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Abstract—Soil moisture plays an important role in the global
water cycle and has an important impact on energy fluxes at
the land surface. It also defines the initial and boundary condi-
tion of terrestrial hydrological processes, including infiltration,
runoff, and evapotranspiration. Therefore, accurate estimation
of soil moisture pattern is of critical importance. Satellite-based
soil moisture can be obtained with well-defined temporal and
spatial resolutions and with global coverage. However, they only
provide surface soil moisture at the upper few centimeters of the
soil column. Soil moisture simulation models can produce esti-
mates of soil moisture profile up to several meters of depth in
different time steps. However, uncertainty in model parameters
(e.g., unknown initial soil moisture profile) and meteorological
forcing can substantially alter the accuracy of the model esti-
mates. In this article, the potential of using surface soil moisture
measurements to retrieve the initial soil moisture profile will be
explored in a synthetic study, using two proposed reduced-order
variational data assimilation (VDA) techniques and a simple 1-D
soil moisture model. The accuracy and feasibility of the proposed
approaches are confirmed by comparing the initial soil moisture
profiles estimated using the proposed reduced-order VDA tech-
niques versus the full-adjoint VDA technique. Results illustrated
that the reduced-order VDA techniques can estimate initial soil
moisture profile from near surface soil moisture observations with
the comparable level of accuracy as full-adjoint VDA. The effec-
tiveness of the reduced-order VDA in retrieving the initial soil
moisture profile is further demonstrated by assimilating surface
soil moisture into HYDRUS-1D, mimicking real-world errors.

Index Terms—HYDRUS-1D, proper orthogonal decomposition
(POD), Richards equation, soil moisture, variational data
assimilation (VDA).

I. INTRODUCTION

S
PATIALLY distributed soil moisture profiles are required
for land surface and land–atmosphere interaction studies,

improving agricultural productivity, assessing drought and flood
conditions, estimating groundwater supplies, and landslide pre-
diction. Therefore, measurement and estimation of soil moisture
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profile and simulation of its pattern play a key role in hydro-
logical research. Soil moisture is extremely variable in space
and time because of the dynamics of soil hydraulic properties
[1], [2]. Consequently, in situ measurement is quite limited for
regional and global scale problems [3]. Nonpoint soil moisture
measurement techniques exist from local to global scale by using
geophysical methods like ground penetrating radar [4], cosmic
ray probes [5], ground-based radiometry [6], electromagnetic
methods [7], airborne SAR polarimetry [8], airborne L-band ra-
diometry [9], and spaceborne sensors like AQUA/AMSR-E [10],
ERS-Scat [11], ASCAT [12], WindSat [13], ENVISAT/ ASAR
[14], Advanced Land Observing Satellite (ALOS)/PALSAR
[15], Soil Moisture and Ocean Salinity (SMOS)/MIRAS [16],
and SMAP [17], [18]. The benefits of spaceborne platforms,
which use active (ALOS) or passive (SMOS) microwave sen-
sors, are global coverages and well-defined temporal resolutions
[2]. However, remote microwave sensors provide only the spatial
pattern of soil moisture for the upper few centimeters of a soil
column and direct sensing of the spatiotemporal distribution of
root zone soil moisture still remains a challenge.

Soil moisture simulation models, generally called soil vegeta-
tion atmosphere transfer (SVAT) models, can produce estimates
of soil moisture profile to several meters of depth on different
(e.g., hourly, daily, and monthly) time steps. The accuracy of
the model simulated soil moisture profile depends on the model
physics, the number and configuration of soil layers, and the
accuracy and nature of input data and the initial conditions (i.e.,
initial soil moisture profile) [19]. Initial soil moisture profile is a
crucial factor that influences the water storage capacity of the soil
column as well as the soil hydraulic properties [20]. Therefore,
initial soil moisture profile plays a key role in infiltration, and
hence the time evolution of the profile of soil moisture (e.g., [21],
[22]). The significant impact of initial soil moisture profile on
the infiltration rate was investigated in a variety of studies over
the past few decades (e.g., [20], [22]–[27]). Numerous modeling
studies have shown the high sensitivity of the modeled hydro-
logical responses such as runoff to initial soil moisture profile
used in the hydrological models (e.g., [23], [28], [37], [38],
[29]–[36]) and in the ability of land surface models to predict
extreme events such as floods and droughts (e.g., [39]–[41]).
Therefore, overcoming the challenge of inputting an accurate
initial soil moisture profile to SVAT models can significantly
impact the accuracy of the temporal evolution of soil moisture
profile, hence prediction of hydrological responses.
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Combining the horizontal coverage and spatial resolution of
remote sensing with the vertical coverage and temporal continu-
ity of a soil moisture simulation model provides an opportunity
to estimate the temporal evolution of soil moisture profile with
minimum uncertainty (e.g., [42], [43]). A considerable amount
of literature has been conducted on exploring the ability to
use satellite surface soil moisture to estimate the profile of
root zone soil moisture. Kostov and Jackson [44] provided a
comprehensive review of the methods of estimating soil moisture
profile using remote sensing techniques. They concluded that
the assimilation of remote sensing surface soil moisture into
the physical model through inverse modeling and data assimi-
lation techniques is the most promising method to improve the
estimation of the profile of soil moisture. A detailed review of
the state- of-the art data assimilation techniques used for the
estimation of the soil moisture is provided in [45]. There are
two distinct classes of data assimilation methods, both capa-
ble to account for imperfect parameters (e.g., unknown initial
conditions). One is the variational techniques, which search
for an optimal set of control variables/parameters, such that
a cost function that measures the distance between the model
and observations is minimized. The second class assimilates
observations in a sequential manner referred to as sequential
methods, namely Kalman filtering. In sequential approaches, the
state of the system with highest probability is identified based
on the assumption of linear dynamical model and Gaussian dis-
tribution of error terms and the estimated variables are corrected
every time an observation becomes available [46], [47]. While
numerous studies have successfully applied Kalman filtering to
assimilate surface soil moisture into a land surface model to
improve predicted model state variables (e.g., soil moisture and
soil temperature) (e.g., [48]–[57]), when it comes to estima-
tion of parameters (e.g., unknown initial soil moisture profile),
Kalman filtering methods can lead to unstable results due to a
complex interactions between states and parameters [58]–[61].
The Kalman filter conducts parameter estimation by augmenting
the state vector with the uncertain parameters [62]. Generally,
this approach performs well in case of noisy parameters that
slowly vary in time and, therefore, act like states [63]. This
filter is biased for constant parameters that are not affected by
noise [64] and tends to diverge from the optimal results when
parameters are constant (e.g., the case of unknown initial soil
moisture profile) [62].

