10

15

20

25

30

35

Submitted Manuscript: Confidential

An ancestral recombination graph of human, Neanderthal, and Denisovan genomes

Authors: Nathan K. Schaefer'?#, Beth Shapiro!?#, and Richard E. Green®*

Affiliations:

"Howard Hughes Medical Institute, University of California, Santa Cruz, Santa Cruz, CA 95064,
USA.

2Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, Santa
Cruz, CA 95064, USA.

3Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA
95064, USA.

4Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA 95064, USA.

*Correspondence to: ed@soe.ucsc.edu

Abstract: Many humans carry genes from Neanderthals, an important legacy of past admixture.
Several methods have been described for detecting this archaic hominin ancestry within human
genomes using patterns of linkage disequilibrium or direct comparison to Neanderthal genomes.
Each of these methods is limited in sensitivity and scalability. We describe a new ancestral
recombination graph inference algorithm that is scalable to large genome-wide data sets and
demonstrate its accuracy on real and simulated data. We then generate the first genome-wide
ancestral recombination graph of both human and archaic hominin genomes. From this, we
generate a map within human genomes of archaic ancestry and of genomic regions devoid of
genes shared with archaic hominins by either admixture or incomplete lineage sorting. We find
that only 1.5-7% of the modern human genome is uniquely human. We also find evidence of at
least two bursts of adaptive changes specific to modern humans within the last 600,000 years,
consisting of both coding and regulatory changes, many of which may relate to brain
development and function.

One Sentence Summary: A new method for mapping archaic hominin ancestry in human
genomes reveals specific evolutionary changes unique to modern humans, including many
involved in brain development and function.

Main Text:

Much of the current genetic variation within humans predates the split, estimated at 520-
630 thousand years ago (kya) (/), between the populations that would become modern humans
and Neanderthals. The shared genetic variation present in our common ancestral population is
still largely present amongst humans today and was present in Neanderthals up until the time of
their extinction. This phenomenon, which is known as incomplete lineage sorting (ILS), means
that any particular human will share many alleles with a Neanderthal that are not shared with
some other humans. Therefore, humans often share genetic variation with Neanderthals not by
admixture but rather by shared inheritance from a population ancestral to us both. Because of
this, any effort to map ancestry from archaic hominins in human genomes must disentangle
admixture from ILS. Furthermore, a technique able to identify both admixture and ILS could
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produce a catalog of uniquely human genomic regions that is free of both, and thereby shed light
on the evolutionary processes that have been important in our origin as a unique species.

Ancestral recombination graph (ARG) inference (2) is a powerful starting point for such
an analysis. An ARG can be conceptualized as a series of trees, mapped to individual sites, over
phased haplotypes (chromosomes) in a panel of genomes. Ancestral recombination events, or
sites at which chromosome segments with different histories were joined together by historical
recombination, form boundaries between trees. Each ancestral recombination event manifests as
a clade of haplotypes, all of which descend from the first ancestral haplotype to possess it,
moving from one position in the tree upstream of the event to a new position in the downstream
tree (3). ARGs are complete descriptions of phylogenomic data sets and present for recombining
genomes what single trees present for nonrecombining genomes, i.e., a complete description of
their genetic relationships. As prior techniques for ancestry mapping can be thought of as
summaries of the ancestral recombination graph, higher resolution ancestry maps could be
produced if the ARG were known. Additionally, the ARG can be used to estimate the TMRCA
between admixed and admixer haplotypes, providing additional information about historical
admixture between humans and archaic hominins.

Given the utility of an ARG, it is not surprising that several methods have been devised
for estimating ARGs from genetic data. These published approaches all have different strengths
and limitations. BEAGLE (3), ArgWeaver (4), and Rent+ (5) were designed for small data sets
and require substantial time and/or memory to be used with large sequencing panels. Margarita
(6), randomly samples histories at ancestral recombination event boundaries and does not seek to
produce parsimonious recombination histories (6). ArgWeaver (4), which is widely considered
the gold standard in ARG inference, requires prior knowledge of demographic model parameters.
Relate (7) is a relatively new method that scales well to large data sets and produces fully
articulated trees with branch lengths, but in doing so necessarily describes relationships inferred
from but not directly observed in the data, as do several other methods (4, 5). The most
computationally efficient approach, tsinfer (§), also scales to large data sets but does not infer
branch lengths and assumes that frequency of an allele is correlated with its age. Since this
assumption is violated at loci undergoing either admixture or selection, tsinfer is not well-suited
for ARG inference using genetic data from Neanderthals, Denisovans, and modern humans.

Here, we present a heuristic, parsimonious ARG inference algorithm called SARGE
(Speedy Ancestral Recombination Graph Estimator) and use it to build a genome-wide ARG of
both modern human and archaic hominin genomes. SARGE can run on thousands of phased
genomes, makes no prior assumptions other than parsimony, estimates branch lengths, and
represents uncertainty due to missing mutations as polytomies in output trees. We validate
SARGE using simulated data and demonstrate that it has high specificity compared to existing
methods in reconstructing the topology of trees, but does so without assumptions about
demographic history, making it more suitable for identifying archaic admixture segments. To
achieve this high specificity, SARGE leaves uncertainty (polytomies) in output trees, resulting in
lower sensitivity than existing methods.

We run SARGE on a panel of 279 modern human genomes, two high-coverage
Neanderthal genomes, and one high-coverage Denisovan genome. Using the resulting ARG, we
map Neanderthal and Denisovan ancestry, ILS, and the absence of both across modern human
genomes. We find evidence of at least one wave of Neanderthal admixture into the ancestors of
all non-Africans. We also identify several long and deeply divergent Neanderthal haplotype
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blocks that are specific to some human populations. We find support for the hypothesis that
Denisovan-like ancestry is the result of multiple introgression events from different source
populations (9, 10). We also detect an excess of Neanderthal and Denisovan haplotype blocks
unique to South Asian genomes. Finally, we pinpoint human-specific changes likely to have
been affected by selection since the split with archaic hominins, many of which are involved in
brain development.

ARG Algorithm

To build an ARG containing both modern human and archaic hominin genomes without
the use of a demographic model or the need to infer ancestral haplotypes, we developed a
parsimony-based ARG inference technique, SARGE. SARGE uses both shared derived alleles
and inferred, shared ancestral recombination events to articulate trees (Supplementary methods,
Fig. 14). SARGE uses the four-gamete test (//) to determine regions of recombination and the
affected haplotypes. The crux of SARGE is a fast algorithm for choosing the branch
movement(s) capable of explaining the highest number of discordant clades across a genomic
segment that fails the four-gamete test. Once the branch movements, i.e.,inferred ancestral
recombinations, are determined, further definition of clades is possible. Thus, the trees are
articulated by both shared alleles and shared ancestral recombination events (Fig. SI, Fig. S2,
Supplementary methods).

In the interest of parsimony, our method attempts to infer a set of ancestral recombination
events that each explain as many four gamete test failures as possible. Because the four gamete
test is known to underestimate the true number of ancestral recombination events (/2, 13),
SARGE will systematically underestimate the true number of ancestral recombination events in a
data set by design. Because of this, SARGE is not well-suited to certain tasks, such as the
creation of fine-grained recombination maps. We have attempted to mitigate cases where a clade
in the ARG should be broken by an unobserved ancestral recombination event, however, by
introducing a propagation distance parameter that limits the genomic distance over which each
observed clade is allowed to persist (Supplementary Methods, Fig. 14).

SARGE is scalable to large data sets and achieves higher specificity than many other
methods at the cost of lower sensitivity, by leaving uncertainty (polytomies) in the output data.
Using simulated data, we find that SARGE runs quickly (Fig. S5D, Fig. S 7), requires little
memory, and has 78.93% specificity (95% C.I. 78.09-78.95%) on average across a range of
simulated data sets that include between 50-500 haplotypes (Supplementary Methods). SARGE
is at least as specific as alternative techniques (Fig. S64,C). Conversely, SARGE’s sensitivity
(25.36%; 95% C.1. 25.32-25.40%) is lower than that of other methods (Fig. S6B,D), as SARGE
leaves an increasingly large number of polytomies in output trees as the number of input
haplotypes increases (Fig. IB,C).

We also find that the sensitivity of SARGE can be increased by increasing the
propagation distance parameter (Supplementary Text, Fig. S 8), that missing clades are likely to
be small clades that are close to the leaves of trees (Supplementary Text, Fig. S 9), and that
incorrectly-inferred clades tend to be within a few kb of sites at which those clades exist in truth
(Supplementary Text, Fig. S 10). We also find, using simulated data, that SARGE’s branch
lengths do not appear to be systematically biased upward or downward (Supplementary Text,
Fig. S 11).
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We ran SARGE on 279 phased human genomes from the Simons Genome Diversity
Project (SGDP) (/4), together with two high-coverage Neanderthal genomes (/, /5) and one
high-coverage Denisovan genome (/6). In our analyses, we relied on modern human population
labels defined by the SGDP for many analyses, but we split sub-Saharan Africans into one
population containing only the most deeply-diverged lineages (Biaka, Mbuti, and Khomani-San),
which we call “Africa-MBK,” and the remaining genomes (“Africa”). Using these data, we find
that the completeness of trees in the ARG is positively correlated with the local mutation rate to
recombination rate ratio (Fig. S134; Spearman’s rho = 0.40; p < 2.2 x 107!%), and that the number
of inferred ancestral recombination events per genomic window agrees with a previously
published population recombination map (/7) (Fig. S13B; Spearman’s tho = 0.46; p <2.2 x 10
16), as expected. Estimates of the mean time to most recent common ancestor (TMRCA) of
groups, taken across all trees, were also concordant with prior knowledge (Fig. 24). We note,
however, that these TMRCA estimates are different from both pairwise coalescent times and
population split times. Because we have included hundreds of modern human genomes, and
because incomplete lineage sorting between modern humans and archaic hominins is
widespread, the mean TMRCA of all humans in the SGDP panel is close to the mean TMRCA of
all hominins in our data set (Fig. 24). Our reported TMRCA values computed are also
influenced by the demographic parameters implemented in our models (Supplementary Text).

Using these data, we found SARGE’s inferences of ancestral recombination events to be
accurate. Because SARGE articulates tree clades using either shared allelic variation or shared
inferred ancestral recombination, it is possible to test the concordance of trees made from each
source. On average, 13.2% of clades in the ARG are known only from inference of shared
ancestral recombination events and not by the presence of a shared, derived allele. We created a
similarity score between every pair of phased human genome haplotypes in our data set based on
how often the haplotypes share ancestral recombination events. This score recapitulates
relationships among humans known from SNP data alone (Fig. 2B, C; Pearson’s 7% with scores
from SNP data = 0.989; p < 2.2 x 10°'%). We note that genomes with the poorest correlation
between SNP-based and recombination-based similarity scores to other genomes are those most
likely to contain phasing errors (Table S 1).

Archaic hominin admixture

We used our ARG to find regions of each phased human genome that derived from
admixture with archaic hominins (Supplementary Methods, Fig. S16). If humans and the archaic
hominins in our panel were in populations that had sorted their lineages, this exercise would be
simple with a complete and correct ARG. However, since human genome regions are often
within a clade that includes hominin haplotypes due to incomplete lineage sorting, finding
admixed segments requires analysis beyond simply finding clades that unite some human and
archaic hominin haplotypes.

We started by selecting clades from ARG trees that united some modern humans with
archaic hominins to the exclusion of some other modern humans. We then assigned each human
genome haplotype in each such clade as putative Neanderthal, Denisovan, or ambiguous
ancestry, depending on whether the clade contained Neanderthal, Denisovan, or both types of
haplotypes. We then performed several filtering steps to remove such clades likely to result from
ILS. First, we removed any clades that included more than 10% of the Africa-MBK haplotypes
from the most basal human lineages, which are unlikely to be admixed. We then discarded clades
that persisted for a short distance along the chromosome, or in which the TMRCA between
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modern humans and archaic hominins was high (Supplementary Methods, Fig. S16). Because
our method relies on both the haplotype block length and the TMRCA between admixed and
introgressor haplotypes to identify admixed segments, we were able to identify some haplotypes
that resemble archaic admixture in modern humans but that have relatively high sequence
divergence to published archaic genomes (manifesting as high TMRCAs between archaic and
modern genomes within these segments).

Using the resulting maps, we calculated genome-wide percent admixture estimates
across populations and compared them to estimates based on the population-wide D-statistic (/8,
19) using basal Africa-MBK lineages as an outgroup. ARG-based estimates are similar to, but
lower than, D-statistic based estimates in all non-African genomes. We detected slightly more
admixture in sub-Saharan Africans (excluding Africa-MBK) than using the D-statistic (Fig. 34),
even when considering the lower end of 95% confidence weighted block jackknife intervals
(Table S2). We note that a recent study that used an outgroup-free method to detect Neanderthal
ancestry blocks in human genomes also found a higher average amount of Neanderthal ancestry
in African genomes than has been previously reported (20).

We next looked for population-specific differences in archaic hominin ancestry in
modern humans. Lengths of archaic haplotype segments and the TMRCA to admixer across
those segments are both affected by the time of admixture and the divergence between the true
admixers and available archaic hominin genomes. We therefore computed these two values for
each ancestry type and compared them across individuals from different populations to look for
evidence of distinctive, population-specific admixture events. This analysis revealed distinctive
population-specific patterns for Neanderthal and Denisovan ancestry. Segments of ambiguous
ancestry produce a pattern resembling a mixture of Neanderthal and Denisovan ancestry, as
expected (Fig. 3B-D, Fig. S 17, Fig. S 19, Fig. § 28, Fig. S 29). We caution, however, that our
approach can artificially shorten haplotype block lengths (Supplementary Methods, Fig. S 14),
especially for populations such as Papuans and Australians that were absent from the 1000
Genomes Project panel (27) that was used for phasing (/4). Nonetheless, Neanderthal haplotype
block lengths in Oceania are not significantly shorter than in other populations (Fig. 3B), and
incorrect phasing in archaic genomes does not appear to negatively affect results of admixture
scans using simulated data (Supplementary text).

As expected, the ARG classifies a smaller fraction (0.10-0.46%) of sub-Saharan African
genomes (excluding Mozabite and Saharawi individuals) as resulting from Neanderthal
admixture compared to non-African genomes (0.73-1.3%). The haplotype segments of African
genomes that are grouped together in clades with Neanderthal haplotypes are distinctive from the
haplotype segments found in the genomes of people with non-African ancestry (Fig. 3B, Fig. S
174). Namely, the African haplotypes are more dissimilar to the Neanderthal haplotypes with
which they are grouped and tend to be shorter. These observations are qualitatively consistent
with the model wherein genetic drift may group Neanderthal and African haplotypes,
independent of a specific admixture event. It is also possible that these haplotypes are the result
of true introgression events from unknown archaic hominins distantly related to the
Neanderthal/Denisovan lineage (22). Another recent study using an inferred ARG also found
mysterious, divergent haplotypes within sub-Saharan Africans that resembled unknown archaic
introgression (7).

Unexpectedly, however, two of the SGDP African populations, Masai and Somali, are
intermediate between non-African and African genomes when measuring lengths of archaic
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haplotype segments and TMRCA to admixers within them (Fig. 3B). These Neanderthal
haplotype blocks may have originated in ancient European migrants to eastern Africa (23) and
spread beyond eastern Africa through gene flow, which is known to have affected even the basal
Africa-MBK lineages (24).

To test this hypothesis, we re-computed the mean length and TMRCA of admixer
genomes within archaic-introgressed haplotype segments across all individuals, using only
geographically restricted segments. We defined these as any archaic haplotype segments found
only in genomes that were sampled within a 3,000 km radius of each other (using geodesic
distance between sampling coordinates). This analysis showed Masai and Somali genomes to
possess fewer geographically restricted Neanderthal haplotypes than most other African genomes
(Fig. 3C), concordant with the idea that they originated in Eurasian migrants.

Outside of Africa, our Neanderthal introgression maps largely agree with prior studies.
We detect a mean TMRCA to Neanderthal of about 54 kya across all Neanderthal haplotype
blocks in non-African populations, using published corrections for branch shortening in the
archaic genomes (/). Remarkably, the mean TMRCA between genomic segments detected as
Neanderthal admixture segments and the Neanderthal itself is consistent within several thousand
years for all populations outside of Africa (Fig. 3B). We see slightly more Neanderthal ancestry
in Central Asia, East Asia, and the Americas than in Europe, South Asia, and Southwest Asia
(Fig. 34). We also find more geographically restricted Neanderthal haplotype blocks in South
Asia than elsewhere in mainland Eurasia, and the fewest geographically restricted Neanderthal
haplotype blocks in the Americas (Fig. 3C, Fig. S 26).

