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Abstract. In this paper we propose and analyze a class of N-player stochastic games that in-
clude finite fuel stochastic games as a special case. We first derive sufficient conditions for the Nash
equilibrium (NE) in the form of a verification theorem. The associated quasi-variational-inequalities
include an essential game component regarding the interactions among players, which may be inter-
preted as the analytical representation of the conditional optimality for NEs. The derivation of NEs
involves solving first a multidimensional free boundary problem and then a Skorokhod problem. Fi-
nally, we present an intriguing connection between these NE strategies and controlled rank-dependent
stochastic differential equations.
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1. Introduction. Recently there has been renewed interest in N-player non-
zero-sum stochastic games, inspired by the rapid growth in the theory of mean field
games (MFGs) led by the pioneering work of [21, 29, 30, 31]. In this paper, we formu-
late and analyze a class of stochastic N-player games that originated from the classic
finite fuel problem. There are many reasons to consider this type of game. First,
the finite fuel problem [6, 7, 24] is one of the landmarks in stochastic control theory,
and therefore mathematically a game formulation is natural. Second, in addition to
the interest for stochastic control theory [3, 9, 37], its simple yet insightful solution
structures have had a wide range of applications including economics and finance
[8, 10, 33|, operations research and management [17, 28], and queuing theory [26].
Third, prior success in analyzing its stochastic game counterpart has been restricted
to the special case of two-player games [11, 19, 20, 25, 27, 34] or without the fuel
constraint [12, 18].

In this paper, we will analyze a class of N-player stochastic games that include
the finite fuel stochastic game as a special case. There are N players whose dynamics
are governed by an N-dimensional controlled diffusion process with controls of finite
variation. Each player has access to some or all of M types of resources. Players
interact through their objective functions, as well as their shared resources, which are
the “fuels” of their controls. The accessibility of these resources to the players and
how these resources are consumed by their respective players are governed by a matrix
A = (a;5);; € RN*M_ For instance, when M =1 and A = [1,1,...,1]7 € RV*! this
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game (Cp) corresponds to the N-player finite fuel game where the N players share a
fixed amount of the same resource. When M = N and A = Iy, this is an N-player
game (Cq4) where each player has her individual fixed amount of resource. In general,
this matrix A describes the network structure of the N-player game. The goal for
player i in the game is to minimize her cost function over appropriate admissible game
strategies, which are specified in section 2. Note that this N-player game cannot be
simply analyzed with an MFG approach as the network structure would collapse if
an aggregation approach was applied.

We will analyze the NEs of this stochastic game. We first derive sufficient con-
ditions for the NE policy in the form of a verification theorem (Theorem 3.1), which
reveals an essential game element regarding the interactions among players. This is
the Hamilton—Jacobi-Bellman (HJB) representation of the conditional optimality for
NE in a stochastic game. To understand the structural properties of the NEs, we
proceed further to analyze this stochastic game in terms of the game values, the NE
strategies, and the controlled dynamics. Mathematically, the analysis involves solving
first a multidimensional free boundary problem and then a Skorokhod problem with
a moving boundary. The boundary is “moving” in that it moves in response to both
changes of the system and controls of other players. The analytical solution is derived
by first exploring the two special games Cp and Cq. Analyzing these two types of
games provides key insights into the solution structure of the general game. Finally,
we reformulate the NE strategies in the form of controlled rank-dependent stochastic
differential equations (SDEs) and compare game values between games Cp and Cy.

Main contributions. (i) In the verification theorem for N-player games, we obtain
the form of the HJB equations for general stochastic games with singular controls.
Unlike all previous analysis that focused on two-player games, we show that in ad-
dition to the standard HJBs that correspond to stochastic control problems, there
is an essential term that is unique to stochastic games. This term represents the
interactions among players, especially the ones who are active and those who are
waiting. This critical term was hidden in two-player stochastic games and was previ-
ously (mis)understood as a regularity condition.

(ii) The structural difference between games and control problems is further re-
vealed in the explicit solution to the NEs for N-player games. In a control problem, a
free boundary depends on the state of the system; in stochastic games, however, the
“face” of the boundary moves based on the action of herself and interaction among
players in the game (Figure 3). Note that this free boundary for stochastic games
with an infinite time horizon moves in a different sense from the one in [9] for finite
time control problems where the boundary is time dependent. Rather it moves due
to changes of the system and the competition in the game.

(iii) This difference is further highlighted in the framework of controlled rank-
dependent SDEs. To the best of our knowledge, this is the first time a stochastic game
is explicitly connected with rank-dependent SDEs in a more general form, which leads
to a fresh class of yet-to-be studied SDEs (section 7.2).

(iv) We recast the controlled dynamics of the game solution in the framework
of controlled rank-dependent SDEs. Compared with the well-known rank-dependent
SDEs, rank-dependent SDEs with an additional control component are new. We
establish the existence of the solution by directly constructing a reflected diffusion
process. (See section 7.2 for further discussions.)

(v) Finally, stochastic games considered in this paper are resource allocation
games. Resource allocation problems have a wide range of applications including in-
ventory management, resource allocation, cloud computing, smart power grid control,
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and multimedia wireless networks [14, 15, 32, 36]. However, the existing literature
has been unsuccessful in analyzing the resource allocation problem in the setting of
stochastic games. Besides the technical contributions, our analysis provides a useful
economic insight: in a stochastic game of resource allocations, sharing has a lower
cost than dividing, and pooling yields the lowest cost for each player.

Related work. There are a number of papers on non-zero-sum two-player games
with singular controls. By treating one player as a controller and the other as a
stopper, Karatzas and Li [25] analyze the existence of an NE for the game using a
BSDE approach. Hernandez-Hernandez, Simon, and Zervos [20] study the smoothness
of the value function and show that the optimal strategy may not be unique when
the controller enjoys a first-move advantage. Kwon and Zhang [27] investigate a game
of irreversible investment with singular controls and strategic exit. They characterize
a class of market perfect equilibria and identify a set of conditions under which the
outcome of the game may be unique despite the multiplicity of the equilibria. De
Angelis and Ferrari [11] establish the connection between singular controls and optimal
stopping times for a non-zero-sum two-player game. Mannucci [34] and Hamadéne and
Mu [19] consider the fuel follower problem in a finite-time horizon with a bounded
velocity and establish via different techniques the existence of an NE of the two-
player game. Very recently, [18] compared the N-player game to the MFG for the fuel
follower problem. All these works are without the fuel constraint and are essentially
built on one-dimensional stochastic control problems. Furthermore, except for [18],
all of these papers are restricted to the case of N = 2. To the best of our knowledge,
our work is the first to complete the mathematical analysis on an N-player stochastic
game based on an original two-dimensional control problem.

In our work the controlled dynamics are recast as controlled rank-dependent SDEs.
Rank-dependent SDEs without controls arise in the “Up the River” problem [1] and
in stochastic portfolio theory [13], including the well-studied Atlas model [4, 22].

Notation and organization. Throughout the paper, we denote vectors/matrices
by bold case letters, e.g., x and X. Denote 27 as the transpose of a real vector x. For
a vector z, ||z|| denotes its I3 norm. For a matrix X, || X || denotes its spectral norm.

The paper is organized as follows. Section 2 presents the mathematical formu-
lation of the N-player game. Section 3 provides a verification theorem for sufficient
conditions of the NE of the game and the existence of the Skorokhod problem for
NE strategies. Section 4 studies game Cp and section 5 studies game Cq. With the
insight from these two games, section 6 analyzes the general N-player game C. Sec-
tion 7 compares games Cp, Cg, and C, discusses the game values and their economic
implications, and unifies their corresponding controlled dynamics in the framework of
the controlled rank-dependent SDEs.

We provide some technical proofs in the online supplementary material, which
can be found at https://arxiv.org/pdf/1809.03459.pdf.

2. Problem setup. Now we present the mathematical formulation for the sto-
chastic N-player game.

Controlled dynamics. Let (X});>o be the position of player i,1 <i < N. In the
absence of controls, X; = (X},..., X}¥) is governed by the SDE:

(21) d.Xt :b(Xt)dt+U(Xt)dBt, XO* = (.’El,...,CL'N),
where B := (B?,..., BY) is a standard N-dimensional Brownian motion in a filtered

probability space (Q,F, {F;}i>0,P) with the drift b(-) := (b1(-),...,bn(-)) and the
covariance matrix o(-) := (045(-))1<ij<n. As will be explained later in section 3.3,
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we consider a weak formulation of the stochastic game. To ensure the existence and
the uniqueness of the SDE, b(:) and o (-) are assumed to satisfy this condition:
H1. b(:) and o(-) are bounded and continuous, and o (-) is uniformly elliptic, i.e.,
there exists a > 0 such that (7o (z)o " (2)¢ > af¢|? for all z € RN, ¢ € RV,
Assumption H1 ensures the existence of a weak solution to (2.1) [38]. Here and
throughout the rest of the paper, the infinitesimal generator L is
(2.2) L:= Zb(m)i + 1 Z(a(x)a(m)T)» 872
- S oxt 2 > " Oxifxi’

where o (z)o(x)” is assumed to be positive-definite for every z € RY.

If a control is applied to X/, then X} evolves as
(2.3) dX} =b;(X;_)dt + 04X, )dB; +d¢it —dei—, Xi_ =2,

where o; is the ith row of the covariance matrix . Here the control (£+,£17) is a
pair of nondecreasing and cadlag processes. In other words, (£+,£97) is the minimum
decomposition of the finite variation process ! such that &% := ¢+ — ¢i=,

Game objective. The game is for player i to minimize, for all (£/7,£°7) in an
appropriate admissible control set, the following objective function:

(2.4) IE/ e ht (X}, X)) dt.
0

Here o > 0 is a constant discount factor. In this game, players interact through their
respective objective functions hi(z) : RN — R*.
H2. hi(z) is twice differentiable, with k < [|[V2h(z)||< K for some K > k > 0.

For example, h'(z) = h(z* ZJTII) with A(-) > 0 is a distance function between the
position of player ¢ and the center of all players.

Note that in the objective function (2.4), there is no cost of control. With this
formulation, the explicit solution structure of the NE for game (2.4) is neat and in-
sightful. It is entirely possible to consider an N-player game with additional cost of
control. For instance, one might study the game formulation of [24] with a propor-
tional cost of control. We conjecture that the solution structure would be similar
although the analysis will be more involved.

