fun(K(V)p × T,PSch′
/Z p
), the category of functors from K(V)p × T to

PSch′
/Z p

. Here, we regard Tp as an object in Fun(K(V)p ×T,Sch′
/Z p
) as in
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Remark 3.5.6. According toNotation 3.3.6, we shall denote by the base change
of (4.1) to F

 
p by Mp(V,–) → Tp, which is a morphism in Fun(K(V)p ×

T,PSch′
/F p
).

Theorem 4.2.3 The morphism (4.1) is represented by a quasi-projective
smooth scheme over Tp of relative dimension N − 1. Moreover, for every
K p ∈ K(V)p, we have a canonical isomorphism

TMp(V,K p)/Tp � Hom
(
ωA∨,τ∞,H

dR
1 (A)τ∞/ωA∨,τ∞

)

of coherent sheaves on Mp(V,K p), where (A0, λ0, η
p
0 ;A, λ, ηp) is the uni-

versal object over Mp(V,K p) and we recall that TMp(V,K p)/Tp is the relative
tangent sheaf. Moreover, (4.1) is projective if and only if its base change to
Q
 
p is.

Proof The first claim is proved in [62, Theorem 4.4]. It remains to com-
pute the tangent sheaf. Take an object K p ∈ K(V)p. Since both K p

0 and
K p are neat, Mp(V,K p) is an algebraic space. Thus, we have the univer-
sal object (A0, λ0, η

p
0 ;A, λ, ηp) over Mp(V,K p). By a standard argument

in deformation theory, using Proposition 3.4.8, we know that the morphism
Mp(V,K p)→ Tp is separated and smooth; and we have a canonical isomor-
phism for the tangent sheaf

TMp(V,K p)/Tp � Hom
(
ωA∨,τ∞,H

dR
1 (A)τ∞/ωA∨,τ∞

)

which is locally free of rank N − 1. The theorem is proved. ��
Let Kq be the stabilizer of �q for every q | p; and put Kp := ∏q|p Kq. As

shown in [62, §3.3], there is a canonical “moduli interpretation” isomorphism
of varieties over Q

 
p

Mη
p(V,–)

∼−→ Sh(V,–Kp)×Spec F Tηp (4.2)

(Notation 3.3.6(5)) in Fun(K(V)p × T,Sch/Q p )/Tηp , where T acts on

Sh(V,–Kp) ×Spec F Tηp through the second factor. See also Remark 4.2.5
below.

Lemma 4.2.4 Let L be a p-coprime coefficient ring. The two specialization
maps

Hi
T,c(Mp(V,–)⊗Z p

Qp, L)→ Hi
T,c(Mp(V,–), L),

Hi
T(Mp(V,–)⊗Z p

Qp, L)→ Hi
T(Mp(V,–), L),
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are both isomorphisms. In particular, (4.2) induces isomorphisms

Hi
ét,c(Sh(V,–Kp)F , L) � Hi

T,c(Mp(V,–), L),

Hi
ét(Sh(V,–Kp)F , L) � Hi

T(Mp(V,–), L),

in Fun(K(V)p,Mod(L[Gal(Qp/Q
 
p )])) for every i ∈ Z. Here, Gal(Qp/Q

 
p )

is regarded as a subgroup ofGal(F/F) under our fixed isomorphism ιp : C
∼−→

Qp.

Proof Since Mp(V,–) is smooth over Z
 
p , we have a canonical isomorphism

L � R	L . When Mp(V,–) is proper, this is simply the proper base change.
When Mp(V,–) is not proper, this follows from [43, Corollary 5.20]. ��
Remark 4.2.5 For the readers’ convenience, we describe the isomorphism
(4.2) on complex points, which determines the isomorphism uniquely. It suf-
fices to assign to every point

x = (A0, λ0, η
p
0 ; A, λ, ηp) ∈ Mp(V,K

p)(C)

a point in

Sh(V,K pKp)(C) = U(V)(F+)\ (V(C)−/C× × U(V)(A∞
F+)/K pKp

)
,

where V(C)−/C× is the set of negative definite complex lines in V⊗F C. Put

Vx := HomF (H1(A0(C),Q),H1(A(C),Q))

equipped with a pairing in the way similar to Construction 3.4.4, which
becomes a hermitian space over F of rank N . Moreover, it is standard indefi-
nite. By the comparison between singular homology and étale homology, we
have a canonical isometry of hermitian spaces

ρ : Vx ⊗Q A
∞,p ∼−→ Homλ0,λF⊗QA∞,p(Hét

1 (A0,A
∞,p),Hét

1 (A,A
∞,p)),

which implies that Vx ⊗Q A
∞,p � V⊗Q A

∞,p by the existence of the level
structure ηp. On the other hand, we have a canonical decomposition

HomOF⊗Zp(H
ét
1 (A0,Zp),H

ét
1 (A,Zp)) =

⊕
q|p
�x,q

of OF ⊗Zp-modules in which�x,q is a self-dual lattice in V⊗F Fq for every
prime q of F+ above p. Thus, by the Hasse principle for hermitian spaces, this
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implies that hermitian spaces Vx and V are isomorphic. Choose an isometry
ηrat : Vx → V. Thus, we obtain an isometry

g p := ηrat ◦ ρ−1 ◦ ηp : V⊗Q A
∞,p → V⊗Q A

∞,p

as an element in U(V)(A∞,p
F+ ). For every q above p, there exists an element

gq ∈ U(V)(F+
q ) such that gq�q = ηrat�x,q. Together, we obtain an element

gx := (g p, (gq)q|p) ∈ U(V)(A∞
F+). Finally,

lx := {α ∈ HomF (H
dR
1 (A0/C),H

dR
1 (A/C)) | α(ωA∨

0 ,τ∞) ⊆ ωA∨,τ∞}

is a line in Vx (C) such that ηrat(lx ) is an element in V(C)−/C×. It is easy to
check that the coset

U(V)(F+)(ηrat(lx ), gxK
pKp)

does not depend on the choice of ηrat, hence gives rise an element in
Sh(V,K pKp)(C). It is clear that the action of a morphism a of T on x does
not change the above coset.

4.3 Basic correspondence for the special fiber

In this subsection, we construct and study the basic correspondence for the
special fiber Mp(V,–). Recall that we have chosen an element� ∈ OF+ that
is totally positive and satisfies valp(�) = 1, and valq(�) = 0 for every prime
q �= p of F+ above p.

Definition 4.3.1 We define a functor

Sp(V,–) : K(V)p × T → PSch′
/F p

K p �→ Sp(V,K
p)

such that for every S ∈ Sch′
/F p

, Sp(V,K p)(S) is the set of equivalence classes

of sextuples (A0, λ0, η
p
0 ; A$, λ$, ηp$), where

• (A0, λ0, η
p
0 ) is an element in Tp(S);

• (A$, λ$) is a unitary OF -abelian scheme of signature type N over S such
that ker λ$[p∞] is trivial (resp. contained in A$[p] of rank p2) if N is odd
(resp. even);

• ηp$ is, for a chosen geometric point s on every connected component of S,
a π1(S, s)-invariant K p-orbit of isomorphisms

ηp$ : V⊗Q A
∞,p → Hom�λ0,λ

$

F⊗QA∞,p(Hét
1 (A0s,A

∞,p),Hét
1 (A

$
s ,A

∞,p))
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of hermitian spaces over F ⊗Q A
∞,p = F ⊗F+ A

∞,p
F+ .12

The equivalence relation and the action ofmorphisms inK(V)p×T are defined
similarly as in Definition 4.2.2.

We clearly have the forgetful morphism

Sp(V,–)→ Tp

inFun(K(V)p×T,PSch′
/F p
), which is represented byfinite and étale schemes

by [62, Theorem 4.4].
Nowwe take a point s$ = (A0, λ0, η

p
0 ; A$, λ$, ηp$) ∈ Sp(V,K p)(κ)where

κ is a field containingF
 
p . Then A$κ [p∞] is a supersingular p-divisible group by

the signature condition and the fact that p is inert in F . From Notation 3.4.10,
we have the (κ, σ )-linear Frobenius map

F : HdR
1 (A

$/κ)τ∞ → HdR
1 (A

$/κ)στ∞ = HdR
1 (A

$/κ)τc∞ .

We define a pairing

{ , }s$ : HdR
1 (A

$/κ)τ∞ × HdR
1 (A

$/κ)τ∞ → κ

by the formula {x, y}s$ := 〈Fx, y〉λ$,τc∞ (Notation 3.4.7). To ease notation, we
put

Vs$ := HdR
1 (A

$/κ)τ∞ .

Lemma 4.3.2 The pair (Vs$, { , }s$) is admissible of rank N (Defini-
tionA.1.1). In particular, the Deligne–Lusztig varietyDLs$ := DL(Vs$, { , }s$,

 N+1
2 ") (Definition A.1.2) is a geometrically irreducible projective smooth

scheme in Sch/κ of dimension � N−1
2 � with a canonical isomorphism for its

tangent sheaf

TDLs$ /κ � Hom
(
H/H#, (Vs$)DLs$ /H

)
,

where H ⊆ (Vs$)DLs$ is the universal subbundle.

Proof It follows from the construction that { , }s$ is (κ, σ )-linear in the first
variable and κ-linear in the second variable. By the signature condition Defini-
tion 4.3.1(2), the map F : HdR

1 (A
$/κ)τ∞ → HdR

1 (A
$/κ)τc∞ is an isomorphism,

12 Note that herewe are using�λ0 rather thanλ0 in order to be consistentwith the compatibility
condition for polarizations in the isogeny considered in Definition 4.3.3.
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and the pairing 〈F , 〉λ$,τc∞ has kernel of rank 0 (resp. 1) if N is odd (resp.
even). Thus, by Proposition A.1.3, it suffices to show that (Vs$, { , }s$) is
admissible.

Note that we have a canonical isomorphism (Vs$)κ = HdR
1 (A

$/κ)τ∞⊗κ κ �
HdR
1 (A

$
κ/κ)τ∞ , and that the (κ, σ )-linear Frobenius map F : HdR

1 (A
$
κ/κ)τ∞ →

HdR
1 (A

$
κ/κ)τc∞ and the (κ, σ−1)-linearVerschiebungmapV : HdR

1 (A
$
κ/κ)τ∞ →

HdR
1 (A

$
κ/κ)τc∞ are both isomorphisms. Thus, we obtain a (κ, σ 2)-linear iso-

morphism V−1F : HdR
1 (A

$
κ/κ)τ∞ → HdR

1 (A
$
κ/κ)τ∞ . Denote by V0 the subset

of HdR
1 (A

$
κ/κ)τ∞ on which V−1F = id, which is an Fp2-linear subspace. Since

the p-divisible group A$κ [p∞] is supersingular, by Dieudonné’s classification
of crystals, the canonical map V0 ⊗Fp2

κ → HdR
1 (A

$/κ)τ∞ = (Vs$)κ is an
isomorphism. For x, y ∈ V0, we have

{x, y}s$ = 〈Fx, y〉λ$,τc∞ = 〈x,Vy〉σλ$,τ∞ = 〈x,Fy〉σλ$,τ∞
= −〈Fy, x〉σλ$,τc∞ = −{y, x}σs$ .

Thus, (Vs$, { , }s$) is admissible. The lemma follows. ��
Definition 4.3.3 We define a functor

Bp(V,–) : K(V)p × T → PSch′
/F p

K p �→ Bp(V,K p)

such that for every S ∈ Sch′
/F p

, Bp(V,K p)(S) is the set of equivalence classes

of decuples (A0, λ0, η
p
0 ; A, λ, ηp; A$, λ$, ηp$;α), where

• (A0, λ0, η
p
0 ; A, λ, ηp) is an element of Mp(V,K p)(S);

• (A0, λ0, η
p
0 ; A$, λ$, ηp$) is an element of Sp(V,K p)(S); and

• α : A → A$ is an OF -linear quasi-p-isogeny (Definition 3.4.5) such that
(a) ker α[p∞] is contained in A[p];
(b) we have� · λ = α∨ ◦ λ$ ◦ α; and
(c) the K p-orbit of maps v �→ α∗ ◦ ηp(v) for v ∈ V ⊗Q A

∞,p coincides
with ηp$.

Two decuples (A0, λ0, η
p
0 ; A, λ, ηp; A$, λ$, ηp$;α) and (A′

0, λ
′
0, η

p′
0 ; A′, λ′,

ηp′; A$′, λ$′, ηp$′;α′) are equivalent if there are prime-to-p OF -linear quasi-
isogenies ϕ0 : A0 → A′

0, ϕ : A → A′, and ϕ$ : A$ → A$′ such that
• ϕ0 carries ηp

0 to ηp′
0 ;

• there exists c ∈ Z
×
(p) such that ϕ∨0 ◦ λ′0 ◦ ϕ0 = cλ0, ϕ∨ ◦ λ′ ◦ ϕ = cλ, and

ϕ$∨ ◦ λ$′ ◦ ϕ$ = cλ$;
• the K p-orbit of maps v �→ ϕ∗ ◦ ηp(v) ◦ (ϕ0∗)−1 for v ∈ V ⊗Q A

∞,p
coincides with ηp′;
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• the K p-orbit of maps v �→ ϕ$∗ ◦ ηp$(v) ◦ (ϕ0∗)−1 for v ∈ V ⊗Q A
∞,p

coincides with ηp$′;
• ϕ$ ◦ α = α′ ◦ ϕ holds.

On the level of morphisms,

• a morphism g ∈ K p\U(V)(A∞,p
F )/K p′ of K(V)p maps Bp(V,K p)(S) to

Bp(V,K p′)(S) by changing ηp, ηp$ to ηp ◦ g, ηp$ ◦ g, respectively; and
• a morphism a of T acts on Mp(V,K p)(S) by changing ηp

0 to ηp
0 ◦ a.

We obtain in the obvious way a correspondence

Sp(V,–) Bp(V,–) ιπ Mp(V,–) (4.3)

in Fun(K(V)p × T,PSch′
/F p
)/Tp .

Definition 4.3.4 (Basic correspondence) We refer to (4.3) as the basic cor-
respondence on Mp(V,–),13 with Sp(V,–) being the source of the basic
correspondence.

Theorem 4.3.5 In the diagram (4.3), take a point

s$ = (A0, λ0, η
p
0 ; A$, λ$, ηp$) ∈ Sp(V,K

p)(κ)

where κ is a field containing F
 
p . Put Bs$ := π−1(s$), and denote by

(A, λ, ηp;α) the universal object over the fiber Bs$ .

(1) The fiber Bs$ is a smooth scheme over κ , with a canonical isomorphism
for its tangent bundle

TBs$/κ � Hom
(
ωA∨,τ∞, ker α∗,τ∞/ωA∨,τ∞

)
.

(2) The restriction of ι to Bs$ is locally on Bs$ a closed immersion, with a
canonical isomorphism for its normal bundle

Nι|Bs$ � Hom
(
ωA∨,τ∞, im α∗,τ∞

)
.

(3) The assignment sending a point (A0, λ0, η
p
0 ; A, λ, ηp; A$, λ$, ηp$;α) ∈

Bs$(S) for every S ∈ Sch′
/κ to the subbundle

H := (ᾰ∗,τ∞)−1ωA∨/S,τ∞ ⊆ HdR
1 (A

$/S)τ∞
= HdR

1 (A
$/κ)τ∞ ⊗κ OS = (Vs$)S,

13 We adopt this terminology since the image of ι is in fact the basic locus of Mp(V,–).
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where ᾰ : A$ → A is the (unique) OF -linear quasi-p-isogeny such that
ᾰ ◦ α = � · idA, induces an isomorphism

ζs$ : Bs$
∼−→ DLs$ = DL(Vs$, { , }s$,  N+1

2 ").

In particular, Bs$ is a geometrically irreducible projective smooth scheme
in Sch/κ of dimension � N−1

2 � by Lemma 4.3.2. In particular, ι is of pure
codimension � N

2 �.

Proof For an object (A0, λ0, η
p
0 ; A, λ, ηp; A$, λ$, ηp$;α) ∈ Bp(V,K p)(S),

Definition 4.3.3(a) implies that there is a (unique) OF -linear quasi-p-isogeny
ᾰ : A$ → A such that ᾰ ◦ α = � · idA, hence α ◦ ᾰ = � · idA$ . Moreover,
we have the following properties from Definition 4.3.3:

(a′) ker ᾰ[p∞] is contained in A$[p];
(b′) we have� · λ$ = ᾰ∨ ◦ λ ◦ ᾰ; and
(c′) the K p-orbit of maps v �→ �−1ᾰ∗◦η$p(v) for v ∈ V⊗QA

∞,p coincides
with ηp.

First, we show (1). It is clear that Bs$ is a scheme of finite type over κ .
Consider a closed immersion S ↪→ Ŝ in Sch′

/κ defined by an ideal sheaf I
satisfying I2 = 0. Take a point x = (A0, λ0, η

p
0 ; A, λ, ηp; A$, λ$, ηp$;α) ∈

Bs$(S). To compute lifting of x to Ŝ, we use the Serre–Tate and Grothendieck–
Messing theories. Note that lifting α is equivalent to lifting both α and ᾰ,
satisfying (b,c) in Definition 4.3.3 and (b’,c’) above, respectively. Thus, by
Proposition 3.4.8, to lift x to an Ŝ-point is equivalent to lifting

• ωA∨/S,τ∞ to a subbundle ω̂A∨,τ∞ of Hcris
1 (A/Ŝ)τ∞ (of rank 1),

• ωA∨/S,τc∞ to a subbundle ω̂A∨,τc∞ of Hcris
1 (A/Ŝ)τc∞ (of rank N − 1),

subject to the following requirements

(a′′) ω̂A∨,τ∞ and ω̂A∨,τc∞ are orthogonal under 〈 , 〉crisλ,τ∞ (3.3); and

(b′′) ᾰ∗,τc∞Hcris
1 (A$/Ŝ)τc∞ is contained in ω̂A∨,τc∞ .

Since 〈 , 〉crisλ,τ∞ is a perfect pairing, ω̂A∨,τ∞ uniquely determines ω̂A∨,τc∞ by
(a”). Moreover, by Property (b′) above, we know that ker α∗,τ∞ and im ᾰ∗,τc∞
are orthogonal complements to each other under 〈 , 〉crisλ,τ∞ . Thus, (b”) is
equivalent to

(c′′) ω̂A∨,τ∞ is contained in the kernel of α∗,τ∞ : Hcris
1 (A/Ŝ)τ∞ →

Hcris
1 (A$/Ŝ)τ∞ .

To summarize, lifting x to an Ŝ-point is equivalent to lifting ωA∨/S,τ∞ to a
subbundle ω̂A∨,τ∞ of ker α∗,τ∞ . In other words, the subset of Bs$(Ŝ) above x is
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canonically a torsor over HomOS (ωA∨,τ∞, (ker α∗,τ∞/ωA∨,τ∞)⊗OS I). Thus,
(1) follows.

Next, we show (2). By Theorem 4.2.3, we have a canonical isomorphism

ι∗κTMp(V,K p)/κ |Bs$ � Hom
(
ωA∨,τ∞,H

dR
1 (A)τ∞/ωA∨,τ∞

)
,

and the induced map TBs$/κ → ι∗κTMp(V,K p)/κ |Bs$ is identified with the canon-
ical map

Hom
(
ωA∨,τ∞, ker α∗,τ∞/ωA∨,τ∞

)→ Hom
(
ωA∨,τ∞,H

dR
1 (A)τ∞/ωA∨,τ∞

)
.

It is clearly injective, with cokernel canonically isomorphic to

Hom
(
ωA∨,τ∞, im α∗,τ∞

)
.

Thus, (2) follows.
Finally, we show (3). We first show that ζs$ has the correct image, namely,

H is a locally free OS-module of rank  N+1
2 ", and satisfies (FH (p))⊥ ⊆ H .

Lemma 3.4.12(1,2,3) implies that H is locally free, and

rankOS (ker α∗,τ∞)− rankOS (ker α∗,τc∞) = 1,

rankOS (ker α∗,τ∞)+ rankOS (ker α∗,τc∞) = 2 N
2 " − 1.

Thus, we have rankOS (ker α∗,τ∞) =  N
2 " and

rankOS (ker ᾰ∗,τ∞) = N − rankOS (ker α∗,τ∞) =  N−1
2 ".

On the other hand, asωA∨/S,τ∞ has rank 1 andωA$∨/S,τ∞ has rank 0,ωA∨/S,τ∞
is contained in the kernel of α∗,τ∞ , hence in the image of ᾰ∗,τ∞ . Together, we
obtain rankOS H =  N+1

2 ". From the equalities

ᾰ∗,τc∞(FH (p)) = ᾰ∗,τc∞FA$
(
(ᾰ∗,τ∞)−1ωA∨/S,τ∞

)(p)
= ᾰ∗,τc∞FA$(ᾰ

(p)
∗,τc∞)

−1ωA(p)∨/S,τc∞

= FAᾰ
(p)
∗,τc∞(ᾰ

(p)
∗,τc∞)

−1ωA(p)∨/S,τc∞ = FAωA(p)∨/S,τc∞ = 0

and the fact that FH (p) and ker ᾰ∗,τc∞ are both subbundles of HdR
1 (A

$/S)τc∞
of rank  N+1

2 ", we know FH (p) = ker ᾰ∗,τc∞ . By Definition 4.3.3(b) and the
definition of ᾰ, we have

〈ker ᾰ∗,τc∞, im α∗,τ∞〉λ$,τc∞ = 〈ᾰ∗,τc∞ ker ᾰ∗,τc∞,H
dR
1 (A/S)τ∞〉λ,τc∞ = 0,
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which implies

ker ᾰ∗,τ∞ = im α∗,τ∞ ⊆ (ker ᾰ∗,τc∞)⊥ = (FH (p))⊥.

As both sides are subbundles of HdR
1 (A

$/S)τ∞ of rank  N−1
2 ", we must have

ker ᾰ∗,τ∞ = (FH (p))⊥. In particular, we have (FH (p))⊥ ⊆ H . Thus, ζs$ is
defined as we claim.

Since the target of ζs$ is smooth over κ by Lemma 4.3.2, to see that ζs$ is
an isomorphism, it suffices to check that for every algebraically closed field
κ ′ containing κ , the following statements hold:

(3–1) ζs$ induces a bijection on κ ′-points; and
(3–2) ζs$ induces an isomorphism on the tangent spaces at every κ ′-point.

To ease notation, we may assume that κ ′ = κ , hence is perfect in particular.
For (3–1), we construct an inverse to the map ζs$(κ). Take a point y ∈

DLs$(κ) represented by a κ-linear subspace H ⊆ Vs$ = HdR
1 (A

$/κ)τ∞ . We
regard F and V as those sesquilinear maps in Notation 3.4.10. In particular,
we have (FH)⊥ ⊆ H . For every τ ∈ �∞, we define a W (κ)-submodule
DA,τ ⊆ D(A$)τ as follows.
• If τ /∈ {τ∞, τc∞}, then DA,τ = D(A$)τ .
• We set DA,τ∞ := V−1 H̃c, where H̃c is the preimage of H⊥ under the
reduction map D(A$)τc∞ → D(A$)τc∞/pD(A$)τc∞ = HdR

1 (A
$)τc∞ .

• We set DA,τc∞ := FH̃ , where H̃ is the preimage of H under the reduction
map D(A$)τ∞ → D(A$)τ∞/pD(A$)τ∞ = HdR

1 (A
$)τ∞ .

Finally, put DA :=⊕τ∈�∞ DA,τ as a W (κ)-submodule of D(A$). We show
that it is stable under F and V. It suffices to show that both F and V stabilize
DA,τ∞ ⊕DA,τc∞ , which breaks into checking that

• FDA,τ∞ ⊆ DA,τc∞ , that is, FV−1 H̃c ⊆ FH̃ . It suffices to show that
V−1(H⊥) (as a subspace of HdR

1 (A
$)τ∞) is contained in H . However,

V−1(H⊥) = (FH)⊥, which is contained in H .
• FDA,τc∞ ⊆ DA,τ∞ , that is,FFH̃ ⊆ V−1 H̃c. It suffices to show pFH̃ ⊆ H̃c,
which obviously holds.

• VDA,τ∞ ⊆ DA,τc∞ , that is, VV−1 H̃c ⊆ FH̃ . it suffices to show H⊥ ⊆ FH
as subspaces of HdR

1 (A
$)τc∞ , which follows from (FH)⊥ ⊆ H .

• VDA,τc∞ ⊆ DA,τ∞ , that is, VFH̃ ⊆ V−1 H̃c. It is obvious as V−1 H̃c con-
tains pD(A$)τ∞ .

Thus, (DA,F,V) is a Dieudonné module over W (κ). By the Dieudonné
theory, there is an OF -abelian scheme A over κ with D(A)τ = DA,τ for
every τ ∈ �∞, and an OF -linear p-isogeny α : A → A$ inducing the
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inclusion of Dieudonné modules D(A) = DA ⊆ D(A$). Moreover, since
pD(A$) ⊆ D(A), we have ker α[p∞] ⊆ A[p].
Letλ : A → A∨ be the uniquequasi-polarization such that�λ = α∨◦λ$◦α.

We claim that λ is p-principal. It is enough to show the induced pairing

p−1 · 〈 , 〉λ$,τ∞ : D(A)τ∞ ×D(A)τc∞ → W (κ)

(Notation 3.4.11) is non-degenerate. Since H̃ is W (κ)-dual to p−1 H̃c, hence
D(A)τc∞ = FH̃ is dual to V−1(p−1 H̃c) = p−1V−1 H̃c = p−1D(A)τ∞ , the
above pairing is non-degenerate.

It is an easy consequence of Lemma 3.4.12(2,3) that the OF -abelian scheme
A has signature type N − τ∞ + τc∞. Finally, let ηp be the unique K p-
level structure such that Definition 4.3.3(c) is satisfied. Putting together, we
obtain a point x = (A0, λ0, η

p
0 ; A, λ, ηp; A$, λ$, ηp$;α) ∈ Bs$(κ) such that

ζs$(x) = y. It is easy to see that such assignment gives rise to an inverse of
ζs$(κ), hence (3–1) follows immediately.

For (3–2), let Tx and Ty be the tangent spaces at x and y as in (3–1),
respectively. By (1) and Lemma 4.3.2, we have canonical isomorphisms

Tx � Homκ(ωA∨,τ∞, ker α∗,τ∞/ωA∨,τ∞),

Ty � Homκ(H/(FH)⊥,HdR
1 (A

$)τ∞/H).

Moreover, by the definition of ζs$ , the map (ζs$)∗ : Tx → Ty is induced by the
following two maps

H/(FH)⊥ = (ᾰ∗,τ∞)−1ωA∨,τ∞/ ker ᾰ∗,τ∞
ᾰ∗,τ∞−−−→ ωA∨,τ∞,

HdR
1 (A

$)τ∞/H = HdR
1 (A

$)τ∞/(ᾰ∗,τ∞)−1ωA∨,τ∞
ᾰ∗,τ∞−−−→ ker α∗,τ∞/ωA∨,τ∞,

both being isomorphisms. Thus, (3–2) and hence (3) follow. ��
Remark 4.3.6 In Theorem 4.3.5, when K p is sufficiently small, the restriction
of ι to Bs$ is a closed immersion for every point s$ ∈ Sp(V,K p)(κ) and every
field κ containing F

 
p .

4.4 Source of basic correspondence and Tate cycles

In this subsection, we study the source Sp(V,–) of the basic correspondence.
We will describe the set Sp(V,–)(Fp) in terms of a certain Shimura set and
study its Galois action. Such a description is not canonical, which depends on
the choice of a definite uniformization datum defined as follows.
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Definition 4.4.1 We define a definite uniformization datum for V (at p) to be
a collection of (V$,i, {�$q}q|p), where
• V$ is a standard definite hermitian space over F of rank N ;
• i : V⊗Q A

∞,p → V$ ⊗Q A
∞,p is an isometry;

• for every prime q of F+ above p other than p,�$q is a self-dual OFq-lattice
in V$ ⊗F Fq; and

• �$p is an OFp-lattice in V$ ⊗F Fp satisfying p�$p ⊆ (�$p)
∨ such that

(�$p)
∨/p�$p has length 0 (resp. 1) if N is odd (resp. even).

By the Hasse principle for hermitian spaces, there exists a definite uni-
formization datum for which we fix one. Let K$q be the stabilizer of �$q for
every q over p; and putK$p :=∏q|p K$q. The isometryi induces an equivalence

of categories i : K(V)p ∼−→ K(V$)p.

Construction 4.4.2 We now construct a uniformization map, denoted by the
Greek letter upsilon

υ : Sp(V,–)(Fp)→ Sh(V$, (i–)K$p)× Tp(Fp) (4.4)

in Fun(K(V)p × T,Set)/Tp(Fp)
, which turns out to be an isomorphism.

Take a point s$ = (A0, λ0, η
p
0 ; A$, λ$, ηp$) ∈ Sp(V,K p)(Fp). Let

Vs$ := HomOF (A0, A$)⊗ Q

be the space of OF -linear quasi-homomorphisms.We equipVs$ with a pairing

(x, y) = �−1 · λ−1
0 ◦ y∨ ◦ λ$ ◦ x ∈ EndOF (A0)⊗ Q = F,

which becomes a hermitian space over F . Note that we have an extra factor
�−1 in the above pairing. Moreover, for every prime q of F+ above p, put

�s$,q := HomOF (A0[q∞], A$[q∞]),

which is an OFq-lattice in (Vs$)q since A$ is isogenous to AN
0 .

Now we construct υ, whose process is very similar to Remark 4.2.5. Note
that we have an isometry

ρ : Vs$ ⊗Q A
∞,p ∼−→ Hom�λ0,λ

$

F⊗QA∞,p(Hét
1 (A0,A

∞,p),Hét
1 (A

$,A∞,p)).

By Lemma 4.4.3 below, we can choose an isometry ηrat : Vs$ → V$. Thus,
we obtain an isometry

g p := ηrat ◦ ρ−1 ◦ ηp$ ◦ i−1 : V$ ⊗Q A
∞,p → V$ ⊗Q A

∞,p
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as an element in U(V$)(A∞,p
F+ ). By Lemma 4.4.3(1,2), for every q above p,

there exists an element gq ∈ U(V$)(F+
q ) such that gq�$q = ηrat�s$,q. Together,

we obtain an element gs$ := (g p, (gq)q|p) ∈ U(V$)(A∞
F+) such that the double

coset U(V$)(F)g(iK p)K$p depends only on the point s$. Thus, it allows us to
define

υ(s$) :=
(
U(V$)(F)gs$(iK

p)K$p, (A0, λ0, η
p
0 )
)

∈ Sh(V$, (iK p)K$p)× Tp(Fp).

Lemma 4.4.3 The hermitian spaces Vs$ and V$ are isomorphic. Moreover,

(1) for every prime q of F+ above p other than p, the lattice�s$,q is self-dual;
(2) the lattice �s$,p satisfies p�s$,p ⊆ (�s$,p)

∨ such that (�s$,p)
∨/p�s$,p

has length 0 (resp. 1) if N is odd (resp. even).

Proof We first prove (1) and (2).
For (1), note that A$[q∞] is isomorphic to (A0[q∞])N , equipped with the

polarization λ$[q∞] that is principal. Thus, �s$,q is self-dual as λ0[q∞] is
principal and valq(�) = 0.

For (2), note that A$[p∞] is isomorphic to (A0[p∞])N , equipped with the
polarization λ$[p∞] satisfying such that ker λ$[p∞] is trivial (resp. contained
in A$[p] of rank p2) if N is odd (resp. even). Thus, the statement follows as
λ0[p∞] is principal and valp(�) = 1.

Now to prove the main statement, it suffices to show that

(i) Vs$ is totally positive definite; and
(ii) the hermitian spaces Vs$ ⊗Q A

∞,p and V⊗Q A
∞,p are isomorphic.

For (i), it follows from the same argument in [40, Lemma 2.7].
For (ii), we have a map

Vs$ ⊗Q A
∞,p → Hom�λ0,λ

$

F⊗QA∞,p(Hét
1 (A0,A

∞,p),Hét
1 (A

$,A∞,p))

of hermitian spaces, which is injective. As both sides have rank N and the
right-hand side is isomorphic to V⊗Q A

∞,p, (ii) follows. ��
Proposition 4.4.4 The uniformization map υ (4.4) is an isomorphism. More-
over, the induced action of Gal(Fp/F

 
p ) on the target of υ factors through the

projection map

Sh(V$, (i–)K$p)× Tp(Fp)→ Tp(Fp).
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Proof Wefirst show that υ is an isomorphism. Take a point t = (A0, λ0, η
p
0 ) ∈

Tp(Fp). It suffices to show that, for every K p ∈ K(V)p, the restriction

υ : Sp(V,K p)(Fp)/t → Sh(V$, (iK p)K$p)

to the fiber over t is an isomorphism. The injectivity follows directly
from the definition. For the surjectivity, it suffices to show that for every
g ∈ U(V$)(A∞,p

F+ ), there is an object s$ = (A0, λ0, η
p
0 ; A$, λ$, ηp$) ∈

Sp(V,K p)(Fp)/t whose image under υ is the image of g in Sh(V$, (iK p)K$p).
To construct s$, we take an OF -lattice �$ in V$ satisfying �$ ⊗F Fp = �$p.
Put A$ := A0⊗OF �

$, which is equipped with a unique quasi-polarization λ$

such that the canonical isomorphism

V$ ⊗Q A
∞,p � HomF⊗QA∞,p(Hét

1 (A0,A
∞,p),Hét

1 (A
$,A∞,p))

of F ⊗Q A
∞,p-modules is an isometry of hermitian spaces. We let ηp$ be the

map

V⊗Q A
∞,p g◦i−−→ V$ ⊗Q A

∞,p

= Hom�λ0,λ
$

F⊗QA∞,p(Hét
1 (A0,A

∞,p),Hét
1 (A

$,A∞,p)).

Then υ(s$) = g in Sh(V$, (iK p)K$p). Thus, υ is an isomorphism.

Since υ is an isomorphism, the Galois group Gal(Fp/F
 
p ) acts on

the target of υ. We show that it acts trivially on the first factor of
the target of υ. Take an element ς ∈ Gal(Fp/F

 
p ) and a point s$ =

(A0, λ0, η
p
0 ; A$, λ$, ηp$) ∈ Sp(V,K p)(Fp). Then ςs$ is simply represented

by (Aς0 , λ
ς
0 , η

pς
0 ; A$ς , λ$ς , ηp$ς ), the ς -twist of the previous object. We then

have a canonical isomorphism

Vςs$ = HomOF (A
ς
0 , A$ς )⊗ Q � HomOF (A0, A$)⊗ Q = Vs$

of hermitian spaces. Unraveling the definition, we see that gs$ = gςs$ . Thus,
we have

υ(ςs$) :=
(
U(V$)(F)gs$(iK

p)K$p, (A
ς
0 , λ

ς
0 , η

pς
0 )
)
.

The proposition follows. ��
Next, we define an action of the Hecke algebra Z[K$p\U(V$)(F+

p )/K
$
p] on

Sp(V,–) via finite étale correspondences, that is compatible with the uni-
formization map (4.4).
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Construction 4.4.5 For every element g ∈ K$p\U(V$)(F+
p )/K

$
p, we define a

functor

Sp(V,–)g : K(V)p × T → PSch′
/F p

K p �→ Sp(V,K
p)g

such that for every S ∈ Sch′
/F p

, Sp(V,K p)g(S) is the set of equivalence

classes of decuples (A0, λ0, η
p
0 ; A$, λ$, ηp$; A$g, λ

$
g, η

p$
g ;φ$), where

• (A0, λ0, η
p
0 ; A$, λ$, ηp$) and (A0, λ0, η

p
0 ; A$g, λ

$
g, η

p$
g ) are both elements

in Sp(V,K p)(S); and
• φ$ : A$ → A$g is an OF -linear quasi-isogeny such that
(a) φ$∨ ◦ λ$g ◦ φ$ = λ$;
(b) φ$[p∞]: A$[p∞] → A$g[p∞] is a quasi-isogeny of height zero under

which the two lattices HomOF (A0s[p∞], A$s [p∞]) and
HomOF (A0s[p∞], A$gs[p∞]) are at the relative position determined by
g for every geometric point s of S;

(c) φ$[q∞] is an isomorphism for every prime q of F+ above p that is not
p; and

(d) the K p-orbit of maps v �→ φ$∗ ◦ ηp$(v) for v ∈ V⊗Q A
∞,p coincides

with ηp$
g .

The equivalence relation and the action ofmorphisms inK(V)p×T are defined
similarly as in Definition 4.3.3. Then we construct the Hecke correspondence
(of g) to be the morphism

Hkg : Sp(V,–)g → Sp(V,–)× Sp(V,–) (4.5)

in Fun(K(V)p × T,PSch′
/F p
)/Tp induced by the assignment

(A0, λ0, η
p
0 ; A$, λ$, ηp$; A$g, λ

$
g, η

p$
g ;φ$)

�→ ((A0, λ0, η
p
0 ; A$, λ$, ηp$), (A0, λ0, η

p
0 ; A$g, λ

$
g, η

p$
g )).

Here, the product in (4.5) is also taken in the category Fun(K(V)p ×
T,PSch′

/F p
)/Tp , that is, Sp(V,–) × Sp(V,–) is a functor sending K p to

Sp(V,K p)×Tp Sp(V,K
p) on which T acts diagonally.

Proposition 4.4.6 For every g ∈ K$p\U(V$)(F+
p )/K

$
p, we have

(1) The morphism Hkg (4.5) is finite étale; in particular, it is a morphism in
Fun(K(V)p × T,Sch/F p )/Tp .
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(2) The uniformization map υ (4.4) lifts uniquely to an isomorphism making
the diagram

Sp(V,–)g(Fp)
υ

Hkg(Fp)

Sh(V$, (i–)(gK$pg−1 ∩ K$p))× Tp(Fp)

Sp(V,–)(Fp)×Tp(Fp)
Sp(V,–)(Fp)

υ×υ (
Sh(V$, (i–)K$p)× Sh(V$, (i–)K$p)

)
× Tp(Fp)

inFun(K(V)p×T,Set)/Tp(Fp)
commutative, where the right vertical map

is induced by the set-theoretical Hecke correspondence of g.

Proof For (1), it suffices to consider those K p ∈ K(V)p that are sufficiently
small. Then the morphism Hkg : Sp(V,K p)g → Sp(V,K p) ×Tp Sp(V,K p)

is closed, hence represented by a finite étale scheme. Part (2) follows directly
from the definition. ��
Remark 4.4.7 In fact, the proof of Proposition 4.4.6(1) together with Propo-
sition 4.4.4 imply that Hkg is a local isomorphism.

Remark 4.4.8 Note that since K$p is a special maximal open compact subgroup
ofU(V$)(F+

p ), the algebraZ[K$p\U(V$)(F+
p )/K

$
p] is commutative.Moreover,

when N is odd,�s$,p is a self-dual lattice under the pairing� · ( , )V$ , hence
Z[K$p\U(V$)(F+

p )/K
$
p] is canonically isomorphic to TN ,p.

Let L be a p-coprime coefficient ring. The uniformizationmap (4.4) induces
an isomorphism

L[Sh(V$, (i–)K$p)] � H0
T(Sp(V,–), L) = H0

T(Sp(V,–), L)

in Fun(K(V)p,Mod(L[K$p\U(V$⊗F Fp)/K$p])) by Proposition 4.4.6. Recall
from Theorem 4.3.5(3) that the morphism ι in (4.3) is of pure codimension
� N
2 �.

Construction 4.4.9 Put r := � N
2 � � 0. We construct a pair of maps

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

inc$! : L[Sh(V$, (i–)K$p)] ∼−→ H0
T(Sp(V,–), L)

π∗−→ H0
T(Bp(V,–), L)

ι!−→ H2r
T (Mp(V,–), L(r)),

inc∗$ : H2(N−r−1)
T (Mp(V,–), L(N − r − 1))
ι∗−→ H2(N−r−1)

T (Bp(V,–), L(N − r − 1))
π!−→ H0

T(Sp(V,–), L)
∼−→ L[Sh(V$, (i–)K$p)],
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in Fun(K(V)p,Mod(L)). In fact, the two maps are essentially Poincaré dual
to each other.

Theorem 4.4.10 Suppose that N = 2r + 1 is odd with r � 0. Then the
composite map inc∗$ ◦ inc$! is equal to the Hecke operator

T$N ,p :=
r∑
δ=0

dr−δ,p · TN ,p;δ ∈ TN ,p

in which the numbers dr−δ,p are introduced in Notation 1.3.1, and the Hecke
operators TN ,p;δ are introduced in Notation B.2.1 (as T◦

N ;δ).

Note that by Remark 4.4.8, L[Sh(V$, (i–)K$p)] is a TN ,p-module when N
is odd.

Proof This is [75, Theorem 9.3.5]. ��

4.5 Functoriality under special morphisms

In this subsection, we study the behavior of various moduli schemes under the
special morphisms, which is closely related to the Rankin–Selberg motives for
GLn ×GLn+1. We start from the datum (Vn, {�n,q}q|p) as in the beginning of
Sect. 4.2, but with Vn of rank n � 1. We then have the induced datum

(Vn+1, {�n+1,q}q|p) := ((Vn)�, {(�n,q)�}q|p)

of rank n + 1 by Definition 3.1.7. For N ∈ {n, n + 1}, we let KN ,q be the
stabilizer of �N ,q, and put KN ,p := ∏q|p KN ,q. Recall the category K(Vn)

p
sp

and functors –�,–� from Definition 3.1.11. To unify notation, we put –n :=
–� and –n+1 := –�. There are five stages of functoriality we will consider.

The first stage concerns Shimura varieties. The canonical inclusions

Vn ↪→ Vn+1, {�n,q ↪→ �n+1,q}q|p
induce a morphism

sh↑ : Sh(Vn,–nKn,p)→ Sh(Vn+1,–n+1Kn+1,p) (4.6)

in Fun(K(Vn)
p
sp,Sch/F ), known as the special morphism.

For the second stage of functoriality, we have a morphism

m↑ : Mp(Vn,–n)→ Mp(Vn+1,–n+1) (4.7)
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in Fun(K(Vn)
p
sp ×T,Sch/Z p )/Tp sending an object (A0, λ0, η

p
0 ; A, λ, ηp) ∈

Mp(Vn,K
p
n )(S) to the object (A0, λ0, η

p
0 ; A × A0, λ × λ0, ηp ⊕ (idA0)∗) ∈

Mp(Vn+1,K
p
n+1)(S). We then have the following commutative diagram

Mη
p(Vn+1,–n+1)

(4.2)
Sh(Vn+1,–n+1Kn+1,p)×Spec F Tηp

Mη
p(Vn,–n)

(4.2)

mη↑

Sh(Vn,–nKn,p)×Spec F Tηp

sh↑×id

(4.8)

in Fun(K(Vn)
p
sp × T,Sch/Q p )/Tηp .

At the third stage of functoriality, we study the basic correspondence (4.3)
under the special morphisms. We will complete a commutative diagram in
Fun(K(Vn)

p
sp × T,Sch/F p )/Tp as follows

Sp(Vn+1,–n+1) Bp(Vn+1,–n+1)
ιn+1πn+1

Mp(Vn+1,–n+1)

Sp(Vn,–)sp

�

s↑

s↓

Bp(Vn,–)sp
πsp

b↑

b↓

Sp(Vn,–n) Bp(Vn,–n)
ιnπn

Mp(Vn,–n)

m↑

(4.9)

in which the lower-left square is Cartesian; and the lower (resp. upper) line is
the basic correspondences on Mp(Vn,–n) (resp. Mp(Vn+1,–n+1)) as intro-
duced in Definition 4.3.4.

Definition 4.5.1 We define a functor

Sp(Vn,–)sp : K(Vn)
p
sp × T → PSch′

/F p

K p �→ Sp(Vn,K
p)sp

such that for every S ∈ Sch′
/F p

, Sp(Vn,K p)sp(S) is the set of equivalence

classes of decuples (A0, λ0, η
p
0 ; A$, λ$, ηp$; A$�, λ

$
�, η

p$
� ; δ$), where

• (A0, λ0, η
p
0 ; A$, λ$, ηp$) is an element in Sp(Vn,K

p
n )(S);

• (A0, λ0, η
p
0 ; A$�, λ

$
�, η

p$
� ) is an element in Sp(Vn+1,K

p
n+1)(S); and

• δ$ : A$ × A0 → A$� is an OF -linear quasi-p-isogeny (Definition 3.4.5)
such that
(a) ker δ$[p∞] is contained in (A$ × A0)[p];
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(b) we have λ$ ×�λ0 = δ$∨ ◦ λ$� ◦ δ$; and
(c) the K p

n+1-orbit of maps v �→ δ$∗ ◦ (ηp$⊕ (idA0)∗)(v) for v ∈ Vn+1 ⊗Q

A
∞,p coincides with ηp$

� .

The equivalence relation and the action of morphisms in K(Vn)
p
sp × T are

defined similarly as in Definition 4.3.3.

Weclearly have the forgetfulmorphismSp(Vn,–)sp→Tp inFun(K(Vn)
p
sp×

T,PSch′
/F p
), which is represented by finite and étale schemes. By definition,

we have the two forgetful morphisms

s↓ : Sp(Vn,–)sp → Sp(Vn,–n),

s↑ : Sp(Vn,–)sp → Sp(Vn+1,–n+1)

in Fun(K(Vn)
p
sp × T,Sch/F p )/Tp .

Lemma 4.5.2 We have the following properties concerning s↓.

(1) When n is odd, s↓ is an isomorphism, and the morphism

s↑ ◦ s−1
↓ : Sp(Vn,–n)→ Sp(Vn+1,–n+1)

is given by the assignment

(A0, λ0, η
p
0 ; A$, λ$, ηp$) �→(A0, λ0, η

p
0 ; A$ × A0, λ

$×�λ0, ηp$×(idA0)∗).

(2) When n is even, s↓ is finite étale of degree p + 1.

Proof Take anobjectK p ofK(Vn)
p
sp, and apoint x = (A0, λ0, η

p
0 ; A$, λ$, ηp$)

∈ Sp(Vn,K
p
n )(κ) for some perfect field κ containing F

 
p .

For (1), it suffices to show that the fibre s−1
↓ (x) consists of the single point

with the extra datum (A$�, λ
$
�, η

p$
� ; δ$) = (A$× A0, λ

$×�λ0, ηp$× ηp
0 ; id).

This follows from the fact that δ$ as in Definition 4.5.1 induces an equivalence
between (A$�, λ

$
�, η

p$
� ) and (A

$ × A0, λ
$ ×�λ0, ηp$ × ηp

0 ).

For (2), we note first that a point in the fibre s−1
↓ (x) is determined by the

quasi-p-isogeny δ$, which is in turn determined, up to equivalence, by a totally
isotropic (OF/p)-subgroup of ker(λ$ ×�λ0) of order p2. We classify such
subgroups by using Dieudonné theory. Let D(A$ × A0)

∨
τc∞ be the dual lattice

of D(A$ × A0)τc∞ (Notation 3.4.11) but with respect to the quasi-polarization
λ$×�λ0. The quotientWx := D(A$×A0)

∨
τc∞/D(A

$×A0)τ∞ is κ-vector space
of dimension 2 equipped with an induced nondegenerate hermitian pairing.
Then the hermitian space Wx is admissible in the sense of Definition A.1.1
with underlying hermitian space over Fp2 given by Wx,0 := W V−1F=1

x . Then
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Wx,0 is an Fp2 -vector space of dimension 2. By the classical Dieudonné theory
for finite group schemes over κ , the set of totally isotropic (OF/p)-subgroups
of ker(λ$ ×�λ0) of order p2 is in natural bijection with the set of isotropic
Fp2-lines in Wx,0, which has cardinality p + 1. ��
Definition 4.5.3 We define Bp(Vn,–)sp to be the fiber product indicated in
the following Cartesian diagram

Sp(Vn,–)sp
s↓

Bp(Vn,–)sp
πsp

b↓

Sp(Vn,–n) Bp(Vn,–n)
πn

in Fun(K(Vn)
p
sp × T,Sch/F p )/Tp .

Lemma 4.5.4 The assignment sending an object

((A0, λ0, η
p
0 ; A, λ, ηp; A$, λ$, ηp$;α), (A0, λ0, η

p
0 ; A$, λ$, ηp$; A$� , λ

$
�, η

p$
� ; δ$))

of Bp(Vn,K p)sp(S) to

(A0, λ0, η
p
0 ; A × A0, λ× λ0, ηp ⊕ (idA0)∗; A$�, λ

$
�, η

p$
� ; δ$ ◦ (α × idA0))

(4.10)

defines a morphism

b↑ : Bp(Vn,–)sp → Bp(Vn+1,–n+1)

in Fun(K(Vn)
p
sp × T,Sch/F p )/Tp .

Proof The lemma amounts to showing that (4.10) is an object of
Bp(Vn+1,K

p
n+1)(S). Put α� := δ$ ◦ (α × idA0) : A × A0 → A$� . The only

nontrivial condition in Definition 4.3.3 to check is that ker α�[p∞] is con-
tained in (A × A0)[p]. For this, we may assume S = Spec κ for a perfect field
κ containing F

 
p .

Consider the following injective maps of Dieudonné modules

D(A)τ ⊕D(A0)τ
α∗,τ⊕id−−−−→ D(A$)τ ⊕D(A0)τ

δ$∗,τ−−→ D(A$�)τ

for every τ ∈ �∞. We have the inclusionD(A$�)τ ⊆ D(A$)∨τc ⊕�−1D(A0)τ

(Notation 3.4.11). Thus, it suffices to show pD(A$)∨τc ⊆ D(A)τ for every
τ ∈ �∞. For τ /∈ {τ∞, τc∞}, we have D(A$)∨τc = D(A)τ . It remains to
show pD(A$)∨τc ⊆ D(A)τ for τ ∈ {τ∞, τc∞}. Recall the subspace H :=
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(ᾰ∗,τ∞)−1ωA∨/κ,τ∞ ⊆ HdR
1 (A

$/κ)τ∞ from Theorem 4.3.5. Under the notation
in proof of Theorem 4.3.5, since (FH)⊥ ⊆ H , we have pD(A$)∨τc∞ ⊆ H̃ ,

hence pD̃(A$)∨τ∞ ⊆ H̃c. Thus, we have

pD(A$)∨τc∞ = pV−1(D(A$)∨τ∞) ⊆ V−1 H̃c = D(A)τ∞,
pD(A$)∨τ∞ = pF(D(A$)∨τc∞) ⊆ FH̃ = D(A)τc∞ .

The lemma follows. ��
By the above lemma, we obtain our desired diagram (4.9). Moreover, we

have the following result.

Proposition 4.5.5 When n is even, the square

Bp(Vn+1,–n+1)
ιn+1

Mp(Vn+1,–n+1)

Bp(Vn,–)sp
ιn◦b↓

b↑

Mp(Vn,–n)

m↑

extracted from the diagram (4.9) is Cartesian.

We remark that the above proposition is not correct on the nose when n is
odd and at least 3.

Proof The square in the proposition induces a morphism

ιsp : Bp(Vn,–)sp → Bp(Vn+1,–n+1)×Mp(Vn+1,–n+1) Mp(Vn,–n).

We need to prove that ιsp is an isomorphism. By Theorem 4.3.5, we know that
ιsp is locally for the Zariski topology on the source a closed immersion, such
that both the source and the target are smooth. Thus, it suffices to show that
for a given algebraically closed field κ containing F

 
p , we have that

(1) ιsp(κ) is an isomorphism in Fun(K(Vn)
p
sp × T,Set); and

(2) for every K p ∈ K(Vn)
p
sp and every x ∈ Bp(Vn,K p)sp(κ), the induced

diagram

Tb↑(x)
ιn+1∗ Tιn+1(b↑(x))

Tx
ιn∗◦b↓∗

b↑∗

Tι(b↓(x))

m↑∗

(4.11)

of tangent spaces is a Cartesian square of κ-modules.
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For (1), we take an object K p ∈ K(Vn)
p
sp and construct an inverse of ιsp(κ).

Take a point

(A0, λ0, η
p
0 ; A, λ, ηp; A$�, λ

$
�, η

p$
� ;α�)

in the target of ιsp(κ). Then α� induces an inclusion

D(A)τ ⊕D(A0)τ ⊆ D(A$�)τ

of Dieudonné modules, which is an equality if τ /∈ {τ∞, τc∞}. We put

DA$ :=
⊕
τ∈�∞

DA$,τ

where DA$,τ = D(A)τ for τ /∈ {τ∞, τc∞} and DA$,τ = D(A$�)τ ∩ p−1D(A)τ
for τ ∈ {τ∞, τc∞}. ThenDA$ is a Dieudonné module containingD(A). By the
Dieudonné theory, there is an OF -abelian scheme A$ over κ with D(A$)τ =
DA$,τ for every τ ∈ �∞, and an OF -linear isogeny α : A → A$ inducing the
inclusion of Dieudonné modules D(A) ⊆ D(A$). We factors α� as

A × A0
α×idA0−−−−→ A$ × A0

δ$−→ A$�.

It is clear that there is a unique quasi-polarizationλ$ of A$ such thatλ$×�λ0 =
δ$∨ ◦ λ$� ◦ δ$. Let ηp$ be the K p

n -level structure induced from ηp under α. We
claim that the datum

((A0, λ0, η
p
0 ; A, λ, ηp; A$, λ$, ηp$;α), (A0, λ0, η

p
0 ; A$, λ$, ηp$; A$�, λ

$
�, η

p$
� ; δ$))

gives rise to an element in Bp(Vn,K p)sp(κ). It suffices to show that
(A0, λ0, η

p
0 ; A$, λ$, ηp$) is an element in Sp(Vn,K

p
n )(κ). Moreover precisely,

we need to show that

(1–1) the OF -abelian scheme A$ has signature type n ; and
(1–2) ker λ$[p∞] is contained in A$[p] of degree p2.

To prove these, we add two auxiliary properties

(1–3) the composite map D(A$�)τ ⊆ p−1D(A)τ ⊕ p−1D(A0)τ →
p−1D(A0)τ is surjective for τ ∈ {τ∞, τc∞}; and

(1–4) the cokernel of the inclusionD(A$)τ ⊕D(A0)τ ⊆ D(A$�)τ is isomor-
phic to κ for τ ∈ {τ∞, τc∞}.

For (1–3), if not surjective, then we have D(A$�)τ ⊆ p−1D(A)τ ⊕D(A0)τ

for both τ ∈ {τ∞, τc∞}. As �λ ×�λ0 = α∨� ◦ λ$� ◦ α�, this contradicts with
the fact that λ$� is p-principal.
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For (1–4), it follows (1–3) and the fact that the kernel of D(A$�)τ →
p−1D(A0)τ is D(A$)τ for τ ∈ {τ∞, τc∞}.
For (1–1), it amounts to showing that F : D(A$)τ → D(A$)τc is an iso-

morphism for every τ ∈  . This is obvious for τ �= τ∞. When τ = τ∞,
this follows from (1.4) and the fact that both F : D(A$�)τ → D(A$�)τc and
F : D(A0)τ → D(A0)τc are isomorphisms.

For (1–2), it follows from (1–4) and the fact that λ$� is p-principal.
Thus, (1) is proved.
For (2), the diagram (4.11) is identified with

Homκ
(
ωA∨,τ∞ , ker α�∗,τ∞/ωA∨,τ∞

)
Homκ

(
ωA∨,τ∞ ,H

dR
1 (A × A0)τ∞/ωA∨,τ∞

)

Homκ
(
ωA∨,τ∞ , ker α∗,τ∞/ωA∨,τ∞

)
Homκ

(
ωA∨,τ∞ ,H

dR
1 (A)τ∞/ωA∨,τ∞

)

by Theorem 4.2.3 and Theorem 4.3.5. However, it is an easy consequence of
(1–3) that ker α�∗,τ∞ ∩ HdR

1 (A)τ∞ = ker α∗,τ∞ . Thus, the above diagram is
Cartesian; and (2) follows. ��

At the fourth stage of functoriality, we compare the special morphisms for
basic correspondences and for Deligne–Lusztig varieties. Take a point

s$ = (A0, λ0, η
p
0 ; A$, λ$, ηp$; A$�, λ

$
�, η

p$
� ; δ$) ∈ Sp(Vn,K

p)sp(κ)

for a field κ containing F
 
p . Put

s$n := s↓(s$), s$n+1 := s↑(s$);
and denote by Bs$ , Bs$n , and Bs$n+1

their preimages under πsp, πn , and
πn+1 in (4.9), respectively. By Lemma 4.3.2, we have admissible pairs
(Vs$n , { , }s$n ) and (Vs$n+1

, { , }s$n+1
). As in Construction A.1.6, we extend the

pair (Vs$n , { , }s$n ) to (Vs$n,�, { , }s$n,�). Then the homomorphism δ$ : A$×A0 →
A$� induces a κ-linear map

δs$ : Vs$n,� → Vs$n+1

satisfying {δs$(x), δs$(y)}s$n+1
= {x, y}s$n,� for every x, y ∈ Vs$n,�. By Con-

struction A.1.6, we obtain a morphism

δs$↑ : DLs$n = DL(Vs$n , { , }s$n ,  n+1
2 ")→ DLs$n+1

= DL(Vs$n+1
, { , }s$n+1

,  n+2
2 ")

of the corresponding Deligne–Lusztig varieties.
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Proposition 4.5.6 Let the notation be as above. The following diagram

Bs$n+1

ζs$n+1

� DLs$n+1

Bs$
ζs$n

◦b↓
�

b↑

DLs$n

δs$↑

in Sch/κ commutes, where ζs$n and ζs$n+1
are the isomorphisms in Theo-

rem 4.3.5(3). In particular, b↑ : Bs$ → Bs$n+1
is an isomorphism if n is odd,

and is a regular embedding of codimension one if n is even.

Proof Note that by Lemma 4.5.2, the restricted morphism b↓ : Bs$ → Bs$n
is an isomorphism. Thus, the last claim follows from the commutativity and
Proposition A.1.7.

When n is odd, the commutativity is obvious. When n is even, it suffices to
show that for every point

(A0, λ0, η
p
0 ; A, λ, ηp; A$, λ$, ηp$;α) ∈ Bs$(S),

we have

δ$∗,τ∞
(
(ᾰ∗,τ∞)−1ωA∨/S,τ∞ ⊕ HdR

1 (A0/S)τ∞
) = (ᾰ�∗,τ∞)−1ωA∨×A∨

0 /S,τ∞
(4.12)

in view of the diagram

A × A0

α×idA0

A × A0

α�:=δ$◦(α×idA0 )

A$ × A0
δ$

ᾰ×� idA0

A$�

ᾰ�

A × A0 A × A0

in which ᾰ ◦α = � · idA and ᾰ� ◦α� = � · idA×A0 . Since both sides of (4.12)
have the same rank, it suffices to show that

ᾰ�∗,τ∞
(
δ$∗,τ∞

(
(ᾰ∗,τ∞)−1ωA∨/S,τ∞ ⊕ HdR

1 (A0/S)τ∞
)) ⊆ ωA∨×A∨

0 /S,τ∞,

which is obvious as � annihilates HdR
1 (A0/S)τ∞ . The proposition is proved.

��
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At thefinal stage of functoriality,we relate the specialmorphisms for sources
of basic correspondences toShimura sets under the uniformizationmapυ (4.4).

Notation 4.5.7 As in Definition 4.4.1, we choose a definite uniformization
datum (V$n,in, {�$n,q}q|p) for V. We also fix a definite uniformization datum
(V$n+1,in+1, {�$n+1,q}q|p) for Vn+1 satisfying

• V$n+1 = (V$n)� and in+1 = (in)�;
• �$n+1,q = (�$n,q)� for q �= p; and

• (�$n,p)� ⊆ �$n+1,p ⊆ p−1(�$n,p)
∨
� .

Let K$n+1,q be the stabilizer of �
$
n+1,q for every q over p; and put K$n+1,p :=∏

q|p K$n+1,q. Moreover, we put K$sp,p := K$n,p ∩ K$n+1,p (as a subgroup of
K$n,p) and K

$
sp,p := K$sp,p ×

∏
q �=pK

$
n,q.

Remark 4.5.8 When n is odd, since (�$n,p)
∨ = p�$n,p, wemust have�$n+1,p =

(�$n,p)� as well, hence K
$
sp,p = K$n,p. When n is even, the number of choices

of �$n+1,p is p + 1.

Similar to Construction 4.4.2, we may construct a uniformization map

υsp : Sp(Vn,–)sp(Fp)→ Sh(V$n, (in–n)K
$
sp,p)× Tp(Fp) (4.13)

in Fun(K(Vn)
p
sp ×T,Set)/Tp(Fp)

which is an isomorphism, whose details we
leave to the readers.

Proposition 4.5.9 The following diagram

Sp(Vn+1,–n+1)(Fp)
υn+1

(4.4)
Sh(V$n+1, (in+1–n+1)K$n+1,p)× Tp(Fp)

Sp(Vn,–)sp(Fp)
υsp

(4.13)

s↑(Fp)

s↓(Fp)

Sh(V$n, (in–n)K$sp,p)× Tp(Fp)

sh$↑×id

sh$↓×id

Sp(Vn,–n)(Fp)
υn

(4.4)
Sh(V$n, (in–n)K$n,p)× Tp(Fp)

in Fun(K(Vn)
p
sp × T,Set)/Tp(Fp)

commutes, where sh$↓ and sh$↑ are obvious

maps on Shimura sets. Moreover, the induced actions of Gal(Fp/F
 
p ) on all

terms on the right-hand side factor through the projection to the factorTp(Fp).

Proof The commutativity follows directly from definition. The proof of the
last claim is same to Proposition 4.4.4. ��
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4.6 Second geometric reciprocity law

In this subsection, we state and prove a theorem we call second geometric
reciprocity law, which can be regarded a geometric template for the second
explicit reciprocity law studied in Sect. 7.3 once throw the automorphic input.

We keep the setup in Sect. 4.5. However, we allow–= (–n,–n+1) to be an
object of K(Vn)

p × K(Vn+1)
p, rather than K(Vn)

p
sp. Denote by n0 and n1 the

unique even and odd numbers in {n, n + 1}, respectively. Write n0 = 2r0 and
n1 = 2r1+1 for unique integers r0, r1 � 1. In particular, we have n = r0+r1.
Let L be a p-coprime coefficient ring.

To ease notation, we put X?
nα := X?

p(Vnα ,–nα ) for meaningful triples
(X, ?, α) ∈ {M,M,B,S} × { , η} × {0, 1}.
Construction 4.6.1 We construct two maps and two graphs.

(1) For every integers i, j , we define

loc′p : Hi
ét(Sh(Vn0,–n0Kn0,p)×Spec F Sh(Vn1,–n1Kn1,p), L( j))

→ Hi
T(Mn0 ×Tp Mn1, L( j))

to be the composition of the localization map

locp : Hi
ét(Sh(Vn0,–n0Kn0,p)×Spec F Sh(Vn1,–n1Kn1,p), L( j))→

Hi
ét((Sh(Vn0,–n0Kn0,p)×Spec F Sh(Vn1,–n1Kn1,p))⊗F Q

 
p , L( j)),

the pullback map

Hi
ét((Sh(Vn0,–n0Kn0,p)×Spec F Sh(Vn1,–n1Kn1,p))⊗F Q

 
p , L( j))

→ Hi
T(M

η
n0 ×Tηp

Mη
n1, L( j))

induced from (4.2), and the isomorphism

Hi
T(Mn0 ×Tp Mn1,R	L( j))

∼−→ Hi
T(Mn0 ×Tp Mn1, L( j))

due to the fact L � R	L by Theorem 4.2.3.
(2) Analogous to Construction 4.4.9, we define the map

inc$,$! : L[Sh(V$n0 , (in0–n0)K
$
n0,p)] ⊗L L[Sh(V$n1 , (in1–n1)K

$
n1,p)]

∼−→ H0
T(Sn0 , L)⊗L H0

T(Sn1 , L) = H0
T(Sn0 ×Tp Sn1 , L)

(πn0×πn1 )
∗

−−−−−−−→ H0
T(Bn0 ×Tp Bn1 , L)

(ιn0×ιn1 )!−−−−−−→ H2n
T (Mn0 ×Tp Mn1 , L(n))

in Fun(K(Vn)
p × K(Vn+1)

p,Mod(L)).
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Suppose that – is taken in the subcategory K(Vn)
p
sp.

(3) We define � Sh(Vn,–nKn,p) to be the graph of the morphism sh↑ (4.6),
as a closed subscheme of Sh(Vn0,–n0Kn0,p)×Spec F Sh(Vn1,–n1Kn1,p),
which gives rise to a class

[� Sh(Vn,–nKn,p)]
∈ H2n

ét (Sh(Vn0,–n0Kn0,p)×Spec F Sh(Vn1,–n1Kn1,p), L(n))

by the absolute cycle class map.
(4) We define � Sh(V$n, (in–n)K$sp,p) to be the graph of the correspondence

(sh$↓, sh$↑), which is a subset of

Sh(V$n0, (in0–n0)K
$
n0,p)× Sh(V$n1, (in1–n1)K

$
n1,p).

The following theorem, whichwe call the second geometric reciprocity law,
relates the class [� Sh(Vn,–nKn,p)] with an explicit class coming from the
Shimura set.

Theorem 4.6.2 (Second geometric reciprocity law) Suppose that – is taken
in the subcategory K(Vn)

p
sp. We have

T$n1,p.(id × πn1)!(id × ιn1)∗loc′p
([� Sh(Vn,–nKn,p)]

) = (id × πn1)!(id × ιn1)∗inc$,$! (1� Sh(V$n,(in–n)K$sp,p))

in H2r0
T (Mn0 ×Tp Sn1, L(r0)), where T$n1,p ∈ Tn1,p is the Hecke operator

appearing in Theorem 4.4.10.