Humans in Central and East Asia are known to have elevated Neanderthal ancestry
compared to other populations (25). However, there is debate over whether this elevated
Neanderthal ancestry is due to smaller past population size relative to other groups and the
resulting stronger effect of genetic drift (25) or to additional pulses of Neanderthal admixture
specific to these populations (9, 26). Although we detect more Neanderthal ancestry in Central
and East Asians than in West Eurasians, we detect a similar number of geographically restricted
haplotype blocks (unique to a 3,000 km radius) in both groups (Fig. 3C). Further, Neanderthal
haplotype blocks are shorter on average and therefore older in Central and East Asians than in
West Eurasians (Fig. 3B). This implies that the excess Neanderthal ancestry in Central and East
Asians mostly comprises broadly shared haplotype blocks from introgression common to all non-
Africans, consistent with the drift scenario. Aside from these broadly shared haplotype blocks,
we also observe geographically restricted Neanderthal haplotype blocks in each non-African
population in our panel. These population-specific haplotype blocks tend to be longer than the
shared haplotype blocks and to have an older TMRCA to the Neanderthal genome than the
broadly shared haplotype blocks (Fig. 3D). These observations suggest that the population-
specific haplotype blocks may be the result of more recent population-specific Neanderthal
admixture, as has recently been suggested (26, 27, 28).

We next investigated population-specific patterns within Denisovan ancestry segments
and found that such segments probably originate from admixture with multiple, divergent
individuals that were distantly related to the Denisovan genome. This implies that the Denisovan
genome is not a good model for the actual population that admixed with humans with
“Denisovan” ancestry. Prior studies have suggested that Denisovan-like haplotype blocks in
humans have two or three distinct sources with different levels of divergence to the Denisovan
genome, with the best-matching haplotype blocks in East Asia (9, 10). We uncover the same

6



10

15

20

25

30

35

40

Submitted Manuscript: Confidential

signal: geographically restricted Denisovan haplotype blocks have the lowest TMRCA to the
Denisovan genome in East Asian genomes (mean TMRCA to Denisovan of 90.3 kya) (Fig. S 17,
Fig. S18).

Unexpectedly, we detected many Neanderthal and Denisovan-like haplotype blocks that
are unique to South Asia (Fig. 3C, Fig. S 17C, Fig. 836, Fig. S 26, Fig. S 27), and many
Neanderthal haplotype blocks that are unique to Oceania (Fig. 3C, Fig. S35, Fig. S 26). These
geographically restricted Neanderthal haplotype blocks are no more divergent to the Neanderthal
genome than those specific to other populations (Fig. 3D), complicating any interpretation of
these regions.

Genomic regions free of admixture and ILS

Our ARG strategy allows us to bin the human genome into regions containing archaic
admixture in at least some humans, regions of ILS, and regions free of both archaic admixture
and ILS in all humans (hereafter archaic “deserts”). We find that approximately 7% of the human
autosomal genome is human-unique and free of both admixture and ILS. Roughly 50% of the
human genome contains regions where one or more humans has archaic ancestry obtained
through admixture. If deserts are further restricted to regions that contain a high-frequency,
human-specific derived allele, i.e., a substitution that can be assigned to the human lineage
(hereafter “human-specific regions”), these comprise only 1.5% of the assayed genome (Fig.
44). Despite comprising very little of the genome, however, human-specific regions are
significantly enriched for genes, exons, and regulatory element binding sites, while deserts are
enriched for both genes and regulatory element binding sites (7able S3). In line with previous
studies (29, 30), we find admixed regions to be depleted of genes. Regions of ILS are enriched
for overlap with genes but significantly depleted of exons (7able S3).

To obtain an expectation of the extent of these different types of genomic regions, we ran
a series of coalescent simulations with different amounts of archaic hominin admixture occurring
in two pulses, as well as with no admixture (Supplementary Methods, Supplementary Text). Our
observation in the real data — that only 7% of the autosomal genome is free of both archaic
admixture and incomplete lineage sorting — is inconsistent with the results of these simulations,
which suggest instead that this proportion should be larger (Supplementary Text, Fig. 44, Fig. S
38). Two, non-mutually exclusive explanation for this difference are (1) the existence of more,
geographically limited, archaic hominin admixture events than the two we modeled
(Supplementary Text), and (2) selection acting on archaic admixed segments.

The power to detect deserts, i.e. regions in which no human carries a haplotype shared
with an archaic hominin by ILS or admixture, can be expected to be affected by the number of
human genomes available for analysis. To be certain we have found the true extent of archaic
deserts, we inferred ARGs over random subsamples of the human panel, computing the extent of
deserts and human-specific regions for each (Fig. 4B). We were able to recover the full extent of
deserts using a subsample of 100 haplotypes, less than half the size of the full panel, suggesting
that the panel is sufficiently large.

Timing of human-specific mutations

Given a clade of interest, mutations shared by all members of the clade must have arisen
between that clade’s TMRCA and its parent clade’s TMRCA. Using this logic, and calibrating
dates by using the chimpanzee genome as an outgroup and assuming 6.5 Mya human-chimp
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divergence (37), we estimated ages of all human-specific mutations within deserts. Because the
order of mutations along any given branch is unknowable, we took the midpoint of each branch,
in years, to be the approximate age of each mutation. Combining these dates with a catalog of
high-frequency, human-specific mutations as well as other annotation data (Supplementary
Methods) allowed us to construct a picture of human-specific evolutionary changes through time.

We first examined whether there were one or multiple bursts of human-specific adaptive
changes since divergence with Neanderthals and Denisovans. We compiled the ages of all fixed
or nearly-fixed human-specific derived mutations within archaic hominin deserts that either were
annotated as nonsynonymous substitutions (32) or fell within annotated regulatory element
binding sites. The age distribution of these mutations is unimodal, with a peak around 300 kya
(Fig. 5A4).

We then compared the ages of mutations affecting pairs of genes that interact, according
to the STRING database (33), to see if any clustered around specific time points (Supplementary
Methods). We find two distinct bursts of such mutations, one concentrated around 300-350 kya
and another around 100-150 kya (Fig. 5B). We note that, because many of our human-specific
genes are likely functionally important and purifying selection can decrease genetic diversity,
some of the time estimates for these mutations may be biased downward.

Estimating how and when the modern human lineage arose remains controversial. Dating
the oldest population split within modern humans using genetic data has suggested times as
recent as 200-100 kya (34, 35). Archaeological evidence paints a more complex and older story,
however: a recent study reported human remains with many modern features but archaic cranial
morphology dated to about 315 kya (36), suggesting that not all human-specific traits arose at the
same time. Other studies have found that accumulation of derived morphological features in
humans occurred in approximately three periods, whose boundaries correspond roughly to the
timing of mutational bursts we found, along with the 600-700 kya human/archaic hominin
TMRCA (37).

Functional consequences of human-specific mutations

Comparison of the human and extinct hominin genomes could reveal instances of
positive selection that are undetectable via allele frequency or haplotype-based analyses within
modern humans or through comparative genomics between humans and other primate genomes
(38). The ARG framework is an attractive approach as it pinpoints truly human-specific genomic
regions unaffected by either admixture of ILS.

We performed a Gene Ontology (GO) (39) enrichment analysis on the human-specific
haplotype regions that accounted for the lengths of candidate genes (Supplementary Methods)
and found these regions to be heavily enriched for genes related to neuron growth, synapse
assembly and function, and cell adhesion (7able S4). We note that this may occur because of
positive selection in the ancestors of all humans, strong purifying selection that reduces the
TMRCA within humans so that it excludes extinct hominins, or a combination of both. Further,
this test does not suggest specific functional consequences of specific mutations.

We ordered human-specific derived mutations within desert regions found in our ARG by
the strength of evidence that they were targeted by selection. To this end, we first sought to limit
analysis to potentially functionally relevant mutations, defined as mutations that either caused a
nonsynonymous substitution relative to archaic hominin genomes or fell within annotated
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binding sites for regulatory elements known to affect specific genes (Supplementary Methods).
We developed a simple score for each mutation based on its inferred age, where available, and
the length of the surrounding desert region (Fig. 5C). The rationale for this approach is that older
human-specific substitutions should be in shorter haplotypes as they would have undergone more
generations of recombination. Mutations in haplotype regions that run counter to this expectation
are a priori more likely to have been affected by positive selection. This approach is similar to
the recently-described extended lineage sorting (ELS) scan (40), which prioritized long genomic
intervals where modern human and archaic hominin lineages are completely sorted. Unlike the
ELS method, however, our method only considers alleles that are fixed in modern humans, Our
model also does not use a hidden Markov model to smooth transitions between sorted and
unsorted haplotypes.

Several patterns emerge when considering genes with high-scoring human-specific
mutations, and we highlight some of these key findings. Gene Ontology terms related to mRNA
splicing, processing, and export are enriched in genes with high-scoring mutations (7able S 6).
Of these, we find a regulatory mutation affecting one — LUC7L3 — that is somewhat tissue
specific (tau, a measure of tissue specificity scaled from 0 to 1 = 0.713), most highly expressed
in cerebellar tissue, and annotated to be involved in splice site selection. Its paralog LUC7L and
the gene KHDC4, both of which also possess high-scoring (top 50 percentile) regulatory
mutations, are involved in the same process. Additionally, the gene NOV A1, which harbors a
nonsynonymous mutation in the top 95" percentile of our score distribution (Fig. 5C), is a
neuronal splicing factor that regulates splicing of genes involved in synapse formation within the
brain (41).

Other types of genes, largely related to brain function and development, appear to be
affected by high-scoring mutations. Many genes localized to the centrosome and mitotic spindle
are involved in maintaining the polarity of dividing neuroblasts, and some mutations affecting
such genes are thought to be critical for the development of the human neocortex (42). We find
the term “asymmetric neuroblast division” to be enriched in high-scoring genes (Table S 6).
Among individual genes, we find a high-scoring nonsynonymous mutation affecting the
centrosomal protein RABL6, which is highly expressed in cerebellar tissue and overexpressed in
cancer (43) and a high-scoring regulatory mutation affecting INCENP, a protein crucial for
cytokinesis that localizes to the mitotic spindle and centromere (44). Axon pathfinding is another
process suggested to have been targeted by human-specific changes; the gene PIEZO1 is
involved in this process (45) and harbors a high-scoring nonsynonymous mutation. Additionally,
the protocadherin PCDHGB7, which contains a nonsynonymous substitution within a long desert
region but which we could not date, is a member of a gene family that generates neuronal cell
surface identity and is thought to help guide growing neurites (46). In addition to these, we find a
number of other mutations potentially affecting genes involved in histone acetylation, neural cell
migration, and the clearing of toxic substances from the brain (Supplementary Text).

Discussion

We implemented a new ancestral recombination graph inference approach, SARGE, and
used it to build the first genome-wide ARG of both human and archaic hominin genomes.
Analysis of the topology of these ARG trees confirms prior findings about archaic hominin
admixture, but with important new biological insights. For one, we find that a surprisingly low
fraction — 1.5-7% — of the human genome is uniquely human, with the remainder comprising
lineages shared with archaic hominins from either incomplete lineage sorting or admixture. This
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small human-specific fraction of the genome is enriched for genes related to neural development
and function. We also find evidence for multiple waves of human-specific mutations that
occurred through time, suggesting that the modern human phenotype may have developed in
stages.

In addition to Neanderthal admixture into the ancestors of all modern non-African
populations, we find evidence for other, population-specific episodes of admixture throughout
Eurasia. The TMRCA to these population-specific Neanderthal haplotype blocks is deeper than
the TMRCA to the Neanderthal haplotype blocks shared by all non-African populations. This
deeper TMRCA suggests that Neanderthals contributing population-specific ancestry were less
closely related to published (Altai and Vindija) Neanderthal genomes than were the Neanderthals
that contributed the broadly shared Neanderthal haplotype blocks. We also find that Neanderthal
ancestry is present to a smaller extent in some African genomes due to back-migration,
consistent with other recent reports (20).

We note that our estimated TMRCA to Neanderthal within Neanderthal-introgressed
segments in all non-African populations is recent — ~54 kya — and implies therefore that little
genetic drift separates admixed humans from sequenced Neanderthals in these segments. This
recent TMRCA suggests that the majority of Neanderthal ancestry in modern humans originated
from Neanderthal gene flow into the ancestors of all non-Africans before populations diversified.
It also suggests that at least one of the Neanderthal genomes used here is closely related to the
Neanderthal(s) involved in this admixture event. The slightly elevated Neanderthal ancestry that
others have described in Central and East Asian populations also appears to have originated in
this first pulse, as Central and East Asian Neanderthal haplotypes are mostly shared with other,
geographically distant populations. This observation favors the hypothesis that the increased
Neanderthal ancestry in these populations relative to others is due to weaker selection against
alleles that may be mildly deleterious (47), made possible because of smaller historical
population sizes in this part of Eurasia, rather than to additional admixture events (235).

Finally, the genomes of some Oceanian and other populations harbor genes from a
population most closely related to the archaic Denisovan genome. Importantly, the available
Denisovan genome is less genetically similar to the admixing genome than the available
Neanderthal genomes are to the admixing Neanderthals. While we are hopeful that future work
may uncover a DNA-bearing fossil better representing the population involved in the Denisovan
admixture, our approach allows identification of admixed regions that can be used to better
describe the genome of the archaic hominin group involved in the admixture event. Larger
panels of Denisovan admixed genomes may one day provide a nearly complete Denisovan
genome scavenged in parts from the genomes of admixed human individuals.

The ARG also allows for prioritizing the selective importance of mutations specific to,
and shared by, all modern humans by considering the TMRCAs of those mutations together with
the lengths of their surrounding human-unique regions. Many of these selected human-specific
mutations appear to affect genes involved in neural development and function, as well as RNA
splicing. Using new tools for genome editing and brain organoid models for neural function,
these mutations are obvious and important targets for experimental studies to determine what
was selected in our human ancestors after divergence from our most closely related, extinct
relatives.
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Fig. 1

A: schematic of data structure. Top: rectangles are “tree nodes” representing clades in trees. Each clade has member
haplotypes (shown with letters A-G), and a start and end coordinate (blue numbers in brackets) determined by
coordinates of SNP sites tagging the clade (yellow numbers in braces), along with a propagation distance parameter
(100 in this example). Parent/child edges (vertical arrows) also have start and end coordinates determined by the
nodes. Ovals are candidates for clades sharing an ancestral recombination event that can explain four gamete test
failures; colored edges indicate potential paths between tree nodes through candidate nodes that could explain four
gamete test failures (colors indicate types of paths). The candidate node with the most edges (here, AB) is eventually
chosen as the most parsimonious branch movement, allowing for the inference of new nodes. The two trees at the
bottom show the “solved” ancestral recombination event with the branch movement marked in red and all clades
inferred without SNP data marked with yellow stars (haplotypes A and B share an ancestral recombination event;
their ancestry is shared with haplotypes C,D, and G upstream of the recombination event and haplotype E
downstream of it). The coordinates of the recombination event (blue numbers in brackets) are taken to be midway
between the highest-coordinate upstream site (left side) and the lowest-coordinate downstream site (right side)
involved in recombination. B: Accuracy of SARGE on simulated data (defined as percent of all clades correct
according to the true ARG in the simulation), with increasing numbers of human-like haplotypes from an
unstructured population. Error bars are one standard deviation across 5 replicates. C: Number of nodes per tree with
increasing number of haplotypes in simulated data.
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A: Times to most recent common ancestor for various groups, averaged across all trees in the ARG. Branch
shortening values for archaic samples were incorporated into calculations; error bars show the maximum and
minimum value given using the maximum and minimum branch shortening values reported in (/). The lower value
for humans comes from removing archaic-admixed clades from trees. B: UPGMA trees computed using nucleotide
diversity from SNP data (top and left) against similarity matrix from shared recombination events inferred by
SARGE. Light yellow boxes (similar groups) are Native Americans and Papuans. C: Average similarity between
Orcadian haplotypes in the SGDP panel and other European haplotypes, calculated based on the number of shared
ancestral recombination events. The best matches are in England, Iceland, and Norway, as expected.
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Fig. 3

A: Genome-wide percent Neanderthal, Denisovan, and ambiguous (either Neanderthal or Denisovan) across SGDP
populations, using the ARG and an estimator based on the D-statistic. D-statistic calculations considered only one
archaic population at a time as introgressor and thus does not detect ambiguous ancestry and also might count some
Denisovan ancestry as Neanderthal, and vice-versa. B: For individual phased human genome haplotypes (points),
mean time to most recent common ancestor (TMRCA) with Neanderthal in Neanderthal haplotype blocks (y-axis)
and mean Neanderthal haplotype block length (x-axis). TMRCA calculations assume a total of 6.5 my human-chimp
divergence and branch shortening values from (/), with a mutation rate of 1 x 10~ per site per year.. C: Overall
number Neanderthal haplotype blocks versus geographically restricted (unique to a 3,000 km radius) Neanderthal
haplotype blocks. D: Same as B, but limited to geographically restricted (unique to a 3,000 km radius) Neanderthal
haplotype blocks.
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A: Left panel: in the SGDP data set, fractions of the genome where any individual has archaic ancestry (Admixture),
where any individual is incompletely sorted with archaic hominin lineages but where there is no archaic admixture
(ILS), where there is no evidence of either admixture or ILS with archaic hominins (Deserts), and where there is a
fixed derived allele private to and shared by all humans (Human-specific regions). Right panel: the same values
from a simulated data set with single pulses of Neanderthal and Denisovan admixture, both with an admixture
proportion (5%) that produced reasonable amounts of archaic ancestry per individual genome (Fig. S 38C) (right).
B: For random subsamples of the SGDP data set, along with the full data set, fractions of the genome comprising
deserts, deserts filtered for candidate archaic alleles using another data set, and human-specific regions are shown.
The points on the far right (full data set) correspond to the desert and ILS bars in the left pane of A.
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A: Ages of candidate human-specific functional mutations (nonsynonymous substitutions and
mutations within regulatory element binding sites) inferred by SARGE within desert regions
(free of ILS and admixture between archaic hominins and modern humans). B: For interacting
pairs of genes in the STRING database (33) for which candidate human-specific functional
mutations affect both genes, the ages of the two mutations are shown. C: For each candidate
human-specific functional mutation, the length of the surrounding desert region (x-axis) and
inferred mutation age (y-axis) are shown. Mutations for which SARGE did not infer a date
(mutations within CpG sites or for which the ancestral allele was unknown) are shown in the
bottom panel. Mutations were scored based on length of desert and age; genes with regulatory
mutations in the top 99.5" percentile of this distribution, or nonsynonymous mutations in the top
95™ percentile, are shown, with nonsynonymous changes in bold.
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Materials and Methods
Data processing

We downloaded data from the Simons Genome Diversity Project (SGDP) panel (/4),
along with two Neanderthal (/, /5) genomes and one Denisovan (/6) genome. The Simons data
were downloaded in pre-phased form from
https://sharehost.hms.harvard.edu/genetics/reich lab/sgdp/phased data/; phasing was done using
SHAPEIT2 (48). We note that the hosts of the data state that the genotypes they provide at sites
lacking a homologous chimpanzee are unreliable; we discarded all such sites from analysis.