Admissible control policies. Denote ! as the cumulative resources,/controls con-
sumed by player i up to time . When & is of finite variation, then there is a unique
decomposition such that & := & — &7, hence & := & + ¢, Here ¢ and
&€~ are nondecreasing cadlag processes which can be further decomposed in a dif-
ferential form dﬁli = d( e 4 AEE where d(€%)¢ is the continuous component
and Af = §t7 is the jump component of d{éi. Equivalently, we can write

B ()1 Y, A

Meanwhile, we consider a weak formulation of the stochastic game. (See [39,
Chapter 2, section 4.2] and [16, section 5| for more discussions on weak formulations
of stochastic control problems). That is, (B, t > 0) is an N-dimensional Brownian
motion with some filtration (F;, ¢ > 0), and the admissible control set Sy (z,y) for
the N-player game is

SN(z,y)::{ﬁ ey for1 <i<N, Z/ Z“” <y, 1<j<M,
k

1 (leyk

(2.5) P (AEAE #0) =0 for all t > 0 and i # k} where
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Gi={(ET,¢7): &T and £ are Fi-progressively measurable, cadlag, nondecreas-
ing,
(oo}
(2.6) E U —“tdgi] <ocoand & =¢ = 0} and

(2.7) I =yl —Z/ Za” - dg eR, and Y] =47,

k 10‘”9 s

with a;; =0or 1for 1 <i<Nand1<j< M, ZjM:laij >0foralli=1,...,N,
and va:laij >0forall j=1,..., M.

Here are intuitions for the admissible control set Sy(z,y). In this game, each
player ¢ will make decisions based on the current positions of all players and the
available resources. In addition to this adaptedness constraint, the admissible control
set Sy (x,y) specifies the resource allocation policy for each player. For M different
types of resources, define A = (a;;);; € RV*M to be the adjacent matriz with
a;; = 0 or 1. Then A describes the relationship between the players and the types
of available resources, with a;; = 1 meaning that resource of type j is available to
player ¢, and a;; = 0 meaning that a resource of type j is inaccessible to player i. The
condition Zjv; a;; > 0 for all 1 <4 < N implies that each player ¢ has access to at

least one resource, and the condition Zf\; a;; > 0 for all 1 < j < M indicates that
each resource j is available to at least one player. When player i exercises control,
she consume resources proportionally to all the resources available to her. She stops
consuming once all the available resources hit level zero. This results in the form of
the integrand in the expression of (2.7). Note that the denominator is no smaller than
the numerator, hence the integrand is well-defined with the convention % =0.

Take an example of N = 4, M = 6, with the matrix A defined as in Figure 1. The
resource allocation policy is illustrated in Figure 1(b), with the amount of available
resources y' and y? of type one and two, respectively. When player one wishes to

apply controls of amount A, say, A < y! +42, she will take A—— from resource one

1+ 2
and Aoty y from resource two. Finally, the condition P(A& AEF # 0) = 0 for all t > 0
and 14 75 k excludes the possibility of simultaneous jumps of any two out of IV players,
which facilitates designing feasible control policies when controls involve jumps. This
condition is not a restriction and instead should be interpreted as a regularization.
See also [5, 18, 27].

Game formulation and game criterion. Let & := (¢1,...,¢N) be the controls from
the players. Let z := (z%,...,2") and y := (y',...,y™). Then the stochastic game
is for each player ¢ to minimize

Player A<yl ty?
Player ©) A N A
yity?s N
1’ 1, 0, O7 O, 0 Resource
A4 0.0,1,0,1,0 Resource 6] o
0,0,0,0,0,1 b) R llocati
00,0100 (a) Relationship ( ) esource allocation

policy

Fic. 1. Ezample of adjacent matriz A, relationship between the players, and resources when
N =4 and M = 6.
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(2.8) J(x,y;€) = IE/OOO e hi(X,)dt,

subject to the dynamics in (2.3) and (2.7) with the constraint in (2.5).

There are two special games of particular interest. One is a game where all players
pool their resources such that va:l féo <y < oo. When N = 1, this is a single player
game corresponding to the finite fuel control problem, which is well studied in [7, 24].
We call this game a pooling game Cp. Clearly in terms of the adjacent matrix A,
this corresponds to M =1, and A = [1,1,...,1]T € R¥*!. Another is a game where
players divide the resource up front such that & <y, with y* the total resources
that player ¢ can exercise. This game is called Cy4, with M = N and A = Iy. Finally,
a game with a general matrix A is denoted as game C.

We will analyze the N-player game under the criterion of NE. Recall the definition
of NE of N-player games.

DEFINITION 2.1. A tuple of admissible controls £ := (€Y, ... &N*) is a NE of the
N-player game (2.8) if for each & € UL, such that (67", &%) € Sn(z,y),

J'(x,y:€7) < J° (x,y; (6”*75")) ,

where g_i* = (51*7 e 7€i_1*a €i+1*7 e 7£N*) and (é_i*7 67) = (gl*’ ce 7§i_1*7 fia §i+1*a
., EN*). Controls that give NEs are called the Nash equilibrium points (NEPs). The
associated value function J* (x,y;£") is called the game value for playeri (1 <i < N).

3. NE game solution: Verification theorem and Skorokhod problem.

In this section, we present general strategies to get the NE solution. First, we derive
heuristically the quasi-variational inequalities (QVIs) for the value function (section
3.1), which is then used for deriving sufficient conditions of an NEP via a verification
theorem (section 3.2). We emphasize that both the QVIs in section 3.1 and the
verification theorem in section 3.2 hold for general diffusion processes given in (2.3).
For explicitness, we assume further that

H1. b; =0, i=1,2,...,N, and o=1Ix.
Moreover, we assume that h'(z) := h(z® — %Z;Vﬂ 27), such that

H2'. h is symmetric, h(0) > 0, A" is nonincreasing on R and k < A" < K for

some 0 < k < K.

These additional conditions are only used to facilitate the construction of the NEP,
as well as solving the corresponding Skorokhod problem presented in section 3.3.

3.1. Quasi-variational inequalities. We first derive heuristically the associ-
ated QVIs of game value under the notion NE (see Definition 2.1) for game (2.8).
The key idea is to utilize the conditional optimality condition introduced in Defini-
tion 2.1. Namely, player ¢ solves a single agent optimal control problem with optimal
solution £ when other agents are applying £ **. To start, we define the following
partition of RY x R]f . Denote A; C RN x R]XI as the ¢th player’s action region and
W, = (RN xR¥)\ A; as her waiting region. Let A~ := U; 4 A; and W_; := Nz W;.
Then the players’ actions are as follows: player ¢ controls if and only if the process
(X:,Y) enters A;. This partition is usually defined via the QVIs and is also part of
the solution to be derived. Next, define the intervene operator I' as

M

k
. airy .
(31) Pjvz(m7y) = E MJ Ulk(‘”?y)
=1 Ds—1 QjsY® Y
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for (z,y) € RY x RY and i,j = 1,2,...,N. Here vf}k = gT”,i (i =1,2,...,N and
k = 1,2,...,M). Suppose player j takes a possibly suboptimal action A&+ > 0;

then by the resource allocation policy (2.7), for player ¢,

St . M .
(3.2) vi(x,y) < Ui (.’L‘_jﬂ;‘j +Afj’+7y_ < a;1y ) aimMy ) Afj’+> .

M k2T M k
Zk:l ajky Zk:1 a5y

By letting A&t — 0, we have 0 < —T';v'(z,y) + v, (z,y).

Next, we provide the heuristics for deriving the QVIs. Let A& := A&i(z,y)
be the control of player ¢ with joint state position (z,y). When (z,y) € W_;, we
have A& = 0 for j # i. Thus the game for player i becomes a classical control
problem with three choices: A& = 0, A¢bT > 0, and A¢»~ > 0. The first case
A& = 0 implies, by simple stochastic calculus, —av’ +h® (x) 4+ Lo > 0. Similarly, the
second case AT > 0 corresponds to —I';v* + v, > 0 and the third case A"~ >0
corresponds to —I';v? — ’u; > 0. Since one of the three choices will be optimal, one of
the inequalities will be an equation. That is, for (z,y) € W_,,

(3.3) min {—av’ + b’ (z) + Lo*, —Ty0' + vk, —To' — vl } = 0.
When (z,y) € A;, player j will control with (A& ™+, A&5~) # 0. Therefore,
i i i i ajlyl ajMyM j
(34) v’ (xay) S v |z ]7 @’ + Agj’+7y - M [ M Agj’+ ’
ok ok
k=1 4jkY 2 k=1 05kY
. . o . - aﬂyl ajMyM i
(35) U]<xay) SUJ z vaj _Afj’ Y — M et M Agj, ’
> k=1 ajkY” > k=1 ajY"

and one of the inequalities in (3.4)—(3.5) will be an equality. This leads to the follow-
ing:

(3.6) min {—I‘jvj + vij, vl — vij} =0.

1
a1y
M PREREE
Zk:1 ajky

M . . . . .
%)Af“’) when A&»T > 0 is optimal for player j, and v'(z,y) = v'(z7,
k=1™"J

1 M
J _ = y — a1y aiMY Jr— Jr— i i
) — ALy (224:1 g S g JAE?T) when A&~ > 0 is optimal for
player j. This holds due to the “no simultaneous jump” condition (2.5). This implies
that player ¢ has no incentive to jump when player j jumps. Thus,

For player i # j, we should have v'(z,y) = v'(z 7,27 + AT,y — (

—Tjv'+0f, =0, on {(z,y) e RN x RY | — T+, =0},
(3.7) i i N o RM 3
~Tjv' =0l =0, on {(z,y) e RN xRY | —T;v/ —v’;, =0}

_ Note that by letting A¢»* — 0, (3.3), (3.6), and (3.7) describe the behavior in
W; and near boundary 0W;. Moreover, we can show that (3.3), (3.6), and (3.7) are

. . . . . M iy ; ;
consistent with the jump behaviors in A;. To see this, — Zj_l %v;j +ol, =0
- k=1 Qik
M

has a linear solution v¢(z,y) = a( £ z; + > im1 a;;y’) + b for some a,b € R. And it is
easy to check that if 22/121 agry® > A >0, we have
j aijy’ .
G TSI e S ayy]
M = M :
Zk:l airy® — A Zkzl airyk
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holds. This means that the allocation policy (jump direction) outside the waiting
region is linear. Hence, the noninfinitesimal jump also satisfies (3.3) in 4;. The
consistency property also holds for (3.7). In summary, we have the following QVIs:

min {—av’ + h* (z) + Lo', —T0" + vl —Tiv' — vl } =0,

i

(3.8a) on Mj; {{—Fjvj + Uij > O} N {—Fjvj - vij > O}} ,
(3.8b) —Tjv' 40, =0 on {-T';0! +v’, =0},
(3.8¢) — Tt —vi, =0 on {~T'jv/ — vij = 0}.

The above conditions are consistent with the conditional optimality of NE for
each player and describe interactions between the player in control and those who are
not; these conditions ensure that all players control optimally and push sequentially
the underlying dynamics until reaching the common waiting region.