Note that by Proposition 4.4.6 and Remark 4.4.8, H2r0
T (Mn0 ×Tp Sn1, L(r0))

is a Tn1,p-module. For the readers’ convenience, we illustrate the identity in
the above theorem through the following diagram

H2n
ét (Sh(Vn0,–n0Kn0,p)×Spec F Sh(Vn1,–n1Kn1,p), L(n))

loc′p
H2n
T (Mn0 ×Tp Mn1, L(n))

(id×ιn1 )∗
L[Sh(V$n0, (in0–n0)K

$
n0,p)] ⊗L L[Sh(V$n1, (in1–n1)K

$
n1,p)]

inc$,$!

[� Sh(Vn,–nKn,p)]

∈

H2n
T (Mn0 ×Tp Bn1, L(n))

(id×πn1 )!

1� Sh(V$n,(in–n)K$sp,p)

∈

H2r0
T (Mn0 ×Tp Sn1, L(r0))

T$n1,p. · · · = · · ·

∈

Proof We denote

m� : Mn → Mn ×Tp Mn+1 = Mn0 ×Tp Mn1
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the diagonalmorphismof the correspondence (id,m↑) (4.7) inFun(K(Vn)
p
sp×

T,Sch/Z p )/Tp . Then we have the identity

loc′p
([� Sh(Vn,–nKn,p)]

) = m�![Mn] ∈ H2n
T (Mn ×Tp Mn+1, L(n))

by the commutative diagram (4.8).
Put Bsp := Bp(Vn,–)sp for short, and denote

b� := (b↓, b↑) : Bsp → Bn ×Tp Bn+1 = Bn0 ×Tp Bn1

the diagonal morphism of the correspondence (b↓, b↑). By Proposition 4.5.5
(resp. Lemma 4.5.2) when n = n0 (resp. n = n1), the following commutative
diagram

Bsp
(ιn0×id)◦b�

ιn◦b↓

Mn0 ×Tp Bn1

id×ιn1
Mn

m�
Mn0 ×Tp Mn1

is Cartesian. Then by Proper Base Change, we have

T$n1,p.(id × πn1)!(id × ιn1)∗m�![Mn]
= T$n1,p.(id × πn1)!((ιn0 × id) ◦ b�)!(ιn ◦ b↓)∗[Mn]
= T$n1,p.(id × πn1)!((ιn0 × id) ◦ b�)![Bsp].

The commutative diagram

Bsp
(ιn0×id)◦b�

(id×πn1 )◦b�

Mn0 ×Tp Bn1

id×π1
Bn0 ×Tp Sn1

ιn0×id
Mn0 ×Tp Sn1

implies the identity

T$n1,p.(id × πn1)!((ιn0 × id) ◦ b�)![Bsp]
= T$n1,p.(ιn0 × id)!((id × πn1) ◦ b�)![Bsp].

Now by the definition of Bsp (Definition 4.5.3), we have

((id × πn1) ◦ b�)![Bsp] = (πn0 × id)∗(1� Sh(V$n,(in–n)K$sp,p)).
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In all, we have

T$n1,p.(id × πn1)!(id × ιn1)∗m�![Mn]
= (ιn0 × id)!(πn0 × id)∗(T$n1,p.1� Sh(V$n,(in–n)K$sp,p)),

which, by Theorem 4.4.10, is equal to

(ιn0 × id)!(πn0 × id)∗(id × πn1)!(id × ιn1)∗
(id × ιn1)!(id × πn1)

∗(1� Sh(V$n,(in–n)K$sp,p))

= (id × πn1)!(id × ιn1)∗inc$,$! (1� Sh(V$n,(in–n)K$sp,p)).

The theorem follows. ��

5 Unitary moduli schemes: semistable case

In this section, we define and study a certain semistable integralmoduli scheme
whose generic fiber is the product of a unitary Shimura variety and an auxiliary
CM moduli. Since the materials in this section are strictly in the linear order,
we will leave the summary of contents to each subsection.

5.1 Initial setup

We fix a special inert prime (Definition 3.3.4) p of F+ (with the underlying
rational prime p). We take the prescribed subring P in Definition 3.4.2 to be
Z(p). We choose following data

• a CM type  containing τ∞;
• a rational skew-hermitian space W0 over OF ⊗ Z(p) of rank 1 and type  
(Definition 3.5.3);

• a neat open compact subgroup K p
0 ⊆ T0(A

∞,p);
• an isomorphism ιp : C

∼−→ Qp such that ιp ◦ τ∞: F+ ↪→ Qp induces the
place p of F+;

• an element � ∈ OF+ that is totally positive and satisfies valp(�) = 1,
and valq(�) = 0 for every prime q �= p of F+ above p.

We adopt Notation 3.3.6. In particular, F
 
p contains Fp2 . Since the argument

below is insensitive to the choices of W0 and K p
0 , we will not include them

in all notations. However, we will keep the prime p in notations as later in
application, we need to choose different primes in a crucial step. Put Tp :=
Tp(W0,K

p
0 )⊗OF ⊗Z(p) Z

 
p .
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5.2 Construction of moduli schemes

In this subsection, we construct our initial moduli schemes. We start from the
datum (V◦, {�◦

q}q|p), where
• V◦ is a standard definite hermitian space (Definition 3.2.1) over F of rank

N � 1, and
• for every prime q of F+ above p, a self-dual OFq-lattice�

◦
q in V

◦ ⊗F Fq.

Definition 5.2.1 We define a functor

Mp(V
◦,–) : K(V◦)p × T → PSch′

/Z p

K p◦ �→ Mp(V
◦,K p◦)

such that for every S ∈ Sch′
/Z p

, Mp(V◦,K p◦)(S) is the set of equivalence

classes of sextuples (A0, λ0, η
p
0 ; A, λ, ηp), where

• (A0, λ0, η
p
0 ) is an element in Tp(S);

• (A, λ) is a unitary OF -abelian scheme of signature type N − τ∞ + τc∞
over S (Definitions 3.4.2 and 3.4.3) such that ker λ[p∞] is contained in
A[p] of rank p2;

• ηp is a K p◦-level structure, that is, for a chosen geometric point s on every
connected component of S, aπ1(S, s)-invariantK p◦-orbit of isomorphisms

ηp : V◦ ⊗Q A
∞,p → Homλ0,λF⊗QA∞,p(Hét

1 (A0s,A
∞,p),Hét

1 (As,A
∞,p))

of hermitian spaces over F ⊗Q A
∞,p = F ⊗F+ A

∞,p
F+ . See Construc-

tion 3.4.4 (with � = {∞, p}) for the right-hand side.
The equivalence relation and the action of morphisms in K(V◦)p × T are
defined similarly as in Definition 4.2.2.

Remark 5.2.2 In the definition of the moduli functor Mp(V◦,–), we use the
definite hermitian space V◦ to define the tame level structure – this is different
from the usual treatment. The reason for doing this is to make the uniformiza-
tionmap (5.4) for a certain stratum in the special fiber ofMp(V◦,–) canonical,
since our main interest is the Shimura set Sh(V◦,–K◦

p), while the trade-off is
that the relation between the generic fiber of Mp(V◦,–) and unitary Shimura
varieties cannot be made canonical (see Definition 5.2.6).

We clearly have the forgetful morphism

Mp(V
◦,–)→ Tp (5.1)
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in Fun(K(V◦)p × T,PSch′
/Z p
), which is representable by quasi-projective

schemes. According to Notation 3.3.6, we shall denote by the base change of
(5.1) to F

 
p by Mp(V◦,–) → Tp, which is a morphism in Fun(K(V◦)p ×

T,Sch/F p ).

Definition 5.2.3 For every K p◦ ∈ K(V◦)p, let (A0, λ0, η
p
0 ;A, λ, ηp) be the

universal object over Mp(V◦,K p◦). We define

(1) M◦
p(V

◦,K p◦) to be the locus of Mp(V◦,K p◦) on which ωA∨,τ∞ coincides
with HdR

1 (A)⊥τc∞ , which we call the balloon stratum;14

(2) M•
p(V

◦,K p◦) to be the locus of Mp(V◦,K p◦) on which HdR
1 (A)⊥τ∞ is a

line subbundle of ωA∨,τc∞ , which we call the ground stratum;

(3) M†
p(V

◦,K p◦) to be M◦
p(V

◦,K p◦)
⋂

M•
p(V

◦,K p◦), which we call the link

stratum.15

We denote

m†◦ : M†
p(V

◦,–)→ M◦
p(V

◦,–),
m†• : M†

p(V
◦,–)→ M•

p(V
◦,–),

the obvious inclusion morphisms.

Remark 5.2.4 When N = 1, the ground stratum and the link stratum are both
empty.

Theorem 5.2.5 For every K p◦ ∈ K(V◦)p, we have

(1) The scheme Mp(V◦,K p◦) is quasi-projective and strictly semistable over
Tp of relative dimension N − 1; and we have

Mp(V
◦,K p◦) = M◦

p(V
◦,K p◦)

⋃
M•

p(V
◦,K p◦).

Moreover, (5.1) is projective if and only if its base change to Q
 
p is.

(2) The loci M◦
p(V

◦,K p◦) and M•
p(V

◦,K p◦) are both closed subsets of
Mp(V◦,K p◦), smooth over Tp if we endow them with the induced reduced
scheme structure.

(3) We have a canonical isomorphism

TM◦
p(V◦,K p◦)/Tp � Hom

(
ωA∨,τc∞,LieA,τc∞

)

14 This terminology is borrowed from an unpublished note by Kudla and Rapoport, where they
study the corresponding Rapoport–Zink space. The intuition becomes clear after Theorem 5.3.4
where we show that this stratum is a projective space fibration over a zero-dimensional scheme.
15 This is the stratum linking balloons to the ground.
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of coherent sheaves over M◦
p(V

◦,K p◦) for the relative tangent sheaf.
(4) When N � 2, the relative tangent sheaf TM•

p(V◦,K p◦)/Tp fits canonically
into an exact sequence

0 Hom
(
ωA∨,τ∞ , ω

⊥
A∨,τc∞

/ωA∨,τ∞
)

TM•
p(V◦,K p◦)/Tp Hom

(
ωA∨,τc∞/H

dR
1 (A)⊥τ∞ ,LieA,τc∞

)
0

of coherent sheaves over M•
p(V

◦,K p◦).
(5) When N � 2, the natural mapTM†

p(V◦,K p◦)/Tp → TM•
p(V◦,K p◦)/Tp |M†

p(V◦,K p◦)
between relative tangent sheaves induces an isomorphism

TM†
p(V◦,K p◦)/Tp � Hom

(
ωA∨,τc∞/H

dR
1 (A)⊥τ∞,LieA,τc∞

)

of coherent sheaves over M†
p(V

◦,K p◦) under the exact sequence in (4).

In particular, the exact sequence in (4) splits over M†
p(V

◦,K p◦).

Proof For (1), the (quasi-)projectiveness part is well-known. We consider
the remaining assertions. Take a point x = (A0, λ0, η

p
0 ; A, λ, ηp) ∈

Mp(V◦,K p◦)(κ) for a perfect field κ containing F
 
p , and denote by Ox the

completed local ring of Mp(V◦,K p◦) at x . We have a W (κ)-bilinear pairing
〈 , 〉λ,τ∞ : D(A)τ∞ × D(A)τc∞ → W (κ) as in Notation 3.4.11. By Proposi-
tion 3.4.8, we have for every Artinian W (κ)-ring R that is a quotient of Ox ,
that HomW (κ)(Ox , R) is the set of pairs of R-subbundles

Mτ∞ ⊆ D(A)τ∞ ⊗W (κ) R, Mτc∞ ⊆ D(A)τc∞ ⊗W (κ) R

of ranks 1 and N − 1 lifting ωA∨/κ,τ∞ and ωA∨/κ,τc∞ , respectively, such that
〈Mτ∞,Mτc∞〉λ,τ∞ = 0. We choose isomorphisms D(A)τ∞ � W (κ)⊕N and
D(A)τc∞ � W (κ)⊕N under which the pairing 〈 , 〉λ,τ∞ is given by

〈(x1, . . . , xN ), (y1, . . . , yN )〉λ,τ∞ = px1y1 + x2y2 + · · · + xN yN .

There are four possible cases.

(i) If ωA∨/κ,τ∞ is generated by (1, 0, . . . , 0) and ωA∨/κ,τc∞ contains
(1, 0, . . . , 0), then possibly after changing coordinates, we may assume
thatωA∨/κ,τc∞ = {(y1, . . . , yN−1, 0)}. ThenwehaveOx � W (κ)[[x1, . . . ,
xN−1, xN ]]/(x1xN − p). In this case, x must belong to M†

p(V
◦,K p◦)(κ).

(ii) If ωA∨/κ,τ∞ is generated by (1, 0, . . . , 0) and ωA∨/κ,τc∞ does not contain
(1, 0, . . . , 0), then possibly after changing coordinates, we may assume
that ωA∨/κ,τc∞ = {(0, y2, . . . , yN )}. It is clear that Mτ∞ is determined by
Mτc∞ ; and Ox � W (κ)[[x2, . . . , xN ]].
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(iii) If ωA∨/κ,τ∞ is not generated by (1, 0, . . . , 0) and ωA∨/κ,τc∞ contains
(1, 0, . . . , 0), then possibly after changing coordinates, we may assume
that ωA∨/κ,τ∞ is generated by (0, . . . , 0, 1). It is clear that Mτc∞ is deter-
mined by Mτ∞ ; and Ox � W (κ)[[x1, . . . , xN−1]].

(iv) If ωA∨/κ,τ∞ is not generated by (1, 0, . . . , 0) and ωA∨/κ,τc∞ does not
contain (1, 0, . . . , 0), then this would not happen.

Together with the fact that Mp(V◦,K p◦)⊗ Q is smooth of dimension N − 1,
Mp(V◦,K p◦) is strictly semistable overTp of relative dimension N −1.More-
over, M◦

p(V
◦,K p◦) is the locus where (i) or (ii) happens; and M•

p(V
◦,K p◦) is

the locus where (i) or (iii) happens. Thus, both (1) and (2) follow.
For (3–5), we will use deformation theory. For common use, we consider a

closed immersion S ↪→ Ŝ in Sch′
/Tp defined by an ideal sheaf I with I2 = 0.

Take an S-point (A0, λ0, η
p
0 ; A, λ, ηp) in various schemeswewill consider. By

Proposition 3.4.8, we need to lift ωA∨,τ∞ and ωA∨,τc∞ to subbundles ω̂A∨,τ∞ ⊆
Hcris
1 (A/Ŝ)τ∞ and ω̂A∨,τc∞ ⊆ Hcris

1 (A/Ŝ)τc∞ , respectively, that are orthogonal
to each other under the pairing (3.3).

For (3), since we require 〈ω̂A∨,τ∞,H
cris
1 (A/Ŝ)τc∞〉crisλ,τ∞ = 0, it remains to lift

ω̂A∨,τc∞ without restriction. Thus, (3) follows by Remark 3.4.6.

For (4), we need to first find lifting ω̂A∨,τc∞ that contains Hcris
1 (A/Ŝ)⊥τ∞ ;

and then find lifting ω̂A∨,τ∞ satisfying 〈ω̂A∨,τ∞, ω̂A∨,τc∞〉crisλ,τ∞ = 0. Thus, (4)
follows by Remark 3.4.6.

For (5), we only need to find lifting ω̂A∨,τc∞ that contains Hcris
1 (A/Ŝ)⊥τ∞ ,

which implies (5). ��
In the remaining part of this subsection, we discuss the relation between

Mp(V◦,–) and certain unitary Shimura varieties. Since we use a standard
definite hermitian space to parameterize the level structures, such relation is
not canonical, which depends on the choice of an indefinite uniformization
datum defined as follows.

Definition 5.2.6 We define an indefinite uniformization datum for V◦ (at p)
to be a collection of (V′,j, {�′

q}q|p), where
• V′ is a standard indefinite hermitian space over F of rank N ;
• j : V◦ ⊗Q A

∞,p → V′ ⊗Q A
∞,p is an isometry;

• for every prime q of F+ above p other than p,�′
q is a self-dual OFq-lattice

in V′ ⊗F Fq; and
• �′

p is an OFp-lattice in V′ ⊗F Fp satisfying �′
p ⊆ (�′

p)
∨ and (�′

p)
∨/�′

p
has length 1.

By the Hasse principle for hermitian spaces, there exists an indefinite uni-
formization datum forwhichwefix one. LetK′

q be the stabilizer of�
′
q for every
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q over p; and put K′
p := ∏q|p K′

q. The isometry j induces an equivalence of

categories j : K(V◦)p ∼−→ K(V′)p.
Then similar to Remark 4.2.5, we obtain a “moduli interpretation” isomor-

phism

Mη
p(V

◦,–) ∼−→ Sh(V′,j–K′
p)×Spec F Tηp (5.2)

(Notation 3.3.6(5)) in Fun(K(V◦)p × T,Sch/Q p )/Tηp , where T acts on

Sh(V′,j–K′
p)×Spec F Tηp via the second factor.

Lemma 5.2.7 Let L be a p-coprime coefficient ring. The two specialization
maps

Hi
T,c(Mp(V

◦,–)⊗Z p
Qp, L)→ Hi

T,c(Mp(V
◦,–),R	L),

Hi
T(Mp(V

◦,–)⊗Z p
Qp, L)→ Hi

T(Mp(V
◦,–),R	L),

are both isomorphisms. In particular, (5.2) induces isomorphisms

Hi
ét,c(Sh(V

′,j–K′
p)F , L) � Hi

T,c(Mp(V
◦,–),R	L),

Hi
ét(Sh(V

′,j–K′
p)F , L) � Hi

T(Mp(V
◦,–),R	L),

inFun(K(V◦)p,Mod(L[Gal(Qp/Q
 
p )])) for every i ∈ Z. Here,Gal(Qp/Q

 
p )

is regarded as a subgroup ofGal(F/F) under our fixed isomorphism ιp : C
∼−→

Qp.

Proof When Mp(V,–) is proper, this is simply the proper base change. When
Mp(V,–) is not proper, this follows from [43, Corollary 5.20]. ��
Remark 5.2.8 When F+ �= Q, the Shimura variety Sh(V′,K p′K′

p) is proper
over F for K p′ ∈ K(V′)p. We explain that Sh(V′,K p′K′

p) has proper smooth
reduction at every place w of F above �+

p \{p}.
Take a place w of F above �+

p \{p}. Choose a CM type  containing τ∞
and an isomorphism C � Qp that induces w (not the unique place above p!).
Put Tw := Tp(W0,K

p
0 ) ⊗OF ⊗Z(p) Z

 
p . We define a functor Mw(V′,K p′)

on Sch′
/Z p

such that for every S ∈ Sch′
/Z p

, Mw(V′,K p′)(S) is the set of

equivalence classes of sextuples (A0, λ0, η
p
0 ; A, λ, ηp), where

• (A0, λ0, η
p
0 ) is an element in Tw(S);

• (A, λ) is a unitary OF -abelian scheme of signature type N − τ∞ + τc∞
over S (Definitions 3.4.2 and 3.4.3) such that ker λ[p∞] is contained in
A[p] of rank p2;
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• ηp is a K p′-level structure, similarly defined as in Definition 5.2.1.

Then Mw(V′,K p′) is represented by a projective scheme over Z
 
p . An easy

computation of the tangent sheaf as in Theorem 4.2.3 shows that Mw(V′,K p′)
is smooth of relative dimension N − 1. Moreover, we have a canonical iso-
morphism

Mη
w(V

′,K p′) � Sh(V′,K p′K′
p)×Spec F Tηw

over Tηw. Thus, Sh(V′,K p′K′
p) has proper smooth reduction at w as Tw is

finite étale over OFw .

5.3 Basic correspondence for the balloon stratum

In this subsection, we construct and study the basic correspondence for the
balloon stratum M◦

p(V
◦,–).

Definition 5.3.1 We define a functor

S◦
p(V

◦,–) : K(V◦)p × T → PSch′
/F p

K p◦ �→ S◦
p(V

◦,K p◦)

such that for every S ∈ Sch′
/F p

, S◦
p(V

◦,K p◦)(S) is the set of equivalence

classes of sextuples (A0, λ0, η
p
0 ; A◦, λ◦, ηp◦), where

• (A0, λ0, η
p
0 ) is an element in Tp(S);

• (A◦, λ◦) is a unitary OF -abelian scheme of signature type N over S such
that λ◦ is p-principal;

• ηp◦ is, for a chosen geometric point s on every connected component of S,
a π1(S, s)-invariant K p◦-orbit of isomorphisms

ηp◦ : V◦ ⊗Q A
∞,p → Homλ0,λ

◦
F⊗QA∞,p(Hét

1 (A0s,A
∞,p),Hét

1 (A
◦
s ,A

∞,p))

of hermitian spaces over F ⊗Q A
∞,p = F ⊗F+ A

∞,p
F+ .

The equivalence relation and the action of morphisms in K(V◦)p × T are
defined similarly as in Definition 4.2.2.

We clearly have the forgetful morphism

S◦
p(V

◦,–)→ Tp

in Fun(K(V◦)p × T,PSch′
/F p
), which is represented by finite and étale

schemes by [62, Theorem 4.4].
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Now we take a point s◦ = (A0, λ0, η
p
0 ; A◦, λ◦, ηp◦) ∈ S◦

p(V
◦,K p◦)(κ)

where κ is a perfect field containing F
 
p . Then A◦

κ [p∞] is a supersingular
p-divisible by the signature condition and the fact that p is inert in F . The
(κ, σ−1)-linear Verschiebung map

V : HdR
1 (A

◦/κ)τ∞ → HdR
1 (A

◦/κ)σ−1τ∞ = HdR
1 (A

◦/κ)τc∞

(Notation 3.4.10) is an isomorphism. Thus, we obtain a (κ, σ )-linear isomor-
phism

V−1 : HdR
1 (A

◦/κ)τc∞ → HdR
1 (A

◦/κ)τ∞ .

We define a non-degenerate pairing

{ , }s◦ : HdR
1 (A

◦/κ)τc∞ × HdR
1 (A

◦/κ)τc∞ → κ

by the formula {x, y}s◦ := 〈V−1x, y〉λ◦,τ∞ (Notation 3.4.7). To ease notation,
we put

Vs◦ := HdR
1 (A

◦/κ)τc∞ .

By the same proof of Lemma 4.3.2, we know that (Vs◦, { , }s◦) is admissible.
Thus, we have the Deligne–Lusztig variety DLs◦ := DL(Vs◦, { , }s◦, N − 1)
(Definition A.1.2).

Definition 5.3.2 We define a functor

B◦
p(V

◦,–) : K(V◦)p × T → PSch′
/F p

K p◦ �→ B◦
p(V

◦,K p◦)

such that for every S ∈ Sch′
/F p

, B◦
p(V

◦,K p◦)(S) is the set of equivalence

classes of decuples (A0, λ0, η
p
0 ; A, λ, ηp; A◦, λ◦, ηp◦;β), where

• (A0, λ0, η
p
0 ; A, λ, ηp) is an element of M◦

p(V
◦,K p◦)(S);

• (A0, λ0, η
p
0 ; A◦, λ◦, ηp◦) is an element of S◦

p(V
◦,K p◦)(S); and

• β : A → A◦ is an OF -linear quasi-p-isogeny (Definition 3.4.5) such that
(a) ker β[p∞] is contained in A[p];
(b) we have λ = β∨ ◦ λ◦ ◦ β; and
(c) the K p◦-orbit of maps v �→ β∗ ◦ ηp(v) for v ∈ V◦ ⊗Q A

∞,p coincides
with ηp◦.

The equivalence relation and the action of morphisms in K(V◦)p × T are
defined similarly as in Definition 4.3.3.

123



196 Y. Liu et al.

We obtain in the obvious way a correspondence

S◦
p(V

◦,–) B◦
p(V

◦,–) ι◦π◦
M◦

p(V
◦,–) (5.3)

in Fun(K(V◦)p × T,PSch′
/F p
)/Tp .

Definition 5.3.3 (Basic correspondence) We refer to (5.3) as the basic corre-
spondence on the balloon stratumM◦

p(V
◦,–), with S◦

p(V
◦,–) being the source

of the basic correspondence.

Theorem 5.3.4 In the diagram (5.3), ι◦ is an isomorphism. Moreover, for
every point s◦ = (A0, λ0, η

p
0 ; A◦, λ◦, ηp◦) ∈ S◦

p(V
◦,K p◦)(κ) where κ is a

perfect field containing F
 
p , if we put B◦

s◦ := π◦−1(s◦), then the assignment

sending (A0, λ0, η
p
0 ; A, λ, ηp; A◦, λ◦, ηp◦;β) ∈ B◦

s◦(S) to the subbundle

H := β∗,τc∞ωA∨/S,τc∞ ⊆ HdR
1 (A

◦/S)τc∞ = HdR
1 (A

◦/κ)τc∞ ⊗κ OS = (Vs◦)S

induces an isomorphism ζ ◦s◦ : B◦
s◦

∼−→ P(Vs◦) satisfying that

(1) ζ ◦s◦ restricts to an isomorphism

ζ ◦s◦ : B◦
s◦
⋂
ι◦−1M†

p(V
◦,K p◦) ∼−→ DLs◦ = DL(Vs◦, { , }s◦, N − 1);

(2) we have an isomorphism

Hom
(
ωA∨,τ∞, ω

⊥
A∨,τc∞/ωA∨,τ∞

)
� (ζ ◦s◦)∗OP(Vs◦ )(−(p + 1)).

In particular, B◦
s◦
⋂
ι◦−1M†

p(V
◦,K p◦) is a Fermat hypersurface in B◦

s◦ �
P(Vs◦).

Proof Take an object K p◦ ∈ K(V◦)p. It is clear that B◦
p(V

◦,–) is a scheme.
We denote by (A0, λ0, η

p
0 ;A, λ, ηp;A◦, λ◦, ηp◦;β) the universal object over

B◦
p(V

◦,K p◦).
First, we show that ι◦ is an isomorphism. It is an easy exercise from

Grothendieck–Messing theory that the canonical map TB◦
p(V◦,K p◦)/Tp →

ι◦∗TM◦
p(V◦,K p◦)/Tp is an isomorphism. Thus, it suffices to show that ι◦(κ ′)

is a bijection for every algebraically closed field κ ′ containing κ . To ease
notation, we may assume κ ′ = κ . We construct an inverse of ι◦(κ). Take a
point (A0, λ0, η

p
0 ; A, λ, ηp) ∈ M◦

p(V
◦,K p◦)(κ). Write ω̃A∨,τ∞ the preim-

age of ωA∨,τ∞ under the reduction map D(A)τ∞ → HdR
1 (A/κ)τ∞ . As

〈ωA∨,τ∞,H
dR
1 (A/κ)τc∞〉λ,τ∞ = 0, we have D(A)∨τc∞ = p−1ω̃A∨,τ∞ . Now we
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put DA◦,τ := D(A)τ for τ �= τ∞, and DA◦,τ∞ := p−1ω̃A∨,τ∞ . We claim that
DA◦ := ⊕τ∈�∞ DA◦,τ is a Dieudonné module, which amounts to the inclu-
sions FDA◦,τ∞ ⊆ DA◦,τc∞ and VDA◦,τ∞ ⊆ DA◦,τc∞ . The first one is obvious;
and the second one is equivalent to the first one as DA◦,τ∞ and DA◦,τc∞ are
integrally dual under 〈 , 〉crisλ,τ∞ . Then by the Dieudonné theory, there is an
OF -abelian scheme A◦ over κ with D(A◦)τ = DA◦,τ for every τ ∈ �∞,
and an OF -linear isogeny β : A → A◦ inducing the inclusion of Dieudonné
modules D(A) ⊆ D(A◦). By Lemma 3.4.12(2,4), the OF -abelian scheme A◦
has signature type N . Let λ◦ be the unique quasi-polarization of A◦ satis-
fying λ = β∨ ◦ λ◦ ◦ β, which is p-principal as DA◦,τc∞ = D∨

A◦,τ∞ . Finally,
we let ηp◦ be the map sending v ∈ V◦ ⊗Q A

∞,p to β∗ ◦ ηp(v). Thus, we
obtain an object (A0, λ0, η

p
0 ; A, λ, ηp; A◦, λ◦, ηp◦;β) ∈ S◦

p(V
◦,K p◦)(κ). It

is straightforward to check that such assignment gives rise to an inverse of
ι◦(κ).

Second, we show that ζ ◦s◦ is well-defined, namely, H is a subbun-
dle of rank N − 1. By Lemma 3.4.12(2,4) and Definition 5.3.2(b), we
have rankOS (ker β∗,τ∞) − rankOS (ker β∗,τc∞) = 1 and rankOS (ker β∗,τ∞) +
rankOS (ker β∗,τc∞) = 1. Thus, β∗,τc∞ is an isomorphism, hence H is a subbun-
dle of rank N − 1.

Third, we show that ζ ◦s◦ is an isomorphism. Denote byH ⊆ (Vs◦)P(Vs◦ ) the
universal subbundle (of rank N − 1). Then we have a canonical isomorphism

TP(Vs◦ )/κ � HomOP(Vs◦ )
(
H,HdR

1 (A
◦/κ)τc∞/H

)
.

By Theorem 5.2.5(1) and the fact that β∗,τc∞ is an isomorphism, we obtain an
isomorphism

(
ι◦∗TM◦

p(V◦,K p◦)/Tp

)
|B◦

s◦
∼−→ ζ ◦∗s◦ TP(Vs◦ )/κ .

Thus, to show that ζ ◦s◦ : B◦
s◦ → P(Vs◦) is an isomorphism, it suffices to

construct an inverse of ζ ◦s◦(κ ′) for every algebraically closed field κ ′ con-
taining κ . To ease notation, we may assume κ ′ = κ . Take a κ-linear subspace
H ⊆ Vs◦ = HdR

1 (A
◦)τc∞ of rank N −1. Let H̃ denote by its preimage under the

reductionmapD(A◦)τc∞ → HdR
1 (A

◦)τc∞ .WeputDA,τ := D(A◦)τ for τ �= τ∞,
and DA,τ∞ := V−1 H̃ ⊆ D(A◦)τ∞ . It is clear that DA := ⊕τ∈�∞ DA,τ is a
Dieudonné module. By the Dieudonné theory, there is an OF -abelian scheme
A over κ with D(A)τ = DA,τ for every τ ∈ �∞, and an OF -linear isogeny
β : A → A◦ inducing the inclusion of Dieudonné modules D(A) ⊆ D(A◦).
By a similar argument as for ι◦, we obtain a point (A, λ, ηp;β) ∈ B◦

s◦(κ); and
it follows that such assignment is an inverse of ζ ◦s◦(κ).

Finally, we check the two properties of ζ ◦s◦ .
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For (1), we check that the closed subscheme ζ ◦s◦(B◦
s◦ ∩ ι◦−1M†

p(V
◦,K p◦))

coincides with DL(Vs◦, { , }s◦, N − 1). Recall that M†
p(V

◦,K p◦) is define by
the condition

H1
dR(A/S)⊥τ∞ ⊆ ωA∨/S,τc∞ .

Note that we have H = β∗,τc∞ωA∨/S,τc∞ and V−1H (p) = β∗,τ∞HdR
1 (A/S)τ∞ ,

which implies (V−1H (p))⊥ = (β∗,τ∞HdR
1 (A/S)τ∞)

⊥ = β∗,τc∞(H1
dR(A/S)⊥τ∞).

Applying the isomorphism β∗,τc∞ , the above condition is equivalent to

(V−1H (p))⊥ ⊆ H,

which is the condition defining DL(Vs◦, { , }s◦, N − 1).
For (2), we have

ωA∨,τ∞ = ker β∗,τ∞ � HdR
1 (A

◦/S)τ∞/β∗,τ∞HdR
1 (A/S)τ∞

= HdR
1 (A

◦/S)τ∞/V
−1H (p)

and

ω⊥
A∨,τc∞/ωA∨,τ∞ � β∗,τ∞ω⊥

A∨,τc∞ = (β∗,τc∞ωA∨/S,τc∞)
⊥ = H⊥.

Thus, we have

ωA∨,τ∞ � ζ ◦∗s◦ OP(Vs◦ )(p), ω⊥
A∨,τc∞/ωA∨,τ∞ � ζ ◦∗s◦ OP(Vs◦ )(−1)

from which (2) follows.
The theorem is all proved. ��

Corollary 5.3.5 When N � 2, the normal bundle of the closed immersion

m†• : M†
p(V

◦,K p◦)→ M•
p(V

◦,K p◦)

is isomorphic to (m†◦)∗OM◦
p(V◦,K p◦)(−(p + 1)).

Proof By Theorem 5.2.5(4,5), we have that the normal bundle is isomorphic
to

Hom
(
ωA∨,τ∞, ω

⊥
A∨,τc∞/ωA∨,τ∞

)
.

Thus, the claim follows fromTheorem 5.3.4.We can also argue that the normal
bundle of m†• is dual to the normal bundle of m†◦ which is isomorphic to
(m†◦)∗OM◦

p(V◦,K p◦)(p + 1) by Theorem 5.3.4. ��
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Construction 5.3.6 Let K◦
q be the stabilizer of �◦

q for every q | p; and put
K◦

p :=∏q|p K◦
q . Similar toConstruction 4.4.2, wemay construct a uniformiza-

tion map, canonical this time,

υ◦ : S◦
p(V

◦,–)(Fp)
∼−→ Sh(V◦,–K◦

p)× Tp(Fp) (5.4)

in Fun(K(V◦)p × T,Set)/Tp(Fp)
which is an isomorphism, under which the

induced action of Gal(Fp/F
 
p ) on the target is trivial on Sh(V

◦,–K◦
p).

Moreover, similar to Construction 4.4.5 and Proposition 4.4.6, for every
g ∈ K◦

p\U(V◦)(F+
p )/K

◦
p , we may construct the Hecke correspondence

Hkg : S◦
p(V

◦,–)g → S◦
p(V

◦,–)× S◦
p(V

◦,–)

as a morphism in Fun(K(V◦)p × T,Sch/F p )/Tp that is finite étale and com-
patible with the uniformization map.

5.4 Basic correspondence for the ground stratum

In this subsection, we construct and study the basic correspondence for the
ground stratum M•

p(V
◦,–). We assume N � 2.

Definition 5.4.1 We define a functor

S•
p(V

◦,–) : K(V◦)p × T → PSch′
/F p

K p◦ �→ S•
p(V

◦,K p◦)

such that for every S ∈ Sch′
/F p

, S•
p(V

◦,K p◦)(S) is the set of equivalence

classes of sextuples (A0, λ0, η
p
0 ; A•, λ•, ηp•), where

• (A0, λ0, η
p
0 ) is an element in Tp(S);

• (A•, λ•) is a unitary OF -abelian scheme of signature type N over S such
that ker λ•[p∞] is trivial (resp. contained in A•[p] of rank p2) if N is even
(resp. odd);

• ηp• is, for a chosen geometric point s on every connected component of S,
a π1(S, s)-invariant K p•-orbit of isomorphisms

ηp• : V◦ ⊗Q A
∞,p → Hom�λ0,λ

•
F⊗QA∞,p(Hét

1 (A0s,A
∞,p),Hét

1 (A
•
s ,A

∞,p))

of hermitian spaces over F ⊗Q A
∞,p = F ⊗F+ A

∞,p
F+ .16

16 Note that herewe are using�λ0 rather thanλ0 in order to be consistentwith the compatibility
condition for polarizations in the isogeny considered in Definition 5.4.2.
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The equivalence relation and the action of morphisms in K(V◦)p × T are
defined similarly as in Definition 4.2.2.

We clearly have the forgetful morphism

S•
p(V

◦,–)→ Tp

in Fun(K(V◦)p × T,PSch′
/F p
), which is represented by finite and étale

schemes by [62, Theorem 4.4].17

Now we take a point s• = (A0, λ0, η
p
0 ; A•, λ•, ηp•) ∈ S•

p(V
◦,K p◦)(κ)

where κ is a perfect field containing F
 
p . Then A•

κ [p∞] is a supersingular
p-divisible by the signature condition and the fact that p is inert in F . The
(κ, σ−1)-linear Verschiebung map

V : HdR
1 (A

•/κ)τ∞ → HdR
1 (A

•/κ)σ−1τ∞ = HdR
1 (A

•/κ)τc∞

(Notation 3.4.10) is an isomorphism. Thus, we obtain a (κ, σ )-linear isomor-
phism

V−1 : HdR
1 (A

•/κ)τc∞ → HdR
1 (A

•/κ)τ∞ .

We define a pairing

{ , }s• : HdR
1 (A

•/κ)τc∞ × HdR
1 (A

•/κ)τc∞ → κ

by the formula {x, y}s• := 〈V−1x, y〉λ•,τ∞ (Notation 3.4.7). To ease notation,
we put

Vs• := HdR
1 (A

•/κ)τc∞ .

By the same proof of Lemma 4.3.2, we know that (Vs•, { , }s•) is admissible.
Thus, we have the Deligne–Lusztig variety DL•

s• := DL•(Vs•, { , }s•) (Defi-
nition A.2.1). Moreover, dimκ V ⊥

s• is equal to 0 (resp. 1) when N is even (resp.
odd).

Definition 5.4.2 We define a functor

B•
p(V

◦,–) : K(V◦)p × T → PSch′
/F p

K p◦ �→ B•
p(V

◦,K p◦)

17 In fact, [62, Theorem 4.4] only considers the case where the polarization is p-principal
(namely, ker λ•[p∞] is trivial), but its proof works in the case where ker λ•[p∞] is contained
in A•[p] of rank p2 as well since the computation of the tangent space is the same.
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such that for every S ∈ Sch′
/F p

, B•
p(V

◦,K p◦)(S) is the set of equivalence

classes of decuples (A0, λ0, η
p
0 ; A, λ, ηp; A•, λ•, ηp•; γ ), where

• (A0, λ0, η
p
0 ; A, λ, ηp) is an element of M•

p(V
◦,K p◦)(S);

• (A0, λ0, η
p
0 ; A•, λ•, ηp•) is an element of S•

p(V
◦,K p◦)(S); and

• γ : A → A• is an OF -linear quasi-p-isogeny (Definition 3.4.5) such that
(a) ker γ [p∞] is contained in A[p];
(b) (ker γ∗,τ∞)⊥ is contained in ωA∨/S,τc∞ ;
(c) ker γ∗,τ∞ contains HdR

1 (A/S)⊥τc∞ ;18

(d) we have� · λ = γ ∨ ◦ λ• ◦ γ ; and
(e) the K p◦-orbit of maps v �→ γ∗ ◦ ηp(v) for v ∈ V◦ ⊗Q A

∞,p coincides
with ηp•.

The equivalence relation and the action of morphisms in K(V◦)p × T are
defined similarly as in Definition 4.3.3.

We obtain in the obvious way a correspondence

S•
p(V

◦,–) B•
p(V

◦,–) ι•π•
M•

p(V
◦,–) (5.5)

in Fun(K(V◦)p × T,PSch′
/F p
)/Tp .

Definition 5.4.3 (Basic correspondence) We refer to (5.5) as the basic corre-
spondence on the ground stratumM•

p(V
◦,–), with S•

p(V
◦,–) being the source

of the basic correspondence.

Theorem 5.4.4 In the diagram (5.5), take a point

s• = (A0, λ0, η
p
0 ; A•, λ•, ηp•) ∈ S•

p(V
◦,K p◦)(κ)

where κ is a perfect field containing F
 
p . Put B•

s• := π•−1(s•), and denote by
(A, λ, ηp; γ ) the universal object over the fiber B•

s• .

(1) The fiber B•
s• is a smooth scheme over κ , whose tangent sheaf TB•

s•/κ fits
canonically into an exact sequence

0 → Hom
(
ωA∨,τ∞, ω

⊥
A∨,τc∞/ωA∨,τ∞

)
→ TB•

s•/κ

→ Hom
(
ωA∨,τc∞/(ker γ∗,τ∞)

⊥,LieA∨,τc∞

)
→ 0.

18 This condition is implied by the others when N is even.
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(2) The restriction of ι•κ to B•
s• is locally on B•

s• a closed immersion, with a
canonical isomorphism for its normal sheaf

Nι•κ |B•
s• � Hom

(
(ker γ∗,τ∞)⊥/HdR

1 (A)⊥τ∞,LieA∨,τc∞

)

� (im γ∗,τ∞)⊗OB•s•
LieA∨,τc∞ .

(3) We have γ∗,τc∞(ker γ∗,τ∞)
⊥ = HdR

1 (A
•/S)⊥τ∞ .

(4) The assignment sending (A0, λ0, η
p
0 ; A, λ, ηp; A•, λ•, ηp•; γ ) ∈ B•

s•(S)
to the subbundles

H1 := ((γ̆∗,τ∞)−1ωA∨/S,τ∞)
⊥ ⊆ HdR

1 (A
•/S)τc∞

= HdR
1 (A

•/κ)τc∞ ⊗κ OS = (Vs•)S,

H2 := γ∗,τc∞ωA∨/S,τc∞ ⊆ HdR
1 (A

•/S)τc∞ = HdR
1 (A

•/κ)τc∞ ⊗κ OS = (Vs•)S,

where γ̆ : A• → A is the (unique) OF -linear quasi-p-isogeny such that
γ̆ ◦ γ = � · idA, induces an isomorphism

ζ •s• : B•
s•

∼−→ DL•
s• = DL•(Vs•, { , }s•).

In particular, B•
s• is a geometrically irreducible projective smooth scheme

in Sch/κ of dimension � N
2 �.

(5) If we denote by (Hs•1,Hs•2) the universal object over DL•
s• , then there is

a canonical isomorphism

ζ •∗s•
(
H#

s•1/Hs•2
)
� ι•∗ LieA,τc∞

of line bundles on B•
s• .

Proof By Lemma 3.4.12(2,3) and Definition 5.4.2, we have

rankOS (ker γ∗,τ∞)+ rankOS (ker γ∗,τc∞) = 2� N
2 � + 1,

rankOS (ker γ∗,τ∞)− rankOS (ker γ∗,τc∞) = 1,

which imply

rankOS (ker γ∗,τ∞) =  N+1
2 ", rankOS (ker γ∗,τc∞) =  N−1

2 ". (5.6)

Note that under Definitions 5.4.2(a,b,d), 5.4.2(c) is equivalent to that
(ker γ∗,τ∞)⊥ is a subbundle of HdR

1 (A/S)τc∞ of rank  N
2 ".

For an object (A0, λ0, η
p
0 ; A, λ, ηp; A•, λ•, ηp•; γ ) ∈ B•

p(V
◦,K p◦)(S),

Definition 5.4.2(a) implies that there is a (unique) OF -linear quasi-p-isogeny
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γ̆ : A• → A such that γ̆ ◦ γ = � · idA, hence γ ◦ γ̆ = � · idA• . Moreover,
we have the following properties from Definition 5.4.2:

(a′) ker γ̆ [p∞] is contained in A•[p];
(b′) (im γ̆∗,τ∞)⊥ is contained in ωA∨,τc∞ ;
(c′) im γ̆∗,τ∞ contains HdR

1 (A/S)⊥τc∞ ;
(d′) we have� · λ• = γ̆ ∨ ◦ λ ◦ γ̆ ; and
(e′) theK p-orbit ofmaps v �→ �−1γ̆∗◦η•p(v) for v ∈ V◦⊗QA

∞,p coincides
with ηp.

First, we show (1). It is clear that B•
s• is a scheme of finite type over κ .

Consider a closed immersion S ↪→ Ŝ in Sch′
/κ defined by an ideal sheaf I

satisfying I2 = 0. Take a point x = (A0, λ0, η
p
0 ; A, λ, ηp; A•, λ•, ηp•; γ ) ∈

B•
s•(S). To compute lifting of x to Ŝ, we use the Serre–Tate and Grothendieck–

Messing theories. Note that lifting γ is equivalent to lifting both γ and γ̆ ,
satisfying (b–e) in Definition 5.4.2 and (b’–e’) above, respectively. Thus, by
Proposition 3.4.8, to lift x to an Ŝ-point is equivalent to lifting

• ωA∨/S,τ∞ to a subbundle ω̂A∨,τ∞ of Hcris
1 (A/Ŝ)τ∞ (of rank 1),

• ωA∨/S,τc∞ to a subbundle ω̂A∨,τc∞ of Hcris
1 (A/Ŝ)τc∞ (of rank N − 1),

subject to the following requirements

(a′′) ω̂A∨,τ∞ and ω̂A∨,τc∞ are orthogonal under 〈 , 〉crisλ,τ∞ (3.3);

(b′′) (γ̆∗,τ∞Hcris
1 (A•/Ŝ)τ∞)

⊥ is contained in ω̂A∨,τc∞ .

As γ̆∗,τ∞Hcris
1 (A•/Ŝ)τ∞ = ker γ∗,τ∞ ⊆ Hcris

1 (A/Ŝ)τ∞ , (b”) is equivalent to

(c′′) (ker γ∗,τ∞)⊥ is contained in ω̂A∨,τc∞ .

To summarize, lifting x to an Ŝ-point is equivalent to lifting ωA∨/S,τc∞ to a

subbundle ω̂A∨,τc∞ of Hcris
1 (A/Ŝ)τc∞ containing (ker γ∗,τ∞)⊥, and then lifting

ωA∨/S,τ∞ to a subbundle ω̂A∨,τ∞ of ω̂⊥
A∨,τc∞

. Thus, (1) follows.
Next, we show (2). By Theorem 5.2.5(4), the map TB•

s•/κ →
ι•∗TM•

p(V◦,K p◦)/κ |B•
s• is induced by the canonical map

Hom
(
ωA∨,τc∞/(ker γ∗,τ∞)

⊥,LieA∨,τc∞

)

→ Hom
(
ωA∨,τc∞/H

dR
1 (A)⊥τ∞,LieA∨,τc∞

)
.

It is clearly injective, whose cokernel is canonically isomorphic to

Hom
(
(ker γ∗,τ∞)⊥/HdR

1 (A)⊥τ∞,LieA∨,τc∞

)

� Hom
(
(im γ∗,τ∞)∨,LieA∨,τc∞

) � (im γ∗,τ∞)⊗OB•s•
LieA∨,τc∞ .
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We obtain (2).
Next, we show (3). By Definition 5.4.2(d) and the definition of γ̆ , we have

λ ◦ γ̆ = γ ∨ ◦ λ•, which implies

(ker γ∗,τ∞)⊥ = γ−1
∗,τc∞(H

dR
1 (A

•/S)⊥τ∞). (5.7)

It remains to show that HdR
1 (A

•/S)⊥τ∞ is contained in im γ∗,τc∞ = ker γ̆∗,τc∞ .
By Definition 5.4.2(c), we know that γ̆−1∗,τ∞(H

dR
1 (A/S)⊥τc∞) is a subbundle

of HdR
1 (A

•/S)τ∞ of rank  N
2 ". Similarly to (5.7), we have (ker γ̆∗,τc∞)

⊥ =
γ̆−1∗,τ∞(H

dR
1 (A/S)⊥τc∞), which is also a subbundle of H

dR
1 (A

•/S)τ∞ of rank  N
2 ".

Thus, ker γ̆∗,τc∞ contains HdR
1 (A

•/S)⊥τ∞ .
Next, we show (4). We first show that ζ •s• has the correct image, namely, we

check

• rankOS H1 =  N
2 " and rankOS H2 =  N

2 " − 1: By 5.6, we obtain
rankOS H1 =  N

2 ". Since ker γ∗,τc∞ ⊆ (ker γ∗,τ∞)⊥ ⊆ ωA∨/S,τc∞ , we
have H2 = γ∗,τc∞ωA∨/S,τc∞ � ωA∨/S,τc∞/ ker γ∗,τc∞ . Thus, we obtain
rankOS H2 =  N

2 " − 1.
• HdR

1 (A
•/S)⊥τ∞ ⊆ H2:ByDefinition5.4.2(b), H2 containsγ∗,τc∞(ker γ∗,τ∞)

⊥
in which the latter coincides with HdR

1 (A
•/S)⊥τ∞ by (3).

• H2 ⊆ H1: As λ ◦ γ̆ = γ ∨ ◦ λ•, we have

〈(γ̆∗,τ∞)−1ωA∨/S,τ∞, γ∗,τc∞ωA∨/S,τc∞〉λ•,τ∞
= 〈γ̆∗,τ∞(γ̆∗,τ∞)−1ωA∨/S,τ∞, ωA∨/S,τc∞〉λ,τ∞ = 0.

Thus, we have H2 ⊆ H1.
• H2 ⊆ H#

1 : Note that we have

im γ∗,τc∞ = ker γ̆∗,τc∞
= (γ̆∗,τc∞)−1(Fω(p)A∨/S,τ∞) ⊆ F((γ̆∗,τ∞)−1ωA∨/S,τ∞) = F((H (p)

1 )⊥).

Thus, (F((H (p)
1 )⊥))⊥ ⊆ (im γ∗,τc∞)

⊥, which in turn implies H (p)
1 ⊆

V((im γ∗,τc∞)
⊥), which further implies V−1H (p)

1 ⊆ (im γ∗,τc∞)
⊥, which

implies im γ∗,τc∞ ⊆ H#
1 . By comparing ranks via (5.6), we obtain

im γ∗,τc∞ = H#
1 . (5.8)

In particular, H#
1 contains H2 as im γ∗,τc∞ does.
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• H1 ⊆ H#
2 : Note that H (p)

2 = γ∗,τ∞(VHdR
1 (A/S)τc∞) = V(im γ∗,τ∞) =

V(ker γ̆∗,τ∞) ⊆ V(H⊥
1 ). Thus, V

−1H (p)
2 ⊆ H⊥

1 , which implies H1 ⊆
(V−1H (p)

2 )⊥ = H#
2 .

• H#
1 ⊆ H#

2 : This follows from H2 ⊆ H1.

Since the target of ζ •s• is smooth over κ by Proposition A.2.2, to see that ζ •s•
is an isomorphism, it suffices to check that for every algebraically closed field
κ ′ containing κ , the following statements hold:

(4–1) ζ •s• induces a bijection on κ ′-points; and
(4–2) ζ •s• induces an isomorphism on the tangent spaces at every κ-point.

To ease notation, we may assume κ ′ = κ .
For (4–1), we construct an inverse to the map ζ •s•(κ). Take a point y ∈

DL•
s•(κ) represented by κ-linear subspaces

HdR
1 (A

•)⊥τ∞ ⊆ H2 ⊆ H1 ⊆ Vs• = HdR
1 (A

•)τc∞ .

We regard F and V as those sesquilinear maps in Notation 3.4.10. For every
τ ∈ �∞, we define a W (κ)-submodule DA,τ ⊆ D(A•)τ as follows.
• If τ /∈ {τ∞, τc∞}, then DA,τ = D(A•)τ .
• We set DA,τ∞ := V−1 H̃2, where H̃2 is the preimage of H2 under the
reduction map D(A•)τc∞ → D(A•)τc∞/pD(A•)τc∞ = HdR

1 (A
•)τc∞ .

• We setDA,τc∞ := FH̃c
1 , where H̃c

1 is the preimage of H⊥
1 under the reduc-

tion map D(A•)τ∞ → D(A•)τ∞/pD(A•)τ∞ = HdR
1 (A

•)τ∞ .

Finally, put DA :=⊕τ∈�∞ DA,τ as a W (κ)-submodule of D(A•). We show
that it is stable under F and V. It suffices to show that both F and V stabilize
DA,τ∞ ⊕DA,τc∞ , which breaks into checking that

• FDA,τ∞ ⊆ DA,τc∞ , that is, FV−1 H̃2 ⊆ FH̃c
1 . It suffices to show that V−1H2

(as a subspace of HdR
1 (A

•)τ∞) is contained in H⊥
1 , which follow from the

relation H1 ⊆ H#
2 .

• FDA,τc∞ ⊆ DA,τ∞ , that is, FFH̃c
1 ⊆ V−1 H̃2. It suffices to show pFH̃c

1 ⊆
H̃2, which obviously holds.

• VDA,τ∞ ⊆ DA,τc∞ , that is, VV−1 H̃2 ⊆ FH̃c
1 . it suffices to show H2 ⊆

FH⊥
1 , which follows from the identity FH⊥

1 = (V−1H1)
⊥ and the relation

H2 ⊆ H#
1 .

• VDA,τc∞ ⊆ DA,τ∞ , that is, VFH̃c
1 ⊆ V−1 H̃2. It is obvious as V−1 H̃2 con-

tains pD(A•)τ∞ .

Thus, (DA,F,V) is a Dieudonné module over W (κ). By the Dieudonné the-
ory, there is an OF -abelian scheme A over κ with D(A)τ = DA,τ for every
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τ ∈ �∞, and an OF -linear isogeny γ : A → A• inducing the inclusion of
Dieudonné modules D(A) = DA ⊆ D(A•). Moreover, since pD(A•) ⊆
D(A), we have ker γ [p∞] ⊆ A[p]. Now we check that (ker γ∗,τ∞)⊥ is con-
tained in ωA∨/S,τc∞ , which is equivalent to that pD(A•)∨τ∞ ∩ D(A)τc∞ ⊆
VD(A)τ∞ . However, as H2 contains HdR

1 (A
•)⊥τ∞ , we have pD(A•)∨τ∞ ⊆ H̃2 =

VD(A)τ∞ .
Let λ : A → A∨ be the unique quasi-polarization such that�λ = γ ∨ ◦λ• ◦

γ . We claim that λ[p∞] is a polarization whose kernel is contained in A[p] of
rank p2. Since H2 ⊆ H1, we have 〈H̃c

1 , H̃2〉λ•,τ∞ ⊆ pW (κ), which implies
〈D(A)τ∞,D(A)τc∞〉λ•,τ∞ ⊆ pW (κ). It is enough to show that the inclusion
D(A)τc∞ → D(A)∨τ∞ induced from 〈 , 〉λ•,τ∞ has cokernel of length N+1.This
follows from the facts that the cokernel of D(A•)τc∞ ↪→ D(A•)∨τ∞ has length
N − 2� N

2 �, and the cokernel ofD(A)τ∞ ⊕D(A)τc∞ ↪→ D(A•)τ∞ ⊕D(A•)τc∞
has length 2� N

2 � + 1.
It is an easy consequence of Lemma 3.4.12(2) that the OF -abelian scheme

A has signature type N − τ∞ + τc∞. Finally, let ηp be the unique K p-
level structure such that Definition 4.3.3(d) is satisfied. Putting together, we
obtain a point x = (A0, λ0, η

p
0 ; A, λ, ηp; A•, λ•, ηp•; γ ) ∈ B•

s•(κ) such that
ζ •s•(x) = y. It is easy to see that such assignment gives rise to an inverse of
ζ •s•(κ), hence (4–1) follows immediately.

For (4–2), let Tx and Ty be the tangent spaces at x and y as in (4–1),
respectively. By Proposition A.2.2 and the construction, the induced map
(ζ •s•)∗ : Tx → Ty fits into a commutative diagram

Homκ
(
ωA∨,τ∞ , ω

⊥
A∨,τc∞

/ωA∨,τ∞
)

Tx

(ζ •s• )∗

Homκ
(
ωA∨,τc∞/(ker γ∗,τ∞ )

⊥,LieA∨,τc∞
)

Homκ
(
H1/H2, H#

2 /H1
)

Ty Homκ (H2/V
#

s• , H#
1 /H2)

inMod(κ). The right vertical arrow is induced by maps

ωA∨,τc∞/(ker γ∗,τ∞)
⊥ γ∗,τc∞−−−→ H2/V

#
s• ,

LieA∨,τc∞ � HdR
1 (A)τc∞/ωA∨,τc∞

γ∗,τc∞−−−→ H#
1 /H2

which are both isomorphisms by (5.7) and (5.8), respectively. The left vertical
arrow is the composition

Homκ
(
ωA∨,τ∞, ω

⊥
A∨,τc∞/ωA∨,τ∞

)

→ Homκ
(

H⊥
1 /V

−1H2, H⊥
2 /H⊥

1

) ∼−→ Homκ
(

H1/H2, H#
2 /H1

)
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in which the first arrow is induced by maps

H⊥
1 /V

−1H2
γ̆∗,τ∞−−−→ ωA∨,τ∞, H⊥

2 /H⊥
1

γ̆∗,τ∞−−−→ ω⊥
A∨,τc∞/ωA∨,τ∞

which are both isomorphisms as γ̆∗,τ∞(H⊥
1 ) = ωA∨,τ∞ , γ̆∗,τ∞(V−1H2) = 0,

and γ̆∗,τ∞(H⊥
2 ) = ω⊥

A∨,τc∞
. Thus, (ζ •s•)∗ : Tx → Ty is an isomorphism by the

Five Lemma, hence (4–2) and (4) follow.
Finally, (5) is a consequence of (5.8). ��

Remark 5.4.5 We have the following remarks concerning Theorem 5.4.4.

(1) When K p◦ is sufficiently small, the restriction of ι•κ to B•
s• is a closed

immersion for every point s• ∈ S•
p(V

◦,K p◦)(κ) and every perfect field κ
containing F

 
p .

(2) In fact, one can show that the union of M†
p(V

◦,K p◦) and the image
of ι• : B•

p(V
◦,K p◦) → M•

p(V
◦,K p◦) is exactly the basic locus of

M•
p(V

◦,K p◦). In particular, as long as N � 5, the basic locus of
M•

p(V
◦,K p◦) is not equidimensional.

Construction 5.4.6 To construct a uniformization map for S•
p(V

◦,–), we
need to choose an OFp-lattice �

•
p in V

◦ ⊗F Fp satisfying

• �◦
p ⊆ �•

p ⊆ p−1�◦
p, and• p�•

p ⊆ (�•
p)

∨ such that (�•
p)

∨/p�•
p has length 0 (resp. 1) if N is even

(resp. odd).

Let K•
p be the stabilizer of �•

p; and put K•
p := K•

p ×∏q|p,q �=pK
◦
q . Similar to

Construction 4.4.2, we may construct a uniformization map

υ• : S•
p(V

◦,–)(Fp)
∼−→ Sh(V◦,–K•

p)× Tp(Fp) (5.9)

in Fun(K(V◦)p × T,Set)/Tp(Fp)
which is an isomorphism, under which the

induced action of Gal(Fp/F
 
p ) on the target is trivial on Sh(V

◦,–K•
p).

Moreover, similar to Construction 4.4.5 and Proposition 4.4.6, for every
g ∈ K•

p\U(V◦)(F+
p )/K

•
p , we may construct the Hecke correspondence

Hkg : S•
p(V

◦,–)g → S•
p(V

◦,–)× S•
p(V

◦,–)

as a morphism in Fun(K(V◦)p × T,Sch/F p )/Tp that is finite étale and com-
patible with the uniformization map.
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5.5 Basic correspondence for the link stratum

In this subsection, we construct and study the basic correspondence for the
link stratum M†

p(V
◦,–). We also discuss its relation with the two previously

constructed basic correspondences. We assume N � 2.

Definition 5.5.1 We define a functor

S†p(V
◦,–) : K(V◦)p × T → PSch′

/F p

K p◦ �→ S†p(V
◦,K p◦)

such that for every S ∈ Sch′
/F p

, S†p(V
◦,K p◦)(S) is the set of equivalence

classes of decuples (A0, λ0, η
p
0 ; A◦, λ◦, ηp◦; A•, λ•, ηp•;ψ), where

• (A0, λ0, η
p
0 ; A◦, λ◦, ηp◦) is an element in S◦

p(V
◦,K p◦)(S);

• (A0, λ0, η
p
0 ; A•, λ•, ηp•) is an element in S•

p(V
◦,K p◦)(S); and

• ψ : A◦ → A• is an OF -linear quasi-p-isogeny (Definition 3.4.5) such that
(a) kerψ[p∞] is contained in A◦[p];
(b) we have� · λ◦ = ψ∨ ◦ λ• ◦ ψ ; and
(c) the K p◦-orbit of maps v �→ ψ∗ ◦ηp◦(v) for v ∈ V◦⊗Q A

∞,p coincides
with ηp•.

The equivalence relation and the action of morphisms in K(V◦)p × T are
defined similarly as in Definition 4.3.3.

We clearly have the forgetful morphism

S†p(V
◦,–)→ Tp

in Fun(K(V◦)p × T,PSch′
/F p
), which is represented by finite and étale

schemes.
By definition, we have the two forgetful morphisms

s†◦ : S†p(V◦,–)→ S◦
p(V

◦,–), s†• : S†p(V◦,–)→ S•
p(V

◦,–)

in Fun(K(V◦)p × T,Sch/F p )/Tp .
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Definition 5.5.2 WedefineB†
p(V

◦,–) to be the limit of the following diagram

S◦
p(V

◦,–) B◦
p(V

◦,–) ι◦π◦
M◦

p(V
◦,–)

S†p(V
◦,–)

s†◦

s†•

M†
p(V

◦,–)

m†◦

m†•

S•
p(V

◦,–) B•
p(V

◦,–) ι•π•
M•

p(V
◦,–)

in the category Fun(K(V◦)p × T,Sch/F p )/Tp .

From the definition above, we have the following commutative diagram

S◦
p(V

◦,–) B◦
p(V

◦,–) ι◦
∼

π◦
M◦

p(V
◦,–)

S†p(V
◦,–)

s†◦

s†•

B†
p(V

◦,–) ι†π†

b†◦

b†•

M†
p(V

◦,–)

m†◦

m†•

S•
p(V

◦,–) B•
p(V

◦,–) ι•π•
M•

p(V
◦,–)

(5.10)

in Fun(K(V◦)p ×T,Sch/F p )/Tp , together with the four newmorphisms from

B†
p(V

◦,–) as indicated. It will be clear in Sect. 5.10 why we draw the diagram
oblique.

Theorem 5.5.3 In the diagram (5.10), we have

(1) The square is a Cartesian diagram.

B†
p(V

◦,–) ι†

b†•

M†
p(V

◦,–)

m†•

B•
p(V

◦,–) ι• M•
p(V

◦,–)

(2) Take a point

s† = (A0, λ0, η
p
0 ; A◦, λ◦, ηp◦; A•, λ•, ηp•;ψ) ∈ S†p(V

◦,K p◦)(κ)

where κ is a perfect field containing F
 
p . Put B†

s†
:= π†−1(s†) and Vs† :=

(imψ∗,τc∞)/H
dR
1 (A

•/κ)⊥τ∞ which has dimension � N
2 �. Then the assignment
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sending

((A0, λ0, η
p
0 ; A, λ, ηp; A◦, λ◦, ηp◦;β),

(A0, λ0, η
p
0 ; A, λ, ηp; A•, λ•, ηp•; γ )) ∈ B†

s†
(S)

(with γ = ψ ◦ β) to (γ∗,τc∞ωA∨/S,τc∞)/H
dR
1 (A

•/S)⊥τ∞ induces an isomor-
phism

ζ
†
s†
: B†

s†
∼−→ P(Vs†).

Proof For (1), unravelling all the definitions, it suffices to show that for every
object

((A0, λ0, η
p
0 ; A, λ, ηp; A◦, λ◦, ηp◦;β), (A0, λ0, η

p
0 ; A, λ, ηp; A•, λ•, ηp•; γ ))

of M†
p(V

◦,K p◦)(S) ×M•
p(V◦,K p◦)(S) B•

p(V
◦,K p◦)(S) = B◦

p(V
◦,K p◦)(S)

×Mp(V◦,K p◦)(S) B•
p(V

◦,K p◦)(S), the quasi-isogeny ψ := γ ◦ β−1 : A◦ → A•
is a quasi-p-isogeny. However, since β∗,τc∞ : HdR

1 (A)τc∞ → HdR
1 (A

◦)τc∞ is an
isomorphism and ker β∗,τ∞ = ωA∨,τ∞ , it suffices to show that ωA∨,τ∞ is con-
tained in ker γ , which is clear as ωA•∨,τ∞ = 0.

For (2), we first show that for a point

x• = (A0, λ0, η
p
0 ; A, λ, ηp; A•, λ•, ηp•; γ ) ∈ B•

p(V
◦,K p◦)(S),

ι•(x•) belongs to M†
p(V

◦,K p◦)(S) if and only if H1 = H#
1 , where we recall

from Theorem 5.4.4 that H1 := ((γ̆∗,τ∞)−1ωA∨,τ∞)
⊥. In fact, by Defini-

tion 5.2.3, ι•(x•) ∈ M†
p(V

◦,K p◦)(S) if and only if ωA∨,τ∞ = H1
dR(A)

⊥
τc∞ . In

the proof of Theorem 5.4.4, we see im γ∗,τc∞ = H#
1 (5.8). As λ ◦ γ̆ = γ ∨ ◦λ•,

we have (im γ∗,τc∞)
⊥ = (γ̆∗,τ∞)−1H1

dR(A)
⊥
τc∞ . Thus, if ωA∨,τ∞ = H1

dR(A)
⊥
τc∞ ,

then H1 = ((im γ∗,τc∞)
⊥)⊥ which equals im γ∗,τc∞ = H#

1 , as im γ∗,τc∞ con-
tains HdR

1 (A
•)⊥τ∞ . On the other hand, if H1 = H#

1 , then (γ̆∗,τ∞)−1ωA∨,τ∞ =
(im γ∗,τc∞)

⊥ = (γ̆∗,τ∞)−1H1
dR(A)

⊥
τc∞ , which implies easily that ωA∨,τ∞ =

H1
dR(A)

⊥
τc∞ .

Second, we show H1 = imψ∗,τc∞ if x• ∈ B†
s†
(S). Since γ = ψ ◦β, we have

im γ∗,τc∞ ⊆ imψ∗,τc∞ . As im γ∗,τc∞ = H#
1 = H1, we have H1 ⊆ imψ∗,τc∞ . On

the other hand, it follows easily from Lemma 3.4.12(2,3) that imψ∗,τc∞ has
rank  N

2 ". Thus, we must have H1 = imψ∗,τc∞ .
The above two claims together with Theorem 5.4.4(4) imply (2). ��

Remark 5.5.4 It follows from the proof of Theorem 5.5.3 that for every s† ∈
S†p(V

◦,K p◦)(κ), if we put s◦ := s†◦(s†) and s• := s†•(s†), then
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(1) the morphism ζ ◦s◦ ◦ b†◦ ◦ (ζ †
s†
)−1 identifies P(Vs†) as a closed subscheme

of P(Vs◦) induced by the obvious κ-linear (surjective) map Vs◦ → Vs† ;
and

(2) themorphism ζ •s• ◦b†•◦(ζ †s†)−1 identifiesP(Vs†) as a closed subscheme (of

codimension one) of DL•(Vs•, { , }s•) defined by the condition H1 = H#
1 .

