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1 | INTRODUCTION

| Sudipto Banerjee®

Abstract

Spatial process models popular in geostatistics often repre-
sent the observed data as the sum of a smooth underlying
process and white noise. The variation in the white noise is
attributed to measurement error, or microscale variability,
and is called the ‘nugget’. We formally establish results on
the identifiability and consistency of the nugget in spatial
models based upon the Gaussian process within the frame-
work of in-fill asymptotics, that is the sample size increases
within a sampling domain that is bounded. Our work ex-
tends results in fixed domain asymptotics for spatial mod-
els without the nugget. More specifically, we establish the
identifiability of parameters in the Matérn covariogram
and the consistency of their maximum likelihood estima-
tors in the presence of discontinuities due to the nugget.
We also present simulation studies to demonstrate the role
of the identifiable quantities in spatial interpolation.

KEYWORDS
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The analysis of point-referenced spatial data relies heavily on stationary Gaussian processes
for modelling spatial dependence. Let y(s) be the outcome measured at a location s € S ¢ RY,
where S is a bounded region within R% The outcome is customarily modelled as

¥(s) = u(s) + w(s) + e(s), s€SCRY, 1)
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where p(s) models the trend, w(s) is a Gaussian process capturing spatial dependence, and &(s) is
a white noise process modelling measurement error or microscale variation. Matérn (1986) intro-
duced a flexible class of covariance functions for modelling w(s) that has been widely used in spatial
modelling ever since it was recommended in Stein (1999). The finite dimensional realisations of &(s)
are modelled independently and identically as N(0, 72) over any finite collection of locations. The
variance parameter 72 is called the ‘nugget’.

Our intended contribution in this article is to formally establish the identifiability and con-
sistency of the process parameters in Equation (1) in the presence of an unknown nugget under
infill or fixed domain asymptotics, where the sample size increases with increasing numbers of
locations within a domain that is fixed and does not expand. This distinguishes the article from
existing results on inference for process parameters in Matérn models that have, almost exclu-
sively, been studied without the presence of an unknown nugget. Zhang and Zimmerman (2005)
compared infill and expanding domain asymptotic paradigms and elucidate a preference for the
former for analysing the limiting distributions of parameters in the Matérn family. Zhang (2004)
showed that not all parameters in the Matérn family can be consistently estimated under infill
asymptotics, but certain microergodic parameters, which play a crucial role in the identifiabil-
ity of Gaussian processes with the Matérn covariogram (see Section 2.1 for further details), are
consistently estimable. Du et al. (2009) derived the asymptotic normality of the maximum like-
lihood estimator for such microergodic parameters. Kaufman and Shaby (2013) extended these
asymptotic results to the case of jointly estimating the spatial range and the variance parameters
in the Matérn family, and explored the effect of a prefixed range versus a joint estimated range
on inference when having relatively small sample size. Recently, Bevilacqua et al. (2019) and Ma
and Bhadra (2019) considered more general classes of covariance functions outside of the Matérn
family and studied the consistency and asymptotic normality of the maximum likelihood estima-
tor for the corresponding microergodic parameters.

These studies have focused upon settings without the presence of a nugget. In practice, mod-
elling the measurement error, or nugget effect, in Equation (1) is prevalent in geostatistical mod-
elling. The main difference between the model without a nugget and that with a nugget hinges
on the rate of asymptotic normality of the maximum likelihood estimator of microergodic pa-
rameters: the former has a universal rate of n!/2, while the latter, as shown in Theorem 5, has a
rate of n'/(2+4v/d) which depends on the model parameters. We also note that deriving the rate of
nl/@+4v/d) for 3 Matérn model with a nugget effect is not an obvious consequence of any afore-
mentioned results for Matérn or Matérn-like models without a nugget effect. Previous to this work,
Zhang and Zimmerman (2005) offered some heuristic arguments for the consistency and asymp-
totic normality of the maximum likelihood estimators of microergodic parameters in Equation (1).
Chen et al. (2000) demonstrated that the presence of measurement error can have a big impact on
the parameter estimates for Ornstein-Uhlenbeck processes, that is, Matérn processes with v = 1/2
and d = 1, over bounded intervals. Their proof exploits the Markovian property and the explicit for-
mula for the maximum likelihood estimator of the one-dimensional Ornstein—-Uhlenbeck process
that are not available in the case of the Matérn model over R with d > 2.

Returning to (1), it will be sufficient for our subsequent development to assume that p(s) = 0,
that is, the data have been detrended. We specify {w(s): s € S ¢ R%}as a zero-centred stationary
Gaussian process with isotropic Matérn covariogram,

o> (llxID”

.2 .
K, (x;0%, ¢, v):= T2

K,(@llx]), x|l =0, ()
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where 6% > 0is called the partial sill or spatial variance, ¢ > 0 is the scale or decay parameter, v > 0 is
a smoothness parameter, I'(-) is the Gamma function and K ( - ) is the modified Bessel function of the
second kind of order v (Abramowitz & Stegun, 1965, Section 10). The corresponding spectral density is

O.2¢2v

W for some C > 0. (3)
+u2)

fg,(w=C

When v = 1/2, the covariogram (2) simplifies to the exponential (Ornstein-=Uhlenbeck in one di-
mension) kernel

K, (x;0%, ¢):= o’exp(— ¢l x])).

For the measurement error, we assume {e(s): s € S c R?} is Gaussian white noise with covario-
gram K, (y;7%):= 725, where §, is the indicator function at 0 and 7? is the nugget. The processes
{w(s), s € D c R4} and {e(s), s € D c R4} are independent. Hence, a Matérn model with mea-
surement error is a stationary Gaussian process with covariogram

K(x;7%, 62, ¢, v):= K, (x; 62, ¢, v) + K.(x;7%). )

Our approach will depend upon identifying microergodic parameters in the above model.
The remainder of the article evolves as follows. We review the discussion in Zhang (2004) for the
Matérn model with measurement error, claiming that only 8 = {62 ¢$?*, 72} can have infill con-
sistent estimators when d < 3. Subsequently, we establish that the maximum likelihood estimates
for O are consistent and are asymptotically normal. This extends the main results in Chen et al.
(2000) to the case with dimension d < 3. The asymptotic properties of interpolation are explored
mainly through simulations, and we demonstrate the role of 8 in interpolation. We conclude with
some insights and directions for future work.

2 | ASYMPTOTIC THEORY FOR ESTIMATION
AND PREDICTION

2.1 | Identifiability

Zhang (2004) showed that for the Matérn model without measurement error, when fixing the smooth-
ness parameter v > 0 and d < 3, there are no (weakly) infill consistent estimators for either the partial
sill 2 or the scale parameter ¢. Such results rely upon the equivalence and orthogonality of Gaussian
measures. Two probability measures P; and P, on a measurable space (€2, F) are said to be equivalent,
denoted P, = P,, if they are absolutely continuous with respect to each other. Thus, P, = P, implies
that for all A € F, P;(A) = 0if and only if P,(A) = 0. On the other hand, P; and P, are orthogonal,
denoted P; 1 P,, if there exists A € F for which P;(A) = 1 and P,(A) = 0. While measures may be
neither equivalent nor orthogonal, Gaussian measures are one or the other. For a Gaussian probability
measure Py indexed by a set of parameters 6, we say that 6 is microergodic if Py = Py, if and only if
0, = 6,. For further background, see Chapter 6 in Stein (1999) and Zhang (2012). Furthermore, two
Gaussian probability measures defined by Matérn covariograms K, ( - ; af, ¢, v)andK,(-; o-%, by, V)
are equivalent if and only if a%q&fv = a%q&%v (Theorem 2 in Zhang, 2004) and, consequently, one
cannot consistently estimate 62 or ¢ in the Matérn model (2) (Corollary 1 in Zhang, 2004).
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We first characterise identifiability for the Matérn model with measurement error, that is, with
covariogram given by Equation (4). Over a closed set S ¢ R4, let G¢(m, K) denote the Gaussian
measure of the random field on S with mean function m and covariance function K. Consider
two different specifications for w(s) in Equation (1) corresponding to mean m; and covariogram
K, for i = 1, 2. The respective measures on the realisations of w(s) over S will be denoted by
Gs(m;, Ky fori=1, 2. If y ={sy, 5, ...} is a sequence of points in S, then the probability mea-
sure for the sequence of outcomes over y, that is, { y(sj): Sj € x}1is denoted G, (m;, K;, 11.2) under
model i. The following lemma is familiar.