3.2. Verification theorem. Next, we present a verification theorem which gives
sufficient conditions of an NEP. Given functions v* (with sufficient regularity), define
the action and waiting regions (A; and W;) in terms of v* (1 < ¢ < N) as the following:

(3.9) A= AT UAT,

where A = {(z,y) € RY x RY | -T;0" — v, = 0} and A; := {(z,y) € R x
RY | =Tyt +vf, = 0}. Moreover, W; = (RY x R}Y)\ A; and W_; = N; 4, W;.

THEOREM 3.1 (verification theorem). Assume H1-H2 hold and further assume
A;iNA; =0 for all i # j, where A;, W;, and W_; are defined according to (3.9).
For each i = 1,...,N, suppose that the ith player’s strategy £ € Uy satisfies the
following conditions:

(i) € = (¢',...,6") e Sn(z,y).

(ii) v*(-) satisfies the QVIs (3.8). ‘

(iii) For any &' € UL such that (£ *",¢%) € Sn(z,y), P(X; ", XL Y) e W) =

1 for all t > 0, where (X; ™, X!,Y}) is under (€ €%).

(iv) vi(z,y) € C2(W_;) and v* is convex for all (z,y) € W_;.

(v) IEUOT e=20t (vl (X7, XJ,Y))2dt]) < oo for all T > 0, where (X; ™, X],Y})

is under (£, &) € Sy (z,y) such that (iii) holds.

(vi) For any (X; ", X}, Y:) under (6 °",&") € Sn(z,y) such that (iii) holds,

vi(z,y) satisfies the transversality condition

(3.10) limsupe °TE [Ui (X;i*,XZ,Yt)] =0.
T—o0
(vii) Forj #1i,t>0, and (X; ™, X1,Y,) under (£, &),
(3.11) 1 = /[O . Lix e xi_ v ea 4607

and in addition for (X;,Y7) under £,

(3.12) i :/ Lixs ye )eaydssr.
0,t]
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Then £ is an NEP with value function v*, a solution to (3.8). That is,
vi@y) < Ty €7,E)

for all € € Ui, such that (€7 ,€") € Sn, and v'(z,y;€") = Ji(z,y; (€7, €7)).

Proof. Tt suffices to prove that for all‘(§7i*,£i) € Sn(z,y), and for each i =

N, we have Ji(z,y; ) < Ji(z,y; (€, €1). |

Recall (2.1) and (2.7). From condition (iii), under control (¢, &%) € Sn(z,y),
(X, ", X])Y,) € W_; as. Applying the Ito-Meyer formula [35, Theorem 21] to
e (X XY ),

Ele~*Tv! (X7, X5, Y1) — v'(x,y)

. . T N . .
—ot (E’UZ — avl) dt + E/ e Z v!,;dB]
0 =

I
&=
S~
~
Q@

N
+ Y B e (ude] T —upde]mT)
j=tg#i 710T)
N
- 127& E/O €T X X0 Y (dgft 4 dglm)
J=LJ7
+E/ e vidpT)
[0.7)

— E/ e ' (X XY ) (d£Z’+ + dfi”)
[0.7)

N M
+E Z e Avi—ZvijAXg—ZvaAYtk ,
k=1

0<t<T j=1

where T'; andF are defined in (3. 1) Here Avi:=v! (X ;™ X1 Y ) =o' (X, ™, X!_,Y,_),
vl = vl (Xt_f*,Xt’ Yio), v = vyk(Xt_f*,XL,Yt,), AXT* = X7 — X7,
AX] = X! - X} _,and AY} := Y;) ~YF on the right-hand side of the above equation
for1<i,j<Nandl<k<M. By [2, Theorem 3.2.1], condition (v) implies that the

It6 integral f et SN dB] is a martingale. Hence, E fo e~ Zj 1 UIJ dBl] =
0. The convexity condition in (iv) implies E} o, . e” “(Avt — Zk# vl AXF
v, AX] — Zj\il Uy AY/) > 0. Next, we have

]ICEJ

E / e (vhidgy T —vlideyT)—E / e T (X, XY ) (dfﬁ’* + dg;?—)
[0,T) [0,T)
=B [ e [ XY ) T K XY )] dg
[0.7)
&

+E / e—ot [—Ui-(x;j*,xg,,yt,) - rivi(xgj*,xg,yt,)] dei™ >
[0.T)

The last inequality holds due to conditions (ii) and (iv). More precisely, v(z) satisfies
the HJB equation (3.8a) in W_;. Along with (iv), we have the following with probabil-
ity one: v*, (X, ", X{_Y,_)-T;o"(X, ", X]_,Y,_) > 0and —v’ (X, ", X/_Y,_)—
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D' (X, X! Y,_) > 0. For each j # i, almost surely, we have d&/* # 0 only when
(X.,Y,) € OW_;NOA,. Along with the condition (ii) and (3.8b)—(3.8¢),

xJd

E / e (v (X7 XY )de] ™t — ol (X7, X Y )del ™)
[0,7)
—E/ e (X7 XY (df{*’Jr +d§{*”>
[0,7)

2

— [ e[ ] 6 X Y
[0,7)

+ [l — D' (X7, X[, Y )del™™ = 0.

I

Condition (ii) also implies £v* — av® > —h. Combining all of the above,
(3.13) e~ TEyi(X 7, X0 Y1) + E / eth (X7 X{) dt > o' (z.y).
0

By letting T' — oo, (3.13) and condition (vi) lead to the desirable inequality.

The equality in (3.13) holds for £ = ¢ by (3.12), and P((X;,Y;) e N, W;) =1
for all t > 0 and the no simultaneous jump condition in the admissible set (2.5), where
(X7,Y7) is the dynamics under £". u]

Supposing the game value v’ (i = 1,2,...,N) that satisfies the verification the-
orem (Theorem 3.1) is given, the next step is to construct the corresponding NE
strategies. This is done by solving a Skorokhod problem, discussed in the next sub-
section.

3.3. Skorokhod problem. Here we present necessary tools to construct the NE
strategies under the additional assumptions H1’-H2’. The key to the analysis is the
weak construction of a reflected Brownian motion in a general domain, due to Kang
and Williams [23]. To proceed further, we need a few vocabularies.

Let G = NyezG; be a nonempty domain in R®**™, where Z is a nonempty finite
index set and for each i € Z, G; is a nonempty domain in R®*™. For simplicity,
we assume that Z = {1,2,...,I} with |Z|= I. For each i € Z, let n; : R*™™ —
R™™™ he the unit normal vector field on G; that points into G;. And denote 7;(-) :
R™T™ — R"*t™ as the reflection direction on 0G;. Fix b € R™ and ¢ € R**" as the
constant drift and covariance of the diffusion process without reflection. Let v denote
a probability measure on (G, B(G)), where B(G) is the Borel o-algebra on G.

A Skorokhod problem is to find a reflected diffusion process in G such that
the initial distribution follows v, the diffusion parameters are (b,0), and the re-
flection direction is r; on face dG;. For each reflection direction r; (i € Z), de-

note 'rj = (ri1,.-.,7in) as the vector of the first n components of r; and denote
r; = (Tin+1,-- -, in+m) as the vector of the next m components of r;. Note that
;. = Tik+4n by the usual index rule (k = 1,...,m). Specific to the stochastic game,

the following definition is a straightforward modification of [23, Definition 2.1].

DEFINITION 3.2. A constrained semimartingale reflected Brownian motion
(SRBM) associated with the data (G,b,o,{r;}I_,,v) is an {F;}-adapted, n-dimen-
sional process X defined on some filtered probability space (Q, F,{F:},P) such that

(i) P-a.s., Xy =W+ 3,7 f[o,t) ri(Xs,Ys)dn: for all t >0,

(ii) under P, W is an n-dimensional Fi-Brownian motion with drift vector b,
covariance matriz o, and initial distribution v,
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(iii) dYy =7 oy i, (X, Yo)dni and Y/ >0 forj=1,2,...,m,
(iv) for eachi € Z, n' is a one-dimensional process such that P-a.s.,

(a) n® is continuous and nondecreasing with n§ = 0,

(b) m; = Jio.g Lx..y.)eoc.nacydn; for allt >0,
(v) P-a.s., (X,Y:) has continuous paths and (X;,Y) € G for all t >0,

Here X, is the controlled diffusion process and Y; is the resource levels. The domain
G restricts the dynamics of both X; and Y.

For each (z,y) € R"*™, let Z(z,y) = {i € Z : (z,y) € G;}. Let U(S) denote
the closed set {(z,y) € R"™™ : dist((z,y),S) < €} for any ¢ > 0 and S C R**™. If
S =0, set U(S) = 0 for any € > 0. We list the following assumptions on domain G
and reflection directions {r;,i € Z}:

Al. G is the nonempty domain in R"™ such that G = N;czG;, where for each
i € Z, G; is a nonempty domain in R**™ G; # R™*" and the boundary G;
is C1.

A2. For each ¢ € (0,1) there exists R(e) > 0 such that for each ¢ € Z, (z,y) €
0G; N OG, and (z',y') € G satisfying ||(z,y) — (2',¥')||< R(¢), we have

<ni<$7y)’ (x/7y/) - (x’y» 2 —e||(a:,y) - (xlay/)H'
A3. The function D : [0,00) — [0, 00] is such that D(0) = 0 and
D(€)=supz, ez 1,05uP {dist ((,9), Niez, (0G: N OG)) : (T,y)€ Niez, Ue(0G:NOG)}

for € > 0 satisfies D(e) — 0 as ¢ — 0.
A4. There is a constant L > 0 such that for each ¢ € Z, r;(-) is a uniformly
Lipschitz continuous function from R™**™ into R™*™ with Lipschitz constant
L and ||r;(z,y)||= 1 for each (z,y) € R**™,
A5. Thereis a constant a € (0, 1), and vector valued function e(-) = (¢1(+), ..., cr(+))
and d(-) = (di(-),...,d;(+)) from OG into RL such that for each (z,y) € IG,
(1) ZieI(m,y) Ci(x’y) =1, minkel(z,y) <ZieI(z,y) Ci(x’y)ni(x’y)7rk<x’y)> >
a’
(11) ZieI(m,y) dl(mvy) = ]-7 minkEI(a:,y) <Ziel’(m,y) di(zvy)ri(mvy)ank(xvy» >
a.
THEOREM 3.3. Given assumptions A1-Ab5, there exists a constrained SRBM as-
sociated with the data (G,b,0,{r;,i € T},v).

The proof of Theorem 3.3 is easily adapted from [23, Theorem 5.1], where one
constructs a sequence of approximation (random walks) to the constrained SRBM
and uses the invariance principle to establish the weak convergence.