Construction 5.5.5 Put K†
p := K◦

p ∩ K•
p. Similar to Construction 4.4.2, we

construct a uniformization map

υ† : S†p(V◦,–)(Fp)
∼−→ Sh(V◦,–K†

p)× Tp(Fp) (5.11)

in Fun(K(V◦)p × T,Set)/Tp(Fp)
which is an isomorphism, under which the

induced action of Gal(Fp/F
 
p ) on the target is trivial on Sh(V

◦,–K†
p).

5.6 Cohomology of the link stratum

In this subsection, we study the cohomology of the link stratum. We assume
N � 2.
We first construct certain Hecke correspondences for B◦

p(V
◦,–) extending

Construction 5.3.6. Unlike the functor S◦
p(V

◦,–), the natural action of K◦
p =

U(�◦
p)(OF+

p
) on the functor B◦

p(V
◦,–) is nontrivial. However, as we will see,

such action factors through the quotient U(�◦
p)(OF+

p
)→ U(�◦

p)(Fp). Let K◦
p1

be the kernel of the reduction map K◦
p = U(�◦

p)(OF+
p
)→ U(�◦

p)(Fp).

Construction 5.6.1 We first define a functor

S◦
p1(V

◦,–) : K(V◦)p × T → PSch′
/F p

K p◦ �→ S◦
p(V

◦,K p◦)

such that for every S ∈ Sch′
/F p

, S◦
p1(V

◦,K p◦)(S) is the set of equivalence

classes of septuples (A0, λ0, η
p
0 ; A◦, λ◦, ηp◦; η◦p), where

• (A0, λ0, η
p
0 ; A◦, λ◦, ηp◦) is an element in S◦

p(V
◦,K p◦)(S);

• η◦p is, for a chosen geometric point s on every connected component of S,
an isomorphism

η◦p : �◦
p ⊗ Fp → HomOF (A0s[p], A◦

s [p])
of hermitian spaces over OFp ⊗ Fp, where HomOF (A0s[p], A◦

s [p]) is
equipped with the hermitian form constructed similarly as in Construc-
tion 3.4.4 with respect to (λ0, λ◦).
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The equivalence relation and the actionofmorphisms inK(V◦)p×T are defined
similarly as in Definition 4.2.2. In fact, we have a further action of U(�◦

p)(Fp)

on S◦
p1(V

◦,–). Moreover, similar to Construction 4.4.5 and Proposition 4.4.6,

for every g ∈ K◦
p1\U(V◦)(F+

p )/K
◦
p1, we may construct the Hecke correspon-

dence

Hkg : S◦
p1(V

◦,–)g → S◦
p1(V

◦,–)× S◦
p1(V

◦,–) (5.12)

as a morphism in Fun(K(V◦)p × T,Sch/F p )/Tp that is finite étale.
On the other hand, Theorem 5.3.4 implies that we have a canonical isomor-

phism

B◦
p(V

◦,–) � S◦
p1(V

◦,–)
U(�◦

p)(Fp)× P(�◦
p ⊗ Fp)

in the categoryFun(K(V◦)p×T,Sch/F p )/Tp . Thus, for every g ∈ K◦
p1\U(V◦)

(F+
p )/K

◦
p1, we obtain from (5.12) the Hecke correspondence

Hkg : B◦
p(V

◦,–)g → B◦
p(V

◦,–)× B◦
p(V

◦,–)

as a morphism in Fun(K(V◦)p × T,Sch/F p )/Tp that is finite étale.

Now we study cohomology.

Lemma 5.6.2 Consider a p-coprime coefficient ring L.

(1) If p + 1 is invertible in L, then the restriction map

(m†◦)∗ : Hi
T(M

◦
p(V

◦,–), L)→ Hi
T(M

†
p(V

◦,–), L)

is an isomorphism for every integer i /∈ {N − 2, 2N − 2}. In particular,
Hi
T(M

◦
p(V

◦,–), L) and Hi
T(M

†
p(V

◦,–), L) vanish if i is odd and different
from N − 2.

(2) For every i ∈ Z, both Hi
T(M

◦
p(V

◦,–), L) and Hi
T(M

†
p(V

◦,–), L) are free
L-modules.

(3) When N is even, the action ofGal(Fp/F
 
p ) onHN−2

T (M†
p(V

◦,–), L( N−2
2 ))

is trivial.

Proof By Theorem 5.3.4, for every K p◦ ∈ K(V◦)p and every s◦ ∈
S◦
p(V

◦,K p◦)(Fp), the restriction of (m†◦)∗ to the fibers over s◦ is a morphism
appearing in Lemma A.1.4.

Part (1) then follows from Lemma A.1.4(2). Part (2) follows from
Lemma A.1.4(3). Part (3) follows from Lemma A.1.4(4) and Construc-
tion 5.3.6. ��
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Definition 5.6.3 Let ξ ∈ H2
T(B

◦
p(V

◦,–), L(1)) be the first Chern class of

the tautological quotient line bundle on B◦
p(V

◦,–) (that is, in the situation
of Theorem 5.3.4, the restriction of ξ to B◦

s◦ is isomorphic to ζ ◦∗s◦ OP(Vs◦ )(1)
for every K p◦ ∈ K(V◦)p and every s◦ ∈ S◦

p(V
◦,K p◦)(Fp)). We define the

primitive cohomology Hprim(M†
p(V

◦,–), L(i)) to be the kernel of the map

∪(m†◦∗ι◦! ξ) : HN−2
T (M†

p(V
◦,–), L(i))→ HN

T (M
†
p(V

◦,–), L(i + 1)),

which is canonically a direct summand of HN−2
T (M†

p(V
◦,–), L(i)).

Proposition 5.6.4 Take an object K p◦ ∈ K(V◦)p, a rational prime � �= p,
and an isomorphism ι� : C � Q�. Then we have an isomorphism

ι−1
� Hprim(M†

p(V
◦,K p◦),Q�)

� MapK◦
p

⎛
⎝U(V◦)(F+)\U(V◦)(A∞

F+)/K p◦ ∏
q|p,q �=p

K◦
q, *N

⎞
⎠ (5.13)

of C[K p◦K◦
p1\U(V◦)(A∞

F+)/K p◦K◦
p1]-modules, where *N is the Tate–

Thompson representation ofK◦
p introduced in Sect.C.2. Moreover, let π∞,p be

an irreducible admissible representation ofU(V◦)(A∞,p
F+ ) such that (π∞,p)K p◦

is a constituent of ι−1
� Hprim(M†

p(V
◦,K p◦),Q�). Then one can complete π∞,p

to an automorphic representation π = π∞,p ⊗π∞⊗∏q|p πq of U(V◦)(AF+)
such that π∞ is trivial; πq is unramified for q �= p; and

(1) when N is even, πp is a constituent of an unramified principal series;
(2) when N is odd, BC(πp) is a constituent of an unramified principal series

of GLN (Fp) whose Satake parameter contains {−p,−p−1}.
Proof Put K◦

p1 := K◦
p1×
∏

q|p,q �=pK
◦
q . ByConstruction 5.6.1, the cohomology

HN−2
T (M†

p(V
◦,K p◦),Q�) is an Q�[K p◦K◦

p1\U(V◦)(A∞
F+)/K p◦K◦

p1]-module

for which Hprim(M†
p(V

◦,K p◦),Q�) is a submodule.
In the uniformization map (5.4), we let s0 ∈ S◦

p(V
◦,K p◦)(Fp) be the point

corresponding to the unit element on the right-hand side. Put

Hprim
s0 (M†

p(V
◦,K p◦),Q�)

:= Hprim(M†
p(V

◦,K p◦),Q�)
⋂

HN−2(M†
p(V

◦,K p◦) ∩ π◦−1(s0),Q�).

Then Hprim
s0 (M†

p(V
◦,K p◦),Q�) is a representation of U(�◦

p)(Fp) = K◦
p/K

◦
p1,

which is (isomorphic to) ι�*N . Thus, we obtain (5.13).
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For the remaining part, note that the right-hand side of (5.13) is a
C[K p◦K◦

p1\U(V◦)(A∞
F+)/K p◦K◦

p1]-submodule of Map(U(V◦)(F+)\
U(V◦)(A∞

F+)/K p◦K◦
p1,C). In particular, we can complete π∞,p to an auto-

morphic representation π = π∞,p ⊗π∞⊗∏q|p πq of U(V◦)(AF+) such that
π∞ is trivial; πq is unramified for q �= p; and πp|K◦

p
contains *N .

In case (1), by Proposition C.2.1(2), we know that *N has nonzero Borel
fixed vectors. Thus, πp is a constituent of an unramified principal series.

In case (2), we first consider the case where N = 3. As πp|K◦
p
contains*3, it

has to be c-IndU3
K3
*3 by Proposition C.2.1(3) and [55, Theorem 6.11(2)]. Thus,

by [55, Proposition 6.6], πp|K◦
p
is irreducible supercuspidal, which is actu-

ally the unique supercuspidal unipotent representation of U(V◦)(F+
p ). In fact,

c-IndU3
K3
*3 is the representationπ s(1) appearing in [63, Proposition 13.1.3(d)],

after identifying Q� with C. By [63, Proposition 13.2.2(c)], BC(π s(1)) is the
tempered constituent of the unramified principal series of GL3(Fp) with the
Satake parameter {−p, 1,−p−1}. Now for general N = 2r + 1, as πp|K◦

p

contains*N , by Proposition C.2.1(4) and [55, Theorem 6.11(2)], πp is a con-
stituent the normalized parabolic induction ofπ s(1)�χ1�· · ·�χr−1 for some
unramified characters χ1, . . . , χr−1 of F×. Therefore, by the compatibility of
local base change and induction, BC(πp) is a constituent of an unramified
principal series of GLN (Fp) whose Satake parameter contains {−p,−p−1}.

The proposition is proved. ��

5.7 Intersection on the ground stratum

In this subsection, we describe a certain scheme-theoretical intersection on the
ground stratum, which will be used in the next subsection. We assume N � 2.

Take an object K p◦ ∈ K(V◦)p. Given two (possibly same) points s•1 , s•2 ∈
S•
p(V

◦,K p◦)(κ) for a perfect field κ containing F
 
p , we put

B•
s•1 ,s•2

:= B•
s•1

×M•
p(V◦,K p◦)κ B

•
s•2

as the (possibly empty) fiber product of ι•κ |B•
s•1
and ι•κ |B•

s•2
. To describe B•

s•1 ,s•2
,

we need to use some particular cases of the Hecke correspondences introduced
in Construction 5.4.6. We now give more details.

Definition 5.7.1 For every integer 0 � j � N , we define a functor

S•
p(V

◦,–) j : K(V◦)p × T → PSch′
/F p

K p◦ �→ S•
p(V

◦,K p◦) j
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such that for every S ∈ Sch′
/F p

, S•
p(V

◦,K p◦) j (S) is the set of equivalence

classes of decuples (A0, λ0, η
p
0 ; A•

1, λ
•
1, η

p•
1 ; A•

2, λ
•
2, η

p•
2 ;φ•), where

• (A0, λ0, η
p
0 ; A•

i , λ
•
i , η

p•
i ) for i = 1, 2 are two elements in S•

p(V
◦,K p◦)(S);

and
• φ• : A•

1 → A•
2 is an OF -linear quasi-isogeny such that

(a) pφ• ◦ λ•−1
1 is a quasi-p-isogeny; and ker(pφ•)[p] has rank p2(N− j);

(b) φ•[q∞] is an isomorphism for every prime q of F+ above p that is not
p;

(c) we have φ•∨ ◦ λ•2 ◦ φ• = λ•1; and
(d) the K p◦-orbit of maps v �→ φ•∗ ◦ηp•

1 (v) for v ∈ V◦ ⊗Q A
∞,p coincides

with ηp•
2 .

The equivalence relation and the action of morphisms in K(V◦)p × T are
defined similarly as in Definition 4.3.3. Finally, we denote

Hk j : S•
p(V

◦,–) j → S•
p(V

◦,–)× S•
p(V

◦,–)

the morphism in Fun(K(V◦)p × T,Sch/F p )/Tp induced by the assignment

(A0, λ0, η
p
0 ; A•

1, λ
•
1, η

p•
1 ; A•

2, λ
•
2, η

p•
2 ;φ•)

�→ ((A0, λ0, η
p
0 ; A•

1, λ
•
1, η

p•
1 ), (A0, λ0, η

p
0 ; A•

2, λ
•
2, η

p•
2 )).

Remark 5.7.2 When K p◦ is sufficiently small, the morphism

Hk j : S•
p(V

◦,K p◦) j → S•
p(V

◦,K p◦)× S•
p(V

◦,K p◦)

is a closed immersion for every j ; and the images of Hk j for all j are mutually
disjoint.

Now we take a point s• = (A0, λ0, η
p
0 ; A•

1, λ
•
1, η

p•
1 ; A•

2, λ
•
2, η

p•
2 ;φ•) ∈

S•
p(V

◦,K p◦) j (κ) where κ is a perfect field containing F
 
p . By Defini-

tion 5.7.1(c), we have (pφ• ◦ λ•−1
1 )∨ = pφ•−1 ◦ λ•−1

2 . Thus, pφ•−1 ◦ λ•−1
2 ,

hence pφ•−1 are quasi-p-isogenies as well. In particular, for every τ ∈ �∞,
we may consider

ker(pφ•)∗,τ := ker
(
(pφ•)∗,τ : HdR

1 (A
•
1/κ)τ → HdR

1 (A
•
2/κ)τ

)
,

im(pφ•−1)∗,τ := im
(
(pφ•−1)∗,τ : HdR

1 (A
•
2/κ)τ → HdR

1 (A
•
1/κ)τ

)
.

Lemma 5.7.3 We have

(1) im(pφ•−1)∗,τ ⊆ ker(pφ•)∗,τ for every τ ∈ �∞;
(2) dimκ ker(pφ•)∗,τ = N − j for τ ∈ {τ∞, τc∞};
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(3) im(pφ•−1)∗,τ ∩ HdR
1 (A

•
1/κ)

⊥
τc = 0 for τ ∈ {τ∞, τc∞};

(4) (im(pφ•−1)∗,τ )⊥ = ker(pφ•)∗,τc for τ ∈ {τ∞, τc∞}; and
(5) dimκ im(pφ•−1)∗,τ = j for τ ∈ {τ∞, τc∞}.
In particular, S•

p(V
◦,K p◦) j is empty if j > � N

2 �.

Proof For (1), it is obvious since (pφ•) ◦ (pφ•−1) = p2.
For (2), by Definition 5.7.1(a), we have dimκ ker(pφ•)∗,τ∞ +

dimκ ker(pφ•)∗,τc∞ = 2(N− j).Using the isomorphismsV : HdR
1 (A

•
1/κ)τ∞ →

HdR
1 (A

•
1/κ)τc∞ and V : HdR

1 (A
•
2/κ)τ∞ → HdR

1 (A
•
2/κ)τc∞ , we have

dimκ ker(pφ•)∗,τ∞ = dimκ ker(pφ•)∗,τc∞ , hence both are equal to N − j .
For (3), it suffices to consider τ = τ∞ due to the isomorphism V. Via

φ•, we regard D(A•
2) as a lattice in D(A•

1)Q. By Definition 5.7.1(a), we
have pD(A•

2)τ∞ ⊆ D(A•
1)τ∞ ⊆ D(A•

2)
∨
τc∞ (Notation 3.4.11). Suppose that

HdR
1 (A

•
1/κ)

⊥
τc∞ ∩ im(pφ•−1)∗,τ∞ �= 0. Then one can find x2 ∈ D(A•

2)τ∞
and x1 ∈ D(A•

1)
∨
τc∞\D(A•

1)τ∞ such that px1 = px2. It follows that
〈x2,Vx2〉λ•2,τ∞ = 〈x1,Vx1〉λ•1,τ∞ does not belong to W (κ), which is a contra-
diction. Here, we regard V as Verschiebung maps on for Dieudonné modules
of A•

1 and A•
2, which are isomorphisms.

For (4), as λ•1 ◦ φ•−1 = φ•∨ ◦ λ•2, we have for τ ∈ {τ∞, τc∞} that

(im(pφ•−1)∗,τ )⊥ = ((pφ•)∗,τc)−1HdR
1 (A

•
2/κ)

⊥
τ ,

which equals ker(pφ•)∗,τc by (3).
For (5), by (2,3,4), we have dimκ im(pφ•−1)∗,τ = j for τ ∈ {τ∞, τc∞}.
The last claim follows from (1,2,5). ��
By Lemma 5.7.3(1,4), for τ ∈ {τ∞, τc∞}, we may put

HdR
1 (φ

•)τ := ker(pφ•)∗,τ
im(pφ•−1)∗,τ

;

and we have the induced κ-bilinear pairing

〈 , 〉λ•1,τ∞ : HdR
1 (φ

•)τ∞ × HdR
1 (φ

•)τc∞ → κ.

On the other hand, the (κ, σ−1)-linearVerschiebungmapV : HdR
1 (A

•
1/κ)τ∞ →

HdR
1 (A

•
1/κ)τc∞ induces a (κ, σ−1)-linear isomorphism V : HdR

1 (φ
•)τ∞ →

HdR
1 (φ

•)τc∞ . We define a pairing

{ , }s• : HdR
1 (φ

•)τc∞ × HdR
1 (φ

•)τc∞ → κ
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by the formula {x, y}s• := 〈V−1x, y〉λ•1,τ∞ . To ease notation, we put

Vs• := HdR
1 (φ

•)τc∞ .

Lemma 5.7.4 Suppose that j � � N
2 � − 1. The pair (Vs•, { , }s•) is admissi-

ble of rank N − 2 j (Definition A.1.1) satisfying dimκ V #
s• = N − 2� N

2 �. In
particular, we have the geometrically irreducible smooth projective scheme
DL•(Vs•, { , }s•) ∈ Sch/κ of dimension � N

2 � − j as introduced in Defini-
tion A.2.1.

Proof By Lemma 5.7.3(2,5), we have dimκ Vs• = N − 2 j . By
Lemma 5.7.3(3,4), we have dimκ V #

s• = N − 2� N
2 �. The lemma follows by

Proposition A.2.2. ��
Now consider a connected scheme S ∈ Sch′

/κ and a point x ∈ B•
s•1 ,s•2

(S)
represented by a quattuordecuple

(A0, λ0, η
p
0 ; A, λ, ηp; A•

1, λ
•
1, η

p•
1 ; γ1; A•

2, λ
•
2, η

p•
2 ; γ2).

Lemma 5.7.5 There exists a unique integer j satisfying 0 � j � � N
2 � − 1

such that s• := (A0, λ0, η
p
0 ; A•

1, λ
•
1, η

p•
1 ; A•

2, λ
•
2, η

p•
2 ;φ•) is an element in

S•
p(V

◦,K p◦) j (S), where φ• := γ2 ◦ γ−1
1 . Moreover, we have

im(pφ•−1)∗,τc∞ ⊆ H2 ⊆ H1 ⊆ ker(pφ•)∗,τc∞, (5.14)

where H2 ⊆ H1 ⊆ HdR
1 (A

•
1/S)τc∞ are subbundles in Theorem 5.4.4 for the

image of x in B•
s•1
(S).

Proof First, by definition, we have ker(pφ•)[p] = ker(γ2 ◦ γ̆1)[p], which is
an OF -stable finite flat subgroup of A•

1[p]. Thus, as S is connected, there is
a unique integer j satisfying 0 � j � N such that ker(pφ•)[p] has rank
p2(N− j).
Second, we show that pφ• ◦ λ•−1

1 is a quasi-p-isogeny, that is, γ2 ◦
γ̆1 ◦ λ•−1

1 is a quasi-p-isogeny. By Theorem 5.4.4(4), γ1∗,τc∞ωA∨/S,τc∞
contains HdR

1 (A
•
1)

⊥
τ∞ , which implies γ̆1∗,τc∞HdR

1 (A
•
1)

⊥
τ∞ = 0 hence (γ2 ◦

γ̆1)∗,τc∞HdR
1 (A

•
1)

⊥
τ∞ = 0. On the other hand, as γ̆1∗,τ∞HdR

1 (A
•
1)

⊥
τc∞ ⊆

HdR
1 (A)

⊥
τc∞ , we have (γ2 ◦ γ̆1)∗,τ∞HdR

1 (A
•
1)

⊥
τc∞ = 0 by Definition 5.4.2(c). In

other words, ker λ•1[p∞] is contained in ker(γ2 ◦ γ̆1)[p∞]. Thus, pφ• ◦λ•−1
1 =

γ2 ◦ γ̆1 ◦ λ•−1
1 a quasi-p-isogeny.

Third, we show that j is at most � N
2 � − 1. (Note that Lemma 5.7.3

already implies that j � � N
2 �.) Theorem 5.4.4(4) implies rankOS H2 + 1 =
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rankOS H1 and HdR
1 (A

•
1/S)⊥τ∞ ⊆ H2. Lemma 5.7.3(3) implies rankOS H2 �

rankOS im(pφ
•−1)∗,τc∞ + 1. Thus, by Lemma 5.7.3(2,5) and (5.14), we have

(N − j)− j � 2, that is, j � � N
2 � − 1.

Definition 5.7.1(b,c,d) are obvious. Thus, it remains to check (5.14). On
one hand, we have

im(pφ•−1)∗,τc∞ = im(γ1 ◦ γ̆2)∗,τc∞ = γ1∗,τc∞ γ̆2∗,τc∞HdR
1 (A

•
2/S)τc∞

= γ1∗,τc∞ γ̆2∗,τc∞ωA•∨
2 /S,τc∞ ⊆ γ1∗,τc∞ωA•∨

1 /S,τc∞ = H2.

On the other hand, since γ̆1∗,τ∞ im(pφ•−1)∗,τ∞ = γ̆1∗,τ∞ im(γ1 ◦ γ̆2)∗,τ∞ =
0, we have the inclusion im(pφ•−1)∗,τ∞ ⊆ (γ̆1∗,τ∞)−1ωA∨,τ∞ . Thus,
H1 = ((γ̆1∗,τ∞)−1ωA∨,τ∞)

⊥ is contained in (im(pφ•−1)∗,τ∞)⊥, which is
ker(pφ•)∗,τc∞ by Lemma 5.7.3(4). The lemma is proved. ��
Definition 5.7.6 By Lemma 5.7.5, we have a morphism

B•
s•1 ,s•2

→
� N
2 �−1∐
j=0

Hk−1
j (s

•
1 , s

•
2).

For a point s• ∈ Hk−1
j (s

•
1 , s

•
2)(κ) for some 0 � j � � N

2 � − 1, we denote by
B•

s• the inverse image under the above morphism, which is an open and closed
subscheme of B•

s•1 ,s•2
.

Theorem 5.7.7 Let s•1 , s•2 ∈ S•
p(V

◦,K p◦)(κ) be two points for a perfect field
κ containing F

 
p . We have

B•
s•1 ,s•2

=
� N
2 �−1∐
j=0

∐
s•∈Hk−1

j (s
•
1 ,s

•
2 )(κ)

B•
s• .

Take s• = (A0, λ0, η
p
0 ; A•

1, λ
•
1, η

p•
1 ; A•

2, λ
•
2, η

p•
2 ;φ•) ∈ Hk−1

j (s
•
1 , s

•
2)(κ) for

some 0 � j � � N
2 � − 1.

(1) Denote by H̄i the image of Hi in HdR
1 (φ

•)τc∞ ⊗κ OS = (Vs•)S for i = 1, 2.
Then the assignment sending (A0, λ0, η

p
0 ; A, λ, ηp; A•

1, λ
•
1, η

p•
1 ; γ1; A•

2,

λ•2, η
p•
2 ; γ2) ∈ B•

s•(S) to (H̄1, H̄2) induces an isomorphism

ζ •s• : B•
s• → DL•(Vs•, { , }s•)

(Definition A.2.1) in Sch/κ .
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(2) The cokernel of the map

TB•
s•1
/κ |B•

s•
⊕

TB•
s•2
/κ |B•

s• → ι•∗TM•
p(V◦,K p◦)/κ |B•

s•

is canonically isomorphic to

ζ •∗s•
((
σ ∗H̄s•2

)⊗ODL•(Vs• ,{ , }s• )

(
H̄#

s•1/H̄s•2
))

where (H̄s•1, H̄s•2) is the universal object over DL•(Vs•, { , }s•).

Proof The decomposition of B•
s•1 ,s•2

follows directly from the definition and

the fact that Hk−1
j (s

•
1 , s

•
2) is isomorphic to a finite disjoint union of Spec κ .

First, we show (1). We first notice that Lemma 5.7.3 implies that (H̄1, H̄2)

is an element in DL•(Vs•, { , }s•)(S).
Since the target of ζ •s• is smooth over κ by Lemma 5.7.4, to see that ζ •s• is

an isomorphism, it suffices to check that for every algebraically closed field
κ ′ containing κ

(1–1) ζ •s• induces a bijection on κ ′-points; and
(1–2) ζ •s• induces an isomorphism on the tangent spaces at every κ ′-point.

To ease notation, we may assume κ ′ = κ .
For (1–1), we construct an inverse to the map ζ •s•(κ). Take a point y ∈

DL•(Vs•, { , }s•)(κ) represented by κ-linear subspaces V #
s• ⊆ H̄2 ⊆ H̄1 ⊆

Vs• , or equivalently, subspaces

im(pφ•−1)∗,τc∞ ⊕ HdR
1 (A

•
1/κ)

⊥
τ∞ ⊆ H2 ⊆ H1 ⊆ ker(pφ•)∗,τc∞ ⊆ HdR

1 (A
•
1/κ)τc∞ .

These give rise to a point y1 ∈ DL•(Vs•1 , { , }s•1 )(κ). By Theorem 5.4.4(4), we
obtain a unique point x1 = (A0, λ0, η

p
0 ; A, λ, ηp; A•

1, λ
•
1, η

p•
1 ; γ1) ∈ B•

s•1
(κ)

such that ζ •s•1 (x1) = y1. Put γ2 := φ• ◦ γ1 : A → A•
2. We claim that γ2 is a

quasi-p-isogeny. In fact, as λ◦ γ̆1 = γ ∨
1 ◦λ•1, 〈im γ1∗,τ∞, im γ1∗,τc∞〉λ•1,τ∞ = 0.

Thus, we have

im γ1∗,τc∞ ⊆ (im γ1∗,τ∞)⊥ = (V−1γ1∗,τc∞ωA∨,τc∞)
⊥ = H#

2 ⊆ ker(pφ•)∗,τc∞ .

By the isomorphisms V : HdR
1 (A

•
1/κ)τ∞ → HdR

1 (A
•
1/κ)τc∞ and

V : HdR
1 (A

•
2/κ)τ∞ → HdR

1 (A
•
2/κ)τc∞ , we obtain im γ1∗,τ∞ ⊆ ker(pφ•)∗,τ∞ . In

particular, im(pφ•◦γ1)∗,τ = 0 for every τ ∈ �∞; in otherwords, γ2 is a quasi-
p-isogeny. Now we show that x2 := (A0, λ0, η

p
0 ; A, λ, ηp; A•

2, λ
•
2, η

p•
2 ; γ2)

satisfies Definition 5.4.2(a–e).
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For (a), it suffices to show that pγ−1
2 is a quasi-p-isogeny, equivalently,

γ−1
1 ◦ (pφ•−1) is a quasi-p-isogeny. However, we have im(pφ•−1)∗,τ∞ =

V−1 im(pφ•−1)∗,τc∞ ⊆ V−1H2 = im γ1∗,τ∞ , hence im(pφ•−1)∗,τc∞ ⊆
im γ1∗,τc∞ using the action of V, which together imply that γ−1

1 ◦ (pφ•−1)

is a quasi-p-isogeny.
For (b), we identify D(A) as submodules of both D(A•

1) and D(A•
2) via

γ1 and γ2, respectively. Then we need to show that pD(A•
2)

∨
τ∞ ∩ D(A)τc∞ ⊆

VD(A)τ∞ . As pφ•−1 ◦ λ•−1
2 is a quasi-p-isogeny, we have pD(A•

2)
∨
τ∞ ⊆

D(A•
1)τc∞ . Moreover, the image of pD(A•

2)
∨
τ∞ in D(A•

1)τc∞/pD(A•
1)τc∞ =

HdR
1 (A

•
1)τc∞ is contained in im(pφ•−1)∗,τc∞ ⊕ HdR

1 (A
•
1/κ)

⊥
τ∞ , which is fur-

ther contained in H2. Thus, pD(A•
2)

∨
τ∞ ∩ D(A)τc∞ ⊆ VD(A)τ∞ as VD(A)τ∞

is the inverse image of H2 in D(A•
1)τc∞ .

For (c), suppose that HdR
1 (A)

⊥
τc∞ is not contained in ker γ2∗,τ∞ . Since γ2∗,τ∞

mapsHdR
1 (A)

⊥
τc∞ intoHdR

1 (A
•
2)

⊥
τc∞ ,wehaveγ2∗,τ∞HdR

1 (A)
⊥
τc∞∩HdR

1 (A
•
2)

⊥
τc∞ �= 0.

On the other hand, since HdR
1 (A)

⊥
τc∞ is contained in ker γ1∗,τ∞ = im γ̆1∗,τ∞ ,

we have γ2∗,τ∞HdR
1 (A)

⊥
τc∞ ⊆ im(γ2 ◦ γ̆1)∗,τ∞ = im(pφ•)∗,τ∞ . Thus, im(γ2 ◦

γ̆1)∗,τ∞ ∩HdR
1 (A

•
2)

⊥
τc∞ �= 0, which contradicts with 5.7.3(3) (with φ• replaced

by φ•−1).
For (d) and (e), they follow obviously.
To summarize, x2 belongs to B•

s•2
(κ); and x := (x1, x2) is an element in

B•
s•(κ) such that ζ •s•(x) = y. It is easy to see that such assignment gives rise

to an inverse of ζ •s•(κ), hence (1–1) follows immediately.
For (1–2), let Tx and Ty be the tangent spaces at x and y as in (1–1),

respectively. By Theorem 5.4.4(1), we have a canonical short exact sequence

0 → Homκ

(
ωA∨,τ∞,

ω⊥
A∨,τc∞
ωA∨,τ∞

)

→ Tx → Homκ

(
ωA∨,τc∞

(ker γ1∗,τ∞)⊥ + (ker γ2∗,τ∞)⊥
,LieA∨,τc∞

)
→ 0.

ThenbyPropositionA.2.2 and the construction, the inducedmap (ζ •s•)∗ : Tx →
Ty fits into a commutative diagram

Homκ

(
ωA∨,τ∞ ,

ω⊥
A∨,τc∞
ωA∨,τ∞

)
Tx

(ζ •s• )∗

Homκ

(
ωA∨,τc∞

(ker γ1∗,τ∞ )⊥ + (ker γ2∗,τ∞ )⊥
,LieA∨,τc∞

)

Homκ
(
H̄1/H̄2, H̄#

2 /H̄1
)

Ty Homκ (H̄2/V
#

s• , H̄#
1 /H̄2)
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inMod(κ). The left vertical arrow is the composition

Homκ
(
ωA∨,τ∞, ω

⊥
A∨,τc∞/ωA∨,τ∞

)

→ Homκ
(

H⊥
1 /V

−1H2, H⊥
2 /H⊥

1

)
∼−→ Homκ

(
H1/H2, H#

2 /H1

)
� Homκ

(
H̄1/H̄2, H̄#

2 /H̄1

)
,

which is an isomorphism. The right vertical arrow is induced by maps

ωA∨,τc∞
(ker γ1∗,τ∞)⊥ + (ker γ2∗,τ∞)⊥

γ1∗,τc∞−−−→ H2

im(pφ•−1)∗,τc∞ ⊕ HdR
1 (A

•
1/κ)

⊥
τ∞

� H̄2/V
#

s• , (5.15)

LieA∨,τc∞ � HdR
1 (A)τc∞/ωA∨,τc∞

γ1∗,τc∞−−−→ H#
1 /H2 � H̄#

1 /H̄2. (5.16)

Note that in (5.15), we have used Lemma 5.7.3(3) to write the direct sum.
We show that (5.15) is well-defined and is an isomorphism. It is clear that

ker γ1∗,τc∞ is contained in (ker γ1∗,τ∞)⊥. Thus, it suffices to show that the
image of (ker γ1∗,τ∞)⊥ + (ker γ2∗,τ∞)⊥ under γ1∗,τc∞ is im(pφ•−1)∗,τc∞ ⊕
HdR
1 (A

•
1/κ)

⊥
τ∞ . By Theorem 5.4.4(3), we have γ1∗,τc∞(ker γ1∗,τ∞)

⊥ =
HdR
1 (A

•
1/κ)

⊥
τ∞ . It is easy to see that γ1∗,τc∞(ker γ2∗,τ∞)

⊥ is contained in
ker(γ2 ◦ γ̆1)⊥∗,τ∞ = ker(pφ•)⊥∗,τ∞ , which coincides with im(pφ•−1)∗,τc∞ ⊕
HdR
1 (A

•
1/κ)

⊥
τ∞ by Lemma 5.7.3(3,4). On the other hand, γ1∗,τc∞(ker γ2∗,τ∞)

⊥
contains γ1∗,τc∞(ker γ2∗,τc∞) = im(γ1 ◦ γ̆2)∗,τc∞ , which is im(pφ•−1)∗,τc∞ . It
follows that (5.15) is an isomorphism.

By Theorem 5.4.4(5), (5.16) is an isomorphism as well. Thus, (ζ •s•)∗ : Tx →
Ty is an isomorphism by the Five Lemma, hence (1–2) and (1) follow.

Next, we show (2). Theorem 5.4.4(2) implies that the cokernel of the map

TB•
s•1
/κ |B•

s•
⊕

TB•
s•2
/κ |B•

s• → ι•∗TM•
p(V◦,K p◦)/κ |B•

s•

is canonically isomorphic to

Hom
(
(ker γ1∗,τ∞ + ker γ2∗,τ∞)⊥/HdR

1 (A)⊥τ∞,LieA∨,τc∞

)
, (5.17)

where we recall from Definition 5.2.3 that A is (part of) the universal object
over Mp(V◦,K p◦). As ker γ2∗,τ∞ = im γ̆2∗,τ∞ , we have

HdR
1 (A)τ∞

ker γ1∗,τ∞ + ker γ2∗,τ∞
� im γ1∗,τ∞

im(γ1 ◦ γ̆2)∗,τ∞
= im γ1∗,τ∞

im(pφ•−1)∗,τ∞

123



222 Y. Liu et al.

� V im γ1∗,τ∞
V im(pφ•−1)∗,τ∞

. (5.18)

However, we have V im γ1∗,τ∞ = (γ1∗,τc∞ωA,τc∞)
(p) and V im(pφ•−1)∗,τ∞ =

(im(pφ•−1)∗,τc∞)
(p). Thus, (5.18) is isomorphic to σ ∗H̄s•2, hence

(5.17) � Hom
(
(σ ∗H̄s•2)

∨,LieA∨,τc∞
)

� (σ ∗H̄s•2
)⊗ODL•(Vs• ,{ , }s• )

(
H̄#

s•1/H̄s•2
)
,

where we use Theorem 5.4.4(5) for the last isomorphism. We have proved (2)
and the theorem. ��

We also need a description for

B†
s• := B•

s• ×M•
p(V◦,K p◦) M

†
p(V

◦,K p◦)

for s• ∈ Hk−1
j (s

•
1 , s

•
2)(κ). It is clear that if we put

B†
s•i

:= B•
s•i

×M•
p(V◦,K p◦) M

†
p(V

◦,K p◦)

for i = 1, 2, then

B†
s• = B†

s•1
×M†

p(V◦,K p◦) B
†
s•2
.

By definition, for every S ∈ Sch/κ , B
†
s•(S) is the set of equivalence classes of

unvigintuples

(A0, λ0, η
p
0 ; A, λ, ηp; A◦, λ◦, ηp◦; A•

1, λ
•
1, η

p•
1 ; A•

2, λ
•
2, η

p•
2 ;β, γ1, γ2, ψ1, ψ2, φ

•)

rendering the diagram

A•
1

φ•
A•
2

A

γ1 γ2

β

A◦

ψ1 ψ2
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commute. Here, the letters remain the samemeaning as in our previous moduli
problems. Put

S†s• := {s•} ×S•p(V◦,K p◦)×S•p(V◦,K p◦)
(
S†p(V

◦,K p◦)× S†p(V
◦,K p◦)

)

×S◦p(V◦,K p◦)×S◦p(V◦,K p◦)S
◦
p(V

◦,K p◦)

where S◦
p(V

◦,K p◦)→ S◦
p(V

◦,K p◦)×S◦
p(V

◦,K p◦) is the diagonal morphism.
Then we have a canonical map

π
†
s• : B†

s• → S†s•

of κ-schemes by forgetting (A, λ, ηp) and related morphisms.

Theorem 5.7.8 Let s•1 , s•2 ∈ S•
p(V

◦,K p◦)(κ) be two points for a perfect field

κ containing F
 
p . Take s• ∈ Hk−1

j (s
•
1 , s

•
2)(κ) for some 0 � j � � N

2 � − 1.

Then the scheme S†s• is a disjoint of (p + 1)(p3 + 1) · · · (p2� N
2 �−2 j−1 + 1)

copies of Spec κ .
Take a point

t† = (A0, λ0, η
p
0 ; A◦, λ◦, ηp◦; A•

1, λ
•
1, η

p•
1 ; A•

2, λ
•
2, η

p•
2 ;ψ1, ψ2, φ

•) ∈ S†s•(κ).

(1) The assignment sending

(A0, λ0, η
p
0 ; A, λ, ηp; A◦, λ◦, ηp◦; A•

1, λ
•
1, η

p•
1 ; A•

2, λ
•
2, η

p•
2 ;

β, γ1, γ2, ψ1, ψ2, φ
•) ∈ B†

s•(S)

to H2/(im(pφ•−1)∗,τc∞ + HdR
1 (A

•
1/S)⊥τ∞) induces an isomorphism

ζ
†
t†
: (π†

s•)
−1(t†)

∼−→ P(Vt†)

where we put

Vt† := im(ψ1)∗,τc∞
im(pφ•−1)∗,τc∞ + HdR

1 (A
•
1/S)⊥τ∞

which has dimension � N
2 � − j .

(2) The cokernel of the map

TB†
s•1
/κ

|
(π

†
s• )−1(t†)

⊕
TB†

s•2
/κ
|
(π

†
s• )−1(t†) → ι•∗TM†

p(V◦,K p◦)/κ |(π†
s• )−1(t†)
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is canonically isomorphic to

ζ
†∗
t†

((
σ ∗Ht†

)⊗OP(V
t†
)
OP(Vt† )

(1)
)

where Ht† is the universal object, namely, the tautological bundle on
P(Vt†).

Proof In fact, the assignment sending (A0, λ0, η
p
0 ; A◦, λ◦, ηp◦; A•

1, λ
•
1, η

p•
1 ;

A•
2, λ

•
2, η

p•
2 ;ψ1, ψ2, φ

•) ∈ S†s•(S) to im(ψ1)∗,τ∞c induces a bijection from

S†s•(S) to the subbundles H ⊆ HdR
1 (A

•
1/S)τc∞ of rank  N

2 " satisfying
im(pφ•−1)∗,τc∞ ⊗κ OS ⊆ H ⊆ ker(pφ•)∗,τc∞ ⊗κ OS and 〈V−1H, H〉τc∞ = 0.

Thus, we know that S†s• is a disjoint of (p + 1)(p3 + 1) · · · (p2� N
2 �−2 j−1 + 1)

copies of Spec κ .
For (1), we denote by s†1 the image of t† in S†p(V

◦,K p◦)(κ) in the first factor.
Then a point (A0, λ0, η

p
0 ; A, λ, ηp; A◦, λ◦, ηp◦; A•

1, λ
•
1, η

p•
1 ;β, γ1) ∈ B†

s†1
(S)

belongs to B†
s•(S) if and only if H2 contains im(pφ•−1)∗,τc∞ ⊗κ OS . Thus, (1)

follows from Theorem 5.5.3(2).
For (2), it follows from Theorem 5.7.7(2) and the isomorphism(

H̄#
s•1/H̄s•2

)
|P(Vt† )

= (H̄s•1/H̄s•2
) |P(Vt† )

� OP(Vt† )
(1).

��

5.8 Incidence maps on the ground stratum

In this subsection, we define and study the incidence maps on ground stratum.
We assume N � 2. In order to have a uniformization map for S•

p(V
◦,–), we

also choose data as in Construction 5.4.6.

Definition 5.8.1 We denote

• T
◦
N ,p the Hecke algebra Z[K◦

p\U(V◦)(F+
p )/K

◦
p];

• T
•
N ,p the Hecke algebra Z[K•

p\U(V◦)(F+
p )/K

•
p];

• T•◦
N ,p ∈ Z[K•

p\U(V◦)(F+
p )/K

◦
p] the characteristic function of K•

pK
◦
p; and

• T◦•
N ,p ∈ Z[K◦

p\U(V◦)(F+
p )/K

•
p] the characteristic function of K◦

pK
•
p.

Moreover, we define the intertwining Hecke operator to be

I◦
N ,p := T◦•

N ,p ◦ T•◦
N ,p ∈ T

◦
N ,p

where the composition is taken as composition of cosets.
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Remark 5.8.2 We remind the readers that according to our convention, the
unit elements of Z[K◦

p\U(V◦)(F+
p )/K

◦
p] and Z[K•

p\U(V◦)(F+
p )/K

•
p] are 1K◦

p

and 1K•
p
, respectively. However, when N is odd, K◦

p and K•
p have different

volumes under a common Haar measure on U(V◦)(F+
p ); in other words, the

convolution products on the two Hecke algebras are not induced by the same
Haar measure on U(V◦)(F+

p ).

Let L be a p-coprime coefficient ring. By Constructions 5.3.6 and 5.4.6, we
have canonical isomorphisms

L[Sh(V◦,–K◦
p)] � H0

T(S
◦
p(V

◦,–), L),

L[Sh(V◦,–K•
p)] � H0

T(S
•
p(V

◦,–), L),

in Fun(K(V◦)p,Mod(L[K◦
p\U(V◦)(F+

p )/K
◦
p])) and in Fun(K(V◦)p,

Mod(L[K•
p\U(V◦)(F+

p )/K
•
p])), induced byυ◦ (5.4) andυ• (5.9), respectively.

Construction 5.8.3 Recall fromDefinition5.6.3 the class ξ ∈ H2
T(B

◦
p(V

◦,–),
L(1)), which is the first Chern class of the tautological quotient line bun-
dle on B◦

p(V
◦,–). Put r := � N

2 � � 1. We construct three pairs of maps in
Fun(K(V◦)p,Mod(L)) as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

inc◦! : L[Sh(V◦,–K◦
p)] ∼−→ H0

T(S
◦
p(V

◦,–), L)
π◦∗−−→ H0

T(B
◦
p(V

◦,–), L)

∪ξ N−r−1

−−−−−→ H2(N−r−1)
T (B◦

p(V
◦,–), L(N − r − 1))

ι◦!−→ H2(N−r−1)
T (M◦

p(V
◦,–), L(N − r − 1)),

inc∗◦ : H2r
T (M

◦
p(V

◦,–), L(r))
ι◦∗−→ H2r

T (B
◦
p(V

◦,–), L(r))

∪ξ N−r−1

−−−−−→ H2(N−1)
T (B◦

p(V
◦,–), L(N − 1))

π◦!−→ H0
T(S

◦
p(V

◦,–), L)
∼−→ L[Sh(V◦,–K◦

p)];
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

inc†! : L[Sh(V◦,–K◦
p)] ∼−→ H0

T(S
◦
p(V

◦,–), L)
π◦∗−−→ H0

T(B
◦
p(V

◦,–), L)

∪ξ N−r−2

−−−−−→ H2(N−r−2)
T (B◦

p(V
◦,–), L(N − r − 2))

ι◦!−→ H2(N−r−2)
T (M◦

p(V
◦,–), L(N − r − 2))

m†◦∗−−→ H2(N−r−2)
T (M†

p(V
◦,–), L(N − r − 2))

m†•
!−−→ H2(N−r−1)

T (M•
p(V

◦,–), L(N − r − 1)),

inc∗† : H2r
T (M

•
p(V

◦,–), L(r))
m†•∗−−→ H2r

T (M
†
p(V

◦,–), L(r))

m†◦
!−−→ H2(r+1)

T (M◦
p(V

◦,–), L(r + 1))

ι◦∗−→ H2(r+1)
T (B◦

p(V
◦,–), L(r + 1)

∪ξ N−r−2

−−−−−→ H2(N−1)
T (B◦

p(V
◦,–), L(N − 1))

π◦!−→ H0
T(S

◦
p(V

◦,–), L)
∼−→ L[Sh(V◦,–K◦

p)];⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

inc•! : L[Sh(V◦,–K•
p)] ∼−→ H0

T(S
•
p(V

◦,–), L)
π•∗−−→ H0

T(B
•
p(V

◦,–), L)

ι•!−→ H2(N−r−1)
T (M•

p(V
◦,–), L(N − r − 1)),

inc∗• : H2r
T (M

•
p(V

◦,–), L(r))
ι•∗−→ H2r

T (B
•
p(V

◦,–), L(r))

π•!−→ H0
T(S

•
p(V

◦,–), L)
∼−→ L[Sh(V◦,–K•

p)].

Note that the construction of the second pair only makes sense when N � 3;
and when N = 2, we regard inc†! and inc

∗
† as zero maps. In fact, the two maps

in each pair are essentially Poincaré dual to each other.

Definition 5.8.4 Suppose that N = 2r + 1 is odd with r � 1. We define the
incidence map (on the ground stratum) to be the map

inc : L[Sh(V◦,–K◦
p)]
⊕

L[Sh(V◦,–K•
p)]

→ L[Sh(V◦,–K◦
p)]
⊕

L[Sh(V◦,–K•
p)]

in Fun(K(V◦)p,Mod(L)) given by the matrix

(
inc∗† ◦ inc†! inc∗† ◦ inc•!
inc∗• ◦ inc†! inc∗• ◦ inc•!

)
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if we write elements in the column form.

Remark 5.8.5 The construction of the incidence map can be encoded in the
following diagram

L[Sh(V◦,–K◦
p)] L[Sh(V◦,–K•

p)]

H2r−2
T (M†

p(V
◦,–), L(r − 1))

m†•
!

H0
T(B

•
p(V

◦,–), L)

ι•!

H2r
T (M

•
p(V

◦,–), L(r))

m†•∗ ι•∗

H2r
T (M

†
p(V

◦,–), L(r)) H2r
T (B

•
p(V

◦,–), L(r))

L[Sh(V◦,–K◦
p)] L[Sh(V◦,–K•

p)]

in Fun(K(V◦)p,Mod(L)).

Proposition 5.8.6 Suppose that N = 2r + 1 is odd with r � 1. Then the
incidence map inc is given by the matrix

(−(p + 1)2 T◦•
N ,p

T•◦
N ,p T•

N ,p

)

where

T•
N ,p :=

r−1∑
δ=0

d•
r−δ,p · T•

N ,p;δ

in which the numbers d•
r−δ,p are introduced in Notation 1.3.1, and the Hecke

operators T•
N ,p;δ are introduced in Notation B.2.1 (as T•

N ;δ).

Proof Take an object K p◦ ∈ K(V◦)p.
First, we show inc∗† ◦ inc†! = −(p + 1)2. Since m†◦∗OM◦

p(V◦,K p◦)(1) has
degree p + 1, it follows from Corollary 5.3.5.

Second, we show inc∗† ◦ inc•! = T◦•
N ,p and inc∗• ◦ inc†! = T•◦

N ,p. However,
these are consequences of Theorem 5.5.3 and Construction 5.5.5.

Finally, we show inc∗• ◦ inc•! = T•
N ,p. By Theorem 5.7.7(1), it suffices to

show that for every s•1 , s•2 ∈ S•
p(V

◦,K p◦)(Fp) and every s• ∈ Hk−1
j (s

•
1 , s

•
2),
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the intersectionmultiplicity ofB•
s•1
andB•

s•2
at the componentB•

s• equalsd
•
r− j,p.

This is true by Theorem 5.7.7(2), Proposition A.2.4(1), and the excess inter-
section formula.

The proposition is proved. ��
Now we assume that N = 2r is even with r � 2. The readers may

have noticed that the situation is different from Definition 5.8.4 since now
M•

p(V
◦,–) has dimension 2r −1 while B•

p(V
◦,–) still has dimension r . Thus

to obtain a similar diagram as in Remark 5.8.5, we have to insert a map

- : H2r−2
T (M•

p(V
◦,–), L(r − 1))→ H2r

T (M
•
p(V

◦,–), L(r))

to obtain a diagram like

L[Sh(V◦,–K◦
p)] L[Sh(V◦,–K•

p)]

H2r−4
T (M†

p(V
◦,–), L(r − 2))

m†•
!

H0
T(B

•
p(V

◦,–), L)

ι•!

H2r−2
T (M•

p(V
◦,–), L(r − 1))

-

H2r
T(M

•
p(V

◦,–), L(r))

m†•∗ ι•∗

H2r
T(M

†
p(V

◦,–), L(r)) H2r
T(B

•
p(V

◦,–), L(r))

L[Sh(V◦,–K◦
p)] L[Sh(V◦,–K•

p)].

Definition 5.8.7 For every line bundle L on M•
p(V

◦,–),19 we denote

-L : H2r−2
T (M•

p(V
◦,–), L(r − 1))→ H2r

T (M
•
p(V

◦,–), L(r))

the map by taking cup product with c1(L), and define the L-incidence map
(on the ground stratum) to be the map

incL : L[Sh(V◦,–K◦
p)]
⊕

L[Sh(V◦,–K•
p)]

19 A line bundle L on M•
p(V

◦,–) is a collection of a line bundle L(K p◦) on every
M•

p(V
◦,K p◦), compatible with respect to pullbacks.
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→ L[Sh(V◦,–K◦
p)]
⊕

L[Sh(V◦,–K•
p)]

in Fun(K(V◦)p,Mod(L)) given by the matrix

(
inc∗† ◦-L ◦ inc†! inc∗† ◦-L ◦ inc•!
inc∗• ◦-L ◦ inc†! inc∗• ◦-L ◦ inc•!

)
,

if we write elements in the column form.

We now compute-L for two natural choices of L, namely,O(M†
p(V

◦,–))
and LieA,τc∞ .

Proposition 5.8.8 Suppose that N = 2r is even with r � 2. Let L be a p-
coprime coefficient ring. For L = O(M†

p(V
◦,–)), the incidence map incL is

given by

(
(p + 1)3 −(p + 1)T◦•

N ,p
−(p + 1)T•◦

N ,p R•
N ,p

)
,

where

R•
N ,p :=

r−1∑
δ=0

1− (−p)r−δ

p + 1
(p + 1)(p + 3) · · · (p2(r−δ)−1 + 1) · T•

N ,p;δ

in which the Hecke operators T•
N ,p;δ are introduced in Notation B.2.1 (as

T•
N ;δ).

Proof Take an object K p◦ ∈ K(V◦)p.
First, we show inc∗† ◦-L ◦ inc†! = (p + 1)3. Since m†◦∗OM◦

p(V◦,K p◦)(1) has
degree p + 1, it follows from Corollary 5.3.5.

Second, we show inc∗† ◦ -L ◦ inc•! = −(p + 1)T◦•
N ,p and inc∗• ◦ -L ◦

inc†! = −(p + 1)T•◦
N ,p. However, these are consequences of Corollary 5.3.5,

Theorem 5.5.3, and Construction 5.5.5.
It remains to compute inc∗• ◦-L ◦ inc•! . By Theorem 5.7.7(1), it suffices to

show that for every s•1 , s•2 ∈ S•
p(V

◦,K p◦)(Fp) and every s• ∈ Hk−1
j (s

•
1 , s

•
2),

the intersection multiplicity of B†
s•1
and B†

s•2
at the component B†

s• equals

1− (−p)r− j

p + 1
(p + 1)(p + 3) · · · (p2(r− j)−1 + 1).
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By Theorem 5.7.8 and the excess intersection formula, such intersection mul-
tiplicity equals

∑
t†∈S†s• (Fp)

∫
P(Vt† )

cr− j−1

((
σ ∗Ht†

)⊗OP(V
t†
)
OP(Vt† )

(1)
)
.

A simple exercise shows that

∫
P(Vt† )

cr− j−1

((
σ ∗Ht†

)⊗OP(V
t†
)
OP(Vt† )

(1)
)
= 1− (−p)r− j

p + 1

for every t† ∈ S†s•(Fp). Thus, the claim follows from Theorem 5.7.8. ��
Proposition 5.8.9 Suppose that N = 2r is even with r � 2. Let L be a p-
coprime coefficient ring. For L = LieA,τc∞ , the incidence map incL is given
by

(−(p + 1)2 T◦•
N ,p

T•◦
N ,p T•

N ,p

)
,

where

T•
N ,p :=

r−1∑
δ=0

d•r−δ,p · T•
N ,p;δ

in which the numbers d•
r−δ,p are introduced in Notation 1.3.1, and the Hecke

operators T•
N ,p;δ are introduced in Notation B.2.1 (as T•

N ;δ).

Proof Take an object K p◦ ∈ K(V◦)p. By Theorem 5.3.4, we have an isomor-
phism

ι•∗ LieA,τc∞ � m†◦∗OM◦
p(V◦,K p◦)(1) (5.19)

of line bundles on M†
p(V

◦,K p◦).
First, we show inc∗† ◦ -L ◦ inc†! = −(p + 1)2. This is a consequence of

(5.19), Corollary 5.3.5 and the fact that m†◦∗OM◦
p(V◦,K p◦)(1) has degree p+1.

Second, we show inc∗† ◦ -L ◦ inc•! = T◦•
N ,p and inc∗• ◦ -L ◦ inc†! = T•◦

N ,p.
These are consequences of (5.19) and Corollary 5.3.5, Theorem 5.5.3, and
Construction 5.5.5.
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It remains to compute inc∗•◦-L◦inc•! . ByTheorem5.7.7 and the excess inter-
section formula, it suffices to show that for every s•1 , s•2 ∈ S•

p(V
◦,K p◦)(Fp)

and every s• ∈ Hk−1
j (s

•
1 , s

•
2), we have

∫
DL•(Vs• ,{ , }s• )

cr−1

((
σ ∗H̄s•2

)⊗ODL•(Vs• ,{ , }s• )

(
H̄#

s•1/H̄s•2
))

· c1
(
(ζ •s•)∗ LieA,τc∞

) = d•
r− j,p, (5.20)

where (H̄s•1, H̄s•2) is the universal object over DL•(Vs•, { , }s•). However, by
Theorem 5.4.4(5), we have (ζ •s•)∗ LieA,τc∞ � H̄#

s•1/H̄s•2. Thus, (5.20) follows
from Proposition A.2.4(2). The proposition is proved. ��

5.9 Weight spectral sequence

In this subsection, we study the weight spectral sequence associated to
Mp(V◦,–). Our goal is to express certain important terms of the weight spec-
tral sequence in terms of Sh(V◦,–K◦

p) and Sh(V◦,–K•
p). We keep the setup

in Sect. 5.8. In particular, N is an integer at least 2 with r := � N
2 � � 1, and

L is a p-coprime coefficient ring. To ease notation, we put X?
N := X?

p(V
◦,–)

for meaningful pairs (X, ?) ∈ {M,M,B,S} × { , ◦, •, †}.
Construction 5.9.1 By Theorem 5.2.5(1), we have the weight spectral
sequence (Ep,q

s , dp,q
s ), with terms in the category L[Gal(Fp/F

 
p )], abutting

to the cohomology Hp+q
T (MN ,R	L(r)). In particular, we have

E0,2d
1 = H2d

T (M
◦
N , L(r))

⊕
H2d
T (M

•
N , L(r)).

Thus, the six maps in Construction 5.8.3 give rise to another six maps

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Inc◦! : L[Sh(V◦,–K◦
p)] → E0,2(N−r−1)

1 (N − 2r − 1),

Inc†! : L[Sh(V◦,–K◦
p)] → E0,2(N−r−1)

1 (N − 2r − 1),

Inc•! : L[Sh(V◦,–K•
p)] → E0,2(N−r−1)

1 (N − 2r − 1),

Inc∗◦ : E0,2r
1 → L[Sh(V◦,–K◦

p)],
Inc∗† : E0,2r

1 → L[Sh(V◦,–K◦
p)],

Inc∗• : E0,2r
1 → L[Sh(V◦,–K•

p)],

in Fun(K(V◦)p,Mod(L)).
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In the future, we will have to study the composite maps

⎛
⎝Inc

∗◦
Inc∗†
Inc∗•

⎞
⎠(Inc◦! Inc†! Inc•!

)
,

⎛
⎝Inc

∗◦
Inc∗†
Inc∗•

⎞
⎠ ◦ d−1,2r

1 ◦ d0,2r−2
1 (−1) ◦

(
Inc◦! Inc

†
! Inc

•
!
)

when N is odd and even, respectively. In the next two lemmas,wewill study the
spectral sequence and prove two formulae related to the abovemaps, according
to the parity of N .

Lemma 5.9.2 Suppose that N = 2r + 1 is odd with r � 1.

(1) The first page of Ep,q
s is as follows:

q � 2r + 2 · · · · · · · · ·

q = 2r + 1 H2r−1
T (M†

N , L(r − 1))
d−1,2r+1
1

H2r+1
T (M◦

N , L(r))⊕ H2r+1
T (M•

N , L(r))
d0,2r+1
1

H2r+1
T (M†

N , L(r))

q = 2r H2r−2
T (M†

N , L(r − 1))
d−1,2r
1

H2r
T (M

◦
N , L(r))⊕ H2r

T (M
•
N , L(r))

d0,2r
1

H2r
T (M

†
N , L(r))

q = 2r − 1 H2r−3
T (M†

N , L(r − 1))
d−1,2r−1
1

H2r−1
T (M◦

N , L(r))⊕ H2r−1
T (M•

N , L(r))
d0,2r−1
1

H2r−1
T (M†

N , L(r))

q � 2r − 2 · · · · · · · · ·

Ep,q
1 p = −1 p = 0 p = 1

with d−1,i
1 = (m†◦

! ,−m†•
! ), d

0,i
1 = (m†◦)∗ − (m†•)∗ for every i ∈ Z; and

Ep,q
1 = 0 if |p| > 1.

(2) We have

⎛
⎝Inc

∗◦
Inc∗†
Inc∗•

⎞
⎠(Inc◦! Inc†! Inc•!

)
=
⎛
⎝
1 0 0
0 −(p + 1)2 T◦•

N ,p
0 T•◦

N ,p T•
N ,p

⎞
⎠ .

(3) We have (T•◦
N ,p ◦ Inc∗† + (p + 1)2Inc∗•) ◦ d−1,2r

1 = 0.

Proof Part (1) is immediate. Part (2) is a consequence of Proposition 5.8.6.
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For (3), note that under the composite isomorphism

i : L[Sh(V◦,–K◦
p)] ∼−→ H0

T(S
◦
N , L)

π◦∗−−→ H0
T(B

◦
N , L)

∪ξ r−1

−−−→ H2r−2
T (B◦

N , L(r − 1))

ι◦!−→ H2r−2
T (M◦

N , L(r − 1))
m†◦∗−−→ H2r−2

T (M†
N , L(r − 1)) = E−1,2r

1 ,

the map d−1,2r
1 ◦ i : L[Sh(V◦,–K◦

p)] → E0,2r
1 coincides with (p + 1)Inc◦! −

Inc†! . Thus, (3) follows by (2) as we have

(
0 T•◦

N ,p (p + 1)2
)⎛⎝

1 0 0
0 −(p + 1)2 T◦•

N ,p
0 T•◦

N ,p T•
N ,p

⎞
⎠
⎛
⎝p + 1

−1
0

⎞
⎠ = 0.

The lemma is proved. ��
For N even, we first recall that there is an (increasing) monodromy filtration

F•R	L(r)ofR	L(r). Suchfiltration induces afiltrationF•Hi
T(MN ,R	L(r))

of Hi
T(MN ,R	L(r)), and a corresponding filtration F•H1(IQ p ,H

i
T(MN ,

R	L(r))) of the quotient module H1(IQ p ,H
i
T(MN ,R	L(r))).

Lemma 5.9.3 Suppose that N = 2r is even with r � 1.

(1) The first page of Ep,q
s is as follows:

q � 2r + 1 · · · · · · · · ·

q = 2r H2r−2
T (M†

N , L(r − 1))
d−1,2r
1

H2r
T(M

◦
N , L(r))⊕ H2r

T(M
•
N , L(r))

d0,2r
1

H2r
T(M

†
N , L(r))

q = 2r − 1 0 H2r−1
T (M•

N , L(r)) 0

q = 2r − 2 H2r−4
T (M†

N , L(r − 1))
d−1,2r−2
1

H2r−2
T (M◦

N , L(r))⊕ H2r−2
T (M•

N , L(r))
d0,2r−2
1

H2r−2
T (M†

N , L(r))

q � 2r − 3 · · · · · · · · ·

Ep,q
1 p = −1 p = 0 p = 1

with d−1,i
1 = (m†◦

! ,−m†•
! ), d

0,i
1 = (m†◦)∗ − (m†•)∗ for every i ∈ Z; and

Ep,q
1 = 0 if |p| > 1.

(2) The spectral sequence Ep,q
s degenerates at the second page.
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(3) In the (three-step) filtration F•H2r−1
T (MN ,R	L(r)), we have canonical

isomorphisms

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

F−1H
2r−1
T (MN ,R	L(r)) � E1,2r−2

2 = coker d0,2r−2
1 ,

F0H
2r−1
T (MN ,R	L(r))

F−1H
2r−1
T (MN ,R	L(r))

� E0,2r−1
2 = H2r−1

T (M•
N , L(r)),

H2r−1
T (MN ,R	L(r))

F0H
2r−1
T (MN ,R	L(r))

� E−1,2r
2 = ker d−1,2r

1 ,

in Fun(K(V◦)p,Mod(L[Gal(Fp/F
 
p )])).

(4) The monodromy map on H2r−1
T (MN ,R	L(r)) is trivial on

F0H
2r−1
T (MN ,R	L(r)) and is given by the composite map

E−1,2r
2

μ−→ E1,2r−2
2 ↪→ H2r−1

T (MN ,R	L(r))

in view of (3), where μ is the map induced from the identity map on
H2r−2
T (M†

N , L(r − 1)).
(5) We have a canonical isomorphism

F−1H
1(IQ p ,H

2r−1
T (MN ,R	L(r))) �

(
E1,2r−2
2

μE−1,2r
2

)
(−1);

in Fun(K(V◦)p,Mod(L[Gal(Fp/F
 
p )])); and the map d−1,2r

1 induces an
isomorphism

(
E1,2r−2
2

μE−1,2r
2

)
(−1) � im d−1,2r

1

im(d−1,2r
1 ◦ d0,2r−2

1 (−1))

in Fun(K(V◦)p,Mod(L[Gal(Fp/F
 
p )])).

(6) If p2−1 is invertible in L, then we have a canonical short exact sequence

0 F−1H1(IQ p ,H
2r−1
T (MN ,R	L(r))) H1

sing(Q
 
p ,H

2r−1
T (MN ,R	L(r))) H2r−1

T (M•
N , L(r − 1))Gal(Fp/F

 
p ) → 0

in Fun(K(V◦)p,Mod(L)).
(7) The composite map

⎛
⎝Inc

∗◦
Inc∗†
Inc∗•

⎞
⎠ ◦ d−1,2r

1 ◦ d0,2r−2
1 (−1) ◦

(
Inc◦! Inc

†
! Inc

•
!
)
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coincides with

⎛
⎝

p + 1 (p + 1)2 −T◦•
N ,p

(p + 1)2 (p + 1)3 −(p + 1)T◦•
N ,p

−T•◦
N ,p −(p + 1)T•◦

N ,p R•
N ,p

⎞
⎠ ,

⎛
⎝ p + 1 0 −T◦•

N ,p
0 0 0

−T•◦
N ,p 0 R•

N ,p

⎞
⎠

when N � 4 and when N = 2, respectively.
(8) The image of the map

(T•◦
N ,p ◦ Inc∗◦ + (p + 1)Inc∗•) ◦ d−1,2r

1 ◦ d0,2r−2
1 (−1) ◦ (Inc◦! + Inc†! + Inc•! ) :

L[Sh(V◦,–K◦
p)]⊕2

⊕
L[Sh(V◦,–K•

p)] → L[Sh(V◦,–K•
p)]

is exactly ((p + 1)R•
N ,p − T•◦

N ,p ◦ T◦•
N ,p)L[Sh(V◦,–K•

p)], where R•
N ,p is

introduced in Proposition 5.8.8.

Proof For (1), note that by Lemma 5.6.2(1), both Hi
T(M

†
N , L) andHi

T(M
◦
N , L)

vanish for i odd. Thus, (1) follows.
Parts (2–4) follow directly from the description of Ep,q

1 and [66, Corol-
lary 2.8(2)] for the description of the monodromymap (which does not require
the scheme to be proper over the base). Part (5) follows from (1–4).

For (6), by Lemma 5.6.2(3), we know that the action of Gal(Fp/F
 
p )

on E1,2r−2
2 (−1) is trivial. As p2 − 1 is invertible in L , we further have

E−1,2r
2 (−1)Gal(Fp/F

 
p ) = 0 and

H1(Gal(Fp/F
 
p ),F−1H

1(IQ p ,H
2r−1
T (MN ,R	L(r)))) = 0.