Existing variant call sets for the ancient samples were either created using a genotype
caller that did not account for ancient DNA damage (/5, /6) or were subjected to a mapability
filter that discarded many sites in the genome (/). Because our method is sensitive to genotype
errors and seeks to make inferences at every possible site in the genome, we chose to re-call
variants in these three genomes using the ancient DNA-aware genotype caller snpAD version
0.3.0 (49). For all snpAD runs, we required a minimum base quality of 25 and treated different
types of libraries separately, separating UDG-treated and non-UDG treated libraries in the case
of the Vindija Neanderthal, and separating single-stranded and double-stranded library data for
the Altai Neanderthal and Denisovan.

Although the SGDP data were already phased, phasing posed a challenge for the
Neanderthal and Denisovan data, for which there is no reference panel and for which DNA is
fragmented into short segments. Fortunately, the comparatively low nucleotide diversity in these
archaic hominins results in the presence of long runs of homozygosity, which are phased by
definition. As an unbiased first step, we performed read-backed phasing using WhatsHap version
0.16 (50) (with default parameters, plus —ignore-read-groups). Before filtering SNPs for quality
and coverage, this phased 722,828 of 11,746,838 heterozygous sites (6.2%) in the Altai
Neanderthal, 346,992 of 48,083,469 heterozygous sites (0.7%) in the Vindija Neanderthal, and
514,575 of 33,951,346 heterozygous sites (1.5%) in the Denisovan. Many of the remaining,
unconfidently phased heterozygous sites were excluded by other, later filtering steps, however:
in our final, filtered data set, we were left with only 1,677,774 of 49,876,210 total SNPs (3.4%)
for which at least one archaic hominin individual was heterozygous and not phased by read-
backed phasing.

Following read-backed phasing, we merged archaic hominin VCF files (using bcftools
merge from beftools version 1.8 (57)) and then phased the merged files using Eagle2.4 (52), with
the 1000 Genomes Project data (27) as a reference panel. We used Eagle2’s default parameters,
but specified that it should not impute missing data (--noImpMissing) and that it should output
alleles that it could not phase (--outputUnphased). After this, we randomly assigned both alleles
at every unphased heterozygous site to one or the other haplotype. Although this decision, along
with the use of a modern human reference panel, undoubtedly introduced haplotype switch
errors, we deemed this preferable to excluding sites that were not confidently phased (which
would require us to exclude data from all of the Simons Genome Diversity Project individuals at
the same sites). To mitigate problems arising from this decision, we avoided performing any
haplotype-specific analyses on the archaic hominin genomes. When creating maps of archaic
hominin ancestry in modern humans, for example, we track only whether a modern human
haplotype is in a clade with one or more archaic hominin haplotypes at each site, but not which
specific archaic hominin haplotype is in the clade. After running the ARG, we computed the
discordance between similarity scores per genome haplotype computed using SNP data and
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computed using shared ancestral recombination events; this discordance should be largely driven
by phasing switch errors, which can cause the inference of erroneous ancestral recombination
events. We found that this discordance ranged from about 8x higher (in Denisovan) to 2-3x
higher (in Neanderthals) in archaic hominins than in the most discordant human genomes (7able
S I).

We merged the phased archaic hominin files with the SGDP data, using beftools merge
with the —missing-to-ref option, and then used bcftools norm to remove duplicate alleles (-d). To
avoid mis-identifying all SGDP samples as homozygous reference at sites that were originally
excluded from the SGDP data set, we limited the variant call set for each chromosome to the
sites between the first and last site in the SGDP data on that chromosome. To mitigate the same
problem, we also removed any site for which all non-reference alleles in our SGDP data were
private to archaic hominins, but for which non-reference alleles were present in modern humans
within the 1000 Genomes data set (27). We then discarded all sites for which any individual had
a missing genotype or genotype quality below 25 or for which any archaic sample fell within the
upper or lower tail of its genome-wide coverage distribution (extracted from the VCF file). The
allowed coverage ranges (determined by eye) were 23-70X for the Altai Neanderthal, 10-43X for
the Denisovan, and 10-47X for the Vindija33.19 Neanderthal.

Finally, we polarized our variant call set into ancestral and derived alleles, using the
chimpanzee reference genome panTro4 (53) (mapped to hgl19 by the UCSC Genome Browser
team (54) and downloaded in AXT format) as an ancestral sequence, discarding any variant that
was an indel, had more than two alleles, or lacked a known chimpanzee homolog. We chose
panTro4 as an ancestral sequence rather than a composite ancestral sequence as some other
studies have done (e.g. (55)) because it allowed us to more easily estimate branch lengths, at the
cost of discarding some sites. Additionally, because our approach assumes the infinite sites
model of mutation, we excluded all CpG dinucleotide sites from analysis, as methylated
cytosines in CpG dinucleotides are highly mutable and are thus more likely than other
nucleotides to undergo repeated mutations (56).

Ancestral recombination graph inference

We developed an ancestral recombination graph inference program called SARGE
(available at https://github.com/nkschaefer/sarge), which is optimized for speed and low memory
usage, in addition to making minimal model assumptions. SARGE assumes parsimony and the
infinite sites model and uses the four gamete test (/7) as a central insight. SARGE avoids using
statistical techniques to smooth branch lengths or infer clades, opting instead to describe only
that which can be inferred directly from the input data. The result is a set of trees that contain
polytomies and have relatively low-resolution branch lengths.

Our algorithm centers on the observation that a single tree cannot contain two clades that
share members unless one is a superset of the other. We assume that every shared derived allele
in our data set defines a clade. It has been shown that, under this assumption, pairs of sites for
which the inferred clades share members, but for which neither is a superset of the other, mark
ancestral recombination events, or breakpoints between different trees. This is referred to as the
“four haplotype test” or “four gamete test” (3, /7). One could use this technique to map ancestral
recombination events, which mark boundaries between trees, articulate trees using the sites
within these boundaries. In practice, however, this can only produce minimally articulated trees.
In the case of organisms with low nucleotide diversity, this is because there will not often be
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enough polymorphic sites between ancestral recombination breakpoints to observe many of the
possible clades per tree. In the case of organisms with high nucleotide diversity, however, it will
be possible to detect far more ancestral recombination events, thus making the size of “bins”
between ancestral recombination breakpoints smaller and leading to the same problem.

Our algorithm therefore seeks to infer all relevant information about each ancestral
recombination event. An ancestral recombination event can be conceptualized as a branch
movement (3), and so each consists of a set of haplotypes moving from one clade in an upstream
tree into a new clade in a downstream tree. Given two clades that share members, but for which
neither is a superset of the other (henceforth described as a failure of the four haplotype test), and
assuming that this four haplotype test failure describes only one ancestral recombination event,
there are then three possible branch movements than can explain it (Fig. S1). We refer to the
clade in the upstream tree from which a subclade moved as a, the clade in the downstream tree
into which a subclade moved as 3, and the subclade that moved positions as y. Four haplotype
test failures are possible between the following sets of clades (with the clade in the upstream tree
listed first and the clade in the downstream tree listed second): o/ a, o/ B, and B/ B. In the case of
an upward branch movement, all four haplotype test failures are o/ o, and all four haplotype test
failures are of the type B/ B in the case of downward branch movements. The members of the
moving clade y can then be inferred once the type of four haplotype test failure is known.
Denoting the members of the upstream clade as U and the members of the downstream clade as
D, y contains U \ D in the o/ a case, U N D in the o/ B case, or D \ U in the / B case.

Inferring branch movements between two trees

With this insight, we developed a simple algorithm to infer the most parsimonious
ancestral recombination event (branch movement) between two trees, if the trees are known a
priori and fully articulated. Consider a clade to be a set of haplotypes, and take U to be the set of
nodes in the first (upstream) tree and D to be the set of nodes in the second (downstream tree).
Then,

DECLARE set Al

DECLARE set A2

DECLARE set Bl

DECLARE set B2

DECLARE set [' «— @

DECLARE bool finished «— FALSE

DECLARE set F « 0

DECLARE set G «— @

DECLARE map C « {}

FOR u in U:

FOR d in D:
IF |und | >0and u ¢ d and u 2 d:
F «— F U (u, d)
FOR g in [(u N d), (u \ d), (d \ u)l:
IF g in G:
Clg]l++
ELSE:
G «— GUGg
Clg] «< 1

TT11
ISESESESY

DECLARE F'«— F
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WHILE not finished:
DECLARE y <«— argmax(C)

I < TI'ny
G — 0
C «— {}
FOR (u, d) in F’:
IF y in [(un d), (u \ d), (d \ u)l:
F' «<F’ \ (u, d)
ELSE:
(u,d) < (u \y, d \y)
FOR g in [(u n d), (d \ u), (u \ d)I:
IF g in G:
Clg]l++
ELSE:
G«— GUGg
Clgl < 1
IF | F' | == 0:
finished «— TRUE
FOR y in T:
FOR (u,d) in F:
IF y Cu:
Al— Al U u
ELSE:
Bl— Bl U u
IF y c d:
B2 « B2 U d
ELSE:
A2 — A2 U d

After this, the sets A1 and A2 contain clades that lost members by recombination, before
and after the recombination event, respectively. Likewise, B1 and B2 contain clades that gained
members by recombination, before and after the recombination event, respectively. I' contains all
clades defined by shared ancestral recombination events in the genomic interval between the two
trees. This is also illustrated in Fig. S2.

If the B1 and B2 sets are empty, then the recombination event was an upward movement
(the clade that moved, defined by recombination, left a clade to join that clade’s parent). If the
Al and A2 sets are empty, then the recombination event was a downward movement (the clade
that moved, defined by recombination, left a clade to join that clade’s child). Otherwise, the
recombination event was a lateral movement (the clade that was left and the clade that was
joined do not share members).

At the step where a “moving clade” (y) representing a single ancestral recombination
event is chosen, it is possible for ties (candidate moving clades that explain an equal number of
four haplotype test failures) to exist. This means that there were multiple, equivalent ways to
describe the ancestral recombination event.

General case algorithm
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Extrapolating this approach to ARG inference poses several problems. First, it cannot be
known a priori which clades belong together in trees. Grouping clades together into upstream
and downstream sets is therefore a difficult problem that we solve by exploring many possible
groupings and bound using heuristic assumptions (Supplemental text). Second, many of the
clades that could inform ancestral recombination events will be unobserved, if they are not
tagged by mutations at sites in the data set.

Knowing this, we infer ancestral recombination events using the available mutations and
then use these inferred ancestral recombination events to infer clades that they imply (Fig. S5B).
Namely, we assume that y clades should exist as clades in the ARG, whether or not they are
tagged by mutations, because the haplotypes in y share at least one ancestral recombination
event. All subclades within the upstream o clade, with the y clade haplotypes removed, must also
exist as clades in the downstream tree. Likewise, all subclades within the downstream f clade,
with the addition of y haplotypes, must also exist in the upstream tree. Similarly, all subclades
within the downstream a clade must exist in the upstream tree, with y clade haplotypes added,
and all subclades within the upstream 8 clade must exist in the downstream tree, with y clade
haplotypes added (Fig. 1A, bottom panel). Finally, in the case of an upward or downward branch
movement (inferred by the absence of any P clades or a clades in the four haplotype test failures,
respectively), the union of all clades failing the four haplotype test should exist as a clade in the
ARG

The other key component of our algorithm is a “propagation distance” parameter, p. This
parameter describes how far upstream and downstream (in physical distance) each site’s clade is
allowed to communicate its existence. Because the all-versus-all clade comparisons required by
our algorithm would become very computationally expensive without knowing a priori which
clades belong to adjacent trees, this parameter helps bound the number of comparisons and thus
the execution time. It also allows us to avoid storing an entire ARG over a chromosome in
memory at once. As we read new sites into memory, we can identify nodes sufficiently far away
upstream to be unaffected by the new data. We can then “solve” ancestral recombination events
for those upstream nodes, and other nodes even further upstream, whose ranges leave them
unaffected by the newly-solved recombination events, can be written to disk and erased. Because
errors and violations of the infinite sites model (such as back-mutations) invariably exist, this
parameter has the extra benefit of limiting how far along a chromosome erroneous data can
propagate (although a cascade of incorrect clades inferred by recombination could hypothetically
propagate errors outside of the range of the original, erroneous node).

We create a graph containing two types of nodes: “tree nodes,” which are part of the
ARG, and “recombination nodes,” which represent candidate y clades for unsolved ancestral
recombination events. Each tree node represents a given clade over a contiguous genomic span
and has a start and end coordinate, a set of positions of SNPs that tag it, and a set of other sites at
which it was inferred to exist as part of a recombination event. Tree nodes have parent/child
edges, also with start and end coordinates, and there is a single root node that spans the entire
chromosome. Node range coordinates are initially set to the furthest upstream (lowest
coordinate) site owned by the node minus the propagation distance, up to the furthest
downstream (highest coordinate) site owned by the node, plus the propagation distance. When a
node encounters another node with which it fails the four haplotype test, however, its coordinates
are adjusted — either its end coordinate is set to the furthest-downstream site at which it is known
to exist, or its start coordinate is set to the furthest-upstream site at which it is known to exist.
Nodes also can have recombination edges, which point to nodes with which they fail the four
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haplotype test, with paths through recombination nodes (Fig. 1A). These edges are analogous to
the edges described in the two-trees algorithm (Fig. S2). When a recombination event is solved,
all nodes implied by the recombination event are created as tree nodes in the ARG (Fig. 1A),
with “solved” recombination edges describing the inferred recombination event, to avoid
creating redundant recombination events in the future. Furthermore, when no possible y node
explaining a four haplotype test failure can exist (i.e. all three possible clades fail the four
haplotype test with existing ARG nodes within the ranges over which they must exist), we add
“unsolvable” recombination edges connecting the two nodes that fail the four haplotype test.
These edges allow us to adjust start and end coordinates of the nodes without inferring the
branch movement that separates them.

The propagation distance parameter p allows us to bin the ARG into regions 2*p bases
wide, each of which undergoes a different process simultaneously. Because 2*p is the maximum
number of bases within two sites can affect each other in the ARG, any node tied to a site more
than 2*p bases upstream of the most recently-observed site is already informed by all available
input data. This means we can solve ancestral recombination events affecting nodes more than
2*p upstream of the most recently-observed sites. Likewise, nodes far enough upstream to be
unaffected by these ancestral recombination events being solved can be written to disk, and
nodes far enough upstream as to not affect those being written to disk can be erased from
memory. For a cartoon of the different ARG operations allowed in different genomic bins, see
Fig. S 3.

We determine branch lengths when writing trees. Since each tree is defined only at a
single site, we determine a node’s branch length by counting the number of mutations it owns
within the range defined by the edge to its parent at the current site. If this parent/child edge
expands beyond the range [s — p, s + p], where sis the current site and p is the propagation
distance, we limit to mutations found only within that range. In the case of the root node, because
this node consists of all haplotypes in the data set and cannot be affected by ancestral
recombination events, the branch length will always equal the total number of fixed differences
between haplotypes in the data set and the outgroup, divided by two times the propagation
distance. We then divide the number of mutations by the number of bases in the range over
which they were collected. In the case where a parent/child edge is valid only at a single site, this
will lead to the extremely large branch length of 1. To help compensate for this, when we load
trees from an output file, we scale each branch length by dividing it by the total height of the
tree, both above and below that branch length (Fig. S 4). This puts all branch lengths on a scale
between 0 and 1. When all fixed differences between the ancestral sequence and the reference
genome are included as sites that can contribute to the root branch length in the ARG (as in this
study), these branch lengths can then be multiplied by two times the divergence time between the
ancestral and reference genomes to get approximate (low resolution) branch lengths. We note
that many clades in our ARG have branch lengths of zero, meaning that no mutations were
observed on those lineages. We also note that the number of times a given node serves as a y
clade in an ancestral recombination event also provides a measure of age. Although we store
these values, we do not use them when computing branch lengths in this study, since it is
difficult to reconcile time measured using two different types of units (mutations and shared
recombination events). Thus, clades inferred solely from ancestral recombination events will
have branch lengths of zero.