4. Nash equilibrium for game Cp. This section analyzes the NE of game
Cp. Section 4.1 derives the solution to the HJB equations. Section 4.2 constructs the
controlled process from the HJB solution. Section 4.3 derives the NE for the game

Cp. Recall that in game Cp, A = [1,1,...,1]7 € R¥*! and the unique resource
N

(4.1) Yt:y—z ; and Yoo =uy.
i=1

4.1. Solving HJB equations. Define

(4.2) %Z::xu%:\;% for 1 <i<N
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to be the relative position from z* to the center of (27);;. For game Cp, if A;NA; = 0,
the HJB system simplifies to

N-1 1
min{ —av' + h (N%l) + B Zv;jxj,—vé + Vi, =y — Vg 0 =0

j=1
(HJB-Cp) _ 4 for (z,y) € W_,,
_U;_U;J' = fOI‘ (may)EAjﬂj#lv
—vy + v, =0 for (z,y) € A7 ,j #i.

Now we look for a threshold function fy : Ry — R such that

fnv €CHRy,R), fi(x) <0for x>0,
(4.3) lim () = 00, and 3 @ > 0 such that fx(zo) = 0.
Note that for such fy(z) satisfying condition (4.3), 2 — fnx(2) = & — y has a unique
positive root when ' > f{,l(y), denoted as xfk We consider an even extension
of fn(z) to (—o0,0) by defining fy(z) = fy(—z) for £ < 0. Then by symmetry,
2+ fn(z) = # + y has a unique negative root when 7' < —fx'(y), denoted as z .
See Figure 2 for an illustration. In particular, we have fN(xj_) > 0 when y > g + 2°
and #' > 0. Similarly fN(a:Z) > 0 holds when y > —x¢ — & and &° < 0. Such an fx
is constructed later in (4.12) and condition (4.3) is verified in Lemma 4.2.
Then the action region A; and the waiting region W; of player i are specified as

(44) Af =B NQi, A; =B NQi, A= AT UA7, W, := (RY xRy )\ A

with B = {(z,y) € RN xR% : 7' > fy'(y)} and E; = {(z,y) € RN xR : 3% <
—fx"(y)} such that

(45) Ef={(@=y) eEl :y>&+z} B, ={(x,y) e Bf 1y <i' +mo},
(46) E;,={(@,y)€E :y>—-& —xo},E,={(x,y) € B 1y <—i' -, },

and {Q;}Y, disjoint and convex partitions of RY x R, such that Q; N Q; = (E;" U
E7) N (Ef UE7) NOWnp for i # j, UL Qi = RY xRy, and ap + (1 - a)g € Q;
forall a € [0,1] if p € Q; and g € Q; for some j =1,2,...,N. Condition @Q; N Q; =
(Ef UE )N (Ej+ U E;) N OWng for i # j implies that player ¢ and player j can
not jump simultaneously but may apply continuous control (on the boundary of the
common waiting region) at the same time. We can define the following mapping;:

In(@)

=z0+2%
E+ Y .
i,1 e
.
e +
4 7,2

Fia. 2. Demonstration of the initial control when (Xo—,Yo—) = (z,y) ¢ WnNE-
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((aot+ B ) awteh) it @) eQunE,

—i g 0 if i E‘+7

TR L L
(e B +at) i) it @a)e@unEy,

(% 2" +y),0) it (@y) € QinEy,

Note that II(-) translates (z,y) to the boundary of E;,_p ie., 8E;,rl = {(z,y) €
RY xRy : y= fn(@),0 < z < 29} when (z,y) € Q; N E;‘l, and translates (z,y)
to the “zero resource” plane {(z,y) € RY xRy : y = 0} when (z,y) € Q; N Ef,

both along the direction (0,...,—1,0,...,—1) € R¥*! nonzero ith and (N + 1)th
components. Let
(4.8) Wi = NiL, (B UEH)"

= {(z,y) e RV . |7|< fy'(y) with y > 0, 1<i<NIU{(z,y) € RN xR, : y =0}

be the common nonaction region and assume that partitions {Q;}Y, satisfies the
following assumption:
H3-C,. For any (z,y) € U;A;, I(z,y) € WNE.

Condition H3-Cp, implies that if (z,y) € A;, then the dynamics will be in region Wy g
after player ¢’s control. For the special case of N = 2, we can take Q1 = {(x1,z2,y) €
R2xR,|z;—22 > 0} and Q2 = {(x1, 72,y) € RZXR |xo —x1 > 0}. Thus assumption
H3-Cy, is easily satisfied. The verification can be found in Appendix B of the online
supplementary material.

We seek a solution v'(x,y) € C2(W_;) such that if [7|< fy'(y), it is of the form

(4.9) v'(z,y) = pn(T") + An(y) cosh (an'), where
< (N-1 N-1 2(N —1)a
_ at —
(4.10) pn(x) = IE/O e “h ( T+ Bt> dt,an = ~

with B; being a one-dimensional Brownian motion. Note that py(Z?) is a solution to

—av’ + h(MFT) 4+ 4 Z;V 1 im = 0, which corresponds to the waiting region, and

cosh(anz?) is a solution to —av® + + Z = 0. If there is no resource, then

; Jj=1 :cJ i
vi(z,y) = pn(T?), so Ax(0) = 0. The following lemma summarizes basic properties

of py, which can be verified by straightforward calculations.
LEMMA 4.1. Under assumptions HI'-H2', py(x) defined in (4.10) satisfies

K
pn(x) >0 and p(x)<0 for x > Opy(z) = py(—2) and E < pi(2) <= for z € R.

The smooth-fit principle states that, along the boundary y = fn(Z ) between the
continuation set W_; and the action set Az, v* has certain regularlty properties across
the hyperplane. Now applying the smooth-fit principle, we get v’ iz = = Uy = fv; ,y at
the boundary y = fy(Z*) with ¢ > 0. This follows from v,ﬂ + v, = 0 and we expect
vt € C*(W_;). To see this, we differentiate the form (4.9) twice, and the conditions

vt + U; =0and v’, , + ’u; = 0 at the boundary y = fy(Z°) lead to

igt

AN (fn(x)) = —pi(x) cosh (anz) —l—p;(;(m)—l sinh (anx) I

(4.11) 1 aNl r=f"(v)
An(fn(x)) = p(z)— sinh (anyz) — px () = cosh (an)

aN CYN T

=yt
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As a consequence,

1 .

Py (z) = sz pi ()

= and
pg(,(x)ﬁ tanh (anyz) — ply(x)

(412)  fy(x)

1 1
(413)  An(y) = ply(z)— sinh (anz) — p () — cosh (anx) Lo
anN Q' r=fn"(v)

LEMMA 4.2. Under assumptions H1'-H2', fy defined in (4.12) satisfies condi-
tion (4.3). Moreover, the curve y = fn(x) intersects {x > 0} at z¢ such that
ANn(fn(x0)) =0 and x¢ is the unique positive root of

(4.14) ay tanh (anz) = pi(2)/P(2).

Lemma 4.2 can be shown by straightforward calculations and we refer the reader
to the online supplementary material for the complete proof.

4.2. Controlled dynamics. Given the candidate game value to (HIJB-C,), we
derive the corresponding NEP by showing the existence of a weak solution (X, Y;) to
a Skorokhod problem with an unbounded domain, where the boundary of the domain
depends on both the diffusion term X; and the degenerate term Y.

Recall the region Wy g defined in (4.8) and note that Wy g is unbounded in RN+L
with 2NV boundaries. For i = 1,2,..., N, define the 2N faces of Wy g as

F,={(z,y) € WnE | (x,y) €OE}, Fiin={(z,y) € WnE | (z,y) € 0E; }.

Then the normzil direction of each face is given by n; = ¢;(— ﬁ, ce —ﬁ, 1, :ﬁ,
1 - 1 1 1 1 -
TN (fN ) (y)) andn;y N = Ci+N(ma B e Rl T o PRI oo (fN ) (¥)),
with the ith component being +1 (i = 1,2,..., N). ¢;, cy+; are normalizing constants
such that ||n;||= |[ny+il|= 1.

Denote the reflection direction on each face as r; = ¢;(0,...,—1,...,0,—1) and
*Nyi = Iy (0,...,1,...,0,—1) with the ith component being +1. ¢}, ¢y, are
normalizing constants such that ||r;||= |[rn4i]|= 1. The NE strategy is defined as
follows.

Case 1: (Xo_,Yo—) = (z,y) € WnEg. One can check that Wxg defined in (4.8)
and {r;}2Y, defined above satisfy assumptions A1-A5. (See Appendix A in the online
supplementary material for the proof). According to Theorem 3.3, there exists a weak
solution to the Skorokhod problem with data Wx g, {r:}7%,b,0,2 € Wyg).

Case 2: (Xo_,Yy_) = (z,y) ¢ WnE, that is, there exists ¢ € {1,..., N} such
that (Xo_,Yo-) € Ai. (1) If (x,y) € A7 N E;, then &' > fy'(y) and y > & 4 0.
2t ot
_ : N—1
at time 0, where z’, is the unique positive root such that z — fx(z) = ' —y. This
will reduce the initial resource from Yy_ =y to Yy = fn(2%) > 0. fx(2?) > 0 holds
since y > zo + Z; when (z,y) € Ef 1. Other players’ dynamics remain unchanged,

ie, X]_ = X] =af for j #iand 1 < j < N. By assumption H3-Cp,, we have

(X0,Yp) = (@, 22 + 2, fn(a)) = (X0, Yo-) € Wap. (2) If (z,y) €
A n Ef’Q, then &' > fy'(y) and y < &' + 2. In this case, player i will move

In this case, player i will move immediately from X{_ = z to X} = xi +

immediately from X{_ = 2 to X} = 2’ — y and the initial resource Yy_ = y is
decreased to Yy = 0 at time 0. Other players’ dynamics remain unchanged, i.e.,
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Xg = Xg_ =2zJ for j #iand 1 < j < N. By assumption H3-Cyp, we have (X, Yp) =
(z7%2' —y),0) = I(Xo—,Yo-) € Wng. (3) Similarly, if (z,y) € A7 N E; 7, then
< —fy'(y) and y > —&' — 9. And player i will move immediately from X§_ = 2

to X§ = 2t —|— Zk#’

2+ fn(z) = +y, and Yo_ =y is now Yy = fy (2% ) > 0. Other players’ dynamics

at time 0, where z® is the unique negative root such that

remain unchanged, i.e., X] = XJ_ = 2/ for j # i and 1 < j < N. By assumption
H3-Cp, we have (Xo,Yy) = (277, E%_fk +2'), fn(zh)) = O(Xo_,Yo_) € Wre.
(4) If (z,y) € A; N E;,, then i < —fy'(y) and y < =7 — z¢. In this case, player i
will move immediately from X¢_ = 2° to X} = 2° + y and this will change Yy_ = y to
Yy = 0 at time 0. Other players’ dynamics remain unchanged, i.e., Xg_ = Xg = 27 for
j#tand 1 <j < N. By assumption H3-Cp, we have (X,Yp) = ((7*,2" + y),0) =
I(Xo-,Y0-) € WnE.