Lemma 1 Let S be a closed set, w(s) be a mean square continuous process on S under
G¢(my, K;) and y be a dense sequence of pomts in S. Then, (l) if r # 12 then
G,(my, Ky, © )J_G (m,, Ky, 7 2) and (ii) if 2 = 72 then G L(my, Ky, T ) =G (mz,Kz, T )
lf‘md only lfGS(ml’ Ky = Gs(mz’ Ky).

Proof.  See Theorem 6 in Chapter 4 of Stein (1999).

According to Stein (1999 p. 121) (or (Ibragimov & Rozanov, 1978, 111.4.1)), two Gaussian mea-
sures Gg4(m, K) = Gg(0, K) if and only if the mean function m(-) can be extended to a square-

integrable function on R whose Fourier transform i(w) satisfies IRd ';,"(E"))' dw < oo, where fr

denotes the spectral density of the covariance function K. In such a situation, the mean function
m(-) of the Gaussian process is not identifiable. A specific example is the Gaussian measure with
m(x) = p'x, where p € R?and K is the Matérn covariogram. From a practical inferential stand-
point, most of the insights obtained from the subsequent theoretical developments will apply to
detrended processes. The following result adapts Lemma 1 to the Matérn model with measure-
ment error and summarises the identifiability issue with measurement error.

Theorem 1 Let S ¢ RY be a compact set. Fori = 1, 2, let P; be the probability measure of the
Gaussian process on S with mean zero and covariance K( - ; r o- , ¢;, v) defined by Equation
(4). Then, (i) lle #+ 72, then P, L P,; and (ii) lle = 1-2, thenford <3, P, = P,ifand only if
o%qﬁ%v = ogqﬁ%”, and for d>5, Py = P, if and only if (63, ¢;) = (63, ¢,).

Proof.  Denote K; for K,( - 51 , ¢;, v). It is easy to see that w(s) is mean square continuous on
S under Gg(0, K;). From Lemma 1, we know that if r # r , for any dense sequence y,
G,(0, Ky, 72) L G (0, K;, 73). Therefore, P, L P,. This proves (1)

Next,supposer; = 73 From Theorem 2in Zhang(2004), we know thatford<3G4(0, K;) = Gs(0, K;)
if and only if 627" = 62¢3". Corollary 3 in Anderes (2010) shows that, for d > 5,G(0, K;) 1 G(0, K;)
if{c2, ¢} # {03, ¢, }. Astraightforward application of Lemma 1 proves (ii).

Theorem 1 characterises equivalence and orthogonality of Matérn based Gaussian measures in
terms of their parameters. Here it is instructive to distinguish between d < 3 and d > 5. The results
in Zhang (2004) emerge as special cases when 72 = 72 = 0 and 627" = 62¢3" for d < 3. Combining
Theorem 1 with the argument provided in Corollary 1 of Zhang (2004), we can conclude that 62 and
¢ are not consistently estimable. We provide this as an immediate corollary to Theorem 1.

Corollary1 Lety(s),s € S ¢ R%, d < 3bea Gaussian process with a covariogram as in (4), and
S,n=1bean lncreasmg sequence of subsets of S. Given observations of y(s), s € S,, there do
not exist estimates o, % and qbn that are consistent.
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Consequently, the joint maximum likelihood estimators of {62, ¢} are not consistent estima-
tors. In contrast to {2, ¢}, we show in Theorem 4 that the maximum likelihood estimator of the
nugget 72 is consistent.

Turning to d > 5 it follows from Theorem 1 that there exist joint estimates (T an, ¢>n) which
converge to (72, o- , ¢). For instance, letting; , = — <1, where 1, denotes the vector of 1’s in R¢, we
can take 7 r = 2|I| Zlel(y(tl+1,n) (D)) whereI ={i € Z: tiy1 0, t;y € S}and|TI]is the cardi-
nality of Z. Furthermore, Anderes (2010) constructed consistent estimators of (62, ¢) based on
higher order increments of y. However, it is currently unknown whether the joint maximum
likelihood estimators of (2, 62, ¢) are consistent. Even for the Matérn model without a nugget
(z? = 0), the consistency of the joint maximum likelihood estimators of (2, ¢)) remains
unresolved.

The characterisation of equivalence and orthogonality of P, and P, is also open in the critical
dimension d = 4. The balance of this paper focuses on the asymptotic properties of the maximum
likelihood estimates and predictions for the Matérn model with nugget when d < 3 with addi-
tional discussions and results for d > 5 in Section 2.5.

2.2 | Parameter estimation

Theorem 1 implies that if v is fixed in the specification of w(s) in Equation (1), then ¢2¢?" and
the nugget 2 will be identifiable. In view of this, we consider the estimation of the microergodic
parameter k : = 62¢*” and the nugget z> with fixed decay ¢. Our main results concern the consist-
ency and the asymptotic normality of the maximum likelihood estimators of x and 72 when the
observations are taken from y(-) modelled by Equation (1).

To proceed further, we need some notations. Let y,, = {sy, ..., 5, } be the sampled points in S,
Yi:=y(s;), i =1, ..., n be the corresponding observations, and let K, : = {K,,(s; —s;; 62, ¢, Vh<ij<n
denote the n Xn Matern covariance matrix over locations y,. Let {ﬂ( W i=1, ., n}be the eigen-
values of = =K, in decreasing order. The covariance matrlx of the observatlons V=01 o Y)T
isV,=1 I + K, the likelihood is denoted by L(7?, 62, ¢), and the (rescaled) negative log-
likelihood is

£(1%, 6%, ¢):=logdetV, +y 'V ly. (5)

Let {00, b, T 2} be the true generating values of {2, ¢, 72}, KO =0 (;b . Assume that the smooth-
ness parameter v > 0 is known. For any fixed ¢; > 0, let (r (¢1), o n(q&1 )) be the maximum likeli-
hood estimators of {2, 6%}. That is,

72(¢y), 62(y)): = argmax 2 ;2)ep L(7%, 6%, ¢y) = argmin, 2 o) p? (72, 62, ;) (6)

where D = [a bl X [c,d]withO <a<b<owand0 < ¢ < d < . To simplify notatlons wrlte r 2

for ’r‘fl(d)l) (qbl) Unlike the Matérn model (2), there is no explicit formula for 7, 2 and & 0' in the
Matérn model with measurement error. Another difficulty of the analysis is that £ is not concave,
so the (rescaled) negative log-likelihood #(72, 62, ¢;) may have local minima and stationary points.
Nevertheless, we are able to establish the theorems regarding the consistency and asymptotic nor-
mality at these stationary points under some assumptions of the eigenvalue asymptotics.
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2.2.1 | Eigenvalue decay

We first give an upper bound for the eigenvalues AE"), which is of independent interest. The ar-
gument we provide below works for a large class of covariograms, including the Matérn model.
In the sequel, the symbol =< indicates asymptotically bounded from below and above. We follow
closely the presentation of Belkin (2018). Let Q be a domain of R¢, and K(-) be a positive definite
radial basis kernel on R¢. Denote H to be the reproducing kernel Hilbert space corresponding to
the kernel K, which is also the native space associated to the kernel K. Given a probability meas-
ure x on Q, define the integral operator K,,: Li - Li by

;= | Kex =2 @ucde)

In particular, if u = % Yi,é sp Ky corresponds to the kernel matrix { %K (8i =8} 1<ij<n It is well
known that K,f € H for f € Li, and any function in H induces a function in Li by restricting it to
the support of 4 (see Section 2 of Belkin (2018)). CallR ,;: H — Li the restriction operator.

The key idea of Belkin (2018) is to get a measure-independent upper bound for the eigenvalues of X,
for infinitely smooth kernels, while the argument can carry over to kernels with limited smoothness; that
is, the spectral density of K satisfies f(u) = u~#~4(f-smooth). By Equation (3), the Matérn covariogram
is 2v-smooth. Given y = {s, ..., s,} C Q]letS,: H — H be the interpolation operator defined by

5@ = Y, ke —x),
i=1

where (g, ..., a)" =K1 (), .., fx,)T with K, = {K(s5;=$))}1<ijcnr By letting
h = max,gmin, ;, ||s — s; ||, Santin and Schaback (2016 p. 985) proved that there exists C > 0 (in-
dependent of n) such that

IR, =S llyrz < CHP+D/2, )

Here || - ||y 12 denotes the operator norm. So (7) is a limited smoothness version of Belkin (2018
U

Theorem A). The following result is adapted from Theorem 1 in Belkin (2018) to the f-smooth kernel.