QC Simulations
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For the sake of assessing our and other ARG inference programs, we simulated sampling
an increasing number of haplotypes from a single panmictic population with no history of growth
or bottlenecks (QC simulations).

Our QC simulations were done using msprime (57). We chose a recombination rate of 1
centimorgan per megabase and a mutation rate of 1*¥10 per year with a 25-year generation time,
giving a per-generation mutation rate of 2.5*10%. Additionally, we chose a heterozygosity value
of 10.1 per 10,000 bases, comparable to the rate in modern sub-Saharan Africans (/5). We
simulated 1 megabase of sequence per run, running 5 replicates each of simulations with 50, 100,
200, 300, 400, 500, 600, 700, 800, 900, 1000, 2000, 3000, 4000, and 5000 haplotypes. The
complete command used was mspms X 1 -t 1010.0 -r 404.0 1000000 --
precision 6 -T, where X is the number of haplotypes. Whenever there were duplicate base
positions in a simulated data set, we ignored the allele data at all but the first occurrence of each
position. We also repeated these simulations with a lower mutation rate of 1*10°® per site per
generation, to see how this affected SARGE’s ability to correctly infer clades. The mean
sensitivity and specificity given in the main text are computed on both of these sets of
simulations, with numbers of haplotypes ranging from 50 to 500.

We then ran SARGE on each data set with a propagation distance of 25,000 bases, along
with tsinfer (8) (converting its output to a sequence of trees linked to specific variable sites),
Relate (7) with the mutation rate set to that known from the simulation and with the haploid
effective population size set to two times the simulation’s effective population size, and Rent+
(5) with the —t option to infer branch lengths. For each inferred tree, we loaded the tree output by
msprime for the same variable site and defined the inferred ARG’s specificity as the fraction of
all clades in all inferred trees that existed as clades in the msprime tree at the same sites. We also
computed the sensitivity, defined as the fraction of all clades in true trees that existed as clades in
the inferred ARGs. For the two methods, Relate and Rent+, that produced fully articulated trees,
these two values were the same. Results of QC simulations are shown in Fig. S5, Fig. S6, and
Fig. S 7.

Demographic simulations

Several of our other analyses and tests required simulated data more similar to our real data
(a global panel of human genomes, plus one eastern Neanderthal, one western Neanderthal, and
one Denisovan genome). We therefore created a second type of simulated data set using a
popular human demographic model.

We used scrm (58) for these simulations because it allows users to sample haplotypes from
time points in the past, mimicking the branch shortening due to “missing evolution” when
analyzing ancient genomes. We combined a popular, three population demographic model for
modern humans (59) with populations meant to approximate the Altai (/5) and Vindija (/)
Neanderthals and the Altai Denisovan (/6). We again assumed a 1 centimorgan per megabase
recombination rate and a 1*10 per year mutation rate, along with a 25-year generation time,
giving a per-generation mutation rate of 2.5*1078, In addition to the demographic model
parameters listed in (59), we modeled a Neanderthal/human split time of 575kya (15), an
Altai/Vindija split time of 137.5kya, a Neanderthal/Denisovan split of 420kya, and modeled the
heterozygosity in all Neanderthals as 1.6*10** and in Denisovans as 1.8%103(7). We chose
100kya as the divergence time between the Vindija and introgressing Neanderthal, no split
between the introgressing and sampled Denisovan populations, and we modeled
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human/Neanderthal admixture as a single pulse 50kya, in the population ancestral to both
Europeans and Asians, and human/Denisovan admixture as a single pulse 20kya, in the Asian
population. We assigned 57.kya of missing evolution to the Vindija haplotypes, 123kya of
missing evolution to the Altai haplotypes, and 80kya of missing evolution to the Denisovan
haplotypes (/). Our simulated chromosome was 25 megabases long, and we sampled 2
haplotypes from each Neanderthal and Denisovan (but not the introgressing Neanderthal), as
well as 20 haplotypes from each modern human population (African, Asian, and European)
population. For the sake of simplicity ascertaining archaic introgressed haplotypes, we modeled
no archaic introgression into Africans and set the gene flow parameters between Africans and
other populations to zero.

We then ran five different simulations, varying the human/archaic admixture proportion in
each (the admixture proportion was the same for both the Neanderthal and Densisovan admixture
events). The admixture proportions we used were 5%, 10%, 25%, 50%, and 75%. The full
command for each run was scrm 66 1 -t 17253.7128713 -r 7342.00547714
25000000 -T -I 7 20 20 20 0 0 O O -eI 0.0772268560362 0 0 0 O
2 0 -eI 0.167529158597 0 0 0 2 0 0 O —-eI 0.108962054372 0 0 O
002 -n11.68 -n2 3.74 -n 3 7.29 -n 4 0.231834158238 -n 5
0.231834158238 -n 6 0.231834158238 -n 7 0.0260813428018 -eg O
116.010723 -eg 0 3 160.246047 -m 2 3 2.797460 -m 3 2 2.797460
ej 0.028985 3 2 -en 0.028985 2 0.287184 -em 0.028985 1 2
7.293140 -em 0.028985 2 1 7.293140 -es 0.027240513593 3 [1-x]
ej 0.027240513593 8 7 -es 0.0681012839825 2 [1-x] -ej
0.0681012839825 9 5 -ej 0.136202567965 6 5 -ej 0.197963 2 1 -en
0.303501 1 1 -ej 0.187278530952 5 4 -ej 0.572050785453 7 4 -e]
0.783164765799 4 1, where [1-x] means one minus the admixture proportion in a given
run. We again discarded all but the first instance of every unique base position in the output file,
and we converted the “true” trees into SARGE format for running analyses.

We used the simulation with what we deemed was the most realistic admixture
proportion (0.05) for a variety of other QC assessments of SARGE, including testing the
propagation distance parameter, comparing sensitivity and specificity to Relate (7) and tsinfer
(8), checking accuracy of inferred branch lengths, and ascertaining whether incorrectly inferred
clades were inferred to exist near sites where they could be correctly inferred to exist. We also
ran one more iteration of this simulation, but with 150 haplotypes sampled per human
population, for a total of 456 simulated genomes. This simulation was used to test the accuracy
of inferred branch lengths, in addition to the simulation with 50 modern human haplotypes. For
more information see Supplementary Text.

O O

N

Comparing tree articulation to mutation/recombination rate ratio

Tree articulation refers to the extent to which all branches in a tree are defined. A fully
articulated tree containing n lineages has n-1 total nodes, whereas a completely un-articulated
tree would consist of a single large polytomy. Because SARGE leaves polytomies in output
trees, we sought to determine whether polytomies (which manifest as a lower amount of
articulation) tend to occur in regions with a low mutation to recombination rate ratio.

We binned the genome into 50kb blocks and counted the mean number of nodes per tree,
a measure of articulation, across all trees within each window. We then measured the mutation
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rate by sampling the branch length of the root node of each ARG tree (this is the number of
mutations separating all hominin lineages from the chimpanzee genome, collected over
2*(propagation distance) bases and reported in units of mutations per base). Assuming 6.5 Mya
for the hominin-chimpanzee split and a 25-year generation time, we transformed numbers of
mutations into a per-site, per-generation mutation rate by dividing by 13,000,000 divided by 25
and taking means across windows. Finally, we took the mean recombination rate in cM/Mb from
the sex-averaged Oxford map contained within Eagle2 (52) and converted it to Morgans per
base, to get a value in the same units.

Comparing number of ancestral recombination events to recombination rate

We binned the genome into 50kb blocks and counted the number of ancestral
recombination events occurring completely within each bin. We then computed the mean
recombination rate in cM/Mb in the same windows, using the sex-averaged Oxford map
contained in Eagle2 (52).

Admixture scans

The central challenge of creating admixture maps is to disentangle incomplete lineage
sorting (ILS) from admixture. Both processes create local trees in the genome that group
candidate admixed haplotypes with admixer haplotypes. Clades resulting from ILS are older than
those resulting from admixture, however; they should therefore persist for shorter stretches along
the genome and have older times to most recent common ancestor (TMRCAs). Clades resulting
from ILS are separable from those resulting from admixture using these two metrics, although
the low resolution of branch lengths in the inferred ARG makes this problem more difficult than
when true branch lengths are known (Fig. S 12). Because of this, we established several filtering
steps to distinguish ILS from admixed clades in our data set.

To map Neanderthal and Denisovan ancestry, we first scanned through ARG output for
all clades that grouped some modern human haplotypes with one or more admixer haplotypes
(Neanderthal and/or Denisovan) to the exclusion of some other modern human haplotypes. Since
SARGE produces many polytomies, this carries the risk of observing a parent of one or more
true admixed clades, but not the true admixed clade. This would manifest as a clade containing
many modern humans, in addition to one or more archaic hominins, and would falsely be
interpreted as a very high-frequency archaic-introgressed haplotype. To mitigate this problem,
we defined the Mbuti, Biaka, and Khomani-San genomes as an outgroup population (Africa-
MBK) and discarded any clade that contained more than 10% of the outgroup members. We set
this 10% threshold, rather than excluding all clades containing outgroup members, because of
later filtering steps also designed to eliminate ILS clades. Next, we discarded any clades that
persisted for less than S5kb along the chromosome, as well as one extremely long haplotype that
fell within a centromere, as annotated by the UCSC Genome Browser (54). For each clade that
passed our selection criteria, we visited each non-archaic hominin member and determined
whether that member possessed candidate Neanderthal, Denisovan, or undetermined ancestry by
assessing whether it was closer (by tree topology, ignoring branch lengths) to a Neanderthal or
Denisovan haplotype, or equidistant to both.

We then computed the mean time to most recent common ancestor (TMRCA) between
each human member and the candidate archaic introgressor across each haplotype. SARGE
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reports each branch length as a percent of the total height of the tree both above and below that
branch (Fig. S 4), which in our data set includes all fixed differences between the genomes in our
data set and the reference chimpanzee genome. The units in which these TMRCAs are expressed
are therefore a percent of two times the total divergence time between humans and chimpanzees.
These values were then corrected for branch shortening, according to the mean branch shortening
or “missing evolution” values published in a prior study (/), converted to branch units by
dividing each number by 13 million years. To correct for branch shortening, we added the
amount of missing evolution reported for a given archaic genome (in the same units as ARG
branch lengths) to the archaic genome’s branch when computing TMRCAs. In other words, if the
TMRCA between a modern and archaic haplotype is x and the branch shortening value for the
archaic haplotype is y, then the corrected TMRCA between them is (2x + y)/2. We note that the
values published in (/) were produced assuming a 13 my human/chimpanzee split time and a
mutation rate of 0.5 x 10 per base per year. Our TMRCA estimates produced assuming a 6.5
my human/chimp divergence time were in line with prior estimates, however (Fig. 2A). We
therefore chose to use a 6.5 Mya human/chimp divergence time to scale all of our branch lengths.
Using this value along with the branch shortening values in (/) is equivalent to assuming a 1 x
10" mutation rate per base per year. We are aware that this value is controversial, and that
mutation rates estimated using human pedigrees and the fossil record are sometimes in conflict
(15) (Supplementary Text).

Our ascertainment strategy allowed some candidate admixed haplotypes to intersect. If a
human haplotype was inferred to have Neanderthal ancestry at one site and Denisovan ancestry
at the next variable site, for instance, it is likely that the two haplotypes actually originated from
the same source. Because of this possibility, we merged all such haplotypes together, averaging
the TMRCA to admixer in each, weighting by the relative lengths of the two haplotypes being
merged. We then repeated this process until each haplotype was unable to merge with any others.
Because each such haplotype resulted from the combination of haplotypes with different types of
ancestry, all merged haplotypes were labeled as ambiguous, rather than Neanderthal or
Densiovan, origin.

At this stage, the set of haplotypes likely still contained haplotypes resulting from
incomplete lineage sorting rather than admixture. To help mitigate this, we assigned each a score
designed to be high in cases of admixture and low in cases of ILS. We chose a date that predates
the human/archaic hominin separation — 700 kya — and computed the p-value of each haplotype
having originated at that time or earlier according to its length and according to its TMRCA to
the candidate admixer. For this, we assumed both TMRCAs to admixer and haplotype lengths to
be exponentially distributed, and we assumed neutral evolution, a standard recombination rate of
1 cM/Mb, a 25-year generation time, and 6.5 Mya human-chimp divergence. We assigned each
haplotype a probability of resulting from ILS, based on its TMRCA: if the TMRCA (as a percent

13e6

of the height of the tree) is y, then pryrca =1 — e_(700000)(y). We then assigned each a
probability of resulting from ILS, based on its length: if x is the length of a haplotype, in bases,

700000
then pj., = e 1e82s" . We then computed a score, using a pseudocount of 0.001 to avoid taking

the logarithm of 0: S, 4, = —(0g10(Prymrca + 0.001) + log;o(Pien + 0.001)).

Because our prior filtering strategies already removed many ILS haplotypes, we sought to
find the smallest threshold for S,4,,that gave reasonable results. We therefore tested S, 4,
cutoffs at every fifth percentile of the distribution across all haplotypes, and computed the
coefficient of variation (standard deviation divided by mean) for TMRCAs to admixer in each
class of archaic-introgressed haplotypes (Neanderthal, Denisovan, and ambiguous) within each
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human population defined within the Simons Genome Diversity Project (/4). Because we expect
members of these populations to have somewhat shared histories, we expected the coefficient of
variation to the admixer to decrease and level out as an appropriate cutoff was reached, reflecting
the removal of highly variable segments with old TMRCAs (ILS). We found such a cutoff at the
30 percentile of the score distribution and excluded haplotypes with scores below this threshold
(Fig. S16). Because our resulting archaic introgression maps still underestimated archaic
ancestry per genome relative to the D-statistic (Fig. 34) and because our real data set
overestimated the extent of ILS relative to every demographic simulation we ran and
underestimated admixture relative to the size of inferred deserts (Fig. 4), we believe that this
cutoff was reasonable, if not overly conservative.

We also quantified uncertainty in our percent admixture estimates using the weighted
block jackknife technique (37) with 10 megabase blocks. We generated windows using
BEDTools, omitted each from our admixture maps in turn, and re-calculated the percent of each
type of archaic ancestry in each SGDP genome from our admixture maps. We then used this
distribution of archaic ancestry estimates for each individual to obtain a 95% confidence interval.
Mean percent archaic ancestry, along with the minimum lower and maximum upper bound of the
95% confidence interval for each type of ancestry across all genomes in each population are
given in Table S2.

Because our method relies on phased data, improper phasing could pose problems for this
by breaking haplotypes where they should not be broken. Improper phasing is most likely to be a
problem in the archaic genomes, for which reads were short and there is no phasing reference
panel, so many sites were phased randomly, after phasing the others using a (likely inadequate)
modern human reference panel (see Data Processing section above). We worked around this
issue by only conducting admixture scans on modern human genomes — those more likely to be
properly phased — and tracking only whether each candidate admixed clade contained
Neanderthal or Denisovan haplotypes, without regard to which specific Neanderthal or
Denisovan haplotypes they contained. In other words, a clade containing one modern human
genome haplotype and one Neanderthal haplotype would still be considered the same clade
(potentially from the same admixture event) if at the next site the Neanderthal haplotype
contained within was replaced by another. To ensure that this did not negatively affect our
results, we repeated some admixture scans on simulated data after intentionally introducing
phasing errors into the archaic genomes; we did not see evidence that this negatively affected the
results (Supplementary Text).

Analysis of introgressed haplotypes

We obtained geographic coordinates for each human genome from the Simons Genome
Diversity Project data (/4). For each type of archaic hominin ancestry, we then found segments
of consensus across all our haplotypes using BEDTools multiinter (60). In addition to computing
the frequency of each introgressed haplotype across our human genome panel (“global
frequency”) this way, we also used this data set to obtain the set of geographic coordinates for
each human sharing each archaic hominin haplotype. Using geopy
(https://github.com/geopy/geopy), we then computed the geodesic distance in kilometers
between each pair of humans and selected the maximum such value as the geographic radius
covered by the haplotype. To obtain geographically restricted haplotypes, we then discarded any
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archaic hominin haplotypes for which any part intersected a consensus haplotype with a
geographic radius of 3,000 km or more (using bedtools subtract —A).

Creating the four-part map (admixture, deserts, human-specific regions, and ILS)

Once our individual admixed haplotypes were compiled (see Admixture Scans section),
we merged all admixed haplotypes passing filters (using BEDTools merge (60)) to create a full
set of all regions containing admixture.

Next, we defined a desert region as a region lacking any clade that fails the four gamete
test with a clade comprising all modern human genomes in our data set. We required desert
regions to begin and end with such trees. The possibility exists, however, that alleles indicative
of archaic hominin admixture and/or ILS could exist within these regions, but at sites excluded
from the Simons Genome Diversity Project data set. To help mitigate this possibility, we
downloaded a de-identified set of genome-wide variant calls from up to tens of thousands of
human genomes from the gnomAD database (6/). We then polarized gnomAD variants into
ancestral and derived alleles using the chimpanzee genome panTro4 (53) and compiled a catalog
of non-fixed derived alleles in modern humans, defined as non-chimpanzee alleles existing at
greater than 1% and less than 99% frequency in the gnomAD database. We chose these cutoffs
because the large size of the database introduces the possibility of back-mutations and false
variant calls due to sequencing error. We then identified all such variants matching any archaic
hominin variants in our call set, at positions passing our quality filters. These variants were
treated as indicators of archaic hominin admixture and/or ILS.