Variational data assimilation (VDA), also known as the “ad-
joint” method, is one of the most powerful and robust approaches
for parameter estimation/model calibration (e.g., [65]–[67]).
This method aims at calibrating a number of unknown param-
eters based on given data, where the unknown parameters can
be the model initial conditions or any other model parameters
and inputs. This method is well-suited for the highly nonlin-
ear soil moisture estimation problems, where usually optimal
estimates of either the physical model parameters or model
initial condition (e.g., unknown root zone soil moisture profile)
are obtained through assimilation of surface state observations
(i.e., surface soil moisture) or surface brightness temperature
into an SVAT model [68]. The VDA/adjoint method estimates
the unknown parameters by defining a cost function, which

measures the misfit between the observation and model estimate
of the observation over the assimilation interval/window. The
cost function will then be minimized with respect to the un-
known parameters using gradient-based optimization techniques
to achieve the optimal solution. The calculation of the gradient
of the cost function in VDA/adjoint method is very efficient
as it is independent of the number of unknown parameters and
requires only a single simulation of the model forward in time
and a single simulation of adjoint model backward in time (e.g.,
[47], [69]–[73]). However, the integration of the adjoint of a
large-scale model backward in time may require several forward
model simulations that increase the computational burden and
expense of this technique [74]–[76]. Another drawback of the
VDA/adjoint method is the importance of human and computing
resources that are required for the implementation, maintenance,
and the execution of the adjoint of highly nonlinear systems
(e.g., SVAT models). Automatic differentiation tools generate
the adjoint of a computer code through direct compilation, and
adjoint compilers are available [75], [77]. However, even with
the presence and use of these adjoint compilers, developing
the adjoint model still requires significant programming efforts
that hinders new applications of the VDA/adjoint method for
parameter estimation. Moreover, any modification to the forward
model necessities the modification of the adjoint, hence, making
it imperative to keep track of the model code development
[78]. Early attempts to overcome the difficulties related to the
computation of adjoint have focused on the simplification and
approximation of the adjoint model [70]. One way to overcome
this complexity is reducing the space size of the parameters.
This can be achieved by replacing the original model by a fast
lower resolution model that approximates the original model
(e.g., [79]) or simplifying the model physics before build-
ing the adjoint (e.g., [80]). Hence, they can be practical in
large-scale highly nonlinear hydrological/land surface models
used in numerical weather prediction, global climate, and earth
system modeling. Reduced-order techniques can also be used
to apply the VDA problem on efficient low-order approxi-
mate linear models for which the adjoint code can be easily
developed (e.g., [81]).

Proper orthogonal decomposition (POD), as a model reduc-
tion technique, is the application of the singular value decom-
position to the approximation of general dynamical systems.
By processing the data obtained from numerical simulations of
the model, which is expected to summarize information about
the dynamical behavior of the system, POD method defines
the reduced or projected subspace [78], [82]. Vermeulen and
Heemink [63] proposed a POD-based numerically efficient
model-reduced VDA method (hereafter, MR-VDA), where a
reduced-order model that is linear and easy to integrate, is built
numerically using finite differences applied in the POD-reduced
space. The reduced adjoint is then obtained easily and the
optimization is completely conducted in the POD space with
a very low computational cost [83]–[85]. A drawback of this
method is that optimization (i.e., minimization of model-data
misfit terms) is fully applied in the reduced POD space and this
could lead to an optimized set of parameters that is not a solution
of the original variational problem [78]. To address this potential
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drawback, Altaf et al. [78] proposed a simple modification to
the MR-VDA approach of Vermeulen and Heemink [63]. The
idea was to solve exactly the original VDA problem where the
model-data misfit terms in the cost function are computed in
the original full space, but using approximate gradients that are
computed as the outputs of the POD-reduced-adjoint model.
The proposed reduced-adjoint VDA (hereafter, RA-VDA) not
only avoids the implementation of the adjoint of the original
nonlinear model, but is also shown to be very efficient, in terms
of computation cost and performances [47], [78], [86]. The goal
of this article is 1) to explore the potential of reduced-order
VDA techniques (MR-VDA and RA-VDA) as a replacement
for full-adjoint VDA which requires lots of differentiation that
can make this technique impractical for large-scale highly non-
linear hydrological/land surface models and 2) to show the
effectiveness of these reduced-order approaches in estimating
the initial condition for such highly nonlinear models in order to
produce temporal estimates of soil moisture profile with reduced
uncertainty.

The specific objectives of this article are: 1) analyzing the fea-
sibility of the VDA approaches (reduced-order and full-order) to
retrieve the initial soil moisture profile by assimilating surface
soil moisture into a simple, easily differentiable soil moisture
simulation model; 2) examining the potential of using reduced-
order VDA as a comparative alternative to full-adjoint VDA
for soil moisture estimation; 3) illustrating the effectiveness of
the proposed reduced-order VDA techniques in retrieving the
initial soil moisture profile by assimilating surface soil moisture
observations into a highly nonlinear SVAT model; and 4) inves-
tigating the performance of the reduced-order VDA approaches
in estimation of the soil moisture profile, in presence of error
by mimicking real-world observational and forcing errors. To
this end, in this article, we present three synthetic (twin) exper-
iments using proposed VDA approaches and forward models
(i.e., Richards model and HYDRUS-1D model) simulating soil
water dynamics. Synthetic experiments make it possible to un-
derstand the model response to state updates and draw the effects
of model and observation uncertainties. Such experiments are
irreplaceable tools for assessing the performance of the assim-
ilation algorithm. They provide a benchmark for interpreting
the results of different case studies and a basis to direct the
development of land data assimilation systems and remote sens-
ing algorithms in order to improve the predictions [45], [87].
Hence, our findings will help to assess the value of spaceborne
observations of surface soil moisture for initial soil moisture
profile estimation.

The rest of this article is organized as follows. Section II-
A depicts the physical soil moisture simulation models used
in this article. Section II-B introduces the VDA framework for
the estimation of the unknown parameters. Sections II-C and
II-D describes the construction of the POD-reduced space and
the POD-based model reduction procedure for minimization,
respectively. Section III explains the experiments and dataset
by which the VDA approaches (full-adjoint VDA, RA-VDA,
and MR-VDA) are tested. In Sections IV and V, the results and
conclusion are presented, respectively.

II. METHODOLOGY

A. Forward Models

Following [63], a dynamical system is modeled by a discrete
nonlinear equation of the form:

θ (ti+1) = Fiθ (ti) , i = 1, 2, . . . ,m− 1 (1)

where θ(ti+1) ∈ Rn is a model state vector, Fi : R
n → Rnis a

nonlinear dynamics operator, known as the forward model that
propagates the state from ti to time ti+1. The forward models
used in this article are Richards Model (Section II-A-1) used in
experiment 1 and HYDRUS-1D model (Section II-A-2) used in
experiments 2 and 3.

1) 1-D Richards Model: The simple, easily differentiable
1-D Richards model is developed based on the well-known
Richards equation [88], [89], where the movement of water/flow
in the unsaturated column of soil is simulated by a combination
of Darcy’s law and the mass conservation equation, yielding the
1-D Richards equation:

∂θ

∂t
=

∂

∂z

(

K
∂h

∂z
−K

)

− S(z, t). (2)

In (2), Θ is the volumetric water content (cm3cm−3), t is the
time (h), z is the vertical dimension and is positive downward
(cm), h is the pressure head (cm), which becomes negative
for unsaturated conditions. K(h) is the unsaturated hydraulic
conductivity function. S is the sink term, water uptake from plant
roots, related to the transpiration (T) from canopies. Typically,
S(z, t) depends on many factors such as the density of roots in
the root zone, soil water content, and atmospheric demand [89].
In this article, transpiration from the canopy and consequently
S(z, t) are neglected.