Theorem 2 SupposeT:V — Hisa map from a Banach spaceV to a reproducing kernel Hilbert
space of functions on R% H corresponding to a p-smooth radial basis kernel. Then there exists
a map T, from V to an n-dimensional linear subspace H,, C H, such that

_b+d
7 - Tn||V—>L§ <ClTllyopn 4
for C > 0 independent of T and u. Moreover, (1) the subspace H,, is independent of T; (2) if T is

linear operator, T, is also a linear operator.

Proof.  The proof follows immediately from Theorem 1 in Belkin (2018) by substituting Theorem
A therein with the bound in Equation (7).
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The following theorem is adapted from Theorem 2 in Belkin (2018) for f-smooth kernels.

Theorem 3 Let K be a p-smooth radial basis kernel, and 4,(KC,,) be the i largest eigenvalue of K .
Then there exists C > 0 such that

f+d

A, SCimd.
Proof.  The proof follows by combining Theorem 2 above with Lemma 1 in Belkin (2018).

Corollary 2 Assume that max,egmin, <;<, I|s — s; || < n~Y/% There exists C > 0 independent of n
such that

/15") <Cni /%1 foralli=1, ..., n. ®)

Proof.  This follows immediately from applying Theorem 3 with y = % Z?zl 6s,and f = 2v.

Here, it is natural to enquire about a matching lower-bound for the eigenvalues Agn) under a
suitable condition on the sampled point locations. To develop a rigorous framework, we lay down
the following assumptions and provide heuristics and numerical evidence to show why these
assumptions are expected to be true.

Assumption1 Assume that min, o, lls; — 5l < n~1/4, There exists ¢ > 0 such that

Agn) >cni~2/4-1 foralli=1, ..., n. 9

The lower bound (9) holds for the largest eigenvalues. A lesser known result of Schaback
(1995) shows that (9) also holds for the smallest eigenvalues with i < n. However, there is no
rigorous result for the lower bound of eigenvalues in full generality. Particularly interesting cases
are i < n* for 0 < a < 1, which leave the lower bound (9) open. In Figure 1, we plot the val-

ues of Agn) /(ni~2v=1) with sampled points on the regular grid [0, 1) N n™1Z for v = 0.9, 1.5, n

aSATTm AT T T T — v=09,0=05

-4- v=0.9,0=0.75
-=- v=09,0=09
‘+~~ —+ v=15,a=05

Fm

R B L NP A Sl Syl T winlir oy et~ it St Tk ‘@ v=15,0=075

% v=15,0=09

0 1000 2000 3000
n

FIGURE 1 Trend of /IE”)/(ni‘ZV/d‘l) fori = n*when the points are sampled on the regular grid [0, 1) N n~1Z.
Parameters ¢ and ¢ in Matérn covariogram are set to be 1.0 and 1.0, respectively



TANG ET AL. | 1051

ranging from 100 to 3000, and i = n%3, n%73, n%°, Consistent with Assumption 1, the profile plots
of /15") /(ni=2V/4-1) get flat as n increases. Furthermore, we see that when the points are sampled
on|[0, 1) n n~'Z, the quantity /15") /(ni~2*~1) tends to converge as n, i become large. This observa-
tion leads to the following stronger conjecture.

Assumption 2 Let y, = [0, 1)¢ n n~/47% be the regular grid. There exists A = A(¢, v, d) > 0
such that

/IE")/(ni‘zv/d‘l) A asn i— o (10)

Besides the numerical evidence, let us explain heuristics underlying this assumption from a
theoretical viewpoint. First, Assumption 2 has been rigorously proved in Chen et al. (2000) for
Ornstein—-Uhlenbeck processes, corresponding to the case of v = 1/2 and d = 1. Furthermore,
for the regular grid y,, the scaled covariance matrix #Kn is viewed as the discretisation of the
integral operator

Kf(x):= L K, (s —t;1, ¢, v)f (t)dt,

0,1]4

where f'is a test function. The integral operator K has eigenvalues A; > 4, > --- > 0. Intuitively,
AE") /n =< A;which is at least true for fixed i. Santin and Schaback (2016) observed that 4; = hiz_ » With
h; the i-width of the unit Sobozlve)(g ball in the L? space. Using a differential operator approach, Jerome
(1972) showed that lim;_, i 2¢ h; = C’. The above two results imply that lim,_, i?"/4*+1 4, = C"2
Thus, we expect that /15") J(ni=2v/4-1y < j2v/d=1}. = C" as n, i — o, though the error| /15") /n— Alis
not easy to estimate.

To proceed further, we need the following lemma which is proved by elementary calculus.

Lemma 2 Assume that max,cgmin, o, ||s — s;|| < n~/4 and min, 4o, II'5; — 51| < n71/% Let
= 1/G2 162y b= ™ 22 5220y 00— 17022 1+ 62 A and BO. = AW g0
i =1/(7, +6,4,7) by = 4 /(g +0,,4;7), @y, = 1/ (75 + 0%4;7), and by, = 47 a,

1. There exists C > 0 such that

n n () 1 n 1 n 1
2 g2 2v/d 2v/d 2 2v/d
Y a2 <n, Y Va2 < Cn¥a, Y b, < Cn/E, Y b2 < Cn2id,
i=1 i=1 i=1 i=1

2. Under Assumption 1,

1
Z AMWa2 - pava
i ni ’

n n
i=1 i=

&, i

~ 2v/d+1 ~ 2v/d+1
b,; < n2v/d+1, Ebni,\nv/+.
1 i=1

3. Under Assumption 2, there exist ¢, (o), c;(0), c;(6) > 0such that as n — oo,

n n n

1 1 1

7 Z (a?li)z - ¢1(0), n Z (a?li)“ - ¢y(0), m Z (b(,),i)z - ¢3(0).
i=1 i=1 i=1
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2.2.2 | Consistency of the maximum likelihood estimator

We begin our development of the consistency of the maximum likelihood estimator of the nugget
r and the mlcroergodlc parameter ¢ ¢2V under Assumption 1. We point out that the con51st—
ency of the nugget T is true without Assumption 1 on the lower bound for eigenvalues, and 7 r
remains consistent even when o2 and ¢ are misspecified.

Theorem 4 Assume that (z3, 63) € D, x,:= {8y, ..., 5, } satisfy
max min ||s—s;|| xn -1/d  and min_||s;—s; | =n /4,
seS1<i<n 1<i#j<n

Let P, be the probability measure of the Matérn model with covariogram K( - TO, 00, ¢g, V). Then
22 - TO almost surely under P, Further assume that the conditions in Assumption 1 hold. Then

and)f“ — & almost surely under Py,

Proof.  Let P; be the probability measure corresponding to K(-; ¢1, v), where
2 =K /¢2V We first prove that 7 r - r almost surely under P, From Theorem 1 we
know that P, = P;. Hence, it sufflces to prove that 7 1 - 7 2 almost surely under P;. Under

P,, we can rewrite (5) as

g to %’lfn) - )
(2%, 62, ¢)) = Z 2+"2/1(")W + Zlog(r +524), (11)
i=17T

iid . g . A .
where W; N (0, 1). The maximum likelihood estimator Tfl of 72 satisfies

n n
—22). Y Wi = Y 21 - Wk + Z @2 - 2wHa"al. (12)
i=1 i=1
wherea,; = 1/(1 +6 /1(")) By Lemma 2 (1), we have 31" ; @, < nand )} (") a? < Cnl/@v/d+1)
for some C > 0. Using the argument of Etemadi (2006), we obtain

n 2.2 2 2 nooA2 21172y (M) 2
i Wiay 1 T T = W)a 0 and 2iey @ — WA " ay 0
~ 7 b 3 —0 an T 0.
Xim1 O i1 O im1 O

Combining the above with (12), we have 12 - 7, 2 almost surely under P,

Next we show that & ¢2V - Ky almost surely under P, Since T T - 1 2 almost surely under P,
and a =Ko /P>, it sufﬁces to show that 5, 6% = argmingagre g f(ro, c? ¢1) converges almost surely
too] under P,. Again, since P, = P, it sufflces to show 8:1 - 0'% almost surely under P;. Under P;,

nog24 2/1(?1) n

t(eg 0’ )= ) = fo S S W Zlog(ro+62/1(")) (13)
i=1 T, +o-2/1
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Taking the derivative of (13) with respect to 6% and equating to zero, we obtain

n n
D bu(WE-1) =) —02) Y bZWE. (14)
i=1 i=1

with b,; = 2(") /(=3 + "'2/1(")). It suffices to prove that 3,7 | b,,(W2 —1)/ 3.1, b2 W? converges al-
most surely 0 0. Since

Z:l ni(VV'2 - 1) _ 2:1:1 bni("Vi2 - 1) . Zln 1 “ni . Zz 1 biz
zl 1 bizfuvviz Z?:l bni 21 1 bil Zl 1 bf”‘/Vl.z

and YL, by, < nt/@V/d+D) 3 p2 < pl/@v/d+D by T emma 2 (2), we get

n 2 n 2
Yic b(W2 =1) 0 and 2io1 by

n ST p2 2
izt bui Zim bW,

Combining the above estimates with (14), we have 8; 2 0'% almost surely under P;.