To filter our desert regions according to this set of admixture and/or ILS-indicative
alleles, we first compiled the set of all such alleles falling within each desert region, using
BEDTools intersect. We then split our desert regions containing these alleles into two new
regions, one with the original start coordinate and an end coordinate halfway between the start
coordinate and the first admixture and/or ILS-indicative allele, by genome coordinate (rounded
down). The second region was defined with a start coordinate halfway between the last such
admixture and/or ILS-indicative allele (rounded up) and the original end coordinate. All desert
regions not containing any such alleles were kept unchanged.

To find human-specific regions, we downloaded a published catalog of human-specific
derived mutations, based on an aggregate of multiple mutation databases (32). We filtered this
catalog to variants where the archaic hominin frequency was 0 and the human-specific frequency
was above 99%; we chose this cutoff rather than 100% due to the large numbers of samples in
databases introducing the possibility for back-mutations and false variant calls due to sequencing
errors. We found that, of 118,519 sites passing these criteria, 51,162 had matching archaic
variants in our call set and were therefore discarded. This is likely due to the fact that the catalog
was generated using mapability-masked variant calls for the archaic hominins, while our archaic
allele call set spanned the entire genome. Another 46,206 variants from the catalog were missing
from our data set, either because they were missing from the Simons Genome Diversity Project
data set, lacked a chimpanzee allele, were not biallelic, failed one or more quality filters, or fell
within a CpG site.

Ultimately, 17,888 alleles from the catalog fell within our filtered set of deserts, resulting
in 10,503 “human-specific” desert regions containing these alleles.

With deserts, human-specific, and admixed regions thus defined, we created a BED file
of ILS regions by subtracting these other regions from the autosomal genome (using BEDTools
complement (60)).
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We tested our four types of genomic regions for enrichment or depletion of intersection
with various genomic features using the GenometriCorr R package (62). We used the Gencode
gene annotation (63), using Ensembl version 94 on human genome version GRCh38 lifted over
to GRCh37 coordinates, limited to protein coding genes, for locations of both genes and exons.
For both gene and exon annotations, we merged together the locations of all annotations on the
autosomes. Our regulatory element binding sites are from the filtered “double-elite” set within
the GeneHancer database (64), downloaded from the UCSC Genome Browser (“interactions”
table on hg19) (54), which we also limited to autosomes and merged. Our overlap p-values were
computed using the projection test in GenometriCorr, and our distance p-values are from the
Kolmogorov-Smirnov distance correlation test in the same package. For each test, we limited
background regions to 50kb genomic windows that contained polymorphic sites in the Simons
Genome Diversity Project data.

Comparing desert sizes to coalescent simulations

For the sake of having a model against which to compare the extent of genomic regions
we found to contain admixture, ILS, the absence of both (archaic hominin deserts), and the
absence of both plus a fixed derived allele specific to modern humans (human-specific regions),
we ran a coalescent simulation based on a simple three-population demographic model for
modern humans (59), with the addition of two Neanderthals from different populations, both
differently related to the population that admixed with modern humans (7, /5) and one
Densiovan (see “Demographic simulations section” above).

After obtaining our set of deserts and human-specific regions using real data, we scanned
our inferred ARG on data from each demographic simulation for deserts, human-specific
regions, and admixture. Due to the small size of the simulated chromosome, the small number of
simulated samples, the presence of an unadmixed outgroup unlike in real data, we did not use the
same technique as in real data to detect admixture. Instead, we first scanned for all clades that
grouped one or more modern human haplotypes with archaic hominin haplotypes to the
exclusion of other modern human haplotypes, discarding any haplotype containing African
genomes. Since we had prior knowledge of the admixture times in our simulations, we then
required all admixed haplotypes to have a TMRCA to the admixer of no greater than four times
the time of introgression (80 kya for Denisovan ancestry, or 200 kya for Neanderthal or
ambiguous ancestry). This worked well, producing admixture proportions in agreement with
expectation (Fig. 4C) and comparable to the D-statistic, owing to the presence of an unadmixed
outgroup, as well as the uniform mutation and recombination rates producing more uniform
haplotype block lengths. We then computed deserts the same way as in real data, but without the
need to filter out regions missing from our input data. We then identified human-specific regions
by searching for deserts that contained a derived allele specific to, and fixed in, our simulated
human genomes. With maps of admixture, deserts, and human-specific regions produced this
way, we then determined ILS regions by subtracting these regions from the rest of the genome
(using BEDTools complement (60)).

For each simulation, we plotted the different metrics of interest (individual percent
archaic ancestry and extent of regions of admixture, desert regions, and human-specific regions
across all genomes) and modeled the space between points as straight lines. We then compared
the same metrics computed using real data and found the intersections between our real data
values and the lines between simulated data points; the x-value of each point of intersection was
taken to be the inferred admixture proportion using each statistic (Fig. 4).
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Haplotype block lengths in SARGE-inferred versus true ARGs

Using the results of our coalescent simulations (see Comparing desert sizes to coalescent
simulations above), we sought to assess whether haplotype block lengths inferred by SARGE
were reliable compared to true haplotype block lengths given by the ARG output by the
simulation software. Haplotype block lengths manifest in the ARG as the number of bases for
which the clade sharing the haplotype persists along the chromosome. We therefore randomly
sampled the distance of persistence of 100,000 clades from the simulation’s true ARG and that
inferred by running SARGE with a 25kb propagation distance. Although the median haplotype
block length in the inferred ARG is close to the median haplotype block length in the true ARG,
the mean true haplotype block length is 2.46 times the mean inferred haplotype block length
(Fig. S 14). This suggests that SARGE artificially breaks some haplotypes, possibly due to
mistakes made inferring ancestral recombination events.

We note that this problem is almost certainly exacerbated in real data, for several reasons.
For one, the clustering of SNPs and the existence recombination hotspots in real data, in contrast
to the uniform mutation and recombination rates used in our simulation, will require SARGE to
infer more ancestral recombination events, and the proximity of these ancestral recombination
events to each other will increase the likelihood of making mistakes when inferring them.
Second, phasing errors will create false ancestral recombination events and artificially shorten
haplotype block lengths. We see evidence that incorrect phasing due to the absence of suitable
reference data likely caused the inference of incorrect ancestral recombination events, which
defined clades that disagreed with those learned from SNP data (7able S 1). Wherever this
happens in the genome, it will incorrectly break haplotypes.

Because of this potential limitation, we do not seek to biologically interpret haplotype
block lengths, i.e. to infer times of admixture directly from lengths of haplotypes resulting from
admixture. Instead, we only compare haplotype block lengths across admixed individuals and
populations to gain an idea of relative times of admixture.

Determining true extent of deserts

To determine if the deserts and human-specific regions we detected represent the full
extent of those regions across all humans, or whether they are a superset that would decrease
with the examination of more genomes, we randomly sampled (without regard to population or
phylogenetic position) sets of 10, 50, and 100 human haplotypes from the SGDP data set and
added all archaic hominin haplotypes (Altai, Vindija33.19, and Denisovan) to each set. We re-
ran SARGE on each of these data sets, with the same parameters as the full run (excluding CpG
sites, and with 25kb propagation distance) and scanned the results of each for deserts and human-
specific regions. For each desert region, we report both the full extent of the desert region and
the extent after removing regions around alleles shared between modern and archaic hominins
and present at between 1% and 99% in modern humans, according to the gnomAD database (6/).

Functional analysis of human-specific alleles

Our first test for functional significance of human-specific regions was a position-based
Gene Ontology enrichment analysis. Using the October 29, 2018 version of the Gene Ontology
(GO) database (65) together with the Gencode gene annotation (63), using Ensembl version 94
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on human genome version GRCh38 lifted over to GRCh37 coordinates, limited to whole protein
coding genes (introns included), we created a merged BED file of all genome regions mapped to
each GO term. We then performed an overlap enrichment test between human-specific regions
and each GO term’s regioons using the GenometriCorr R package (62), with the merged set of
all 50 kb windows in the genome containing variant sites in the Simons Genome Diversity
Project data as background regions. We took the right-tailed projection test p-value, multiplied
by the number of tests, as the p-value for each term.

We then sought to look at specific mutations hypothesized to have a functional impact.
After obtaining a catalog of human-specific derived alleles in deserts (see Creating the four-part
map section), we screened these alleles for potential functional impact in two ways. First, we
selected any of these mutations reported as nonsynonymous variants (“HHMCs”) by the
catalog’s authors. We then intersected all mutations with a heavily-filtered “double elite” set of
regulatory element binding sites, mapped to the genes they regulate, by the GeneHancer database
(64). We used the resulting set of 2,686 candidate functionally-significant human-specific
mutations within deserts, mapped to their affected genes, in all downstream functional analyses.

Dates were obtained, where available, for these mutations by searching ARG trees for
clades tagged with their SNP positions. Since each of these lineages was human-specific, all
haplotypes within each clade were modern humans and no adjustments needed to be made for
branch shortening. Because it is impossible to determine the order of mutations along a branch of
a tree, each mutation’s age was taken to be the height of the midpoint of the branch on which it
occurred. In other words, for each clade tagged with a SNP of interest, we calculated the height
(distance from the present time) of the clade and the height of its parent; the mean of these two
values was used as the age of the mutation.

We compared the ages of mutations affecting interacting sets of genes using data from
the STRING database (33), limited to interactions with a score of greater than 700. Each pair of
candidate functional mutations (nonsynonymous or regulatory) with dates inferable from the
ARG were searched for interactions of any kind among the genes they affect.

We searched genes affected by our candidate functional mutations for tissue specificity
using data from the GTEx database (66). We downloaded a data set containing the median
expression value for each gene across a set of tissues in a wide variety of samples. We then
discarded all expression values for cell lines, which may exhibit unusual expression patterns that
do not correspond to healthy living tissues. In case a gene still had data for multiple tissues
reported in this data set, we re-computed the mean across all tissues reported. For each gene, we
then computed tau, a measure of tissue specificity, due to its robustness when compared to
several other tissue-specificity metrics (67). For analyses we performed that required tissue-
specific genes, we chose a tau cutoff of 0.9 to determine specificity.

When analyzing tissue-specific expression of genes affected by human-specific mutations
through time, simply reporting the number of genes affecting each tissue would likely only
reflect the fact that many more genes are specifically expressed in certain tissues than others
(66). To highlight tissues affected by mutations at specific time points, we used the genome-wide
tissue specific expression pattern as background. For each time bin we chose, we compiled a list
of all genes affected by candidate regulatory and nonsynonymous human-specific mutations
within that time bin. We then limited these genes to those showing tissue-specific expression (tau
>0.9) and counted the number of affected tissue-specific genes each non-cell line tissue in the
GTEx database had in each time point. We normalized these counts by the total number of
affected tissue-specific genes per time point. Next, we obtained a background distribution by
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counting the number of total tissue-specific genes per tissue genome wide, normalized by the
total count of tissue-specific genes genome-wide. In each time bin, we reported our normalized
counts per tissue by the background normalized count to obtain a measure of enrichment.

For determining the types of biological processes affected by human-specific mutations
through time, we first discarded all mutations inferred to be older than 1 my and placed all other
mutations into bins 100 ky wide. For each time bin, we then gathered the set of all genes falling
within that time bin and compiled all Gene Ontology terms with which each such gene is
annotated. For each GO term, we then searched up the GO term hierarchy for parent terms
“developmental process” (G0O:0032502), “immune system process” (GO: 0002376), “metabolic
process” (GO: 0008152), and “reproductive process” (GO: 0022414). We counted the number of
times each of these terms was the parent of one or more terms in a given time bin, allowing each
term to count toward more than one parent category.

We created scores for each human-specific mutation based on the age of the mutation as
well as the length of the desert region surrounding it. Taking each variant’s TMRCA to be ¢ and
each variant’s surrounding desert length to be /, and the maximum TMRCA for all variants
and the maximum desert length for all variants /xx, then each variant’s score was calculated as

s, = —logyg (1 — ) —logo (ﬁ) for variants with known TMRCA and s, =

—logio (1 .
higher for selected variants (with long desert length and recent TMRCA), we performed Gene
Ontology enrichment analysis using the Wilcoxon rank-sum test implemented in FUNC (66),
running the refinement routine with p-value cutoffs of 0.01 and reporting genes enriched in high
scores.

lmaxt1

) for variants without a known TMRCA. As this score was intended to be

Supplementary Text
Adding nodes to the ARG

Every node in the ARG must be “anchored” at one or more genomic positions. This is
because each node's start and end coordinates depend on these positions, along with the
propagation distance p. When a node's range is interrupted by a new node with which it fails the
four haplotype test being created in the middle of its range, for example, the set of genomic sites
the node “owns” are used to determine its new range. Additionally, to make it easier to look
through the ARG, we store a mapping of sites to ARG nodes with those sites. Since it is set up
this way, we do not allow any node to be created if the site at which it is originally anchored
already is tied to an existing ARG node with which it fails the four haplotype test.

When a new node is to be created, we first check to see if it can be merged with an existing
node. If two nodes have the same clade, if the ranges implied by their sites and the propagation
distance overlap, and if they do not fail the four gamete test with a node between them, then they
can be merged. If the new node matches two existing nodes that it overlaps both upstream and
downstream, then all three nodes are merged.

If a new node does not merge with an existing node, then we compile all four haplotype test
failures it has with other nearby nodes (within propagation distance). If the new node is in the
middle of an existing node's range and the new node fails the four haplotype test with that node,
then that existing node is split into two nodes. Otherwise, start and end coordinates are adjusted:
if node A and B fail the four haplotype test and node A is upstream of (has lower coordinates
than) B, the end coordinate of A is set to the highest coordinate site that it owns and the start
coordinate of B is set to the lowest coordinate site that it owns (Fig. S40).
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Once all node ranges have been adjusted according to four haplotype test failures, then all
parent/child relationships are created. To do this, a depth-first search is performed across the
ARG down from the root, across the entire range of the new node. The new node may have
different parents and children across its range: each parent/child edge has start and end
coordinates (Fig. 1A).

After all parent/child edges are added, recombination edges are added to the graph.
Upstream and downstream nodes failing the four gamete test with the new node are sorted by
distance from the new node. If any pair of upstream or downstream nodes in these sets fail the
four gamete test with each other, the one further away from the new node is removed from the
set. Recombination edges are then added between the new node and all remaining nodes, except
for four gamete test failures that can be explained by a previously-solved recombination event.

Recombination edges include paths through candidate moving clades, which are not yet part
of the ARG (Fig. 1A). Normally, if an upstream clade u and a downstream clade d fail the four
haplotype test, then clades with the members of u N d, u\d, and d \ u are added as candidate
moving clades. If any of these candidate moving clades fails the four gamete test with a node
already in the ARG between u and d, however, it will not be created.

A special case for adding nodes exists for clades where every haplotype shares the derived
allele. These sites can only contribute to the branch length of the root node. Therefore, we store a
single root node whose start and end coordinates span the entire chromosome. If a mutation is
observed for which every haplotype shares the derived allele, it is added to the root node.
Inferred (non-mutation) sites with this clade are ignored and not added to the root node.

Similarly, clades where every haplotype shares the ancestral allele are not informative for
the ARG and are skipped altogether.

Solving ancestral recombination events

The process of “solving” ancestral recombination events consists of finding a node with
unsolved recombination edges connecting it to one or more nodes downstream, finding a
subgraph of the ARG containing other nodes involved in this or possibly other recombination
events, filtering the subgraph so that it only describes a single recombination event, and then
choosing the most likely y node that could explain the recombination event (similar to the “two-
trees” algorithm, Fig. S1). Finally, the chosen y node is added to the ARG as a standard tree
node, the start and end coordinates of all nodes involved are adjusted to account for the inferred
recombination event, and any nodes that do not exist in the ARG but whose existence is implied
by the recombination event are created (Fig. S2B). This process is the core of the ARG inference
algorithm, as it allows for the creation of nodes not directly observed in the input SNP data.

One concept used by several stages of this algorithm is that of tree-compatibility between
two nodes (Fig. S41). Two nodes are tree-compatible if, according to their clades, genomic
positions, and genomic positions of their four haplotype test-failing partner nodes, they can both
exist in the same tree. At this stage in ARG building, start and end coordinates have not yet been
finalized, so we cannot define compatibility based on coordinates alone. However, if two nodes
already have overlapping start and end coordinates, then they must be compatible. Additionally,
two nodes that fail the four haplotype test cannot be compatible. Otherwise, we must rely, for
upstream nodes, on the lowest start coordinate of all downstream tree nodes connected to the
node via recombination edges. Likewise, for downstream nodes, we consider the highest end
coordinate of all upstream tree nodes connected to the node via recombination edges. We refer to
this value, in both cases, as the “closest recombination partner” of the node; this determines how
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far the node’s end coordinate (if upstream of a recombination event) or start coordinate (if
downstream of a recombination event) could be extended in the ARG. Whether or not any two
tree nodes are tree-compatible depends on the location of both nodes’ closest recombination
partners. If a node A is upstream of node B, then in order for nodes A and B to be tree-
compatible, node B must be upstream of node A's closest downstream recombination partner and
node A must be downstream of node B's closest upstream recombination partner (Fig. S41).