In particular, we have the isomorphism

H1
sing(Q

 
p ,H

2r−1
T (MN ,R	L(r))) � H1(IQ p ,H

2r−1
T (MN ,R	L(r)))Gal(Fp/F

 
p ) � F0H1(IQ p ,H

2r−1
T (MN ,R	L(r)))Gal(Fp/F

 
p )

and that (6) follows from the induced long exact sequence.
For (7), when N � 4 (that is, r � 2), it follows from Theorem 5.3.4(2) and

Proposition 5.8.8; when N = 2, it follows from a direct computation.
For (8), we have the identity

(
T•◦

N ,p 0 p + 1
)
⎛
⎝Inc

∗◦
Inc∗†
Inc∗•

⎞
⎠ ◦ d−1,2r

1 ◦ d0,2r−2
1 (−1) ◦

(
Inc◦! Inc

†
! Inc

•
!
)

= (0 0 (p + 1)R•
N ,p − T•◦

N ,p ◦ T◦•
N ,p

)

by (7), which implies (8). ��
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Construction 5.9.4 We construct

(1) when N = 2r + 1 is odd, the map

∇1 : E0,2r
2 → L[Sh(V◦

N ,K
◦
N )]

to be the restriction of the map T•◦
N ,p ◦ Inc∗† + (p + 1)2Inc∗• : E0,2r

1 →
L[Sh(V◦

N ,K
•
N )] to ker d0,2r

1 , which factors through E0,2r
2 by

Lemma 5.9.2(3), composed with the map T◦•
N ,p : L[Sh(V◦

N ,K
•
N )] →

L[Sh(V◦
N ,K

◦
N )];

(2) when N = 2r is even, the map

∇0 : ker d0,2r
1 → L[Sh(V◦

N ,K
◦
N )]

to be the restriction of the map T•◦
N ,p ◦ Inc∗◦ + (p + 1)Inc∗• : E0,2r

1 →
L[Sh(V◦

N ,K
•
N )] in Lemma 5.9.3(8) to ker d0,2r

1 , composed with the map
T◦•

N ,p : L[Sh(V◦
N ,K

•
N )] → L[Sh(V◦

N ,K
◦
N )].

Remark 5.9.5 By the descriptions of the Galois actions in Construction 5.3.6
and Construction 5.4.6, the map ∇1 factors through the quotient map E0,2r

2 →
(E0,2r

2 )Gal(Fp/F p )
.

To temporarily end the discussion on weight spectral sequences, we record
the following easy lemma, which will be used later.

Lemma 5.9.6 Suppose that N � 3. The following diagram

E0,2r
1

(Inc∗◦,Inc∗†,Inc∗•)

d0,2r
1

L[Sh(V◦,–K◦
p)]⊕2⊕ L[Sh(V◦,–K•

p)]
(p+1,−1,0)

E1,2r
1 L[Sh(V◦,–K◦

p)]

is commutative, where the lower horizontal arrow is the composite map

H2r
T (M

†
p(V

◦,–), L(r))
m†◦

!−−→ H2(r+1)
T (M◦

p(V
◦,–), L(r + 1))

ι◦∗−→ H2(r+1)
T (B◦

p(V
◦,–), L(r + 1)

∪ξ N−r−2

−−−−−→ H2(N−1)
T (B◦

p(V
◦,–), L(N − 1))

π◦!−→ H0
T(S

◦
p(V

◦,–), L)
∼−→ L[Sh(V◦,–K◦

p)],
which is an isomorphism.
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Proof The commutativity of the diagram follows from the formula d0,2r
1 =

(m†◦)∗ − (m†•)∗, and the fact that M†
p(V

◦,–) is a hypersurface in M◦
p(V

◦,–)
of degree p + 1 by Theorem 5.3.4 and Lemma A.1.4(1). By Lemma 5.6.2 and
the Poincaré duality theorem, the lower horizontal arrow is an isomorphism.

��

5.10 Functoriality under special morphisms

In this subsection, we study the behavior of various moduli schemes under the
special morphisms, which is closely related to the Rankin–Selberg motives for
GLn ×GLn+1. We start from the datum (V◦

n, {�◦
n,q}q|p) as in the beginning of

Sect. 5.2, but with V◦
n of rank n � 2. (See Remark 5.10.15 below for the case

n = 1.) We then have the induced datum

(V◦
n+1, {�◦

n+1,q}q|p) := ((V◦
n)�, {(�◦

n,q)�}q|p)

of rank n + 1 by Definition 3.1.7. For N ∈ {n, n + 1}, we let K◦
N ,q be the

stabilizer of �◦
N ,q, and put K◦

N ,p := ∏q|p K◦
N ,q. Recall the category K(V◦

n)
p
sp

and functors –�,–� from Definition 3.1.11. To unify notation, we put –n :=
–� and–n+1 := –�. Similar to the case of smoothmoduli schemes considered
in Sect. 4.5, there are five stages of functoriality we will consider.

The first stage concerns Shimura varieties.

Notation 5.10.1 We choose an indefinite uniformization datum
(V′

n,jn, {�′
n,q}q|p) for V◦

n as in Definition 5.2.6. Put V
′
n+1 := (V′

n)�, jn+1 :=
(jn)�, and �′

n+1,q := (�′
n,q)�. Then (V

′
n+1,jn+1, {�′

n+1,q}q|p) is an indefi-
nite uniformization datum for V◦

n+1. For N ∈ {n, n + 1}, we let K′
N ,q be the

stabilizer of �′
N ,q, and put K

′
N ,p :=∏q|p K′

N ,q.

We obtain a morphism

sh′↑ : Sh(V′
n,jn–nK

′
n,p)→ Sh(V′

n+1,jn+1–n+1K
′
n+1,p)

in Fun(K(V◦
n)

p
sp,Sch/F ).

For the second stage of functoriality, we have a morphism

m↑ : Mp(V
◦
n,–n)→ Mp(V

◦
n+1,–n+1) (5.21)

in Fun(K(V◦
n)

p
sp ×T,Sch/Z p )/Tp sending an object (A0, λ0, η

p
0 ; A, λ, ηp) ∈

Mp(V◦
n,K

p◦
n )(S) to the object (A0, λ0, η

p
0 ; A × A0, λ× λ0, ηp ⊕ (idA0)∗) ∈
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Mp(V◦
n+1,K

p◦
n+1)(S). It is clear that m↑ restricts to three morphisms

⎧⎪⎪⎨
⎪⎪⎩

m◦↑ : M◦
p(V

◦
n,–n)→ M◦

p(V
◦
n+1,–n+1),

m†
↑ : M†

p(V
◦
n,–n)→ M†

p(V
◦
n+1,–n+1),

m•↑ : M•
p(V

◦
n,–n)→ M•

p(V
◦
n+1,–n+1).

(5.22)

Moreover, we have the following commutative diagram

Mη
p(V

◦
n+1,–n+1)

(5.2)
Sh(V′

n+1,jn+1–n+1K′
n+1,p)×Spec F Tηp

Mη
p(V

◦
n,–n)

(5.2)

mη↑

Sh(V′
n,jn–nK′

n,p)×Spec F Tηp

sh′↑×id

(5.23)

in Fun(K(V◦
n)

p
sp × T,Sch/Q p )/Tηp .

At the third stage of functoriality, we study the basic correspondence dia-
gram (5.10) for N = n, n + 1 under the special morphisms. We will complete
a commutative diagram in Fun(K(V◦

n)
p
sp × T,Sch/F p )/Tp as follows
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S ◦p (V
◦n+

1 ,–
n+

1 )
B ◦p (V

◦n+
1 ,–

n+
1 )

π ◦n+
1

ι ◦n+
1

M
◦p (V

◦n+
1 ,–

n+
1 )

S
†p (V

◦n+
1 ,–

n+
1 )

s †◦n+
1

s †•n+
1

B
†p (V

◦n+
1 ,–

n+
1 )

b
†◦n+

1

b
†•n+

1

π
†n+

1
ι †n+

1
M

†p (V
◦n+

1 ,–
n+

1 )

m
†◦n+

1

m
†•n+

1

S •p (V
◦n+

1 ,–
n+

1 )
B •p (V

◦n+
1 ,–

n+
1 )

π •n+
1

ι •n+
1

M
•p (V

◦n+
1 ,–

n+
1 )

S
†p (V

◦n
,–
)sp

s †•sp

s †↑s †↓

B
†p (V

◦n
,–
)sp

b
†•sp

π
†sp

b
†↓ b
†↑

S •p (V
◦n
,–
)sp

s •↑s •↓

B •p (V
◦n
,–
)sp

b •↑b •↓

π •sp

S ◦p (V
◦n
,–

n
)

s ◦↑

B ◦p (V
◦n
,–

n
)

ι ◦n
π ◦n

b ◦↑

M
◦p (V

◦n
,–

n
)

m
◦↑

S
†p (V

◦n
,–

n
)

s †◦n

s †•n

B
†p (V

◦n
,–

n
)

b
†◦n

b
†•n

ι †n
π
†n

M
†p (V

◦n
,–

n
)

m
†◦n

m
†•n

m
†↑

S •p (V
◦n
,–

n
)

B •p (V
◦n
,–

n
)

π •n
ι •n

M
•p (V

◦n
,–

n
)

m
•↑

(5.24)
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in which the bottom (resp. top) layer is the basic correspondence diagram
(5.10) for Mp(V◦

n,–n) (resp. Mp(V◦
n+1,–n+1)).

First, we consider the basic correspondences on the balloon strata, that is,
the back layer of the diagram (5.24).

We define s◦↑ : S◦
p(V

◦
n,–n)→ S◦

p(V
◦
n+1,–n+1) to be the morphism sending

an object

(A0, λ0, η
p
0 ; A◦, λ◦, ηp◦) ∈ S◦

p(V
◦
n,K

p◦
n )(S)

to the object

(A0, λ0, η
p
0 ; A◦ × A0, λ

◦ × λ0, ηp◦ ⊕ (idA0)∗) ∈ S◦
p(V

◦
n+1,K

p◦
n+1)(S).

Remark 5.10.2 The canonical inclusions

V◦
n ↪→ V◦

n+1, {�◦
n,q ↪→ �◦

n+1,q}q|p
induce a morphism

sh◦↑ : Sh(V◦
n,–nK

◦
n,p)→ Sh(V◦

n+1,–n+1K
◦
n+1,p)

in Fun(K(V◦
n)

p
sp,Set). It is clear that the following diagram

S◦
p(V

◦
n+1,–n+1)(Fp)

υ◦n+1
Sh(V◦

n+1,–n+1K◦
n+1,p)× Tp(Fp)

S◦
p(V

◦
n,–n)(Fp)

υ◦n

s◦↑(Fp)

Sh(V◦
n,–nK◦

n,p)× Tp(Fp)

sh◦↑×idTp(Fp)

in Fun(K(V◦
n)

p
sp,Set)/Tp(Fp)

commutes, where υ◦
n+1 and υ

◦
n are uniformiza-

tion maps in Construction 5.3.6.

Wedefine b◦↑ : B◦
p(V

◦
n,–n)→ B◦

p(V
◦
n+1,–n+1) to be themorphism sending

an object

(A0, λ0, η
p
0 ; A, λ, ηp; A◦, λ◦, ηp◦;β) ∈ B◦

p(V
◦
n,K

p◦
n )(S)

to the object

(A0, λ0, η
p
0 ; A × A0, λ× λ0, ηp ⊕ (idA0)∗;

A◦ × A0, λ
◦ × λ0, ηp◦ ⊕ (idA0)∗;β × idA0) ∈ B◦

p(V
◦
n+1,K

p◦
n+1)(S).
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Second, we consider the basic correspondences on the ground strata, that
is, the front layer of the diagram (5.24).

Definition 5.10.3 We define a functor

S•
p(V

◦
n,–)sp : K(V◦

n)
p
sp × T → PSch′

/F p

K p◦ �→ S•
p(V

◦
n,K

p◦)sp

such that for every S ∈ Sch′
/F p

, S•
p(V

◦
n,K

p◦)sp(S) is the set of equivalence
classes of decuples (A0, λ0, η

p
0 ; A•, λ•, ηp•; A•

� , λ
•
� , η

p•
� ; δ•), where

• (A0, λ0, η
p
0 ; A•, λ•, ηp•) is an element in S•

p(V
◦
n,K

p◦
n )(S);

• (A0, λ0, η
p
0 ; A•

� , λ
•
� , η

p•
� ) is an element in S•

p(V
◦
n+1,K

p◦
n+1)(S); and• δ• : A• × A0 → A•

� is an OF -linear quasi-p-isogeny (Definition 3.4.5)
such that
(a) ker δ•[p∞] is contained in (A• × A0)[p];
(b) we have λ• ×�λ0 = δ•∨ ◦ λ•� ◦ δ•; and
(c) theK p

n+1-orbit ofmapsv �→ δ•∗◦(ηp•⊕(idA0)∗)(v) forv ∈ V◦
�⊗QA

∞,p

coincides with ηp•
� .

The equivalence relation and the action of morphisms in K(V◦
n)

p
sp × T are

defined similarly as in Definition 4.3.3.

We clearly have the forgetful morphism

S•
p(V

◦
n,–)sp → Tp

in Fun(K(V◦
n)

p
sp × T,PSch′

/F p
), which is represented by finite and étale

schemes. By definition, we have the two forgetful morphisms

s•↓ : S•
p(V

◦
n,–)sp → S•

p(V
◦
n,–n), s•↑ : S•

p(V
◦
n,–)sp → S•

p(V
◦
n+1,–n+1)

in Fun(K(V◦
n)

p
sp × T,Sch/F p )/Tp .

Lemma 5.10.4 We have the following properties concerning s•↓.

(1) When n is even, s•↓ is an isomorphism, and the morphism

s•↑ ◦ s•−1
↓ : S•

p(V
◦
n,–n)→ S•

p(V
◦
n+1,–n+1)

is given by the assignment

(A0, λ0, η
p
0 ; A•, λ•, ηp•)

�→ (A0, λ0, η
p
0 ; A• × A0, λ

• ×�λ0, ηp• × (idA0)∗).
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(2) When n is odd, s•↓ is finite étale of degree p + 1.

Proof The proof is very similar to Lemma 4.5.2, whichwe leave to the readers.
��

Definition 5.10.5 We define B•
p(V

◦
n,–)sp to be the fiber product indicated in

the following Cartesian diagram

S•
p(V

◦
n,–)sp
s•↓

B•
p(V

◦
n,–)sp

π•
sp

b•↓

S•
p(V

◦
n,–n) B•

p(V
◦
n,–n)

π•
n

in Fun(K(V◦
n)

p
sp × T,Sch/F p )/Tp . We define

b•↑ : B•
p(V

◦
n,–)sp → B•

p(V
◦
n+1,–n+1)

to be the morphism sending an object

((A0, λ0, η
p
0 ; A, λ, ηp; A•, λ•, ηp•; γ ),

(A0, λ0, η
p
0 ; A•, λ•, ηp•; A•

� , λ
•
� , η

p•
� ; δ•)) ∈ B•

p(V
◦
n,K

p◦)sp(S)

to (A0, λ0, η
p
0 ; A × A0, λ× λ0, ηp ⊕ (idA0)∗; A•

� , λ
•
� , η

p•
� ; δ• ◦ (γ × idA0)),

which is anobject ofB•
p(V

◦
n+1,K

p◦
n+1)(S)bya similar argument ofLemma4.5.4.

We have the following result.

Proposition 5.10.6 When n is odd, the square

B•
p(V

◦
n+1,–n+1)

ι•n+1
M•

p(V
◦
n+1,–n+1)

B•
p(V

◦
n,–)sp

ι•n◦b•↓
b•↑

M•
p(V

◦
n,–n)

m•↑

extracted from the diagram (5.24) is Cartesian.

Proof The proof is very similar to Proposition 4.5.5, which we leave to the
readers. ��

Third, we consider the basic correspondences on the link strata, that is, the
middle (vertical) layer of the diagram (5.24).
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Definition 5.10.7 We define S†p(V
◦
n,–)sp to be the fiber product indicated in

the following Cartesian diagram

S†p(V
◦
n,–)sp

s†•sp

s†↓

S•
p(V

◦
n,–)sp
s•↓

S†p(V
◦
n,–n)

s†•n S•
p(V

◦
n,–n)

in Fun(K(V◦
n)

p
sp × T,Sch/F p )/Tp . By Lemma 5.10.4, we know that s†↓ is an

isomorphism (resp. finite étale of degree p + 1) when n is even (resp. odd).
We define s†↑ : S†p(V◦

n,–)sp → S†p(V
◦
n+1,–n+1) to be the morphism sending

an object

((A0, λ0, η
p
0 ; A◦, λ◦, ηp◦; A•, λ•, ηp•;ψ),

(A0, λ0, η
p
0 ; A•, λ•, ηp•; A•

� , λ
•
� , η

p•
� ; δ•)) ∈ S†p(V

◦
n,K

p◦)sp(S)

to the object

(A0, λ0, η
p
0 ; A◦ × A0, λ

◦ × λ0, ηp◦ ⊕ (idA0)∗; A•
� , λ

•
� , η

p•
� ; δ• ◦ (ψ × idA0))

∈ S†p(V
◦
n+1,K

p◦
n+1)(S).

Lemma 5.10.8 We have

(1) When n is even, the square

S†p(V
◦
n+1,–n+1)

s†•n+1
S•
p(V

◦
n+1,–n+1)

S†p(V
◦
n,–)sp

s†•sp

s†↑

S•
p(V

◦
n,–)sp

s•↑

extracted from (5.24) is a Cartesian diagram.
(2) When n is odd, the square

S◦
p(V

◦
n+1,–n+1) S†p(V

◦
n+1,–n+1)

s†◦n+1

S◦
p(V

◦
n,–n)

s◦↑

S†p(V
◦
n,–)sp

s†◦n ◦s†↓
s†↑

extracted from (5.24) is a Cartesian diagram.
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Proof Let S‡p(V
◦
n,–)sp be the actual fiber product in both cases. Take

an object K p◦ ∈ K(V◦
n)

p
sp. We have to show that the natural morphism

s‡ : S†p(V◦
n,K

p◦)sp → S‡p(V
◦
n,K

p◦)sp is an isomorphism. Since s‡ is a mor-
phismof étale schemes overF p , it suffices to show that s‡(κ) is an isomorphism
for every perfect field κ containing F

 
p .

For (1), by Lemma 5.10.4(1), an object in S‡p(V
◦
n,K

p◦)sp(S) is given by a
pair of objects:

(A0, λ0, η
p
0 ; A•, λ•, ηp•; A• × A0, λ

• ×�λ0, ηp• × (idA0)∗)
∈ S•

p(V
◦
n,K

p◦)sp(κ),
(A0, λ0, η

p
0 ; A◦

� , λ
◦
� , η

p◦
� ; A• × A0, λ

• ×�λ0, ηp• × (idA0)∗;ψ�)
∈ S†p(V

◦
n+1,K

p◦
n+1)(κ).

Let A◦ be the cokernel of the kernel of the composite map A◦
�

ψ�−→ A•× A0 →
A•, andψ : A◦ → A• the inducedmap. Letλ◦ be the unique quasi-polarization
of A◦ satisfying � · λ◦ = ψ∨ ◦ λ• ◦ ψ . Since λ◦� is p-principal and we have

� ·λ◦� = ψ∨
� ◦ (λ• ×� ·λ0) ◦ψ�, the composite map A◦

�

ψ�−→ A• × A0 → A0
splits. Thus, the natural map A◦

� → A◦ × A0 is an isomorphism. Then λ◦ is
p-principal, and we obtain an object

(A0, λ0, η
p
0 ; A◦, λ◦, ηp◦; A•, λ•, ηp•;ψ) ∈ S†p(V

◦
n,K

p◦
n )(κ)

= S†p(V
◦
n,K

p◦)sp(κ),

whereηp◦ is chosen such thatDefinition 5.5.1(c) is satisfied. In otherwords,we
obtain a morphism from S‡p(V

◦
n,K

p◦)sp(κ) to S†p(V◦
n,K

p◦)sp(κ). It is straight-
forward to check that it is an inverse to the morphism s‡(κ).

For (2), an object in S‡p(V
◦
n,K

p◦)sp(κ) is given by a pair of objects:

(A0, λ0, η
p
0 ; A◦, λ◦, ηp◦) ∈ S◦

p(V
◦
n,K

p◦
n )(κ),

(A0, λ0, η
p
0 ; A◦ × A0, λ

◦ × λ0, ηp◦ × (idA0)∗; A•
� , λ

•
� , η

p•
� ;ψ�)

∈ S†p(V
◦
n+1,K

p◦
n+1)(κ).

Let A•∨ be the cokernel of the kernel of the composite map A•∨
�

ψ∨
�−−→ A◦∨ ×

A∨
0 → A◦∨, and ψ∨ : A◦∨ → A•∨ the induced map. Taking dual, we obtain

a map ψ : A◦ → A• and an induced map δ• : A• × A0 → A•
� . Let λ

• be the
unique quasi-polarization of A• satisfying� · λ◦ = ψ∨ ◦ λ• ◦ψ . Since λ•� is
p-principal and we have λ•×� ·λ0 = δ•∨ ◦λ•� ◦δ•, we know that ker λ•[p∞]

123



On the Beilinson–Bloch–Kato conjecture 245

is contained in A•[p] of rank p2, and we obtain an object(
(A0, λ0, η

p
0 ; A◦, λ◦, ηp◦; A•, λ•, ηp•;ψ),

(A0, λ0, η
p
0 ; A•, λ•, ηp•; A•

� , λ
•
� , η

p•
� ; δ•)

)
∈ S†p(V

◦
n,K

p◦)sp(κ),

whereηp• is chosen such thatDefinition 5.5.1(c) is satisfied. In otherwords,we
obtain a morphism from S‡p(V

◦
n,K

p◦)sp(κ) to S†p(V◦
n,K

p◦)sp(κ). It is straight-
forward to check that it is an inverse to the morphism s‡(κ). ��
Definition 5.10.9 We define B†

p(V
◦
n,–)sp to be the fiber product indicated in

the following Cartesian diagram

B†
p(V

◦
n,–)sp

π
†
sp

b†↓

S†p(V
◦
n,–)sp
s†↓

B†
p(V

◦
n,–n)

π
†
n S†p(V

◦
n,–n)

in Fun(K(V◦
n)

p
sp × T,Sch/F p )/Tp .

By the universal property of Cartesian diagrams, we obtain a unique mor-
phism

b†•sp : B†
p(V

◦
n,–)sp → B•

p(V
◦
n,–)sp

rendering the front lower-left cube of (5.24) commute. Finally, an easy diagram
chasing indicates that we have a unique morphism

b†↑ : B†
p(V

◦
n,–)sp → B†

p(V
◦
n+1,–n+1)

rendering the entire diagram (5.24) commute. Thus, we obtain our desired
diagram (5.24).

Remark 5.10.10 By Proposition 5.10.6 and Theorem 5.5.3(1), one can show
that when n is odd, the square

B†
p(V

◦
n+1,–n+1)

ι
†
n+1

M†
p(V

◦
n+1,–n+1)

B†
p(V

◦
n,–)sp

ι
†
n◦b†↓

b†↑

M†
p(V

◦
n,–n)

m†
↑

extracted from the diagram (5.24) is Cartesian.
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Remark 5.10.11 By Lemma 5.10.4(1), Definitions 5.10.5, 5.10.7, and 5.10.9,
the four downward arrows in the diagram (5.24) are isomorphisms when n is
even.

At the fourth stage of functoriality, we compare the special morphisms
for basic correspondences and for Deligne–Lusztig varieties. Take a point
s† ∈ S†p(V

◦
n,K

p◦)sp(κ) for a perfect field κ containing F
 
p . Put

s†n := s†↓(s
†), s†n+1 := s†↑(s

†);
s◦n := s†◦n (s

†
n), s◦n+1 := s†◦n+1(s

†
n+1);

s• := s†•sp (s†), s•n := s†•n (s
†
n), s•n+1 := s†•n+1(s

†
n+1).

Denote by B†
s†
, B†

s†n
, B†

s†n+1

, B◦
s◦n , B

◦
s◦n+1

, B•
s• , B

•
s•n , and B•

s•n+1
their preimages

under π†
sp, π

†
n , π

†
n+1, π

◦
n , π

◦
n+1, π

•
sp, π

•
n , and π

•
n+1, respectively.

Proposition 5.10.12 Let the notation be as above. The following diagram

B◦
s◦n+1

ζ ◦
s◦n+1

P(Vs◦n+1
)

B†

s†n+1

b†◦n+1

b†•n+1

ζ
†

s†n+1
P(Vs†n+1

)

B•
s•n+1

ζ •
s•n+1

DL•
s•n+1

B◦
s◦n

b◦↑

ζ ◦
s◦n

P(Vs◦n )

B†
s†

b†↑

b†◦n ◦b†↓

b†•sp

ζ
†

s†n
◦b†↓

P(Vs†n
)

B•
s•

b•↑

ζ •
s•n ◦b

•↓
DL•

s•n

δs•↑

in Schκ commutes, where

• ζ ◦s◦n and ζ ◦s◦n+1
are the isomorphisms in Theorem 5.3.4;

• ζ •s•n and ζ •s•n+1
are the isomorphisms in Theorem 5.4.4(4);

• ζ †
s†n

and ζ †
s†n+1

are the isomorphisms in Theorem 5.5.3(2);
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• P(Vs†n
) → P(Vs◦n ) and P(Vs†n+1

) → P(Vs◦n+1
) are closed embeddings in

Remark 5.5.4(1);
• P(Vs†n

) → DL•
s•n = DL•(Vs•n , { , }s•n ) and P(Vs†n+1

) → DL•
s•n+1

=
DL•(Vs•n+1

, { , }s•n+1
) are closed embeddings in Remark 5.5.4(2);

• P(Vs◦n )→ P(Vs◦n+1
) is the morphism induced by the obvious κ-linear (sur-

jective) map Vs◦n+1
→ Vs◦n ;

• δs•↑ is the morphism in Construction A.2.3 with respect to the map
δs• : Vs•n ,� → Vs•n+1

induced by δ• : A• × A0 → A•
� ; and

• P(Vs†n
)→ P(Vs†n+1

) is the restriction of δs•↑, in view of Remark 5.5.4(2).

In particular, b•↑ : B•
s• → B•

s•n+1
is an isomorphism when n is even.

Proof The proof is very similar to Proposition 4.5.6, which we leave to the
readers. The last assertion follows as b•↓ : B•

s• → B•
s•n is always an isomor-

phism, and δs•↑ is an isomorphism when n is even. ��
At thefinal stage of functoriality,we relate the specialmorphisms for sources

of basic correspondences to Shimura sets under the uniformization maps υ◦
(5.4), υ• (5.9), and υ† (5.11). Recall that we have data (V◦

n, {�◦
n,q}q|p) and

(V◦
n+1, {�◦

n+1,q}q|p).
Notation 5.10.13 We choose a lattice chain �◦

n,p ⊆ �•
n,p ⊆ p−1�◦

n,p of
V◦

n ⊗F Fp and a lattice chain�◦
n+1,p ⊆ �•

n+1,p ⊆ p−1�◦
n+1,p of V

◦
n+1 ⊗F Fp

satisfying the requirements in Construction 5.4.6 for N = n, n + 1, for which
we assume that (�•

n,p)� ⊆ �•
n+1,p ⊆ p−1(�•

n,p)
∨
� holds. We now introduce

various open compact subgroups at p.

• For N ∈ {n, n + 1}, we have K◦
N ,p from Construction 5.3.6, K•

N ,p from

Construction 5.4.6, and K†
N ,p = K◦

N ,p ∩ K•
N ,p from Construction 5.5.5.

• Put K•
sp,p := K•

n,p ∩ K•
n+1,p (as a subgroup of K•

n,p) and K•
sp,p := K•

sp,p ×∏
q|p,q �=pK

◦
n,q.

• Put K†
sp,p := K•

sp,p ∩ K◦
n,p.
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For later use, we also introduce natural maps

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

sh◦↑ : Sh(V◦
n,–nK

◦
n,p)→ Sh(V◦

n+1,–n+1K
◦
n+1,p),

sh•↑ : Sh(V◦
n,–nK

•
sp,p)→ Sh(V◦

n+1,–n+1K
•
n+1,p),

sh•↓ : Sh(V◦
n,–nK

•
n,p)→ Sh(V◦

n,–nK
•
sp,p),

sh†↑ : Sh(V◦
n,–nK

†
sp,p)→ Sh(V◦

n+1,–n+1K
†
n+1,p),

sh†↓ : Sh(V◦
n,–nK

†
n,p)→ Sh(V◦

n,–nK
†
sp,p),

sh†◦n : Sh(V◦
n,–nK

†
n,p)→ Sh(V◦

n,–nK
◦
n,p),

sh†•n : Sh(V◦
n,–nK

†
n,p)→ Sh(V◦

n,–nK
•
n,p),

sh†◦n+1 : Sh(V◦
n+1,–n+1K

†
n+1,p)→ Sh(V◦

n+1,–n+1K
◦
n+1,p),

sh†•n+1 : Sh(V◦
n+1,–n+1K

†
n+1,p)→ Sh(V◦

n+1,–n+1K
•
n+1,p),

sh†•sp : Sh(V◦
n,–nK

†
sp,p)→ Sh(V◦

n,–nK
•
sp,p),

in Fun(K(V◦)p
sp,Set). Note that sh◦↑ has already appeared in Remark 5.10.2.

Similar to Construction 4.4.2, we may construct two uniformization maps

υ•
sp : S•

p(V
◦
n,–)sp(Fp)→ Sh(V◦

n,–nK
•
sp,p)× Tp(Fp), (5.25)

υ†sp : S†p(V◦
n,–)sp(Fp)→ Sh(V◦

n,–nK
†
sp,p)× Tp(Fp) (5.26)

in Fun(K(V◦
n)

p
sp × T,Set)/Tp(Fp)

, which are isomorphisms. We leave the
details to the readers.
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Proposition 5.10.14 The following diagram

S ◦p (V
◦n+

1 ,–
n+

1 )(
F

p
)

υ ◦n+
1

(5.4)
Sh
(V

◦n+
1 ,–

n+
1 K

◦n+
1
,p
)×

T
p (

F
p
)

S
†p (V

◦n+
1 ,–

n+
1 )(

F
p
)

s †◦n+
1
(
F

p
)

s †•n+
1
(
F

p
)

υ
†n+

1

(5.11)
Sh
(V

◦n+
1 ,–

n+
1 K

†n+
1
,p
)×

T
p (

F
p
)

sh
†◦n+

1 ×
id

sh
†•n+

1 ×
id

S •p (V
◦n+

1 ,–
n+

1 )(
F

p
)

υ •n+
1

(5.9)
Sh
(V

◦n+
1 ,–

n+
1 K

•n+
1
,p
)×

T
p (

F
p
)

S
†p (V

◦n
,–
)sp (

F
p
)

s †•sp
(
F

p
)

s †↑
(
F

p
)

s †↓
(
F

p
)

υ
†sp

(5.26)
Sh
(V

◦n
,–

n K
†sp
,p
)×

T
p (

F
p
)

sh
†•sp ×

id

sh
†↓ ×

id

sh
†↑ ×

id

S •p (V
◦n
,–
)sp (

F
p
)

s •↑
(
F

p
)

s •↓
(
F

p
)

υ •sp

(5.25)
Sh
(V

◦n
,–

n K
•sp
,p
)×

T
p (

F
p
)

sh •↑ ×
id

sh •↓ ×
id

S ◦p (V
◦n
,–

n
)(

F
p
)

s ◦↑
(
F

p
)

υ ◦n

(5.4)
Sh
(V

◦n
,–

n K
◦n
,p
)×

T
p (

F
p
)

sh ◦↑ ×
id

S
†p (V

◦n
,–

n
)(

F
p
)

s †◦n
(
F

p
)

s †•n
(
F

p
)

υ
†n

(5.11)
Sh
(V

◦n
,–

n K
†n
,p
)×

T
p (

F
p
)

sh
†◦n ×

id

sh
†•n ×

id

S •p (V
◦n
,–

n
)(

F
p
)

υ •n

(5.9)
Sh
(V

◦n
,–

n K
•n
,p
)×

T
p (

F
p
)

in Fun(K(V◦
n)

p
sp×T,Set)/Tp(Fp)

commutes (in which all uniformization maps

are isomorphisms). Moreover, the induced actions of Gal(Fp/F
 
p ) on all terms

on the right-hand side factor through the projection to the factor Tp(Fp).

Proof This follows from Constructions 5.3.6, 5.4.6, and 5.5.5. ��
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Remark 5.10.15 When n = 1, we have the diagram (5.24) in which all terms
not in the top or back layers are empty. Propositions 5.10.12 and 5.10.14 can
be modified in the obvious way.

5.11 First geometric reciprocity law

In this subsection, we state and prove a theorem we call first geometric reci-
procity law, which can be regarded a geometric template for the first explicit
reciprocity law studied in Sect. 7.2 once we plug in the automorphic input.

We maintain the setup in Sect. 5.10. However, we allow – = (–n,–n+1)

to be an object of K(V◦
n)

p × K(V◦
n+1)

p, rather than K(V◦
n)

p
sp. Denote by n0

and n1 the unique even and odd numbers in {n, n + 1}, respectively. Write
n0 = 2r0 and n1 = 2r1 + 1 for unique integers r0, r1 � 1. In particular, we
have n = r0 + r1. Let L be a p-coprime coefficient ring.

To ease notation, we put X?
nα := X?

p(V
◦
nα ,–nα ) for meaningful triples

(X, ?, α) ∈ {M,M,B,S} × { , η, ◦, •, †} × {0, 1}.
Notation 5.11.1 We introduce following objects.

(1) Put P := Mn0 ×Tp Mn1 .

(2) For (?0, ?1) ∈ {◦, •, †}2, put P?0,?1 := M?0
n0 ×Tp M?1

n1 , which is a closed
subscheme of P.20

(3) Let σ : Q → P be the blow-up along the subscheme P◦,◦, which is a
morphism in Fun(K(V◦

n)
p × K(V◦

n+1)
p × T,Sch/Z p )/Tp .

(4) For (?0, ?1) ∈ {◦, •, †}2, let Q?0,?1 be the strict transform of P?0,?1 under
σ , which is a closed subscheme of Q.

(5) Let γ ?0,?1?′0,?′1
: P?0,?1 → P?

′
0,?

′
1 be the closed embedding if P?0,?1 is contained

in P?
′
0,?

′
1 , and δ?0,?1?′0,?′1

: Q?0,?1 → Q?′0,?′1 the closed embedding if Q?0,?1 is

contained in Q?′0,?′1 .

Suppose that – is taken in the subcategory K(V◦
n)

p
sp.

(6) LetP� be the graph ofm↑ : Mn → Mn+1 (5.21) overTp inFun(K(V◦
n)

p
sp×

T,Sch/Z p )/Tp , as a closed subscheme of P.

(7) For ? = •, ◦, let P?� be the graph of m?↑ : M?
n → M?

n+1 (5.22) over Tp in

Fun(K(V◦
n)

p
sp × T,Sch/F p )/Tp , as a closed subscheme of P?,?.

(8) Let Q� be the strict transform of P� under σ , which is a closed subscheme
of Q.

20 Recall from Notation 3.3.6(5) that P is P ⊗Z p
F
 
p .
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Lemma 5.11.2 The two specialization maps

Hi
T,c(Q ⊗Zp2

Qp, L)→ Hi
T,c(Q,R	L),

Hi
T(Q ⊗Zp2

Qp, L)→ Hi
T(Q,R	L),

are both isomorphisms.

Proof When Q is proper, this is simply the proper base change. When Q is
not proper, this again follows from [43, Corollary 5.20]. ��
Lemma 5.11.3 The scheme Q (valued at any object of K(V◦

n)
p
sp) is strictly

semistable over Z
 
p of relative dimension 2n − 1. Moreover, we have

(1) The reduction graph of Q is as follows

Q•,◦ Q†,◦

Q•,†

Q•,◦∩Q†,†

Q◦,◦

Q◦,†

Q•,•
Q†,•

Q†,†

Q◦,•

Q◦,•∩Q†,†

so that
⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Q(0) = Q◦,◦∐Q◦,•∐Q•,•∐Q•,◦,

Q(1) = Q◦,†∐Q†,•∐Q•,†∐Q†,◦∐Q†,†,

Q(2) = (Q•,◦ ∩ Q†,†)
∐
(Q◦,• ∩ Q†,†),

Q(c) = ∅, for c � 3.

Here, Q(c) denotes the disjoint union of the strata of Q of codimension c.
(2) For the morphism σ , we have that

123



252 Y. Liu et al.

• the induced morphism σ : Q?0,?1 → P?0,?1 is an isomorphism if ?0 �=?1;
• the induced morphism σ : Q?0,?1 → P?0,?1 is the blow-up along P†,† if
(?0, ?1) ∈ {(◦, ◦), (•, •)};

• the induced morphism σ : Q†,† → P†,† is a trivial P
1-bundle;

• the induced morphisms σ : Q•,◦ ∩Q†,† → P†,† and σ : Q◦,• ∩Q†,† →
P†,† are both isomorphisms.

(3) The natural map

σ ∗ : Hi
T(P

?0,?1, Oλ)→ Hi
T(Q

?0,?1, Oλ)

is injective, and moreover an isomorphism if ?0 �=?1.
(4) For (?0, ?1) ∈ {(◦, ◦), (•, •)}, the map

(δ
†,†
?0,?1

)! ◦ σ ∗ : Hi−2
T (P†,†, Oλ(−1))→ Hi

T(Q
?0,?1, Oλ)

is injective; and we have

Hi
T(Q

?0,?1, Oλ) = σ ∗Hi
T(P

?0,?1, Oλ)
⊕
(δ

†,†
?0,?1

)!σ ∗Hi−2
T (P†,†, Oλ(−1)).

(5) If we denote by f ∈ H2
T(Q

†,†, Oλ(1)) the cycle class of an arbitrary T-orbit
of sections of the trivial P

1-fibration σ : Q†,† → P†,†, then the map

(f∪) ◦ σ ∗ : Hi−2
T (P†,†, Oλ(−1))→ Hi

T(Q
†,†, Oλ)

is injective; and we have

Hi
T(Q

†,†, Oλ) = σ ∗Hi
T(P

†,†, Oλ)
⊕

f ∪ σ ∗Hi−2
T (P†,†, Oλ(−1)).

Proof Parts (1,2) follow from a standard computation of blow-up. Parts (3–5)
follow from (2). ��

Let (Ep,q
s , dp,q

s ) be theweight spectral sequence abutting to the cohomology
Hp+q
T (Q,R	Oλ(n)),21 whose first page is as follows:

21 Strictly speaking, the differential maps dp,q
s depend on the choice of the ordering of (types

of) irreducible components of Q, which we choose to be the clockwise order Q◦,◦ < Q◦,• <
Q•,• < Q•,◦.
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q
�

2n+
1

···
···

···
···

···

q=
2n

H
2n−

4
T

(Q
(2
),

O
λ
(n−

2
))

d −
2
,2n

1
H
2n−

2
T

(Q
(1
),

O
λ
(n−

1
))

d −
1
,2n

1
H
2nT
(Q
(0
),

O
λ
(n
))

⊕
H
2n−

2
T

(Q
(2
),

O
λ
(n−

1
))

d
0
,2n

1
H
2nT
(Q
(1
),

O
λ
(n
))

d
1
,2n

1
H
2nT
(Q
(2
),

O
λ
(n
))

q=
2n−

1
H
2n−

5
T

(Q
(2
),

O
λ
(n−

2
)) d −

2
,2n−

1
1

H
2n−

3
T

(Q
(1
),

O
λ
(n−

1
)) d −

1
,2n−

1
1

H
2n−

1
T

(Q
(0
),

O
λ
(n
))

⊕
H
2n−

3
T

(Q
(2
),

O
λ
(n−

1
))

d
0
,2n−

1
1

H
2n−

1
T

(Q
(1
),

O
λ
(n
))

d
1
,2n−

1
1

H
2n−

1
T

(Q
(2
),

O
λ
(n
))

q=
2n−

2
H
2n−

6
T

(Q
(2
),

O
λ
(n−

2
)) d −

2
,2n−

2
1

H
2n−

4
T

(Q
(1
),

O
λ
(n−

1
)) d −

1
,2n−

2
1

H
2n−

2
T

(Q
(0
),

O
λ
(n
))

⊕
H
2n−

4
T

(Q
(2
),

O
λ
(n−

1
))

d
0
,2n−

2
1

H
2n−

2
T

(Q
(1
),

O
λ
(n
))

d
1
,2n−

2
1

H
2n−

2
T

(Q
(2
),

O
λ
(n
))

q
�

2n−
3

···
···

···
···

···

E
p
,q

1
p=

−
2

p=
−
1

p=
0

p=
1

p=
2

(5.27)

with E
p,q
1 = 0 if |p| > 2.

Construction 5.11.4 For α = 0, 1, let ξα ∈ H2
T(B

◦
nα , L(1)) be the first Chern

class of the tautological quotient line bundle on B◦
nα . We construct four new

pairs of maps in Fun(K(V◦
n)

p × K(V◦
n+1)

p,Mod(L)) as follows:
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

inc◦,†! : L[Sh(V◦
n0,–n0K

◦
n0,p)] ⊗L L[Sh(V◦

n1,–n1K
◦
n1,p)]

∼−→ H0
T(S

◦
n0, L)⊗L H0

T(S
◦
n1, L) = H0

T(S
◦
n0 ×Tp

S◦
n1, L)

(π◦
n0

×π◦
n1
)∗−−−−−−−→ H0

T(B
◦
n0 ×Tp

B◦
n1, L)

∪ξ r0−1
0 ∪ξ r1−1

1−−−−−−−−→ H2(n−2)
T (B◦

n0 ×Tp
B◦

n1, L(n − 2))

(ι◦n0×ι◦n1 )!−−−−−→ H2(n−2)
T (M◦

n0 ×Tp
M◦

n1, L(n − 2))

(id×m†◦
n1 )

∗
−−−−−−→ H2(n−2)

T (M◦
n0 ×Tp

M†
n1, L(n − 2))

(id×m†•
n1 )!−−−−−→ H2(n−1)

T,c (M◦
n0 ×Tp

M•
n1, L(n − 1))

= H2(n−1)
T,c (P◦,•, L(n − 1)),

inc∗◦,† : H2n
T (P

◦,•, L(n)) = H2n
T (M

◦
n0 ×Tp

M•
n1, L(n))

(id×m†•
n1 )

∗
−−−−−−→ H2n

T (M
◦
n0 ×Tp

M†
n1, L(n))

(id×m†◦
n1 )!−−−−−→ H2n+2

T (M◦
n0 ×Tp

M◦
n1, L(n + 1))

(ι◦n0×ι◦n1 )∗−−−−−−→ H2n+2
T (B◦

n0 ×Tp
B◦

n1, L(n + 1))

∪ξ r0−1
0 ∪ξ r1−1

1−−−−−−−−→ H4n−2
T (B◦

n0 ×Tp
B◦

n1, L(2n − 1))

(π◦
n0

×π◦
n1
)!−−−−−−→ H0

T(S
◦
n0 ×Tp

S◦
n1, L) = H0

T(S
◦
n0, L)⊗L H0

T(S
◦
n1, L)

∼−→ L[Sh(V◦
n0,–n0K

◦
n0,p)] ⊗L L[Sh(V◦

n1,–n1K
◦
n1,p)];
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⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

inc◦,•! : L[Sh(V◦
n0,–n0K

◦
n0,p)] ⊗L L[Sh(V◦

n1,–n1K
•
n1,p)]

∼−→ H0
T(S

◦
n0, L)⊗L H0

T(S
•
n1, L) = H0

T(S
◦
n0 ×Tp

S•
n1, L)

(π◦
n0

×π•
n1
)∗−−−−−−−→ H0

T(B
◦
n0 ×Tp

B•
n1, L)

∪ξ r0−1
0−−−−→ H2(r0−1)

T (B◦
n0 ×Tp

B•
n1, L(r0 − 1))

(ι◦n0×ι•n1 )!−−−−−→ H2(n−1)
T,c (M◦

n0 ×Tp
M•

n1, L(n − 1))

= H2(n−1)
T,c (P◦,•, L(n − 1)),

inc∗◦,• : H2n
T (P

◦,•, L(n)) = H2n
T (M

◦
n0 ×Tp

M•
n1, L(n))

(ι◦n0×ι•n1 )∗−−−−−−→ H2n
T (B

◦
n0 ×Tp

B•
n1, L(n))

∪ξ r0−1
0−−−−→ H2(n0−1+r1)

T (B◦
n0 ×Tp

B•
n1, L(n0 − 1+ r1))

(π◦
n0

×π•
n1
)!−−−−−−→ H0

T(S
◦
n0 ×Tp

S•
n1, L) = H0

T(S
◦
n0, L)⊗L H0

T(S
•
n1, L)

∼−→ L[Sh(V◦
n0,–n0K

◦
n0,p)] ⊗L L[Sh(V◦

n1,–n1K
•
n1,p)];
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

inc•,†! : L[Sh(V◦
n0,–n0K

•
n0,p)] ⊗L L[Sh(V◦

n1,–n1K
◦
n1,p)]

∼−→ H0
T(S

•
n0, L)⊗L H0

T(S
◦
n1, L) = H0

T(S
•
n0 ×Tp

S◦
n1, L)

(π◦
n0

×π◦
n1
)∗−−−−−−−→ H0

T(B
•
n0 ×Tp

B◦
n1, L)

∪ξ r1−1
1−−−−→ H2r1−2

T (B•
n0 ×Tp

B◦
n1, L(r1 − 1))

(id×ι◦n1 )!−−−−−→ H2r1−2
T (B•

n0 ×Tp
M◦

n1, L(r1 − 1))

(id×m†◦
n1 )

∗
−−−−−−→ H2r1−2

T (B•
n0 ×Tp

M†
n1, L(r1 − 1))

(ι•n0×m†•
n1 )!−−−−−−→ H2(n−1)

T,c (M•
n0 ×Tp

M•
n1, L(n − 1))

= H2(n−1)
T,c (P•,•, L(n − 1)),

inc∗•,† : H2n
T (P

•,•, L(n)) = H2n
T (M

•
n0 ×Tp

M•
n1, L(n))

(ι•n0×m†•
n1 )

∗
−−−−−−→ H2n

T (B
•
n0 ×Tp

M†
n1, L(n))

(id×m†◦
n1 )!−−−−−→ H2n+2

T (B•
n0 ×Tp

M◦
n1, L(n + 1))

(id×ι◦n1 )∗−−−−−→ H2n+2
T (B•

n0 ×Tp
B◦

n1, L(n + 1))

∪ξ r1−1
1−−−−→ H2(r0+n1−1)

T (B•
n0 ×Tp

B◦
n1, L(r0 + n1 − 1))

(π•
n0

×π◦
n1
)!−−−−−−→ H0

T(S
•
n0 ×Tp

S◦
n1, L) = H0

T(S
•
n0, L)⊗L H0

T(S
◦
n1, L)

∼−→ L[Sh(V◦
n0,–n0K

•
n0,p)] ⊗L L[Sh(V◦

n1,–n1K
◦
n1,p)];
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

inc•,•! : L[Sh(V◦
n0,–n0K

•
n0,p)] ⊗L L[Sh(V◦

n1,–n1K
•
n1,p)]

∼−→ H0
T(S

•
n0, L)⊗L H0

T(S
•
n1, L) = H0

T(S
•
n0 ×Tp

S•
n1, L)

(π•
n0

×π•
n1
)∗−−−−−−−→ H0

T(B
•
n0 ×Tp

B•
n1, L)

(ι•n0×ι•n1 )!−−−−−→ H2(n−1)
T,c (M•

n0 ×Tp
M•

n1, L(n − 1))

= H2(n−1)
T,c (P•,•, L(n − 1)),

inc∗•,• : H2n
T (P

•,•, L(n)) = H2n
T (M

•
n0 ×Tp

M•
n1, L(n))

(ι•n0×ι•n1 )∗−−−−−−→ H2n
T (B

•
n0 ×Tp

B•
n1, L(n))

(π•
n0

×π•
n1
)!−−−−−−→ H0

T(S
•
n0 ×Tp

S•
n1, L) = H0

T(S
•
n0, L)⊗L H0

T(S
•
n1, L)

∼−→ L[Sh(V◦
n0,–n0K

•
n0,p)] ⊗L L[Sh(V◦

n1,–n1K
•
n1,p)].

In fact, the two maps in each pair are Poincaré dual to each other.

Theorem 5.11.5 (First geometric reciprocity law) Take an object K p◦ ∈
K(V◦

n)
p
sp. For the class cl(P•�) ∈ H2n

T (P
•,•, L(n)), we have

(1) For f ∈ L[Sh(V◦
n0,K

p◦
n0 K

•
n0,p)] ⊗L L[Sh(V◦

n1,K
p◦
n1 K

◦
n1,p)], the identity

∫ T

P•,•
cl(P•�) ∪ inc•,†! ( f ) =

∑
s∈Sh(V◦

n,K
p◦
n K•

sp,p)

(T•◦
n1,p f )(sh•↓(s), sh•↑(s))

holds.
(2) For f ∈ L[Sh(V◦

n0,K
p◦
n0 K

•
n0,p)] ⊗L L[Sh(V◦

n1,K
p◦
n1 K

•
n1,p)], the identity

∫ T

P•,•
cl(P•�) ∪ inc•,•! ( f ) =

∑
s∈Sh(V◦

n,K
p◦
n K•

sp,p)

(T•
n1,p f )(sh•↓(s), sh•↑(s))

holds.
(3) For f ∈ L[Sh(V◦

n0,K
p◦
n0 K

◦
n0,p)] ⊗L L[Sh(V◦

n1,K
p◦
n1 K

◦
n1,p)], the identity

∫ T

P•,•
cl(P•�) ∪

(
inc•,†! (T

•◦
n0,p ⊗ I◦

n1,p f )+ (p + 1)2inc•,•! (T
•◦
n0,p ⊗ T•◦

n1,p f )
)

=
∑

s∈Sh(V◦
n,K

p◦
n K◦

n,p)

(I◦
n0,p ⊗ T◦

n1,p f )(s, sh◦↑(s))

holds.
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Here,
∫ T
P•,• denotes the T-trace map in Definition 3.5.8; and sh◦↑, sh•↑, and sh•↓

are maps in Notation 5.10.13.

The intersection number in (3) is the actual one that is responsible for the
first explicit reciprocity law which will be discussed in Sect. 7.2.

Proof We first show (3) assuming (1) and (2). By (1), (2), and Lemma B.4.4,
we have for f ∈ L[Sh(V◦

n0,K
p◦
n0 K

◦
n0,p)] ⊗L L[Sh(V◦

n1,K
p◦
n1 K

◦
n1,p)],

∫ T

P•,•
cl(P•�) ∪

(
inc•,†! (T

•◦
n0,p ⊗ I◦

n1,p f )+ (p + 1)2inc•,•! (T
•◦
n0,p ⊗ T•◦

n1,p f )
)

=
∑

s∈Sh(V◦
n ,K

p◦
n K•

sp,p)

(T•◦
n0,p ⊗ (T•◦

n1,p ◦ I◦
n1,p) f )(sh•↓(s), sh•↑(s))

+
∑

s∈Sh(V◦
n ,K

p◦
n K•

sp,p)

(T•◦
n0,p ⊗ ((p + 1)2T•

n1,p ◦ T•◦
n1,p) f )(sh•↓(s), sh•↑(s))

=
∑

s∈Sh(V◦
n ,K

p◦
n K•

sp,p)

(T•◦
n0,p ⊗ (T•◦

n1,p ◦ I◦
n1,p) f )(sh•↓(s), sh•↑(s))

+
∑

s∈Sh(V◦
n ,K

p◦
n K•

sp,p)

(T•◦
n0,p ⊗ (T•◦

n1,p ◦ T◦
n1,p − T•◦

n1,p ◦ I◦
n1,p) f )(sh•↓(s), sh•↑(s))

=
∑

s∈Sh(V◦
n ,K

p◦
n K•

sp,p)

(T•◦
n0,p ⊗ (T•◦

n1,p ◦ T◦
n1,p) f )(sh•↓(s), sh•↑(s))

which, by Lemma 5.11.6 below, equals

∑
s∈Sh(V◦

n,K
p◦
n K◦

n,p)

(I◦
n0,p ⊗ T◦

n1,p f )(s, sh◦↑(s)).

Thus, (3) is proved.
Now we consider (1) and (2) simultaneously. Similar to the maps inc•! and

inc†! in Construction 5.8.3, we have maps

inc•α : L[Sh(V◦
nα ,K

p◦
nαK

•
nα,p)] → H2(rα+α−1)

T,c (M•
nα , L(rα + α − 1)),

inc†α : L[Sh(V◦
nα ,K

p◦
nαK

◦
nα,p)] → H2(rα+α−1)

T,c (M•
nα , L(rα + α − 1)),

for α = 0, 1. Note that we now take HT,c for the target of the maps rather than
HT. Moreover, in the calculation below, we will frequently use the following
formula for intersection number pairings: for a finite morphism i : X → Y of
smooth schemes over an algebraically closed field, and proper smooth sub-
schemes X ′ of X and Y ′ of Y , we have

〈X�, X ′ × Y ′〉X×Y = 〈X ′�, X ′ × Y ′〉X ′×Y = 〈i∗X ′, Y ′〉Y
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where X� and X ′� denote by the graphs of i and i | X ′, respectively. The proof
for (1) and (2) differs by the parity of n.

We first consider the case where n = n0 is even. By Lemma 5.10.4(1)
and Proposition 5.10.14, sh•↓ is an isomorphism. Take a point s•n ∈
Sh(V◦

n,K
p◦
n K•

n,p). Let s• be the unique element in Sh(V◦
n,K

p◦
n K•

sp,p) such
that s•n = sh•↓(s•), and put s•n+1 := sh•↑(s•). By (the last assertion in) Propo-
sition 5.10.12, we have

m•
↑!inc

•
0(1s•n ) = inc•1(1s•n+1

).

For (1), we have for every s′n+1 ∈ Sh(V◦
n+1,K

p◦
n+1K

◦
n+1,p) the identity

∫ T

P•,•
cl(P•�) ∪ inc•,†! (1(s•n ,s′n+1)

) =
∫ T

M•
n+1

(
m•

↑!inc
•
0(1s•n )

)
∪ inc†1(1s′n+1

)

=
∫ T

M•
n+1

inc•0(1s•n+1
) ∪ inc†1(1s′n+1

).

Thus, (1) follows from Proposition 5.8.6. For (2), we have for every s′n+1 ∈
Sh(V◦

n+1,K
p◦
n+1K

•
n+1,p) the identity

∫ T

P•,•
cl(P•�) ∪ inc•,•! (1(s•n ,s′n+1)

) =
∫ T

M•
n+1

(
m•

↑!inc
•
0(1s•n )

)
∪ inc•1(1s′n+1

)

=
∫ T

M•
n+1

inc•0(1s•n+1
) ∪ inc•1(1s′n+1

).

Thus, (2) follows from Proposition 5.8.6.
We then consider the case where n = n1 is odd. Take a point s•n+1 ∈

Sh(V◦
n+1,K

p◦
n+1K

•
n+1,p). By Propositions 5.10.6, 5.10.12, and 5.10.14, we

have

m•∗↑ inc•0(1s•n+1
) = inc•1(sh•↓!sh

•∗↑ 1s•n+1
).

For (1), we have for every s′n ∈ Sh(V◦
n,K

p◦
n K◦

n,p) the identity

∫ T

P•,•
cl(P•�) ∪ inc•,†! (1(s•n+1,s

′
n)
) =
∫ T

M•
n

(
m•∗↑ inc•0(1s•n+1

)
)
∪ inc†1(1s′n )

=
∫ T

M•
n

inc•1(sh•↓!sh
•∗↑ 1s•n+1

) ∪ inc†1(1s′n ).
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Thus, (1) follows from Proposition 5.8.6. For (2), we have for every s′n ∈
Sh(V◦

n,K
p◦
n K•

n,p) the identity

∫ T

P•,•
cl(P•�) ∪ inc•,•! (1(s•n+1,s

′
n)
) =
∫ T

M•
n

(
m•∗↑ inc•0(1s•n+1

)
)
∪ inc•1(1s′n )

=
∫ T

M•
n

inc•1(sh•↓!sh
•∗↑ 1s•n+1

) ∪ inc•1(1s′n ).

Thus, (1) follows from Proposition 5.8.6.
The theorem is proved. ��

Lemma 5.11.6 For every

f ∈ L[Sh(V◦
n0,K

p◦
n0 K

•
n0,p)] ⊗L L[Sh(V◦

n1,K
p◦
n1 K

◦
n1,p)],

we have

∑
s∈Sh(V◦

n ,K
p◦
n K•

sp,p)

(T•◦
n1,p f )(sh•↓(s), sh•↑(s)) =

∑
s∈Sh(V◦

n ,K
p◦
n K◦

n,p)

(T◦•
n0,p f )(s, sh◦↑(s)).

Proof There are two cases.
When n is even, by Lemma 5.10.8(1) and Proposition 5.10.14, we have

∑
s∈Sh(V◦

n,K
p◦
n K•

sp,p)

(T•◦
n1,p f )(sh•↓(s), sh•↑(s))

=
∑

s∈Sh(V◦
n,K

p◦
n K†

sp,p)

f (sh†•n (sh
†
↓(s)), sh

†◦
n+1(sh

†
↑(s)))

=
∑

s∈Sh(V◦
n,K

p◦
n K†

sp,p)

f (sh†•n (sh
†
↓(s)), sh

◦↑(sh†◦n (sh
†
↓(s)))),

which, byLemma 5.10.4(1), Definition 5.10.7, and Proposition 5.10.14, equals

∑
s∈Sh(V◦

n ,K
p◦
n K†

n,p)

f (sh†•n (s), sh
◦↑(sh†◦n (s))) =

∑
s∈Sh(V◦

n ,K
p◦
n K◦

n,p)

(T◦•
n0,p f )(s, sh◦↑(s)).
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When n is odd, by Definition 5.10.7 and Proposition 5.10.14, we have

∑
s∈Sh(V◦

n,K
p◦
n K•

sp,p)

(T•◦
n1,p f )(sh•↓(s), sh•↑(s))

=
∑

s∈Sh(V◦
n,K

p◦
n K†

sp,p)

f (sh†◦n (sh
†
↓(s)), sh

•↑(sh†•sp (s)))

=
∑

s∈Sh(V◦
n,K

p◦
n K†

sp,p)

f (sh†◦n (sh
†
↓(s)), sh

†•
n+1(sh

†
↑(s))),

which, by Lemma 5.10.8(2) and Proposition 5.10.14, equals

∑
s∈Sh(V◦

n,K
p◦
n K◦

n,p)

(T◦•
n0,p f )(s, sh◦↑(s)).

The lemma is proved. ��
Construction 5.11.7 We constructs maps

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Inc∗◦,† : H2n
T (Q

(0), L(n))→ H2n
T (Q

◦,•, L(n))
σ!−→ H2n

T (P
◦,•, L(n))

inc∗◦,†−−−→ L[Sh(V◦
n0,–n0K

◦
n0,p)] ⊗L L[Sh(V◦

n1,–n1K
◦
n1,p)],

Inc∗◦,• : H2n
T (Q

(0), L(n))→ H2n
T (Q

◦,•, L(n))
σ!−→ H2n

T (P
◦,•, L(n))

inc∗◦,•−−−→ L[Sh(V◦
n0,–n0K

◦
n0,p)] ⊗L L[Sh(V◦

n1,–n1K
•
n1,p)],

Inc∗•,† : H2n
T (Q

(0), L(n))→ H2n
T (Q

•,•, L(n))
σ!−→ H2n

T (P
•,•, L(n))

inc∗•,†−−−→ L[Sh(V◦
n0,–n0K

•
n0,p)] ⊗L L[Sh(V◦

n1,–n1K
◦
n1,p)],

Inc∗•,• : H2n
T (Q

(0), L(n))→ H2n
T (Q

•,•, L(n))
σ!−→ H2n

T (P
•,•, L(n))

inc∗•,•−−−→ L[Sh(V◦
n0,–n0K

•
n0,p)] ⊗L L[Sh(V◦

n1,–n1K
•
n1,p)].

Define the map

∇ : H2n
T (Q

(0), L(n))→ L[Sh(V◦
n0,–n0K

◦
n0,p)] ⊗L L[Sh(V◦

n1,–n1K
◦
n1,p)]

to be the sum of the following four maps

(I◦
n0,p ⊗ I◦

n1,p) ◦ Inc∗◦,†, (p + 1)2(I◦
n0,p ⊗ T◦•

n1,p) ◦ Inc∗◦,•,
(p + 1)(T◦•

n0,p ⊗ I◦
n1,p) ◦ Inc∗•,†, (p + 1)3(T◦•

n0,p ⊗ T◦•
n1,p) ◦ Inc∗•,•.
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At last, we recall the construction of potential map from [47, §2.2]. For
r ∈ Z, put

Br (Q, L) := ker
(
δ∗0 : H2r

T (Q
(0), L(r))→ H2r

T (Q
(1), L(r))

)

and

Br (Q, L) := coker
(
δ1! : H2(2n−r−2)

T (Q(1), L(2n − r − 2))

→ H2(2n−r−1)
T (Q(0), L(2n − r − 1))

)
.

Here, in our case,

δ∗0 = (δ◦,†◦,•)∗ − (δ◦,†◦,◦)∗ + (δ†,••,•)∗ − (δ†,•◦,•)∗ + (δ•,†•,◦)∗ − (δ•,†•,•)∗ + (δ†,◦•,◦)∗

− (δ†,◦◦,◦)∗ + (δ†,†•,•)∗ − (δ†,†◦,◦)∗,
δ1! = (δ◦,†◦,•)! − (δ◦,†◦,◦)! + (δ†,••,•)! − (δ†,•◦,•)! + (δ•,†•,◦)! − (δ•,†•,•)! + (δ†,◦•,◦)!

− (δ†,◦◦,◦)! + (δ†,†•,•)! − (δ†,†◦,◦)!.

We define Br (Q, L)0 and B2n−r−1(Q, L)0 to be the kernel and the cokernel
of the tautological map

Br (Q, L)→ B2n−r−1(Q, L),

respectively. By [47, Lemma 2.4], the composite map

H2(r−1)
T (Q(0), L(r − 1))

δ∗0−→ H2(r−1)
T (Q(1), L(r − 1))

δ1!−→ H2r
T (Q

(0), L(r))

factors through a unique map

B2n−r (Q, L)0 → Br (Q, L)0

in Fun(K(V◦
n)

p × K(V◦
n+1)

p,Mod(L[Gal(Fp/F
 
p )])). Put

Cr (Q, L) := Br (Q, L)
Gal(Fp/F

 
p )

0 , Cr (Q, L) := Br (Q, L)0
Gal(Fp/F p )

.

Then we obtain the potential map

0r : C2n−r (Q, L)→ Cr (Q, L) (5.28)
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in Fun(K(V◦
n)

p × K(V◦
n+1)

p,Mod(L)).22 We will be most interested in the
case where r = n.

Remark 5.11.8 By the descriptions of theGalois actions inConstructions 5.3.6
and 5.4.6, the map ∇ in Construction 5.11.7 factors through the quotient map

H2n
T (Q

(0), L(n))→ H2n
T (Q

(0), L(n))Gal(Fp/F p )
,

hence restricts to a map

∇ : Cn(Q, L)→ L[Sh(V◦
n0,–n0K

◦
n0,p)] ⊗L L[Sh(V◦

n1,–n1K
◦
n1,p)]

in Fun(K(V◦
n)

p × K(V◦
n+1)

p,Mod(L)), via the canonical map Cn(Q, L) →
H2n
T (Q

(0), L(n))Gal(Fp/F p )
.

6 Tate classes and arithmetic level-raising

In this section, we study two important arithmetic properties of semistable
moduli schemes introduced in Sect. 5. The first is the existence of Tate cycles
when the rank is odd, studied in Sect. 6.2. The second is the arithmetic level-
raising when the rank is even, studied in Sects. 6.3 and 6.4. In Sect. 6.1, we
collect some preliminaries on automorphic representations and their motives.

Let N � 2 be an integer with r := � N
2 �.

6.1 Preliminaries on automorphic representations

In this subsection, we consider

• a relevant representation� of GLN (AF ) (Definition 1.1.3),
• a strong coefficient field E ⊆ C of� (Definition 3.2.5),
• a finite set �+

min of nonarchimedean places of F+ containing �+
� (Nota-

tion 3.1.4),
• a (possibly empty) finite set �+

lr of nonarchimedean places of F+ that are
inert in F ,23 strongly disjoint from �+

min (Definition 1.3.2),
• a finite set �+ of nonarchimedean places of F+ containing �+

min ∪�+
lr .

We then have, by Construction 3.1.10, the homomorphism

φ� : T
�+
N → OE .

22 In [47], Cr (Q, L) and Cr (Q, L) are denoted by Ar (Q, L)0 and Ar (Q, L)0, respectively.
23 Here, the subscript “lr” standards for “level-raising”.
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For every prime λ of E , we have a continuous homomorphism

ρ�,λ : �F → GLN (Eλ)

fromProposition 3.2.4(2) andDefinition 3.2.5, such that ρc�,λ and ρ
∨
�,λ(1−N )

are conjugate.
We choose

• a prime λ of E , whose underlying rational prime � satisfies�+
min∩�+

� = ∅
and � � ‖v‖(‖v‖2 − 1) for every v ∈ �+

lr ,• a positive integer m,
• a standard definite hermitian space V◦

N of rank N over F , together with a

self-dual
∏
v /∈�+∞∪�+

min∪�+
lr

OFv -lattice �
◦
N in V◦

N ⊗F A
�+∞∪�+

min∪�+
lr

F , sat-

isfying that (V◦
N )v is not split for v ∈ �+

lr when N is even,
• an object K◦

N ∈ K(V◦
N ) of the form

K◦
N =

∏
v∈�+

min∪�+
lr

(K◦
N )v ×

∏
v /∈�+∞∪�+

min∪�+
lr

U(�◦
N )(OF+

v
),

satisfying that when N is even, (K◦
N )v is a transferable open compact

subgroup of U(V◦
N )(F

+
v ) (Definition D.2.1)

24 for v ∈ �+
min and is a special

maximal subgroup of U(V◦
N )(F

+
v ) for v ∈ �+

lr ,• a special inert prime (Definition 3.3.4) p of F+ (with the underlying rational
prime p) satisfying

(P1) �+ does not contain p-adic places;
(P2) � does not divide p(p2 − 1);
(P3) there exists a CM type  containing τ∞ as in the initial setup of
Sect. 5 satisfying Q

 
p = Qp2 ;

(P4) if N is even, then Pα(�p)mod λm is level-raising special at p
(Definition 3.1.5); if N is odd, then Pα(�p)mod λ is Tate generic at
p (Definition 3.1.5);
(P5) Pα(�p)mod λ is intertwining generic at p (Definition 3.1.5);
(P6) if N is even, the natural map

(OE/λ
m)[Sh(V◦

N ,K
◦
N )]

T
�+∪�+

p
N ∩ ker φ�

→ (OE/λ
m)[Sh(V◦

N ,K
◦
N )]

ker φ�

is an isomorphism;
(Sowecan andwill apply the setup inSect. 5 to thedatum (V◦

N , {�◦
N ,q}|q|p).)