Soil moisture profile estimation at different depths via
Richards model depends on the boundary fluxes entering and
leaving the soil column and initial soil moisture profile as the ini-
tial condition. In this article, the common gravitational drainage
is used as the bottom boundary condition by setting qZ=Zb

= K
[72], [90]. The surface boundary condition may change from a
head-controlled to a flux-controlled and vice versa [91], [92]. At
moderate weather, flux controls the surface boundary condition
(flux-controlled boundary condition) and the net flux (q) results
from precipitation (P), evaporation (E), and runoff (R off) as
(3). In this article, it is assumed that the precipitation rate (cm/h)
is less than the saturated hydraulic conductivity, and land stores
water in its depression storage and preventing it from flowing,
so the surface runoff is neglected:

qz=0 = P − E −Roff . (3)

At too-wet weather, a head-controlled boundary condition
handles the surface boundary condition in such a way that the
infiltration flux is controlled by the head of water at the soil
surface. At too-dry weather or dry soil conditions, the head of
water at the soil surface adapts to the air humidity and controls
the evaporation flux [72], [93].
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The hydraulic properties of unsaturated soil here are param-
eterized using the widely used Brooks and Corey model [94]

h = hsat

(

θ

θsat

)−B

(4)

K = Ksat

(

θ

θsat

)2B+3

(5)

where hsat, Ksat, and Θsat are saturated soil matric potential,
hydraulic conductivity, and soil water content, respectively;
these parameters are the functions of the soil texture. B is a
function of pore size index. In this article, the value of θsat,
Ksat, hsat, and B are approximated based on the soil texture
from the look-up table [95].

In the 1-D Richards model, for a given initial soil moisture
profile, the Richards equation is solved using finite differences
(forward in space and fully implicit in time) employing a simple
linearization scheme to determine the temporal derivative of the
soil moisture profile.

2) The HYDRUS-1D Model: HYDRUS-1D is a software
package developed by [96] to simulate water, heat, and solute
movement in 1-D variably saturated porous media. It is a phys-
ically based model that numerically solves the 1-D Richards
equation using Galerkin-type linear finite-element schemes. In
experiments 2 and 3 of this article, HYDRUS-1D is used as the
forward model. For the parametrization of hydraulic conductiv-
ity and soil water retention function, the Mualem van Genuchten
parameterization [97] is used. The same boundary conditions,
as explained in Richards model section, are applied here.

B. Full-Adjoint Variational Data Assimilation (Full-Adjoint

VDA)

The imperfect observation Y (ti) ∈ Rq of a dynamical sys-
tem [shown in (1)] that is related to the model state at time ti
through the observation operator Hi : R

n → Rq is defined as

Y (ti) = H (θ (ti)) + η(ti). (6)

Operator H maps the model fields on observation space,
η(ti) accounts for the imperfection in the observations (e.g.,
measurement errors), and is assumed to be a white Gaussian
observation noise process with zero mean and covariance matrix
Ri. The objective of VDA is to find an optimal set of parameters
that provides the best model fit with available observations,
measured through an objective cost function. Since the focus
of this article is to estimate the initial soil moisture profile, θ0 (a
vector of soil moisture at different depth of soil) is considered as
the control parameter. The objective function J to be minimized
is defined as

J (θ0) =
1

2

(

θ0 − θb
)T

B−1
0

(

θ0 − θb
)

++
1

2

m
∑

i=0

(Y (ti)−H (θ (ti)))
TR−1

i (Y (ti)

−H (θ (ti))) (7)

where θb is a prior estimate of θ0, assumed uncorrelated with
covariance matrix B0. The second term is the misfit between real
observations and model estimated observations. The errors in the
observations and the errors in the prior estimates are assumed to
be uncorrelated. The cost function will be minimized over the
window of available data and constrained by the model dynamics
[i.e., the forward model (2)]. The minimization of J is often
based on gradient-based methods and requires the computation
of �J with respect to θ0. The most efficient method to compute
the gradient of the cost function is the adjoint method [78], [98],
[99]. In this method, the gradient of the cost function is computed
by chain rule for differentiation [78]. To formulate the adjoint
method, Lagrange multiplier method is used to transform the
constrained optimization problem to an unconstrained optimiza-
tion problem. Hence, the physical constraint (i.e., the forward
model propagating the state in time) is adjoined to the cost
function J. In this method, the Lagrange multiplier is denoted by
υ(ti) and is often referred to as the adjoint state variable (i.e., the
state variable of the adjoint equation). The optimum values of
the parameters are obtained by setting the �J equal to zero. This
leads to the adjoint equation, which is solved backward in time
from tm to t0 to calculate the adjoint state variable/Lagrange
multipliers υ at each time (see [78] for details).

C. Proper Orthogonal Decomposition (POD)

POD, also known as principal components analysis in statis-
tics, is used for a broad range of model-reduction applications
(see [82]). In general, model-reduction methods aim to produce
a low-dimensional system that has the same response charac-
teristics as the original system [63], [78], [82]. The main idea
of POD is to find a subspace Wr within a vector space W, in
such a way that the error in the projection onto the subspace
is minimized. This method uses an orthogonal transformation
to convert a set of possibly correlated variables into a set
of linearly uncorrelated variables called POD modes. POD
modes describe the dominant behavior or dynamics of the given
problem [86].

A set of snapshots of a physical model are collected from an
experiment or a numerical simulation of a dynamical system to
create the POD modes. The snapshot should be able to describe
the model’s response to the unknown parameters. Each sample of
snapshots θi stands for an n-dimensional vector θjn that is θi =
{θi1, θi2, . . . , θin} i ∈ {1, 2, . . . , s}, s < n, where s is the
number of snapshots and n is the total number of the ensemble.
Then, a “centered” ensemble E is formed by means of the mean
vector θ̄

Ei = θi − θ̄. (8)

To create POD modes, first, the covariance matrix of E needs
to be found, which can be calculated by

Q =
1

s− 1
EET . (9)

The algorithm here contains a large eigenvalue problem for
a full matrix Q� Rn×n, which is computationally expensive.
To overcome this issue, the method of snapshots (proposed by
[100]) is used and instead of solving the eigenvalue problem
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for the matrix Q� Rn×n, one only needs to find the eigenvalues
of Q’�Rs×s [101] which is defined as Q′ = 1

s−1
ETE. Eigen-

vectors of the covariance matrix are orthogonal that are used
to reorient the data from x and y axes to the axes represented
by PODs. Using eigenvalues and eigenvectors of the covariance
matrix, the POD modes pi are computed by

pi = EZi/
√

λi (10)

where Zi are eigenvectors and λi are eigenvalues of Q’. Z points
into the direction of the largest spread of the data, and whose
magnitude equals the spread in this direction. The largest eigen-
vector of the covariance matrix always points into the direction
of the largest variance of the data; the magnitude of this vector
equals to the corresponding eigenvalue. Then, the eigenvalues
are used to find a measure of the relative variance (11) of the
corresponding POD modes:

ϕi =
λi

∑s
l=1

λl

.100% , i = {1, 2, . . . , s} . (11)

Note that r < s << n and ϕ1 >ϕ2 >…>ϕr. Please note that
the number of POD modes that are retained (i.e., r) should be
small enough to assure a fast convergence rate at the beginning of
the optimization and large enough (up to a certain level because
the last POD modes usually show noise) to efficiently display
the variability of the original full space [102].