Before solving an ancestral recombination event, SARGE must find a subgraph of the
ARG containing a set of tree-compatible upstream nodes U, a set of tree-compatible downstream
nodes D, and a set of candidate y nodes L that connect together nodes in Uand D. Ideally, U, D,
and L should correspond to a single ancestral recombination event; however, in practice, there
are situations in which a single event is difficult or impossible to distinguish from multiple
events (Fig. S43). We will hereafter refer to this ARG subgraph used to infer ancestral
recombination events as a “recombination graph.”

Collecting a recombination graph begins with a “key” node &; which is a tree node in the
ARG with unsolved recombination edges to downstream nodes. To begin, we visit each
candidate y node downstream of kand add it to L. Next, we visit all upstream tree nodes
connected to every node in Z and add them to U if they are tree-compatible with k. We then
follow all recombination edges from nodes in U, through candidate y nodes, to tree nodes with
start coordinates higher than the end coordinate of k. These nodes are added to 2, and all
candidate y nodes along their paths to nodes in Uare added to L. We then revisit nodes in U, any
that are not connected via recombination edges to nodes in D are removed from U.

At this point, the highest end coordinate of nodes in U and the lowest start coordinate in
D give boundaries between which the ancestral recombination event must have happened.
Therefore, any node in U or D whose closest recombination partner falls within, rather than
outside, these boundaries, is removed (Fig. S 42).

The next step is to filter U, D, and L to a set of nodes describing only a single
recombination event. This is the most intensive part of the algorithm, as it must explore a large
set of choices. At this stage, the recombination graph is likely to represent several different
recombination events, which must be pared down to one before a branch movement can be
inferred. The goal of this step is to obtain a set of tree-compatible upstream nodes U and a set of
tree-compatible downstream nodes D, where all nodes in U and D are tree-incompatible with
each other. Additionally, the closest downstream recombination partner of each node in U must
be present in D, and the closest upstream recombination partner of each node in D must be
present in U.

Because the nodes in U must all be tree-incompatible with the nodes in D, then if there
exists a pair (u, d) of candidate upstream and downstream nodes that are tree-compatible, either u
or d must be excluded. We therefore define a set C containing pairs of sets of upstream and
downstream nodes (us, ds). For each such pair, including the nodes in us in the recombination
graph requires excluding the nodes in ds, and vice versa.

DECLARE set C « @
FOR u in U:

DECLARE set us < [u]

DECLARE set ds « 0

FOR d in D:

IF tree-compatible(u, d):
ds « ds U d
DECLARE bool found « FALSE
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FOR (us’, ds’) in C:
IF do’ € ds:
ds’ « ds' U ds

Us’ <« us’' U ug
found < TRUE
break

IF not found:

C <« CU (us, ds)

Next, because of the rule that the closest downstream recombination partner of each node
in U must exist in D and vice versa, we store a collection of pairs of “partner” sets P. Each
member of P is a pair of sets of upstream and downstream nodes (us, ds), where including the
nodes in us requires also including the nodes in ds.

DECLARE set P « @
FOR u in U:

DECLARE set us < [u]

DECLARE set ds « [closest recombination partner(u)]

FOR (us’, ds’) in P:

IF |us N us'| > 0 or |ds N ds'| > O:
Us’ <« us’ U ug
ds’ « ds’ U ds
found < TRUE
break
IF not found:
P« P U (us, ds)

Given all choices described by the node sets in C'and £, we now build a set .5, where each
entry is a set of upstream and downstream nodes (U, D) that could describe a single
recombination event. To populate S, we first enumerate all possible choices in C, then filter
according to the constraints imposed by the pairs in 7.

DECLARE pair of sets (Usirst, dsirst) < first set pair in C
C « C \ (Usirst, dsirst)
DECLARE set S « [(Usirst, D \ deirst), (U \ Usirst, dsirst) ]
FOR (u, d) in C:
DECLARE set Suew < @
FOR (u’, d’) in S:
IF | unu' | >0and | d Nnd" | > 0:
IF | uw” \u | >0 and | 4’ \ d
Shew € Snew U (u’ \ u, d’ )
Snew ¢ Snew U (u’ ’ a’ \ d)

> 0:

S &« Snew
FOR (u, d) in S:
FOR (u’, d') in P:
IF |unu' | >0o0r | dnd |
IF not ( u 2 u’ and d 2 d’
u<u\ u’
d «<d\ d’
IF u == @0 or d == 0Q:
S « s\ (u, d)
We now have in Sa set of choices of full recombination graphs. In the spirit of
parsimony, we choose the set with the highest total node count (the recombination graph

> 0:
)
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containing the most possible four gamete test failures). If there is a tie, we choose the set of
nodes covering the smallest genomic span (the lowest start coordinate in D minus the highest end
coordinate in U). The reasoning behind this choice is that sets of nodes covering greater genomic
distances are more likely to be affected by multiple ancestral recombination events than sets
spanning smaller genomic distances.

Before solving the recombination event, we check pairs of upstream and downstream
nodes in the recombination graph (members of U and D) that fail the four gamete test, to see
whether their four gamete test failure could be explained by a previously-solved ancestral
recombination event. If so, both nodes in the pair are removed from the recombination graph.

At this stage, there are still boundary cases in which it is impossible to determine if a
given recombination graph describes one or more recombination events (Fig. S43). Because of
this, we employ a heuristic check to see whether the graph might describe multiple
recombination events. If the last (highest-coordinate) node in U, Uy, does not fail the four
gamete test with the first (lowest-coordinate) node in D, Dr, then we gather two alternative
recombination graphs. One excludes UL and includes any additional downstream nodes in D
made possible by this exclusion. The other excludes Dr and includes any additional upstream
nodes in U made possible by this exclusion. If either of these alternative recombination graphs
covers a smaller genomic distance than the main graph being considered, we take this as
evidence that the main recombination graph might describe multiple ancestral recombination
events. If this is the case, we defer solving it until neighboring recombination events have been
solved. If a given “key” node is visited a second time, and thus the same recombination graph is
revisited, the recombination graph is solved regardless of the outcome of these checks.

At this stage, nodes in U should belong to a single upstream tree, nodes in D should
belong to a single downstream tree, and nodes in L represent candidate ancestral recombination
clades. Similar to the “two trees” algorithm explained in Materials and Methods and Fig. S2, we
choose the L clade that explains the most four gamete test failures between nodes in U and D. If
there is a tie, we choose the node in L that is the most compatible with the existing ARG
topology in the surrounding region. We determine this by checking how many bases the L clade
— and each other new clade it implies — can exist along the chromosome. If p is the propagation
distance parameter, and a candidate L clade is vy, then:

DEFINE function fourhap test(set x, set y):

IF | x Ny | >0 and x € y and x 2 y:

RETURN TRUE
ELSE:
RETURN FALSE
DEFINE clade type(set x, set y):
RETURN clade type stored in recombination edge connecting node x
to node vy
DEFINE set dists « @
DEFINE recomb start < max(end coordinate in U)
DEFINE recomb end <« min(start coordinate in D)
DEFINE int ldistl < p
FOR int pos = recomb start-1; pos >= recomb start— p; --pos:
FOR ARG clade at pos c:
IF fourhap test(c, vy):
ldistl < recomb start — pos
break
DEFINE int ldist2 < p
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FOR int pos = recomb end + 1l; pos <= recomb end + p; ++pos:
FOR ARG clade at pos c:
IF fourhap test(c, vy):
ldist2 < pos — recomb end
break
dists « dists U (ldistl + 1ldist2)
FOR u in U:

u’ < u

IF clade_type(u, y) == a:
u’ «<u /vy

ELSE IF clade_type(u, y) == B:
u’ < u Uy

IF | u’ | > 0:

DEFINE udist « p
FOR int pos = recomb end + 1; pos <= recomb end + p; ++pos:
FOR ARG clade at pos c:
IF fourhap test(c, u’):
udist < pos — recomb end
break
dists « dists U udist
FOR d in D:

d’ « d

IF clade_type(d, y) == a:
d’" < d Uy

ELSE IF clade type(d, y) == B:
d’ < d\vy

IF | 4’ | > 0:

DEFINE ddist « p
FOR int pos = recomb start - 1; pos <= recomb start - p;
--pos:
FOR ARG clade at pos c:
IF fourhap test(c, d’'):
ddist <« recomb start - pos

break

dists « dists U ddist
. _ 1 |dists| ;. _
meandist diots] Y dists;

Then, the clade in L tied for the most four haplotype test failures in U and D, with the
highest meandist is chosen as the correct y clade.

The recombination event must have happened between the highest end coordinate in U
and the lowest start coordinate in D. We choose two adjacent sites within this interval, as close to
the center of it as possible, as the boundaries of the inferred recombination event. Naming these
site coordinates x and y, where x is lower than y, we expand the end coordinate of each node in
U to x and the start coordinate of each node in D to y.

Finally, we create new nodes implied by the recombination event. If the chosen moving
clade from L is denoted vy, x and y are the chosen coordinates between which the recombination
event happened, and p is the propagation distance, then

DEFINE set U new « 0

DEFINE set D new « 0

DEFINE set union_all « @
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DEFINE bool alpha exists ¢« FALSE
DEFINE bool beta exists « FALSE
FOR u in U: B
union_all « union_all U u
IF clade type(u, y) ==
alpha exists « TRUE
D new < D new U (u \ y)
ELSE IF clade_type(u,y) ==
beta_exists « TRUE
D new <« D new U (u Uy)
FOR d in D:
union_all « union_all U d
IF clade type(d, y) ==
alpha exists « TRUE
U new < U new U (d U vy)
ELSE IF clade_type(d,y) ==
beta_exists « TRUE
U new « U new U (d \ vy)

The vy clade is added to the ARG, anchored at x and y, with range [x-p, y+p]. All nodes in
U _new are added, anchored at x and with range [x-p,x]. All nodes in D_new are added, anchored
at y and with range [y, y+p]. Finally, if there were no a nodes, or if there were no B nodes
(determined by the values of alpha_exists and beta_exists), we create an ARG node with the
members of union_all. If there were no a nodes (alpha_exists is false), this node is anchored at x
with range [x-p, x+p]; if no B nodes (beta_exists is false), it is anchored at y with range [y-p,
y+p].

Information about the solved recombination event is stored in another type of edge, in
order to distinguish four gamete test failures belonging to solved recombination events from
unsolved ones.

Finalizing ARG node ranges

Because of the heuristic nature of our method, some ancestral recombination events go
unsolved. Additionally, some may be unsolvable (for example, if all three candidate y nodes for a
four haplotype test failure fail the four haplotype test with existing ARG nodes in their range).
When this is the case, we seek to expand the ranges of all nodes involved in recombination to
their fullest extent. In other words, for every pair of nodes that fail the four haplotype test with
each other, we want to ensure that the upstream node’s end coordinate and the downstream
node’s start coordinate are set to sites approximately in the center of the genomic interval
between the two nodes. If this is not done, there will be additional polytomies in the ARG.
Therefore, when we are about to write a tree at site index s to disk, we seek to ensure that site
index s+ 1 will be covered either by a node in the tree covering sor by a downstream node that
fails the four haplotype test with a node in the tree covering s. In this case, s + 1 is not the very
next genomic position after s, but the next genomic position with a SNP in the ARG:
DEFINE set U « @
DEFINE set D « @

FOR ARG node u at site s:
IF u end coordinate < s + 1 and u end coordinate + p >= s+l:
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DEFINE bool u_pass < TRUE
FOR downstream recombination partner d of u:
IF d start coordinate <= s + 1:
u_pass « FALSE
break
IF u_pass:
U< UUu
FOR downstream recombination partner d of u:
D« DUJd

FOR upstream recombination partner u of d:

FOR site z

IF u end coordinate <= s:
U« UUu
= s + 1; z <= lowest site among nodes in D; ++z:

DEFINE set U; « 0
DEFINE set D; « 0

FOR u

FOR d

in U:

IF u end coordinate > z and u end coordinate + p >= z:

DEFINE bool u_pass ¢« TRUE
FOR downstream recombination partner d of u:
IF d start coordinate <= z:
u_pass ¢« FALSE
break
IF u_pass:
UZ(_UzUu
in D:

IF d start coordinate > z and d start coordinate — p <= z:

DEFINE bool d_pass ¢« TRUE
FOR upstream recombination partner u of d:
IF u end coordinate >= z:
d pass « FALSE
IF d pass:
D, « D; U d

IF | U, | == 0:

FOR d in D,:
Expand d start coordinate to z

ELSE IF | D, | == 0:

ELSE:

FOR u in U,:
Expand u end coordinate to z

DEFINE int udist < z — highest end coordinate in U,
DEFINE int ddist < lowest start coordinate in D, — z
DEFINE float r « random decimal in [0,1]
IF udist < ddist or (udist == ddist and r < 0.5):
FOR u in U,:
Expand u end coordinate to z

ELSE IF ddist < udist or (udist == ddist and r >= 0.5):

FOR d in D,:
Expand d start coordinate to z

Collapsing to trees
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To avoid making it necessary to hold the ARG over an entire chromosome in memory at
once, or to load the entire ARG for all analyses, we represent the ARG on disk as a series of
trees. At every site, the ARG collapses to a tree, so we write out each tree independently to disk,
along with its chromosome and base position, in a custom serial binary format. We find that our
files compress well with GZIP, and we provide utilities for indexing and retrieving specific
genomic regions from files, and for converting our trees to Newick format.

Testing the propagation distance parameter

Using data from the demographic simulation with the plausible admixture proportion of
0.05 (see “Demographic simulations” section in Supplementary Methods), we sought to assess
the impact of the choice of propagation distance on SARGE’s ability to correctly define clades.
We ran SARGE on this data set using a variety of propagation distances: 5 kb, 10 kb, 25 kb, 50
kb, 100 kb, and 500 kb.

For each simulation, we measured the specificity (defined as the percent of clades in each
tree inferred by SARGE that were present in the true tree from the simulation) and sensitivity
(defined as the percent of clades in the true tree from the simulation that were correctly
recovered by SARGE). For comparison, we also ran tsinfer, a recently described ARG inference
program that scales well to large data sets and also leaves polytomies in output trees (8) and
Relate, another recently described program that does not produce polytomies (7). For the Relate
run, we used the mutation rate from the simulation and set the haploid effective population size
to two times the effective population size in Africans, according to simulation parameters. We
note that this simulation only contained 66 haplotypes and thus SARGE likely achieved higher
sensitivity on this data set than it would on one with more haplotypes, as its specificity falls on
large data sets, due to increasing numbers of polytomies (Fig. S6).

Using SARGE over increasingly large propagation distanves, specificity converged to 0.70
and sensitivity to 0.49 (Fig. S 8). Using tsinfer, sensitivity was the same as what SARGE
achieved with the 500 kb propagation distance (0.49) but specificity was 10% lower (0.60).
Relate performed similarly to tsinfer, but with higher sensitivity (0.55) and lower specificity
(0.55). Interestingly, although Relate and tsinfer recovered more true clades than SARGE, due to
both methods producing fewer polytomies, this difference was minimal (0% for tsinfer and 5%
for Relate) when using a large propagation distance on this data set.

A propagation distance as large as 500 kb is impractical on large data sets because it
drastically increases the number of comparisons between sites and therefore the execution time.
We used a propagation distance of 25 kb for all our analyses of real data, which in this case
allowed for reasonably fast computation, as well as high specificity (0.74) and reasonable
sensitivity (0.40, compared to the maximum of 0.49).

Properties of missing and incorrectly-inferred clades

Some clades inferred by SARGE are inaccurate. For each such clade, we sought to
determine how problematic it might be for downstream inferences. To do this, we used the
results of our demographic simulation with a 0.05 admixture proportion (see Supplementary
Methods) and found all clades inferred by SARGE with a 25 kb propagation distance that were
absent from the true simulation ARG at those sites. We then looked along the chromosome, both
upstream and downstream, for the nearest true ARG tree in which the incorrect clade did exist (if
the clade existed at all elsewhere in the ARG). If this number was very large, this would suggest
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that these clades often do not exist anywhere near where they are inferred, possibly because they
are the result of incorrectly solving ancestral recombination events. If small, however, then many
incorrectly inferred clades are the result of getting the boundaries between ancestral
recombination events slightly wrong, and downstream inferences will suffer less, as wrong
clades will be in close proximity to loci where they are correct.

In addition to performing this analysis for SARGE, we also ran Relate (7) and tsinfer (§) on
the same data set, using the mutation rate known from the simulation and two times the effective
population size in Africans in the simulation as the haploid effective population size for Relate.
We also computed the distance of each incorrectly-inferred clade to the nearest site where it was
correct in both of these simulations.

Overall, we found that about 14% of clades incorrectly inferred by SARGE did not exist on
the chromosome. Of the 86% that did exist, the median distance to a locus where the clade was
correct is 3.5 kb (mean distance 92 kb). This is a lower percent of completely missing clades, and
a lower distance to positions where clades are correct than that obtained using both Relate and
tsinfer (Table S 7, Fig. S 10).