24 By Lemma D.2.2(3), every sufficiently small (K◦
N )v is transferable. So the readers may

ignore this technical requirement.
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• remaining data in Sect. 5.1 with Q
 
p = Qp2 ;

• data as in Construction 5.4.6, which in particular give the open compact
subgroup K•

p; and
• an indefinite uniformization datum (V′

N ,jN , {�′
q,N }q|p) for V◦

N as in Def-
inition 5.2.6.

Put K p◦
N := (K◦

N )
p and K•

N := K p◦
N × K•

p. As in Sect. 5.9, we put X?
N :=

X?
p(V

◦
N ,K

p◦
N ) for meaningful pairs (X, ?) ∈ {M,M,B,S} × { , η, ◦, •, †}.

Let (Ep,q
s , dp,q

s ) be the weight spectral sequence abutting to the cohomology
Hp+q
T (MN ,R	Oλ(r)) from Sect. 5.9.

Remark 6.1.1 By Construction 3.1.10 and (P2) (namely, � �= p), we know
that Pα(�p) is a polynomial with coefficients in Oλ.

Remark 6.1.2 Note that when N = 2, (P2) and (P4) together imply (P5).

Notation 6.1.3 We introduce the following ideals of T
�+∪�+

p
N

⎧⎪⎪⎨
⎪⎪⎩
m := T

�+∪�+
p

N ∩ ker

(
T
�+
N

φ�−→ OE → OE/λ

)
,

n := T
�+∪�+

p
N ∩ ker

(
T
�+
N

φ�−→ OE → OE/λ
m
)
.

We then introduce the following assumptions.

Assumption 6.1.4 We have Hi
T(MN ,R	Oλ)m = 0 for i �= N − 1, and that

HN−1
T (MN ,R	Oλ)m is a finite free Oλ-module.

Remark 6.1.5 Assumption 6.1.4 holds, for example, when the composite

homomorphism T
�+
N

φ�−→ OE → OE/λ is cohomologically generic (Defi-
nition D.1.1). This follows from Lemma 5.2.7 and the universal coefficient
theorem.

Assumption 6.1.6 The Galois representation ρ�,λ is residually absolutely
irreducible.

Remark 6.1.7 Under Assumption 6.1.6, we obtain a homomorphism

ρ̄�,λ : �F → GLN (Oλ/λ)

from the residual homomorphism of ρ�,λ, which is unique to conjugation,
absolutely irreducible, and (1 − N )-polarizable (Definition 2.5.3). Applying
Construction 2.5.4, we obtain an extension

ρ̄�,λ,+ : �F+ → GN (Oλ/λ)

of ρ̄�,λ.
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We now fix an isomorphism ι� : C � Q� that induces the prime λ of E , till
the end of this section.

Definition 6.1.8 We say that a standard pair (V, π) (Definition 3.2.7) with
dimF V = N is�-congruent (outside�+∪�+

p ) if for every nonarchimedean
place v of F+ not in�+∪�+

p ∪�+
� , πv is unramified; and the two homomor-

phisms ι�φα(BC(πv)) and ι�φα(�v) from TN ,v to Q�, which in fact take values
in Z�, coincide in F�.

Lemma 6.1.9 The two maps

T•◦
N ,p : OE [Sh(V◦

N ,K
◦
N )]m → OE [Sh(V◦

N ,K
•
N )]m

T◦•
N ,p : OE [Sh(V◦

N ,K
•
N )]m → OE [Sh(V◦

N ,K
◦
N )]m

are both isomorphisms, whereT•◦
N ,p andT◦•

N ,p are introduced in Definition5.8.1.

Proof By Proposition B.4.3(1) (resp. Proposition B.3.5(1)) when N is odd
(resp. even) and (P5), we know that the endomorphism I◦

N ,p = T◦•
N ,p ◦T•◦

N ,p of
OE [Sh(V◦

N ,K
◦
N )]m is an isomorphism. Thus, it suffices to show that the free

Oλ-modules OE [Sh(V◦
N ,K

◦
N )]m and OE [Sh(V◦

N ,K
•
N )]m have the same rank.

We show that OE [Sh(V◦
N ,K

◦
N )]m ⊗Oλ Q� and OE [Sh(V◦

N ,K
•
N )]m ⊗Oλ Q�

have the same dimension. We have

OE [Sh(V◦
N ,K

◦
N )]m ⊗Oλ Q� �

⊕
π

m(π) · πK◦
N ,

OE [Sh(V◦
N ,K

•
N )]m ⊗Oλ Q� �

⊕
π

m(π) · πK•
N ,

where π runs over all irreducible admissible representations of U(V◦
N )(AF+)

with coefficients in Q� such that (V◦
N , ι

−1
� π) is a �-congruent standard pair

(Definition 6.1.8); and m(π) denotes the automorphic multiplicity of π .25 It

suffices to show that if in the second direct sum π
K•

N
p �= {0}, which has to

be of dimension one since K•
N is special maximal, then π

K◦
N

p �= {0} as well.
Moreover, the Satake parameter α of πp does not contain the pair {−1,−1}
(resp. {−p,−p−1}) when N is even (resp. odd) by (P5). Let π ′

p be the unique

constituent of the principal series of α such that (π ′
p)

K◦
N �= {0}, then by Propo-

sition B.4.3(1) (resp. Proposition B.3.5(1)) when N is odd (resp. even) again,
we see that (π ′

p)
K•

N �= {0}. Thus, we must have πp = π ′
p as K•

N is special
maximal. The lemma follows. ��
25 Although we know that m(π) = 1 by Proposition C.3.1(2), we do not need this fact here.
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Lemma 6.1.10 Let (V, π) be a �-congruent standard pair. If Assump-
tion 6.1.6 holds, then BC(π), which exists by Proposition 3.2.8, is a relevant
representation of GLN (AF ) (Definition 1.1.3); and moreover, ρBC(π),ι� is
residually irreducible.

Proof Let ρBC(π),ι� : �F → GLN (Q�) be the associated Galois represen-
tation (Remark 3.2.9). Since π is �-congruent, by the Chebotarev density
theorem, ρBC(π),ι� admits a lattice whose residual representation is isomor-
phic to ρ̄�,λ ⊗Oλ/λ F�, which is irreducible. If BC(π) is not cuspidal, then
ρBC(π),ι� is decomposable, which is a contradiction. Thus, BC(π) is cuspidal.
Together with [72, Theorem 1.1(iii,iv)], we obtain that BC(π) is relevant. The
lemma follows. ��
Lemma 6.1.11 Assume Assumption 6.1.6. Then the natural maps

Hi
ét,c(Sh(V

′
N ,jNK

p◦
N K′

p,N )F , Oλ)m → Hi
ét(Sh(V

′
N ,jNK

p◦
N K′

p,N )F , Oλ)m,

Hi
T,c(M

•
N , Oλ)m → Hi

T(M
•
N , Oλ)m,

are both isomorphisms for every i ∈ Z.

Proof By Lemma 5.2.7, and the description of the weight spectral sequence
(Ep,q

s , dp,q
s ) in Lemmas 5.9.2 (for N odd) and 5.9.3 (for N even), it suffices

to show that the natural map

Hi
ét,c(Sh(V

′
N ,jNK

p◦
N K′

p,N )F , Oλ)m → Hi
ét(Sh(V

′
N ,jNK

p◦
N K′

p,N )F , Oλ)m
(6.1)

is an isomorphism for every i ∈ Z. This is trivial when Sh(V′
N ,jNK

p◦
N K′

p,N )

is proper.
If Sh(V′

N ,jNK
p◦
N K′

p,N ) is not proper, then the Witt index of V′
N is 1. In

this case, the Shimura variety Sh(V′
N ,jNK

p◦
N K′

p,N ) has a unique toroidal

compactification [2], which we denote by S̃h(V′
N ,jNK

p◦
N K′

p,N ), since the
choice of the relevant combinatorial data is unique (see also [44] for more
details in the case where N = 3); it is smooth over F . As jNK

p◦
N K′

p,N

is neat, the boundary Z := S̃h(V′
N ,jNK

p◦
N K′

p,N )\ Sh(V′
N ,jNK

p◦
N K′

p,N ) is
geometrically isomorphic to a disjoint union of abelian varieties (of dimension
N − 2). In particular, Hi

ét(Z F , Oλ) is a free Oλ-module (of finite rank). Let
π ′∞ be an irreducible admissible representation of U(V′

N )(A
∞
F+) that appears

in Hi
ét(Z F , Oλ) ⊗Oλ,ι

−1
�

C. Then π ′∞ extends to an automorphic representa-

tion π ′ of U(V′
N )(AF+) that is a subquotient of the parabolic induction of a

cuspidal automorphic representation of L(AF+) where L is the unique proper
Levi subgroup of U(V′

N ) up to conjugation. In particular, BC(π ′) exists and
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is not cuspidal. Thus, by (the same argument of) Lemma 6.1.10, we have
Hi
ét(Z F , Oλ)m = 0 for every i ∈ Z. This implies that (6.1) is an isomorphism.

��

6.2 Tate classes in the odd rank case

In this section, we assume that N = 2r + 1 is odd with r � 1. We study the
properties of the localized spectral sequence Ep,q

s,m , after Lemma 5.9.2.

Lemma 6.2.1 We have

Hi
T(M

†
N , Oλ)m = 0

for every odd integer i .

Proof For i �= 2r − 1, it follows from Lemma 5.6.2(1). Now we assume
i = 2r − 1.

Suppose that π∞,p is an irreducible admissible representation of
U(V◦

N )(A
∞,p
F+ ) that appears in the cohomology H2r−1

T (M†
N , Oλ)m ⊗Oλ,ι

−1
�

C.

ByProposition 5.6.4,wemay completeπ∞,p to an automorphic representation
π of U(V◦

N )(AF+) as in that proposition, such that (V◦
N , π) is a�-congruent

standard pair, and that BC(πp) is a constituent of an unramified principal
series of GLN (Fp), whose Satake parameter contains {−p,−p−1} which is
then different from α(�p) in F� by (P5).

On the other hand, by the Chebotarev density theorem, both ρBC(π),ι� and
ρ�,λ⊗Eλ Q� each admits a lattice such that their reductions are isomorphic. In
particular, the residual representations of ρBC(π),ι� and ρ�,λ ⊗Eλ Q� have the
same Frobenius eigenvalues at the unique place of F above p. However, this is
not possible by Proposition C.3.1(2) and Proposition 3.2.4(2). Therefore, we
must have H2r−1

T (M†
N , Oλ)m = 0. The lemma is proved. ��

Lemma 6.2.2 Assume Assumption 6.1.4. We have

(1) Ep,q
1,m = 0 if q is odd;

(2) Ep,q
1,m is a free Oλ-module for every (p, q) ∈ Z

2;

(3) Ep,q
2,m = 0 unless (p, q) = (0, 2r);

(4) E0,2r
2,m is canonically isomorphic to H2r

T (MN ,R	Oλ(r))m, which is a free
Oλ-module;

(5) E0,2r
s,m degenerates at the second page.

Proof Part (1) follows from Lemma 6.2.1 and Assumption 6.1.4. Part (3)
follows since d−1,2r

1 is injective and d0,2r
1 is surjective. The remaining parts

are immediate consequences of (1) and Assumption 6.1.4. ��
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Theorem 6.2.3 The map

∇1
m : E0,2r

2,m → Oλ[Sh(V◦
N ,K

◦
N )]m

(Construction 5.9.4) is surjective. Moreover, if we assume Assumptions 6.1.4,
6.1.6, and Hypothesis 3.2.10 for N, then we have

(1) The generalized Frobenius eigenvalues of the (Oλ/λ)[Gal(Fp/Fp2)]-
module E0,2r

2,m ⊗Oλ Oλ/λ is contained in the set of roots of Pα(�p)mod λ in
a finite extension of Oλ/λ.

(2) The Oλ[Gal(Fp/Fp2)]-moduleE0,2r
2,m is weakly semisimple (Definition 2.1.2).

(3) The map ∇1
m induces an isomorphism

∇1
m : (E0,2r

2,m )Gal(Fp/Fp2 )

∼−→ Oλ[Sh(V◦
N ,K

◦
N )]m.

By Remark 5.9.5, the map ∇1
m always factors through the quotient map

E0,2r
2,m → (E0,2r

2,m )Gal(Fp/Fp2 )
.

Proof We first show that ∇1
m is surjective. From Construction 5.9.1, we have

a map

(Inc◦! , Inc
†
! , Inc

•
! ◦ T•◦

p ) := Oλ[Sh(V◦
N ,K

◦
N )]⊕3 → E0,2r

1

which induces a map

ker
(
d0,2r
1 ◦ (Inc◦! , Inc†! , Inc•! ◦ T•◦

p )
)
→ ker d0,2r

1 .

However, by Lemma 5.9.6, the former kernel is simply the kernel of the map

(
p + 1 −1 0

)
⎛
⎝Inc

∗◦
Inc∗†
Inc∗•

⎞
⎠(Inc◦! Inc†! Inc•! ◦ T•◦

p

)
.

Now since (p + 1,−1, 0) and (0,T◦•
p ◦ T•◦

p , (p + 1)2T◦•
p )⊗ Oλ are linearly

independent, by Nakayama’s lemma, ∇1
m is surjective if the following matrix

⎛
⎝ Inc∗◦

Inc∗†
T◦•
p ◦ Inc∗•

⎞
⎠(Inc◦! Inc†! Inc•! ◦ T•◦

p

)
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in T
◦
N ,p is nondegenerate modulo m. However, by Lemma 5.9.2(2), the above

matrix equals

⎛
⎝
1 0 0
0 −(p + 1)2 I◦

N ,p
0 I◦

N ,p T◦•
N ,p ◦ T•

N ,p ◦ T•◦
N ,p

⎞
⎠ ,

whose non-degeneracy modulo m follows from Lemma B.4.4, Proposi-
tion B.4.3, and (P4,P5).

Now we consider the three remaining assertions. By Lemmas 5.2.7
and 6.2.2, we have an isomorphism

E0,2r
2,m � H2r

ét (Sh(V
′,jNK

p◦
N K′

p,N )F , Oλ(r))m

of Oλ[Gal(Qp/Qp2)]-modules. By Lemmas 6.1.10, 6.1.11,
Proposition C.3.1(2), and Hypothesis 3.2.10, we have

H2r
ét (Sh(V

′,jNK
p◦
N K′

p,N )F , Oλ(r))m ⊗Oλ Q� �
⊕
π ′
ρcBC(π ′),ι�(r)

⊕d(π ′)

of representations of �F with coefficients in Q�, where d(π ′) :=
dim(π ′∞,p)jNK p◦

N ; and the direct sum is taken over all automorphic repre-
sentations π ′ of U(V′)(AF+) satisfying:

• (V′, π ′) is a �-congruent standard pair;
• π ′

τ∞ is a holomorphic discrete series representation of U(V′)(F+
τ∞) with

the Harish-Chandra parameter {−r, 1− r, . . . , r − 1, r}; and
• π ′

τ is trivial for every archimedean place τ �= τ∞.

For the proof of (1–3), we may replace Eλ by a finite extension inside Q�

such that ρBC(π ′),ι� is defined over Eλ for every π ′ appearing in the previ-
ous direct sum. Now we regard ρBC(π ′),ι� as a representation over Eλ. Then
ρBC(π ′),ι�(r) admits a �F -stable Oλ-lattice RBC(π ′), unique up to homothety,
whose reduction R̄BC(π ′) is isomorphic to ρ̄�,λ(r). Moreover, we have an
inclusion

E0,2r
2,m � H2r

ét (Sh(V
′,jNK

p◦
N K′

p,N )F , Oλ(r))m ⊆
⊕
π ′
(Rc

BC(π ′))
⊕d(π ′)

of Oλ[Gal(Fp/Fp2)]-modules. This already implies (1).
By (P4), we know that ρ̄c�,λ(r) is weakly semisimple and

dimOλ/λ ρ̄
c
�,λ(r)

Gal(Fp/Fp2 ) = 1.
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On the other hand, we have

dimEλ ρ
c
BC(π ′),ι�(r)

Gal(Fp/Fp2 ) � 1.

Thus by Lemma 2.1.5, for every π ′ in the previous direct sum, Rc
BC(π ′) is

weakly semisimple, and

dimEλ ρ
c
BC(π ′),ι�(r)

Gal(Fp/Fp2 ) = 1.

This implies (2) by Lemma 2.1.4(1).
The above discussion also implies that, for (3), it suffices to show

∑
π ′

d(π ′) � dimEλ Oλ[Sh(V◦
N ,K

◦
N )]m ⊗Oλ Eλ

where π ′ is taken over the same set as in the previous direct sum. However,
this follows from Corollary C.3.3 and Lemma 6.1.9. The theorem is proved. ��

6.3 Arithmetic level-raising in the even rank case

In this subsection, we assume that N = 2r is even with r � 1. We study the
properties of the localized spectral sequence Ep,q

s,m , after Lemma 5.9.3.

Proposition 6.3.1 Assume Assumptions 6.1.4, 6.1.6, and Hypothesis 3.2.10
for N. Then we have

(1) The maps

(Inc◦! + Inc†! + Inc•! )m : Oλ[Sh(V◦
N ,K

◦
N )]⊕2

m

⊕
Oλ[Sh(V◦

N ,K
•
N )]m

→ E0,2r−2
1,m (−1)

(Inc◦! + Inc•! )m : Oλ[Sh(V◦
N ,K

◦
N )]m

⊕
Oλ[Sh(V◦

N ,K
•
N )]m

→ E0,2r−2
1,m (−1)

from Construction 5.9.1 are isomorphisms when N � 4 and N = 2,
respectively.

(2) The maps

(Inc∗◦, Inc∗†, Inc∗•)m : E0,2r
1,m → Oλ[Sh(V◦

N ,K
◦
N )]⊕2

m

⊕
Oλ[Sh(V◦

N ,K
•
N )]m

(Inc∗◦, Inc∗•)m : E0,2r
1,m → Oλ[Sh(V◦

N ,K
◦
N )]m

⊕
Oλ[Sh(V◦

N ,K
•
N )]m
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from Construction 5.9.1 are surjective with kernel the Oλ-torsion of
H2r
T (M

•
N , Oλ(r))m when N � 4 and N = 2, respectively.

(3) The map ∇0
m : ker d0,2r

1,m → Oλ[Sh(V◦
N ,K

◦
N )]m (Construction 5.9.4) is sur-

jective.
(4) The map ∇0

m ◦ d−1,2r
1,m induces a map

F−1H
1(IQp2

,H2r−1
T (MN ,R	Oλ(r))m)

→ Oλ[Sh(V◦
N ,K

◦
N )]m/((p + 1)R◦

N ,p − I◦
N ,p)

which is surjective, whose kernel is canonically the Oλ-torsion of
H2r
T (M

•
N , Oλ(r))m.

Proof We only prove the proposition when N � 4, and leave the much easier
case where N = 2 to the readers.

We first claim that the map

(inc†! + inc•! ◦ T•◦
N ,p)m : Oλ[Sh(V◦

N ,K
◦
N )]⊕2

m → H2r−2
T (M•

N , Oλ(r − 1))m

is an isomorphism. In fact, by Lemma 6.3.2 below, it suffices to find a line
bundle L as in Definition 5.8.7 such that (incL)m is surjective, where

incL := (inc∗†,T◦•
N ,p ◦ inc∗•) ◦-L ◦ (inc†! + inc•! ◦ T•◦

N ,p)

in which -L is defined in Definition 5.8.7. We take L to be O(M†
N )

⊗2 ⊗
(LieA,τc∞)

⊗p+1. Then by Proposition 5.8.8 and Proposition 5.8.9, the endo-
morphism incL is given the matrix

(
(p + 1)3 −(p + 1)I◦

N ,p
−(p + 1)I◦

N ,p T
◦•
N ,p ◦ (R•

N ,p + (R•
N ,p + (p + 1)T•

N ,p)) ◦ T•◦
N ,p

)

in T
◦
N ,p. Now, by Lemma B.3.6 and Proposition B.3.5, the determinant of the

above matrix mod m is equal to

−pr2
r∏

i=1

(
αi + 1

αi
+ 2

)
·

⎛
⎜⎜⎝(p + 1)2 pr2

r∏
i=1

(
αi + 1

αi
− p − 1

p

)
+ (p + 1)3

(
pr2+1 − pr2−1

) r∑
j=1

r∏
i=1
i �= j

(
αi + 1

αi
− p − 1

p

)
⎞
⎟⎟⎠

where {αr , . . . , α1, α
−1
1 , . . . , α

−1
r } are the roots of Pα(�N ,p)mod λ in a finite

extension of Oλ/λ. By (P2), we have

pr2(p + 1)3
(

pr2+1 − pr2−1
)
�≡ 0 mod λ;
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by (P4), we have

r∏
i=1

(
αi + 1

αi
− p − 1

p

)
≡ 0 mod λ,

r∑
j=1

r∏
i=1
i �= j

(
αi + 1

αi
− p − 1

p

)
�≡ 0 mod λ;

and by (P5), we have

r∏
i=1

(
αi + 1

αi
+ 2

)
�≡ 0 mod λ.

In particular, the matrix representing incL is nondegenerate modulo m, hence
the claim follows from Nakayama’s lemma.

Part (1) follows immediately from the above claimandLemma6.1.9. Part (2)
follows from (1) by the Poincaré duality theorem, togetherwith Lemma 6.1.11.

For (3), by definition, ∇0
m is the restriction to ker d0,2r

1,m of the composition
of

(T◦•
N ,p ◦ T•◦

N ,p ◦ Inc∗◦, Inc∗†,T◦•
N ,p ◦ Inc∗•)m : E0,2r

1,m → Oλ[Sh(V◦
N ,K

◦
N )]⊕3

m

and the obviously surjective map

(1, 0, p + 1) : Oλ[Sh(V◦
N ,K

◦
N )]⊕3

m → Oλ[Sh(V◦
N ,K

◦
N )]m.

By (2) and Lemma 6.1.9, the map (T◦•
N ,p ◦ T•◦

N ,p ◦ Inc∗◦, Inc∗†,T◦•
N ,p ◦ Inc∗•)m is

surjective. On the other hand, the restriction of d0,2r
1 to H2r

T (M
•
N , Oλ(r)) coin-

cides with inc∗† (Construction 5.8.3), after composing with the isomorphism

H2r
T (M

†
N , Oλ(r))

∼−→ Oλ[Sh(V◦
N ,K

◦
N )] as in the construction of inc∗†. Thus,

by (2), the restriction of d0,2r
1,m to H2r

T (M
•
N , Oλ(r))m is surjective, hence00

m is
surjective.

Now we consider (4). Let (E0,2r
1,m )fr be the free Oλ-quotient of E0,2r

1,m ,

which is simply the quotient by the Oλ-torsion (H2r
T (M

•
N , Oλ(r))m)tor of

H2r
T (M

•
N , Oλ(r))m. Thus by (2), we obtain an isomorphism

(Inc∗◦, Inc∗†, Inc∗•)m : (E0,2r
1,m )fr

∼−→ Oλ[Sh(V◦
N ,K

◦
N )]⊕2

m

⊕
Oλ[Sh(V◦

N ,K
•
N )]m

through which we identify the two sides. If we let (ker d0,2r
1,m )fr be the free

Oλ-quotient of ker d
0,2r
1,m , then by Lemma 5.9.6, the above isomorphism maps
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the submodule (ker d0,2r
1,m )fr to the kernel of the map

(p + 1,−1, 0) : Oλ[Sh(V◦
N ,K

◦
N )]⊕2

m

⊕
Oλ[Sh(V◦

N ,K
•
N )]m

→ Oλ[Sh(V◦
N ,K

◦
N )]m.

By Assumption 6.1.4, we have im d−1,2r
1,m = ker d0,2r

1,m . Combining

Lemma 5.9.3(5), we see that the map d−1,2r
1,m induces a canonical isomorphism

F−1H
1(IQp2

,H2r−1
T (MN ,R	Oλ(r))m) �

im d−1,2r
1,m

im(d−1,2r
1,m ◦ d0,2r−2

1,m (−1))

= ker d0,2r
1,m

im(d−1,2r
1,m ◦ d0,2r−2

1,m (−1))

induced by d−1,2r
1,m . Thus, we have a canonical surjective map

F−1H
1(IQp2

,H2r−1
T (MN ,R	Oλ(r))m)→

(ker d0,2r
1,m )fr

im(d−1,2r
1,m ◦ d0,2r−2

1,m (−1))

whose kernel is

(H2r
T (M

•
N , Oλ(r))m)tor

(H2r
T (M

•
N , Oλ(r))m)tor ∩ im(d−1,2r

1,m ◦ d0,2r−2
1,m (−1))

.

By Lemma 6.1.9 and Lemma 5.9.3(7), we see that (ker d0,2r
1,m )fr ∩ ker∇0

m is

contained in the image d−1,2r
1,m ◦ d0,2r−2

1,m (−1), as modules of (E0,2r
1,m )fr. Thus,

by (3), the map ∇0
m induces an isomorphism

(ker d0,2r
1,m )fr

im(d−1,2r
1,m ◦ d0,2r−2

1,m (−1))

∼−→ Oλ[Sh(V◦
N ,K

◦
N )]m

im(∇0
m ◦ d−1,2r

1,m ◦ d0,2r−2
1,m (−1))

.

By Lemma 5.9.3(8), im(∇0
m ◦ d−1,2r

1,m ◦ d0,2r−2
1,m (−1)) coincides with the sub-

module(
T◦•

N ,p ◦ ((p + 1)R•
N ,p − T•◦

N ,p ◦ T◦•
N ,p) ◦ T•◦

N ,p

)
.Oλ[Sh(V◦

N ,K
◦
N )]m.

Note that, by Lemma B.3.6, we have

T◦•
N ,p ◦ ((p + 1)R•

N ,p − T•◦
N ,p ◦ T◦•

N ,p) ◦ T•◦
N ,p = I◦

N ,p

(
(p + 1)R◦

N ,p − I◦
N ,p

)
.
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Thus, to conclude (4), it remains to show that

(H2r
T (M

•
N , Oλ(r))m)tor ∩ im(d−1,2r

1,m ◦ d0,2r−2
1,m (−1)) = 0. (6.2)

By Lemma 5.2.7, Hypothesis 3.2.10, Lemma 6.1.10, Lemma 6.1.11, and
Proposition C.3.1(2), we know that the Q�[�F ]-module H2r−1

T (MN ,

R	Oλ(r))m⊗OλQλ is isomorphic to a direct sumofρ�′,ι�(r) for some relevant
representations�′ ofGLN (AF ). By Proposition 3.2.4 and [74, Lemma1.4(3)],
we know that ρ�′,ι�(r) is pure of weight−1 at p (Definition 2.4.4). In particu-
lar, we have H1(Qp2, ρ�′,ι�(r)) = 0 by [56, Proposition 4.2.2(1)], hence that
both sides of the inclusion

F−1H
1(IQp2

,H2r−1
T (MN ,R	Oλ(r))m)

⊆ H1
sing(Qp2,H

2r−1
T (MN ,R	Oλ(r))m)

are torsion Oλ-modules. Thus, the Oλ-rank of im(d−1,2r
1,m ◦ d0,2r−2

1,m (−1)) is

equal to the Oλ-rank of ker d0,2r
1,m , which in turn is equal to the sum of Oλ-

ranks of Oλ[Sh(V◦
N ,K

◦
N )]m and Oλ[Sh(V◦

N ,K
•
N )]m. However, the source of

themap d−1,2r
1,m ◦d0,2r−2

1,m (−1), which is E0,2r−2
1,m / im d−1,2r−2

1,m , is also a free Oλ-
module of the same rank. Therefore, we must have (6.2). Part (4) is proved.

��
Lemma 6.3.2 Suppose that N � 4. Assume Assumptions 6.1.4, 6.1.6, and
Hypothesis 3.2.10 for N. Then H2r−2

T (M•
N , Oλ)m is a free Oλ-module;

and its rank over Oλ is at most twice the rank of the (free) Oλ-module
Oλ[Sh(V◦

N ,K
◦
N )]m.

Proof ByAssumption 6.1.4, Lemmas 5.9.3(2), and 5.6.2(2), we have an injec-
tive map

H2r−2
T (M•

N , Oλ)m ↪→ H2r−2
T (M†

N , Oλ)m

induced by d0,2r−2
1 . For the target, we have an isomorphism

H2r−2
T (M†

N , Oλ)m � Oλ[Sh(V◦
N ,K

◦
N )]m ⊕ Hprim(M†

N , Oλ)m.

In particular,H2r−2
T (M†

N , Oλ)m, henceH
2r−2
T (M•

N , Oλ)m are free Oλ-modules.
Suppose that π∞,p is an irreducible admissible representation of

U(V◦
N )(A

∞,p
F+ ) that appears in H2r−2

T (M•
N , Oλ)m ⊗Oλ,ι

−1
�

C. Then, by Propo-

sition 5.6.4, one can complete π∞,p to an automorphic representation π =
π∞,p ⊗ π∞ ⊗∏q|p πq such that π∞ is trivial; πq is unramified for q �= p;
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and πp is a constituent of an unramified principal series. Moreover, (V◦
N , π)

is a �-congruent standard pair. By Assumption 6.1.6 and Lemma 6.1.10, we
know that BC(π) is relevant.

To prove the lemma, it suffices to show that for such π as above, we have

dim
Q�

H2r−2
T (M•

N ,Q�)[ι�π∞] � 2 dim
Q�

Q�[Sh(V◦
N ,K

◦
N )][ι�π∞]. (6.3)

Recall from Proposition 5.6.4 that we have an isomorphism

ι−1
� Hprim(M†

N ,Q�)

� MapK◦
N ,p

⎛
⎝U(V◦

N )(F
+)\U(V◦

N )(A
∞
F+)/K

p◦
N

∏
q|p,q �=p

K◦
N ,q, *N

⎞
⎠ .
(6.4)

By Proposition C.3.1(2), we have BC(πp) � BC(π)p. Let ρBC(π),ι� : �F →
GLN (Q�) be the associated Galois representation. Since (V◦

N , π) is �-
congruent, by the Chebotarev density theorem, ρBC(π),ι� admits a latticewhose
residual representation is isomorphic to ρ̄�,λ⊗Oλ/λF�, which is irreducible by
Assumption 6.1.6. Thus, by Proposition 3.2.4(2), α(BC(πp)) does not contain
{−1,−1} due to (P5) and contains {p, p−1} with multiplicity at most one by
(P4). We now have three cases.

Case 1 πp is unramified. Then (6.3) follows by (6.4) and the fact that the
multiplicity of *N in πp|K◦

N ,p
is at most 1 by Proposition C.2.1(2).

Case 2 πp is not unramified and πp /∈ S, where S is introduced in Propo-
sition C.2.5. Then by Lemma C.2.2(1), πp|K◦

N ,p
does not contain *N . Thus,

both sides of (6.3) are zero by (6.4).
Case 3 πp belongs to S. Then we haveQ�[Sh(V◦

N ,K
◦
N )][ι�π∞] = 0, hence

an inclusion

ι−1
� H2r−2

T (M•
N ,Q�)[π∞]

↪→ MapK◦
N ,p

⎛
⎝U(V◦

N )(F
+)\U(V◦

N )(A
∞
F+)/K

p◦
N

∏
q|p,q �=p

K◦
N ,q, *N

⎞
⎠ [π∞]

(6.5)

by (6.4). Note that, by Proposition C.2.1(2), the multiplicity of*N in πp|K◦
N ,p

is one, hence we have
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MapK◦
N ,p

⎛
⎝U(V◦

N )(F
+)\U(V◦

N )(A
∞
F+)/K

p◦
N

∏
q|p,q �=p

K◦
N ,q, *N

⎞
⎠ [π∞]

� (π∞,p)K
p◦
N

by Proposition C.3.1(2).
On the other hand, by Lemma 6.1.11, Proposition C.3.1(2), Corollary C.3.2,

and Hypothesis 3.2.10, we know that the Q�[�F ]-module

H2r−1
ét (Sh(V′

N ,jNK
p◦
N K′

p,N )F ,Q�)[ι�π∞,p]

is isomorphic to dim(π∞,p)K
p◦
N copies of ρcBC(π),ι� . By Proposition 3.2.4(2),

ρcBC(π),ι�
|Gal(Qp/Qp2 )

has nontrivial monodromy action. Thus, by Lemma 5.2.7

and the spectral sequence Ep,q
s , the cokernel of (6.5) has dimension

dim(π∞,p)K
p◦
N , which forces the source of (6.5) to vanish. In particular, (6.3)

holds.
The lemma is proved. ��
Before stating the main theorem on the arithmetic level raising, we recall

the following definition from [51, §3.6].

Definition 6.3.3 Let r̄ : �F+ → GN (Oλ/λ) be a continuous homomorphism
subject to the relation r̄−1(GLN (Oλ/λ) × (Oλ/λ)×) = �F and ν ◦ r̄ =
ηN

F/F+ε
1−N
� .We say that r̄ is rigid for (�+

min, �
+
lr ) if the following are satisfied:

(1) For v in �+
min, every lifting of r̄v is minimally ramified [51, Defini-

tion 3.4.8].
(2) For v in �+

lr , the generalized eigenvalues of r̄ �v(φw) in F� contain the pair
{‖v‖−N , ‖v‖−N+2} exactly once, where w is the unique place of F above
v.

(3) For v in �+
� , r̄ �v is regular Fontaine–Laffaille crystalline [51, Defini-

tion 3.2.4].
(4) For a nonarchimedean place v of F+ not in �+

min ∪�+
lr ∪�+

� , the homo-
morphism rv is unramified.

Here, all liftings are with respect to the similitude character ηN
F/F+ε

1−N
� .

Recall that we have fixed a positive integer m at the beginning of Sect. 6.1.

Theorem 6.3.4 Assume Assumptions 6.1.4, 6.1.6, and Hypothesis 3.2.10 for
N. We further assume that

(a) � � 2(N + 1) and � is unramified in F;

123



278 Y. Liu et al.

(b) ρ̄�,λ,+ (Remark 6.1.7) is rigid for (�+
min, �

+
lr ) (Definition 6.3.3), and

ρ̄�,λ|Gal(F/F(ζ�))
is absolutely irreducible;

(c) the composite homomorphism T
�+
N

φ�−→ OE → OE/λ is cohomologically
generic (Definition D.1.1); and

(d) Oλ[Sh(V◦
N ,K

◦
N )]m is nontrivial.

Then we have

(1) Hi
T(M

•
N , Oλ)m is a free Oλ-module for every i ∈ Z.

(2) Ep,q
2,m is a free Oλ-module, and vanishes if (p, q) /∈ {(−1, 2r), (0, 2r −

1), (1, 2r − 2)}.
(3) If we denote by {α±1

1 , . . . , α
±1
r } the roots of Pα(�p)mod λ in a finite

extension of Oλ/λ, then the generalized Frobenius eigenvalues of the
(Oλ/λ)[Gal(Fp/Fp2)]-module H2r−1

T (M•
N , Oλ(r))m ⊗Oλ Oλ/λ is con-

tained in {pα±1
1 , . . . , pα±1

r }\{1, p2}.
(4) The map in Proposition 6.3.1(4) factors through a map

∇0
/n : F−1H

1(IQp2
,H2r−1

T (MN ,R	Oλ(r))/n)→ Oλ[Sh(V◦
N ,K

◦
N )]/n

which is an isomorphism, where n is the ideal in Notation 6.1.3. The map
from Lemma 5.9.3(6) induces a canonical isomorphism

F−1H
1(IQp2

,H2r−1
T (MN ,R	Oλ(r))/n)

∼−→ H1
sing(Qp2,H

2r−1
T (MN ,R	Oλ(r))/n).

(5) There exists a positive integer μ such that

H2r−1
ét (Sh(V′

N ,jNK
p◦
N K′

p,N )F , Oλ(r))/n �
(
R̄(m)c

)⊕μ

of Oλ[�F ]-modules, whereR is the�F -stable Oλ-lattice inρ�,λ(r), unique
up to homothety.

The proof of this theorem will occupy the next subsection.
At the end of this subsection, we give an amazing corollary of Proposi-

tion 6.3.1, which will not be used in this article. Suppose that � � p
∏N

i=1(p
i −

(−1)i ). Then the Tate–Thompson representation of *N from Sect. C.2 of
K◦

N ,p has a model *N ,F�
over F�, which is again an irreducible summand of

Ind
K◦

N ,p

K◦
N ,p∩K•

N ,p
F�. Thus, we obtain a natural map

i : F�[Sh(V◦
N ,K

•
N )]
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→ MapK◦
N ,p

⎛
⎝U(V◦

N )(F
+)\U(V◦

N )(A
∞
F+)/K

p◦
N

∏
q|p,q �=p

K◦
N ,q, *N ,F�

⎞
⎠

of F�[T�
+∪�+

p
N ]-modules as the composition of the inclusion map

F�[Sh(V◦
N ,K

•
N )] → F�[Sh(V◦

N ,K
◦
N ∩ K•

N )],

the tautological isomorphism

F�[Sh(V◦
N ,K

◦
N ∩ K•

N )]
∼−→ MapK◦

N ,p

⎛
⎝U(V◦

N )(F
+)\U(V◦

N )(A
∞
F+)/K

p◦
N

∏
q|p,q �=p

K◦
N ,q, Ind

K◦
N ,p

K◦
N ,p∩K•

N ,p
F�

⎞
⎠ ,

and the projection map

MapK◦
N ,p

⎛
⎝U(V◦

N )(F
+)\U(V◦

N )(A
∞
F+)/K

p◦
N

∏
q|p,q �=p

K◦
N ,q, Ind

K◦
N ,p

K◦
N ,p∩K•

N ,p
F�

⎞
⎠

→ MapK◦
N ,p

⎛
⎝U(V◦

N )(F
+)\U(V◦

N )(A
∞
F+)/K

p◦
N

∏
q|p,q �=p

K◦
N ,q, *N ,F�

⎞
⎠ .

Corollary 6.3.5 Let the setup be as in Sect. 6.1 but replacing (P4) with a
weaker condition that α(�p) mod λ contains the pair {p, p−1} at most once.
Assume Assumptions 6.1.4, 6.1.6, and Hypothesis 3.2.10 for N. Then im is
injective.

Note that this result can be regarded as an Ihara type lemma for the definite
unitary Shimura sets.

Proof For simplicity, we only consider the case where N � 4, and leave the
much easier case where N = 2 to the readers. First, we point out that since
� � p

∏N
i=1(p

i − (−1)i ), (5.13) holds with Q� replaced by F�, under which
the map i coincides with the composite map

F�[Sh(V◦
N ,K

•
N )]

inc•!−−→ H2r−2
T (M•

N ,F�(r − 1))

(m†•)∗−−−→ H2r−2
T (M†

N ,F�(r − 1))→ Hprim
T (M†

N ,F�).
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By Assumption 6.1.4, Lemma 5.9.3(2), and Lemma 5.6.2(2), the map

H2r−2
T (M•

N , Oλ)m → H2r−2
T (M†

N , Oλ)m

induced by d0,2r−2
1 is injective. Thus, it suffices to show that the map

(inc†! + inc•! )m : F�[Sh(V◦
N ,K

◦
N )]m

⊕
F�[Sh(V◦

N ,K
•
N )]m

→ H2r−2
T (M•

N ,F�(r − 1))m

is injective. When α(�p) mod λ contains the pair {p, p−1} (exactly once),
this follows from Proposition 6.3.1(1). When α(�p) mod λ does not contain
the pair {p, p−1}, it suffices to show that (incL)m (Definition 5.8.7) is injective
with L = O(M†

N ) and the coefficients F�. It is straightforward to see that such
injectivity follows from Proposition 5.8.8, Lemma 6.1.9, Proposition B.3.5(2),
and Lemma B.3.6. ��

6.4 Proof of Theorem 6.3.4

We apply the discussion of [51, §3] to the pair (r̄ , χ), where

r̄ := ρ̄�,λ,+ : �F+ → GN (Oλ/λ)

and χ := ε1−N
� for the similitude character. Then r̄ is rigid for (�+

min, �
+
lr ),

and also for (�+
min, �

+
lr ∪ {p}) by (P4).

For ? = mix, unr, ram, consider a global deformation problem [51, Defini-
tion 3.1.6]

S ? := (r̄ , ημF/F+ε
1−N
� , �+

min ∪�+
lr ∪ {p} ∪�+

� , {Dv}v∈�+
min∪�+

lr ∪{p}∪�+
�
)

where

• for v ∈ �+
min, Dv is the local deformation problem classifying all liftings

of r̄v;
• for v ∈ �+

lr , Dv is the local deformation problem D ram of r̄v from [51,
Definition 3.5.1];

• for v = p, Dv is the local deformation problem D? of r̄v from [51, Defini-
tion 3.5.1];

• for v ∈ �+
� , Dv is the local deformation problem DFL of r̄v from [51,

Definition 3.2.5].

Then we have the global universal deformation ring Runiv
S ? from [51, Propo-

sition 3.1.7]. Put R? := Runiv
S ? for short. Then we have canonical surjective
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homomorphisms Rmix → Runr and Rmix → Rram of Oλ-rings. Finally, put

Rcong := Runr ⊗Rmix Rram.

We fix a universal lifting

rmix : �F+ → GN (Rmix)

of r̄ , which induce a continuous homomorphism

r �mix : �F → GLN (Rmix)

by restriction (Notation 2.5.2). By pushforward,Rcong also induces homomor-
phisms

runr : �F+ → GN (Runr), rram : �F+ → GN (Rram).

Denote by PF+
p
the maximal closed subgroup of the inertia subgroup IF+

p
⊆

�F+
p
of pro-order coprime to �. Then �F+

p
/PF+

p
� tZ� �φẐ

p is a p-tame group

[51, Definition 3.3.1]. By definition, the homomorphism r �mix is trivial on PF+
p
.

Let v̄ and v̄′ be eigenvectors in (Oλ/λ)⊕N for r̄ �(φ2p) with eigenvalues p−2r

and p−2r+2, respectively. By Hensel’s lemma, v̄ and v̄′ lift to eigenvectors
v and v′ in (Rmix)⊕N for r �mix(φ

2
p), with eigenvalues s and s′ in Rmix lifting

p−2r and p−2r+2, respectively. Let x ∈ Rmix be the unique element such
that r �mix(t)v

′ = xv + v′. Then we must have x(s − p−2r ) = 0. By [51,
Definition 3.5.1], we have

Runr=Rmix/(x), Rram=Rmix/(s− p−2r ), Rcong=Rmix/(s− p−2r , x).

Let Tunr be the image of T
�+
N in EndOλ(Oλ[Sh(V◦

N ,K
◦
N )]). By (d) in

Theorem 6.3.4, we know that Tunr
m �= 0. Thus by [51, Theorem 3.6.3], we

have a canonical isomorphism Runr ∼−→ Tunr
m such that Oλ[Sh(V◦

N ,K
◦
N )]m

is canonically a free Runr-module of rank dunr > 0.26 We may write the
characteristic polynomial of r �unr(φ2p) as (T − s)(T − p−4r+2s−1)Q(T ), with
Q(T ) ∈ Runr[T ]whose reduction in (Oλ/λ)[T ] does not have p−2r or p−2r+2

as roots. By Proposition B.3.5(2), we have

((p + 1)R◦
N ,p − I◦

N ,p).Oλ[Sh(V◦
N ,K

◦
N )]m = (s− p−2r ).Oλ[Sh(V◦

N ,K
◦
N )]m.

26 Here, we also need the easy fact that Tunrm and Oλ[Sh(V◦
N ,K

◦
N )]m do not change if we

replace m by m ∩ T
�+∪�+

p ∪�+
�

N .
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In particular, we have

Oλ[Sh(V◦
N ,K

◦
N )]m/((p + 1)R◦

N ,p − I◦
N ,p) = Oλ[Sh(V◦

N ,K
◦
N )]m ⊗Runr Rcong,

which is a free Rcong-module of rank dunr.

On the other hand, let Tram be the image of T
�+∩�+

p
N in EndOλ(H

2r−1
T (MN ,

R	Oλ)). By Proposition 6.3.1(4) and Lemma 5.9.3(6), we know that Tram
m �=

0. Thus by Lemma 5.2.7 and [51, Theorem 3.6.3] (with (�+
min, �

+
lr ) replaced

by (�+
min, �

+
lr ∪ {p})), we have a canonical isomorphism Rram ∼−→ Tram

m such
that H2r−1

T (MN ,R	Oλ)m is canonically a free Rram-module.27 Define the
Rram-module

H := Hom�F

(
(Rram)⊕N ,H2r−1

T (MN ,R	Oλ)m
)

where �F acts on (Rram)⊕N via the homomorphism r �,cram. By the same argu-
ment for [67, Theorem 5.6] (using Proposition C.3.1 and Hypothesis 3.2.10
here), we have a canonical isomorphism

H2r−1
T (MN ,R	Oλ)m � H⊗Rram (Rram)⊕N

ofRram[�F ]-modules. SinceRram is a local ring,H is a freeRram-module, say
of rank dram. If we still denote by v and v′ for their projection in (Rram)⊕N ,
then it is easy to see that

H1
sing(Qp2, (R

ram)⊕N (r)) = Rramv/xv � Rram/(x) = Rcong.

Thus, we obtain

H1
sing(Qp2,H

2r−1
T (MN ,R	Oλ(r))m)

� H⊗Rram H1
sing(Qp2, (R

ram)⊕N (r)) � H⊗Rram Rcong,

which is a free Rcong-module of rank dram > 0.

Proposition 6.4.1 Under the assumptions of Theorem 6.3.4, we have dunr =
dram. In particular, the two canonical maps

F−1H
1(IQp2

,H2r−1
T (MN ,R	Oλ(r))m)

→ Oλ[Sh(V◦
N ,K

◦
N )]m/((p + 1)R◦

N ,p − I◦
N ,p),

27 Here, we also need the fact that Tramm and H2r−1
T (MN ,R	Oλ)m do not change if we replace

m by m ∩ T
�+∪�+

p ∪�+
�

N , which is a consequence of Theorem 6.3.4(c).

123
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F−1H
1(IQp2

,H2r−1
T (MN ,R	Oλ(r))m)

→ H1
sing(Qp2,H

2r−1
T (MN ,R	Oλ(r))m),

from Proposition 6.3.1(4) and Lemma 5.9.3(6), respectively, are both isomor-
phisms.

Proof By Proposition 6.3.1(4), the first map is surjective. By Lemma 5.9.3(6),
the second map is injective. Thus, we must have dram � dunr > 0 by the
previous discussion.

Take a geometric point η1 ∈ (SpecRunr)(Q�) in the support of
Oλ[Sh(V◦

N ,K
◦
N )]m, which corresponds to a relevant representation �1 of

GLN (AF ) by Lemma 6.1.10, such that ρ�1,ι� is residually isomorphic to
ρ̄�,λ ⊗Oλ/λ F�. Then we have

dunr = dimQ�[Sh(V◦
N ,K

◦
N )][ι�φ�1].

Take a geometric point η2 ∈ (SpecRram)(Q�) in the support of
H2r−1
T (MN ,R	Oλ)m, which corresponds to a relevant representation �2 of

GLN (AF ) by Lemma 6.1.10, such that ρ�2,ι� is residually isomorphic to
ρ̄�,λ ⊗Oλ/λ F�. Then we have

Ndram = dimH2r−1
T (MN ,R	Q�)[ι�φ�2]

= dimH2r−1
ét (Sh(V′

N ,jNK
p◦
N K′

p,N )F ,Q�)[ι�φ�2]
by Lemma 5.2.7. By Proposition D.2.3 and Lemma 6.4.2 below, we have
dunr = dram. The proposition follows. ��
Lemma 6.4.2 Let �1 and �2 be two relevant representations of GLN (AF )

such that the associated Galois representations ρ�1,ι� and ρ�2,ι� are both
residually isomorphic to ρ̄�,λ ⊗Oλ/λ F�. For every v ∈ �+

min (so that every
lifting of ρ̄�,λ,+,v is minimally ramified), if we realize �1,v and �2,v on vec-
tor spaces V1 and V2, respectively, then there exist normalized intertwining
operators A�1,v and A�2,v for �1,v and �2,v [71, §4.1], respectively, such

that we have an GLN (OFv )-equivariant isomorphism i : V1
∼−→ V2 satisfying

i ◦ A�1,v = A�2,v ◦ i .

Proof We will give the proof when v is nonsplit in F , and leave the other
similar case to the readers. Let w be the unique place of F above v.

By Proposition 3.2.4(1), both �1,w and �2,w are tempered. Thus by the
Bernstein–Zelevinsky classification, for α = 1, 2, we can write

�α,w = IGLN (Fw)
Pα

(
σα,−tα � · · · � σα,−1 � σα,0 � σα,1 � · · · � σα,tα

)
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for some integer tα � 0, some standard parabolic subgroup Pα ⊆ GLN (Fw),
and some (unitary) discrete series representations {σα,−tα , . . . , σα,tα } satisfy-
ing σα,−i � σ∨c

α,i . See Sect. C.1 for the notation on parabolic induction.
By [51, Proposition 3.4.12(3)] and [3, Lemma 1.3.4(2)], we know that

ρ�1,ι� |IFw
and ρ�2,ι� |IFw

are conjugate. Thus, by [76, Lemma 3.6], we have
P1 = P2 (say P) and t1 = t2 (say t), and we assume that there are unrami-
fied (unitary) characters {χ−t , . . . , χt } of F×

w satisfying χ−i � χ−1
i such that

σ2,i = σ1,i ⊗ χi . For every i , we choose a vector space Wi on which σ1,i
realizes (and also realize σ∨c

1,i on Wi via g �→ tg−1,c), and fix a linear map
Ai : Wi → W−i intertwining σi and σ∨c−i satisfying A−i ◦ Ai = idWi . Put
σ := �t

i=−tσ1,i regarded as a representation of P by inflation, which realizes
on the space W :=⊗t

i=−t Wi ; and put Aσ := ⊗t
i=−t Ai ∈ End(W ). Choose

an element w ∈ GLN (Fw) satisfying w = twc, that wPw−1 ∩ P is the stan-
dard Levi subgroup of P , and that for (a−t , . . . , at ) ∈ wPw−1 ∩ P , we have
w(a−t , . . . , at )w

−1 = (at , . . . , a−t ).
We realize�1,w on the space

V1 := { f : GLN (Fw)→ W | f (pg)

= δ1/2P (p)σ (p) f (g), p ∈ P, g ∈ GLN (Fw)}.

Define a linear map A�1,w : V1 → V1 by the formula

(
A�1,w ( f )

)
(g) = Aσ

(
f (w tg−1,c)

)
.

Then it is clear that A�1,w is a intertwining operator for �1,w satisfying
A2
�1,w

= 1. Similarly, we realize �2,w on the space

V2 := { f : GLN (Fw)→ W | f (pg)

= δ1/2P (p)χ(p)σ (p) f (g), p ∈ P, g ∈ GLN (Fw)},

where we put χ := �t
i=−tχi regarded as a character of P . We define

A�2,w : V2 → V2 by the same formula, which is a normalized intertwining
operator for �2,w. The desired isomorphism i is the map sending f ∈ V1 to
the unique function i( f ) such that i( f )(g) = f (g) for g ∈ GLN (OFw). The
lemma is proved. ��

Now we can prove Theorem 6.3.4.

Proof of Theorem 6.3.4 For (1), Assumption 6.1.4, Lemma 5.6.2, and the
spectral sequence in Lemma 5.9.3 imply that Hi

T(M
•
N , Oλ)m is Oλ-torsion

free for i �= 2r − 1, 2r . By Proposition 6.3.1(4) and Proposition 6.4.1, we
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know that H2r
T (M

•
N , Oλ)m is Oλ-torsion free. By the Poincaré duality theorem

and Lemma 6.1.11, we have

rankOλ H
2r
T (M

•
N , Oλ)m = rankOλ H

2r−2
T (M•

N , Oλ)m,

dimOλ/λH
2r
T (M

•
N , Oλ/λ)m = dimOλ/λH

2r−2
T (M•

N , Oλ/λ)m,

which imply that H2r−1
T (M•

N , Oλ)m is Oλ-torsion free as well by the universal
coefficient theorem.

Part (2) is an immediate consequenceof (1),Assumption6.1.4,Lemma5.6.2,
and the spectral sequence in Lemma 5.9.3.

Part (3) is a consequence of (1) and (P4) that Pα(�p)mod λm is level-raising
special at p. In fact, we have an isomorphism

H2r−1
T (M•

N , Oλ(r)) � H⊗Rram R1(r)

of Oλ[Gal(Fp/Fp2)]-modules.
For (4), by Proposition 6.4.1 and (P6), it suffices to show that the two natural

maps

F−1H
1(IQp2

,H2r−1
T (MN ,R	Oλ(r))m)/n

→ F−1H
1(IQp2

,H2r−1
T (MN ,R	Oλ(r))/n),

H1
sing(Qp2,H

2r−1
T (MN ,R	Oλ(r))m)/n

→ H1
sing(Qp2,H

2r−1
T (MN ,R	Oλ(r))/n),

are both isomorphisms. Note that we have a short exact sequence

0 → F−1H1(IQp2
,H2r−1

T (MN ,R	Oλ(r))m)→ H1(IQp2
,H2r−1

T (MN ,R	Oλ(r))m)→ H2r−1
T (MN ,R	Oλ(r))m

F−1H
2r−1
T (MN ,R	Oλ(r))m

→ 0

of T
�+∪�+

p
N -modules, which is split by considering Gal(Fp/Fp2) actions

and (3). Thus, the first isomorphism is confirmed. The second one is also
confirmed as, by (3), one can replaceGal(Fp/Fp2)-invariants byGal(Fp/Fp2)-
coinvariants. Part (4) is proved.

For (5), we have

H2r−1
ét (Sh(V′

N ,jNK
p◦
N K′

p,N )F , Oλ(r))/n � H⊗Rram/n (R
ram/n)⊕N (r)

by Lemma 5.2.7. Here, we regard n as its image in Tram
m , where the latter

is canonically isomorphic to Rram. We claim that Oλ/λm = Rram/n and
(Rram/n)⊕N (r) � R̄(m)c as (Oλ/λm)[�F ]-modules, where we recall that �F

acts on (Rram/n)⊕N via r �,cram. Since n satisfies n ∩ Oλ = λm Oλ, the structure

123



286 Y. Liu et al.

homomorphism Oλ → Rram induces an equality Oλ/λm = Rram/n. Now by
the Chebotarev density theorem and [14, Théorème 1], we know that the two
liftings (Rram/n)⊕N (r) and R̄(m)c of ρ̄c�,λ(r) to Oλ/λm have to be isomorphic.

Theorem 6.3.4 is all proved. ��

7 Explicit reciprocity laws for Rankin–Selberg motives

In this section,we state and prove the two explicit reciprocity laws for automor-
phic Rankin–Selberg motives. In Sect. 7.1, we setup the stage for automorphic
Rankin–Selberg motives. In Sects. 7.2 and 7.3, we state and prove our first and
second explicit reciprocity law, respectively.

7.1 Setup for automorphic Rankin–Selberg motives

Let n � 2 be an integer. We denote by n0 and n1 the unique even and odd
numbers in {n, n + 1}, respectively. Write n0 = 2r0 and n1 = 2r1 + 1 for
unique integers r0, r1 � 1. In particular, we have n = r0 + r1.

In this and the next sections, we consider

• for α = 0, 1, a relevant representation�α of GLnα (AF ) (Definition 1.1.3),
• a strong coefficient field E ⊆ C of both �0 and �1 (Definition 3.2.5).

Put �+
min := �+

�0
∪�+

�1
(Notation 3.1.4). We then have the homomorphism

φ�α : T
�+
min

nα → OE

for α = 0, 1. For α = 0, 1 and every prime λ of E , we have a continuous
homomorphism

ρ�α,λ : �F → GLnα (Eλ)

from Proposition 3.2.4(2) and Definition 3.2.5, such that ρc�α,λ and ρ
∨
�α,λ

(1−
nα) are conjugate.

Assumption 7.1.1 For α = 0, 1, the Galois representation ρ�α,λ is residually
absolutely irreducible.

7.2 First explicit reciprocity law

We start by choosing

• a prime λ of E , whose underlying rational prime � satisfies�+
min∩�+

� = ∅,
� � 2(n0 + 1), and that � is unramified in F ,
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• a positive integer m,
• a (possibly empty) finite set �+

lr,I of nonarchimedean places of F+ that
are inert in F ,28 strongly disjoint from �+

min (Definition 1.3.2), satisfying
� � ‖v‖(‖v‖2 − 1) for v ∈ �+

lr,I,
• a finite set �+

I of nonarchimedean places of F+ containing �+
min ∪�+

lr,I,• a standard definite hermitian space V◦
n of rank n over F , together with a

self-dual
∏
v /∈�+∞∪�+

min∪�+
lr,I

OFv -lattice �
◦
n in V◦

n ⊗F A
�+∞∪�+

min∪�+
lr,I

F (and

put V◦
n+1 := (V◦

n)� and �
◦
n+1 := (�◦

n)�), satisfying that the hermitian
space (V◦

n0)v is not split for v ∈ �+
lr,I,• objects K◦

n ∈ K(V◦
n) and (K

◦
sp,K

◦
n+1) ∈ K(V◦

n)sp of the forms

K◦
n =

∏
v∈�+

min∪�+
lr,I

(K◦
n)v ×

∏
v /∈�+∞∪�+

min∪�+
lr,I

U(�◦
n)(OF+

v
),

K◦
sp =

∏
v∈�+

min∪�+
lr,I

(K◦
sp)v ×

∏
v /∈�+∞∪�+

min∪�+
lr,I

U(�◦
n)(OF+

v
),

K◦
n+1 =

∏
v∈�+

min∪�+
lr,I

(K◦
n+1)v ×

∏
v /∈�+∞∪�+

min∪�+
lr,I

U(�◦
n+1)(OF+

v
),

satisfying
– (K◦

sp)v = (K◦
n)v for v ∈ �+

min,

– (K◦
sp)v ⊆ (K◦

n)v for v ∈ �+
lr,I, and

– (K◦
n0)v is a transferable open compact subgroup (Definition D.2.1)

of U(V◦
n0)(F

+
v ) for v ∈ �+

min and is a special maximal subgroup of
U(V◦

n0)(F
+
v ) for v ∈ �+

lr,I,
• a special inert prime (Definition 3.3.4) p of F+ (with the underlying rational
prime p) satisfying

(PI1) �+
I does not contain p-adic places;

(PI2) � does not divide p(p2 − 1);
(PI3) there exists a CM type  containing τ∞ as in the initial setup of
Sect. 5 satisfying Q

 
p = Qp2 ;

(PI4) Pα(�0,p)mod λm is level-raising special at p (Definition 3.1.5);
Pα(�1,p)mod λ is Tate generic at p (Definition 3.1.5);
(PI5) Pα(�α,p)mod λ is intertwining generic at p (Definition 3.1.5) for
α = 0, 1;

28 Here, the subscript “lr” stands for “level-raising”, while the subscript “I” (Roman number
one) stands for the “first”. In the next subsection, we will have �+

lr,II for the second reciprocity
law.
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(PI6) the natural map

(OE/λ
m)[Sh(V◦

nα ,K
◦
nα )]

T
�+
I ∪�+

p
nα ∩ ker φ�α

→ (OE/λ
m)[Sh(V◦

nα ,K
◦
nα )]

T
�+
I

nα ∩ ker φ�α

is an isomorphism of nontrivial OE/λ
m-modules for α = 0, 1;

(PI7) Pα(�0,p)⊗α(�1,p)mod λm is level-raising special at p (Defini-
tion 3.1.5);

(So we can and will apply the setup in Sect. 5.10 to the datum
(V◦

n, {�◦
n,q}|q|p).)

• remaining data in Sect. 5.1 with Q
 
p = Qp2 ; and

• data as in Notation 5.10.13, which in particular give open compact sub-
groups K•

n,p and K•
n+1,p.

PutK p◦
sp := (K◦

sp)
p andK•

sp := K p◦
sp ×K•

n0,p; putK
p◦
nα := (K◦

nα )
p andK•

nα :=
K p◦

nα × K•
nα,p for α = 0, 1. As in Sect. 5.11, we put X?

nα := X?
p(V

◦
nα ,K

p◦
nα )

for meaningful triples (X, ?, α) ∈ {M,M,B,S} × { , η, ◦, •, †} × {0, 1}. For
α = 0, 1, let (αEp,q

s , αdp,q
s ) be the weight spectral sequence abutting to the

cohomology Hp+q
T (Mnα ,R	Oλ(rα)) from Sect. 5.9.

Notation 7.2.1 We introduce the following ideals of T
�+
I ∪�+

p
nα , for α = 0, 1

⎧⎪⎪⎨
⎪⎪⎩
mα := T

�+
I ∪�+

p
nα ∩ ker

(
T
�+
nα

φ�α−−→ OE → OE/λ

)
,

nα := T
�+
I ∪�+

p
nα ∩ ker

(
T
�+
nα

φ�α−−→ OE → OE/λ
m
)
.

We then introduce the following assumptions.

Assumption 7.2.2 Under Assumption 7.1.1, ρ̄�0,λ,+ (Remark 6.1.7) is rigid
for (�+

min, �
+
lr,I) (Definition 6.3.3); and ρ̄�0,λ|Gal(F/F(ζ�))

is absolutely irre-
ducible.

Assumption 7.2.3 For α = 0, 1, we have Hi
T(Mnα ,R	Oλ)mα = 0 for i �=

nα − 1, and that Hnα−1
T (Mnα ,R	Oλ)mα is a finite free Oλ-module.

Assumption 7.2.4 The composite homomorphism T
�+
min

n0

φ�0−−→ OE → OE/λ

is cohomologically generic (Definition D.1.1).

Now we apply constructions in Sect. 5.11, evaluating on the object
(K p◦

n ,K
p◦
n+1) of K(V

◦
n)

p ×K(V◦
n+1)

p. In particular, we have the blow-up mor-
phism σ : Q → P from Notation 5.11.1, and the localized spectral sequence
(E

p,q
s,(m0,m1)

, dp,q
s,(m0,m1)

) from (5.27).
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Lemma 7.2.5 Assume Assumptions 7.1.1, 7.2.2, 7.2.3, 7.2.4 and Hypothe-
sis 3.2.10 for both n and n + 1. Then

(1) For (?0, ?1) ∈ {◦, •, †}2 and i ∈ Z, we have a canonical isomorphism

Hi
T(P

?0,?1, Oλ)(m0,m1) �
⊕

i0+i1=i

Hi0
T (M

?0
n0, Oλ)m0 ⊗Oλ H

i1
T (M

?1
n1, Oλ)m1

in Mod(Gal(Fp/Fp2), Oλ)fr.
(2) We have E

p,q
2,(m0,m1)

= 0 if (p, q) /∈ {(−1, 2n), (0, 2n − 1), (1, 2n − 2)},
and canonical isomorphisms

⎧⎪⎪⎨
⎪⎪⎩

E
−1,2n
2,(m0,m1)

� 0E−1,2r0
2,m0

⊗Oλ
1E0,2r1

2,m1
,

E
0,2n−1
2,(m0,m1)

� 0E0,2r0−1
2,m0

⊗Oλ
1E0,2r1

2,m1
,

E
1,2n−2
2,(m0,m1)

� 0E1,2r0−2
2,m0

⊗Oλ
1E0,2r1

2,m1
,

in Mod(Gal(Fp/Fp2), Oλ)fr.

(3) If E
i,2n−1−i
2,(m0,m1)

(−1) has a nontrivial subquotient on which Gal(Fp/Fp2) acts
trivially, then i = 1.

(4) For (?0, ?1) ∈ {◦, •, †}2 and i ∈ Z, both H2i
T (P

?0,?1, Oλ(i))(m0,m1) and
H2i
T (Q

?0,?1, Oλ(i))(m0,m1) are weakly semisimple.
(5) We have Hi

T(Q,R	Oλ)(m0,m1) = 0 for i �= 2n − 1.
(6) The canonical map Hi

T,c(Q
(c), Oλ)(m0,m1) → Hi

T(Q
(c), Oλ)(m0,m1) is an

isomorphism for every integers c and i .

Proof For (1), by Lemma 5.6.2, Lemma 6.2.2(2), Theorem 6.3.4(1), we know
that Hiα

T (M
?α
nα , Oλ)mα is a finitely generated free Oλ-module for α = 0, 1 and

every iα ∈ Z. Thus, (1) follows from Lemma 6.1.11 and the Künneth formula.
For (2), we first show that E

p,q
s,(m0,m1)

degenerates at the second page. By
(1), Lemma 5.11.3(2), Lemma 5.6.2, and Lemma 6.2.1, the composition of
d−2,q
1,(m0,m1)

and the natural projection

E
−1,q
1,(m0,m1)

→ Hq−2
T (Q†,†, Oλ(n − 1))

⊕
Hq−2
T (Q†,◦, Oλ(n − 1))

is injective for every q ∈ Z. Thus, d−2,q
1,(m0,m1)

is injective, which implies

E
−2,q
2,(m0,m1)

= 0 for every q ∈ Z. By a dual argument, we have E
2,q
2,(m0,m1)

= 0

for every q ∈ Z as well. For the degeneration, it suffices to show that d−1,q
1,(m0,m1)

is injective and d0,q1,(m0,m1)
is surjective for q odd. By Lemmas 5.11.3(2), 5.6.2,

and 6.2.2(1), we have Hq−2
T (Q(1), Oλ(n − 1)) = Hq−2

T (Q•,†, Oλ(n − 1)) for
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q odd, which easily implies the injectivity of d−1,q
1,(m0,m1)

. By a dual argument,

d0,q1,(m0,m1)
is surjective for q odd.