4.3. NE for the N-player game. Combining the results in sections 4.1 and 4.2,

and based on the verification theorem developed in section 3, we have the following
theorem of the NE for the N-player game (2.8) with constraint (4.1).

THEOREM 4.3 (NE for the N-player game Cp). Assume H1'-H2' and H3-Cp.
Define u' € RN x Ry — R by

(4.15)
N (@) + An(y) cosh (ayT) if 17|< fy'(y) and y =0,
ul ((a: L&l + Z’m ) 7fN(1'+)> if (x,y) € Ej,_h
u'(z,y) = ul ((.’I:_ b — y),O) if (x,y) € By,
ul < - Z’”“ + 2t fy(a )) if (z,y) € By,
u ((a:* .zt +79),0) if (x,y) € E; 5,
and define v’ : RN x R, — R as
(4.16)

u'(z,y) f(x,y) € W_i,
o (et B ) i @) € AT NEf fori £
vi(z,y) = v (279,27 — y,0) if (@,y) € Af NEJ, forj #1,
o (o B el i w45 B Jori £
v (mfj,:vj +y,0) if (x,y) € Ay NEj, for j #1i,
where A; and W; are given in (4.4), B and E, are given in (4.5)~(4.6) with fx(-)

defined by (4.12)~(4.14), and fn(x) = fx(—2z) for & < 0; T is defined by (4.2) and
An(-) is defined by (4.13); 2’ is the unique positive oot of z — fn(z) = T' — y

when & > fg,l(y), and x* is the unique negative root of z + fN(z) = 7' +y when
i < —fx'(y). Thenv' is the game value associated with an NEP &" = (€1*,... &N*).
That is, v'(zx,y) = Jép (z,y;£"). Moreover, the controlled process (X*,Y*) under £
is given in section 4.2.

Proof. First, u'(z,y) € C?(RN xR ) by construction: the C? regularity near y = 0
follows from (4.13) and the facts that fx'(y) — 20 asy — 0 and Ax(fn(20)) = 0. To
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see that z — fx(z) = ' — y has a unique positive root, it suffices to prove that fy is
decreasing on R, which holds by simple calculations. See the online supplementary
material for the complete proof. Now let us check conditions (i)—(vii) in Theorem 3.1.

(i) Based on the analysis in section 4.2, when (z,y) € Wyng, the NE strategy
is a solution to the Skorokhod problem specified in Case 2, which is a continuous
process. When (z,y) ¢ Wyg, the initial push specified in Case 1 satisfies the “no
simultaneous jump” condition. Note when the fuel is used up, the dynamics X; will
become uncontrolled and move freely without control.

(ii) Now we check condition (ii) in the verification theorem, i.e., v* defined in
(4.16) satistying the QVI (3.8). It consists of the following three steps. The idea is
to apply the implicit function theorem and the calculation follows the lemma in |7,
p.58].

Step (ii)-1 is to verify that v® defined in (4.16) satisfies

. N_1 . 1M o
(4.17) —av’ +h <Nx) +3 E;v;.fwj >0 for (z,y) € W_;
J:
and that the inequality is strict for (z,y) € A; and the equality holds in Wy g.
Since py(Z?) is a solution to cwi—l—h(M i)+3 Z;V 10k = 0and cosh(ayi’)
is a solution to —aw* —|— ZJ L =0, oy (Z) + An (y) cosh(T ) satisfies —av’ +
(N E) + 4 ijl ¢ ;. = 0. Hence, the equality in (4.17) holds for (z,y) € Wyg.
Denote p = (w,z2) with w € RY and 2 € R+ When p € Af N E/}, we

have v'(p) = v'(q), where ¢ := (w™', w/ + Z’“?f_’ ,fN(w+)) = II(p) translates
p to the boundary of E;f, ie., 0E = {(z,y) |y = fy'(&")} along the direc-
tion (0,0,...,—1,0,...,—-1) € ]RN‘H with all components zero except the ith and

(N + 1)th components being —1. Note that when p = (w,z) € Ei‘fl, we have

zZ > Wi + o and fn(w’) > 0. (See Figure 2.) By the implicit function theorem,

v, () = Zele 1(qi+?7((wj;v D _ v*, .(q), the last equality holds since v’, ; = —v

ziy
on y = fn(z'). Similarly, we have v, ;(p) = v%; ;(q) for j ;é i.  Therefore, when

p=(w,2) € AT NE), we have —av'(p) + h(*F5') + 3 ZJ 1 Ui (P) = (—an'(q)

+ (NG + 2 vl (@) + (YY) — R(AF) > —avi(g) + M(AFE) +
N j i .
§§:j:1 v’ ;(g) holds in which ¢’ = ¢* — 2.77\;;1? 7 and 5= pi— 2_77\}17167, v a

The last inequality holds since ﬁi > G > 0and h 1s convex and symmetric to 0.
Now for ¢ € 9E;", we have —avi(q) + h(¥F2G) + 3 Z] 1V, .:(@) = 0. Therefore,
—av’ + (XA 7 + %Z;V: ijw >0 forp=(w,z) € W,NEf. Whenp = (w,2) €
AN Ej,w we have vi(p) = v'(q), where ¢ = (w™%, w’ — 2,0) = II(p) translates p to
{(z,y) € RV xRy | y = 0}. In this case, vi(p) = (~‘—z)+AN( ) cosh((w —2)an)
by definition. Hence, —av’(p) + h(&F ! )+ % ZJ 1 VL. (@) = 0 holds by straight-

forward calculation. Similar analysis holds for p := (w, z) € A; .

Step (ii)-2 is to show
(4.18) vt + v; <0and —v’ + v; <0, for (z,y) e W_,,
(4.19) 0%, + v; =0, for (z,y) € A} and — o', + v; =0, for (z,y) € A, .
Let us first check (4.19). When p = (w,2) € Af N E;fl, denote ¢ = (w',w’ +

w® ; i
Zﬁ/#_il , fn(w)) = II(p), which translate p to 9E; := {(z,y) | y = fn (&%)} along
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the direction (0,0,...,—1,0,...,—1) € RN+l Then by the definition of (4.16),

i) — i) — i i _ 1 i fn(wl) i _
vip) = vi(e) = W(@), vulP) = TRrErYe@ T TRen @, and v e) =

i i) i

—#(wi)“xi (q)— #@vy( q). Therefore, v, (p) +4vy(p) =0. Whenp := (w,2) €
A n E;fz, we have v'(p) = v%(q), where ¢ := (w™%,w’ — 2,0) = II(p) translates p to
{(z,y) € RV xRy | y = 0}. In this case, v’(p) = py (0’ —2) + Ay (0) cosh((@’ — z)an)
by definition. Then v’,(p) + v} (p) = 0 holds by straightforward calculations. ~Simi-
larly, —v’; +v}, = 0 for (x,y) € A; . As for (4.18), by symmetry it suffices to check the
first inequality for 0 < & < f Nl(y) In this case, by some straightforward calculation,

vy + v = Ay(y) cosh (F'an) + ply (&) + An(y) sinh (Fan) ay
< piy(a%) (1 = cosh (1) = ) ax)) + e (F ()= [snh (75" (5) = 7))
— ((fx'(v) = 7) an) cosh ((f5' (v) — 7') an)] < 0.

The last inequality holds since py (%) > 0, |#¢|< fx'(y), and p (fx'(y)) >0
Step (ii)-3 is to check

i i + o i i -
—v, — vy =0 for (z,y) € AJ,j # i, and —wv, +v,; =0 for (z,y) € A;,j #i.

By symmetry it is sufficient to check the first gradient condition. When p := (w, 2) €

Aj EY T, denote ¢ : (wj,w+ Z;“f]l ,fN(wi)) = II(p), which translates p

to the boundary of E;-r, ie., GE]- = {(z,y) |y = fy'(37)} along the direction
(0,0,...,-1,0,...,—1) € R¥*! with all components zero except the jth and (N+1)th
components being —1. Then by the definition of (4.16), we have vi(p) = v(q),

v, (P) = 1= f/ @) Vg (Q)+%%(Q)> and vy, (p) = _%U;j (@)- 1fIJVN(q(q)J)UZ (a),
N j

where ¢ = ¢ — 217\}7_”1‘(1 Therefore, v, (p) + v (p) = 0. When p := (w,2) €

.A+ N Ef27 we have v(p) = v(q), where q := (w7, w’ — z,0) = II(p) translates p to

{( ,y) € RN xR, | y = 0}. In this case, v'(p) = py (0’ —2)+An(0) cosh((@7 —2)an)

holds by definition, and v’, (p) + v; (p) = 0 by straightforward calculations.

(iii) By the construction of Cases 1 and 2, when (z,y) ¢ W_,, there is a push at
time 0 to move the joint position to some point (&, §) € 9WV_; such that AY; < y when
(®,y) € Wi, (§7,¢") forms a solution to the Skorokhod problem in M (E; UE;')C.
It is easy to verify that ﬁj#(Ej_ U E;r)c C W_; and the Skorokhod problem with
Njzi(E; U E;r)C has a weak solution. When the fuel is used up, the dynamics X, will
become uncontrolled and move freely. Therefore, condition (iii) is satisfied.

(iv) Solution (4.16) satisfies the smooth-fit principle in section 4.1; therefore,
v € C?(W_;). Let us define a two-dimensional auxiliary function o(x,y) = py(z) +
An(y) cosh(zay). We first show that ¥(z,y) is convex when |2|< fy'(y) and then
show that v'(z,y) defined in (4.16) is convex in W_;.