We also sought to learn where in ARG trees incorrectly-inferred and missing (due to
polytomy) clades tended to occur. Using this same demographic simulation, we labeled every
clade in every true ARG tree as either correctly identified (present at the same site in SARGE
results), incorrectly identified (failing the four gamete test with another clade present at the same
site in SARGE results), or missing due to polytomy (not present in the SARGE tree at the same
site, but passing the four gamete test with all present clades). We then examined the size (number
of member haplotypes) distribution of clades falling into each category. We find that missing
clades skew smaller (closer to the leaves of trees) than correctly and incorrectly identified clades.
Incorrectly identified clades tend to be larger (closer to the root), and correctly identified clades
are intermediate in size between the other two categories. Repeating this analysis with a larger
simulated data set (an unstructured population of 500 haplotypes from our QC simulations
described in Supplementary Methods), the pattern becomes more visible, although there are
many more missing clades (Fig. S 9).

We conclude from these analyses that SARGE’s inaccurate inferences are less problematic
(and more likely to occur close in the genome to where they are accurate) than those produced by
both Relate and tsinfer. SARGE does leave far more polytomies than either of the other two
programs, however, although these polytomies are often concentrated near the leaves of trees,
where clades are less useful for making broad phylogenetic inferences.

Testing the accuracy of inferred branch lengths

We sought to test the accuracy of SARGE’s inferred branch lengths, compare to those
inferred by the recently-described ARG inference program Relate (7), and uncover any
systematic biases in branch length estimates, using simulated data. For this, we used data from
our demographic simulation with a 0.05 admixture proportion (see “Demographic simulations”
section in Supplementary Methods). We ran SARGE with a 25 kb propagation distance (the
same as was used on our real data set) on the simulated data. We also ran Relate, using two times
the simulation’s effective population size of Africans as the haplotype N parameter, and using
the same per-generation mutation rate as in the simulation. Using both the SARGE and Relate
output, we then scanned for clades that were correct according to the true ARG. We then
extracted the branch lengths from these clades in both the true and inferred ARG, converting the
simulated branch lengths into years (by multiplying by 4*base N*generation time) and SARGE’s
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branch lengths into years (by multiplying by the simulation’s TRMCA of all groups). This
strategy is slightly different from our real data, in which we collected all fixed differences
between sample haplotypes an outgroup (chimpanzee) genome and multiplied by two times the
human/chimp divergence time. In the case of this simulated data, ancestral and derived alleles
were known a priori and we therefore did not need to use an outgroup. Similarly, Relate requires
model parameters for estimating branch lengths, and these were directly known from running the
simulation.

We found that SARGE branch lengths were less tightly correlated to true branch lengths
than Relate branch lengths were to true branch lengths (SARGE r? = 0.60; Relate r? = 0.79).
However, we also found that Relate systematically underestimated branch lengths (Fig. S 11).
The median difference between SARGE’s inferred branch lengths and true branch lengths was
approximately -15 ky, while the same value for Relate data was -26 ky. We then scaled these

same values by the true branch lengths to obtain a percent error of each inferred branch length

linferred—truel|

estimate: . These percent error estimates were very similar for both programs:

true

SARGE median = 1; Relate median = 0.97, which suggests that many inferred branch lengths
were either close to zero or double their true value. One cause of this could be the inherent
difficulty of inferring lengths of branches with zero mutations — SARGE sets such branch lengths
to zero, guaranteeing a percent error of one; Relate’s randomly sampled estimates are apparently
not much more reliable.

Because SARGE produces more polytomies than Relate as the size of data set increases, we
repeated this test using a larger data set: we re-ran the same simulation, but with 450 instead of
50 modern human haplotypes. In this case, we found that SARGE’s performance suffered some:
12 between true and inferred branch lengths SARGE = 0.44; Relate = 0.79. The median
difference between inferred and true branch lengths decreased, however: SARGE = -4.6 kb and
Relate = -6.0 kb. Median percent error stayed roughly the same: Relate = 0.98 and SARGE = 1.
SARGE’s branch length estimates also remained unbiased, unlike those from Relate (Fig. S 11).

We take from this exercise that SARGE’s branch length estimates, which are based purely
on counting mutations and are not smoothed by a model, are imperfect but relatively unbiased
estimates of true branch lengths. Relate, on the contrary, is accurate more of the time, but
systematically biased toward underestimation.

Converting branch lengths into years in real data

Because branch lengths in SARGE are divided by the total height of the tree both above and
below each branch (Fig. S 4), they are reported in units of the total divergence time between the
genomes in the data set and the outgroup genome used to determine ancestral and derived states.
If the divergence time between the genomes in the data set and the outgroup species is known,
then these branch lengths can be converted to years by multiplying by two times this divergence
time. In the previous exercise where we assessed accuracy of branch lengths on simulated data,
the coalescence time of all lineages under study, as well as the ancestral or derived state of each
allele, was already known. We therefore did not simulate an outgroup genome, and the total
height of the tree was converted to years by multiplying branch lengths by the coalescence time
of all lineages. In real data, where these parameters are unknown, this is not possible.

The mutation rate in humans has been the subject of controversy. Mutation rates estimated
by comparing parents to offspring are about half as fast (~1x10® per base per generation) as
mutation rates estimated by calibrating with dated fossils (~2x10"® per base per generation) (15);
this discrepancy has led at least one recent study to set the human-chimpanzee split time at 13
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Mya rather than 6.5 Mya, so as to account for a slower assumed mutation rate (/). Other methods
for estimating the mutation rate have been developed that use population genetic techniques to
estimate the mutation to recombination rate ratio. These methods, as well as a recent approach
that used the rate of heterozygosity within identical-by-descent sequences that individuals
inherited from a recent common ancestor as a proxy for the de novo mutation rate, have
produced rate estimates that are intermediate between these two values (~1.5-1.7x108 per base
per generation) (69). Interestingly, both this recent study and prior work (70) suggest that
mutation rates, as well as their sequence contexts, can differ among human populations.

The divergence time between humans and chimpanzees is also controversial. Early studies
using genetic divergence to estimate this time placed the human/chimpanzee split time too
recently to reconcile with some paleontological data. An approach that combined human and
chimpanzee generation time estimates with estimated per-generation mutation rates (to avoid
fossil date calibration) placed the split at 7-8 Mya, which is compatible with the fossil record
(71). Some researchers took issue with this estimate, however, in part because of its use of slow
single-generation mutation rates inferred from parent/offspring sequencing data (72). Another
split time estimated using mutations accumulated at CpG sites placed the divergence around 12
Mya (73). One possible explanation for the variation in estimated divergence times is a complex
speciation scenario (74), involving multiple splits interspersed with periods of interspecific
hybridization. The study describing this scenario produced a divergence time estimate of less
than 6.3 Mya (74).

Our method is mostly agnostic about the human mutation rate: branch lengths can be
converted into years by multiplying by two times the human-chimpanzee divergence time. We
obtained TMRCA estimates that agree with previous knowledge including the timing of the out-
of-Africa migration event using a 6.5 Mya split time (Fig. 2A), and so we chose this value for
downstream analyses. In general, branch lengths can be rescaled to use a different chimpanzee
divergence time 7, by multiplying by 77/6.5x10%. For TMRCAs of clades that include archaic
hominin genomes, however, we also incorporated branch shortening values, which quantify
“missing evolution” due to sampling genomes from the past, which were reported in a prior
study (/). This study reported branch shortening values in years that were calculated assuming
the slow mutation rate reported in parent/offspring sequencing studies (~1x10® per base per
generation) and a relatively old human/chimpanzee split time (13 Mya). By using these values in
our study, along with a 6.5 Mya human/chimpanzee split time, we implicitly assumed a higher
mutation rate (~2x10® per base per generation) more in line with estimates calibrated using fossil
dates than per-generation estimates produced using parent/offspring sequencing data.

If we were to re-calculate TMRCASs between admixed modern humans and archaic hominin
genomes within archaic-introgressed haplotype blocks using the older (13 Mya) human/chimp
divergence time, TMRCAs between humans and the Neanderthal genome would predate the out-
of-Africa migration event, which is estimated to have happened within the last 70 ky (75).
Conversely, if we adjusted the archaic branch shortening values to use the low (~1x10® per base
per generation) mutation rate along with the recent (6.5 Mya) human/chimp divergence, these
branch lengths would be reduced by half and would therefore further lower our human/archaic
hominin TMRCAs within these haplotype blocks. The estimated TMRCA would then be more
recent than the timing of the settlement of Australia, which was estimated recently from mtDNA
sequences to be around 50 kya (76). We therefore feel that our results comprise evidence in favor
of using the faster (1x10°8 per site per generation) mutation rate estimated using fossil
calibration, along with a 6.5 Mya human/chimpanzee divergence time.
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Comparing nucleotide diversity to phylogenetic position in ARG trees

One simple model for human demographic history is the serial founder effect model
wherein each human population diverged from a previous source population by undergoing a
dispersal-related population bottleneck (77). This model has been invoked to explain the
decreasing genetic and haplotype diversity seen in populations as a function of their distance
from Africa, the geographic source of much of human genetic diversity. Under this model, each
human population was founded by members of a preceding population and carries a subset of
that population’s genetic diversity. As a result, the degree to which a population is ancestral to
others — measured as how often that population occupies a basal position in ARG trees — should
correlate with the nucleotide diversity within that population. We calculated the probability of
each genome haplotype belonging to the smaller of the two clades at the deepest split in well-
articulated trees, and plotted this value against per-site nucleotide diversity (Fig. S 44). The
residuals to the best-fit line computed excluding archaic hominins provide a measure of how well
each haplotype’s phylogenetic placement agrees with this model. Among modern humans,
residuals are highest in basal sub-Saharan Africans (Africa-MBK) and Papuans. One possible
explanation for this observation is that both groups have undergone bottlenecks subsequent to
their formation. Additionally, the residual for the Denisovan is 9.5% higher than for the
Neanderthals. Although the Denisovan lineage is thought to have separated from modern humans
at the same time as the Neanderthal lineage (7), it is also thought to possess up to 8% ancestry
from a more-diverged, “super archaic” source (/5), which could help explain this observation.

Testing the effect of incorrect phasing on admixture mapping

SARGE requires phased input, and improper phasing causes SARGE to infer incorrect
ancestral recombination events (Table S 1). This is especially a problem for archaic genomes,
which certainly contain phasing errors because they lack representation in phasing reference
panels and are too fragmented to be experimentally phased. Because of this issue, we do not
perform any analyses on individual archaic genomes; rather, we use the archaic genomes to
locate and track segments of archaic ancestry in modern human genomes. We infer the existence
of blocks of archaic admixture and/or incomplete lineage sorting wherever a tree places a
modern human closer to archaic hominins than to other modern humans; we allow the archaic
hominin genome haplotypes to change places within these blocks without breaking them,
provided they are of the same type (all Neanderthal genome haplotypes can trade places with
each other within these blocks, and Denisovan genome haplotypes can also trade places with
each other). Nonetheless, we sought to assess whether incorrectly phased archaic hominin
genomes would introduce problems for admixture scans in modern humans.

We started with the output of our demographic simulation (see “Demographic simulations”
section in Supplementary Methods) with a 0.05% admixture proportion. For each archaic
hominin genome in the simulation (Altai Neanderthal, Vindija Neanderthal, and Denisovan), we
then simulated phasing errors by randomly swapping the two haplotype’s alleles at a randomly-
chosen 50% of sites. We then ran SARGE on this data set with the same parameters as before
(25 kb propagation distance) and scanned human haplotypes for archaic admixture. Because
SARGE makes some decisions randomly and this can produce different output even in two runs
with the same parameters on the same data set, we also re-ran SARGE on the original, properly
phased data set to get a second replicate unaffected by phasing errors.

50



10

15

20

25

30

35

40

45

Submitted Manuscript: Confidential

When computing the overall percent Neanderthal and Denisovan ancestry for each modern
human haplotype using the different data sets, results are very similar. Comparing the two
replicates of the properly phased data set, r*> = 0.9998, and the mean difference in admixture
proportion estimates is 0.017%. Comparing the properly phased with the improperly phased data
set, 12 = 0.9990 and the mean difference in admixture proportion estimates is 0.044%.

We also checked to see whether improper phasing impaired our ability to locate specific
archaic ancestry blocks (in specific parts of the genome). To this end, for each modern human
genome in the simulation, we computed the Jaccard statistic (using BEDTools) between its
ancestry maps produced using the properly and improperly phased data sets, as well as between
the two replicate ancestry maps using the properly phased data set. The Jaccard statistic is a ratio
of set intersection to set union, where 0 indicates no overlap and 1 indicates complete overlap
between two maps. Overlap was high in all cases: for the two replicate properly phased data sets,
the mean Jaccard statistic between ancestry maps was 0.899 (full range 0.772-0.973) and the
mean Jaccard between ancestry maps using properly and improperly phased data was 0.937 (full
range 0.859-0.982).

We concluded from these experiments that the phasing errors present in archaic hominin
genomes likely do not have a large effect on our admixture analyses, and that whatever effect
they do have is likely smaller in magnitude than the effects of the random choices built into
SARGE.

Setting a distance for geographically restricted introgressed haplotypes

In order to better understand how Neanderthal and Denisovan admixture might have
affected different human populations differently, we sought to define whether each introgressed
haplotype block was broadly shared by many different human populations or limited to specific
geographic regions. Because the SGDP population labels we used (Africa, Africa-MBK,
America, CentralAsiaSiberia, EastAsia, Oceania, SouthAsia, and WestEurasia) are very broad,
we decided to use geodesic distances between reported sampling coordinates of each individual
instead. For each introgressed haplotype, we computed a maximum pairwise distance (in km)
between each pair of genomes that possessed that haplotype. We then chose 3,000 km as a cutoff
below which all introgressed haplotypes were considered geographically restricted, and above
which all introgressed haplotypes were considered geographically widespread.

To test whether 3,000 km was a reasonable cutoff, we also applied cutoffs of 1,000, 2,000,
and 10,000 km (as well as no cutoff, treating all introgressed haplotypes as geographically
restricted). For each cutoff, we then plotted the distribution of TMRCASs to admixers and
haplotype block lengths across all modern human genomes in geographically restricted
introgressed haplotypes. We also used the Wilcoxon rank-sum test (wilcox.test in R) to compare
each of these distributions to that created using the 3,000 km cutoff. Considering TMRCAs to
admixers, neither the 1,000 or 2,000 km cutoffs were significantly different from the 3,000 km
cutoff, using a significance threshold of 0.001. 1,000, 2,000, and 3,000 km cutoffs were all
significantly different from the 10,000 km cutoff and no cutoff, however (Fig. S 45). Considering
lengths, every cutoff (and no cutoff) was significantly different from the 3,000 km cutoff for
Neanderthal haplotype blocks. For Denisovan haplotype block lengths, however, neither the
1,000 nor 2,000 km cutoff significantly differed from the 3,000 km cutoff, while the 10,000 km
cutoff and no cutoff both did (Fig. S 46).

From this exercise, we deduced that a 3,000 km cutoff produced results that did not
significantly differ from those produced using 1,000 or 2,000 km cutoffs, but that did differ from
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a 10,000 km cutoff. As 3,000 km is large — over 1/3 the width of Eurasia — we took it to be a
cutoff that would still allow for some widespread sharing of introgressed haplotype blocks and
avoid discarding too many archaic haplotypes and causing sampling error in some genomes.

Results of coalescent simulations

We ran a series of coalescent simulations against which to compare the amount of the
human genome we found to contain admixture with archaic hominins, ILS with archaic
hominins, regions free of both (deserts) and deserts containing fixed human-specific derived
alleles (human-specific regions) (Supplementary Methods). We did not seek to model all
structure within modern human populations or widely-hypothesized selection against weakly
deleterious archaic hominin alleles (47). Rather, we used a simple, three-population model of
human history (59), which included Africans, Europeans, and Asians, but without migration to
and from Africa, in order to have an unadmixed outgroup for ascertaining archaic hominin
admixture. Our goal was to obtain a null model for the relative extents of regions of admixture,
ILS, deserts, and human-specific regions throughout the genome. We modeled one pulse of
Neanderthal admixture into the ancestors of all non-Africans, followed by a later pulse of
Denisovan admixture into Asians. We repeated our simulations with increasing admixture
proportions, in order to find the best-fit admixture proportion for each observation in our real
data. Ultimately, comparing these simulations with our real data suggests that we have
underestimated the amount of admixture relative to ILS in our real data, and that there were
probably numerous population-specific archaic admixture events aside from those we modeled.

In the absence of admixture, the entire genome is separable into regions of ILS and
deserts. Selection aside, the extent of ILS in our simulation with no admixture depends only on
fairly well-understood parameters, and is not affected by details omitted from the model such as
population structure in modern humans. We find ILS to cover 37% of the genome and deserts to
cover 63% in our simulation with no admixture (Fig. S 384).