Now for every q ∈ Z, the morphism σ induces a map

σ ∗
1 :

⊕
q0+q1=q

0E∗,q0
1,m0

⊗Oλ
1E∗,q1

1,m1
→ E

∗,q
1,(m0,m1)

of complexes of Oλ[Gal(F/Fp2)]-modules, hence a map

σ ∗
2 :

⊕
p0+p1=p

⊕
q0+q1=q

0Ep0,q0
2,m0

⊗Oλ
1Ep1,q1

2,m1
→ E

p,q
2,(m0,m1)

of Oλ[Gal(F/Fp2)]-modules for (p, q) ∈ Z
2. By Lemma 6.2.2 and Theo-

rem 6.3.4(2), to show (2), it suffices to show that σ ∗
2 is an isomorphism, or the

natural map

⊕
i0+i1=i

Hi0
T (Mn0,R	Oλ(r0))m0 ⊗Oλ H

i1
T (Mn1,R	Oλ(r1))m1

→ Hi
T(Q,R	Oλ(n))(m0,m1)

induced by σ is an isomorphism for every i ∈ Z. By Lemma 5.2.7 and
Lemma 5.11.2, the above map is identified with

⊕
i0+i1=i

Hi0
T (M

η
n0 ⊗Qp2

Qp, Oλ(r0))m0 ⊗Oλ H
i1
T (M

η
n1 ⊗Qp2

Qp, Oλ(r1))m1

→ Hi
T(Q

η ⊗Qp2
Qp, Oλ(n))(m0,m1),

which is an isomorphism by Lemma 6.1.11, and the Künneth formula. Thus,
(2) follows.

For (3), let {α±1
0,1, . . . , α

±1
0,r0

} and {α±1
1,1, . . . , α

±1
1,r1
, 1} be the roots of

Pα(�0,p)mod λ and Pα(�1,p)mod λ in a finite extension of Oλ/λ, respec-
tively. By (PI4), we may assume α0,r0 = p. By (2), Theorem 6.2.3(1),
and Theorem 6.3.4(3), the generalized Frobenius eigenvalues of the (Oλ/λ)
[Gal(Fp/Fp2)]-modules E

−1,2n
2,(m0,m1)

(−1) ⊗Oλ Oλ/λ and E
0,2n−1
2,(m0,m1)

(−1) ⊗Oλ

Oλ/λ are contained in {p−2α±1
1,1, . . . , p−2α±1

1,r1
, p−2} and {p−1α±1

0,1α
±1
1,1, . . . ,

p−1α±1
0,r0−1α

±1
1,r1

}∪{p−1α±1
0,1, . . . , p−1α±1

0,r0−1}, respectively.By (PI2),wehave
p2 �= 1 in Oλ/λ. By (PI7), we have α1,i1 /∈ {p2, p−2} for 1 � i1 � r1,
which implies 1 /∈ {p−2α±1

1,1, . . . , p−2α±1
1,r1
, p−2}. Again by (PI7), we have

α0,i0α1,i1 /∈ {p, p−1} for 1 � i0 < r0 and 1 � i1 � r1, which implies
1 /∈ {p−1α±1

0,1α
±1
1,1, . . . , p−1α±1

0,r0−1α
±1
1,r1

}. By (PI4), we have α0,i0 /∈ {p, p−1}
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for 1 � i0 < r0, which implies 1 /∈ {p−1α±1
0,1, . . . , p−1α±1

0,r0−1}. Thus, (3)
follows.

For (4), by Lemma 5.11.3 (3–5) and Lemma 2.1.4(1), it suffices to show that
H2i
T (P

?0,?1, Oλ(i))(m0,m1) is weakly semisimple. By (1) and Lemma 6.2.2(1), it

suffices to show that H2i0
T (M

?0
n0, Oλ(i0))m0⊗OλH

2i1
T (M

?1
n1, Oλ(i1))m1 is weakly

semisimple for i0, i1 ∈ Z. By Lemma 5.6.2, the action of Gal(Fp/Fp2) on

H2iα
T (M

?
nα , Oλ(iα))mα is trivial forα = 0, 1, ? = ◦, †, and every iα ∈ Z. On the

other hand, it is a consequence ofTheorem6.3.4(2) (for i0) andLemma6.2.2(3)
(for i1) that the action of Gal(Fp/Fp2) on H2iα

T (M
•
nα , Oλ(iα))mα is trivial

if i0 /∈ {r0 − 1, r0} or i1 �= r1. By Proposition 6.3.1(1,2) and Theo-
rem 6.3.4(1), the actions of Gal(Fp/Fp2) on both H

2r0−2
T (M•

n0, Oλ(r0− 1))m0

and H2r0
T (M

•
n0, Oλ(r0))m0 are also trivial. Thus, by Lemma 2.1.4(1), it remains

to show that H2r1
T (M

•
n1, Oλ(r1))m1 is weakly semisimple, which follows

from Theorem 6.2.3(2) as it is isomorphic to the direct sum of 1E0,2r1
2,m1

and

H2r1
T (M

†
n1, Oλ(r1))m1 .

Part (5) is a direct consequence of (2).
Part (6) follows from (1), Lemma 6.1.11, and Lemma 5.11.3(3–5). ��

Remark 7.2.6 In fact, Lemma 7.2.5(5) holds under only Assumption 7.2.3;
and Lemma 7.2.5(6) holds under only Assumption 7.1.1.

Lemma 7.2.5(5) induces a coboundary map

AJQ : Zn
T(Q

η)→ H1(Qp2,H
2n−1
T (Q,R	Oλ(n))(m0,m1)).

We also recall the singular quotient map

∂ : H1(Qp2,H
2n−1
T (Q,R	Oλ(n))(m0,m1))

→ H1
sing(Qp2,H

2n−1
T (Q,R	Oλ(n))(m0,m1)) (7.1)

from Definition 2.2.2.
By our choice of K◦

n and (K◦
sp,K

◦
n+1), we obtain a morphism

Mp(V
◦
n,K

◦
sp)→ P

which is finite. Denote by Psp the corresponding cycle; and let Qsp be the strict
transform of Psp under σ , which is a Tp-invariant cycle of Q. Our main goal
is to compute ∂ AJQ(Q

η
sp) in H1

sing(Qp2,H
2n−1
T (Q,R	Oλ(n))/(n0, n1)). The

cycle Qsp gives rise to a class cl(Qsp) ∈ Cn(Q, L), where Cn(Q, L) is the
target of the map 0n (5.28).
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Proposition 7.2.7 Assume Assumptions 7.1.1, 7.2.2, 7.2.3, 7.2.4, and Hypoth-
esis 3.2.10 for both n and n + 1. There is a canonical isomorphism

H1
sing(Qp2,H

2n−1
T (Q,R	Oλ(n))(m0,m1)) � coker0n

(m0,m1)

under which ∂ AJQ(Q
η
sp) coincides with the image of cl(Qsp) in coker0n

(m0,m1)
.

Proof By [47, Theorem 2.16 and Theorem 2.18],29 it suffices to show that Oλ
is a very nice coefficient ring forE

p,q
s,(m0,m1)

in the sense of [47, Definition 2.15].
In fact, in [47, Definition 2.15], (N1) is satisfied due to Lemma 7.2.5(2); (N2) is
satisfied due to Lemma 7.2.5(3); and (N3) is satisfied due to Lemmas 7.2.5(4)
and 2.1.4(2).

The proposition is proved. ��
By Construction 5.11.7 and Remark 5.11.8, we have a map

∇ : Cn(Q, Oλ)→ Oλ[Sh(V◦
n0,K

◦
n0)] ⊗Oλ Oλ[Sh(V◦

n1,K
◦
n1)].

Theorem 7.2.8 (First explicit reciprocity law) Assume Assumptions 7.1.1,
7.2.2, 7.2.3, 7.2.4, and Hypothesis 3.2.10 for both n and n + 1.

(1) The image of the composite map ∇(m0,m1) ◦ 0n
(m0,m1)

is contained in
n0.Oλ[Sh(V◦

n0,K
◦
n0)]m0 ⊗Oλ Oλ[Sh(V◦

n1,K
◦
n1)]m1 .

(2) In view of (1), the induced map is an isomorphism

∇m1/n0 : coker0n
m1
/n0 → Oλ[Sh(V◦

n0 ,K
◦
n0)]/n0 ⊗Oλ Oλ[Sh(V◦

n1,K
◦
n1)]m1

is an isomorphism.
(3) Under the natural pairing

Oλ[Sh(V◦
n0
,K◦

n0
)]/n0 ⊗Oλ Oλ[Sh(V◦

n1
,K◦

n1
)]m1×(Oλ/λm )[Sh(V◦

n0
,K◦

n0
)][n0] ⊗Oλ Oλ[Sh(V◦

n1
,K◦

n1
)]m1 → Oλ/λ

m

obtained by taking inner product, the pairing of ∇/(n0,n1)(∂ AJQ(Q
η
�)) and

every function

f ∈ (Oλ/λm)[Sh(V◦
n0,K

◦
n0)][n0] ⊗Oλ (Oλ/λ

m)[Sh(V◦
n1,K

◦
n1)][n1]

29 Although it is assumed that the underlying strictly semistable scheme X is proper over the
base in [47], the proof of relevant results works without change in our case even when Q is not
proper in view of Lemma 7.2.5(6).
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is equal to

(p + 1) · φ�0(I
◦
n0,p) · φ�1(T

◦
n1,p) ·

∑
s∈Sh(V◦

n,K
◦
sp)

f (s, sh◦↑(s)).

Here, we regard ∂ AJQ(Q
η
sp) as an element in coker0n

(m0,m1)
(hence in

coker0n
m1
/n0) via the canonical isomorphism in Proposition 7.2.7.

Proof We first consider (1). By Lemma 5.11.3(3,4), we have

H2(n−1)
T (Q(0), Oλ(n − 1))(m0,m1)

=
⊕

(?0,?1)∈{◦,•}2
σ ∗H2(n−1)

T (P?0,?1, Oλ(n − 1))(m0,m1)

⊕
(δ†,†◦,◦)!σ ∗H2(n−2)

T (P†,†, Oλ(n − 2))(m0,m1)⊕
(δ†,†•,•)!σ ∗H2(n−2)

T (P†,†, Oλ(n − 2))(m0,m1).

Thus, it suffices to show that

(1a) The image of

σ ∗H2(n−1)
T (P◦,•, Oλ(n − 1))(m0,m1)

⊕
σ ∗H2(n−1)

T (P•,•, Oλ(n − 1))(m0,m1)

under the map (∇ ◦ δ1! ◦ δ∗0)(m0,m1) is contained in
n0.Oλ[Sh(V◦

n0,K
◦
n0)]m0 ⊗Oλ Oλ[Sh(V◦

n1,K
◦
n1)]m1 .

(1b) The image of

σ ∗H2(n−1)
T (P◦,◦, Oλ(n − 1))(m0,m1)

⊕
σ ∗H2(n−1)

T (P•,◦, Oλ(n − 1))(m0,m1)

under the map (∇ ◦ δ1! ◦ δ∗0)(m0,m1) is zero.

(1c) The image of (δ†,†◦,◦)!σ ∗H2(n−2)
T (P†,†, Oλ(n − 2))(m0,m1) under the map

(∇ ◦ δ1! ◦ δ∗0)(m0,m1) is zero.

(1d) The image of (δ†,†•,•)!σ ∗H2(n−2)
T (P†,†, Oλ(n − 2))(m0,m1) under the map

(∇ ◦ δ1! ◦ δ∗0)(m0,m1) is zero.

For (1a), we have a commutative diagram

H2(n−1)
T (P◦,•, Oλ(n − 1))(m0,m1)

⊕
H2(n−1)
T (P•,•, Oλ(n − 1))(m0,m1)

σ ∗

0E0,2r0−2
1,m0

⊗Oλ H
2r1
T (M

•
n1, Oλ(r1))m1

H2(n−1)
T (Q◦,•, Oλ(n − 1))(m0,m1)

⊕
H2(n−1)
T (Q•,•, Oλ(n − 1))(m0,m1) Oλ[Sh(V◦

n0,K
◦
n0)]m0 ⊗Oλ Oλ[Sh(V◦

n1,K
◦
n1)]m1

in which
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• the upper horizontal arrow is the map

H2(n−1)
T (P◦,•, Oλ(n − 1))(m0,m1)

⊕
H2(n−1)
T (P•,•, Oλ(n − 1))(m0,m1)

→ H2(r0−1)
T (M◦

n0, Oλ(r0 − 1))m0 ⊗Oλ H
2r1
T (M

•
n1, Oλ(r1))m1⊕

H2(r0−1)
T (M•

n0, Oλ(r0 − 1))m0 ⊗Oλ H
2r1
T (M

•
n1, Oλ(r1))m1

= 0E0,2r0−2
1,m0

⊗Oλ H
2r1
T (M

•
n1, Oλ(r1))m1

given by Lemma 7.2.5(1) and the Künneth formula;
• the right vertical arrow is

(∇0 ◦ 0d−1,2r0
1 ◦ 0d0,2r0−2

1 (−1))m0 ⊗ (I◦
n1,p ◦ inc∗† + (p + 1)2T◦•

n1,p ◦ inc∗•)m1;

and
• the lower horizontal arrow is (∇ ◦ δ1! ◦ δ∗0)(m0,m1).

For (1a), by Proposition B.3.5(2) and (PI4), we have

((p + 1)R◦
n0,p − I◦

n0,p).Oλ[Sh(V◦
n0,K

◦
n0)]m0 ⊆ n0.Oλ[Sh(V◦

n0,K
◦
n0)]m0 .

Thus, (1a) follows from Proposition 6.3.1(4) and Lemma 5.11.3(3).
For (1b) and (1c), both images are actually contained in the sum of

(I◦
n1,p ◦ inc∗◦,† + (p + 1)2T◦•

n1,p ◦ inc∗◦,•)(γ ◦,†◦,• )!H
2(n−1)
T (P◦,†, Oλ(n − 1))(m0,m1)

and

(I◦
n1,p ◦ inc∗◦,† + (p + 1)2T◦•

n1,p ◦ inc∗•,•)(γ •,†•,• )!H
2(n−1)
T (P•,†, Oλ(n − 1))(m0,m1),

which by Lemma 7.2.5(1) coincide with

H2r0
T (M◦

n0 , Oλ(r0))m0 ⊗Oλ(
(I◦

n1,p ◦ Inc∗† + (p + 1)2T◦•
n1,p ◦ Inc∗•) 1d−1,2r1

1 H2(r1−1)
T (M†

n1, Oλ(r1 − 1))m1

)

and

H2r0
T (M•

n0 , Oλ(r0))m0 ⊗Oλ(
(I◦

n1,p ◦ Inc∗† + (p + 1)2T◦•
n1,p ◦ Inc∗•) 1d−1,2r1

1 H2(r1−1)
T (M†

n1, Oλ(r1 − 1))m1

)
,

respectively. However, they vanish by Lemma 5.9.2(3). Thus, (1b) and (1c)
follow.
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For (1d), by [47, Lemma 2.4], it follows from (1c). Thus, (1) is proved.
Now we consider (2). We claim that the map ∇(m0,m1) (with domain

Cn(Q, Oλ)(m0,m1)) is surjective. In fact, consider the submodule

ker 0d0,2r0
1,m0

⊗Oλ ker
1d0,2r1

1,m1
⊆

⊕
(?0,?1)∈{◦,•}2

H2(n−1)
T (P?0,?1, Oλ(n − 1))(m0,m1)

in view of Lemma 7.2.5(1). Then σ ∗
(
ker 0d0,2r0

1,m0
⊗Oλ ker

1d0,2r1
1,m1

)
is contained

in Cn(Q, Oλ)(m0,m1). On the other hand, the map ∇(m0,m1) ◦ σ ∗ (with domain
ker 0d0,2r0

1,m0
⊗Oλ ker

1d0,2r1
1,m1

) coincides with ∇0
m0

⊗∇1
m1
, which is surjective by

Proposition 6.3.1(3) and Theorem 6.2.3. The claim follows.
Thus, it remains to show that the domain and the target of ∇m1/n0 have the

same cardinality. By Proposition 7.2.7, we have an isomorphism

coker0n
m1
/n0 = coker0n

(m0,m1)
/n0

� H1
sing(Qp2,H

2n−1
T (Q,R	Oλ(n))(m0,m1))/n0 (7.2)

of Oλ/λm-modules. By Lemma 7.2.5(2,3) and Theorem 6.2.3(2), we have

H1
sing(Qp2,H

2n−1
T (Q,R	Oλ(n))(m0,m1)) � H1

sing(Qp2,H
2r0−1
T (Mn0,R	Oλ(r0))m0)⊗Oλ (

1E0,2r1
2,m1

)
Gal(Fp/Fp2 ).

Then by Theorems 6.2.3(3) and 6.3.4(4), we have

(7.2) � Oλ[Sh(V◦
n0,K

◦
n0)]/n0 ⊗Oλ Oλ[Sh(V◦

n1,K
◦
n1)]m1 .

Thus, (2) is proved.
Finally we consider (3). As Qsp does not intersect with Q◦,•, we have

∇(cl(Qsp)) = ∇(cl(Q•�))

where cl(Q•�) ∈ H2n
T (Q

•,•, Oλ(n)). Then by Construction 5.11.7, we have

∇(cl(Qsp)) =(
(p + 1)(T◦•

n0,p ⊗ I◦
n1,p) ◦ inc∗•,† + (p + 1)3(T◦•

n0,p ⊗ T◦•
n1,p) ◦ inc∗•,•

)
(cl(P•

sp)).

Applying Theorem 5.11.5(3) to the object (K◦
sp,K

◦
n+1) ∈ K(V◦

n)sp followed
by pushforward, we know that the pairing between ∇m1/n0(cl(Qsp)) and any
function

f ∈ (Oλ/λm)[Sh(V◦
n0,K

◦
n0)][n0] ⊗Oλ (Oλ/λ

m)[Sh(V◦
n1,K

◦
n1)][n1]
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is given by the formula

(p + 1) · φ�0(I
◦
n0,p) · φ�1(T

◦
n1,p) ·

∑
s∈Sh(V◦

n,K◦
sp)

f (s, sh◦↑(s))

in view of (PI6). We then obtain (3) by Proposition 7.2.7.
The theorem is proved. ��
We state a corollary for later application. We choose an indefinite uni-

formizationdatumas inNotation5.10.1, andputSh′nα := Sh(V′
nα ,jnαK

p◦
nαK

′
nα,p)

for α = 0, 1.
Assume Assumption 7.1.1 and Assumption 7.2.3. By Lemma 6.1.11,

Lemma 5.2.7, and the Künneth formula, we have Hi
ét((Sh

′
n0 ×Spec F Sh′n1)F ,

Oλ)(m0,m1) = 0 if i �= 2n − 1. In particular, we obtain the Abel–Jacobi map

AJ : Zn(Sh′n0 ×Spec F Sh′n1)
→ H1(F,H2n−1

ét ((Sh′n0 ×Spec F Sh′n1)F , Oλ(n))/(n0, n1)).

Let Sh′sp be the cycle given by the finite morphism Sh(V′
n,jnK

p◦
sp K′

n,p) →
Sh′n ×Spec F Sh′n+1, which is an element in Zn(Sh′n0 ×Spec F Sh′n1).

Corollary 7.2.9 Assume Assumptions 7.1.1, 7.2.2, 7.2.3, 7.2.4, and Hypothe-
sis 3.2.10 for both n and n + 1. Then we have

expλ
(
∂plocp AJ(Sh

′
sp),H

1
sing(Fp,H

2n−1
ét ((Sh′n0 ×Spec F Sh′n1 )F , Oλ(n))/(n0, n1))

)

= expλ
(
1Sh(V◦

n ,K
◦
sp)
, Oλ[Sh(V◦

n0 ,K
◦
n0 )× Sh(V◦

n1 ,K
◦
n1 )]/(n0, n1)

)

where expλ is introduced in Definition 2.1.6. Here, we regard 1Sh(V◦
n,K◦

sp)
as

the pushforward of the characteristic function along the map Sh(V◦
n,K

◦
sp)→

Sh(V◦
n,K

◦
n)× Sh(V◦

n+1,K
◦
n+1).

Proof Note that the isomorphism (5.2) induces a map

H2n−1
ét ((Sh′n0 ×Spec F Sh′n1)F , Oλ(n))(m0,m1) → H2n−1

T (Q,R	Oλ(n))(m0,m1)

of Oλ[Gal(Qp/Qp2)]-modules, which is an isomorphism by Lemma 5.11.2.
Combining with the diagram (5.23), we have

expλ
(
∂plocp AJ(Sh

′
sp),H

1
sing(Fp,H

2n−1
ét ((Sh′n0 ×Spec F Sh′n1 )F , Oλ(n))/(n0, n1))

)

= expλ
(
∂ AJQ(Qηsp),H

1
sing(Qp2 ,H

2n−1
T (Q,R	Oλ(n))/(n0, n1))

)
,
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where ∂ is the map (7.1). Now Theorem 7.2.8 implies

expλ
(
∂ AJQ(Qηsp),H

1
sing(Qp2,H

2n−1
T (Q,R	Oλ(n))/(n0, n1))

)

= expλ
(
(p + 1)φ�0(I

◦
n0,p)φ�1(T

◦
n1,p)1Sh(V◦

n,K
◦
sp)
,

Oλ[Sh(V◦
n0,K

◦
n0)]/n0 ⊗Oλ Oλ[Sh(V◦

n1,K
◦
n1)]/n1

)
.

Note that (p + 1) is invertible in Oλ by (PI2); φ�0(I
◦
n0,p) is invertible in Oλ

by (PI5) and Proposition B.3.5(1); and φ�1(T
◦
n1,p) is invertible in Oλ by (PI4)

and Proposition B.4.3(2). Thus, the corollary follows. ��

7.3 Second explicit reciprocity law

We start by choosing

• a prime λ of E , whose underlying rational prime � satisfies�+
min∩�+

� = ∅,
• a positive integer m,
• a (possibly empty) finite set �+

lr,II of nonarchimedean places of F+ that
are inert in F , strongly disjoint from �+

min (Definition 1.3.2), satisfying
� � ‖v‖(‖v‖2 − 1) for v ∈ �+

lr,II,
• a finite set �+

II of nonarchimedean places of F+ containing �+
min ∪�+

lr,II,• a standard indefinite hermitian space Vn of rank n over F , together with a

self-dual
∏
v /∈�+∞∪�+

min∪�+
lr,II

OFv -lattice�n in Vn ⊗F A
�+∞∪�+

min∪�+
lr,II

F (and

put Vn+1 := (Vn)� and �n+1 := (�n)�), satisfying that the hermitian
space (Vn0)v is not split for v ∈ �+

lr,II,• objects Kn ∈ K(Vn) and (Ksp,Kn+1) ∈ K(Vn)sp of the forms

Kn =
∏

v∈�+
min∪�+

lr,II

(Kn)v ×
∏

v /∈�+∞∪�+
min∪�+

lr,II

U(�n)(OF+
v
),

Ksp =
∏

v∈�+
min∪�+

lr,II

(Ksp)v ×
∏

v /∈�+∞∪�+
min∪�+

lr,II

U(�n)(OF+
v
),

Kn+1 =
∏

v∈�+
min∪�+

lr,II

(Kn+1)v ×
∏

v /∈�+∞∪�+
min∪�+

lr,II

U(�n+1)(OF+
v
),

satisfying
– (Ksp)v = (Kn)v for v ∈ �+

min,
– (Ksp)v ⊆ (Kn)v for v ∈ �+

lr,II, and
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– (Kn0)v is a transferable open compact subgroup (Definition D.2.1)
of U(Vn0)(F

+
v ) for v ∈ �+

min and is a special maximal subgroup of
U(Vn0)(F

+
v ) for v ∈ �+

lr,II,
• a special inert prime (Definition 3.3.4) p of F+ (with the underlying rational
prime p) satisfying30

(PII1) �+
II does not contain p-adic places;

(PII2) � does not divide p(p2 − 1);
(PII3) there exists a CM type containing τ∞ as in the initial setup of
Sect. 5 satisfying Q

 
p = Qp2 ;

(PII4) Pα(�0,p)mod λm is level-raising special at p (Definition 3.1.5);
Pα(�1,p)mod λ is Tate generic at p (Definition 3.1.5);
(PII7) Pα(�0,p)⊗α(�1,p)mod λm is level-raising special at p (Defini-
tion 3.1.5);

(Sowecan andwill apply the setup inSect. 4.5 to thedatum (Vn, {�n,q}|q|p).)
• remaining data in Sect. 4.1 with Q

 
p = Qp2 ; and

• a definite uniformization datum as in Notation 4.5.7, which in particular
gives open compact subgroups K$n,p, K

$
n+1,p, and K

$
sp,p.

Put K$sp := (inK
p
sp)×K$n,p, andK

$
nα := (inαK

p
nα )×K$nα,p for α = 0, 1. Put

K$sp,sp := (inK
p
sp)×K$sp,p and K$n,sp := (inK

p
n )×K$sp,p. As in Sect. 4.6, we

put X?
nα := X?

p(Vnα ,K
p
nα ) for meaningful triples (X, ?, α) ∈ {M,M,B,S} ×

{ , η} × {0, 1}.
Notation 7.3.1 We introduce the following ideals mα and nα of T

�+
II∪�+

p
nα for

α = 0, 1 in the same way as in Notation 7.2.1 (but replacing �+
I with �+

II ).

We then introduce the following assumption.

Assumption 7.3.2 Forα = 0, 1,we haveHi
T(Mnα , Oλ)mα = 0 for i �= nα−1,

and that Hnα−1
T (Mnα , Oλ)mα is a finite free Oλ-module.

Lemma 7.3.3 Assume Assumptions 7.1.1, 7.3.2, and Hypothesis 3.2.10 for n1.

(1) The Oλ[Gal(Fp/Fp2)]-module H2r1
T (Mn1, Oλ(r1))m1 is weakly semisimple

(Definition 2.1.2).
(2) The map

πn1! ◦ ι∗n1 : (H2r1
T (Mn1, Oλ(r1))m1)Gal(Fp/Fp2 )

→ H0
T(Sn1, Oλ)m1

is an isomorphism.

30 In what follows, we will also regard p as the unique place of F above p, according to the
context.
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Proof The proof of the lemma is similar to Theorem 6.2.3. For the readers’
convenience, we reproduce the details under the current setup.

For (1), by Lemma 4.2.4, we have an isomorphism

H2r1
T (Mn1, Oλ(r1))m1 � H2r1

ét (Sh(Vn1,Kn1)F , Oλ(r1))m1

of Oλ[Gal(Qp/Qp2)]-modules. By Lemmas 6.1.10, 6.1.11, Proposition
C.3.1(2), and Hypothesis 3.2.10, we have an isomorphism

H2r1
ét (Sh(Vn1,Kn1)F , Oλ(r1))m1 ⊗Oλ Q� �

⊕
π1

ρcBC(π1),ι�(r1)
⊕d(π1)

of representations of�F with coefficients inQ�,whered(π1) := dim(π∞,p
1 )K

p
n1 .

Here, the direct sum is taken over all automorphic representations π1 of
U(Vn1)(AF+) satisfying:

• (Vn1, π1) is a �1-congruent standard pair (Definition 6.1.8 with �+ =
�+

II );• π1τ∞ is a holomorphic discrete series representation of U(Vn1)(F
+
τ∞)with

the Harish-Chandra parameter {−r1, 1− r1, . . . , r1 − 1, r1}; and
• π1τ is trivial for every archimedean place τ �= τ∞.

We may replace Eλ by a finite extension inside Q� such that ρBC(π1),ι� is
defined over Eλ for every π1 appearing in the previous direct sum. Now we
regard ρBC(π1),ι� as a representation over Eλ. Then ρBC(π1),ι�(r1) admits a �F -
stable Oλ-lattice RBC(π1), unique up to homothety, whose reduction R̄BC(π1)
is isomorphic to ρ̄�1,λ(r1). Moreover, we have an inclusion

H2r1
ét (Sh(Vn1,Kn1)F , Oλ(r1))m1 ⊆

⊕
π1

(Rc
BC(π1))

⊕d(π1)

of Oλ[Gal(Fp/Fp2)]-modules. By (PII4), we know that ρ̄c�1,λ
(r1) is weakly

semisimple and

dimOλ/λ ρ̄
c
�1,λ

(r1)
Gal(Fp/Fp2 ) = 1.

On the other hand, we have

dimEλ ρ
c
BC(π1),ι�(r1)

Gal(Fp/Fp2 ) � 1.

Thus by Lemma 2.1.5, for every π1 in the previous direct sum, Rc
BC(π1)

is weakly semisimple. Thus, H2r1
T (Mn1, Oλ(r1))m1 is weakly semisimple by

Lemma 2.1.4(1). Thus, (1) follows.
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For (2), we note that in (1) we have also proved that (H2r1
T (Mn1,

Oλ(r1))m1)Gal(Fp/Fp2 )
is a free Oλ-module of rank

∑
π1

d(π1). By Theo-

rem 4.4.10, Proposition B.4.3(2), and (PII4), we know that πn1! ◦ ι∗n1 is
surjective. Thus, it remains to show that

∑
π1

d(π1) � dimEλ H
0
T(Sn1, Oλ)m1 ⊗Oλ Eλ.

However, the above inequality is a consequence of Proposition 4.4.4 andCorol-
lary C.3.3.

The lemma is proved. ��
We have a finite morphism

Sh(Vn,Ksp)→ Sh(Vn,Kn)×Spec F Sh(Vn+1,Kn+1),

which gives rise to a class

[Sh(Vn,Ksp)] ∈ H2n
ét (Sh(Vn0,Kn0)×Spec F Sh(Vn1,Kn1), Oλ(n))

by the absolute cycle class map.

Theorem 7.3.4 (Second explicit reciprocity law) Assume Assumptions 7.1.1,
7.3.2, and Hypothesis 3.2.10 for both n and n + 1. Then we have

expλ
(
locp([Sh(Vn,Ksp)]),

H2n
ét ((Sh(Vn0,Kn0)×Spec F Sh(Vn1,Kn1))Fp, Oλ(n))/(n0, n1)

)
� expλ

(
1Sh(V$n,K$sp,sp), Oλ[Sh(V$n0,K$n0)× Sh(V$n1,K

$
n1)]/(n0, n1)

)
,

where locp is introduced in Construction 4.6.1; expλ is introduced in Defi-
nition 2.1.6; and the element 1Sh(V$n,K$sp,sp) is regarded as the pushforward of
the characteristic function along the map Sh(V$n,K

$
sp,sp) → Sh(V$n,K

$
n) ×

Sh(V$n+1,K
$
n+1).

Proof We claim that

(1) the action of T$n1,p on H
2r0
T (Mn0 ×Tp Sn1, Oλ(r0))(m0,m1) is invertible; and

(2) the composite map

(id × πn1)! ◦ (id × ιn1)∗ : H2n
T (Mn0 ×Tp Mn1, Oλ(n))(m0,m1)

→ H2r0
T (Mn0 ×Tp Sn1, Oλ(r0))(m0,m1)

is an isomorphism.

123



On the Beilinson–Bloch–Kato conjecture 301

We prove the theorem assuming these two claims. Take a uniformizer
λ0 of Eλ. Suppose that λe

01Sh(V$n,K$sp,sp) = 0 in Oλ[Sh(V$n0,K$n0) ×
Sh(V$n1,K

$
n1)]/(n0, n1) for some integer e � 0. Applying Theorem 4.6.2 to

the object (Ksp,Kn+1) ∈ K(Vn)sp followed by pushforward, we have

λe
0T
$
n1,p.(id × πn1)!(id × ιn1)∗loc′p([Sh(Vn,Ksp)]) = 0

in H2n
T (Mn0×Tp Sn1, Oλ(n))/(n0, n1). By the above two claims, wemust have

λe
0loc

′
p([Sh(Vn,Ksp)]) = 0

in H2n
T (Mn0 ×Tp Mn1, Oλ(n))/(n0, n1). Thus, we have

λe
0locp([Sh(Vn,Ksp)]) = 0

as the map H2n
ét ((Sh(Vn0,Kn0) ×Spec F Sh(Vn1,Kn1))Fp, Oλ(n)) →

H2n
T (Mn0 ×Tp Mn1, Oλ(n)) is an isomorphism. The theorem follows.
Now we consider the two claims. By the Hochschild–Serre spectral

sequence, we have a short exact sequence

0 H1(Fp2,H
2n−1
T (Mn0 ×Tp

Mn1, Oλ(n))(m0,m1)) H2n
T (Mn0 ×Tp Mn1, Oλ(n))(m0,m1) H2n

T (Mn0 ×Tp
Mn1, Oλ(n))

Gal(Fp/Fp2 )

(m0,m1)
0

of Oλ-modules. By the Künneth formula and (an analog of) Lemma 6.1.11,
we have

Hi
T(Mn0 ×Tp

Mn1, Oλ)(m0,m1) �
⊕

i0+i1=i

Hi0
T (Mn0, Oλ)⊗Oλ H

i1
T (Mn1, Oλ)

for every i ∈ Z. This implies H2n
T (Mn0 ×Tp

Mn1, Oλ(n))(m0,m1) = 0 and

H2n−1
T (Mn0 ×Tp

Mn1, Oλ(n))(m0,m1)

� H2r0−1
T (Mn0, Oλ(r0))m0 ⊗Oλ H

2r1
T (Mn1, Oλ(r1))m1 .

In particular, we have a canonical isomorphism

H2n
T (Mn0 ×Tp Mn1, Oλ(n))(m0,m1)

� H1(Fp2,H
2r0−1
T (Mn0, Oλ(r0))m0 ⊗Oλ H

2r1
T (Mn1, Oλ(r1))m1). (7.3)

Similarly, we have
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H2r0
T (Mn0 ×Tp Sn1, Oλ(r0))(m0,m1)

� H1(Fp2,H
2r0−1
T (Mn0, Oλ(r0))m0 ⊗Oλ H

0
T(Sn1, Oλ)m1)

= H1(Fp2,H
2r0−1
T (Mn0, Oλ(r0))m0)⊗Oλ H

0
T(Sn1, Oλ)m1 . (7.4)

For claim (1), note that the action of Tn1,p on H2r0
T (Mn0 ×Tp Sn1,

Oλ(r0))(m0,m1) factors through the second factor under the isomorphism (7.4).
By Proposition B.4.3(2) and (PII4), we know that the action of T$n1,p on

H0
T(Sn1, Oλ)m1 is invertible. Thus, (1) follows.
For claim (2), by (PII7) and a similar argument for the proof of

Lemma 7.2.5(3), we know that the Oλ[Gal(Fp/Fp2)]-module

H2r0−1
T (Mn0, Oλ(r0))m0 ⊗Oλ

ker
(
(H2r1

T (Mn1, Oλ(r1))m1)→ (H2r1
T (Mn1, Oλ(r1))m1)Gal(Fp/Fp2 )

)

has zero Gal(Fp/Fp2)-coinvariants. Combining with Lemma 7.3.3, we obtain
an isomorphism

H2n
T (Mn0 ×Tp Mn1, Oλ(n))(m0,m1) � H1(Fp2,H

2r0−1
T (Mn0, Oλ(r0))m0)⊗Oλ (H

2r1
T (Mn1, Oλ(r1))m1)Gal(Fp/Fp2 )

from (7.3), under which the map (id × πn1)! ◦ (id × ιn1)
∗ coincides with

id ⊗ (πn1! ◦ ι∗n1). Thus, (2) follows.
The theorem is proved. ��

Remark 7.3.5 In fact, in Theorem 7.3.4, the element locp([Sh(Vn,Ksp)])
belongs to the Oλ-submodule

H1
ur(Fp,H

2n
ét ((Sh(Vn0,Kn0)×Spec F Sh(Vn1,Kn1))Fp

, Oλ(n))/(n0, n1)),

which can be viewed as the counterpart of H1
sing in the first reciprocity law.

Then the theorem implies that the exponent of locp([Sh(Vn,Ksp)]) in the above
submodule is bounded from above by the exponent of the diagonal distribution
1Sh(V$n,K

$
sp,sp)

in Oλ[Sh(V$n0,K$n0)× Sh(V$n1,K
$
n1)]/(n0, n1).

8 Proof of main theorems

In the section, we prove our main theorems on bounding Selmer groups. In
Sect. 8.1, we introduce the notation of admissible primes for the coefficient
field, andmake someadditional preparation for themain theorems. InSects. 8.2
and 8.3, we prove our main theorems in the (Selmer) rank 0 and 1 cases,
respectively.
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8.1 Admissible primes for coefficient fields

We keep the setup in Sect. 7.1.

Definition 8.1.1 We say that a prime λ of E , with the underlying rational
prime � (and the ring of integers Oλ of Eλ), is admissible (with respect to
(�0,�1)) if

(L1) � > 4n and � is unramified in F ;
(L2) �+

min does not contain �-adic places;
(L3) the Galois representation ρ�0,λ ⊗Eλ ρ�1,λ is absolutely irreducible;
(L4) Assumption 7.1.1 is satisfied, that is, bothρ�0,λ andρ�1,λ are residually

absolutely irreducible;
(L5) under (L4), for α = 0, 1, we have a �F -stable Oλ-lattice Rα in

ρ�α,λ(rα), unique up to homothety, that is (1 − α)-polarizable, for

which we choose a (1− α)-polarization�α : Rc
α

∼−→ R∨
α (1− α) and an

isomorphism Rα � O⊕nα
λ of Oλ-modules.31 After adopting the nota-

tion in Sect. 2.7, we have
(L5-1) either one of the two assumptions in Lemma 2.3.5 is satisfied;
(L5-2) (GI1F ′,P) from Lemma 2.7.1 holds with F ′ = F+

rflx (Definition 3.3.2)

and P(T ) = T 2 − 1 (see Remark 8.1.2 below for a more explicit
description);

(L6) under (L4), the homomorphism ρ̄�0,λ,+ (Remark 6.1.7) is rigid for
(�+

min,∅) (Definition 6.3.3), and ρ̄�0,λ|Gal(F/F(ζ�))
is absolutely irre-

ducible;

(L7) for α = 0, 1, the composite homomorphism T
�+
min

nα
φ�α−−→ OE → OE/λ

is cohomologically generic (Definition D.1.1).

Remark 8.1.2 In Definition 8.1.1, (L5-2) is equivalent to the following asser-
tion: the image of the restriction of the homomorphism

(ρ̄0+, ρ̄1+, ε̄�) : �F+ → Gn0(Oλ/λ)× Gn1(Oλ/λ)× (Oλ/λ)×

(see Notation 2.6.1 for the notation) to Gal(F/F+
rflx) contains an element

(γ0, γ1, ξ) satisfying

(a) ξ2 − 1 �= 0;
(b) for α = 0, 1, γα belongs to (GLnα (Oλ/λ) × (Oλ/λ)×, c) with order

coprime to �;
(c) 1 appears in the eigenvalues of each of hγ0 , hγ1 , and hγ0 ⊗ hγ1 (Nota-

tion 2.6.2) with multiplicity one;

31 In fact, (L5) does not depend on the choice of �α and the basis, since �α is unique up to
units in Oλ and the basis is unique up to conjugation in GLnα (Oλ).
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(d) hγ0 does not have an eigenvalue that is equal to −1 in Oλ/λ;
(e) hγ1 does not have an eigenvalue that is equal to −ξ in Oλ/λ.

Lemma 8.1.3 Suppose that F+ �= Q, that E = Q, and that there are two
elliptic curves A0 and A1 over F+ such that for every rational prime � of E
and α = 0, 1, we have ρ�α,� � Symnα−1 H1

ét(AαF ,Q�)|�F . If A0F and A1F
are not isogenous to each other and End(A0F ) = End(A1F ) = Z, then all
but finitely many rational primes � are admissible.

Proof We need to show that every condition in Definition 8.1.1 excludes only
finitely many �. By [68, Théorème 6], for sufficiently large �, the homomor-
phisms

�F+ → GL(H1
ét(AαF ,F�)) � GL2(F�)

are both surjective for α = 0, 1. Thus, we may assume that this is the case.
For (L1) and (L2), this is trivial.
For (L3), (L4), and (L5), this has been proved in Proposition 2.7.2.
For (L6), by [51, Corollary 4.1.2], the condition that ρ̄�0,λ,+ is rigid for

(�+
min,∅) excludes only finitely many �. It is clear that the remaining two

conditions also exclude only finitely many �.
For (L7), this follows from Corollary D.1.4. ��

Lemma 8.1.4 Keep the setup in Sect. 7.1. Suppose that

(a) there exists a very special inert prime p of F+ (Definition 3.3.4) such that
�0,p is Steinberg, and�1,p is unramified whose Satake parameter contains
1 exactly once;

(b) for α = 0, 1, there exists a nonarchimedean placewα of F such that�α,wα
is supercuspidal; and

(c) F+ �= Q.

Then all but finitely many primes λ of E are admissible.

Proof We need to show that every condition in Definition 8.1.1 excludes only
finitely many λ.

For (L1) and (L2), this is trivial.
For (L4), this follows from [51, Proposition 4.2.3(1)] by (b).
For (L3), this follows from Lemma 8.1.5 below by (L4) and (a).
For (L6), this follows from [51, Theorem 4.2.6] by (b).
For (L7), this follows from Corollary D.1.4 by (c).
For (L5-1), let λ be a prime of E satisfying (L4) and (L6), whose underlying

rational prime is at least 2n(n + 1)− 1. Then by (a), ρ̄�0,λ and ρ̄�1,λ satisfy
the assumptions in Lemma 8.1.5 below, with k = Oλ/λ and � = �F . Thus,
by Lemma 8.1.5(2), assumption (b) of Lemma 2.3.5, hence (L5-1) hold.
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For (L5-2), take an arithmetic Frobenius element φp ∈ �F+
p
. By Defini-

tion 3.3.4, φp belongs to Gal(F/F+
rflx). For α = 0, 1, put rα := �nα

2 � as
always. By (a), the Satake parameter of�0,p is {p±1, . . . , p±(2r0−1)}; and we
may write the Satake parameter of �1,p as {1, α±1

1 , . . . , α
±1
r1 } in which αi is

an algebraic number other than 1 for 1 � i � r1. For our purpose, we may
replace E by a finite extension in C such that αi ∈ E for 1 � i � r1. By
Proposition 3.2.4(1), we have |αi | = 1 for 1 � i � r1. Therefore, for all but
finitely many prime λ of E , we have

• {p, α1, . . . , αr1} is contained in O×
λ ;

• {p±1 mod λ, . . . , p±(2r0−1)mod λ} consists of distinct elements and does
not contain −1;

• {αi mod λ | 1 � i � r1} is disjoint from {1,−p,−p−1};
• {p±1αi mod λ, . . . , p±(2r0−1)αi mod λ | 1 � i � r1} is disjoint from

{p, p−1}.
Then for every prime λ satisfying (L4) and the above properties, (L5-2)
(that is, (GI1F ′,P) from Lemma 2.7.1) is satisfied by taking the element
(ρ̄0+, ρ̄1+, ε̄�)(φp).

The lemma is proved. ��
For every integer m � 1, we denote by Jm the standard upper triangular

nilpotent Jordan block

⎛
⎜⎜⎜⎜⎝

0 1 0 · · · 0
0 1 · · · 0
. . .
. . .
...

0 1
0

⎞
⎟⎟⎟⎟⎠

or size m.

Lemma 8.1.5 Let � be a group, and k a field of characteristic either zero or
at least 2n(n + 1)− 1. Let ρ0 : � → GLn0(k) and ρ1 : � → GLn1(k) be two
homomorphisms that are absolutely irreducible. Suppose that there exists an
element t ∈ � such that ρ0(t) = 1+ Jn0 and ρ1(t) = 1. Then we have

(1) ρ0 ⊗ ρ1 is absolutely irreducible;
(2) ρ0 ⊗ ρ1 is not a subquotient of ad(ρ0 ⊗ ρ1).
Proof We may assume that k is algebraically closed. For α = 0, 1, let Vi =
k⊕ni be the space which � acts on through ρα . By [69, Corollaire 1], we know
that both ρ0 ⊗ ρ1 and ad(ρ0 ⊗ ρ1) are semisimple.

For (1), we fix an element e ∈ V0 such that the t-invariant subspace of V0
is spanned by e. Then it is clear that the t-invariant subspace of V0 ⊗k V1 is
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k.e ⊗k V1. Now suppose that W is a nonzero direct summand of the k[�]-
module V0 ⊗k V1. Let V ′

1 ⊆ V1 be the subspace such that k.e ⊗k V ′
1 is the

t-invariant subspace of W . Then it is easy to see that V ′
1 is closed under the

action of �, which forces V ′
1 = V1 since ρ1 is irreducible. This further implies

that W = V0 ⊗k V1 by looking at the Jordan decomposition of t on W , hence
ρ0 ⊗ ρ1 is irreducible.

For (2), note that (ρ0 ⊗ ρ1)(t) is conjugate to (1 + Jn0)
⊕n1 . On the other

hand, ad(ρ0 ⊗ ρ1)(t) is conjugate to
n0⊕

i=1

(1+ J2i−1)
⊕n21 .

Since n0 is even and 1, 3, . . . , 2n0 − 1 are odd, ρ0 ⊗ ρ1 is not a subquotient
of ad(ρ0 ⊗ ρ1) as ad(ρ0 ⊗ ρ1) is semisimple.

The lemma is proved. ��
The following two lemmas will be used in later subsections.

Lemma 8.1.6 The representation ρ�0,λ⊗Eλ ρ�1,λ(n) is pure of weight −1 at
every nonarchimedean place w of F not above � (Definition 2.4.4).

Proof It suffices to show that for α = 0, 1, ρ�α,λ|�Fw
is pure of some weight.

By [74, Lemma 1.4(3)] and Proposition 3.2.4(2), it follows from the fact that
�α,w is tempered, which is ensured by Proposition 3.2.4(1). ��
Lemma 8.1.7 Assume Hypothesis 3.2.10 for n1. Let Vn1 be a standard
indefinite hermitian space of rank n1 over F,�n1 a self-dual

∏
v /∈�+∞∪�+

min
OFv -

lattice in Vn1 ⊗F A
�+∞∪�+

min
F , and λ a prime of E. Consider a finite set

P of special inert primes of F+ whose underlying rational primes are
distinct and coprime to �+

min, and an object Kn1 ∈ K(Vn1) of the form
(Kn1)�+

min
×∏v /∈�+∞∪�+

min
U(�n1)(OF+

v
). Put

m1 := T
�+
min∪�+

P
n1 ∩ ker

(
T
�+
min

n1

φ�1−−→ OE → OE/λ

)

where �+
P is the union of �+

p for all underlying rational primes p of P.
Suppose that Pα(�1,p)mod λ is intertwining generic (Definition 3.1.5) for every

p ∈ P, and that the composite homomorphism T
�+
min

n1

φ�1−−→ OE → OE/λ is
cohomologically generic. Then for every special maximal subgroup K′

n1,P
of∏

p∈PU(Vn1)(F
+
p ) and every i ∈ Z, we have an isomorphism

Hi
ét(Sh(Vn1,Kn1)F , Oλ)m1 � Hi

ét(Sh(Vn1,K
P
n1K

′
n1,P)F , Oλ)m1
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of Oλ[�F ]-modules.

Proof Wefirst note that for everyp ∈ P, U(Vn1)(F
+
p )has two specialmaximal

subgroups up to conjugation, exact one of which is hyperspecial maximal.
For the lemma, it suffices to show the following: For every p ∈ P, every spe-

cial maximal subgroup K′p
n1,P

of
∏

p′∈P\{p} U(Vn1)(F
+
p′ ), every hyperspecial

maximal subgroup K◦
n1,p of U(Vn1)(F

+
p ), and every non-hyperspecial special

maximal subgroup K•
n1,p of U(Vn1)(F

+
p ), there is an isomorphism

Hi
ét(Sh(Vn1,K

P
n1K

′p
n1,P

K◦
n1,p)F , Oλ)m1

� Hi
ét(Sh(Vn1,K

P
n1K

′p
n1,P

K•
n1,p)F , Oλ)m1

of Oλ[�F ]-modules for every i ∈ Z.
Fix an isomorphism ι� : C � Q� that induces the prime λ of E . Since

the composite homomorphism T
�+
min

n1

φ�1−−→ OE → OE/λ is cohomologically

generic, we have for ? ∈ {◦, •}, Hi
ét(Sh(Vn1,K

P
n1K

′p
n1,P

K?
n1,p)F , OE/λ)m1 = 0

for i �= 2r1, hence Hi
ét(Sh(Vn1,K

P
n1K

′p
n1,P

K?
n1,p)F , Oλ)m1 is Oλ-torsion free

for every i ∈ Z. Thus, it suffices to show that there is an isomorphism

Hi
ét(Sh(Vn1,K

P
n1K

′p
n1,P

K◦
n1,p)F , Oλ)m1 ⊗Oλ Q�

� Hi
ét(Sh(Vn1,K

P
n1K

′p
n1,P

K•
n1,p)F , Oλ)m1 ⊗Oλ Q� (8.1)

of Q�[�F ]-modules for every i ∈ Z. Let �◦
n1,p be the self-dual OFp-lattice

in Vn1 ⊗F Fp whose stabilizer is K◦
n1,p. Without loss of generality, we may

assume that K•
n1,p is the stabilizer of a lattice �

•
n1,p satisfying �

◦
n1,p ⊆ �•

n1,p
and (�•

n1,p)
∨/p�•

n1,p � Fp2 . To show (8.1), it suffices to show that for every
(necessarily cuspidal) automorphic representation π1 of U(Vn1)(AF+) that
appears in either side of (8.1), the maps

T•◦
n1,p : π

K◦
n1,p

1,p → π
K•

n1,p

1,p , T◦•
n1,p : π

K•
n1,p

1,p → π
K◦

n1,p

1,p (8.2)

are both isomorphisms.Here,T•◦
n1,p andT

◦•
n1,p are introduced inDefinition 5.8.1.

By the Chebotarev density theorem, ρBC(π1),ι� and ρ�1,λ ⊗Eλ Q� have the
isomorphic (irreducible) residual representations. In particular, the Satake
parameter of BC(π1)p does not contain {−p,−p−1} by Proposition 3.2.4(2)
and the assumption that Pα(�1,p)mod λ is intertwining generic. Let π̃ be an
(unramified) principal series representation of U(Vn1)(F

+
p ) that has π1,p as

a constituent. By Proposition B.4.3(1) and the definition of the intertwining
Hecke operator I◦n1,p := T◦•

n1,p◦T•◦
n1,p fromDefinition 5.8.1 or Definition B.2.3,
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the composite map T◦•
n1,p ◦ T•◦

n1,p : π̃K◦
n1,p → π̃

K◦
n1,p is an isomorphism. Since

both K◦
n1,p and K•

n1,p are special maximal subgroups of U(Vn1)(F
+
p ), both

π̃
K◦

n1,p and π̃K•
n1,p are one-dimensional. It follows that the constituent of π̃ that

has nonzero K◦
n1,p-invariants is the same as the constituent that has nonzero

K•
n1,p-invariants, which further implies that the two maps in (8.2) are both

isomorphisms. Thus, we obtain the isomorphism (8.1).
The lemma is proved. ��

8.2 Main theorem in the Selmer rank 0 case

The following lemma is a key ingredient in the proof of Theorem 8.2.2, which
is essentially the solution of the Gan–Gross–Prasad conjecture for �0 ×�1.

Lemma 8.2.1 Keep the setup in Sect. 7.1. If L(12 ,�0 ×�1) �= 0, then there
exist

• a standard definite hermitian space V◦
n of rank n over F, together with

a self-dual
∏
v /∈�+∞∪�+

min
OFv -lattice �◦

n in V◦
n ⊗F A

�+∞∪�+
min

F (and put
V◦

n+1 := (V◦
n)� and �◦

n+1 := (�◦
n)�),• an object (K◦

n,K
◦
n+1) ∈ K(V◦

n)sp in which K◦
nα is of the form

K◦
nα =

∏
v∈�+

min

(K◦
nα )v ×

∏
v /∈�+∞∪�+

min

U(�◦
nα )(OF+

v
)

for α = 0, 1,

such that

∑
s∈Sh(V◦

n,K◦
n)

f (s, sh↑(s)) �= 0

for some element f ∈ OE [Sh(V◦
n0,K

◦
n0)][ker φ�0] ⊗OE OE [Sh(V◦

n1,K
◦
n1)][ker φ�1].

Proof In view of Remark 1.1.4, this follows from the direction (1)⇒(2) of [6,
Theorem 1.8], together with [6, Remark 4.17]. Note that since our�0 and�1
are relevant representations of GLn0(AF ) and GLn1(AF ), respectively, both
members in the pair of hermitian spaces in (2) of [6, Theorem 1.8] have to be
standard definite. ��
Theorem 8.2.2 Keep the setup in Sect. 7.1. Assume Hypothesis 3.2.10 for both
n and n + 1. If L(12 ,�0 ×�1) �= 0, then for all admissible primes λ of E, we
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have

H1
f (F, ρ�0,λ ⊗Eλ ρ�1,λ(n)) = 0.

Proof By Lemma 8.2.1, we may fix the choices of V◦
n ,�

◦
n , (K

◦
n,K

◦
n+1) in that

lemma such that
∑

s∈Sh(V◦
n,K◦

n)

f (s, sh↑(s)) �= 0

for some f ∈ OE [Sh(V◦
n0,K

◦
n0)][ker φ�0] ⊗OE OE [Sh(V◦

n1,K
◦
n1)][ker φ�1].

Moreover, by Lemma D.2.2(3), we may assume that (K◦
n0)v is transferable

(Definition D.2.1) for v ∈ �+
min.

We take a prime λ of E with the underlying rational prime �. We adopt nota-
tion in Sect. 2.7with the initial data inDefinition 8.1.1. Define two nonnegative
integers mper and mlat as follows.

(1) Let mper be the largest (nonnegative) integer such that

∑
s∈Sh(V◦

n,K
◦
n)

f (s, sh↑(s)) ∈ λmper OE

for every

f ∈ OE [Sh(V◦
n0,K

◦
n0)][ker φ�0] ⊗OE OE [Sh(V◦

n1,K
◦
n1)][ker φ�1].

(2) We choose a standard indefinite hermitian space Vn1 over F of rank n1,
together with an identification U((V◦

n1)
∞) � U(V∞

n1 ) of reductive groups
over A

∞
F+ .32 In particular, we have the Shimura variety Sh(Vn1,K

◦
n1). By

Hypothesis 3.2.10, we have an isomorphism

H2r1
ét (Sh(Vn1,K

◦
n1)F , Eλ(r1))/ ker φ�1 � (Rc

1 ⊗Oλ Eλ)
⊕μ1

of Eλ[�F ]-modules for some integer μ1 > 0. We fix a map

H2r1
ét (Sh(Vn1,K

◦
n1)F , Oλ(r1))/ ker φ�1 → (Rc

1 )
⊕μ1

of Oλ[�F ]-modules whose kernel and cokernel are both Oλ-torsion. Then
we let mlat be the smallest nonnegative integer such that both the kernel
and the cokernel are annihilated by λmlat .

32 There are many choices of such Vn1 and the isomorphism. We choose one only to get some
control on the discrepancy of the integral cohomology of Shimura varieties and the lattice
coming from Galois representations.
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Now we assume that λ is admissible.
We start to prove the theorem by contradiction, hence assume

dimEλ H
1
f (F, ρ�0,λ ⊗Eλ ρ�1,λ(n)) � 1.

Take a sufficiently large positive integer m which will be determined later. By
Lemma 8.1.6, we may apply Proposition 2.4.6 by taking � to be the set of
places of F above�+

min∪�+
� . Thenwe obtain a submodule S ofH1

f,R(F, R̄
(m))

that is free of rank 1 over Oλ/λm−m� such that locw|S = 0 for every nonar-
chimedean placew ∈ � not above �. Nowwe apply the discussion in Sect. 2.3
to the submodule S ⊆ H1(F, R̄(m)). By (L5-1) and Lemma 2.3.4, we obtain
an injective map

θS : Gal(FS/Fρ̄(m) )→ HomOλ(S, R̄
(m))

whose image generates an Oλ-submodule containing λrR̄(m) HomOλ(S, R̄
(m)),

which further contains λrR HomOλ(S, R̄
(m)) by Lemma 2.3.3 and (L3). By

(L5-2) and Lemma 2.7.1, we may choose an element (γ1, γ2, ξ) in the image
of (ρ̄(m)1+ , ρ̄

(m)
2+ , ε̄

(m)
� )|Gal(F/F+

rflx)
satisfying (a–e) in Lemma 2.7.1. It then gives

rise to an element γ ∈ (GLn0n1(Oλ/λ
m)× (Oλ/λm)×, c) as in Notation 2.6.2

such that (R̄(m))hγ is a free Oλ/λm-module of rank 1. Now we apply the
discussion in Sect. 2.6. By Proposition 2.6.6 (with m0 = m� and rS = 1), we
may fix an (S, γ )-abundant element 	 ∈ GS,γ (Definition 2.6.5).

We apply the discussion and notation in Sect. 7.2 to our situation with λ,
m, �+

lr,I = ∅, �+
I = �+

min, (V
◦
n,�

◦
n), K

◦
n and (K◦

n,K
◦
n+1). By the Chebotarev

density theorem, we can choose a γ -associated place (Definition 2.6.3) w(m)+
of F (m)+ satisfying 	w(m) = 	 and whose underlying prime p of F+ (and the
underlying rational prime p) is a special inert prime satisfying (PI1)–(PI7) and

(PI8) the natural map

Hi
ét(Sh(Vn1,K

◦
n1)F , Oλ(r1))/(T

�+
I ∪�+

p
n1 ∩ ker φ�1)

→ Hi
ét(Sh(Vn1,K

◦
n1)F , Oλ(r1))/ ker φ�1

is an isomorphism for every integer i .

We also choose remaining data in Sect. 5.1 with Q
 
p = Qp2 , data as in Nota-

tion 5.10.13, and an indefinite uniformization datum as in Notation 5.10.1. By
the definition of mper, we have

expλ
(
1Sh(V◦

n,K◦
sp)
, OE [Sh(V◦

n0,K
◦
n0)× Sh(V◦

n1,K
◦
n1)]/(n0, n1)

)
� m − mper,

(8.3)
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where we recall that

nα = T
�+
I ∪�+

p
nα ∩ ker

(
T
�+
min

nα
φ�α−−→ OE → OE/λ

m
)

for α = 0, 1. Here, 1Sh(V◦
n,K

◦
sp)

is nothing but the characteristic function of the
graph � Sh(V◦

n,K
◦
n) of the map Sh(V◦

n,K
◦
n)→ Sh(V◦

n+1,K
◦
n+1).

We claim that there exists an element c1 ∈ H1(F, R̄(m)c) satisfying

expλ
(
∂plocp(c1),H

1
sing(Fp, R̄

(m)c)
)

� m − mper − mlat; (8.4)

and such that for every nonarchimedean place w of F not above �+ ∪ {p},

locw(c1) ∈ H1
ns(Fw, R̄

(m)c) (8.5)

holds.
Wefirst prove the theorem assuming the existence of such c1. Fix a generator

of the submodule S ⊆ H1
f,R(F, R̄

(m)) and denote by its image in H1(F, R̄(m))

by s1. We also identify R̄(m)c with (R̄(m))∗ via the polarization �. Now we
compute the local Tate pairing 〈s1, c1〉w (2.2) for every nonarchimedean place
w of F .

• Suppose that w is above �+
min. Then we have locw(s1) = 0 by our choice

of S. Thus, 〈s1, c1〉w = 0.
• Suppose that w is above�+

� . Then by (L2), RQ is crystalline with Hodge–
Tate weights in [−n, n − 1]. Thus, we have locw(s1) ∈ H1

ns(Fw, R̄
(m))

by Lemma 2.4.3(2) and (L1). By (8.5), Lemma 2.2.7 and (L1), we have
λmdif 〈s1, c1〉w = 0 where dλ = λmdif ⊆ Oλ is the different ideal of Eλ over
Q�.

• Suppose thatw is not above�+
min∪�+

� ∪{p}. Then by (L2), R is unramified.
Thus, we have locw(s1) ∈ H1

ns(Fw, R̄
(m)) by Lemma 2.4.3(1). By (8.5) and

Lemma 2.2.3, we have 〈s1, c1〉w = 0.
• Suppose thatw is the unique place above p. By Proposition 2.6.7, we have

expλ
(
locw(s1),H

1
ns(Fw, R̄

(m))
)

� m − m� − rR.

By (8.4) and Lemma 2.2.3 again, we have

expλ
(〈s1, c1〉w, Oλ/λ

m) � m − mper − mlat − m� − rR.
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Therefore, as long as we take m such that m > mper +mlat +m� + rR +mdif ,
we will have a contradiction to the relation

∑
w

〈s1, c1〉w = 0,

where the sum is taken over all nonarchimedean places w of F . The theorem
is proved.

Now we consider the claim on the existence of c1. First note that by
Remark 6.1.5, Assumption 7.2.3 is satisfied by Lemma 5.2.7 and (L7).

By (L4), (L6), and Theorem 6.3.4(5), we have an isomorphism

H2r0−1
ét ((Sh(V′

n0,jn0K
p◦
n0 K

′
n0,p)F , Oλ(r0))/n0

∼−→
(
R̄(m)c0

)⊕μ0
(8.6)

of Oλ[�F ]-modules, for some positive integer μ0.
By Lemma 8.1.7, we have an isomorphism

Hi
ét(Sh(Vn1,K

◦
n1)F , Oλ)m1 � Hi

ét(Sh(V
′
n1,jn1K

p◦
n1 K

′
n1,p)F , Oλ)m1

of Oλ[�F ]-modules. Moreover, by (PI8), we may fix a map

H2r1
ét (Sh(V

′
n1,jn1K

p◦
n1 K

′
n1,p)F , Oλ(r1))/(T

�+
I ∪�+

p
n1 ∩ ker φ�1)→

(
Rc
1

)⊕μ1

of Oλ[�F ]-modules whose kernel and cokernel are both annihilated by λmlat .
Taking quotient by λm , we obtain a map

H2r1
ét (Sh(V

′
n1,jn1K

p◦
n1 K

′
n1,p)F , Oλ(r1))/n1 →

(
R̄(m)c1

)⊕μ1
(8.7)

of Oλ[�F ]-modules whose kernel and cokernel are both annihilated by λmlat .
To continue, we adopt the notational abbreviation prior to Corollary 7.2.9.

By Lemma 6.1.11 and the Künneth formula, we obtain a map

ϒ : H2n−1
ét ((Sh′n0 ×Spec F Sh′n1)F , Oλ(n))/(n0, n1)→

(
R̄(m)c

)⊕μ0μ1
(8.8)

of Oλ[�F ]-modules whose kernel and cokernel are both annihilated by λmlat ,
from (8.6) and (8.7). Recall that we have a class

AJ(Sh′sp) ∈ H1(F,H2n−1
ét ((Sh′n0 ×Spec F Sh′n1)F , Oλ(n))/(n0, n1)),
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where Sh′sp is nothing but the graph of the morphism Sh′n → Sh′n+1. By
Corollary 7.2.9 and (8.3), we have

expλ
(
∂plocp AJ(Sh

′
sp),H

1
sing(Fp,H

2n−1
ét ((Sh′n0 ×Spec F Sh′n1 )F , Oλ(n))/(n0, n1))

)

� m − mper. (8.9)

For every 1 � i � μ0μ1, let

ϒi : H2n−1
ét ((Sh′n0 ×Spec F Sh′n1)F , Oλ(n))/(n0, n1)→ R̄(m)c

be the composition of ϒ (8.8) with the projection to the i-th factor; and put

ci := H1(F, ϒi )(AJ(Sh
′
sp)) ∈ H1(F, R̄(m)c).

Then (8.9) implies

max
1�i�μ0μ1

expλ
(
∂plocp(ci ),H

1
sing(Fp, R̄

(m)c)
)

� m − mper − mlat.

Without loss of generality, we obtain (8.4). On the other hand, as both Sh′n and
Sh′n+1 have smooth models over OFw for which (an analogue of) Lemma 4.2.4
holds, we obtain (8.5). ��

Now we deduce two concrete consequences from Theorem 8.2.2.

Corollary 8.2.3 Let n � 2 be an integer and denote by n0 and n1 the unique
even and odd numbers in {n, n+1}, respectively. Let A0 and A1 be two modular
elliptic curves over F+ such that End(A0F ) = End(A1F ) = Z. Suppose that

(a) A0F and A1F are not isogenous to each other;
(b) both Symn0−1 A0 and Symn1−1 A1 are modular; and
(c) F+ �= Q if n � 3.

If the (central critical) L-value L(n,Symn0−1 A0F ×Symn1−1 A1F ) does not
vanish, then we have

H1
f (F,Sym

n0−1 H1
ét(A0F ,Q�)⊗Q�

Symn1−1 H1
ét(A1F ,Q�)(n)) = 0

for all but finitely many rational primes �.

Proof By (b) and [1], both Symn0−1 A0F andSymn1−1 A1F aremodular. Thus,
we may let �α be the (cuspidal) automorphic representation of GLnα (AF )

associated to Symnα−1 AαF for α = 0, 1, which is a relevant representation
(Definition 1.1.3). We also have the identity

L(n + s,Symn0−1 A0F × Symn1−1 A1F ) = L(12 + s,�0 ×�1)
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of L-functions, and that the representation of �F on Symnα−1 H1
ét(AαF ,Q�)

is isomorphic to ρ�α,� for α = 0, 1. By Proposition 3.2.11 and (c), Hypothe-
sis 3.2.10 is known in this case. Then the corollary follows immediately from
Theorem 8.2.2 and Lemma 8.1.3 (where we use (a) and (c)) with E = Q. ��
Remark 8.2.4 In this remark, we summarize the current knowledge on the
modularity of symmetric powers of elliptic curves, namely, condition (a)
in Corollary 8.2.3. Let A be a modular elliptic curve over F+ such that
End(AF ) = Z. We have

• Sym2 A is modular by [26];
• Sym3 A is modular by [36];
• Sym4 A is modular by [35];
• Sym5 A and Sym6 A are modular if F+ is linearly disjoint fromQ(ζ5) over

Q;
• Sym7 A is modular if F+ is linearly disjoint from Q(ζ35) over Q;
• Sym8 A is modular if F+ is linearly disjoint from Q(ζ7) over Q;

in which the last three cases are obtained in a series of recent work [19–21] of
Clozel and Thorne.