D. Reduced-Order VDA

1) Model-Reduced VDA (MR-VDA): The main idea of using
model order reduction to approximate the adjoint equation is
to replace the original full space model by its POD-derived
approximate. The approximate state here is

θ̂ (ti) = Pξ (ti) + θb (12)

where θb, as introduced in B is the background state, often
taken as a mean state, the matrix P contains the dominant
POD modes of the system dynamics operator Fi and satisfies
PT. The approximate state θ̂(ti) is a linear combination of the
dominant POD modes, and ξ(ti), the reduced state vector,
which contains the corresponding coefficients. It evolves in time
according to

ξ (ti+1) = F̃iξ (ti) (13)

where the reduced dynamical operator F̃i can be computed as

F̃i = PT

(

δFi

δθ (ti)
p1, . . . ,

δFi

δθ (ti)
pr

)

. (14)

To compute the components of F̃i, finite difference approach
is used to linearize the original forward model F (1) with re-
spect to θ(ti) along the direction of the dominant POD modes
pi [63]:

δFi

δθ (ti)
ph =

Fi [θ (ti) + εph]− Fi [θ (ti)]

ε
. (15)

ε is the size of the perturbation. In the model reduced ap-
proach, we look for an optimal solution of (1) that minimizes

the approximate cost function Ĵ :

Ĵ (ξ0) =
1

2

(

PT
(

θb − θ0
))T

PTB−1
0 P

(

PT
(

θb − θ0
))

+
1

2

∑

i

(

Y (ti)−H
(

θ̂ (ti)
))T

R−1
i (Y (ti)

−H
(

θ̂ (ti)
))

. (16)

Since the reduced model is linear, its adjoint in the reduced
space is easy to obtain and the backward evolution equation for
the adjoint state variable ν̂(ti) is defined as

ν̂ (ti) = F̃T
i ν̂ (ti+1) + PTHTR−1

i

(

Y (ti)−Hθ̂ (ti)
)

.

(17)
Then, the gradient of the approximate cost function is calcu-

lated in reduced space size by

∇Ĵ (ξ0) = −PTB−1
0 Pξ0 − ν̂ (t0) . (18)

In this approach, the optimization is performed in the POD-
reduced space by setting ∇Ĵ equal to zero [63], [69]. While this
type of simplification accelerates the convergence, there is no
guarantee that the minimum found with this approach is also the
global minimum in the full space [47], [78].

2) Reduced-Adjoint VDA (RA-VDA): A new reduced-adjoint
approach is proposed by [78] where the forward model remains
the same as (1). This means that we look for an optimal solution
of (1) to minimize the same cost function J (7) in the original
space size, while the adjoint model is built in reduced space by
projecting the adjoint states on the dominant POD modes. The
equation for adjoint state is then expressed as follows:

ν̂ (ti) = F̃T
i ν̂ (ti+1) + PTHTR−1

i (Y (ti)−Hθ (ti)) . (19)

This equation is solved backward in time, given ν̂ (tm) = 0.
The gradient of the cost function is then calculated in original
space size given by

∇J (θ0) = −B−1
0 (θ0 − θb)− P ν̂ (t0) . (20)

Once the gradient (∇J) is obtained, the minimization of the
cost function is conducted along the direction of gradient in the
original space. Note the difference between the adjoint model in
MR-VDA and RA-VDA is shown in (17) and (19), respectively.
As indicated in these equations, to obtain the reduced adjoint
state in the RA-VDA, the system state (θ) is constrained by
observations Y, while in MR-VDA, the reduced system state (θ̂)
is constrained by observations. This means that in RA-VDA
approach, in order to compute the adjoint state, the original
forward model (1) needs to be integrated for every optimization
iteration while, for the MR-VDA approach, the POD-reduced
model (12) needs to be integrated for every optimization itera-
tion. The flowcharts of the initial soil moisture profile estimation
with full-adjoint VDA, RA-VDA, and MR-VDA are provided
in Fig. S1.
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Fig. 1. Daily precipitation and potential evaporation time series at the FIFE
experimental site (28 May 1987 to 25 August 1987).

TABLE I
ASSUMED HYDRAULIC PARAMETERS BASED ON THE LOOK-UP TABLE

PROPOSED BY [105]

III. DATASET AND EXPERIMENT SETUP

In this article, the forcing and meteorological data (i.e., precip-
itation, maximum/minimum air temperature, wind speed, rela-
tive humidity, and net radiation) were taken from the FIFE exper-
iment near Manhattan, Kansas [103]. The simulation period is 90
days from May 28 to August 25 on a daily basis. The potential
evapotranspiration was calculated with the Penman–Monteith
combination equation provided by FAO [104]. The daily time se-
ries of precipitation and potential evapotranspiration of the study
area are shown in Fig. 1. The average precipitation and potential
evapotranspiration over 90 days are 3.2 and 3.8 mm, respectively.
As can be seen, the precipitation is not distributed evenly.

The soil type falls in the texture classes of silty clay loam
(33.33% clay, 13.33% sand, and Bulk density is 1.34). The
effective hydraulic parameters used in Richards model, shown
in Table I, are obtained using the look-up table proposed by
[105]. The parametrization of hydraulic conductivity and soil
water retention function in HYDRUS-1D model is obtained
by neural network prediction in the software using soil texture
information. The other assumption that is used in this article is
that there is no vegetation cover, so LAI value is zero in both
Richards model and HYDRUS-1D. The flow domain of the soil
profile is 150 cm with a spatial discretization of 1 cm in the
Richards model and variable discretization of 1 cm for the first
50 cm, 2 cm for the second 50 cm, and 3 cm for the last 50 cm
depth is used in the HYDRUS-1D model.

Different numerical experiments are designed to address the
objectives of this article. Experiment (1) is designed to test the
feasibility of the VDA approaches (full-adjoint and reduced-
order VDA) and evaluate their accuracy in estimating the initial

Fig. 2. Synthetic true setup, (right) dry case, (left) wet case—blue: i itial guess
for the initial soil moisture profile, green: the synthetic true initial soil moisture
profile. SM: Soil Moisture.

soil moisture profile from surface soil moisture observations.
To focus on the efficiency and accuracy of the variational ap-
proaches in retrieving initial soil moisture profile, the assimila-
tion is operated under ideal condition and the observations in
these experiments are the synthetic true surface soil moisture.
The ideal condition here means that the same physical model,
the same meteorological forcing and inputs, and the same error
statistics are used for generating both the synthetic truth and
the assimilation. Ideal condition experiments are used to test
the assimilation algorithm, detect coding errors, and evaluate
the effects of nonlinearities on the estimation. Consequently,
observing system characteristics can be evaluated and optimized
through ideal experiments. To develop the full-adjoint VDA al-
gorithm a simple, easily differentiable 1-D Richards model (see
Section II-A-1) is used. Thus, the synthetic datasets (hereafter,
true) for experiment 1, are produced by running the Richards
model for two distinct initial soil moisture profiles as the ini-
tial condition (Fig. 2). The first case represents a dry surface
condition where the initial soil moisture profile increases with
depth starting from 0.25 (m3/m3) at the surface (top node) to 0.38
(m3/m3) at the bottom node of the soil profile. These values are
selected to be between the wilting point and the saturation point.
The second case represents wet surface soil moisture condition
and the soil moisture decreases with depth from 0.38 (m3/m3) at
the top node to 0.25 (m3/m3) at the bottom node. Having the true
initial soil moisture profile, the synthetic soil moisture is gener-
ated from the forward model run. Average of top 5 cm of the soil
moisture is considered as the surface soil moisture observations.
Then the assimilation process starts by assimilating the surface
soil moisture observations into the same physical model (i.e.,
Richards model), under ideal conditions via the proposed VDA
approaches (i.e., full-adjoint VDA, RA-VDA, and MR-VDA) to
retrieve the initial soil moisture profile.