It is difficult to establish the consistency of the joint maximum likelihood estimates of {k, 72, ¢}
(i.e. ¢ is not fixed). A related result can be found in Theorem 2 of Kaufman and Shaby (2013)
without a nugget effect. In the presence of a nugget effect, constructing such a proof becomes
difficult due to the analytic intractability of the maximum likelihood estimators for {x, 72, ¢}.
Nevertheless, our simulation studies in Section 3.3 seem to support consistent estimation of
{x, 72} even when ¢ is not fixed.

—1 a.s.

2.2.3 | Asymptotic normality of the maximum likelihood estimator
Given the consistency of the maximum likelihood estimators, we turn to their asymptotic distri-
butions. For simplicity of presentation, we let S = [0, 1]¢ in the following theorem. The asymp-

totic normality described below holds for any compact set S ¢ R<.

Theorem 5 Assume that n is the d™ power of some positive integer, y, = [0, 1) n n=1/474 and
the conditions in Assumption 2 hold. Let

a%:=1/(z2+02A™) and b2;:=2"ad for1<i<n.

There exist constants c;, c,, ¢3 > 0such thatasn — oo,

n n
1 012 1 0 \4 0 )2
- Z(ani) -, = Z (a,)" = ¢, m Z(b )° = cs. 1s)
i3 nia
We have
A~ (d)
V@2 —12)—5 N(0, 2tdc, /), (16)
and

A~ (d)
/DG — ko) — N (0, 267 /c3), a7
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under P, corresponding to the Matérn model with covariogram K(- TO, 01, ¢y, v), with

2
1.—K0/¢1V.

Proof. With Assumption 2, the limits in Equation (15) follow from Lemma 2 (3). By Equation
(12) and Theorem 4, we have

pV/n T, (1= WA’ +o7/n T, (1 - WA (a),)?

Vi(z2 = 25) = (1 +o(1) T Wiay)?

(18)

We know that 37 | W2(a)?/ ¥, (a®)* — 1. In addition,

BVASE, (- WA L (- WP Ty TL @)

- — N(0,27
He N

where the first term on the right hand side converges to N'(0, 1) by Lindeberg’s central limit theo-
rem, and the second term converges to 1(2) \/2¢,/c;. Similarly,

TV Eh (- WR@P  BE, (- WD oy I )
Z?:r (a?li)z \/2 z?zl (/lin)z(a(r)li)4 Zln=1 (agi)z

— 0, (20)

where the first term on the right hand side converges to (0, 1), and the second term converges to 0
since Y1, (AM*(a®)* =< n'/(+2v/d) Combining (18), (19) and (20) leads to (16).
By Equation (14) and Theorem 4, we get

nl/(2+4v/d) Zn bO(WZ _ 1)
1/Q+4v/d) A2 _ 2y _ =1 "nit i
n/@CH/ DG _ 52) = (14 o(1)) ST W : 1)
i=1\"ni i

Moreover,
nl/@+av/d) Z?:r bgi(WiZ_l)_Zl 1 m(W2 1) \/_nl/(2+4v/d) Z?r(boi)z
= 22
NCREE VELE? \ELey Taerw @
d
9D, N, 2/cy),

where the first term on the right-hand side converges to A'(0, 1), the second term converges to
1/2/c5 and the third term converges to 1. Combining (21) and (22) yields (17).

Du et al. (2009) showed that for the Matérn model without measurement error, the maximum
likelihood estimator 0' converges to o7 at a \/n-rate. Theorem 5 shows that in the presence of
measurement error, the maximum hkehhood estimator r has a y/n-rate while & O' has a slower
nl/+4v/d)_rate. This echoes the results of Ying (1991), Chen et al. (2000) Wlth v== and d =1 for
the Ornstein-Uhlenbeck process, where the maximum likelihood estimator Ch converges ata \/_
-rate without measurement error, but at a \/ﬁ rate in the presence of measurement error.
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2.3 | Interpolation at new locations

We now turn to predicting the value of the process at unobserved locations. Without the nugget (i.e.
7=0in(1)), Stein (1988, 1993, 1999) establish that predictions under different measures tend to agree
as sample size n — co. However, in the presence of a nugget effect, the predictive variance of y(s) at
an unobserved location may not decrease to zero with increasing sample size. In fact, the squared
prediction error for any linear predictor is expected to be at least 72 For example, let y, =v'y be
a linear predictor of y, = y(sy) at the unobserved location sy, s, & x,. Let w = {w(sy), ..., w(s,,)},
e ={e(sy), ..., €(s,)}, wy = w(sy) and e, = e(sy). The expected squared prediction error satisfies

E[ _yo)z] = [E[{(VTW—Wo)+(VT€—€0)}2] = [E[(VTW—Wo)Z] + [E[(VTS—eo)z] > 72

To see whether there can be a consistent linear (unbiased) estimate of the underlying process w(-) at
unobserved locations, consider the universal kriging estimator at an unobserved location s, given by

Z,(z% 62, )= y,(c% §)T, (% 62, o)y, (23)

where{y,(c2, $)};:=K,,(so — Si;f2, ¢, v),and(I, (2, o2, ¢)}ij 1=K, (s — S5 o2, ¢, v) +7250(i — )
fori,j =1, ..., n. The interpolant Z ,(z2, 62, ¢) provides a best linear unbiased estimate of w, under
the Matérn model with measurement error (4). By letting {K,,(¢)};;: = K,,(sp — 5;5 1, ¢, v), we have
the mean squared error of the estimator (23) follows

var.z 2 4 {2,1(12, 62, ) Wy} = og {1- Zyn(az, ¢)T1"n(12, o2, d))_lyn(a(z), o)
+7,(0%, ) T, (1% 6% $) 'K, ()T (72%, 6%, ) 1, (% d)} (24)
+22r,(0%, ) T, (1%, 62, ) 2y, (%, @),

where {7}, o7, ¢, } are the true generating values of {62, ¢, 72}. Setting (7%, 6%, ¢) = (3, 63, ¢)in
Equation (24) yields

Varfg’gé,%{zn(rg, GS, do) —wy} = ag{l — yn(Ug, ¢0)TFn(T§, 6(-2), ¢o)_17’n(6(2), do)}  (25)

Theorem 8 in Chapter 3 of Stein (1999) characterises the mean squared error of the best linear unbiased

. . 1/« - . . . .
estimate at location 0 as a(z%)ﬂ/a) (512)1 /% With observations at gj for j # 0. Here a := 2v+1 and

c¢:= Co?¢* with C defined in Equation (3). Following the same argument, it is not hard to see that the
mean squared error of the best linear unbiased estimate (based on data in R9) is of order 52v/Qvtd),
Stein (1999) proved this for observations on the whole line (with a typo in the expression (44) of Stein
(1999)). He also conjectured that the above expression for the mean-square error holds for data on any
finite interval. We conduct simulations in Section 3.4 with the nugget effect to corroborate this.