After we completed this article, we have learnt the groundbreaking result
of Newton–Thorne [57,58] where they prove the modularity of all symmetric
powers of elliptic curves overQwithout complex multiplication. In particular,
it follows that Symn A is modular if F+/Q is solvable and A is the base change
of an elliptic curve over Q.

Corollary 8.2.5 Keep the setup in Sect. 7.1. Suppose that

(a) there exists a very special inert prime p of F+ (Definition 3.3.4) such that
�0,p is Steinberg, and�1,p is unramified whose Satake parameter contains
1 exactly once;

(b) for α = 0, 1, there exists a nonarchimedean placewα of F such that�α,wα
is supercuspidal; and

(c) F+ �= Q if n � 3.

If L(12 ,�0 ×�1) �= 0, then for all but finitely many primes λ of E, we have

H1
f (F, ρ�0,λ ⊗Eλ ρ�1,λ(n)) = 0.

Proof This follows from Theorem 8.2.2 and Lemma 8.1.4. ��

8.3 Main theorem in the Selmer rank 1 case

We state the following weak version of the arithmetic Gan–Gross–Prasad con-
jecture.
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Conjecture 8.3.1 Suppose that L(12 ,�0×�1) = 0 but L ′(12 ,�0×�1) �= 0.
Then there exist

• a standard indefinite hermitian space Vn of rank n over F , together with

a self-dual
∏
v /∈�+∞∪�+

min
OFv -lattice �n in Vn ⊗F A

�+∞∪�+
min

F (and put
Vn+1 := (Vn)� and �n+1 := (�n)�),

• an object (Kn,Kn+1) ∈ K(Vn)sp in which Knα is of the form

Knα =
∏
v∈�+

min

(Knα )v ×
∏

v /∈�+∞∪�+
min

U(�nα )(OF+
v
)

for α = 0, 1,

such that for every prime λ of E , the graph � Sh(Vn,Kn) of the morphism
sh↑ : Sh(Vn,Kn) → Sh(Vn+1,Kn+1) (4.6) is nonvanishing in the quotient
Chow group

CHn(Sh(Vn0,Kn0)×Spec F Sh(Vn1,Kn1))E/(ker φ�0, ker φ�1).

In the situation of the above conjecture, since both�0 and�1 are cuspidal,
we have

Hi
ét((Sh(Vn0,Kn0)×Spec F Sh(Vn1,Kn1))F , Eλ)/(ker φ�0, ker φ�1) = 0

if i �= 2n − 1. In particular, the Hochschild–Serre spectral sequence gives rise
to a coboundary map

AJ�0,�1
λ : Zn(Sh(Vn0 ,Kn0)×Spec F Sh(Vn1 ,Kn1))→

H1(F,H2n−1
ét ((Sh(Vn0 ,Kn0)×Spec F Sh(Vn1 ,Kn1))F , Eλ(n))/(ker φ�0 , ker φ�1)).

Theorem 8.3.2 Keep the setup in Sect. 7.1. Assume Hypothesis 3.2.10 for both
n and n + 1. Let λ be a prime of E for which there exist

• a standard indefinite hermitian space Vn of rank n over F, together with

a self-dual
∏
v /∈�+∞∪�+

min
OFv -lattice �n in Vn ⊗F A

�+∞∪�+
min

F (and put
Vn+1 := (Vn)� and �n+1 := (�n)�),

• an object (Kn,Kn+1) ∈ K(Vn)sp in which Knα is of the form

Knα =
∏
v∈�+

min

(Knα )v ×
∏

v /∈�+∞∪�+
min

U(�nα )(OF+
v
)
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for α = 0, 1, satisfying that (Kn0)v is a transferable open compact sub-
group (Definition D.2.1) of U(V◦

n0)(F
+
v ) for v ∈ �+

min,

such that

AJ�0,�1
λ (� Sh(Vn,Kn)) �= 0. (8.10)

If λ is admissible, then we have

dimEλ H
1
f (F, ρ�0,λ ⊗Eλ ρ�1,λ(n)) = 1.

Remark 8.3.3 In fact, (8.10) already implies that the global epsilon factor of
�0 ×�1 is −1.

Proof of Theorem 8.3.2 We take an admissible prime λ of E for which we
may choose data Vn , �n , (Kn,Kn+1) as in the statement of the theorem
such that AJ�0,�1

λ (� Sh(Vn,Kn)) �= 0. Lemma 8.1.6 and (L2) imply that

AJ�0,�1
λ (� Sh(Vn,Kn)) belongs to the subspace

H1
f (F,H

2n−1
ét ((Sh(Vn0 ,Kn0)×Spec F Sh(Vn1 ,Kn1))F , Eλ(n))/(ker φ�0 , ker φ�1))

and hence to the submodule

H1
f (F,H

2n−1
ét ((Sh(Vn0 ,Kn0)×Spec F Sh(Vn1 ,Kn1))F , Oλ(n))/(ker φ�0 , ker φ�1))

by Definition 2.4.2.
We adopt notation in Sect. 2.7with the initial data inDefinition 8.1.1. Define

two nonnegative integers mper and mlat as follows.

(1) By Hypothesis 3.2.10, we may choose a map

H2n−1
ét ((Sh(Vn0 ,Kn0)×Spec F Sh(Vn1 ,Kn1))F , Oλ(n))/(ker φ�0 , ker φ�1)→Rc

of Oλ[�F ]-modules such that the induced imageofAJ�0,�1
λ (� Sh(Vn,Kn))

in H1
f (F,R

c), denoted by sc, is non-torsion. Let s ∈ H1
f (F,R) be the ele-

ment corresponding to sc under the isomorphism in Lemma 2.4.5. We
put

mper := ordλ
(

s,H1
f (F,R)/H

1
f (F,R)tor

)

(Definition 2.1.6), which is a nonnegative integer.
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(2) By Hypothesis 3.2.10, we have an isomorphism

H2r1
ét (Sh(Vn1,Kn1)F , Eλ(r1))/ ker φ�1 � (Rc

1 ⊗Oλ Eλ)
⊕μ1

of Eλ[�F ]-modules for some integer μ1 > 0. We fix a map

H2r1
ét (Sh(Vn1,Kn1)F , Oλ(r1))/ ker φ�1 → (Rc

1 )
⊕μ1

of Oλ[�F ]-modules whose kernel and cokernel are both Oλ-torsion. Then
we let mlat be the smallest nonnegative integer such that both the kernel
and the cokernel are annihilated by λmlat .

Note that in (1), we obtain an element s ∈ H1
f (F,R)Q = H1

f (F,RQ) =
H1

f (F, ρ�0,λ ⊗Eλ ρ�1,λ(n)) that is nonzero. In particular, we have

dimEλ H
1
f (F, ρ�0,λ ⊗Eλ ρ�1,λ(n)) � 1.

We start to prove the theorem by contradiction, hence assume

dimEλ H
1
f (F, ρ�0,λ ⊗Eλ ρ�1,λ(n)) � 2.

Take a sufficiently large positive integer m which will be determined later. We
fix a uniformizer λ0 of Eλ. By Lemma 8.1.6, we may apply Proposition 2.4.6
by taking � to be the set of places of F above �+

min ∪�+
� . Then we obtain a

submodule S of H1
f,R(F, R̄

(m)) containing (the image of) λ
m�−mper
0 s of order

0,33 that is free of rank 2 over Oλ/λm−m� , and such that locw|S = 0 for every
nonarchimedean place w ∈ � not above �. Now we apply the discussion in
Sect. 2.3 to the submodule S ⊆ H1(F, R̄(m)). By (L5-1) and Lemma 2.3.4, we
obtain an injective map

θS : Gal(FS/Fρ̄(m) )→ HomOλ(S, R̄
(m))

whose image generates an Oλ-submodule containingλ4rR̄(m) HomOλ(S, R̄
(m)),

which further contains λ4rR HomOλ(S, R̄
(m)) by Lemma 2.3.3 and (L3). By

(L5-2) and Lemma 2.7.1, we may choose an element (γ1, γ2, ξ) in the image
of (ρ̄(m)1+ , ρ̄

(m)
2+ , ε̄

(m)
� )|Gal(F/F+

rflx)
satisfying (a–e) in Lemma 2.7.1. It then gives

rise to an element γ ∈ (GLn0n1(Oλ/λ
m)× (Oλ/λm)×, c) as in Notation 2.6.2

such that (R̄(m))hγ is a free Oλ/λm-module of rank 1. Now we apply the
discussion in Sect. 2.6. By Proposition 2.6.6 (with m0 = m� and rS = 2),
we may fix an (S, γ )-abundant pair (	1, 	2) ∈ G2

S,γ (Definition 2.6.5). By
Proposition 2.6.7, we may choose a basis {s1, s2} of S such that θS(	1)(s2) =

33 Here, λ
−mper
0 s is any element in H1

f (F,R) satisfying λ
mper
0 (λ

−mper
0 s) = s.
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θS(	2)(s1) = 0, and

expλ
(
θS(	 j )(s j ), (R̄

(m))hγ
)

� m − m� − 4rR (8.11)

for j = 1, 2. Moreover, without loss of generality, we may assume
λ

m�−mper
0 s = a1s1 + a2s2 in which a1 ∈ O×

λ .
First,we apply the discussion andnotation inSect. 7.3 to our situationwithλ,

m, �+
lr,II = ∅, �+

II = �+
min, (Vn,�n), Kn and (Kn,Kn+1). By the Chebotarev

density theorem, we can choose a γ -associated place (Definition 2.6.3) w(m)1+
of F (m)+ satisfying	

w
(m)
1

= 	1 and whose underlying prime p1 of F+ (and the

underlying rational prime p1) is a special inert prime satisfying (PII1)–(PII7)
and

(PII8) the natural map

Hi
ét(Sh(Vn1,Kn1)F , Oλ(r1))/(T

�+
II ∪�+

p1
n1 ∩ ker φ�1)

→ Hi
ét(Sh(Vn1,Kn1)F , Oλ(r1))/ ker φ�1

is an isomorphism for every integer i .

We also choose remaining data in Sect. 4.1 with Q
 
p1 = Qp21

, a definite uni-
formization datum (V$nα ,inα , {�$nα,q}q|p1) for α = 0, 1 as in Notation 4.5.7.
By (8.11) and our choice of S, we have

expλ
(

s,H1
ns(Fw1, R̄

(m))
)

� m − mper − 4rR,

which implies that

expλ
(
locp1([� Sh(Vn,Kn)]),H2n

ét ((Sh(Vn0,Kn0)×Spec F Sh(Vn1,Kn1))Fp1
, L(n))/(n0, n1)

)
� m − mper − 4rR.

Here, we recall that

nα = T
�+
II∪�+

p1
nα ∩ ker

(
T
�+
min

nα
φ�α−−→ OE → OE/λ

m
)

for α = 0, 1. Note that, similar to Remark 6.1.5, Assumption 7.3.2 is satisfied
by Lemma 4.2.4 and (L7). Thus, we may apply Theorem 7.3.4, hence obtain

expλ
(
1Sh(V$n,K$sp), OE [Sh(V$n0,K$n0)× Sh(V$n1,K

$
n1)]/(n0, n1)

)

� m − mper − 4rR. (8.12)
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Second, we apply the discussion and notation in Sect. 7.2 to our situa-
tion with λ, m, �+

lr,I = {p1}, �+
I = �+

min ∪ �+
p1 , V

◦
n = V$n , K

◦
n = K$n

and (K◦
sp,K

◦
n+1) = (K$sp,K$n+1). By the Chebotarev density theorem, we can

choose a γ -associated place w(m)2+ of F (m)+ satisfying 	
w
(m)
2

= 	2 and whose

underlying prime p2 of F+ (and the underlying rational prime p2) is a special
inert prime satisfying (PI1)–(PI7), p2 �= p1, and

(PI8) the natural map

H2r1
ét (Sh(Vn1,Kn1)F , Oλ(r1))/(T

�+
I ∪�+

p2
n1 ∩ ker φ�1)

→ H2r1
ét (Sh(Vn1,Kn1)F , Oλ(r1))/ ker φ�1

is an isomorphism.

We claim that there exists an element c2 ∈ H1(F, R̄(m)c) satisfying

expλ
(
∂p2 locp2(c2),H

1
sing(Fp2, R̄

(m)c)
)

� m − mper − 4rR − mlat; (8.13)

and such that for every nonarchimedean placew of F not above�+∪{p1, p2},
locw(c2) ∈ H1

ns(Fw, R̄
(m)c) (8.14)

holds.
By Remark 4.4.8 and Remark 4.5.8, we know that there exists an isomor-

phism U((V◦
n1)

∞) � U(V∞
n1 ) sending K◦

n1 to Kn1 . Then the claim can be
proved by the exactly same argument for the parallel claim in the proof of The-
orem 8.2.2, using (8.12) and the fact that ρ̄�0,λ,+ is rigid for (�+

min, �
+
lr,I).

34

Now we deduce a contradiction. Replace s2 by its image in H1
f (F, R̄

(m)).

We also identify R̄(m)c with (R̄(m))∗ via the polarization �. Now we compute
the local Tate pairing 〈s2, c2〉w (2.2) for every nonarchimedean place w of F .

• Suppose that w is above �+
min. Then we have locw(s2) = 0 by our choice

of S. Thus, 〈s2, c2〉w = 0.
• Suppose that w is above�+

� . Then by (L2), RQ is crystalline with Hodge–
Tate weights in [1 − n, n]. Thus, we have locw(s2) ∈ H1

ns(Fw, R̄
(m)) by

Lemma 2.4.3(2) and (L1). By (8.14), Lemma 2.2.7 and (L1), we have
λmdif 〈s2, c2〉w = 0 where dλ = λmdif ⊆ Oλ is the different ideal of Eλ over
Q�.

34 In fact, one needs to use the additional fact that when F+ �= Q, both Shimura varieties
Sh′n0 and Sh′n1 have proper smooth reduction at every place w of F above �+

p1\{p1}. See
Remark 5.2.8.
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• Suppose that w is not above �+
min ∪ �+

� ∪ {p1, p2}. Then by (L2), R is
unramified. Thus, we have locw(s2) ∈ H1

ns(Fw, R̄
(m)) by Lemma 2.4.3(1).

By (8.14) and Lemma 2.2.3, we have 〈s2, c2〉w = 0.
• Suppose that w is the unique place above p1. Then we have locw(s2) = 0
by Proposition 2.6.7. Thus, we have 〈s2, c2〉w = 0.

• Suppose that w is the unique place above p2. Then by Proposition 2.6.7,
we have

expλ
(
locw(s2),H

1
ns(Fw, R̄

(m))
)

� m − m� − 4rR.

By (8.13) and Lemma 2.2.3 again, we have

expλ
(〈s2, c2〉w, Oλ/λ

m) � m − mper − mlat − m� − 8rR.

Therefore, as long as we take m such that m > mper+mlat+m�+8rR+mdif ,
we will have a contradiction to the relation

∑
w

〈s2, c2〉w = 0,

where the sum is taken over all nonarchimedean places w of F . The theorem
is proved. ��

We also have an analogue of Corollary 8.2.5 in the rank 1 case, which we
leave to the readers to formulate.
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Appendix A. Unitary Deligne–Lusztig varieties

In this appendix,we study someunitaryDeligne–Lusztig varieties in Sects.A.1
and A.2 for those used in Sects. 4 and 5, respectively.

We fix a rational prime p. Let κ be a field containing Fp2 . Recall from
Sect. 1.3 that we denote by σ : S → S the absolute p-power Frobenius mor-
phism for schemes S in characteristic p.

A.1 Unitary Deligne–Lusztig varieties in the smooth case

In this subsection, we introduce certain Deligne–Lusztig varieties that appear
in the special fiber of the smooth integral model studied in Sect. 4.

Consider a pair (V , { , }) in which V is a finite dimensional κ-linear
space, and { , } : V × V → κ is a (not necessarily non-degenerate) pairing
that is (κ, σ )-linear in the first variable and κ-linear in the second variable.
For every κ-scheme S, put VS := V ⊗κ OS . Then there is a unique pairing
{ , }S : VS × VS → OS extending { , } that is (OS, σ )-linear in the first
variable and OS-linear in the second variable. For a subbundle H ⊆ VS , we
denote by H# ⊆ VS its right orthogonal complement under { , }S .

Definition A.1.1 We say that a pair (V , { , }) is admissible if there exists an
Fp2-linear subspace V0 ⊆ Vκ such that the induced map V0 ⊗Fp2

κ → Vκ is
an isomorphism, and {x, y} = −{y, x}σ for every x, y ∈ V0.

Definition A.1.2 For a pair (V , { , }) and an integer h, we define a presheaf

DL(V , { , }, h)
on Sch/κ such that for every S ∈ Sch/κ , DL(V , { , }, h)(S) is the set of
subbundles H of VS of rank h such that H# ⊆ H . We call DL(V , { , }, h)
the (unitary) Deligne–Lusztig variety (see Proposition A.1.3 below) attached
to (V , { , }) of rank h.

Proposition A.1.3 Consider an admissible pair (V , { , }). Put N := dimκ V
and d := dimκ V #.

(1) If 2h < N + d or h > N, then DL(V , { , }, h) is empty.
(2) If N + d � 2h � 2N, then DL(V , { , }, h) is represented by a projective

smooth scheme over κ of dimension (2h− N −d)(N −h)with a canonical
isomorphism for its tangent sheaf

TDL(V ,{ , },h)/κ � Hom
(
H/H#,VDL(V ,{ , },h)/H

)

where H ⊆ VDL(V ,{ , },h) is the universal subbundle.
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(3) If N + d < 2h � 2N, then DL(V , { , }, h) is geometrically irreducible.

Proof Part (1) is obvious from the definitions.
For (2), DL(V , { , }, h) is a closed sub-presheaf of the Grassmannian

scheme Gr(V , h) classifying subbundles of V of rank h, hence is repre-
sented by a projective scheme over κ . Now we compute the tangent sheaf.
Consider a closed immersion S ↪→ Ŝ in Sch/κ defined by an ideal sheaf I
with I2 = 0. Take an object H ⊆ VS in DL(V , { , }, h)(S). Let DH and
G H be the subset of DL(V , { , }, h)(Ŝ) and Gr(V , h)(Ŝ) of elements that
reduce to H , respectively. It is well-known that G H is canonically a torsor
over HomOS (H, (VS/H)⊗OS I). Since I p = 0, the right orthogonal comple-
ment Ĥ# depends only on H for every Ĥ ∈ G H . In particular, the subset DH
is canonically a torsor over the subgroup HomOS (H/H#, (VS/H)⊗OS I) of
HomOS (H, (VS/H)⊗OS I). Thus, DL(V , { , }, h) is smooth; and we have a
canonical isomorphism for the tangent sheaf

TDL(V ,{ , },h)/κ � Hom
(
H/H#,VDL(V ,{ , },h)/H

)

where H is the universal subbundle. Note that this is a locally free
ODL(V ,{ , },h)-module of rank (2h − N − d)(N − h).

For (3), we may assume that κ is algebraically closed. By Defini-
tions A.1.1 and A.1.2, we have a canonical isomorphism DL(V , { , }, h) �
DL(V0, { , }0, h) ⊗Fp2

κ , where { , }0 denotes the restriction of { , } to
V0. Suppose that d = 0. Then { , }0 is non-degenerate. By [8, Theorem 1],
we know that DL(V0, { , }0, h) is geometrically irreducible. In general, we
consider V ′

0 := V0/V
#
0 equipped with a pairing { , }′0 induced from { , }0.

Then it is clear that the morphism DL(V0, { , }0, h) → DL(V ′
0 , { , }′0, h)

sending a point H ∈ DL(V0, { , }0, h)(S) to H/V #
0S is an isomorphism.

Thus, DL(V0, { , }0, h) is geometrically irreducible by the previous case. The
proposition is proved. ��
Lemma A.1.4 Consider a pair (V , { , }) with dimκ V = N � 2 and
dimκ V # = 0, and a p-coprime coefficient ring L. Suppose that p + 1 is
invertible in L.

(1) The subscheme DL(V , { , }, N − 1) is a hypersurface in P(V ) of degree
p + 1.

(2) The restriction map

Hi
ét(P(V )κ , L)→ Hi

ét(DL(V , { , }, N − 1)κ , L)

induced by the obvious inclusion DL(V , { , }, N − 1) → P(V ) is an
isomorphism for i /∈ {N − 2, 2N − 2}.
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(3) For every i ∈ Z, Hi
ét(DL(V , { , }, N − 1)κ , L) is a free L-module.

(4) When N is even, the action of Gal(κ/κ) on HN−2
ét (DL(V , { , }, N −

1)κ , L( N−2
2 )) is trivial.

Proof The lemma is trivial if N = 2. Now we assume N � 3. Then S :=
DL(V , { , }, N − 1) is a geometrically connected smooth hypersurface in
P(V ) by Proposition A.1.3.

Part (1) follows since S is defined by a homogenous polynomial of degree
p + 1, by its definition.
For (2), by the Lefschetz hyperplane theorem, the restriction map

Hi
ét(P(V )κ , L) → Hi

ét(Sκ, L) is an isomorphism for 0 � i � N − 3; and

the Gysin map Hi
ét(Sκ , L) → Hi+2

ét (P(V )κ , L(1)) is an isomorphism for
N − 1 � i � 2(N − 2). By (1), the composite map

Hi
ét(P(V )κ , L)→ Hi

ét(Sκ, L)→ Hi+2
ét (P(V )κ , L(1))

is given by the cup product with c1(OP(V )κ (p + 1)), which is an isomorphism
for i �= 2N − 2 since p + 1 is invertible in L . Thus, (2) follows.

Part (3) is an immediate consequence of (2).
For (4), it suffices to consider the case where L = Q� for some � �= p

by (3). Then it is well-known that HN−2
ét (DL(V , { , }, N − 1)κ ,Q�( N−2

2 ))

is spanned by Tate cycles over κ (see, for example, [31]). In particular, (4)
follows. ��
Proposition A.1.5 Suppose that κ is algebraically closed. Consider an admis-
sible pair (V , { , }) over κ with dimκ V = 2r + 1 for some integer r � 1 and
dimκ V # = 0. Let H be the universal object over DL(V , { , }, r + 1). Then
we have

∫
DL(V ,{ , },r+1)

cr

((
σ ∗H,)⊗DL(V ,{ , },r+1)

(
H/H,)) = dr,p,

where dr,p is the number introduced in Notation 1.3.1.

Proof This is [75, Proposition 9.3.10]. ��
Nowweconstruct the specialmorphisms betweenDeligne–Lusztig varieties

when rank increases.

Construction A.1.6 Let (V , { , }) be an admissible pair with dimκ V =
n � 1 satisfying dim V # = n + 1 − 2�n+1

2 �. We put V� := V ⊕ κ1 and
extend { , } to a pairing { , }� on V� with {1, 1}� = 0. Suppose that we
have another admissible pair (V�, { , }�) with dimκ V� = n + 1 satisfying
dim V #

� = n − 2�n
2�, together with a κ-linear map δ : V� → V� of corank
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dim V # such that {δ(x), δ(y)}� = {x, y}� for every x, y ∈ V�. We construct a
morphism

δ↑ : DL(V , { , },  n+1
2 ")→ DL(V�, { , }�,  n+2

2 ")

by sending H ∈ DL(V , { , },  n+1
2 ")(S) to δ(H ⊕OS1). We call δ↑ a special

morphism.

Proposition A.1.7 The morphism δ↑ is well-defined, and is a regular embed-
ding.

Proof When n is odd, δ is an isomorphism, which implies that δ↑ is well-
defined an is an isomorphism.

When n is even, δ is of corank 1. The identity {δ(x), δ(y)}� = {x, y}�
for every x, y ∈ V� implies ker δ ⊂ V #

� = V # ⊕ κ1. Take S ∈ Sch/κ .

For H ∈ DL(V , { , },  n+1
2 ")(S), H ⊕ OS1 must contain V #

� and hence

(ker δ)S . It follows that δ(H ⊕OS1) has the same rank as H , which is  n+1
2 " =

 n+2
2 ". The identity {δ(x), δ(y)}� = {x, y}� for every x, y ∈ V� also implies

δ(H# ⊕ OS1) ⊆ (δ(H ⊕ OS1))#, which forces δ(H# ⊕ OS1) = (δ(H ⊕
OS1))# as both sides have the same rank n

2 . It follows that (δ(H ⊕OS1))# ⊆
δ(H ⊕ OS1) as H# ⊆ H . In other words, δ↑ is well-defined. On the other
hand, for H� ∈ DL(V�, { , }�,  n+2

2 ")(S), whether (δκ1)S ⊆ H ⊆ (δV�)S
holds is a closed condition; and once it does, there is a unique element H ∈
DL(V , { , },  n+1

2 ")(S) such that H� = δ(H ⊕ OS1). Thus, δ↑ is a regular
embedding by Proposition A.1.3(2).

The proposition is proved. ��

A.2 Unitary Deligne–Lusztig varieties in the semistable case

In this subsection, we introduce certain Deligne–Lusztig varieties that appear
in the special fiber of the semistable integral model studied in Sect. 5. We keep
the notation from the previous subsection.

Definition A.2.1 For a pair (V , { , })with dimκ V = N , we define a presheaf

DL•(V , { , })

on Sch/κ such that for every S ∈ Sch/κ , DL•(V , { , })(S) is the set of
pairs (H1, H2) of subbundles of VS of ranks  N

2 " and  N
2 " − 1, respectively,
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satisfying the following inclusion relations

H1

⊂
V #

S ⊂ H2

⊂

⊂
H#
2

H#
1

⊂

of subbundles of VS .

Proposition A.2.2 Consider an admissible pair (V , { , }). Put N := dimκ V
and d := dimκ V #.

(1) If d �  N
2 ", then DL•(V , { , }) is empty.

(2) If d �  N
2 " − 1, then DL•(V , { , }) is represented by a projective smooth

scheme over κ , whose tangent sheaf fits canonically into an exact sequence

0 → Hom
(
H1/H2,H#

2 /H1

)
→ TDL•(V ,{ , })/κ

→ Hom(H2/V
#
DL•(V ,{ , }),H#

1 /H2)→ 0

where V #
DL•(V ,{ , }) ⊆ H2 ⊆ H1 ⊆ VDL•(V ,{ , }) are the universal subbun-

dles.
(3) If N � 2 and d = N − 2� N

2 �, then DL•(V , { , }) is geometrically
irreducible of dimension � N

2 �.

Proof Part (1) is obvious from the definitions.
For (2), let Gr(V , r) denote by the Grassmannian variety that classifies

subspaces of V of dimension r . Then DL•(V , { , }) is a closed sub-presheaf
of Gr(V ,  N

2 ") × Gr(V ,  N
2 " − 1), hence it is represented by a projective

scheme over κ . Now we prove that DL•(V , { , }) is smooth and compute
its tangent sheaf. Consider a closed immersion S ↪→ Ŝ in Sch/κ defined by
an ideal sheaf I with I2 = 0. Take an object V #

S ⊆ H2 ⊆ H1 ⊆ VS in
DL•(V , { , })(S). To lift (H1, H2) to a pair (Ĥ1, Ĥ2) ∈ DL•(V , { , })(Ŝ),
we first lift H2, where the set of all possible lifts canonically form a torsor
under the group HomOS (H2/V

#
S , (H

#
1 /H2) ⊗OS I) as Ĥ#

1 depends only on
H#
1 . Once such a lift Ĥ2 is given, the possible lifts of H1 form a torsor under

the group HomOS (H1/H2, (H#
2 /H1) ⊗OS I). In particular, Zariski locally,

there is no obstruction to lifting (H1, H2), hence DL•(V , { , }) is smooth.
The statement on the tangent bundle of DL•(V , { , }) follows immediately
from the above discussion applied to the universal object on DL•(V , { , }).
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For (3), similar to the argument for Proposition A.1.3(3), we may assume
that N is even this time. Then the statement follows again by [8, Theorem 1].

��
Construction A.2.3 Let (V , { , }) be an admissible pair with dimκ V =
n � 2 satisfying dimκ V # = n − 2�n

2�. We put V� := V ⊕ κ1 and extend
{ , } to a pairing { , }� on V� with {1, 1}� = 0. Suppose that we have another
admissible pair (V�, { , }�)with dimκ V� = n+1 satisfying dim V #

� = n+1−
2�n+1

2 �, together with a κ-linear map δ : V� → V� of corank dim V # such that
{δ(x), δ(y)}� = {x, y}� for every x, y ∈ V�. Then similar toConstructionA.1.6
and Proposition A.1.7, we have a morphism

δ↑ : DL•(V , { , })→ DL•(V�, { , }�)

by sending (H1, H2) ∈ DL•(V , { , })(S) to (δ(H1 ⊕OS1), δ(H2 ⊕OS1)) ∈
DL•(V�, { , }�)(S), which is a regular embedding.

Proposition A.2.4 Suppose that κ is algebraically closed. Consider an admis-
sible pair (V , { , }) over κ . Let (H1,H2) be the universal object over
DL•(V , { , }).
(1) Suppose that dimκ V = 2r + 1 for some integer r � 1 and dimκ V # = 1.

Then we have

∫
DL•(V ,{ , })

cr

((
σ ∗H2

)⊗ODL•(V ,{ , })

(
H#

1 /H2

))
= d•

r,p.

(2) Suppose that dimκ V = 2r for some integer r � 1 and dimκ V # = 0.
Then we have

∫
DL•(V ,{ , })

cr−1

((
σ ∗H2

)⊗ODL•(V ,{ , })

(
H#

1 /H2

))
· c1
(
H#

1 /H2

)
= d•

r,p.

Here, d•
r,p is the number introduced in Notation 1.3.1.

Note that DL•(V , { , }) is irreducible of dimension r , by Proposition A.2.2.

Proof For (1), we let V̄ be the quotient space V /V #, equipped with the
induced pairing, which we still denote by { , }. Then we have a canonical
isomorphism DL•(V , { , }) ∼−→ DL•(V̄ , { , }) by sending a pair (H1, H2)

to (H1/V
#, H2/V

#). If we denote by (H̄1, H̄2) the universal object over
DL•(V̄ , { , }). Then we have
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cr

((
σ ∗H2

)⊗ODL•(V ,{ , })

(
H#

1 /H2

))

= cr−1

((
σ ∗H̄2

)⊗ODL•( ¯V ,{ , })

(
H̄#

1 /H̄2

))
· c1
(
H̄#

1 /H̄2

)

under the above isomorphism. Therefore, (1) follows from (2).
For (2), consider V� := V ⊕ κ1 and extend { , } to a pairing { , }� on V�

with {1, 1}� = 1. Then we have Deligne–Lusztig varieties DL(V�, { , }�, h).
In what follows, we only need to study the one with h = r +1, and will simply
write DL(V�) for DL(V�, { , }�, r + 1). Since we will work with two spaces,
we will denote by (,,#) for the (left,right) orthogonal complement for V ,
and (�, �) for the (left,right) orthogonal complement for V�.

We now define a correspondence

DL(V�)
π←− D̃L(V )

π•−→ DL•(V )

of schemes over κ . For every κ-scheme S,

• D̃L(V )(S) is the set of pairs (H, H2)where H is an element in DL(V�)(S)
and H2 is a subbundle of H� of rank r − 1 that is contained in VS;

• π sends (H, H2) ∈ D̃L(V )(S) to H ∈ D̃L(V )(S); and
• π• sends (H, H2) ∈ D̃L(V )(S) to (H1, H2) ∈ DL•(V )(S) where H1 :=
(H ∩ VS)

,.
It needs to show that π• is well-defined, which amounts to the following four
statements:

• H1 is a subbundle of VS of rank r : It suffices to show that the composite
map H → V�S → OS1 is surjective, where the latter map is induced by
the projection V� → κ1. If not, then there exists a geometric point s of S
such that Hs is contained in Vs , which contradicts the inclusion H �

s ⊆ Hs .
• H2 ⊆ H1: As H �⊆ H by the definition of DL(V�), we have H� ⊆ H
and {H�, H}� = 0. Thus, {H� ∩ VS, H ∩ VS} = 0, which implies H2 ⊆
H� ∩ VS ⊆ (H ∩ VS)

, = H1.
• H1 ⊆ H,

2 : As H� ⊆ H , we have that H#
1 = H ∩ VS contains H2, which

implies H1 = (H#
1 )

, ⊆ H,
2 .

• H1 ⊆ H#
2 : As H �⊆ H , we have (H�) ��∩ VS ⊆ H ∩ VS , which is

equivalent to (H� ∩VS)
## ⊆ H ∩VS . As H2 is contained in H� ∩VS , we

have H##
2 ⊆ H ∩ VS = H#

1 , which implies H1 ⊆ H#
2 .

We denote by H, (H̃, H̃2), and (H1,H2) the universal objects over DL(V�),
D̃L(V ), and DL•(V ), respectively. By definition, we have H̃ = π∗H and
H̃2 = π•∗H2.

We first study the morphism π . We say that a point s ∈ DL(V�)(κ) repre-
sented by Hs is special if H�

s is a maximal isotropic subspace of V satisfying
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H �
s = H�

s . Then there are exactly (p + 1)(p3 + 1) · · · (p2r−1 + 1) special
points. Let DL(V�)′ be the locus of special points. It is clear that for every
morphism S → DL(V�)\DL(V�)′, π−1(S) is a singleton; and for a special
point s, we have π−1(s) = P(H�

s ) � P
r−1
κ . In particular, π is a blow-up along

DL(V�)′, for which we denote by E ⊆ D̃L(V ) the exceptional divisor. In par-
ticular, π is projective. Moreover, E is exactly the zero locus of the canonical
projection map

H̃�/H̃2 → OD̃L(V )1 ⊆ OD̃L(V ) ⊗κ V�,

which implies

H̃�/H̃2 � OD̃L(V )(−E). (A.1)

Next we study the morphism π•. We claim that π• is generically finite of
degree p+1. Take a point s ∈ DL•(V )(κ) represented by (H1s, H2s). Then by
construction, for every scheme S over {s}×DL•(V ) D̃L(V ), D̃L(V )(S) consists
of subbundles H ⊆ V�⊗κOS satisfying H2s⊗κOS ⊆ H� ⊆ H1s⊗κOS⊕OS1
and H� ⊆ H . Note that we have an induced pairing

{ , }s : H1s ⊕ κ1
H2s

× H1s ⊕ κ1
H2s

→ κ

that is σ -linear in the first variable and linear in the second variable. Then it
is clear that when { , }s is perfect, {s} ×DL•(V ) D̃L(V ) is isomorphic to the
union of p + 1 copies of Spec κ . However, { , }s fails to be perfect if and only
if H#

1 = H1. Thus, the locus where { , }s fails to be perfect is a finite union
of P

r−1
κ . Therefore, π• is generically finite of degree p + 1.

To proceed, we introduce two more bundles

E :=
(
σ ∗H�

)
⊗DL(V�)

(
H/H�

)
, E• := (σ ∗H2

)⊗DL•(V )
(
H#

1 /H2

)

on DL(V�) and DL•(V ) of ranks r and r − 1, respectively.
We claim that

L := π•∗ (H#
1 /H2

)
� OD̃L(V )(−E)⊗OD̃L(V )

(
H̃/H̃�

)
. (A.2)

In fact, we have

L =
(
H̃ ∩ VD̃L(V )

)
/H̃2
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by definition. Thus, the claim follows from the following injective map

0 H̃2 H̃� OD̃L(V )(−E) 0

0 H̃ ∩ VD̃L(V ) H̃ OD̃L(V )1 0

of short exact sequences of coherent sheaves on D̃L(V ) by (A.1) and the Snake
Lemma.

By (A.1) and (A.2), we have

π∗ (cr (E))
= cr
(
π∗E
)

= cr−1

((
σ ∗H̃2

)⊗OD̃L(V )

(
H/H�

))
· c1
(
OD̃L(V )(−pE)⊗OD̃L(V )

(
H/H�

))

= cr−1

((
σ ∗H̃2

)⊗OD̃L(V )
L(E)

)
· c1(L((1− p)E))

= cr−1

(
π•∗E• ⊗OD̃L(V )

OD̃L(V )(E)
)
· c1(L((1− p)E))

=
(

cr−1
(
π•∗E•)+

r−1∑
i=1

c1(E)
i cr−i−1

(
π•∗E•)

)
· (c1(L)+ (1− p)c1(E))

= cr−1
(
π•∗E•) · c1(L)+

r−1∑
i=1

c1(E)
i c1(L)cr−i−1

(
π•∗E•)

+ (1− p)
r∑

i=1

c1(E)
i cr−i

(
π•∗E•)

= π•∗ (cr−1(E•) · c1
(
H#

1 /H2

))
+

r−1∑
i=1

c1(E)
i c1(L)cr−i−1

(
π•∗E•)

+ (1− p)
r∑

i=1

c1(E)
i cr−i

(
π•∗E•) .

Since π and π• are generically finite of degrees 1 and p + 1, respectively, it
follows that

(p + 1)
∫
DL•(V )

cr−1(E•) · c1
(
H#

1 /H2

)
−
∫
DL(V�)

cr (E)

= (p − 1)
r∑

i=1

∫
D̃L(V )

c1(E)
i cr−i

(
π•∗E•)

−
r−1∑
i=1

∫
D̃L(V )

c1(E)
i c1(L)cr−i−1

(
π•∗E•)
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= (p − 1)
r−1∑
i=0

∫
E
(−η)i cr−i−1

(
π•∗E•|E

)

−
r−2∑
i=0

∫
E
(−η)i c1(L|E )cr−i−2

(
π•∗E•|E

)
(A.3)

where η := c1(OE (1)). As H̃/H̃� = π∗ (H/H�), we have L|E �
OE (−E) = OE (1). On the other hand, H̃2|E is the tautological subbundle (of
rank r − 1), which satisfies the short exact sequence

0 → H̃2|E → O⊕r
E → OE (1)→ 0.

Thus, F := π•∗E•|E , which equals (σ ∗H̃2|E )⊗OE (L|E ), satisfies the short
exact sequence

0 → F → OE (1)
⊕r → OE (p + 1)→ 0.

Therefore, we have

(A.3) = p
r−1∑
i=0

∫
E
(−η)i cr−i−1(F)−

∫
E

cr−1(F)

= p
∫

E
cr−1(F(−1))−

∫
E

cr−1(F)

= p
∫

E
(−p)r−1ηr−1 −

∫
E

1− (−p)r

p + 1
ηr−1

= (−p)r+1 − 1

p + 1

∫
E
ηr−1

= (−p)r+1 − 1

p + 1
· |DL(V�)′(κ)|

= (−p)r+1 − 1

p + 1
(p + 1)(p3 + 1) · · · (p2r−1 + 1). (A.4)

By Proposition A.1.5, we have

∫
DL(V�)

cr (E) = dr,p. (A.5)

Thus, (2) follows from (A.3), (A.4) and (A.5). The proposition is proved. ��
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Appendix B. Computation in Hecke algebras

In this appendix, we compute several explicit formulae on the evaluation of
certain Hecke elements. In Sect. B.1, we prove some combinatorial formulae
on characters of the dual group (of a unitary group). In Sect. B.2, we introduce
the twounitaryHecke algebras andprove a formula for an intertwiningoperator
between the two Hecke algebras. In Sects. B.3 and B.4, we evaluate certain
Hecke operators under a Satake parameter in the even and odd rank cases,
respectively.

B.1 Characters of the dual group

Let N � 1 be an integer with r := � N
2 �. We let GLN be the group of automor-

phism of theZ-moduleZ
⊕N , which is a group scheme overZ. Let TN ⊆ GLN

be the subgroup of diagonal matrices. The group of homomorphisms from TN
to Gm , denoted by X

∗
N , is a free abelian group generated by {μ1, . . . , μN }

where μi is the projection to the i-th factor. For μ ∈ X
∗
N , we denote by [μ]

the corresponding element in Z[X∗
N ]. For 1 � i � r , we put

μi := [μi − μN+1−i ] + [μN+1−i − μi ] ∈ Z[X∗
N ].

For 0 � δ � r , let sδ ∈ Z[X∗
N ] be the elementary symmetric polynomial in

μ1, . . . ,μr of degree δ. Finally, we denote byZ[X∗
N ]sym the subring ofZ[X∗

N ]
generated by {s1, . . . , sr } over Z.

Now we consider GLext
N := GLN �{1, σ } in which the involution σ sends

A ∈ GLN to

⎛
⎜⎜⎜⎜⎝

1
−1

. .
.

(−1)N−2

(−1)N−1

⎞
⎟⎟⎟⎟⎠

tA−1

⎛
⎜⎜⎜⎜⎝

1
−1

. .
.

(−1)N−2

(−1)N−1

⎞
⎟⎟⎟⎟⎠

−1

.

For every algebraic representation ρ of GLext
N (over Z), we denote by χ(ρ)

the restriction of the character of ρ to TNσ , regarded as an element in Z[X∗
N ].

Let ρN ,std be the standard representation of GLN and ρ∨N ,std its dual. We
let {ε1, . . . , εN } be the standard basis of ρN ,std and {ε∨1 , . . . , ε∨N } the dual
basis of ρ∨N ,std. For a subset I ⊆ {1, . . . , N }, we put 〈I 〉 := ∑i∈I i , I∨ :=
{N + 1− i | i ∈ I }, εI := ∧i∈I εi and ε∨I := ∧i∈I ε

∨
i (in the increasing order
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of the indices). For 0 � δ � r , put

ρN ;δ :=
(
δ∧
ρN ,std

)
⊗
(
δ∧
ρ∨N ,std

)
,

which extends uniquely to a representation of GLext
N such that σ sends εI ⊗ε∨J∨

to (−1)〈I 〉+〈J 〉εJ ⊗ ε∨I∨ .
Remark B.1.1 In the next subsection, we will study the unramified uni-
tary group U(VN ) over nonarchimedean local fields. Then GLext

N (C) is
simply the Langlands dual group of U(VN ), and we have Z[X∗

N ]sym �
Z[X∗(Û(VN ))

σ ]WN .

Lemma B.1.2 We have

χ(ρN ;δ) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

δ∑
i=0

(
r − δ + i

� i
2�
)

· sδ−i , if N is odd;

� δ2 �∑
j=0

(
r − δ + 2 j

j

)
· sδ−2 j , if N is even.

In particular, χ(ρN ;δ) belongs to Z[X∗
N ]sym.

Proof Note that for every t ∈ TN , tσ sends εI ⊗ ε∨J∨ to

(−1)〈I 〉+〈J 〉 ∏
i∈I∨

μi (t)
−1
∏
j∈J

μ j (t) · εJ ⊗ ε∨I∨ .

In particular, such term contributes to χ(ρN ,δ)(tσ) exactly when I = J . It
follows that

χ(ρN ,δ)(tσ) =
∑

I⊆{1,...,N },|I |=δ

∏
i∈I∨

μi (t)
−1
∏
i∈I

μi (t)

=
∑

I⊆{1,...,N },|I |=δ

∏
i∈I

μi (t)μN+1−i (t)
−1.

To evaluate the above sum, we consider i := |I ∩ I∨|, which has to be even
when N is even. It is easy to see that for fixed 0 � i � δ (that is even if N is
even), the contribution from those subsets I to the above sum is

(
r − δ + i

� i
2�
)

· sδ−i (t).
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Thus, the lemma follows. ��
Lemma B.1.3 Suppose that N = 2r is even.

(1) We have

r∏
i=1

(
λ+ λ−1 + μi

) = χ(ρN ;r )+
r∑
δ=1

χ(ρN ;r−δ)(λδ + λ−δ)

in Z[X∗
N ]sym ⊗ Z[λ, λ−1].

(2) We have

r∑
j=1

r∏
i=1
i �= j

(
λ+ λ−1 + μi

) =
r∑
δ=1

δ · χ(ρN ;r−δ)
λδ − λ−δ
λ− λ−1

in Z[X∗
N ]sym ⊗ Z[λ, λ−1].

Proof Part (1) is follows from Lemma B.1.2 by comparing coefficients of
powers of λ. Part (2) follows from (1) by taking derivative with respect to λ
and dividing both sides of the resulted equality by 1− λ−2. ��
Lemma B.1.4 Suppose that N = 2r + 1 is odd. We have

r∏
i=1

(
λ+ λ−1 + μi

) =
r∑
δ=0

χ(ρN ;r−δ)
λδ+1 + λ−δ
λ+ 1

in Z[X∗
N ]sym ⊗ Z[λ, λ−1].

Proof By Lemma B.1.2, the right-hand side of the desired identity equals

r∑
δ=0

λδ+1 + λ−δ
λ+ 1

r−δ∑
i=0

(
δ + i

� i
2�
)

· sr−δ−i ,

which coincides with

r∑
i=0

(
r−i∑
δ=0

λδ+1 + λ−δ
λ+ 1

(
r − i

� r−i−δ
2 �
))

si

by substituting i by r − δ − i . Thus, it remains to show that

k∑
δ=0

λδ+1 + λ−δ
λ+ 1

(
k

� k−δ
2 �
)

= (λ+ λ−1)k
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for 0 � k � r . However, we have

k∑
δ=0

λδ+1 + λ−δ
λ+ 1

(
k

� k−δ
2 �
)

=
(

k

0

)(
λk+1 + λ−k

λ+ 1
+ λk + λ−(k−1)

λ+ 1

)

+
(

k

1

)(
λk−1 + λ−(k−2)

λ+ 1
+ λk−2 + λ−(k−3)

λ+ 1

)
+ · · ·

=
(

k

0

)
(λk + λ−k)+

(
k

1

)
(λk−1 + λ−(k−1))+ · · ·

= (λ+ λ−1)k .

The lemma follows. ��

B.2 Two Hecke algebras

From now to the end of this section, we fix an unramified quadratic extension
F/F+ of nonarchimedean local fields. Let q be the residue cardinality of F+
and p the maximal ideal of OF .

Let N � 1 be an integer with r := � N
2 �. Consider a hermitian space VN

over F (with respect to F/F+) of rank N together with a basis {e−r , . . . , er }
(with e0 omitted if N is even) such that (e−i , e j )VN = δi j for 0 � i, j � r .
Via this basis, we identify U(VN ) as a closed subgroup of ResF/F+ GLN . We
study two lattices

�◦
N =OF e−r ⊕ · · · ⊕ OF er ,

�•
N =p−1e−r ⊕ · · · ⊕ p−1e−1 ⊕ OF e0 ⊕ · · · ⊕ OF er (B.1)

of VN . We have (�◦
N )

∨ = �◦
N , p�

•
N ⊆ (�•

N )
∨, and that the OF -module

(�•
N )

∨/p�•
N has length N − 2r . Let K◦

N and K•
N be the stabilizers of�◦

N and
�•

N , respectively, which are subgroups of U(VN )(F+). It is clear that K◦
N is

hyperspecial maximal; K•
N is special maximal and is hyperspecial if and only

if N is even. We have two commutative Hecke algebras

T
◦
N := Z[K◦

N\U(VN )(F
+)/K◦

N ], T
•
N := Z[K•

N\U(VN )(F
+)/K•

N ].
Recall that by our convention in Sect. 1.3, the units in T

◦
N and T

•
N are 1K◦

N

and 1K•
N
, respectively. Let AN (F+) (resp. AN (OF+)) be the subgroup of

U(VN )(F+) that acts on ei by a scalar in F+ (resp. OF+) for every−r � i � r .
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Notation B.2.1 For each element t = (t1, . . . , tN ) ∈ Z
N satisfying ti +

tN+1−i = 0 anda ∈ F×, we have an element a t ∈ AN (F+) such thata t ·e−i =
atr+1−i e−i for 0 � i � r . For 0 � δ � r , put tδ := (1δ, 0N−2δ, (−1)δ). We let
T◦

N ;t (resp. T
•
N ;t ) be the element inT

◦
N (resp. T•

N ) corresponding to the double
coset K◦

N�
tK◦

N (resp. K•
N�

tK•
N ) for some uniformizer � of F ; and simply

write T◦
N ;δ (resp. T

•
N ;δ) for T

◦
N ;tδ (resp. T

•
N ;tδ ).

Remark B.2.2 The elements T◦
N ;t ∈ T

◦
N and T•

N ;t ∈ T
•
N do not depend on the

choice of the basis {e−r , . . . , er } satisfying (B.1).
Definition B.2.3 We denote

• Lat◦N the set of all self-dual lattices in VN ;
• Lat•N the set of all lattices L in VN satisfying pL ⊆ L∨ and that L∨/pL
has length N − 2� N

2 �;• T•◦
N ∈ Z[K•

N\U(VN )(F+)/K◦
N ] the characteristic function of K•

NK
◦
N ; and• T◦•

N ∈ Z[K◦
N\U(VN )(F+)/K•

N ] the characteristic function of K◦
NK

•
N .

Moreover, we define the intertwining Hecke operator

I◦
N := T◦•

N ◦ T•◦
N ∈ T

◦
N

where the composition is taken as composition of cosets.

Note that we have canonical injective homomorphisms

T
◦
N → EndZ(Z[Lat◦N ]), T

•
N → EndZ(Z[Lat•N ])

sending T?
N ;t to the endomorphism that takes f ∈ Z[Lat?N ] to the function

T?
N ;t f satisfying (T?

N ;t f )(L) = ∑ f (L′) where the sum is taken over all

L′ ∈ Lat?N such that L′ and L have relative position� t for ? = ◦, •.
Lemma B.2.4 We have the identity

I◦
N =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

T◦
N ;r + (q + 1)T◦

N ;r−1 + (q + 1)(q3 + 1)T◦
N ;r−2 + · · · +

r∏
i=1

(q2i−1 + 1)T◦
N ;0, if N = 2r;

T◦
N ;r + (q3 + 1)T◦

N ;r−1 + (q3 + 1)(q5 + 1)T◦
N ;r−2 + · · · +

r∏
i=1

(q2i+1 + 1)T◦
N ;0, if N = 2r + 1

in T
◦
N .

Proof For a pair (L◦
1,L

◦
2) ∈ (Lat◦N )2, we denote by Disc(L◦

1,L
◦
2) the sum of

the lengths of L◦
1/(L

◦
1 ∩ L◦

2) and L
◦
2/(L

◦
1 ∩ L◦

2).
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To compute I◦
N , it suffices to compute its induced endomorphism on

Z[Lat◦N ]. Now we take an element f ∈ Z[Lat◦N ]. Then

(T◦•
N (T

•◦
N f ))(L◦

1) =
∑

L•∈Lat•N
L◦
1⊆L•⊆p−1L◦

1

(T•◦
N f )(L•) =

∑
L•∈Lat•N

L◦
1⊆L•⊆p−1L◦

1

∑
L◦
2∈Lat◦N

L◦
2⊆L•⊆p−1L◦

2

f (L◦
2)

for every L◦
1 ∈ Lat◦N . Note that for pairs (L◦

1,L
◦
2) ∈ (Lat◦N )2 appearing

in the formula above, we have pL◦
2 ⊆ L◦

1 ⊂ p−1L◦
2 and Disc(L◦

1,L
◦
2) ∈

{0, 2, . . . , 2r}.
Now for a pair (L◦

1,L
◦
2) ∈ (Lat◦N )2 satisfying pL◦

2 ⊆ L◦
1 ⊂ p−1L◦

2, we
consider the set

Lat•N (L◦
1,L

◦
2) := {L• ∈ Lat•N |L◦

1 ⊆ L• ⊆ p−1L◦
1,L

◦
2 ⊆ L• ⊆ p−1L◦

2}.

It is easy to see that the cardinality of Lat•N (L◦
1,L

◦
2) depends only on

Disc(L◦
1,L

◦
2). For 0 � δ � r , we denote by cN ,δ the cardinality of

Lat•N (L◦
1,L

◦
2)with Disc(L

◦
1,L

◦
2) = 2δ. Then the lemma is equivalent to show-

ing that cN ,r = 1 and

cN ,δ =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

r−δ∏
i=1

(q2i−1 + 1), 0 � δ < r, when N = 2r;

r−δ∏
i=1

(q2i+1 + 1), 0 � δ < r, when N = 2r + 1.

Without loss of generality, we may assume L◦
1 = �◦

N and

L◦
2 = p−1e−r ⊕ · · · ⊕ p−1e−r+δ−1 ⊕ OF e−r+δ ⊕

· · · ⊕ OF er−δ ⊕ pOF er−δ+1 ⊕ · · · ⊕ pOF er .

When δ = r ,�•
N is the only element in Lat•N (L◦

1,L
◦
2). Thus, we have cN ,r = 1.

For 0 � δ < r , we have cN ,δ = cN−2δ,0. Thus, it suffices to show

cN ,0 =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

r∏
i=1

(q2i−1 + 1) = (q + 1) · · · (q2r−1 + 1), when N = 2r;
r∏

i=1

(q2i+1 + 1) = (q3 + 1) · · · (q2r+1 + 1), when N = 2r + 1.
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However, cN ,0 is nothing but the number of maximal isotropic subspaces of
the hermitian space�◦

N ⊗OF OF/p over OF/p of dimension N , which is given
by the above formula. Thus, the lemma is proved. ��

Nowwe recall Satake transforms.Denote byWN theWeyl groupofAN (F+)
in U(VN )(F+), which preserves AN (OF+); and we have the two Satake trans-
forms

Sat◦N : T
◦
N → Z[q−1][AN (F

+)/AN (OF+)]WN ,

Sat•N : T
•
N → Z[q−1][AN (F

+)/AN (OF+)]WN .

In addition, we have an isomorphism

Z[q−1][AN (F
+)/AN (OF+)]WN � Z[q−1][X∗

N ]sym

of Z[q−1]-rings under which sδ corresponds to the sum of elements in the
WN -orbit of � tδAN (OF+) for every 0 � δ � r . In what follows, we will
regard Z[q−1][X∗

N ]sym as the target of both Satake transforms Sat◦N and Sat•N .

Notation B.2.5 Let Z[q−1][X∗
N ]′ be the Z[q−1]-subring of Z[q−1][X∗

N ] gen-
erated by the subset {μ1, . . . ,μr }. For every Z[q−1]-ring L and every tuple
α = (α1, . . . , αN ) ∈ L N satisfying αiαN+1−i = 1, we have a homomor-
phism φ′

α : Z[q−1][X∗
N ]′ → L sending μi to αi + α−1

i for 1 � i � r , similar
to Construction 3.1.8, and denote by

φ◦
α : T

◦
N

Sat◦N−−→ Z[q−1][X∗
N ]sym ⊆ Z[q−1][X∗

N ]′ φ
′
α−→ L ,

φ•
α : T

•
N

Sat•N−−→ Z[q−1][X∗
N ]sym ⊆ Z[q−1][X∗

N ]′ φ
′
α−→ L ,

the composite homomorphisms.

The following three lemmas will be used in later computation.

Lemma B.2.6 We have the identity

qδ(N−δ)χ(ρN ,δ) =
δ∑

i=0

[
N − 2i

δ − i

]
−q

Sat◦N (T◦
N ;i )

in Z[q−1][X∗
N ]sym for 0 � δ � r .

Proof This is [75, Lemma 9.2.4]. ��
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Lemma B.2.7 For every integer k � 1, we have

k∑
δ=−k

qδ
2
[

2k

k − δ
]
−q

= (q + 1)(q3 + 1) · · · (q2k−1 + 1).

Proof For every integer k � 1, we have the Gauss polynomial identity

2k∑
δ=0

(−1)δ
[
2k

δ

]
λ

= (1− λ)(1− λ3) · · · (1− λ2k−1)

in Z[λ].35 Now we specialize the identity to λ = −q−1. Then we get

2k∑
δ=0

(−1)δ(−q)−(2k−1)−(2k−3)−···−(2k−2δ+1)
[
2k

δ

]
−q

= q−k2(q + 1)(q3 + 1) · · · (q2k−1 + 1).

The lemma then follows by changing δ to k − δ. ��
Lemma B.2.8 For every integer k � 1, we have

k∑
δ=−k−1

(−1)δδqδ
2+δ
[
2k + 1

k − δ
]
−q

−
k∑

δ=−k

(−1)δδqδ
2+δ
[

2k

k − δ
]
−q

= (−q)k(q + 1)(q3 + 1) · · · (q2k−1 + 1).

Proof In fact, we have

k∑
δ=−k−1

(−1)δδqδ
2+δ
[
2k + 1

k − δ
]
−q

−
k∑

δ=−k

(−1)δδqδ
2+δ
[

2k

k − δ
]
−q

=
k∑

δ=−k−1

(−1)δδqδ
2+δ(−q)k+δ+1

[
2k

k − δ − 1

]
−q

= (−1)k+1qk
k∑

δ=−k

(δ − 1)qδ
2
[

2k

k − δ
]
−q

35 A proof can be found at http://mathworld.wolfram.com/GausssPolynomialIdentity.html.
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which, by Lemma B.2.7, equals

(−q)k(q + 1)(q3 + 1) · · · (q2k−1 + 1)+ (−1)k+1qk
k∑

δ=−k

δqδ
2
[

2k

k − δ
]
−q
.

The lemma follows since

k∑
δ=−k

δqδ
2
[

2k

k − δ
]
−q

= 0.

��

B.3 Enumeration of Hecke operators in the even rank case

In this subsection, we assume that N = 2r is even.

Lemma B.3.1 We have the identity

qr2
r∏

i=1

(
μi + 2

)

= Sat◦N (T◦
N ;r )+

r∑
δ=1

(q + 1)(q3 + 1) · · · (q2δ−1 + 1) · Sat◦N (T◦
N ;r−δ)

in Z[q−1][X∗
N ]sym.

Proof By Lemma B.1.3(1) and Lemma B.2.6, we have

qr2
r∏

i=1

(
μi + 2

) = qr2χ(ρN ;r )+ qr2
r∑
δ=1

2χ(ρN ;r−δ)

=
r∑

i=0

[
2r − 2i

r − i

]
−q

Sat◦N (T◦
N ;i )

+
r∑
δ=1

2qδ
2

r−δ∑
i=0

[
2r − 2i

r − δ − i

]
−q

Sat◦N (T◦
N ;i )

=
r∑

i=0

⎛
⎝ r−i∑
δ=−(r−i)

qδ
2
[
2r − 2i

r − δ − i

]
−q

⎞
⎠Sat◦N (T◦

N ;i ),
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which equals

Sat◦N (T◦
N ;r )+

r∑
δ=1

(q + 1)(q3 + 1) · · · (q2δ−1 + 1) · Sat◦N (T◦
N ;r−δ)

by Lemma B.2.7. The lemma is proved. ��
Lemma B.3.2 We have the identity

qr2
r∏

i=1

(
μi − q − q−1) = Sat◦N (T◦

N ;r )+
r∑
δ=1

(−q)δ(q + 1)(q3 + 1)

· · · (q2δ−1 + 1) · Sat◦N (T◦
N ;r−δ)

in Z[q−1][X∗
N ]sym.

Proof By Lemma B.1.3(1) and Lemma B.2.6, we have

qr2
r∏

i=1

(
μi − q − q−1)

= qr2χ(ρN ;r )+ qr2
r∑
δ=1

((−q)δ + (−q)−δ)χ(ρN ;r−δ)

=
r∑

i=0

[
2r − 2i

r − i

]
−q

Sat◦N (T◦
N ;i )+

r∑
δ=1

r−δ∑
i=0

qδ
2
((−q)δ + (−q)−δ)

[
2r − 2i

r − δ − i

]
−q

Sat◦N (T◦
N ;i )

=
r∑

i=0

([
2r − 2i

r − i

]
−q

+
r−i∑
δ=1

(−1)δ
(

qδ
2+δ + qδ

2−δ) [ 2r − 2i

r − δ − i

]
−q

)
Sat◦N (T◦

N ;i )

=
r∑

i=0

⎛
⎝ r−i∑
δ=−(r−i)

(−1)δqδ
2+δ
[
2r − 2i

r − δ − i

]
−q

⎞
⎠ Sat◦N (T◦

N ;i ).

Thus, the lemma follows from Lemma B.3.3 below by comparing coefficients.
��

Lemma B.3.3 For every integer k � 1, we have

k∑
δ=−k

(−1)δqδ
2+δ
[

2k

k − δ
]
−q

= (−q)k(q + 1)(q3 + 1) · · · (q2k−1 + 1).

Proof By Lemma B.2.7, the lemma is equivalent to the identity

(−q)k
k∑

δ=−k

qδ
2
[

2k

k − δ
]
−q

=
k∑

δ=−k

(−1)δqδ
2+δ
[

2k

k − δ
]
−q
.
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However, we have

(−q)k
k∑

δ=−k

qδ
2
[

2k

k − δ
]
−q

−
k∑

δ=−k

(−1)δqδ
2+δ
[

2k

k − δ
]
−q

=
k∑

δ=−k

(−1)δqδ
2+δ ((−q)k−δ − 1

) [ 2k

k − δ
]
−q

=
k∑

δ=−k

(−1)δqδ
2+δ ((−q)2k − 1

) [ 2k − 1

k − δ − 1

]
−q

=
(
(−q)2k − 1

) k∑
δ=−k

(−1)δqδ
2+δ
[

2k − 1

k − δ − 1

]
−q
.

Note that in the last summation, the term of δ and the term of −δ − 1 cancel
with each other for −k � δ � k − 1; and the term with δ = k vanishes. Thus,
the above summation is zero; and the lemma follows. ��
Lemma B.3.4 We have the identity

(
qr2+1 − qr2−1

) r∑
j=1

r∏
i=1
i �= j

(
μi − q − q−1)

=
r∑
δ=1

(
(−q)δ(q + 1)(q3 + 1) · · · (q2δ−1 + 1)

−
δ∑

i=0

(−1)i (2i + 1)qi2+i
[
2δ + 1

δ − i

]
−q

)
Sat◦N (T◦

N ;r−δ)

in Z[q−1][X∗
N ]sym.

Proof By Lemma B.1.3(2) and Lemma B.2.6, we have

(
qr2+1 − qr2−1

) r∑
j=1

∏
i �= j

(
μi − q − q−1)

= qr2
r∑
δ=1

(−1)δ−1δ(qδ − q−δ) · χ(ρN ;r−δ)

=
r∑
δ=1

(−1)δ−1qδ
2
(δqδ − δq−δ)

r−δ∑
i=0

[
2r − 2i

r − δ − i

]
−q

Sat◦N (T◦
N ;i )
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=
r−1∑
i=0

(
r−i∑
δ=1

(−1)δ−1qδ
2
(δqδ − δq−δ)

[
2r − 2i

r − δ − i

]
−q

)
Sat◦N (T◦

N ;i ).

Thus the lemma is equivalent to the identity

k∑
δ=0

(−1)δ(2δ + 1)qδ
2+δ
[
2k + 1

k − δ
]
−q

−
k∑
δ=1

(−1)δqδ
2
(δqδ − δq−δ)

[
2k

k − δ
]
−q

= (−q)k(q + 1)(q3 + 1) · · · (q2k−1 + 1)

for every integer k � 1. In fact, we have

k∑
δ=0

(−1)δ(2δ + 1)qδ
2+δ
[
2k + 1

k − δ
]
−q

−
k∑
δ=1

(−1)δqδ
2
(δqδ − δq−δ)

[
2k

k − δ
]
−q

=
k∑

δ=−k−1

(−1)δδqδ
2+δ
[
2k + 1

k − δ
]
−q

−
k∑

δ=−k

(−1)δqδ
2
δqδ
[

2k

k − δ
]
−q

= (−q)k(q + 1)(q3 + 1) · · · (q2k−1 + 1)

by Lemma B.2.8. The lemma follows. ��
Proposition B.3.5 Let L be a Z[q−1]-ring. Consider an N-tuple α =
(α1, . . . , αN ) ∈ L N satisfying αiαN+1−i = 1, which determines a homo-
morphism φ◦

α : T
◦
N → L as in Notation B.2.5.

(1) We have

φ◦
α(I

◦
N ) = qr2

r∏
i=1

(
αi + 1

αi
+ 2

)
.

(2) We have

φ◦
α

(
(q + 1)R◦

N − I◦
N

) = −qr2
r∏

i=1

(
αi + 1

αi
− q − 1

q

)

where

R◦
N :=

r−1∑
δ=0

1− (−q)r−δ

q + 1
(q + 1)(q + 3) · · · (q2(r−δ)−1 + 1) · T◦

N ;δ.
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(3) We have

φ◦
α

(
R◦

N + (q + 1)T◦
N

) = −
(

qr2+1 − qr2−1
) r∑

j=1

r∏
i=1
i �= j

(
αi + 1

αi
− q − 1

q

)

where

T◦
N :=

r−1∑
δ=0

d•r−δ,q · T◦
N ;δ

in which the numbers d•
r−δ,q are introduced in Notation 1.3.1.

Proof Part (1) follows from Lemma B.2.4 and Lemma B.3.1. Part (2) follows
from Lemma B.2.4 and Lemma B.3.2. Part (3) follows from Lemma B.3.4. ��
Lemma B.3.6 We have

T•◦
N ◦ R◦

N = R•
N ◦ T•◦

N , T•◦
N ◦ T◦

N = T•
N ◦ T•◦

N

in Z[K•
N\U(VN )(F+)/K◦

N ], where R◦
N and T◦

N are defined in Proposi-
tion B.3.5 (2) and (3), respectively, and

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

R•
N :=

r−1∑
δ=0

1− (−q)r−δ

q + 1
(q + 1)(q + 3) · · · (q2(r−δ)−1 + 1) · T•

N ;δ,

T•
N :=

r−1∑
δ=0

d•r−δ,q · T•
N ;δ.