Experiment (2) is designed to test and illustrate the effi-
ciency and accuracy of the proposed reduced-order VDA tech-
niques (RA-VDA and MR-VDA) in estimating initial soil mois-
ture profile by assimilating surface soil moisture observations
into a highly nonlinear SVAT model. In this experiment, the
HYDRUS-1D model [106] (a well-known SVAT model for
predicting soil moisture content and water movement in soil) is
used as a forward model to generate synthetic true soil moisture
profile. Similar to experiment (1), the assimilation algorithm
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TABLE II
FORCING DATA PERTURBATION VALUES

here is operated under ideal conditions and the accuracy of
MRA-VDA and RA-VDA in retrieving initial soil moisture
profile is evaluated.

Experiment (3) is designed to further investigate the perfor-
mance of the proposed reduced-order VDA methods in estima-
tion of the initial soil moisture profile using HYDRUS-1D, under
nonideal conditions. To this end, two scenarios are implemented
to determine the performance of the assimilation algorithm in
presence of 1) observation uncertainty, and 2) modeling and ob-
servation uncertainty. The observation uncertainty is considered
by adding randomly generated Gaussian noise with zero mean
and maximum 0.03–0.04 variance to the surface soil moisture
time series obtained from the synthetic truth. The model uncer-
tainty is prescribed to weather inputs by perturbing daily forcing
variable following [87] as shown in Table II.

IV. RESULTS AND DISCUSSION

A. Experiment 1

Including figures and tables, the performance of the proposed
VDA methods (i.e., full-adjoint VDA, RA-VDA, and MR-VDA)
in estimating the true initial soil moisture profile is explored
through assimilation of surface soil moisture observation into
the Richards model through a synthetic study (explained in
Section III). Given that in a synthetic study, the true system
is exactly known and it is used for model performance tests.

Perfect observations (truth) were generated from the simu-
lated reference surface soil moisture time series via Richards
model using the synthetic true initial soil moisture profile. Ac-
cording to [107], the synthetic true initial soil moisture profile is
assumed to have a second-order polynomial form as a function
of subsurface depth. As such, two cases are selected as the
true initial soil moisture profile, shown in Fig. 2 (explained in
Section III), dry case: increasing moisture with depth and wet
case: decreasing moisture with depth.

The goal of the VDA approaches is to find the optimal values
of unknown parameters (e.g., initial soil moisture profile) by
minimizing the cost function described in Subsection B. To start
the minimization process, the initial guess for the initial soil
moisture profile (θ0) from which the forward model simulation
starts is chosen as uniformly distributed in depth, with a magni-
tude that is within the margin of error of surface soil moisture
observation (obtainable through remote sensing) (as shown in
Fig. 2).

Fig. 3. Cumulative variance percentage covered by different number of POD
modes, (right) dry case, and (left) wet case.

To compute the POD basis vectors for the reduced-order
VDA approaches, the forward model is run with the initial
guess. Then, an ensemble E of 90 snapshots vectors are created.
The snapshots are collected over a regularly spaced interval of
every day. Using this ensemble E, the matrix P that consists of
dominant POD modes and captures over 98% of the variance
of the data is created. Fig. 3 shows the increase in cumulative
variance retained versus the number of POD modes for both dry
and wet cases. As seen in this figure, in MR-VDA and RA-VDA,
three POD modes and two POD modes represent the variability
of the dataset (i.e., captures over 98% of variance of the data),
respectively.

In the reduced-order VDA approaches, the estimations are
highly dependent on the size of the perturbation (defined in (15)]
for constructing the reduced dynamical model. The stopping
criteria (convergence criteria) for the optimization is defined as

µ =
|Jm+1 − Jm|
max {Jm+1, 1}

< σ. (21)

The value of ϭ is chosen such that the difference in cost
function J in two successive iterations is minuscule, e.g., ϭ =
1e−6. For the optimization algorithm, a quasi-Newton method
with BFGS (Broyden–Fletcher–Goldfarb–Shanno) [108] updat-
ing algorithm for the hessian is used. Fig. 4 shows the reduction
in the value of the cost function for both wet and dry cases, until
a plateau is reached and changes between two iterations become
negligible. As it is shown in Fig. 4, for both dry and wet cases,
the full-adjoint VDA method achieves the largest decrease in
the value of cost function, albeit with a lower convergence rate
(higher number of iterations) and less complexity associated
with the derivations of the adjoint. In terms of convergence
rate, MR-VDA is the fastest. In MR-VDA (RA-VDA), the cost
function drops down and converges to the optimum solution by
reaching the plateau after 8 (183) iterations for dry case and after
11 (152) iterations for wet case, while for the full-adjoint VDA
the numbers are 333 iterations and 350 iterations, respectively
(see Table III). As seen in the table, both RA-VDA and full-
adjoint have a comparable reduction of over 90% reduction in
cost function for both dry and wet case, while in MR-VDA the
cost function is reduced 82.56% for dry case and 95.88% for the
wet case.

The performance of the three variational approaches in the
estimation of the initial soil moisture profile for both dry case
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Fig. 4. Successive minimization iteration of the cost function J with (a) RA-
VDA method (black), (b) full-adjoint VDA method (red), and (c) MR-VDA
(magenta) for dry case (top) and wet case (bottom).

TABLE III
PERCENT REDUCTION (ITERATION NUMBER) IN THE VALUE OF THE

NORMALIZED COST FUNCTION ∆J/J0 FOR DRY CASE AND WET CASE

Fig. 5. Estimated initial soil moisture profile with RA-VDA method (black),
MR-VDA method (magenta), and full-adjoint VDA method (red) comparing
with the true (green) and initial guess (blue). (a) Dry case (left). (b) Wet case
(right).

and wet case is illustrated in Fig 5. As seen in this figure, the final
estimation of the initial soil moisture profile in both reduced-
order VDA approaches and in the full-adjoint VDA are close to
the true initial conditions.

Table IV provides the root-mean-squared error (RMSE) and
the bias values between the true initial soil moisture profile
and the model estimates for each case (dry and wet case). As
illustrated in the table the lowest RMSE (bias) value for dry
case is obtained by the RA-VDA approach [0.0044(9.9e-4)].
The lowest RMSE (bias) for the wet case is obtained by full ad-
joint [0.0065 (0.0038)], with MR-VDA having very comparable

TABLE IV
ROOT MEAN SQUARE ERROR (RMSE) AND BIAS VALUES OF ESTIMATED

INITIAL SOIL MOISTURE PROFILE VERSUS TRUTH FOR BOTH DRY CASE AND

WET CASE

Fig. 6. Time series of estimated surface soil moisture with RA-VDA method
(black), MR-VDA method (magenta), and full-adjoint VDA method (red) com-
paring with the surface observation (green) and open-loop simulation (blue)—
dry case (top), wet case (bottom).

results. Results illustrate that RA-VDA and MR-VDA mimic the
truth with acceptable RMSE and bias.