Step (iv)-1 is to show that @(z,y) is convex when |z|< fy'(y). By straightfor-
ward calculation, U, (2,y) = pi(z) + o An(y) cosh(zan), Uuy(z,y) = an Ay (y)
sinh(zay), and U, (z,y) = A%(y)cosh(zay). When 0 < x < fy'(y), plugging
(4.11) into the formula for ¥, (z,y), we have U, (z,y) = p(z) + py(fn'(¥)ay
sinh(fy' (y)an) cosh(zan) —p%(fx' () cosh(fy' (y)an) cosh(zay). Given Lemma
4.1, py(z) is concave when = > 0. Therefore, for y > 0, pi(fx'(v)) > Py (0) +
P Un ) (M) — 0) = (/3 (5)) fy-(y). The last equality holds since (0) = 0
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from assumption H2'. Combining the fact that sinh(z) > 0 and cosh(z) > 0 when
z > 0, we have

Uea(,y) 2 PN (5 ) f5' (W)an sinh (f3" (y)an) cosh (zay)
+ (@) — PR (fx" (1)) cosh (fx ' (y)an) cosh (za)
0) > pi(x) + p\(x) cosh (zay ) (zay sinh (zay) — cosh (zay))

(4.2
21) = p{(z) [1 + zsinh(z) cosh(z) — cosh®(z)]

4,
(4. > 0.

zZ=raN

(4.20) holds since pi; is nonincreasing (Lemma 4.1) and g1(z) := zsinh(z) —cosh(z) is
nondecreasing when z > 0. (4.21) holds since go(z) := 14 zsinh(z) cosh(z) — cosh?(z)
is nonnegative when z > 0. To see this, g2(0) = 0 and g5(z) = cosh(z)[z cosh(z) —
sinh(2)] + zsinh?(z) > 0, when z > 0.

On the other hand, denote gs3(z) := —p/y(2)cosh(zan) + px,(z)ﬁ sinh(zay),
and then g5(2) = —anpy(2)sinh(zay) +p%(z)$ sinh(zay). From Lemma 4.1, we
have piy(z) > 0 and pj(z) < 0 when z > 0, and hence g5(z) < 0 when z > 0.
Along with the fact that fy(z) < 0 when z > 0 from Lemma 4.2, we have A% (y) =
gé(f{,l(y))m > 0. Therefore, vy, (z,y) > 0. Finally, we show that Ug, Uyy —

N\ N

(Vzyy)? > 0 when 0 < 2 < fy'(y). To see this, denote 2z = fx'(y), Vux Vyy — (Vuyy)? =
a4 (= ply cosh(zay) + p’](fﬁ sinh(zan)) x (ply cosh(zan) — ply cosh(zan)) > 0. A
similar result holds when — f&l(y) < x < 0 by symmetry.

Step (iv)-2 is to show that vi(z,y) defined in (4.16) is convex in W_;. We
take player one as an example to show v'(z,y) = 0(Z1,y) is convex in W_;, where

N
~ _o I
T =z — 721@121 .

. The convexity of other players’ value functions can be verified
similarly. When (z,y) € W_1, we have |Z1|< y, hence ¥(Z1,y) is nonnegative defi-
nitel. B~y ch~ain rule, for 2 < k # j~§ N~7 we have valcl:cl (z,9) = ”ﬁmj(fl, Y)s Vayap, (&, Y) =
_mvzm(xlvy)a Uzly(mvy) = 'Uzy(xlvy)a Uyy(.’l),y) = vyy(xlvy)a v;kz_j (a:,y)
ﬁﬂm(ihy), Vayay (T, Y) = _ﬁﬁma and vy, (2, y) = _ﬁ/ﬁmy@hy)'

Denote H(x,y) := Vvl (z,y) € RVHDXN+D a5 the Hessian matrix of v! at some
point (x,y) € W_;. Then for any d = (b, ...,by,c) € RVT1 we have dTH(:L', y)d =
eTH(#1,y)e > 0, where e = (b; — o chvzz br,c) and H(E1,y) = V20(i1,y). The
1

inequality holds since ©(%#1,y) is convex when |#1|< y. Hence, v* is convex in W_;.
(v) Denote W_;(y) = {(z,2) : (x,2) € W_; and z < y}. (X, ", X}, Y;) € W_i(y)
holds a.s. when (£,*,&}) € Sy(z,y). This is because 0 < Y; < y a.s. for all t > 0
under (& ,¢€)) € Sy(x,y). First, we show that v;j is bounded for (z,2) € E; N
W_i(y), (x,2) € E;; NW_;(y), and (z,2) € B(y) :== W_i(y) " {(z, 2) : |7¢|< f{,l(z)}.
For (z,2) € B(y), |#/|< fy'(2) < fy'(y) < oo since fy' is nonincreasing. This
implies that ¢ is bounded in B(y). By the definition of Ay(2) in (4.9), An(2)
is bounded in B(y). Hence, v;k is bounded on B(y) (k = 1,2,...,N). Following
Step (ii)-2, there exists ¢ € 0B(y) such that v (q) = vy (2, 2) (K =1,2,...,N) for
(x,2) € E;rl NW_;(y). A similar result holds for (z,z) € E;; N W_;(y). Hence, vl
is bounded on (z,z) € E;; NW_(y) and (z,z) € E;; N W_(y). Second, v*(z,0) =
pn (Z%) holds since Ay (0) = 0 (Lemma 4.2). By the definition of v* and following Step
(ii)-2, we have v’ (z,2) = v’ ((z~%, 2' — 2),0) (k=1,2,...,N) and 0 < &" — 2z < &
for (z,z2) € EE NW_i(y). From Lemma 4.1, 0 < pi\(Z* — 2) < piy(3%). Hence,

vl (@, 2)|< |ply (29)] for (x,2) € B} NW_(y) and the same result holds for (z, z) €

E;,NW_i(y). Combining the above analysis with Lemma 4.1, there exists a constant
C(y) > 0 such that [v’,(z,2)|< C(y) + |py ()< Cly) + %W\ for (z,2) € W_;(y).
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Hence, by Tonelli’s theorem, E[fOT e~ 20t (pi (X7 X1 Y,))2dt] < Co(C2(y) + (2 —

2J
%)2 +y>+T) < oo for some Cy > 0 and (v) is satisfied.

(vi) Recall the definition of W_;(y) in (v) and the fact that (X", X1,Y,) e
W_,(y) when (& ",¢&) € Sn(z,y). Following the same argument as in (v), there
exists C(y) > 0 such that |[vi(z, 2)|< C(y) for (x,2) € Eifl NW_i(y), (z,2) € E;; N
W_i(y), and (z,2) € B(y) := W—_;(y) N{(z,2) : 17|< frt(2)}. In addition, Qi(a;O) =
pn(Z*) holds since Ay(0) = 0 (Lemma 4.2). By the definition of v*, v'(z,z) =
vi((z7% 2 —2),0) and 0 < '~z < 7' for (z, 2) € E;Eﬁw_i(y). From Lemma 4.1, 0 <
pn(E —2) < pn(E'). Hence, vi(z, 2) < pn (&) for (z, 2) € Ef,NW_;(y) and the same
result holds for (z,z) € E;, N W_;(y). Combining the above analysis with Lemma
4.1, o(@,y)|< pv (&) + C(y) < pr(0) + (i) + Cly). Given (§°,¢) € Sn(=,y),

Zj# ng* + f} < y holds a.s. Therefore, E[(X}. — %)2} < C’o((% - %)Q +

y? + T) for some Cy > 0. Hence, lim supy_, . e *TE[py (X5 — %)] =0 and
condition (vi) holds.

(vii) This condition is satisfied by the property of the Skorokhod problem and the
initial jump described in section 4.2. ]

5. Nash equilibrium for game Cg. In this section, we study the NEP of the
N-player game Cy. That is, A = Iy € RV*N and

(5.1) Vi=9y'—& with Yi =4y’

Recall that the major difference between game Cp and game Cg is that in the
former all N players share a fixed amount of the same resource, while in the latter each
player has her own individual fixed resource constraint. This difference is reflected in
(HJB — C,) and (HJB — Cy) in terms of their dimensionality and in each player’s
control based on the remaining resources. In particular, (HJB — C)) and the state
space (z,y) of Cp are of dimension N + 1, whereas (HJB — Cy) and the state space
(x,y) of Cq are of dimension 2N. Moreover, in game Cjp, the gradient constraint is
—v; + v; for player . In contrast, in game Cyq, each player controls her own resource
level, and the gradient constraint becomes —v;i + v’ for player i. So if A;NA; =0,

the HJB equation for v'(z,y) in game Cy is as follows:

min{—avi+h<N15i> +1§:vi' vl ot~ —vi} =0
N 22 i Vi T Vgis —Uyi = Vo

for (z,y) € W—s,
_U;j — v;j =0 for (z,y) € A;’,j # i, and —v;j +v;j =0 for (z,y) € Aj_,j # 1.

(HJB-Cy)

Note that the control policy of the ith player only depends on (z,%') in W_;. As
seen in section 4, for the controlled process of type Cp, upon hitting the boundary of
the polyhedron, the polyhedron will expand in all directions. While for the controlled
process of type Cq, only one direction of the the polyhedron will move once hit.

To proceed, similarly to section 4, define the action region A;€ RY x Rf and the
waiting region W; of the ith player by

(5.2)
Aj_zE;rﬂQi, .AZ_:EZ_QQL ,Ai:Aj_UA»_ and Wi:RNXRJ_iY\.Ai

7 7

with B = {(z,y) € RN x (R®)N : 3" > f'(y)} and E; = {(z,y) € RY x (R*)V :
7<= fy )}
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(63)  Bh={@yeE iy i +a} Bh={@y eB 1y <7+,
(5.4) E;J:{(m,y)eE;:yiz—ii—mo},EifQ:{(z,y)EEf:yi<—§:i—1:o},

and {Q;}¥, convex partitions of RY x R, such that Q; NQ; = (E;" UE; )N (EJ‘Ir u
E;7)NOWng for i # j, U Q; = RY xRy, and ap + (1 — a)q € Q; for all a € [0, 1]
ifpe @, and g € Q; for some j =1,2,...,N. We can define the following mapping,

((acac+ P I, ) S, fN<xa>>) i (2.y) € QN B,

(@2 =y, (y™"0) i @) €Qin By

(5.5) Il(z,y) =
(( —i Dt >7(yi7fN(9~"i_))> it (z.y) € QN En,
("2 +9°), (y™"0) if (x,9) € QiNE.,,

in which the threshold function fn(-) is defined in (4.12)-(4.14), z%_ is the unique
positive root such that z — fy(z) = ' — ¢, and 2" is the unique negative root such

that z+ fx(z) = &' +y'. Note that II(-) translates (2,y) to the boundary of Ef ie,
OE] = {(z,y) e RN xRY : o' = fy' (&'),0 < & < 2o} when (z,y) € Q; N Efy,
and translates (z,y) to the zero-resource plane {(z,y) € RY x RY : y’ = 0} when
(z,y) € @; N E;'?, both along the direction (0,...,—1,0,...,—1,...,0) € RN with
nonzero ith and (N + 4)th components. Let

(5.6)
Wy ={(z,y) € RVxRY : |7'|< f5' (y) for 1<i < N}U{(z,y)eRY xRY : y = 0},

and assume {Q;} Y, satisfies the following assumption:
H3-Cq. For any (z,y) € U;A;, T(z,y) € WnE.
Condition H3-Cq implies that if (x,y) € A;, then the dynamics will be in region Wy g
after player i’s control.
We now investigate control of player i, which only depends on (z,%%) in W_;.
That is, for [Z¢|< ' (y°),

(5.7) v'(z,y) = pn(T*) + An(y") cosh (Z'ay)

is a solution to (HIB-Cy) with py(-) defined in (4.10) and An(-) defined in (4.13).