2.4 | Covariance tapering

Covariance tapering (Du et al., 2009; Furrer et al., 2006; Kaufman et al., 2008) approximates the
likelihood by setting certain entries of the covariance matrix to zero to introduce sparsity and,
hence, achieve computational benefits. In the presence of a nugget, we explore parameter esti-
mation for the Matérn model (4) with covariance tapering, which, too, have been investigated
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without the nugget by Wang et al. (2011). Let K;,p,,(x; ) be a tapering function, which is an iso-
tropic correlation function such that K, (x;y) = 0 for Ix| > y. The tapered covariogram of the
Matérn model with measurement error is given by

K(e;7%, 0%, ¢, v, 1) = K572, 6%, ¢, VIK gper(X57), (26)

where K(x; 72, 62, ¢, v) is defined in Equation (4). Recalling the notations from Section 2.2, we
obtain the tapered covariance matrix of the observations y = (y;, ..., y,,)" as

V,=V,0T(y) =7, +K,o T(y), (27)

and the (rescaled) negative log-likelihood is Z(z, 62, ¢): = log detV, +yT V. 'y, where T(y) is the
n X nmatrix with (i, j)-th entry K, y) and o denotes the element -wise (Schur or Hadamard)

(s; —
aper
matrix product. For any fixed ¢p; > 0, let (T taper, W(P1), & (¢1)) be the maximum likelihood esti-

taper n
mators of the tapered Matérn model, i.e.,

(Ttaper n(¢1) taper n(¢1 ) = argmin(rz,oz)eD 2(72’ o?, $1) - (28)

To address the identifiability issue of the tapered Matérn model, we require the following assump-
tion on the tapering function which is due to Kaufman et al. (2008).

Assumption 3 The spectral density fj,,., (1) of the tapering function Ky,p,,( - ;7) exists, and
that there exist e > max{ %, 1—-v}and M, < oosuch that

13

—d’ u Z 0.
(1+LL2)V+E+E

ftaper(u) < (29)

Theorem 6 Ford <3, letS c R%be a compact set. Fori= 1, 2, let P; be the probability measure
of the Gaussian process on S with mean zero and covariance K( r a , &;, v, v) defined
by Equation (26). Under the conditions in Assumption 3, we have the followmg results: (i) if
t2 # 72 then Py 1 Py and (ii) if r = 72, then P, = P,if and only if 627" = 62¢3".

Proof. 'We know (Kaufman et al., 2008, Theorem 1) that Pi = P;fori =1, 2 under Assumption
3. Therefore, the proof is an immediate consequence of our Theorem 1 in Section 2.

To progress further, we recall the crucial role of the eigenvalues of — L 5K, in analysing the maxi-
mum likelihood estimators of the Matérn covariogram parameters W1th measurement error. With
covariance tapering, we need estimates on the eigenvalues of =K, oT(y). Let { /1 ,i=1, n}
be the eigenvalues of =K, oT(y) in decreasing order. Under Assumptlon 3, the spectral dens1ty
f of the tapered Matern model with covariogram (26) satisfies f(u) < f(u) =< u=2"-4 ((B.1) in
Kaufman et al. (2008)). By applying Theorem 3, we have for max,cgmin; ., [|s = 5;|| < n -1/d

Zg") <cni~?/%-1 foralli=1, ..., n. (30)

In order to further study the maximum likelihood estimates of the tapered Matérn model, we need
some assumptions on the eigenvalues { ign), i=1, ..., n} The following two assumptions are ana-
logues of Assumptions 1 and 2.
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Assumption 4 Assume that min, i<, [|5; — 55 < n~1/d There exists ¢ > 0 such that

2 Cm-—z\//d—l

A €y

foralli=1, ..., n

Assumption 5 [0, 1)¢ n n~1/47% be the regular grid. There exists A = A(¢, v, d) > 0

such that

Let y, =

;lgn)/(ni'zv/d'l) —-A asni— oo (32)

In Figure 2, we plot the values of ;15") /(ni~?*~1) with sampled points on the regular grid
[0, 1) nn71Z foru =0.9, 1.5, n ranging from 500 to 4000, and i = n%7,n%8 n%°. The tapering function
for obtaining A " is a stationary Wendland function Kmper(x y)=Q0Q-|x|/ y)4(1 + 4|x| /v) where
y=0.5 (Wendland 1995). Consistent with Assumption 4 and 5, the profile plots of /1 / (ni—2v/d-1)
flatten as n increases and the quantity A () /(ni~2V~1) tends to converge as n, i become large

Now we state the consistency results for the maximum likelihood estimators of the tapered
Matérn model.

Theorem 7 Assume that (r%, 0(2)) €D, y,:={Sy, ..., S, } satisfy
max min ||s -5l <n/? and  min |Is;—s;|| <07V,
s€S1 1<i#j<n

and the conditionsin Assumption 3 hold. Let P, be the probability measure of the tapered Matérn model

with covariogram K( - TO, 60, bo> Vs 7).

1. We have T rmpern - r almost surely under P,

2. Assume that the condltlons in Assumption 4 hold. Then ¢ mp or, n¢2v — ko almost surely under P,

3. Assume that n is the d™ power of some posmve integer, y, = [0, 1)¢ n n‘l/ 474 and the con-
ditions in Assumptions 3 and 5 hold. Let @, ,:= 1/(1 + 02 /l( ) and b = /I(")a0 Jorl<i<n
Then, there exist constants ¢, ¢,, &3 > 0 such that asn — o,

r——-——
S— o TT- B - TR — e Il
0.121 SRREERLS, ML s - - - - =
\
\
\ —-— v=09,0=07
N \
0.10 . 4. v=09,0=08
\
‘\ - v=09,0=0.9
0.081 '\ -+ v=15,0=07
w., BT @ v=15,0=08
0.06 ‘+~~-___+ % v=15,0=09
— 8. TT== i S T
*eell [ W P +
ooad  TT¥m—mme— ¥ ==l b ERRE R E SERFERFUREY FEEEFRCOUEY PP -
1000 2000 3000 4000

FIGURE 2 Trendof ;lg")/(ni‘zv/d‘l) for i = n%when the points are sampled on the regular grid [0, 1) n n~1Z.
Parameters ¢ and ¢ in Matérn covariogram are set to be 1.0 and 1.0, respectively
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n n n
1 0y s 1 ~0\d .~ 1 202 o
— 2@y -, (@)=, YR 3 (bo)? - & (33)
i=1 i=1 i=1
We also have
) o
\/—( Tiaper,n )_)N(O’ 273(32/0?)’ (34)
and
d
DG g i) DN, 208 /25). (35)

Proof.  Let P, be the probability measure corresponding to the tapered Matérn covariogram
K(-373, 02, ¢y, v, v), Where o3 : = Ko/d)%”. From Theorem 6, we know that P, = P,. Under
P, the (rescaled) negative log-likelihood is written as

2 A2 c Tz +07 zgn) 2 - 5(n)
O R pper P = ), — Wit Zlog(r + Brpernti s (36)
i-1 72 +0 .
taper,n i

where W, " N(0, 1). The remainder of the proof follows analogouly to Theorems 4 and 5 by using
Assumptions 4 and 5 instead of Assumptions 1 and 2.

2.5 | Consistency and asymptotic normality ford > 5

In contrast to d < 3, the parameters {22, 62, ¢p}are consistently estimable for d > 5. It is, therefore,
of interest to establish if the maximum likelihood estimators of {72, 62, ¢} are consistentin d > 5.
Here we consider a slightly weaker version of the problem which should offer sufficient insights
into methods for Gaussian processes for d > 5.

Recall the development in Section 2 2. Since the scale parameter ¢, is consistently estimable,
there exists an estlmator d; such that ¢ — ¢, almost surely (d; can be any consistent estlmator
of ¢y). Let (7 (d) ), 6 C (¢/ )) be the maximum likelihood estimators based on the estimator d)

0 A 2 A . !
22(¢,), 62($,) = argmin > ,2ep?(7?, 6%, ¢,). (37)

A/ A~/
The next theorem establishes consistency of the maximum likelihood estimators (’r‘z(d>n), 8i(¢n)).

Theorem 8 Assume that (3, o) € D and the locations in jy,:={sy, ..., 5, } satisfy
max min ||s —s;|| < n /% and  min II's; —s;ll < n-1/4.
seS1<itn 1<i#j<n

Let P, be the probability measure of the tapered Matérn model with covariogram K( - To’ 00, g, V).