The time series of soil moisture at the surface simulated by
the forward model run (Richards model) with three different
retrieved initial soil moisture profiles (using full-adjoint VDA,
RA-VDA, and MR-VDA) for each dry and wet case are shown
in Fig. 6. For the sake of comparison, the true value of surface
soil moisture observations and so-called open-loop estimates
(hereafter OL) are shown as well. Note that by OL, we mean
estimation of soil moisture using the forward model run de-
scribed in Section II-A based on the prior values of parameters
(also called initial guess) before assimilation of the surface soil
moisture observations.

According to both Fig. 6 and Table V [RMSE (bias) values
of simulated surface soil moisture], assimilating surface soil
moisture reduces the error between the OL estimates and the
truth (synthetically produced surface soil moisture) which re-
flects the promise of the proposed data assimilation approaches
(full-adjoint VDA, RA-VDA, and MR-VDA) for soil moisture
retrievals. According to Fig. 6, all three VDA methods show gen-
erally good agreement with the truth. MR-VDA overestimates
the surface soil moisture for the dry case during days 1–20, as
its retrieved initial soil moisture profile has been overestimated
as well [Fig 5(a)]. However, the RMSE and bias values (seen
in Table V) illustrate that assimilating surface soil moisture into
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TABLE V
RMSE (BIAS) VALUES OF SIMULATED SURFACE SOIL MOISTURE VERSUS

TRUTH FOR TWO DIFFERENT CASES, COMPARING THE RESULTS OF THREE

DIFFERENT VDA APPROACHES WITH OL

the forward model (Richards model) using MR-VDA for the dry
case will compensate for the overestimated initial soil moisture
profile over the simulation period. This result confirms the fact
that the uncertainty related to the initial conditions will have the
greatest impact (i.e., error) of the estimation of soil moisture at
the beginning of assimilation period and the estimation errors
decrease over time as more observations become available.

Comparison of the full-adjoint, RA-VDA, and MR-VDA
results in this experiment clearly shows that the reduced-order
VDA techniques (RA-VDA and MR-VDA) are promising ap-
proaches and are a comparative alternative to full-adjoint VDA
for soil moisture profile estimation using surface soil moisture
observations.

B. Experiment 2

In the following experiment, the performance of the proposed
reduced-order VDA methods (RA-VDA and MR-VDA) using
an SVAT model, such as HYDRUS-1D as the physical model
is explored to demonstrate the efficiency of the reduced-order
VDA techniques for estimating initial soil moisture profile in a
common SVAT model. Unlike Richards model used in the first
experiment, HYDRUS-1D is not easily differentiable and the
computation of the adjoint of this model, needed in full-adjoint
VDA, is very complex, emphasizing the importance and value
of reduced-order VDA methods for estimating the soil moisture
profile using variational approaches. The results from a synthetic
experiment under ideal condition will be presented here. The
assumption, implementation, and experiment setup is the same
as experiment 1.

In order to compute PODs, forward model (HYDRUS-1D) is
run with the first guess of the initial soil moisture profile and an
ensemble of 90 (daily) snapshots were created. Next, the matrix
P including the dominant POD modes is created capturing more
than 98% of the data variability. Fig. 7 shows the increase in
coverage of the variance of the data versus the number of POD
modes. Having POD modes, the reduced dynamical model is
created using (15).

Same as experiment 1 with Richards model as its forward
model, the optimization algorithm is quasi-Newton method with
BFGS updating algorithm and the convergence criteria is as
shown in (21). The minimization process is completed when the
change in successive cost function is too small. The performance
of the reduced-order VDA methods using HYDRUS-1D as the
forward model to retrieve the initial soil moisture profile is
shown in Fig. 8. As it is shown in this figure, the estimated
initial soil moisture profile is very close to the true initial soil

Fig. 7. Cumulative variance percentage covered by different number of POD
modes, (right) dry case, and (left) wet case.

Fig. 8. Estimated initial soil moisture profile using HYDRUS-1D with RA-
VDA method (black), MR-VDA method (magenta), comparing with the true
(green) and initial guess (blue)—dry case (left), wet case (right).

TABLE VI
RMSE AND BIAS VALUES FOR THE INITIAL GUESS OF THE INITIAL SOIL

MOISTURE PROFILE AND RETRIEVED INITIAL SOIL MOISTURE PROFILE

VERSUS THE TRUTH (M3/M3)

moisture profile for each of dry and wet case. In both dry and wet
cases, the estimated initial soil moisture profile closely follows
the truth up to exactly 1 m below the surface and starts a slight
deviation from the true at lower depth. This is potentially because
the observation is only for surface soil moisture and there is no
information on lower depth that can be used as the observation. It
is worth noting that, according to literature [109], [110], effective
root zone for most of the root-zone modeling is up to 1 m deep
down the soil.

The first column of Table VI shows the RMSE and bias values
between the truth and the initial guess of initial soil moisture
profile. The second and third columns of the table show the
RMSE and bias values between the truth and retrieved initial
soil moisture profile using RA-VDA and MR-VDA. As shown
in this table, the RMSE values for both RA-VDA (dry case:
0.0078 and wet case: 0.0092) and MR-VDA (dry case: 0.0068
and wet case: 0.0061) is lower than the RMSE values of the initial
guess (dry case: 0.0769 and wet case: 0.0824) of soil moisture
profile. Comparison between RA-VDA and MR-VDA indicates
that for both dry and wet cases, the RA-VDA method reduces
the RMSE in an acceptable order of magnitude. The RMSE
decreases by about 90% for both the dry case and the wet case,



HEIDARY et al.: ESTIMATION OF ROOT ZONE SOIL MOISTURE PROFILE BY REDUCED-ORDER VARIATIONAL DATA ASSIMILATION 2403

Fig. 9. Time series of estimated surface soil moisture with RA-VDA method
(black), MR-VDA method (magenta), comparing with the surface observation
(green) and open-loop simulation (blue)—dry case (top), wet case (bottom).

TABLE VII
RMSE AND BIAS VALUES FOR ESTIMATED SURFACE SOIL MOISTURE VERSUS

THE TRUTH (M3/M3)

while in MR-VDA the decrease in RMSE in the wet case (92%)
is more than the dry case (84%). As shown in the table, for the
dry case the RA-VDA method has the lowest RMSE and bias
values, while for the wet case the lowest RMSE and bias values
are obtained by MR-VDA. However, the difference of RMSE
and bias values between MR-VDA and RA-VDA for the wet
case is not significant and both perform satisfactorily.

The time series of the surface soil moisture is illustrated in
Fig. 9 and the RMSE and bias values of the estimated surface soil
moisture compared to the truth (i.e., synthetic true) is shown in
Table VII. According to the figure, the soil moisture time series
is estimated very well using RA-VDA and MR-VDA in terms of
both the magnitude and day-to-day dynamics compared to the
OL (i.e., simulation without any assimilation). The RMSE and
bias values also decrease in an acceptable order of magnitude
compared to the OL (Table VII). The results of this experiment
demonstrate that a good estimation of initial soil moisture profile
results in more accurate soil moisture time series simulation.