The next step is to construct the controlled process (X,Y) corresponding to
(5.7). Note that Wy is an unbounded domain in R* with 2N boundaries. For i =
1,2,..., N, define the 2N faces of Wx g as F; = {(z,y) € OWnE | (z,y) € OF;} and
F1+N = {(a: y) € WnE | (x,y) € OE; }. The normal direction on each face is given
by n; = ci(x 5. v — L 7 - ..,Nll, v 0, (F ) (9),0,...,0), and Ry =
CN+i(—m,...,—ﬁ7l,—ﬁ,..., N71’ 0,..., 7(fN ) (y),0,...,0) with the ith
component being +1 and the (N + 4)th component being (f5) (v*). ¢ and ey
are normalizing constants such that |n;||= |[|nn+:|]|= 1. Denote the reflection di-
rection on each face as r; = ¢(0,...,0,—-1,0,...0;0,...,0,—1,0,...,0) and ry4; =
cn44(0,...,0,1,0,...0;0,...,0,-1,0,...,0), with the ith component being +1 and
the (N + i)' component being +1. ¢} and c)y; are normalizing constants such that
l7:||= llrv4:l|= 1. The NE strategy is defined as follows.

Case 1: (Xo9-,Yo-) = (z,y) € WnEg. One can check that Wy g defined in (5.6)
and {r;}2, defined above satisfies assumptions A1-A5 (see Appendix A in the online
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supplementary material for the proof). Therefore, there exists a weak solution to the
Skorokhod problem with data Wy g, {r;}?Y],b,0,2 € WxE).

Case 2: (Xo_,Yo_) = (z,y) ¢ Wnpg. There exists i € {1,..., N} such that
(Xo_,Yo_) € Ai. (1) If (z,y) € AF N El 1, then player ¢ will move immediately from
Zk¢7

Xi_ =a'to X§ = 2, + : at time 0, where z’, is the unique positive root

such that z — fy(z) = 7° — y . This will reduce player i’s resource from Y = y'
to Yy = fn(z’) > 0. Other players’ dynamics and resources remain unchanged, i.e.,

X)=X] =a/and Y] =Y =y for j#iand 1< j < N. By assumption H3-Cgq,

we have (Xo,Yo) = (@7, + 2222 (5, fv(2i))) = (X0, Yo_)) € Wiz
(2) If (z,y) € AF N Eif? then player i will move immediately from X§_ = ! to

X} = 2° — y* and her resource changes from Yj_ = 4 to Y¢ = 0 at time 0. Other
players’ positions and resources remain unchanged, i.e., X = Xg_ = 2/ and Yoj =
Yoj_ =yl for j #iand 1 < j < N. By assumption H3-Cq, we have (Xo,Y) =
(@0 =y, (57,0) = TH(Xo-.¥0-) € Wi (3) Similarly. if (2.3) € A7 (1.

Zk¢1

then player i will move immediately from X{_ = 2% to X} = 2% + at time 0,

where 2 is the unique negative root such that z+ fN( ) = Ziyl. ThlS w111 reduce her
resource from Y§_ =y to Y§ = fn(xL) > 0. Other players’ dynamics and resources
remain unchanged, i.e., X} = XJ =2/ and Y{ = Y] = yj for j #iand 1 <j < N.
By Assumption H3-Cq, we have (Xo,Yo) = ((z¢, Zk#‘ +21), (y7 fa(zh))) =
H((Xo-,Y0-)) € Wng. (4) If (z,y) € A7 NE;,; then player i will move immediately
from X¢{_ = 2" to X{ = 2' + y* and her resource reduces from Yj_ =y’ to Yj = 0
at time 0. Other players’ dynamics and resources remain unchanged. By assumption
H3-Cq, we have (Xo,Y()) = (((l:_i7$i + yi), (y_i,O)) = H((XO,,YO,)) € WnE.

In summary, the NE for game (2.8) with constraint Cy is stated as follows.

THEOREM 5.1 (NE for the N-player game Cq). Assume H1'-H2' and H3-Cjy.
Define ut € RN x R, — R as

(5.8)
~ (@) + An(y) cosh (ana?) if |#< fx'(y) and y =0,
v <”” 2%+ Z’“’fafNW) if &> fy'(y) andy > & + o,
u'(@,y) = u' (272" —y,0) if 7 > fy'(y) and y < & + xo,

ui [z Ek#ixk_,_xi (i i p—1
> N-1 LIn(h) if 7' < fN

(y) and y > —3% + 0,
u' (z7% 2"+ y,0) if it < —fyt(y) and y < —F + o,

and define v* : RN x Rf — R as

(5.9)
u'(@,y") f (z,y) € W_i,

v (2, + By () ) i (@) € AT NES, for j #i

vi(z,y) = v (x‘j,:nj -y, (y77,0)) if (x,y) € A NES, forj #1i,

vz, Z’#J +a2l (I, fnl))) i (my) € A N E; forj #1,

(a: Il + 4yl (y™7,0)) if (x,y) € A; NE;, forj #1,
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where A; and W; are given in (5.2), Eil; and Eii,2 are given in (5.3)—(5.4) with fn(-)
defined by (4.12)~(4.14), and fx(z) = fx(—2z) for x < 0; T is defined by (4.2), and
An(-) is defined by (4.13); 2’ in (5.8) is the unique positive root of z— fn(z) = T' —y
when i > fx'(y), and x is the unique negative root of z + fn(2) = T 4+ y when
< —frt(y); xi in (5.9) is the unique positive root of z — fn(z) = 30—y if 0 >
f&l(yj), and x_ is the unique negative root of z + fN(z) =2+l if il < —f](,l(yj).
Then v' is the game value associated with an NEP & = (&%,...,&¢N*). That is,
v'(x,y) = J&, (@,y;€"). Moreover, the controlled process (X*,Y™) under £ is given
in this section: Case 1 if (x,y) € Wng, and Case 2 if (z,y) ¢ WnNE.

The proof of Theorem 5.1 is similar to that of Theorem 4.3 and hence omitted.

6. Nash equilibrium for game C. In the previous two sections, we have dealt
with two special games Cp and Cq4. Analysis of these two games provides important
insight into the solution structure of the general game C. Namely, the NE strategy
depends on the positions of players and their remaining resource levels. With these
two special cases in mind, now recall that in game C,

N ,
; a;;Yi- > ; ,
(6.1) dY) ==Y g dé and Y] =y’>0.
o1 2ak—1 GikY("
For the HJB equation (HJB — C), the gradient constraint is more complicated
than the two special cases Cp and Cq. When A; N A; = 0,

N
min {—ozvi +h+ % Zv;jIJ,Fivi + v;i, —Ipt — v;} =0 for (z,y) € W_;,
(HJB-C) _ .
—Fj?)l. — ’U;j =0 for (xy y) S A;_m] 7& i7
—Tv' +0vl; =0 for (z,y) € A;,j #1.

In particular, if A = [1,1,...,1]T € RN*! then (HJB—C) becomes (HJB—C,);
and if A = Iy, thenitis (HJB — Cy).

Similarly to section 4, define the action and the waiting regions A; and W, of
player i by
(6.2)
AF =EfnQ; A7 =E nNQ ,A=AUA7, and W;:=RY xRY\ 4,

where E;" := {(z,y) € RY x (RD)M : 77 > f]\_,l(Z;\il ai;y)}, Ef = {(z,y) €
RN (RM : 7 < —fH (X5, aiy)}, and

M
(6.3) E:l =< (z,y) € E : Zaijyj >4z y, Ei't'2 = E;"/Eﬂ,
J=1

M
(64) B =< (xy) €E Y aijy’ >~ —wop, E,:=E/E,

3
j=1

and {Q;}; are convex partitions such that Q;NQ; = (E;" UE;)Q(E;UEJ»_)Q@WNE
for i # j. We then define
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—i i Dkt a* 1 if N ET
xr 7-’I:+ + N_1 y+ 1 (x7y> € Ql n 7,17
<<$_i7 zt— Zé\il aiquvy%r) if (‘Tvy) € QZ N EiJ,r27
—3 Zk#i a” i 1 if N E"
z -, N—1 +z_ Y 1 ($,y) € le 7,17

(e o+ Zili o) 92) i (@y) e QinEp,

in which the threshold function fy(-) is defined in (4.12)—(4.14), z’, is the unique
positive root such that z — fx(2) = & — y* when 7% > f&l(yi)7 and 2% is the unique
negative root such that 2+ fx(2) = @' +y° when & < —fy'(y*). Here y! € RY with

the jth component being (y1); = v/ — %(5 =1 @igy? — n(24)), y: e RY
M ag

with the jth component being (y2); = v/ — a;;47, yL. € RY with the kth component

. ; aqj J M r3 i . .
being (yl); = v/ — m(zqzl aiqy? — fn(zh)), and y2 € RY with the jth
component being (y2); =y’ —a;;y7. Note that II(-) translates (z,y) to the boundary
of E:l, ie., 8E;‘1 = {(z,y) : Z?il a;jyl = f&l(ﬁfti),o < Z; < xo} when (z,y) €
Q; ﬁEi‘fl, and to {(z,y) : a;;4’ =0forall j=1,2,..., M} when (z,y) € Q; HEZFQ,
both along the direction (0,...,—1,...0; —<@ll— .  — 4wy ) c RN x RM

oth along the direction (0,...,—1,...0; oyrrEREEE Eﬁlaijyﬂ')e x RY
with the ith component being —1. Denote

M
Wie =] (@y) e RV xRY : [F|< fi' [ D ayy’ |, 1<i< N
j=1

(6.6) U{(z,y) e RN xRY :y =0},

and assume the partition {Q;}}¥, satisfies the following assumption:

H3-C. For any (z,y) € U;A;, Il(z,y) € WnE.
Condition H3-C implies that if (z,y) € A;, then the dynamics will be in region Wy g
after player i’s control.

From the analysis in sections 4 and 5 and the “guess” that the control
policy of player i only depends on (z, ZJM:1 a;;y’) when in W_;, we get for |7°|<

IV (I aiy?),

M
(6.7) v'(x,y) = py (@) + Ax [ D aijy’ | cosh (Fay)

=1

is a solution to (HJB-C), where py(-) is defined by (4.10), and Apn(:) defined by
(4.13).