Lo Al
1. We have 12(¢>n) - rg almost surely under P,
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2. Under Assumption 1, Efl((?);) - ag almost surely under P,

3. Let n be the d™ power of some positive mt_§er )(n O 1)¢ n n~Y47% and suppose Assumption
2 holds. Let @),:=1/(z% + 52/1(" )and b /l @0, for 1 < i< n. Then, there exist constants
C1,Cp, C3 > Osuch thatas n — o,

n n n
1 2 - 1 —0 \4 - 1 -0 2 —
; Z (agl) — Cq, z Z (a?”.) — Cy, m Z (bm) — C3. (38)
i=1 i=1 i=1
‘We also have
oA (@ o
ViGXB,) - 72 —> N0, 2282, /22, (39)
and
n1/<2+4v/d>(“(¢ )— ag)—w(o 2/C5). (40)

Proof. To study the asymptotic properties of (7 (¢ ),C (¢ )), it suffices to consider

(qbo) o (¢o)) = argmin 2, GZ)GDL”(T o2, o) Recalhng that P, is the probability mea-

sure of the Matérn model with covariogram K( - To’ ao, ¢y, v), the (rescaled) negative log-
likelihood (5) is written as

T0+ 2(") n

£(22, 02, ) = Z R Zlog(r +0247) (41)

=1 T2+ 024, (n)

under P, where W; i N(0, 1). The reasoning in Theorems 4 and 5 shows that ("2(¢0) o W(bo)) are
con51stent and are asymptotically normal under various assumptions. As a result, the same holds for
(d) ), (d) )). This completes the proof.

3 | SIMULATIONS
31 | Set-up

The preceding results help explain the behaviour of the inference from Equation (1) as the sample
size increases within a fixed domain. Here, we present some simulation experiments to illustrate
statistical inference for finite samples. We simulate data sets based on (1) in a unit square setting
v = 1/2 and 62 = 1. We pick three different values of the nugget, 2 € {0, 0.2, 0.8}, and choose
the decay parameter ¢ so that the effective spatial range is 0.15, 0.4 or 1, that is the correlation
decays to 0.05 at a distance of 0.15, 0.4 or 1 units. Therefore, we consider 3 X 3 = 9 different pa-
rameter settings. For each parameter setting, we simulate 1000 realisations of the Gaussian pro-
cess over n = 1600 observed locations. The observed locations are chosen from a perturbed grid.
We construct a 67 X 67 regular grid with coordinates from 0.005 to 0.995 in increments of 0.015
in each dimension. We add a uniform [ —0.005, 0.005]? perturbation to each grid point to ensure
at least 0.005 units separation from its nearest neighbour. We then choose n = 1600 locations out



1060 | TANG ET AL.

of the perturbed grid. Codes for studies in this Section are available on https://github.com/LuZha
ngstat/nugget_consistency.

3.2 | Likelihood comparisons

Theorem 1 suggests that it is difficult to distinguish between the two Matérn models with meas-
urement error when their microergodic parameters {x, 72} are close to each other. This prop-
erty should be reflected in the behaviour of the likelihood function for a large finite sample. To
see this, we plot interpolated maps of the log-likelihood among different grids of parameter val-
ues. We consider the three values of rg in Section 3.1 and ¢, = 7.49, which implies an effective
spatial range of approximately 0.4 units, and pick n = 900 observations from the first realisation
generated from Equation (1). This yields three different data sets corresponding to the three
values of 1(2). We map the negative one-half of the log-likelihood in Equation (5).

The interpolated maps of the log-likelihood are provided in Figure 3 as a function of
(2, ¢) in the first two rows and of (62, ¢) in the third row. The first column presents cases
with 7, =0, while the second and the third columns are for 7, = 0.2 and 0.8, respectively.
The grid for ¢ ranges from 2.5 to 30 so that the effective spatial ranges between 0.1 and
1.2. We specify the range of 72 and 62 to be (0.0, 1.0) and (0.2, 4.2), respectively, so that
the pattern of the log-likelihood map around the true generating values of parameters
can be captured. All the interpolated maps, including the contour lines, are drawn to the
same scale.

The first row of Figure 3 corresponds to 62 = ag = 1, the second row corresponds to x = k,and the
third row corresponds to 2= 1(2). In the first row, we observe that similar log-likelihoods are located
along parallel lines ¢ + 72 = Const. This suggests that one can identify the maximum with either a
fixed ¢ or 7> when 62 = ag. In the second row, we find that contours for high log-likelihood values are
situated around the actual generating value of the nugget, supporting the identifiability of the nug-
get as provided in Theorem 1. The log-likelihood along the ¢-axis has a flat tail as ¢ decreases when
fixing the nugget, which indicates having the same value of the microergodic parameter x = o2¢*
can result in equivalent probability measures (Theorem 1). Finally, the third row reveals that the log-
likelihood closely follows the curve 62¢ = Const, thereby corroborating Theorem 1.

3.3 | Parameter estimation

We use maximum likelihood estimators to illustrate the asymptotic properties of the parameter
estimates. To find the maximum likelihood estimators of {62, 72, ¢, '}, we use the log of the
profile likelihood for ¢ and 5 = 2 /62, given by

log{PL(¢, n)}  — log[det{ p(p) +nl, }] - 2
2 2 (42)

e [T -1

Ttog [y (o) +n1,) 1y

where log{PL(¢, )} = log[sup { L(c2, ¢, n)}], p(¢) is the correlation matrix of the underlying pro-
o2

cess w(-) over observed locations y,. We optimise (42) to obtain maximum likelihood estimators 3)
and #. The maximum likelihood estimator for o2 is Ei =y {p(¢p)+7I,}~1y/n. Calculations were
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o o? o

FIGURE 3 Interpolated maps of the log-likelihood. Darker shades indicate higher values. The first row
corresponds to 6% = ag = 1, the second row corresponds to 62¢ = ¢, = 7.49, and the third row corresponds to
7, = t2 The columns correspond to 7, = 0.0, 7, = 0.2, and 7,, = 0.8, respectively

executed using the R function optimx using the Broyden-Fletcher-Goldfarb-Shanno algorithm
(Fletcher, 2013) with ¢ > 0 and 5 > 0, and 5 = 0 for models without a nugget.

We calculate estimators for {72, ¢, 62, '} for each realisation with sample sizes 400, 900 and
1600. For each parameter setting and sample size, there are 1000 estimators for {72, ¢, 62} and «.
Figure 4 depicts the histograms for the maximum likelihood estimators for 72, ¢, 62 and k obtained
from simulations with the parameter setting { ¢, T%} = {7.49, 0.2}. There is an obvious shrinkage
of the variance of estimators for 72 and x as we increase the sample size from 400 to 1600. We also
observe that their distribution becomes more symmetric with an increasing sample size. In contrast,
the variance of the estimators for 62 and ¢ do not have a significant decrease as sample size increases.
This is supported by the infill asymptotic results. The maximum likelihood estimators for 2 and
are consistent and asymptotically normal. The maximum likelihood estimators for ¢ and o2 are not
consistent and, hence, their variances do not decrease to zero with increasing sample size.

Tables 1-4 list percentiles, biases, and sample standard deviations for the estimates of 72, ¢,
o2 and « for each of the 9 parameter settings and offer further insights about the finite sample
inference. When the spatial correlation is strong (¢ is small), 72 tends to be more precise, while
67 tends to have more variability. Unsurprisingly, the measurement error is easily distinguished
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FIGURE 4 Histograms of 72 (top row), 6 (second row), ¢ (third row) and « = 62¢*" (fourth row) obtained
from simulation experiments with ¢, = 7.49, 72 = 0.2

from a less variable latent process w(-). Highly correlated realisations of w(-) results in less precise
inference for o2 If the nugget is larger, then the estimators for ¢, o2 and « are less precise; the
presence of measurement error weakens the precision of the estimates.
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3.4 | Interpolation

We use the kriging estimator in Equation (23) and its mean squared prediction error (MSPE)
in Equation (24) to explore spatial interpolation in the presence of the nugget. We use (23) to
predict the underlying process w(-) over unobserved locations. From Theorem 8 in Chapter 3 of
Stein (1999), we expect a clear trend of convergence for d = 1. Let v = 1/2, T(z) =0.2, 0'(2) =1.0and
¢y = 7.49. We use (1) to generate observations over 12,000 randomly picked locations in [0, 1].
We compute the MSPE using three hold-out points {0.25, 0.5, 0.75} € [0, 1] for different subsets
of the data with sample sizes ranging from 500 to 12,000. Figure 5a shows that the MSPE tends
to approach 0 as sample size increases. This corroborates Stein’s conjecture that the underlying
process w(-) in (1) can be consistently estimated on a finite interval.