The results presented in this experiment demonstrate the
efficiency and effectiveness of the proposed reduced-order VDA
methods (RA-VDA and MR-VDA) in estimating initial soil
moisture profile and improving the accuracy of time series of soil
moisture profile by assimilating surface soil moisture observa-
tion into the highly nonlinear HYDRUS-1D model. Therefore,
the important point for the interpretation of this experiment
is to look at how well the model is doing in estimating the

Fig. 10. Estimated initial soil moisture profile using HYDRUS-1D with RA-
VDA method (black), MR-VDA method (magenta), comparing with the truth
(green), and initial guess (blue)—dry case (left), wet case (right).

initial condition (e.g., initial soil moisture profile) using a highly
nonlinear SVAT model, at which the computation of the adjoint
of a full-adjoint VDA becomes very complex, time consuming,
and even impractical. Clearly, by assimilating the surface soil
moisture into HYDRUS-1D as the forward model the prior
trajectories are improved and the initial soil moisture profile
is estimated with a good degree of accuracy.

The next step is investigating the performance of assimilating
surface soil moisture into HYDRUS-1D using the proposed
assimilation algorithms (RA-VDA and MR-VDA) in order to
retrieve initial soil moisture profile in conditions close to the
real world under the experiments designed as follows.

C. Experiment 3

In this experiment, the performance of assimilating surface
soil moisture into HYDRUS-1D using the proposed reduced
order VDA algorithms (RA-VDA and MR-VDA) in retrieving
initial soil moisture profile under nonideal (real world) con-
ditions is investigated. The results of the experiment under
different model and observational errors are presented in this
section. This experiment is conducted under two scenarios. In the
first scenario, the assimilation is conducted under the assumption
that the physical model is perfect (i.e., known), but the obser-
vations are generated by adding random errors to the surface
soil moisture obtained from the synthetic truth to consider the
observation uncertainty (Section IV-C-1). In scenario 2 of this
experiment, the assimilation is performed under observational
and model uncertainty. Model uncertainty is taken into account
by prescribing errors to weather inputs and initial conditions
(Section IV-C-2).

1) Assimilation With Observation Uncertainty: In this sce-
nario, the forcing data and the forward model is assumed known,
i.e., the model uncertainty is set to zero. In order to consider the
measurement error, the observations are generated by additive
random perturbations (Gaussian noise with zero mean and max-
imum 0.03–0.04 variances) of the surface soil moisture time
series. The experimental setup and the POD modes are similar
to experiment 2. Fig. 10 shows the estimated initial soil moisture
profile, the initial guess, and the true initial soil moisture profile
in both dry and wet case. The initial guess of the initial soil
moisture profile as shown in Fig. 10 is assumed to be dis-
tributed uniformly in depth, equal to the value of the surface soil
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TABLE VIII
RMSE (BIAS) VALUES OF ESTIMATED INITIAL SOIL MOISTURE PROFILE

VERSUS TRUTH (M3/M3)

Fig. 11. Time series of estimated surface soil moisture with RA-VDA method
(black), MR-VDA method (magenta), comparing with the surface observation
(green) and open-loop simulation (blue) for dry case (top) and wet case (bottom).

moisture observation. As seen in Fig. 10, once the surface soil
moisture is assimilated into the model, the initial soil moisture
profile mimics the pattern of the true initial soil moisture profile
more accurately. The RMSE and bias values of initial guess and
the estimated initial soil moisture profile using both RA-VDA
and MR-VDA compared to the true initial soil moisture profile
is shown in Table VIII. Both RA-VDA and MR-VDA methods
reduce the RMSE (bias) values compared to the initial guess of
the initial soil moisture profile and are able to mimic the synthetic
true soil mositure profile. Results of these two techniques are
comparable and the differences are not significant in both dry
and wet cases.

With the initial condition being the dominant source of uncer-
tainty in numerical modeling of soil moisture in SVAT models
(e.g., [23], [30], [34], [111], [112]), a more accurate estimate of
the initial soil moisture profile would result in better estimates
of the entire soil moisture time series. Fig. 11 shows the time
series of surface soil moisture estimated from RA-VDA and
MR-VDA and OL against the truth. As seen in these figures,
the estimated soil moisture over time using both RA-VDA and
MR-VDA better match the true soil moisture time series in
terms of magnitude and day-to-day dynamics compared with
OL. RA-VDA and MR-VDA methods significantly reduce the
RMSE and bias values of the estimated surface soil moisture
time series compared to the OL (as seen in Table IX) confirming
the efficiency and accuracy of these techniques in retrieving the
initial soil moisture profile in presence of reasonable observa-
tional error.

TABLE IX
RMSE (BIAS) VALUES OF THE ESTIMATES SURFACE SOIL MOISTURE VERSUS

THE SYNTHETIC TRUE (M3/M3)

Fig. 12. Estimated initial soil moisture profile using HYDRUS-1D with RA-
VDA method (black), MR-VDA method (magenta), comparing with the truth
(green) and initial guess (blue)—dry case (left), wet case (right), in presence of
errors.

TABLE X
RMSE VALUES OF THE ESTIMATED INITIAL SOIL MOISTURE PROFILE VERSUS

THE SYNTHETIC TRUE—IN PRESENCE OF THE POSSIBLE ERRORS [M3/M3]

2) Assimilation With Model and Observation Uncertainty:

In this scenario of the experiment in addition to observational
uncertainty (explained in Section IV-C-1), the modeling uncer-
tainty is taken into account by perturbing the daily weather
forcing data as described in Section III (the perturbation val-
ues is shown in Table II). Perturbations on net radiation and
precipitation are multiplicative lognormally distributed with
a mean of 1 and standard deviations of 3 MJ/m2d and 0.5
cm/day, respectively; perturbations on maximum and minimum
temperature, humidity, and wind speed are additive Gaussian
with a mean of 0 and standard deviation of 3°C, 5%, and 250
km/day, respectively. The observations are generated similar to
experiment 2 by additive random perturbations to the surface
soil moisture time series. Fig. 12 shows the estimated initial soil
moisture profile and true initial soil moisture profile in dry and
wet case. As illustrated in this figure, while the estimated initial
soil moisture profile using both RA-VDA and MR-VDA mimics
the truth well, RA-VDA results estimate the truth in both cases
better. The calculated RMSE and bias between the estimated
initial soil moisture profile using RA-VDA and MRA-VDA
versus the truth and the initial guess of soil moisture profile
versus the truth (Table X) confirms this observation. As observed
in this table, both estimated initial soil moisture profile via
RA-VDA and MR-VDA reduces the RMSE and bias values
compared with the initial guess of initial soil moisture profile,
used in OL calculations, with the RA-VDA method possessing a
lower RMSE and bias values in comparison with the MR-VDA
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Fig. 13. Time series of estimated surface soil moisture in presence of errors
with RA-VDA method (black), MR-VDA method (magenta), comparing with
the surface observation (green) and open-loop simulation (blue) for dry case
(top) and wet case (bottom).

method. The results here are obtained by assuming that both the
model and observation are not perfect and have errors.