The next step is to construct the controlled process (X,Y) corresponding to
the HJB solution (6.7). Note that Wy is an unbounded domain in R*Y with 2N
boundaries. For ¢ = 1,2,..., N, define the 2N faces of Wng as F; = {(z,y) €
OWnNE | (:c,y) S 8EZ+} and Fi+N = {(x,y) € OWnNE | (ﬁ,y) S 8El_} The normal

direction on each face is given by n; = ¢;(5 .., —1,. .., 77; (f{,l)’(zjzvil ai;y?)
_ M .
(Lﬂ,...,(le)/ (ijlaijyj)aiM) and NN+ = CN+i(—ﬁ,...71,...7—ﬁ;

(f&l)’(zgil aiy?)ag, ..., (f&l)’(ZjM:l a;;y7)a;pn) with the ith component being +1
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and ¢; and ¢y, the normalizing constants such that ||n;||= ||ny1:||= 1. Furthermore,
denote the reflection direction on each face asr; = ¢(0,...,—1,...0; 7%, e
Mai
M M
__aimy LA . auy __aimy 3
s aijy-f) and ryy; = cy;(0,...,1,...0; iR 5 %_y].) with the
i" component to be +1. ¢} and ¢}y, are normalizing constants such that [jr;|=

|l*n+ill= 1. The NE strategy is defined as follows.

Case 1: (Xo-,Yo_) = (x,y) € WnE. One can check that Wy defined in (6.6)
and {r;}2%] defined above satisfy assumptions A1-A5. Therefore, there exists a weak
solution to the Skorokhod problem with data Wx g, {r:}?2,,b, 0,2 € WxE). See
Appendix A of the online supplementary material for the satisfiability of A1-Ab5.

Case 2: (Xo_,Yo_) = (x,y) ¢ Wng. There exists i € {1,..., N} such that
(Xo-,Yo_) e A;. (1) If (z,y) 6 AL N E;rl, then player ¢ will move immediately from
P o p

Xi_ =at toXO—x++
that z — fy(2) = 2* — (Zéw 1 azqy 7). This will reduce the resources from Yo_ =y to

at time 0, where 2% % is the unique positive root such

Y, =y, with the jth component of y, being (y,); = v/ — %(Zé\il aiqy? —
k

fn(z%)) > 0. Other players’ dynamics remain unchanged, ie., X} = X(’)t_ =z
for k 7& iand 1 < k < N. By assumption H3-C, we have (Xo,Yo) = ((x7", 2% +

Z’”f ),y4) = I(Xo-,Yo_) € Wre. (2) If (z,y) € A N E:_Q, then player i will

i i i i M q .
move immediately from Xj_ = 2’ to X§j = 2" — Zq:l aiqy? and resource j is changed

from Yoj_ =y to Yoj = y/ — a;;57 at time 0. Other players’ dynamics remain
unchanged, i.e., X§ = X} = 2% for k # i and 1 < k < N. Under assumption H3-C,
we have (Xo,Yo) = II(Xo-,Yo-) € Wyp. (3) Similarly, if (z,y) € A; N E;;, then

player i will move immediately from X§_ = z' to X§ = 2* + Z’”“ at time 0,

where z’ is the unique negative root such that z + fy(z) = & + (Z _1 aiqy?). This

changes the resources from Yo =y to Yy = y_, where the jth component of y_ i
. s J M

Y )=y — %(Zq L aigy? — fn(21)) > 0. Other players’” dynamics remain

unchanged at time 0, i.e., X} = X} = xk for k # ¢ and 1 < k < N. By assumption
H3-C, we have (Xo,Yo) = (@, 227 4 47 ) y ) = I(X,_,Yo_) € Wip. (4)
If (z,y) € A N E:Q, then player i w1ll move immediately from X} = 2 to X§ =
2t + Zé\il aiqy? and resource j is reduced from Yoj_ =17 to Yoj =yl —a;;y’ at time
0. Other players’ dynamics remain unchanged at time 0. By assumption H3-C, we
have (XQ,Y()) = H(XO_,YO_) € WnE.

The NE for the N-player game (2.8) with constraint C is stated as follows.

THEOREM 6.1 (NE for the N-player game C). Assume H1'-H2' and H3-C.
Define v € RN x R, — R as

(6.8)
N(E) + An(y) cosh (an?)  if [#|< fx' (y) and y =0,
ul (:1: x++zj'{,’1,f1v(mi)) if & >f1§1(y) and y > T + xo,
u'(z,y) = ul (x_ Tt — y,O) if & > f&l(y) and y < & + xo,
ui (zla Zk#l : —afN( )> ijl < _f]\_fl(y) 0/[’Ld Yy Z _'fz — Zo,
ul (mf ,x’ er,O) if 3¢ < ff]\_,l(y) and y < —%* — x9,
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and define v’ : RN x Rf — R as
(6.9)
, M ,
u (.’ij 1 aijy3>
7 (.’II J ZL’+ + Zk#] ’y+>

(x.y) € Wi,
v (z,y)
vi(@,y) = vi(m*ﬂ‘,xi—(zsilaquq),yi) if (.9) € A OV Ef, for j #1,
(z,y)
(z,y)

if (z,

f (x,y) € AT NE], forj#1i,

,Ui x_j M-’-(EJ 1 f A — . .
9 N—1 77?/7 mv 6 m j71 fO?"] 7é Z?

o' (&7, 27 + (Z(II\/; aquq> ,y2_> €A NE;, forj#i,

f (x,

where A; and W, are given in (6.2), Eft1 and E22 are given in (6.3)—(6.4) with
fn () defined by (4.12)—(4.14), and fN( ) = fn(=x) for x < 0; T° is defined by
(4.2), and An(-) is defined by (4.13); er in (6.8) is the unique positive root of z —
InG) =T —y if 3 > fy' ( ), and x' is the unique negative root of z + fn(z) =
Tty if i < —fy'(y); @) in (6.9) is the unique positive root of z — fn(z) =
- Z,Icwzl ajpy® if 3 > fy (Zé\il a;qy?), and 2’ is the unique negative root of
24+ fn(z) =27 Jrzg/le ajpy® if ¥ < ffgl(zyzl ajqy?); the kth component of y'y in
. ainy® M 1
(6.9) is (yh )k = y* — %(Zqzl ajqy? — fn(2’)), and the kth component of y*
ajkvk

s (YL)e =y~ — m(zfl\il a;qy? — fn(@’)): and finally the kth component of

y% in (6.9) is (y% ) = y* —a;ry®, and the kth component of y* is (y2)r = y* —a;ry”.
Then v' is the value associated with a NEP £ = (¢Y*,...,¢N*). That is, v'(z,y) =
Ji(z,y;€"). Moreover, the controlled process (X*,Y™) under £ is a solution to a
Skorokhod problem as described in Case 1 if (x,y) € Wng and described as Case 2 if

The proof of Theorem 6.1 is similar to that of Theorem 4.3 and hence omitted.

7. Comparing Games Cp, Cg, and C. In this section, we compare the games
Cp, Cq, and C. We will first compare their game values and discuss their economic
implications. We will then discuss their difference in terms of the NEP. Finally, we
discuss their perspective NEs in the framework of controlled rank-dependent SDEs.

To make the games comparable, let us assume y = Zj\le y?. Let us also consider
a special sharing game Cs which can be connected with both Cq and Cj:

Cs. M=Nanday;=1fori=1,2,...,N.

7.1. Pooling, dividing, and sharing. Denote the game value and waiting
region for each player i as v}, and WZC ?, respectively, for game Cp. Similar notations
are defined for Cg and Cs.

PROPOSITION 7.1 (game values comparison). Assume HI'-H2'.  For each
(z,y) € RN x RY, denote y = SNy If (z,y) € WZ-CP and (z,y) € W N WEs,
then,

vle(xvy) S /Ule(x7 y) S ’Usz(xay)7 1= 17 27 R 7N'

The proof of Proposition 7.1 is straightforward and hence omitted. Details are

provided in the online supplementary material. This result has a clear economic
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DWrely)  IWnely'

Fia. 3. Comparison of projected evolving boundaries for Cp, Cq, C when N = 3.

interpretation. In a stochastic game where players have the option to share resources,
versus the possibility to divide resources in advance, sharing will have a lower cost
than dividing. Pooling yields the lowest cost for each player.

Define the projected common waiting region Wy g(y) := {(z,y) € RY x (R%)M
|7t < f]\_,l(zyl a;;y7) for 1 < i < N}U{y = 0}, for any fixed resource level y. Then
WhnE(y) is a polyhedron with 2N boundary faces. Figure 3(a) shows a pooling game
Cp. After one player exercises controls, all the faces of the boundary move. Figure 3b
corresponds to a dividing game Cq4. After player ¢ exercises controls, her faces of F;
and F;; n move. Here i = 1, N = 3. For a sharing game C, shown in Figure 3c, after
one player exercises her control, the faces of the players who are connected with her
will move, while the faces for other players remain unchanged. Here i = 2 and players
two and three are connected.

7.2. NEs for the games and controlled rank-dependent SDEs. In the
previous sections, the controlled dynamics is constructed directly via the reflected
Brownian motion. This class of SDEs can also be cast in the framework of rank-
dependent SDEs. Indeed, the controlled dynamics of NE in the action regions of the
N-player can be written as controlled rank-dependent SDFEs:

N
AX = Vpix v o-rox, v (0dt+ osdB] +dgf™ — dg) ™),

j=1
AY] = =Y e

with (€5F,¢%7) the controls, F* : RN x R} — R a rank function depending on both
X and Y, FM) < ... < F(™V) the order statistics of (F?);<;<n, and §; € R, o; > 0.
In game Cp, the controlled dynamics in the action regions satisfies the SDEs

with Fép(:l;,y) = |zt — EI{i"fc”, 0; = 0, and o; = 0 for each ¢ = 1,... N, and

€+ =0 foreachi=1,...,N —1and ¢V* £0.

In game Cy, F}, (z,y) = |2' — X:Ji — fnt(y")|. For the general game C, the
controlled process in the action regions 1s governed by the rank-dependent dynamics

with F(z,y) = |2'— E”“ — Iyt (Zj Lai;y7)| with fx a threshold function defined
n (4.12)—(4.14) and 6,, a,, and 5% satisfying the same condition as before.

Note that the special case without controls, i.e., F'(z,y) = 2’ and &>+ = 0,
corresponds to the rank-dependent SDFEs. In particular, the rank-dependent SDEs
with 61 = 1, 6o = ---0y = 0 are known as the Atlas model. To the best of our
knowledge, rank-dependent SDEs with additional controls or a general rank function
F' have not been studied before. There are various aspects including uniqueness
and sample path properties that await further investigation and we leave them to
interested readers.
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