Next, we use the simulated data set with n = 1600 locations over the unit square used in
Section 3.3. We calculate the MSPE using (24) and (25) over a 50 X 50 regular grid of locations
over [0, 1]% This is repeated for different data sets with sample sizes varying between 400 and
1600. Figure 5b shows that the MSPE decreases as sample size increases. This trend still holds
when the predictor is formed under misspecified models, a finding similar to those in Kaufman
and Shaby (2013) without the nugget. If v is fixed at the true generating value, then predictions
under any parameter setting are consistent and asymptotically efficient with no nugget effect.
The proof in Kaufman and Shaby (2013) is based on Stein (1993), hence their results do not carry
over to our setting due to the discontinuity in our covariogram at 0. (This technical difficulty
was also pointed out by (Yakowitz & Szidarovszky, 1985, p. 38).) However, their results suggest
empirical studies to explore the asymptotic properties of interpolation.

TABLE 1 Summary of estimates of 7% percentiles, bias and sample standard deviations (SD)

i b0 n 5% 25% 50% 75% 95% BIAS SD
0.200 19.972 400 0.000  0.111 0.189 0.269 0.382  —0.007 0.112
900 0.102 0.159 0.197 0.235 0.289  —0.004  0.056
1600  0.141 0.175 0.199 0.221 0.252  —0.002  0.035
7.489 400 0.110 0.162 0.197 0.232 0.281 —0.003  0.053
900 0.157  0.181 0.198 0.216 0.238  —0.002  0.025
1600  0.170 0.187 0.199 0.211 0.227  —0.001  0.017
2.996 400 0.152 0.177 0.196 0.217 0.248  —0.003  0.029
900 0.173 0.188 0.199 0.212 0.227  0.000 0.017
1600  0.182 0.191 0.200 0.208 0.219  0.000 0.012
0.800 19.972 400 0.321 0.619 0.777 0.903 1.090  —0.047  0.229
900 0.615 0.725 0.792 0.861 0974  —0.009 0.110
1600  0.682  0.746 0.795 0.841 0.910 —0.006  0.069
7.489 400 0.582  0.714 0.789 0.859 0974  —0.015 0.114
900 0.689  0.752 0.794 0.835 0.897  —0.006 0.065
1600  0.725 0.768 0.799 0.826 0.869  —0.003  0.044
2.996 400 0.662  0.738 0.789 0.845 0.931 —0.007  0.081
900 0.720  0.766 0.797 0.828 0.871  —0.004  0.047

1600 0.737 0.775 0.799 0.823 0.856 —0.002 0.036
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TABLE 2 Summary of estimates of ¢: percentiles, bias and sample standard deviations (SD)

7 @0 n 5% 25% 50% 75% 95% BIAS SD

0.000  19.972 400 16.151  18.355 19.992 21.798 25.003 0.223  2.708
900 16,706 18.642 20.072 21.548 23.928 0.182  2.185
1600  17.077  18.800 20.041 21.403 23.557 0.144  1.968

7.489 400 5.237 6.680 7.643 8.830 10.792 0.324 1.672
900 5.430 6.722 7.659 8.655 10.382 0.280 1.511

1600 5.520 6.730 7.664 8.687 10.245 0.255 1.450

2.996 400 1.584 2.489 3.297 4.315 5.859 0.479 1.339
900 1.605 2.468 3.316 4.298 5.792 0.463 1.299

1600 1.624 2.490 3.259 4.279 5.613 0.448 1.281

0.200 19.972 400 13.626 17.185 20.058 23.260 28.138 0.358 4.427
900 15.117 17.938 20.059 22.188 26.097 0.221 3.321

1600 15.749 18.328 19.972 21.728 25.02 0.158 2.779

7.489 400 4.596 6.271 7.757 9.377 12.430 0.535 2.364
900 5.081 6.521 7.820 9.179 11.572 0.480 1.998

1600 5.195 6.557 7.774 9.079 11.391 0.410 1.838

2.996 400 1.436 2.291 3.244 4.415 6.725 0.563 1.707
900 1.534 2.383 3.243 4.269 6.405 0.48 1.518

1600 1.570 2.420 3.217 4.208 6.130 0.453 1.424

0.800 19.972 400 11.804 16.533 20.359 24.806 33.859 1.315 6.932
900 14.650 17.405 20.077 23.065 27.831 0.490 4.175

1600 15.340 17.911 20.197 22.544 26.195 0.396 3.352

7.489 400 3.878 6.029 7.754 9.866 14.034 0.670 3.038
900 4.468 6.266 7.745 9.317 12.249 0.475 2.402

1600 4.691 6.430 7.735 9.142 11.663 0.405 2.157

2.996 400 1.259 2.281 3.279 4.723 7.385 0.681 1.975
900 1.443 2.364 3.249 4.38 7.199 0.603 1.771

1600 1.479 2.382 3.216 4.263 6.591 0.509 1.602

To compare with results in Kaufman and Shaby (2013 Section 2.3), we examine two ratios

() Varr(z)’ag,% {2\"(7%, U%’ ¢1) - WO} d ()
i and (i .
~ 2 2 ’ ) 2 2
varz 52 4 {2475, 63, $o) = wo} var o2 g {Z(7g, 07, $1) — wo)

5 (22 2
varz o2 o {Zn(zg, 075 1) —wp}

Figure 5c compares the ratio defined by (i). This ratio tends to approach 1 only when rf = Té andk = k.
Unlike the case with no nugget, asymptotic efficiency is only observed when the estimator is fitted under
models with Gaussian measures equivalent to the generating Gaussian measure. Figure 5d plots the ratio
defined by (ii). As in Figure 5c, this ratio also tends to approach 1 only when T% = 1(2), K =K

Based on our simulation study, we posit that the asymptotic efficiency and asymptotically

correct estimation of MSPE hold only when 72 = 77

o K=Ko-
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TABLE 3 Summary of estimates of 6% percentiles, bias and sample standard deviations (SD)
7 o n 5% 25% 50% 75% 95% BIAS SD
0.000 19.972 400 0.835 0.928 0.992 1.063 1.172 —0.004 0.103
900 0.859 0.938 0.997 1.063 1.155 0.001 0.091
1600 0.865 0.942 0.998 1.057 1.151 0.002 0.087
7.489 400 0.721 0.860 0.976 1.109 1.374 0.000 0.198
900 0.724 0.872 0.980 1.104 1.344 0.001 0.192
1600 0.733 0.871 0.978 1.111 1.356 0.002 0.189
2.996 400 0.527 0.700 0.905 1.217 1.856 0.014 0.446
900 0.532 0.708 0.900 1.216 1.843 0.010 0.427
1600 0.537 0.705 0.914 1.204 1.845 0.011 0.423
0.200 19.972 400 0.735 0.890 1.012 1.127 1.280 0.009 0.167
900 0.830 0.928 1.001 1.085 1.203 0.008 0.114
1600 0.860 0.941 1.000 1.071 1.170 0.008 0.097
7.489 400 0.706 0.848 0.978 1.129 1.435 0.006 0.22
900 0.732 0.855 0.972 1.128 1.373 0.002 0.203
1600 0.731 0.857 0.970 1.116 1.374 0.000 0.195
2.996 400 0.527 0.700 0.905 1.217 1.856 0.014 0.446
900 0.532 0.708 0.900 1.216 1.843 0.010 0.427
1600 0.537 0.705 0.914 1.204 1.845 0.011 0.423
0.800 400 19.972 0.653 0.874 1.025 1.208 1.531 0.050 0.265
900 0.761 0.911 1.014 1.110 1.257 0.011 0.149
1600 0.826 0.931 1.009 1.085 1.197 0.009 0.113
7.489 400 0.640 0.848 1.004 1.174 1.487 0.027 0.263
900 0.701 0.862 0.990 1.146 1.421 0.016 0.225
1600 0.710 0.860 0.985 1.129 1.413 0.012 0.215
2.996 400 0.482 0.715 0.955 1.254 1.916 0.047 0.482
900 0.517 0.720 0.950 1.240 1.874 0.044 0.462
1600 0.524 0.735 0.968 1.250 1.839 0.045 0.449
3.5 | Bayesian inference from finite samples

The asymptotic results in the preceding sections imply that a misspecified value of ¢ does not
violate the consistency and asymptotic normality of the maximum likelihood estimator of the
nugget 72 or of the microergodic parameter x = 62¢*". In order to assess the extent to which
these asymptotic results can guide practical implementation of model fitting for finite samples,
we conduct a sensitivity test to check the stability of the inferences of 72 and k from finite samples
under different specifications for ¢. Here, we present inferences for 72 and « based on a Bayesian

analysis using finite samples.