Once the initial soil moisture profile is retrieved, the soil
moisture time series is simulated with higher degree of accuracy.
The estimated surface soil moisture time series, the observation,
the true surface soil moisture, and the OL are shown in Fig. 13.
As seen in these figures, the simulated surface soil moisture using
the retrieved initial soil moisture profile, for both RA-VDA and
MR-VDA and both dry case and wet case, generally matches
the truth and accurately estimates day-to-day dynamics of the
surface soil moisture observations. However, when the precipita-
tion error is high, deviation between the estimated soil moisture
and the truth increases. One possible reason is related to the role
of the relation between the precipitation rate and the saturated
hydraulic conductivity (Ksat) in defining the surface runoff.
For example, at day 80, the truth precipitation is 7.97 cm/day
(<Ksat of 13.19 cm/day), and the observed precipitation (i.e.,
with added error) is 14.85 (>Ksat of 13.19 cm/day). Therefore,
the OL and the reduced-order VDA’s will operate under the
assumption that surface runoff occurs (since, precipitation >
Ksat), while in the truth system there is no runoff (P < Ksat). In
this case, the negative impact of model error/uncertainty (in the
form of forcing error) overshadows the improvements resulting
from more accurate initial soil moisture conditions (as seen in
the figure). Reichle et al. [113] and Das and Mohanty [114]
also reported on the significant impact of the precipitation on
the soil moisture estimates. Among the entire model inputs, the
precipitation is the one that most dominates soil moisture, and
at the same time, it is also the input with the highest uncertainty.

Table XI illustrates the RMSE values of surface soil moisture
for OL, RA-VDA, and MR-VDA compared to the truth. As
indicated, the RMSE and bias values decreased compared with
the OL, but since the model has error, the values are not too
small. The values of RMSE and bias in both dry and wet cases

TABLE XI
RMSE VALUES OF THE SURFACE SOIL MOISTURE VERSUS THE SYNTHETIC

TRUE (M3/M3)

are lower when RA-VDA method is used. It is concluded from
the results that RA-VDA method performs well in retrieving
the initial soil moisture profile by assimilating the soil moisture
observations into a highly nonlinear SVAT model in presence of
error by mimicking real world observational and forcing errors.

V. CONCLUSION

In this article, full-adjoint VDA and two reduced-order VDAs
(MR-VDA and RA-VDA) are investigated to retrieve the initial
soil moisture profile from surface soil moisture observations.
Reduced-order VDA approaches not only avoid the complex
implementation of the adjoint model, but are also computa-
tionally more efficient as compared to the full-adjoint VDA. In
the MR-VDA, the adjoint model is approximated based on the
reduced-order model, and the entire optimization is performed
in a reduced space. However, in the RA-VDA, only the adjoint is
computed in the reduced space and the optimization is conducted
on the original space. In this article, both full-adjoint VDA and
reduced-order VDA (both RA-VDA and MR-VDA) are used
to retrieve the initial soil moisture profile of a 1-D soil water
balance model using surface soil moisture observations.

In order to address the questions and objectives of this article,
a set of synthetic experiments is conducted. The feasibility and
accuracy of the proposed VDA approaches in estimating the
initial soil moisture profile from implicit information contained
in time series of surface soil moisture observations are explored
in experiment 1. To focus on the accuracy of the variational
approaches in retrieving the initial soil moisture profile, the
assimilation is operated under ideal condition. Ideal condition
here means the same physical model, the same model inputs,
and the same error statistics are used for the generation of the
synthetic true surface soil moisture in both the observation and
the assimilation process. Although the results of the experiments
in ideal conditions are unrealistically good, such experiments
will give us confidence in the performance of the algorithm.
Therefore, the important point for the interpretation of such
experiment is to look at how well the proposed VDA approaches
are doing in estimating the initial condition. In experiment
1, full-adjoint VDA and reduced-order VDA (RA-VDA and
MR-VDA) were implemented on Richards model. The results
of this experiment lead to the conclusion that VDA approaches
can significantly improve the prior trajectories and are able to
estimate the initial soil moisture profile with a good degree of
accuracy. In addition, it is concluded that the results of RA-VDA
and MR-VDA have higher convergence rate (lower number of
iterations) and less complexity compared to full-adjoint VDA.
Moreover, both RA-VDA and MR-VDA are more efficient in
terms of computational cost since in each iteration, the for-
ward model run in MR-VDA and backward model run in both
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MR-VDA and RA-VDA are in reduced space. While in the
full-adjoint VDA, both forward and backward model run are
in the full space.

Next, experiment 2 is designed under ideal condition in order
to test and illustrate the efficiency of the proposed reduced-
order VDA techniques in estimating initial soil moisture profile
by assimilating surface soil moisture observations into highly
nonlinear SVAT models such as HYDRUS-1D. The results of
this experiment show that while both RA-VDA and MR-VDA
methods are able to retrieve the initial soil moisture profile by
assimilating surface soil moisture observation into an SVAT
model, RA-VDA has slightly better results in both dry and wet
soil moisture conditions.

To further investigate the performance of the proposed
reduced-order VDA approaches in estimation of soil moisture
profile in presence of error mimicking real world observational
and forcing errors, experiment 3 is conducted under nonideal
condition. Nonideal condition means different inputs and statis-
tics are used in both the synthetic truth and the estimation pro-
cess. To this end, experiment 3 is employed under two different
scenarios. The assimilation algorithm in the first scenario is
investigated under the condition when the physical model is
exactly known, but the observations are generated by adding
random errors to the surface soil moisture obtained from the
synthetic truth to consider observation uncertainty. In scenario
2, the assimilation algorithm is performed by prescribing errors
to weather inputs and initial conditions to account for model
uncertainty in addition to the observation uncertainty. The results
under both scenarios show that retrieved initial soil moisture

profile using both RA-VDA and MR-VDA approaches are com-
parable, with RA-VDA slightly outperforming MR-VDA.

The results of the three experiments performed in this article
demonstrate that the RA-VDA method has comparable results
with full-adjoint VDA and slightly better results than MR-VDA
and is able to accurately retrieve the initial soil moisture profile
in all synthetic experiments at very reasonable computation cost.
Even though we made an effort to mimic realistic conditions,
there can be no guarantee that the results remain completely
unchanged if we use satellite measurements and reanalysis
meteorological data to apply the proposed approaches on a
large-scale application. The method has yet to be verified
with a number of real field-areal datasets in the large-scale
experiment. If successful, the approach may contribute to the
improvement of the representation of land surface hydrology
at regional scales. To assess the general usefulness of the
reduced-order VDA method at operational scales of land
surface modeling, additional tests and further considerations
in a watershed scale and using spaceborne data in presence
of unknown soil hydraulic parameters (not addressed in this
article) would be required. Hence, our future article will focus
on 1) expanding the reduced-order VDA approaches, namely
RA-VDA to estimate soil hydraulic parameters in addition to
initial soil moisture profile by assimilating surface soil moisture
observations into SVAT models (e.g., HYDRUS-1D), and 2)
testing the feasibility of the RA-VDA method for estimating
soil hydraulic parameter and soil moisture profile estimation
using remotely sensed surface soil moisture observations.

SUPPLEMENTARY

Fig. S1. Flowcharts of initial soil moisture profile (S0) estimation using full-adjoint VDA (left), RA-VDA (middle) and MR-VDA (right) POD: Proper Orthogonal
Decomposition.
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