Proof In fact, by the same lattice counting argument as for Lemma B.2.4, we
have

T•◦
N ◦ T◦

N ;δ = T•
N ;δ ◦ T•◦

N

for every 0 � δ � r . Then the lemma follows immediately. ��

B.4 Enumeration of Hecke operators in the odd rank case

In this subsection, we assume that N = 2r + 1 is odd.
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Lemma B.4.1 We have the identity

qr2+r
r∏

i=1

(
μi + q + q−1)

= Sat◦N (T◦
N ;r )+

r∑
δ=1

(q3 + 1)(q5 + 1) · · · (q2δ+1 + 1) · Sat◦N (T◦
N ;r−δ)

in Z[q−1][X∗
N ]sym.

Proof By Lemmas B.1.4 and B.2.6, we have

qr2+r
r∏

i=1

(
μi + q + q−1)

= qr2+r
r∑
δ=0

qδ+1 + q−δ

q + 1
· χ(ρN ;r−δ)

= qr2+r
r∑
δ=0

qδ+1 + q−δ

q + 1
· q−(r−δ)(r+1+δ)

r−δ∑
i=0

[
2r + 1− 2i

r − δ − i

]
−q

Sat◦N (T◦
N ;i )

= 1

q + 1

r∑
i=0

(
r−i∑
δ=0

(q2δ+1 + 1)qδ
2
[
2(r − i)+ 1

r − i − δ
]
−q

)
Sat◦N (T◦

N ;i )

= 1

q + 1

r∑
i=0

⎛
⎝ r−i∑
δ=−(r−i)−1

qδ
2
[
2(r − i)+ 1

r − i − δ
]
−q

⎞
⎠Sat◦N (T◦

N ;i ).

Thus the lemma is equivalent to the identity

k∑
δ=−k−1

qδ
2
[
2k + 1

k − δ
]
−q

= (q + 1)(q3 + 1) · · · (q2k+1 + 1)

for every integer k � 0. By Lemma B.2.7, we have

k+1∑
δ=−k−1

qδ
2
[

2k + 2

k + 1− δ
]
−q

= (q + 1)(q3 + 1) · · · (q2k+1 + 1).

Thus, it remains to show

k+1∑
δ=−k−1

qδ
2
[

2k + 2

k + 1− δ
]
−q

=
k∑

δ=−k−1

qδ
2
[
2k + 1

k − δ
]
−q
.
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However, the difference equals

k+1∑
δ=−k−1

qδ
2

([
2k + 2

k + 1− δ
]
−q

−
[
2k + 1

k − δ
]
−q

)

=
k+1∑

δ=−k−1

qδ
2
(−q)k+1−δ

[
2k + 1

k + 1− δ
]
−q

= (−q)k+1
k+1∑

δ=−k−1

(−1)δqδ
2−δ
[

2k + 1

k + 1− δ
]
−q
,

which equals zero as the term of δ and the term of −δ + 1 cancel each other
for −k � δ � k + 1 and the term with δ = −k − 1 vanishes. The lemma
follows. ��
Lemma B.4.2 We have the identity

qr2+r
r∏

i=1

(
μi − 2

) =
r∑
δ=0

dδ,q · Sat◦N (T◦
N ;r−δ)

in Z[q−1][X∗
N ]sym, in which the numbersdδ,q are introduced in Notation 1.3.1.

Proof By Lemmas B.1.4 and B.2.6, we have

qr2+r
r∏

i=1

(
μi − 2

)

= qr2+r
r∑
δ=0

(−1)δ(2δ + 1) · χ(ρN ;r−δ)

= qr2+r
r∑
δ=0

(−1)δ(2δ + 1) · q−(r−δ)(r+1+δ)
r−δ∑
i=0

[
2r + 1− 2i

r − δ − i

]
−q

Sat◦N (T◦
N ;i )

=
r∑

i=0

(
r−i∑
δ=0

(−1)δ(2δ + 1)qδ(δ+1)
[
2(r − i)+ 1

r − i − δ
]
−q

)
Sat◦N (T◦

N ;i )

=
r∑
δ=0

dδ,q · Sat◦N (T◦
N ;r−δ).

The lemma is proved. ��
Proposition B.4.3 Let L be a Z[q−1]-ring. Consider an N-tuple α =
(α1, . . . , αN ) ∈ L N satisfying αiαN+1−i = 1, which determines a homo-
morphism φ◦

α : T
◦
N → L as in Notation B.2.5.
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(1) We have

φ◦
α(I

◦
N ) = qr2+r

r∏
i=1

(
αi + 1

αi
+ q + 1

q

)
.

(2) We have

φ◦
α(T

◦
N ) = qr2+r

r∏
i=1

(
αi + 1

αi
− 2

)
,

where

T◦
N :=

r∑
δ=0

dr−δ,q · T◦
N ;δ

in which the numbers dr−δ,q are introduced in Notation 1.3.1.

Proof Part (1) follows from Lemmas B.2.4 and B.4.1. Part (2) follows from
Lemma B.4.2. ��
Lemma B.4.4 We have

T•◦
N ◦ T◦

N = ((q + 1)2T•
N + T•◦

N ◦ T◦•
N

) ◦ T•◦
N

in Z[K•
N\U(VN )(F+)/K◦

N ], whereT◦
N is defined in PropositionB.4.3(2), and

T•
N :=

r−1∑
δ=0

d•
r−δ,q · T•

N ;δ.

This lemma is a hard exercise in combinatorics. In fact, our proof below is
by brutal force; it would be interesting to find a conceptual proof.

Proof It suffices to show that for every element f ∈ Z[Lat◦N ], we have
(
(q + 1)2T•

N + T•◦
N ◦ T◦•

N

)
(T•◦

N ( f )) = T•◦
N (T

◦
N ( f )) (B.2)

in Z[Lat•N ]. Without loss of generality, we may just consider their values on
�•

N .
For every L ∈ Lat◦N and 0 � δ � r , we denote

• c•δ (L) the number of L• ∈ Lat•N satisfying L ⊆ L• and (L• +�•
N )/�

•
N �

(OF/p)
⊕δ; and
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On the Beilinson–Bloch–Kato conjecture 347

• c◦δ (L) the number of L◦ ∈ Lat◦N satisfying L◦ ⊆ �•
N and L/(L ∩ L◦) �

(OF/p)
⊕δ .

We then have

(T•
N ;δ(T

•◦
N ( f )))(�•

N ) =
∑

L∈Lat◦N
c•δ (L) · f (L),

(T•◦
N (T

◦
N ;δ( f )))(�•

N ) =
∑

L∈Lat◦N
c◦δ (L) · f (L).

We claim the following identities

c•δ (L) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

q(δ−γ )(δ−γ+2)
[

r − γ
δ − γ

]
q2
, if (L +�•

N )/�
•
N � (OF/p)

⊕γ

for some 0 � γ � δ;
0, otherwise;

(B.3)

c◦δ (L) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

q(δ−γ )2
[

r − γ
δ − γ

]
q2
, if (L +�•

N )/�
•
N � (OF/p)

⊕γ

for some 0 � γ � δ;
0, otherwise.

(B.4)

For (B.3), we must have (L +�•
N )/�

•
N ⊆ (L• +�•

N )/�
•
N � (OF/p)

⊕δ .
Thus, the otherwise case is confirmed. Suppose that (L + �•

N )/�
•
N �

(OF/p)
⊕γ for some 0 � γ � δ. Then (p�•

N + L)/L is an isotropic sub-
space of p−1L/L of dimension γ . Moreover, c•δ (L) is the same as the number
of maximal isotropic subspaces of ((p�•

N + L)/L)⊥/((p�•
N + L)/L) whose

intersection with (the image of) (p−1L∩�•
N +L)/L, which itself is a maximal

isotropic subspace, has dimension r−δ. Thus,we obtain (B.3) byLemmaB.4.5
below since ((p�•

N + L)/L)⊥/((p�•
N + L)/L) has dimension 2r + 1− 2γ .

For (B.4), we must have (L+�•
N )/�

•
N � L/(L∩�•

N ) which is a quotient
of L/(L ∩ L◦) � (OF/p)

⊕δ . Thus, the otherwise case is confirmed. Suppose
that (L+�•

N )/�
•
N � (OF/p)

⊕γ for some 0 � γ � δ. Then (L+�•
N )/�

•
N is

an isotropic subspace of p−1�•
N/�

•
N of dimension γ . Moreover, c◦δ (L) is the

same as the number ofmaximal isotropic subspaces of ((L+�•
N )/�

•
N )

⊥/((L+
�•

N )/�
•
N )whose intersectionwith (the image of) (p−1�•

N ∩p−1L+�•
N )/�

•
N ,

which itself is a maximal isotropic subspace, has dimension r − δ. Thus, we
obtain (B.4) by Lemma B.4.5 since ((L +�•

N )/�
•
N )

⊥/((L +�•
N )/�

•
N ) has

dimension 2r − 2γ .

123



348 Y. Liu et al.

Now we come back to the values of (B.2) on �•
N . By a similar proof of

Lemma B.2.4, we have

T•◦
N ◦ T◦•

N = T•
N ;r + (q + 1)T•

N ;r−1 + (q + 1)(q3 + 1)T•
N ;r−2

+ · · · +
r∏

i=1

(q2i−1 + 1)T•
N ;0

in T
•
N . Then under Notation 1.3.1, we have

(
(q + 1)2T•

N + T•◦
N ◦ T◦•

N

) ◦ T•◦
N

= T•
N ;r ◦ T•◦

N +
r−1∑
δ=0

(
(q + 1)dr−δ,q + (−q)r−δ+1(q + 1)(q3 + 1)

· · · (q2(r−δ)−1 + 1)
)
T•

N ;δ ◦ T•◦
N . (B.5)

By (B.3), (B.4) and (B.5), the lemma is equivalent to that for every integer
k � 0, we have

k∑
δ=0

dk−δ,qqδ
2
[

k

δ

]
q2

= qk(k+2) +
k−1∑
δ=0

(
(q + 1)dk−δ,q + (−q)k−δ+1(q + 1)(q3 + 1) · · · (q2(k−δ)−1)

)
qδ(δ+2)

[
k

δ

]
q2
,

or equivalently,

k∑
δ=0

dδ,qq(k−δ)2
[

k

δ

]
q2

= qk(k+2) +
k∑
δ=1

(
(q + 1)dδ,q + (−q)δ+1(q + 1)(q3 + 1) · · · (q2δ−1 + 1)

)
q(k−δ)(k−δ+2)

[
k

δ

]
q2
.

(B.6)

By Lemma B.2.8, we have

(−q)δ+1(q + 1)(q3 + 1) · · · (q2δ−1 + 1)

= −q
δ∑

j=−δ−1

(−1) j jq j2+ j
[
2δ + 1

δ − j

]
−q

+ q
δ∑

j=−δ
(−1) j jq j2+ j

[
2δ

δ − j

]
−q

= −qdδ,q + q
δ∑

j=−δ
(−1) j jq j2+ j

[
2δ

δ − j

]
−q
.

Thus, (B.6) is equivalent to

k∑
δ=0

dδ,qq(k−δ)2
[

k

δ

]
q2
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=
k∑
δ=0

⎛
⎝dδ,q + q

δ∑
j=−δ

(−1) j jq j2+ j
[

2δ

δ − j

]
−q

⎞
⎠ q(k−δ)(k−δ+2)

[
k

δ

]
q2
,

or equivalently,

k∑
δ=0

dδ,qq(k−δ)2(q2(k−δ) − 1)

[
k

δ

]
q2

= −
k∑
δ=0

δ∑
j=−δ

(−1) j jq j2+ j
[

2δ

δ − j

]
−q

q(k−δ+1)2
[

k

δ

]
q2
. (B.7)

However, we have

k∑
δ=0

dδ,qq(k−δ)2(q2(k−δ) − 1)

[
k

δ

]
q2

=
k−1∑
δ=0

dδ,qq(k−δ)2(q2(k−δ) − 1)

[
k

δ

]
q2

=
k−1∑
δ=0

δ∑
j=−δ−1

(−1) j jq j2+ j
[
2δ + 1

δ − j

]
−q

q(k−δ)2(q2(k−δ) − 1)

[
k

δ

]
q2

=
k−1∑
δ=0

δ∑
j=−δ−1

(−1) j jq j2+ j
[
2δ + 1

δ − j

]
−q

q(k−δ)2(q2δ+2 − 1)

[
k

δ + 1

]
q2

=
k−1∑
δ=0

δ∑
j=−δ−1

(−1) j jq(k−δ)2+ j2+ j ((−q)2δ+2 − 1)

[
2δ + 1

δ − j

]
−q

[
k

δ + 1

]
q2

=
k−1∑
δ=0

δ∑
j=−δ−1

(−1) j jq(k−δ)2+ j2+ j ((−q)δ− j+1 − 1)

[
2δ + 2

δ − j + 1

]
−q

[
k

δ + 1

]
q2

=
k∑
δ=1

δ−1∑
j=−δ

(−1) j jq(k+1−δ)2+ j2+ j ((−q)δ− j − 1)

[
2δ

δ − j

]
−q

[
k

δ

]
q2

=
k∑
δ=0

δ∑
j=−δ

(−1) j jq(k+1−δ)2+ j2+ j ((−q)δ− j − 1)

[
2δ

δ − j

]
−q

[
k

δ

]
q2
.

Thus, (B.7) is equivalent to

k∑
δ=0

δ∑
j=−δ

(−1) j jq(k+1−δ)2+ j2+ j (−q)δ− j
[

2δ

δ − j

]
−q

[
k

δ

]
q2

= 0,
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which is obvious since

δ∑
j=−δ

jq j2
[

2δ

δ − j

]
−q

= 0.

The lemma is finally proved. ��
Lemma B.4.5 Let V be a (nondegenerate) hermitian space over OF/p of
dimension m � 1 with r = �m

2 �, and Y0 ⊆ V a maximal isotropic sub-
space. Then the number of maximal isotropic subspaces Y ⊆ V satisfying
dimOF/p(Y ∩ Y0) = r − s with 0 � s � r is given by

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

qs(s+2)
[

r

s

]
q2
, if m = 2r + 1;

qs2
[

r

s

]
q2
, if m = 2r.

Proof We will prove the case for m odd and leave the similar case for m even
to the readers. We fix an integer 0 � s � r . It is easy to see that the number
of choices of the intersection Y ∩ Y0 (of dimension r − s) is

(q2r − 1)(q2(r−1) − 1) · · · (q2(r−s+1) − 1)

(q2s − 1)(q2(s−1) − 1) · · · (q2 − 1)
=
[

r

s

]
q2
.

Thenwe count the number ofY withY ∩Y0 fixed.We take a basis {e−r , . . . , er }
of V such that (e−i , e j )V = δi, j for 0 � i, j � r ; Y0 is spanned by
{e−r , . . . , e−1}; and Y ∩ Y0 is spanned by {e−r , . . . , e−s−1}. Let { f1, . . . , fs}
be an element in Y s such that {e−r , . . . , e−s−1, f1, . . . , fs} form a basis of Y .
Then since Y is isotropic, the coefficients on {es+1, . . . , er } of each fi have to
be zero. In particular, there is unique such element { f1, . . . , fs} ∈ Y s that is
of the form

( f1, . . . , fs) = (e1, . . . , es)+ (e−s, . . . , e−1, e0)

(
A
v

)

with (uniquely determined) A ∈ Ms,s(OF/p) andv ∈ M1,s(OF/p).Moreover,
the isotropic condition on Y is equivalent to that tAc + A + tvc · v = 0, where
c denotes the Galois involution of F/F+. It follows that the number for such
Y with given Y ∩Y0 (of dimension r − s) is qs(s+2). Thus, the lemma follows.

��
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Appendix C. Some representation theory for unitary groups

In this section, we prove several results for representations of unitary groups.
Unless specified otherwise, all representations will have coefficients in C. In
Sect. C.1, we recall some general facts about the local base change for unitary
groups. In Sect. C.2, we study the representation appearing in the cohomology
of Fermat hypersurfaces, and also compute the local base change of some
admissible representations with nonzero Iwahori fixed vectors. In Sect. C.3,
we collect everything we need from the endoscopic classification for unitary
groups in Proposition C.3.1 and derive two corollaries from it.

C.1 Local base change for unitary groups

In this subsection, we fix an unramified quadratic extension F/F+ of nonar-
chimedean local fields. For every element α ∈ C

×, we denote by α : F× →
C

× the unramified character that sends every uniformizer to α.
Consider a hermitian space V over F (with respect to F/F+) of rank N .

Put G := U(V). For an irreducible admissible representation π of G(F+), we
denote by BC(π) its base change, which is an irreducible admissible repre-
sentation of GLN (F). Such local base change is defined by [63] when N � 3
and by [33,53] for general N .

We review the construction ofBC(π) in certain special cases. For a parabolic
subgroup P of G and an admissible representation σ of P(F+), we denote by
IGP (σ ) the normalized parabolic induction, which is an admissible representa-
tion of G(F+). Fix a minimal parabolic subgroup Pmin of G.

We first review Langlands classification of irreducible admissible repre-
sentations of G(F+) (see, for example, [39]). For an irreducible admissible
representation π of G(F+), there is a unique parabolic subgroup P of G
containing Pmin with Levi quotient MP , a unique tempered representation
τ of MP(F+), and a unique strictly positive (unramified) character χ of
Pπ(F+), such that π is isomorphic to the unique irreducible quotient of
IGP (τχ), which we denote by J

G
P (τχ), known as the Langlands quotient. Sup-

pose that π � JG
P (τχ) is a Langlands quotient. Then we may write

MP = G0 × ResF/F+ GLr1 × · · · × ResF/F+ GLrt

with G0 the unitary factor, under which

χ = 1 �
(
α1 ◦ detr1

)
� · · · � (αt ◦ detrt

)

for unique real numbers 1 < α1 < · · · < αt , where detr denotes the deter-
minant on GLr (F). Suppose that τ = τ0 � τ1 � · · · � τt under the above
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decomposition. Consider a standard parabolic subgroup P ′ of GLN whose
Levi is GLrt × · · · × GLr1 ×GLN0 ×GLr1 × · · · × GLrt . Then BC(π) is iso-
morphic to

JGLN
P ′
(
τ∨ct

(
α−1

t ◦ detrt

)
� · · · � τ∨c1

(
α−1
1 ◦ detr1

)
� BC(τ0)

�τ1
(
α1 ◦ detr1

)
� · · · � τt

(
αt ◦ detrt

))

which is a Langlands quotient of GLN (F). Here, τc stands for τ ◦ c.
We then review the construction of tempered representations from discrete

series representations (see, for example, [32]). Let τ be an irreducible admis-
sible tempered representation of G(F+). Then there is a unique parabolic
subgroup P of G containing Pmin, and a discrete series representation σ
of MP(F+) such that τ is a direct summand of IGP (σ ). In fact, IGP (σ ) is a
direct sum of finitelymany tempered representations ofmultiplicity one.Write
σ = σ0 � σ1 � · · · � σt , similar to the previous case. Then under the same
notation, we have

BC(τ ) � IGLN
P ′
(
σ∨c

t � · · · � σ∨c
1 � BC(σ0)� σ1 � · · · � σt

)
,

which is an irreducible admissible representation of GLN (F).
Finally, if π is an irreducible admissible representation of G(F+) that is a

constituent of an unramified principal series, then BC(π) is a constituent of
an unramified principal series of GLN (F). Thus, it makes sense to talk about
the Satake parameter of BC(π), denoted by α(BC(π)).

In what follows, we will suppress the parabolic subgroup P ′ of GLN when
it is clear. We denote by StN the Steinberg representation of GLN (F).

C.2 Tate–Thompson representations

In this subsection, let F/F+ be as in the previous subsection, with residue field
extension κ/κ+. Let q be the residue cardinality of F+ and p themaximal ideal
of OF .

Let N � 2 be an integer with r := � N
2 �. Consider a hermitian space VN

over F of rank N together with a self-dual lattice�N . Put UN := U(VN ), and
let KN be the stabilizer of �N which is a hyperspecial maximal subgroup of
UN (F+). Put �̄N := �N ⊗OF+ κ

+ and ŪN := U(�̄N ). Then we have the
reduction homomorphism KN → ŪN (κ

+).
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Let Iso(�̄N ) ⊆ P(�̄N ) be the isotropic locus, that is, it parameterizes
hyperplanes H of �̄N satisfying H, ⊆ H .36 Then Iso(�̄N ) is a smooth hyper-
surface in P(�̄N ), known as the Fermat hypersurface. In particular, Iso(�̄N )

has dimension N − 2 and admits a natural action by ŪN (κ
+). For a rational

prime � that is invertible in κ , put

Hprim(Iso(�̄N )κ ,Q�) := ker
(
∪c1(OP(�̄N )

(1)) : HN−2
ét (Iso(�̄N )κ ,Q�)

→ HN
ét (Iso(�̄N )κ ,Q�(1))

)
.

It is well-known by Tate–Thompson that (see, for example, [31]) there is a
unique irreducible representation*N of ŪN (κ

+) such that*N is isomorphic to
ι−1
� Hprim(Iso(�̄N )κ ,Q�) as representations of ŪN (κ

+) for every isomorphism

ι� : C
∼−→ Q�. We call*N the Tate–Thompson representation. We often regard

*N as a representation of KN by inflation according to the context.
To describe *N , we first recall some notation from parabolic induction of

finite reductive groups. For every N , we fix a Borel subgroup PN of ŪN . For
positive integers r1, . . . , rt satisfying r1 + · · · + rt � r , we obtain a parabolic
subgroup P(r1,...,rt )

N of ŪN containing PN , whose Levi quotientM
(r1,...,rt )
N is iso-

morphic to ŪN−2(r1+···+rt )×Resκ/κ+ GLr1 × · · ·×Resκ/κ+ GLrt . For example,

we have P(1
r )

N = PN . Given a representation σ of M(r1,...,rt )
N (κ+), we denote

by IndŪN

P
(r1,...,rt )
N

σ the parabolic induction, which is a representation of ŪN (κ
+).

Now we suppose that N = 2r is even. The irreducible constituents of

IndŪN
PN

1 are parameterized by irreducible representations of the Weyl group
WN � {±1}r

�Sr . For every irreducible representation ε of WN , we denote
by PS(ε) the corresponding irreducible representation of ŪN (κ

+). We now
specify a character εTTN : WN → {±1} as the extension of the product homo-
morphism {±1}r → {±1}, which is invariant under theSr -action, to WN that
is trivial on {+1}r

� Sr .

Proposition C.2.1 We have

(1) When N = 2r is even, the representation *N is isomorphic to PS(εTTN ).
(2) When N = 2r is even,*N is the unique nontrivial irreducible representa-

tion of ŪN (κ
+) satisfying dim*PN (κ

+)
N = dim*

P(r)N (κ
+)

N = 1.
(3) The representation*3 is the (unique) cuspidal unipotent representation of

Ū3(κ
+).

36 The precise definition of Iso(�̄N ) is similar to Definition A.1.2 but with the right orthogonal
complement replaced by the left one as the hermitian pairing on �̄N is κ-linear in the first
variable and (κ, σ )-linear in the second variable.
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(4) When N = 2r +1 is odd with r � 1, the representation*N is a multiplicity

free constituent of IndŪN

P(1
r−1)

N

*3 � 1�r−1.

Proof We recall some facts of Deligne–Lusztig characters. Let SN be the
group of N -permutations, andPN its conjugacy classes which is canonically
identified with the set of partitions of N . For every π ∈ PN , we let Rπ be the
Deligne–Lusztig character (of ŪN (κ

+)) [24, Corollary 4.3] associated to the
trivial representation of the maximal torus corresponding to π . Let RN be the
character of the representation *N . Then by [31, Theorem 1], we have

RN = (−1)N+1
∑
π∈PN

χN (π)

zπ
Rπ (C.1)

where χN is the character function (onPN ) of the unique nontrivial subrepre-
sentation of the standard representation ofSN ; and N !/zπ is the cardinality of
the conjugacy class π . By [24, Theorem 6.8], we have the following orthogo-
nality relation

〈Rπ , Rπ ′ 〉 =
{
0, if π �= π ′;
zπ , if π = π ′.

(C.2)

We are ready to prove the proposition. In what follows, we write (sr ) for the
r -tuple (s, . . . , s).

For (1), note that εTTN is the unique nontrivial character of WN that is trivial
on {+1}r

� Sr . Thus, (1) follows from (2) by [22, Theorem 4.4.5].

For (2),wefirst show the uniqueness of*N . The condition dim*
PN (κ

+)
N = 1

implies that*N is a constituent of IndŪN
PN

1 corresponding to a character ofWN .
However, there are only four characters of WN , among which only the trivial
character and εTTN will give constituents with nonzero P(r)N (κ

+)-invariants.

Thus, the uniqueness follows. For the identity dim*PN (κ
+)

N = dim*
P(r)N (κ

+)
N =

1, it suffices to show that dim*PN (κ
+)

N = 1 and *
P(r)N (κ

+)
N �= 0. Let R′

2r be the

character of IndŪ2r
P2r

1. Then by [24, Proposition 8.2], we have R′
2r = R(2r ). By

(C.1) and (C.2), we have

〈R2r , R′
2r 〉 =

〈
−
∑
π∈P2r

χ2r (π)

zπ
Rπ , R(2r )

〉
= −χ2r ((2

r )) = −(−1) = 1,

which implies dim*PN (κ
+)

N = 1. Let YN ⊆ �̄N be the maximal isotropic

subspace stabilized by P(r)N . Then P(YN ) is contained in Iso(�̄N ), which
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gives rise to an element in CHr−1(Iso(�̄N )). It is well-known that its
cohomology class subtracted by c1(OP(�̄N )κ

(1)) is a nonzero element in

Hprim(Iso(�̄N )κ ,Q�)(r−1), which is fixed by P(r)N (κ
+) by construction. Thus,

we have *
P(r)N (κ

+)
N �= 0; and (2) follows.

For (3), we have R3 = 1
3(R(13) − R(3)) by (C.1). Then as computed in [61,

Example 6.2], *3 is the unique cuspidal unipotent representation of Ū3(κ
+).

For (4), let R′
2r+1 be the character of Ind

Ū2r+1

P(1
r−1)

2r+1

(
*3 � 1�r−1

)
. Then by [24,

Proposition 8.2], we have

R′
2r+1 = 1

3

(
R(2r−1,13) − R(2r−1,3)

)
.

By (C.1) and (C.2), we have

〈R2r+1, R′
2r+1〉 =

〈 ∑
π∈P2r+1

χ2r+1(π)

zπ
Rπ ,

1

3

(
R(2r−1,13) − R(2r−1,3)

)〉

= 1

3

(
χ2r+1((2

r−1, 13))− χ2r+1((2
r−1, 3))

)

= 1

3
(2− (−1)) = 1.

Thus, (4) follows. ��
From now on, we assume that N = 2r is even.

Lemma C.2.2 Let π be an irreducible admissible representation of U2r (F+)
such that π |K2r contains*2r (hence is a constituent of an unramified principal
series).

(1) If the Satake parameter of BC(π) contains neither {q, q−1} nor {−1,−1},
then π |K2r contains the trivial representation.

(2) If the Satake parameter of BC(π) contains {q, q−1}, then there exists an
element (α2, . . . , αr ) ∈ (C×)r−1 satisfying 1 � |α2| � · · · � |αr |, unique
up to permutation, such thatBC(π) is isomorphic to the unique irreducible
quotient of

IGL2r
(
α−1

r � · · · � α−1
2 � St2 � α2 � · · · � αr

)
.

Proof We fix a decomposition

�2r = OF e−r ⊕ · · · ⊕ OF e−1 ⊕ OF e1 ⊕ · · · ⊕ OF er ,
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in which (e−i , e j ) = δi j for 1 � i, j � r . For 0 � i � r , put

V2i := Fe−i ⊕ · · · ⊕ Fe−1 ⊕ Fe1 ⊕ · · · ⊕ Fei ,

which is a hermitian subspace of V2r . We take the minimal parabolic (Borel)
subgroup Pmin of G := U2r to be the stabilizer of the flag Fe−r ⊆
· · · ⊆ Fe−r ⊕ · · · ⊕ Fe−1. We also fix a Levi subgroup of Pmin to be
ResF/F+ GL(Fe1)× · · · × ResF/F+ GL(Fer ).

Put K := K2r , which is a hyperspecial maximal subgroup of G(F+). Let
I be the subgroup of K of elements whose reduction modulo p stabilizes the
flag κe−r ⊆ · · · ⊆ κe−r ⊕ · · · ⊕ κe−1, which is an Iwahori subgroup of
G(F+). Let J be the subgroup of K of elements whose reduction modulo
p stabilizes the subspace κe−r ⊕ · · · ⊕ κe−1, which is a parahoric subgroup
of G(F+). We clearly have I ⊆ J ⊆ K . Now we realize the Weyl group
W2r � {±1}r

� Sr explicitly as a subgroup of K . For 1 � i � r , we let i-th
−1 in W2r correspond to the element that only switches e−i and ei , denoted
bywi . For every σ ∈ Sr , we let (1r , σ ) ∈ W2r correspond to the element that
sends e±i to e±σ(i), denoted by w′

σ ∈ J . Then {w1, w
′
(1,2), . . . , w

′
(r−1,r)} is a

set of distinguished generators of W2r . We recall the Bruhat decompositions

K =
∐
w∈W2r

Iw I, K =
r∐

i=0

Jw1 · · ·wi J.

For w ∈ W2r , we let 0 � i(w) � r be the unique integer such that w ∈
Jw1 · · ·wi(w) J .
By Proposition C.2.1(2), we have a K -equivariant embedding *2r ↪→

C[I\K ], unique up to scalar, hence obtain a distinguished subspace *I
2r ⊆

C[I\K/I ] of dimension one.Wewould like to find a generator of*I
2r . Nowwe

compute the character of theC[I\K/I ]-module*I
2r . By Proposition C.2.1(2),

*I
2r is contained in C[J\K/J ]. It follows that the element 1Iw1 I acts on *I

2r
by either q or −1, in which the former case corresponds to the K -spherical
one, which is not our case by Proposition C.2.1(1). Thus, *I

2r is spanned by
the following function:

f :=
∑
w∈W2r

(−q)−i(w) · 1Iw I ∈ C[I\K/I ].

For every element α = (α1, . . . , αr ) ∈ (C×)r , we have the projection map

Pα : C[I\K/I ] → IGPmin

(
α1 � · · · � αr

)I
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defined at the beginning of [15, §2], which isC[I\K/I ]-equivariant. Putφα :=
Pα( f ).

Take an irreducible admissible representation π of U2r (F+) such that π |K
contains *2r . Then π is a constituent of an unramified principal series. Now
we separate the discussion.

Suppose that we are in the situation of (1). Then there exists an ele-
ment α = (α1, . . . , αr ) ∈ (C×)r satisfying 1 � |α1| � · · · � |αr | and
αi /∈ {−1, q}, unique up to permutation, such that π is a constituent of
IGPmin

(
α1 � · · · � αr

)
. There exist a unique nonnegative integer r0 and unique

positive integers r1, . . . , rt satisfying r0 + · · · + rt = r , such that

1 = |α1| = · · · = |αr0 | < |αr0+1| = · · · = |αr0+r1 | < · · · < |αr0+···+rt−1+1|
= · · · = |αr |

holds. For every 1 � i � t , put

τi := IGLri

(
αr0+···+ri−1+1 � · · · � αr0+···+ri

)
⊗
(
|α−1

r0+···+ri
| ◦ detri

)
,

which is an irreducible tempered representation of GLri (F). Put G0 :=
U(V2r0) and P0min := G0 ∩ Pmin. As α1 � · · · � αr0 is a discrete series
representation of P0min(F+), the parabolic induction

τ0 := IG0
P0min

(
α1 � · · · � αr0

)

is a finite direct sum of irreducible tempered representations of G0(F+). As
{α1, . . . , αr0} does not contain −1, τ0 is irreducible by [27, Theorem 1.4 &
Theorem 3.4]. In particular, we obtain a Langlands quotient

JG
P

(
τ0 �
(
�t

i=1τi

(
|αr0+···+ri | ◦ detri

)))
,

where P is the parabolic subgroup of G containing P0 whose Levi quotient is
isomorphic to G0 × ResF/F+ GLr1 × · · · × ResF/F+ GLrt . We claim that

φα �= 0 ∈ JG
P

(
τ0 �
(
�t

i=1τi

(
|αr0+···+ri | ◦ detri

)))
. (C.3)

Assuming this claim, then π is isomorphic to the above Langlands quotient,
which is the unique irreducible quotient of IGPmin

(
α1 � · · · � αr

)
. In particular,

π |K2r contains the trivial representation. Thus, (1) follows.
Now we prove (C.3). Let w ∈ W2r be the element acting trivially on V2r0

and switching e−(r0+···+ri−1+ j) with er0+···+ri+1− j for every 1 � j � ri and
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then every 1 � i � t . By [39, Corollary 3.2], (C.3) is equivalent to

Twφα �= 0, (C.4)

where Tw is the intertwining operator, which, in this case, is defined by an
absolutely convergent integral

(Twφα)(g) =
∫

N (F+)
φα(w

−1ng)dn,

where N is the unipotent radical of P and the integral is absolutely convergent
(see the discussion after [39, Proposition 2.2]). Since the eigenspace for the
character of *I

2r has dimension 1, we must have

Twφα = C(α)φwα

for some complex number C(α). By [15, Theorem 3.4] and the continuity, we
have

C(α) =
r∏

i=r0+1

⎛
⎝ q − αi

q(αi − 1)

∏
|α j |<|αi |

αi − q−2α j

αi − α j

i−1∏
j=1

αiα j − q−2

αiα j − 1

⎞
⎠ ,

which is nonzero in the situation of (1). From this we obtain (C.4), hence (C.3).
Suppose that we are in the situation of (2). Then there exists an element

α = (q, α2, . . . , αr ) ∈ (C×)r satisfying 1 � |α2| � · · · � |αr |, unique up to
permutation, such that π is a constituent of

IGPmin

(
q � α2 � · · · � αr

)
.

Let Q be the parabolic subgroup of G stabilizing the flag Fe−r ⊆ · · · ⊆
Fe−r ⊕ · · · ⊕ Fe−2, whose Levi quotient is U(V2) × ResF/F+ GL(Fe2) ×
· · · × ResF/F+ GL(Fer ). Then we have a canonical inclusion

IGQ
(
Sp2 �α2 � · · · � αr

) ⊆ IGPmin

(
q � α2 � · · · � αr

)
,

where Sp2 denotes the Steinberg representation of U(V2)(F+). As 1Iw1 I acts
by −1 on φα , we have

φα ∈ IGQ
(
Sp2 �α2 � · · · � αr

)
.

In particular, it follows that π is a constituent of IGQ
(
Sp2 �α2 � · · · � αr

)
. To

proceed, there exist unique positive integers r0, . . . , rt satisfying r0+· · ·+rt =
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r , such that

1 = |α2| = · · · = |αr0 | < |αr0+1| = · · · = |αr0+r1 | < · · · < |αr0+···+rt−1+1|
= · · · = |αr |

holds. For every 1 � i � t , put

τi := IGLri

(
αr0+···+ri−1+1 � · · · � αr0+···+ri

)
⊗
(
|α−1

r0+···+ri
| ◦ detri

)
,

which is an irreducible tempered representation of GLri (F). Put G0 :=
U(V2r0) and Q0 := G0 ∩ Q. As Sp2 �α2 � · · · � αr0 is a discrete series
representation of Q0(F+), the parabolic induction

IG0
Q0

(
Sp2 �α2 � · · · � αr0

)

is a finite direct sum of irreducible tempered representations of G0(F+). Let
τ0 be the unique direct summand such that φα is contained in the subspace

IGP

(
τ0 �
(
�t

i=1τi

(
|αr0+···+ri | ◦ detri

)))
⊆ IGQ

(
Sp2 �α2 � · · · � αr

)
,

where P is the parabolic subgroup of G containing P0 whose Levi quotient
is isomorphic to G0 ×ResF/F+ GLr1 × · · ·×ResF/F+ GLrt . In particular, we
obtain a Langlands quotient

JG
P

(
τ0 �
(
�t

i=1τi

(
|αr0+···+ri | ◦ detri

)))
.

By the same proof of (C.3), we obtain

φα �= 0 ∈ JG
P

(
τ0 �
(
�t

i=1τi

(
|αr0+···+ri | ◦ detri

)))
.

In fact, in this case, we have the formula

C(α) =
r∏

i=r0+1

⎛
⎜⎜⎝ q − αi

q(αi − 1)

αi − q−1

αi − q

∏
j>1

|α j |<|αi |

αi − q−2α j

αi − α j

i−1∏
j=1

αiα j − q−2

αiα j − 1

⎞
⎟⎟⎠ .

Then BC(π) is isomorphic to the unique irreducible quotient of

IGL2r
((

�1
i=tτ

∨c
i

(
|α−1

r0+···+ri
| ◦ detri

))
� BC(τ0)
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�
(
�t

i=1τi

(
|αr0+···+ri | ◦ detri

)))
.

However, BC(τ0) is isomorphic to

IGL2r0

(
α−1

r0 � · · · � α−1
2 � BC(Sp2)� α2 � · · · � αr0

)

� IGL2r0

(
α−1

r0 � · · · � α−1
2 � St2 � α2 � · · · � αr0

)

which is irreducible. Thus, (2) follows.
The lemma is proved. ��

Remark C.2.3 In the situation of Lemma C.2.2, the proof actually shows that
if the Satake parameter of BC(π) does not contain {q, q−1} but possibly con-
tains {−1,−1}, then π is unramified with respect to either K2r or the other
(conjugacy class of) hyperspecial maximal subgroup that is not conjugate to
K2r in U2r (F+).

Let V′
2r be another hermitian space over F together with a lattice �′

2r
satisfying �′

2r ⊆ (�′
2r )

∨ and (�′
2r )

∨/�′
2r � κ . Put U′

2r := U(V′
2r ), and let

K′
2r be the stabilizer of�

′
2r which is a special maximal subgroup of U′

2r (F
+).

Lemma C.2.4 Let π ′ be an irreducible admissible representation of U′
2r (F

+)
such that (π ′)K′

2r �= {0}. Then there exists an element (α2, . . . , αr ) ∈ (C×)r−1

satisfying 1 � |α2| � · · · � |αr |, unique up to permutation, such that BC(π ′)
is isomorphic to the unique irreducible quotient of

IGL2r
(
α−1

r � · · · � α−1
2 � St2 � α2 � · · · � αr

)
.

Proof We fix a decomposition

�′
2r = OF e−r ⊕ · · · ⊕ OF e−2 ⊕�′

2 ⊕ OF e2 ⊕ · · · ⊕ OF er ,

in which (e−i , e j ) = δi j for 2 � i, j � r . For 1 � i � r , put

V′
2i := Fe−i ⊕ · · · ⊕ Fe−2 ⊕�′

2 ⊗OF F ⊕ Fe2 ⊕ · · · ⊕ Fei ,

which is a hermitian subspace of V′
2r . We take the minimal parabolic subgroup

Pmin of G := U′
2r to be the stabilizer of the flag Fe−r ⊆ · · · ⊆ Fe−r ⊕ · · · ⊕

Fe−2.We also fix a Levi subgroup of Pmin to be U(V′
2)×ResF/F+ GL(Fe2)×

· · · × ResF/F+ GL(Fer ). We have a similar embedding W′
2r ↪→ K′

2r of the
Weyl group W′

2r � W2r−2. For every element α = (α2, . . . , αr ) ∈ (C×)r−1,
we let φ′

α be the element in IGPmin

(
1′
2 � α2 � · · · � αr

)
that takes value 1 on

K′
2r , where 1′

2 denotes the trivial representation of U(V
′
2)(F

+).
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Take an irreducible admissible representation π ′ of G(F+) such that
(π ′)K′

2r �= 0. Then it is a constituent of an unramified principal series. In
other words, there exists an element α = {α2, . . . , αr } ∈ (C×)r−1 satisfying
1 � |α2| � · · · � |αr |, unique up to permutation, such that π ′ is a constituent
of

IGPmin

(
1′
2 � α2 � · · · � αr

)
.

To proceed, there exist unique positive integers r0, . . . , rt satisfying r0+· · ·+
rt = r , such that

1 = |α2| = · · · = |αr0 | < |αr0+1| = · · · = |αr0+r1 | < · · · < |αr0+···+rt−1+1|
= · · · = |αr |

holds. For every 1 � i � t , put

τi := IGLri

(
αr0+···+ri−1+1 � · · · � αr0+···+ri

)
⊗
(
|α−1

r0+···+ri
| ◦ detri

)
,

which is an irreducible tempered representation of GLri (F). Put G0 :=
U(V′

2r0
) and P0min := G0 ∩ Pmin. As 1′

2 � α2 � · · · � αr0 is a discrete series
representation of P0min(F+), the parabolic induction

IG0
P0min

(
1′
2 � α2 � · · · � αr0

)

is a finite direct sum of irreducible tempered representations of G0(F+). Let
τ0 be the unique direct summandwith nonzero invariants under K′

2r ∩G0(F+).
In particular, we obtain a Langlands quotient

JG
P

(
τ0 �
(
�t

i=1τi

(
|αr0+···+ri | ◦ detri

)))
,

where P is the parabolic subgroup of G containing P0 whose Levi quotient is
isomorphic to G0 × ResF/F+ GLr1 × · · · × ResF/F+ GLrt . We claim

JG
P

(
τ0 �
(
�t

i=1τi

(
|αr0+···+ri | ◦ detri

)))K′
2r �= {0}. (C.5)

Assuming this claim, then BC(π ′) is isomorphic to the unique irreducible
quotient of

IGL2r
((

�1
i=tτ

∨c
i

(
|α−1

r0+···+ri
| ◦ detri

))
� BC(τ0)
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�
(
�t

i=1τi

(
|αr0+···+ri | ◦ detri

)))
.

However, BC(τ0) is isomorphic to

IGL2r0

(
α−1

r0 � · · · � α−1
2 � BC(1′)� α2 � · · · � αr0

)

� IGL2r0

(
α−1

r0 � · · · � α−1
2 � St2 � α2 � · · · � αr0

)

which is irreducible. The lemma follows.
Now we prove (C.5). Note that we have a canonical G(F+)-equivariant

inclusion

IGP

(
τ0 �
(
�t

i=1τi

(
|αr0+···+ri | ◦ detri

)))
⊆ IGPmin

(
1′
2 � α2 � · · · � αr

)
,

under which φ′
α belongs to the former space by our choice of τ0. Letw ∈ W′

2r
be the element acting trivially on V′

2r0
and switching e−(r0+···+ri−1+ j) with

er0+···+ri+1− j for every 1 � j � ri and then every 1 � i � t . By [39,
Corollary 3.2], (C.5) is equivalent to

Twφ
′
α �= 0. (C.6)

By [15, Theorem 3.1] and the continuity, we have Twφ′
α = C(α)φ′

wα , where

C(α) =
r∏

i=r0+1

⎛
⎝αi − q−1

αi − 1

∏
|α j |<|αi |

αi − q−2α j

αi − α j

i−1∏
j=1

αiα j − q−2

αiα j − 1

⎞
⎠ ,

which is nonzero. From this we obtain (C.6), hence (C.5). ��
The following proposition exhibits an example of the local Jacquet–

Langlands correspondence.

Proposition C.2.5 Define

• S to be the set of isomorphism classes of irreducible admissible represen-
tations π of U2r (F+) such that π |K2r contains *2r and that the Satake
parameter of BC(π) contains {q, q−1} (Remark 3.1.6);

• S ′ to be the set of isomorphism classes of irreducible admissible represen-
tations π ′ of U′

2r (F
+) such that π ′|K′

2r
contains the trivial representation.

Then there is a unique bijection between S and S ′ such that π and π ′ corre-
spond if and only if BC(π) � BC(π ′).
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Proof We first note that both BC(π) and BC(π ′) are constituents of unram-
ified principal series. We define a correspondence between S and S ′ via the
condition that the two Satake parameters α(BC(π)) and α(BC(π ′)) coincide.
By Lemmas C.2.2 and C.2.4, the previous correspondence is a bijection, and
we have BC(π) � BC(π ′) if π and π ′ correspond. The proposition is proved.

��
Remark C.2.6 In fact, for π ∈ S and π ′ ∈ S ′ in Proposition C.2.5 that
correspond to each other, they should also correspond under the local theta
correspondence with respect to the trivial splitting character. When q is odd,
this has been verified in [49].

C.3 Results from the endoscopic classification

Now F/F+ will stand for a totally imaginary quadratic extension of a totally
real number field as in the main text.We state the following proposition, which
summarises all we need from the endoscopic classification for unitary groups
in this article. In particular, we will use the notion of local base change for
unitary groups defined over F+

v for every place v of F+, denoted by BC as
well, for which we have discussed some special cases when v is inert in F in
Sect. C.1.

Proposition C.3.1 Take a relevant representation (Definition 1.1.3) � of
GLN (AF ). Let V be a standard definite or indefinite hermitian space over
F of rank N and π = ⊗vπv an irreducible admissible representation of
U(V)(AF+). We have

(1) If BC(πv) � �v for every place v of F+, then the discrete automorphic
multiplicity of π is 1.

(2) If π is automorphic and � is its automorphic base change (Defini-
tion 3.2.3), thenBC(πv) � �v holds for every place v of F+. In particular,
the discrete automorphic multiplicity of π is 1 by (1).

(3) If v is archimedean but not τ∞, then BC(πv) � �v if and only if πv is the
trivial representation.

(4) If v = τ∞, then BC(πv) � �v if and only if πv is the trivial repre-
sentation (resp. is one of the N discrete series representations with the
Harish-Chandra parameter {1−N

2 , 3−N
2 , . . . , N−3

2 , N−1
2 }) when V is defi-

nite (resp. indefinite).

Proof Parts (1) and (2) are consequences of [33, Theorem 1.7.1] for generic
packets. Parts (3) and (4) follow from (1), (2), and the definition of relevant
representations. ��

The above proposition has the following two immediate corollaries as two
examples of the global Jacquet–Langlands correspondence.
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Corollary C.3.2 Take a prime p of F+ inert in F. Let V and V′ be a standard
definite and a standard indefinite hermitian space over F, respectively, of even
rank N = 2r , satisfying Vv � V′

v (for which we fix) for every place v of F+
other than τ∞ and p. Let π be an automorphic representation of U(V)(AF+)
such that π∞ is trivial, that BC(π) (Definition 3.2.3, which exists by Proposi-
tion 3.2.8) is cuspidal, and that πp belongs to the set S in Proposition C.2.5 (in
particular, V⊗F+ F+

p admits a self-dual lattice). Consider the representation
π ′ := π ′

τ∞ ⊗ π ′
p ⊗ πτ∞,p of U(V′)(AF+) where

• π ′
τ∞ is a discrete series representation of U(V′)(F+

τ∞) with the Harish-

Chandra parameter {12 − r, 32 − r, . . . , r − 3
2 , r − 1

2 }; and
• π ′

p ∈ S ′ is the representation of U(V′)(F+
p ) corresponding to πp as in

Proposition C.2.5.

Then the discrete automorphic multiplicity of π ′ is 1.

Proof Put� := BC(π). By Proposition C.3.1 and Proposition C.2.5, we have
BC(π ′

v) � �v for every place v of F+. The corollary follows by Proposi-
tion C.3.1(1). ��
Corollary C.3.3 Take a prime p of F+ inert in F. Let V and V′ be a stan-
dard definite and a standard indefinite hermitian space over F, respectively,
of odd rank N = 2r + 1, satisfying Vv � V′

v (for which we fix) for every
place v of F+ other than τ∞ and p. Let π ′ be an automorphic represen-
tation of U(V′)(AF+) such that BC(π ′) exists and is cuspidal, that π ′

τ∞ is

a discrete series representation of U(V′)(F+
τ∞) (Definition 3.2.3) with the

Harish-Chandra parameter {−r, 1 − r, . . . , r − 1, r}, that π ′
τ is trivial for

every archimedean place τ �= τ∞, and that π ′
p is unramified. Consider the

representation π := πτ∞ ⊗ πp ⊗ (π ′)τ∞,p of U(V)(AF+) where

• πτ∞ is trivial; and
• πp is unramified satisfying BC(πp) � BC(π ′

p).

Then the discrete automorphic multiplicity of π is 1.

Proof Put�′ := BC(π ′). By PropositionsC.3.1 andC.2.5,we haveBC(πv) �
�′
v for every place v of F+. The corollary follows by Proposition C.3.1(1). ��

Appendix D. Some trace formulae argument

This appendix has two goals. In Sect. D.1, we remove some conditions in
a theorem of Caraiani and Scholze [12]. In Sect. D.2, we prove a formula
computing the dimension of old forms in an L-packet for unitary groups.
These two subsections are independent on a logical level; we collect them

123
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together in one appendix mainly because the argument we use are similar,
namely, trace formulae.

We keep the setup in Sect. 3.

D.1 Vanishing of cohomology off middle degree

Definition D.1.1 Let N � 1 be an integer, and �+ a finite set of nonar-
chimedean places of F+ containing �+

bad. Consider a homomorphism

φ : T
�+
N → κ with κ a field. We say that φ is cohomologically generic if

Hi
ét(Sh(V,K)F , κ)T�+′

N ∩ker φ = 0

holds for

• every finite set �+′ of nonarchimedean places of F+ containing �+,
• every integer i �= N − 1, and
• every standard indefinite hermitian space V over F of dimension N and
every object K ∈ K(V) of the form K�+′ ×∏v /∈�+∞∪�+′ U(�)(OF+

v
) for a

self-dual
∏
v /∈�+∞∪�+′ OFv -lattice � in V⊗F A

�+∞∪�+′
F .

The following definition is essentially [12, Definition 1.9].

Definition D.1.2 Let φ : T
�+
N → κ be a homomorphism with κ a field. For a

placew of F+ not in�+ that splits in F , we say that φ is decomposed generic
at w if φ(Hw) ∈ κ[T ] has distinct (nonzero) roots in which there is no pair
with ratio equal to ‖w‖.37 Here, Hw ∈ TN ,w[T ] is the Hecke polynomial.

Proposition D.1.3 Let N � 1 be an integer, and �+ a finite set of nonar-
chimedean places of F+ containing �+

bad. Let V be a standard indefinite
hermitian space over F of dimension N such thatVv is split for v /∈ �+∞∪�+.
Let φ : T

�+
N → F� be a homomorphism. Suppose that F+ �= Q. Suppose that

there exists a place w of F+ not in �+ ∪ �+
� that splits in F, such that φ is

decomposed generic at w. Then we have

Hi
ét(Sh(V,K)F ,F�)ker φ = 0

for every integer i �= N − 1, and every object K ∈ K(V) of the form K�+ ×∏
v /∈�+∞∪�+ U(�)(OF+

v
) for a self-dual

∏
v /∈�+∞∪�+ OFv -lattice � in V ⊗F

A
�+∞∪�+
F .

37 In fact, as pointed out in [13, Remark 1.4], there is no need to assume that the roots are
distinct.
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Proof When F contains an imaginary quadratic field and every place in �+
splits in F (which implies F+ �= Q), the proposition can be deduced from the
analogous statement for the unitary similitude group, namely Case 2 of [12,
Theorem 6.3.1(2)]. We now explain how to remove these restrictions.

In the statement of the proposition, letw0 be the underlying rational prime of
w. We fix an isomorphism C � Qw0 that induces the placew of F+. Put G :=
ResF+/Q U(V).Wehave theDeligne homomorphismh : ResC/R Gm → G⊗Q

R as in Sect. 3.2. Put Kw0,0 := ∏v|w0
U(�)(OF+

v
), which is a hyperspecial

maximal subgroup of G(Qw0). We fix a character � : F×\A
×
F → C

× that
is unramified outside �+ such that � |

A
×
F+ is the quadratic character ηF/F+

associated to F/F+. Put � := {p |�+
p ∩�+ �= ∅}.

We define a subtorus T ⊆ ResF/Q Gm such that for every Q-ring R,

T(R) = {a ∈ F ⊗Q R | NmF/F+ a ∈ R×}.

We fix a CM type  containing τ∞ satisfying that all elements in  inducing
the place w of F+ induce the same place of F , and a sufficiently small open
compact subgroup KT ⊆ T(A∞) such that (KT)p is maximal for every p /∈ �.
Then  induces a Deligne homomorphism h : ResC/R Gm → T ⊗Q R. We
also put T := T(A∞,w0)/T(Z(w0))K

w0
T similar to Definition 3.5.5.

Put G̃ := G × T and h̃ := h × h . Then we have the Shimura datum
(G̃, h̃), which is of Hodge type. Its reflex field is the composition F.F ⊆ C.
Therefore, for every sufficiently small open compact subgroup K ⊆ G(A∞),
we have the Shimura variety Sh(G̃, h̃)K×KT, which is smooth projective (as
F+ �= Q) over F.F of dimension N − 1. When K is of the form Kw0Kw0,0,
it has a canonical smooth projective model S (G̃, h̃)Kw0 over W (Fw0) which
admits a moduli interpretation similar to the one introduced in Sect. 4.2. Note
that F.F is contained in W (Fw0)Q under the isomorphism C � Qw0 .

The discussion in [12], except in §5, is valid for all proper Shimura varieties
of Hodge type including the above one. Thus, we need to modify the argument
in [12, §5] for our case.

Let μ and μ̃ be the Hodge cocharacters corresponding to h and h̃, respec-
tively. We have the natural projection map B(G̃, μ̃) → B(G, μ) of Kottwitz
sets, which is a bijection. For every b ∈ B(G, μ), we have the corresponding
Kottwitz groups J̃b and Jb, with a canonical isomorphism J̃b � Jb × T. For
every (sufficiently small) open compact subgroup Kw0 ⊆ G(A∞,w0) and pos-
itive integer m, we have the Igusa variety I b

Mant,Kw0 ,m for the integral model

S (G̃, h̃)Kw0 , which is a T-scheme over Fw0 . Define

[HT,c(I
b
Mant,Q�)] :=

⊕
i

(−1)i lim−→
Kw0 ,m

Hi
T,c(I

b
Mant,Kw0 ,m,Q�),
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which is a virtual representation of G(A∞,w0)× Jb(Qw0). The crucial point is
that our G is the honest unitary group, rather than the unitary similitude group.
Then [12, Theorem 5.2.3] is modified as

tr
(
φ | HT,c(I

b
Mant,Q�)

)
=
∑
(H,s,η)

ι(G,H)STH
e (φ

H)

where the sum is taken over equivalent classes of elliptic endoscopic triples
(H, s, η) ofG; andwe use the character� for the Langlands–Shelstad transfer.
This formula can be proved in the same way as for [70, Theorem 7.2] since
our Shimura variety has a similar moduli interpretation as seen in Sect. 4.2,
although the Shimura datum (G̃, h̃) is not of PEL type in the sense of Kottwitz.
We can fix the representatives of the triples (H, s, η) as in [12, Page 734] but
without the similitude factor. In particular, [12, Corollary 5.2.5] is modified
as

tr
(
φ | HT,c(I

b
Mant,Q�)

)
=
∑
Gn

ι(G,Gn)ST
Gn
e (φ

n).

The next statement [12, Proposition 5.3.1] or rather [71, Corollary 4.7],
namely,

I Gnθ
geom( f nθ) = τ(Gn)

−1STGn
e (φ

n)

holds as long as f n and φn are associated in the sense of [41, 3.2]. Here, Gn is
the group ResF/Q GLn �{1, θ}. Note that, for rational primes in �, we do not
have explicit local base change transfer. However, wewill see shortly that there
are enough associated pairs at these primes to make the remaining argument
work, following an idea in [72].

For the test functionφ ∈ C∞
c (G(A

∞,w0)×Jb(Qw0)) in [12, Theorem5.3.2],
if we assume φ = φ�⊗φ� in which φ� is the characteristic function of some
open compact subgroup K� ⊆ G(Q�), then for every Gn, φn is associated to
some function f n in the sense above. This is shown in the claim in the proof
of [72, Proposition 1.4]. In particular, for such φ, we have

tr
(
φ | HT,c(I

b
Mant,Q�)

)
=
∑
Gn

ι(G,Gn)I
Gnθ
spec ( f nθ)

in view of the above identities and [12, (5.3.2)]. The remaining argument
toward [12, Theorem 5.5.7] is same as it is on the GL-side, for which it suffices
to use the above test functions φ. In fact, our case is slightly easier as we do
not have the similitude factor.

123



368 Y. Liu et al.

The argument towards Proposition D.1.3 or [12, Theorem 6.3.1(2)] only
uses [12, Theorem 5.5.7]. Therefore, the proposition holds. ��
Corollary D.1.4 Let the situation be as in Sect. 6.1. Suppose that F+ �= Q.
Then for all but finitely many primes λ of E, the composite homomorphism

T
�+
N

φ�−→ OE → OE/λ (D.1)

is cohomologically generic (Definition D.1.1).

Proof As pointed out in the proof of [16, Proposition 3.2.5], we can choose
a nonarchimedean place w of F such that �w is unramified whose Satake
parameter contains distinct elements α1, . . . , αN , which are nonzero algebraic
numbers. Since�w is generic, we have αi/α j /∈ {1, ‖w‖} for i �= j . Thus, for
every sufficiently large rational prime �, we have αi/α j /∈ {1, ‖w‖} for i �= j
even in F�. Let λ be a prime of E above such a rational prime �. Applying
the Chebotarev density theorem to any residual Galois representation ρ̄�,λ
of ρ�,λ, we conclude that there are infinitely many nonarchimedean places
w of F+ not in �+ ∪ �+

� that splits in F , such that (D.1) is decomposed
generic at w (Definition D.1.2). Thus, (D.1) is cohomologically generic by
Proposition D.1.3. The corollary follows. ��

D.2 Dimension of old forms

Let N = 2r be an even positive integer. We consider

• a relevant representation� of GLN (AF ),
• two disjoint finite sets�+

min and�
+
lr of nonarchimedean places of F+ such

that �+
min contains �+

bad; �
+
min ∪ �+

lr contains �+
� (Notation 3.1.4); and

every place in �+
lr is inert in F ,

• a finite set �+ of nonarchimedean places of F+ containing �+
min ∪�+

lr ,• a standard definite or indefinite hermitian space V over F of rank N such
that Vv is not split for v ∈ �+

lr ,

• a self-dual
∏
v /∈�+∞∪�+

min∪�+
lr

OFv -lattice � in V⊗F A
�+∞∪�+

min∪�+
lr

F ,
• an object K ∈ K(V) of the form

K =
∏

v∈�+
min∪�+

lr

Kv ×
∏

v /∈�+∞∪�+
min∪�+

lr

U(�)(OF+
v
),

satisfying that Kv is special maximal for v ∈ �+
lr .
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We have the homomorphism

φ� : T
�+
N → Q�

given by �. Fix an isomorphism ι� : C
∼−→ Q�.

Definition D.2.1 Let v be a nonarchimedean place of F+. We say that an
open compact subgroup Kv of U(V)(F+

v ) is transferable if the following two
conditions are satisfied.

(1) For every endoscopic groupH of U(Vv), there exist an endoscopic transfer
f HKv of 1Kv to H and a compactly supported smooth function φHKv on H(Fv)

such that f HKv and φ
H
Kv

are associated in the sense of [41, §3.2].

(2) When H is the quasi-split unitary group of rank N , we can take φHKv to
be supported on a maximal open compact subgroup of H(Fv) (which is
isomorphic to GLN (Fv)).38

We call the function φHKv in (2) an inertial transfer of Kv if Kv is transferable,
and will drop the superscript H in practice.

Lemma D.2.2 Let v be a nonarchimedean place of F+.

(1) If v splits in F, then every open compact subgroup Kv is transferable.
(2) If v is not in �+∞ ∪ �+

min ∪ �+
lr , then the characteristic function of the

hyperspecial maximal subgroup U(�)(OF+
v
) is transferable and admits

1GLN (OFv )
as an inertial transfer.

(3) If v is in �+
min ∪�+

lr , then every sufficiently small open compact subgroup
Kv is transferable.

Proof Part (1) is trivial. Part (2) is the combination of the endoscopic funda-
mental lemma [45] and the base change fundamental lemma [41].

For (3), for sufficiently small Kv , condition (1) in Definition D.2.1 is proved
in [54, Lemma 8.4.1(1)]; and condition (2) can be achieved by [41, Proposi-
tion 3.1.7(2)] (see the proof of [41, Proposition 3.3.2]). ��
Proposition D.2.3 Suppose that Kv is transferable for v ∈ �+

min. For every
v ∈ �+

lr , let cv be equal to 1 (resp. 0) if one can (resp. cannot) find complex
numbers α2, . . . , αr of norm one such that�v is isomorphic to the induction

IGL2r
(
α−1

r � · · · � α−1
2 � St2 � α2 � · · · � αr

)

38 In fact, this restriction is not necessary for Proposition D.2.3 below; it is only used in the
application of this proposition, namely, Proposition 6.4.1.

123



370 Y. Liu et al.

(see Sect. C.1 for the notation of induced representations). Then we have the
identities

dimQ�[Sh(V,K)][ι�φ�] =

∣∣∣∣∣∣∣
∏
v∈�+

min

tr(�v(φKv ) ◦ A�v)
∏
v∈�+

lr

cv

∣∣∣∣∣∣∣
,

dimHN−1
ét (Sh(V,K)F ,Q�)[ι�φ�] = N

∣∣∣∣∣∣∣
∏
v∈�+

min

tr(�v(φKv ) ◦ A�v)
∏
v∈�+

lr

cv

∣∣∣∣∣∣∣
,

when V is definite and indefinite, respectively, for any inertial transfer φKv
for Kv and any normalized intertwining operator A�v for �v [71, §4.1], for
v ∈ �+

min.

Proof We only prove the case where V is indefinite, and leave the case where
V is definite (which is slightly easier) to the readers.

ByProposition 3.2.4(1),we know that� is tempered everywhere.Moreover,
every discrete automorphic representation of U(V)(AF+)whose automorphic
base change is isomorphic to � has to be cuspidal as well. Thus, we have
Hi
ét(Sh(V,K)F ,Q�)[ι�φ�] = 0 for i �= N − 1.
If there exists v ∈ �+

lr such that cv = 0, then by Lemma C.2.4 and the
above fact that �v is tempered, we have HN−1

ét (Sh(V,K)F ,Q�)[ι�φ�] = 0.
Thus, the proposition follows. In what follows, we assume cv = 1 for every
v ∈ �+

lr .
By Proposition C.3.1 and Lemma C.2.4, we have

dimHN−1
ét (Sh(V,K)F ,Q�)[ι�φ�] = N

∏
v∈�+

min

∑
BC(πv)��v

dim(πv)
Kv ,

where the sum is taken over isomorphism classes of irreducible admissible
representations πv of U(V)(F+

v ) such that BC(πv) � �v (for v ∈ �+
min).

Thus, our goal is to show

∏
v∈�+

min

∑
BC(πv)��v

dim(πv)
Kv =

∣∣∣∣∣∣∣
∏
v∈�+

min

tr(�v(φKv ) ◦ A�v)

∣∣∣∣∣∣∣
. (D.2)

We choose a quadratic totally real extension F̆+/F+ in C satisfying

• every prime in �+
min splits in F̆+;

• every prime in �+
lr is inert in F̆+;
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• the quadratic base change of � to F̆ := F.F̆+, denoted by �̆, remains
cuspidal (hence relevant).

By the same proof of [71, Proposition 7.4], we know that such F̆+ exists. Let
V̆ be the standard definite hermitian space over F̆ of rank N that is split at all
primes not above �+

min and such that V̆v̆ � Vv for every v ∈ �+
min and every

prime v̆ of F̆+ above v, which exists as [F̆+ : F+] = 2. Let �̆+
min be the set

of primes of F̆+ above �+
min. Take a finite set �̆

+ of primes of F̆+ satisfying

• �̆+ contains �̆+
min;

• �̆v̆ is unramified for every prime of F̆+ not in �̆+;
• every prime in �̆+\�̆+

min splits in F̆ .

By our choice of F̆+, such �̆+ exists. Take an object K̆ ∈ K(V̆) of the form
K̆ =∏ K̆v̆ satisfying

• K̆v̆ is hyperspecial maximal if v̆ /∈ �̆+;
• K̆v̆ = Kv under a chosen isomorphism V̆v̆ � Vv if v̆ is above a prime
v ∈ �+

min;
• �̆v̆ has nonzero K̆v̆ × K̆v̆ invariants if v̆ ∈ �̆+\�̆+

min.

Then we have

dimQ�[Sh(V̆, K̆)][ι�φ�̆] =
∏
v̆∈�̆+

∑
BC(π̆v̆)��̆v̆

dim(π̆v̆)
K̆v̆ . (D.3)

On the other hand, by [72, (1.8) & (1.9)], we have

dimQ�[Sh(V̆, K̆)][ι�φ�̆] =
∣∣∣∣∣∣
∏
v̆∈�̆+

tr(�̆v̆(φK̆v̆ ) ◦ A�̆v̆ )

∣∣∣∣∣∣ . (D.4)

Here, for v̆ ∈ �̆+\�̆+
min, we take φK̆v̆ to be 1K̆v̆

⊗ 1K̆v̆
; and it is easy to see

that
∣∣∣tr(�̆v̆(φK̆v̆ ) ◦ A�̆v̆ )

∣∣∣ = ∑
BC(π̆v̆)��̆v̆

dim(π̆v̆)
K̆v̆ � 1 (D.5)

(in fact, the sum is taken over a singleton). Combining (D.3), (D.4), and (D.5),
we obtain

∏
v̆∈�̆+

min

∑
BC(π̆v̆)��̆v̆

dim(π̆v̆)
K̆v̆ =

∣∣∣∣∣∣∣
∏
v̆∈�̆+

min

tr(�̆v̆(φK̆v̆ ) ◦ A�̆v̆ )

∣∣∣∣∣∣∣
,
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which is nothing but

⎛
⎜⎝ ∏
v∈�+

min

∑
BC(πv)��v

dim(πv)
Kv

⎞
⎟⎠

2

=

∣∣∣∣∣∣∣
∏
v∈�+

min

tr(�v(φKv ) ◦ A�v)

∣∣∣∣∣∣∣

2

.

Thus, (D.2) follows. The proposition is proved. ��
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