We generate data over n = 1600 observed locations situated on the perturbed grid described in
Section 3.1. We use a zero-centred Matérn model with measurement error to generate the data,
where v = 1/2, 6> =1, 72 = 0.5 and ¢ = 9.98. We fit the simulated data through a zero-centred
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TABLE 4 Summary of estimates of x: percentiles, bias and sample standard deviations (SD)

7 &0 n 5% 25% 50% 75% 95% BIAS SD
0.000 19.972 400 17.200 18.596 19.752 21.117 23.197  —0.045 1.881
900 18.098 19.221 19.957 20798 21974  0.035 1.177

1600  18.764 19.457 19.973 20.531 21.399  0.039 0.805

7.489 400 6.538 7.092 7.499 7.943 8.568 0.032 0.619

900 6.903 7.236 7.500 7.784 8.146 0.018 0.387

1600  7.061 7.317 7.491 7.680 7.979 0.013 0.280

2.996 400 2.666 2.869 3.004 3.158 3.369 0.018 0.213

900 2.780 2915 3.001 3.103 3.254  0.012 0.142

1600  2.841 2.935 3.000 3.077 3.191 0.011 0.106

0.200 19.972 400 11.760 16.227  20.111 24.691 31.242  0.677  6.052
900 14.827 17.806 19.879  22.566  26.735  0.313 3.693

1600  16.421 18.434  19.943 21.624  24.404  0.186 2.528

7.489 400 5.116 6.546 7.552 8.825 11.045  0.268 1.802

900 5.999 6.843 7.605 8.404 9.645 0.177 1.110

1600  6.197 7.033 7.585 8.141 9.085 0.105 0.850

2.996 400 2.010 2.546 3.040 3.533 4.322 0.092  0.716

900 2.282 2.706 3.028 3.343 3.900  0.055 0.493

1600  2.434 2.779 3.012 3.292 3.724 0.040  0.384

0.800 19.972 400 8.846 15.161 20.858  28.202 47108  3.314 12.319

900 12.700 16.839 20.077 24.320 31.399 0.830 5.715
1600 14.846 17.751 20.215 22.941 26.997  0.530 3.888

7.489 400 4.080 5.980 7.677 9.679 13.537 0.591 2.929
900 5.084 6.394 7.626 8.923 10.918 0.269 1.808
1600 5.598 6.675 7.622 8.546 10.030 0.169 1.361
2.996 400 1.708 2.444 3.093 3.849 5.432 0.259 1.175
900 1.999 2.626 3.114 3.666 4.534 0.185 0.789
1600 2.210 2.712 3.086 3.478 4.210 0.129 0.618

Matérn model with measurement error with IG(2, 1/2) and IG(2, 1) priors for 72 and 6?2, respec-
tively. When assuming ¢ is unknown, we use a Gamma prior with shape 2 and rate 2/¢, for ¢,
where ¢, is the true value of ¢ for the simulated data. We specified prior distributions with means
equal to the data generating parameter values. We also fit the model with ¢ equal to 0.2, 0.5, 1, 2,
and 5 times the value of ¢, We randomly select n = 400, 900 and 1600 samples for model fitting.
The posterior inferences are based on 4 MCMC chains, each with 500 iterations for burn-in and 500
iterations for sampling. All models are implemented in cmdstanr (Gabry & Cesnovar, 2020). The
reported R (R-hat) values for all parameters are no more than 1.02 and the reported effective sample
size for all parameters are greater than 400, showing adequate convergence of all MCMC chains.
Figure 6 illustrates the posterior distributions of 72 and . As expected from Theorem 7, the
variance of the posterior distributions decrease with increasing values of n. The posterior dis-
tributions for x and 72 approach the truth as n increases, but the inference can be highly biased



TANG ET AL.

1067

0.04

0.01

0.00

0.27

0.18

0.15

1.03

1.02

ratio

1.01

1.00

7500 10000

sample size

(@)

2500 5000

400 800 1200

sample size

(b)

ratio

0.9+

sample size

(d)

12500

S ©, 03,00
- 21,05, 4o
ir-N 13,05,2:1)0
—+ 1,260, %
-&- 12,0.505, 200
-=- 2,207, 0.500
— 21,05, 4o
xR 13,65.2%
- 13,255,%

~&- 12,0.507, 200

-=- 12,265, 0.50

e

——

2,0.507 , 200
2,205,050

- 12,1405, 110,

2, 0.907, 0.9,
215 s cg , bo

0.5t2, 63, do

FIGURE 5 The MSPE for w(-) at (a) unobserved locations with study domain [0, 1] (b) a 50 X 50 grid over

[0, 1]2 The ratio of mean square predict error (ratio) for testing asymptotic efficiency (c) and asymptotically

correct estimation of MSPE (d)



1068 | TANG ET AL.

_1.001

Q<

©

o L__8_ N S — P _ 9 - ——————————t—-—-———=

| T T mla Pt

m b

S 030

~N

e °

—

s}

S 0.10 i

5 H

173

£

0.03 4 '

0.2¢9 0.500 unknown do 209 Sdo

(a)

-
-
-+

----- gk PR T

[ )
0.20¢ 0.50¢ unknown o 2dg 5dg

Posterior of « (log scale)
w =

-
1

(b)

FIGURE 6 Posterior distributions for (a) 72 and (b) x obtained from the simulation studies in Section 5.
The decay parameter is either estimated via MCMC sampling (unknown), fixed at the true value ¢,, or fixed at
a multiples of ¢, viz. {0.2¢, ..., 5¢,}. The three boxplots in each group correspond to sample sizes of n = 400,
900, and 1600 reading from left to right. The dashed line indicates the true value

when ¢ is misspecified. The results for « are similar to those reported by Kaufman and Shaby
(2013) for a zero-centred Matérn model without measurement error. We observe stabler posterior
inference of 72 than « for the cases when ¢ is unknown or fixed at values no more than ¢,. The
case when ¢ = 5¢, calls for some additional remarks. Here, the effective spatial range (i.e. the
distance beyond which the spatial correlation drops to 0.05) is only about 4% of the maximum
inter-site distance in our domain. Hence, the spatial correlation is negligible making it difficult
to distinguish the nugget 72 from the ‘partial sill’ 62 and inference is sensitive to the prior specifi-
cation. This is a plausible explanation for the poorer estimates of 72 when ¢ = 5¢,

4 | DISCUSSION

We have developed insights into inference under infill asymptotics of Gaussian process parameters
in the context of spatial or geostatistical analysis in the presence of the nugget effect. Our work can
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be regarded as an extension of similar investigations without the nugget effect. While geostatistical
modelling usually applies to R? with d < 3, we have also developed some new insights into d > 5,
where consistency of the MLE’s for the Matérn model remains unresolved even without the nugget.

We have discussed the complications in establishing consistency and asymptotic efficiency in
parameter estimation and spatial prediction due to the discontinuity introduced by the nugget.
Tools in standard spectral analysis no longer work in this scenario. Understanding the behaviour
of such processes will enhance our understanding of identifiability of process parameters. For
example, the failure to consistently estimate certain (non-microergodic) parameters can also be
useful for Bayesian inference where we can conclude that the effect of the likelihood will never
overwhelm the prior when calculating the posterior distribution of non-microergodic parame-
ters. Section 3.5 presented some insights into the behaviour of Bayesian estimates for the nugget
in the presence of a misspecified range parameter. Formal investigations into the consistency of
the posterior distributions of Matérn covariogram parameters are certainly of interest and can be
built upon some of our developments in the current manuscript.

We anticipate further research in variants of geostatistical models with the nugget. For example,
one can explore whether some results, such as Theorem 2 in Kaufman and Shaby (2013) where ¢
is estimated, will hold for the Matérn model with the nugget. Our simulations also suggest further
research in asymptotic efficiency provided in Theorem 3 of Kaufman and Shaby (2013) in the pres-
ence of the nugget. With recent interest in scalable Gaussian process models, we can investigate
asymptotic properties of approximations indicated on the lines of Vecchia (1988) and Section 10.5.3
in Zhang (2012); (also see Banerjee, 2017, for scalable spatial process models in Bayesian settings). In
Bayesian contexts, understanding posterior consistency for the nugget will offer insights into classes
of priors. Finally, we point out that the conditions in Assumptions 1 and 2 about eigenvalue esti-
mates are expected and their rigorous proofs will constitute future research, as will further theoret-
ical explorations on Gaussian processes in R¢ for all values of d.. In particular, a rigorous proof of
Assumption 2 is challenging and will be of interest in general kernel methods and bandit problems.
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