For the closest possible comparison with real data, we computed the extent of desert
regions in our outgroup Africa-MBK population, in which admixture was minimal (covering 5%
of the genome). In this population, ILS covers 64% of the genome and deserts cover only 31% of
the genome (Fig. S 384). Assuming that human speciation involved selection for uniquely
human alleles and against alleles shared with archaic hominins, our simulation with no admixture
should place more of the genome in regions of ILS and less of it in desert regions than in real
data, meaning that the extent of deserts in this simulation should be considered a lower bound.
The presence of fewer deserts in real data than in this simulation therefore suggests either that
some regions in which we detect ILS haplotypes actually contain admixture from archaic
hominins, that selection actually worked to decrease rather than increase the extent of desert
regions, or that another more fundamental model parameter, such as the split time between
modern humans and archaic hominins, was incorrect.

Because SARGE produces slightly shorter haplotypes on average than the true ARG,
using simulated data (Fig. S /4) and because this problem is likely exacerbated in real data due
to uneven mutation and recombination rates across chromosomes, it is likely that we have
underestimated admixture and incorrectly labeled some of it as ILS. This is supported by our
finding lower population-average archaic ancestry proportions than the D-statistic-based
estimator (Fig. 34). Another reason we may have under-estimated archaic ancestry in some
populations is that we require admixed individuals to remain in a clade with at least one admixer
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haplotype for the full extent of the admixed haplotypes. In the event that there is admixture but
the introgressor is highly diverged from the archaic hominin genomes in our panel, we would be
likely to break such admixed haplotypes into erroneously small pieces. This, in turn, would make
them more likely to be labeled as ILS rather than admixture (Supplementary Methods, Fig. S16).
The fact that we discover more ILS (43%) in our full panel than in any simulation, including our
admixture-free simulation (37%) supports this.

As we increased the amount of admixture in our simulations, we expected admixture to
overwrite ILS and desert regions equally often, due to the absence of selection. In real data,
however, we expect selection to remove admixed alleles from desert regions more often than
from ILS regions, resulting in more extensive deserts and less extensive ILS relative to simulated
data. Working from this assumption, the amount of admixture included in the simulation that
most resembles our data (in terms of the extent of deserts versus admixture and ILS across the
genome) should be lower than the amount of admixture that occurred in reality.

We plotted the extent of admixture + ILS versus deserts + human-specific regions across
all simulations, along with those values computed from real data and found that the real data
values correspond to simulations with 18.2% admixture proportions (Fig. S 38B). Such
simulations produced unrealistically high individual percent archaic ancestry estimates, however
(Fig. S 38C). In real data, the existence of population structure can help explain this discrepancy
in two ways.

First, population structure could increase the power of drift to randomly eliminate some,
and increase the frequency of other, archaic hominin haplotypes in individual human
populations. This could result in individual populations each maintaining small numbers of
archaic haplotypes from a shared, ancestral admixture event, each covering different parts of the
genome.

Second, later admixture events involving small, isolated populations would increase the
total amount of the human genome containing admixture without contributing to the overall
percent archaic hominin ancestry in individuals that do not belong to those populations. If this
happened, migrants from these populations could later contribute archaic hominin haplotypes to
other populations, which would then be widely shared within those populations and exist at
relatively high frequency in our panel; this is what we see, for example, in the case of Denisovan
haplotypes in West Eurasians (Fig. S23, Fig. S 28B). We also find further evidence of
population-specific admixture events in the presence of geographically restricted Neanderthal
and Denisovan haplotype blocks in our real data set, which have different distributions of
haplotype block lengths and TMRCAs to admixer than geographically widespread archaic
hominin haplotype blocks (Fig. 3B,D; Fig. S 174,D).

If we also allow for the possibility of more admixture events than the two we modeled,
then each could have had a lower admixture proportion than those in our model. This seems
likely, given the presence of many geographically restricted archaic hominin haplotype blocks
(Fig. 3C, Fig. S 17B-C, Fig. S 18B-C), the existence of mysterious Neanderthal and Denisovan-
like haplotype blocks detected in sub-Saharan Africans but unlike those detected in non-Africans
(Fig. 3B, Fig. S 17B), findings of prior studies (9, 22, 78), and the evidence that we may have
mis-labeled some ILS as admixture, even in the deeply-divergent Africa-MBK lineages thought
to be free of Neanderthal and Denisovan ancestry.

Timing and functional consequences of human-specific mutations
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After identifying regions of the human genome free of incomplete lineage sorting and
admixture with archaic hominins in all modern human genomes sampled, we identified fixed or
nearly-fixed human-specific derived mutations within these regions (Supplementary Methods).
Using the chimpanzee genome as an outgroup and assuming 6.5 mya human-chimpanzee
divergence (37), we computed the TMRCA in years of each human-specific clade and its parent.
We then took the mean of these two numbers (the midpoint of the branch containing all derived
alleles specific to and shared by all modern humans) to be the age of each human-specific
mutation. We then compiled all such mutations that either created nonsynonymous substitutions
relative to the Neanderthal and Denisovan genomes (32) or fell within an annotated binding site
for a regulatory element known to target specific genes (64) (Supplementary Methods). We then
performed several analyses to determine whether particular biological processes or tissues were
predominately affected by mutations that occurred at distinct points in time.

With our list of affected genes and approximate ages of mutations affecting them, we
compared ages of mutations affecting interacting pairs of genes, according to the STRING
database (33) (Supplementary Methods) and found two distinct bursts of mutations affecting
interacting sets of genes, at approximately 100 kya and 300 kya (Fig. 5B). We then performed
Gene Ontology (GO) enrichment analyses on the sets of genes affected by mutations 300-350 ky
old, and affected by mutations 100-150 ky old, using FUNC (68) to determine whether different
biological processes were affected by mutations at the different time points. We found a variety
of biological process terms to be enriched in the gene sets at both time points (7able S 5); we
were therefore unable to identify any specific biological process as the main target of selection at
either time point.

We next sought to identify whether any tissues were predominantly affected by mutations
clustered together in time, or whether the same tissues tended to be acted on repeatedly by
different mutations over time. To this end, we computed the tissue specificity of each gene in our
set by calculating tau (67) from median tissue-specific expression values across many samples in
the GTEx database (66), excluding cell line data. We then compared the ages of all mutations
affecting high-tau (> 0.9) genes specific to the same tissues. After normalizing counts of
mutations affecting specific tissues at specific time points to account for the overall number of
genes specific to each tissue (Supplementary Methods), we found that most tissues were acted on
repeatedly by mutations over time (Fig. S 394).

There are several exceptions to this pattern, however. For example, the two tissues acted
on most recently but not affected by older mutations are the frontal cortex and basal ganglia,
with mutations 100-200 ky old (Fig. S 394). The genes affected by these mutations are CREG2
and SLC32A1. CREG2 has little known about its function. SLC32A1 codes for a transmembrane
protein that transports the inhibitory neurotransmitter GABA into synaptic vesicles (79), with a
nonsynonymous substitution in one of its intra-vesicle, lumenal domains (32).

In addition, most mutations affecting brain-specific genes happened after 300 kya (Fig. S
394), coincident with a peak in changes to developmentally-relevant genes (Fig. S 39B) and
postdating the age of human remains discovered to have some modern features coupled with
archaic cranial morphology (36).

We then sought to identify whether broad functional categories of genes (genes involved
in developmental, immune system, metabolic, and/or reproductive processes as annotated in the
Gene Ontology database (39)) were affected by mutations occurring at specific points in time
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(Supplementary Methods). When considering relative numbers of mutations affecting
development, immunity, metabolism, and reproduction, we find an uptick in metabolic changes
beginning 700 kya; the rate of accumulation of such changes was consistent until 400 kya, when
it accelerated (Fig. S 39B). In contrast, developmental changes took an extra 100 kya to begin to
rapidly accumulate (Fig. S 39B). Although our data are low-resolution, this could imply that
changes in diet or energy usage were important in the very early development of our species.

Prioritizing selected human-specific derived mutations

Starting with our list of human-specific derived mutations within deserts, limited to those
that either caused a nonsynonymous substitution relative to archaic hominins or fell within an
annotated binding site for a regulatory element believed to affect specific genes (Supplementary
Methods), we sought to prioritize these mutations by the strength of evidence that they were
acted on by selection. To this end, we created a score for each mutation based on its age (where
available) and the length of the surrounding desert region (Supplementary Methods). We
expected mutations targeted by selection to have a recent age (both because they arose recently
in time and should have reduced haplotype diversity in the event of either positive or purifying
selection) and a long surrounding desert region (because recombination has not yet had time to
break down such haplotypes into smaller pieces). We ranked genes by scores of mutations
affecting them (Fig. 5C), in order to identify genes and biological processes acted upon by
selection since the split between modern humans and archaic hominins. According to a Wilcoxon
rank-sum test using these scores, many biological processes appear to have been affected by such
selection (Table S 6).

In addition to genes involved in mRNA splicing and brain development (main text), we
find a number of high-scoring regulatory mutations affecting genes involved in histone
acetylation (7able S 6), which suggests another way that a small number of mutations could lead
to large-scale changes in gene expression that could in turn cause phenotypic differences. These
include four mutations affecting KAT7 and KATS, three affecting ASHIL, three affecting ING4,
and one affecting SETD2.

We find several mutations affecting centrosomal and/or mitotic spindle or kinetochore-
associated genes that may be involved in neural cell proliferation, beyond those mentioned in the
main text. We find three high-scoring regulatory mutations affecting ARHGEF2, which is a Rho
GTPase activator involved in cell division and cell migration localized to the mitotic spindle,
whose mutation has been linked to microcephaly and other brain development disorders (80). All
mutations affecting genes localized to the centrosome or kinetochore are in the top 50%
percentile of our score distribution; these include nonsynonymous mutations affecting ALMSI,
KATNALIL, KIF18A, RABL6, and SPAGS5. We also find centrosomal genes affected by multiple
candidate regulatory mutations, including 10 mutations affecting the nucleoporin NUP62, which
maintains centrosomes and is required for successful mitotic division (87), 9 affecting
MAP3K11, which influences microtubule organization (82), and 8 affecting ATFS5, which is a
cancer drug target, suggesting it can affect cell proliferation (83).

In addition to mutations affecting axon pathfinding-related genes mentioned in the main
text, we find a moderately high-scoring potential regulatory mutation affecting NTM
(neurotrimin), a brain-specific gene also thought to contribute to cell-surface protein diversity
involved in axon guidance (84), and two regulatory mutations affecting NAV1, a gene believed
to be involved in axon guidance due to homology with a similar C. elegans gene (85).
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Control of the migration of neural cells might also play a factor in human-specific
developmental changes. We find a regulatory element mutation affecting the transcription factor
NIPBL to be in the top 99.5™ percentile of the score distribution; aside from many other
functions, this gene is involved in brain development and required for proper cortical neuron
migration (86).

Some other top-scoring mutations may be involved in control of toxic substances in the
brain. One top-scoring regulatory mutation affects the ferritin heavy chain gene FTH1, which
can sequester iron, an element whose over-accumulation in brain tissue can cause
neurodegenerative disease (87). Amyloid-beta, which aggregates to form pathogenic plaques
involved in Alzheimer’s disease, is another regulated substance that is cleared from the brain
during sleep (88). Two of the highest-scoring regulatory mutations affect amyloid-beta binding
proteins CST3, which can inhibit amyloid-beta aggregation (89), and APOE, which also
influences amyloid-beta accumulation in Alzheimer’s disease and may play neurodevelopmental
roles as well (90).

There is evidence that amyloid-beta, when properly regulated, helps control synaptic
activity by regulating other genes (9/); the Gene Ontology term “response to amyloid-beta” is
enriched in interacting sets of genes affected by mutations that arose in the burst 300-350 kya
(Table S 5). This is due to five regulatory mutations affecting FYN, a tyrosine kinase activated
by amyloid-beta that influences synaptic plasticity through NMDA receptor phosphorylation,
among other neurological functions (92); its interaction partner GRIN1, an NMDA receptor
subunit, also has four regulatory mutations, the two of which we could date arose around the
same time.
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Fig. S1.
5 Different types of four haplotype test failures. In each, the y clade is highlighted in purple, a in

red, and P in blue. A: Lateral branch movement. Four haplotype test failures of type o/ a, o/ f3,
and B/ B are observed. B: Upward branch movement. Only o/ a four haplotype test failures are
observed. C: Downward branch movement. Only 3/ B four haplotype test failures are observed.
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Fig. S2.

Example of algorithm for inferring branch movements between to trees known a priori. A: Two
trees, which differ by one branch movement. B: Clades from the two trees that fail the four
haplotype test. Left column shows clades from the first (upstream) tree and right column shows
clades from the second (downstream) tree; arrows indicate four haplotype test failures. C: Graph
showing all possible branch movements that could explain the four haplotype test failures shown
in B. The left and right columns are “tree” nodes, while the center column lists candidate y
clades. Colors indicate types of four haplotype test failures: red paths are conditional on a failure
being the o/ a type, green on it being o/ B, and blue on it being B/ B. In this case, a single
candidate y clade (C) has the most edges and can explain all four haplotype test failures. This is
interpreted as the clade C moving from the smallest observed o clade in the first tree (CD) to the
smallest observed P clade in the second tree (CH). If no B clades from the second tree are
observed, the branch movement goes upward to a clade containing the union of all clades failing
the four haplotype test. If no a clades from the first tree are observed, the branch movement goes
downward from a clade containing the union of all clades failing the four haplotype test.
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Fig.S 3

How the propagation distance parameter affects the operations SARGE performs on ARG nodes
(clades). SARGE does not store all nodes across an entire chromosome in memory at once; once
sites that define nodes are sufficiently far away from the most recently-observed site as to not be
affected by it, they can be written to disk and erased. In this figure, c is the position (in reference
genome coordinates) of the most recently-read site, and p is the propagation distance (in base
pairs). Clades within 2p bases of one another can “communicate” with one another and form
parent/child and recombination edges.
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Fig. S 4

Calculation of branch lengths. Each non-root branch (A-I) stores the number of mutations that
tag its child clade, as well as the genomic interval over which it exists. Each green letter
represents a branch length, calculated as the number of mutations on the branch divided by the
genomic interval over which those mutations were observed. In the case of the root branch (R),
this genomic interval will always be two times the propagation distance, since the root clade
(consisting of all haplotypes in the data set) cannot be affected by ancestral recombination
events. The red values below the green values are the sum of all branch lengths above each
branch, and the blue values are the sum of all branch lengths below each branch. The scaled
branch lengths used in this study are then the individual branch lengths divided by the height of
the tree at those branches, or the green values divided by the sum of the red and blue values.
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Fig. SS.

Properties of SARGE performance on simulated data with a sub-Saharan African-like level of
heterozygosity, constant population size history, and no structure. Points are means; error bars
show one standard deviation. A: Tree articulation as a percent of all nodes possible (given the
number of haplotypes), with increasing number of haplotypes. B: Percent of all clades (across all
trees) inferred from solving recombination events (rather than shared mutations). C: Number of
trees across the chromosome with two children of the root node (no root-level polytomies). D:
Execution time as a function of the number of input haplotypes. Real data, where SNPs and
recombination events cluster in the genome, is likely to increase execution time.
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Fig. S6

Comparisons of SARGE to three other ARG inference programs (3, 7, 8), using a simulated data
with sub-Saharan African-like heterozosity, constant population size, and no structure. In each
comparison, error bars represent one standard deviation across 5 replicates and ARGs were
inferred across data sets with increasing numbers of haplotypes. A and B used a 2.5 x 1078
mutation rate per site per generation; C and D used a 1.0 x 10-® mutation rate per site per
generation. A and C show specificity, defined as the percent of nodes in an inferred ARG that
were correct according to the true ARG. B and D show sensitivity, defined as the percent of
nodes in the true ARG that were present in the inferred ARG. Sensitivity and specificity are
equal for the two methods (Rent+ and Relate) that produce fully articulated trees (without

polytomies).
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Fig. S 7

Execution time for SARGE and three other tested ARG inference programs (3, 7, 8), using a
simulated data set with sub-Saharan African-like heterozygosity, constant population size, and
no structure, with a 2.5 x 10" mutation rate per site per generation. Because tsinfer is a Python
module, its execution time does not include file I/O. A: Showing all programs. B: Omitting
Rent+.
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Effect of propagation distance parameter on SARGE sensitivity and specificity on simulated
data. A: Using a simulated data set of human and archaic genomes (see Supplementary Methods,
“Demographic simulations” section), specificity (percent clades from inferred ARG present in
true trees) on y-axis versus sensitivity (percent true trees recovered correctly by inferred ARG)
on x-axis. Numbers at the top of boxes are SARGE propagation distances (in kb) or other
programs (tsinfer or Relate) used to infer ARGs (8) instead of SARGE. Relate shows a unique
pattern because it, like the simulation, produces fully articulated trees (without polytomies);
sensitivity and specificity are both therefore always equal (the denominators — the number of
inferred clades and the number of true clades — are identical). Horizontal lines are mean
specificity across the entire ARG and vertical lines are mean sensitivity across the entire ARG.
B: Mean sensitivity and specificity values (same as horizontal and vertical lines in A) across
SARGE runs with different propagation distances, compared to tsinfer and Relate. Colors show
programs used (green = SARGE, blue = tsinfer, red = Relate).
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A: SARGE was run on a simulated data set of 66 human and archaic hominin genomes
(Supplementary Methods), and each clade in each tree in the true (simulation) ARG was
searched for in the SARGE-inferred ARG. Clades present in the SARGE results (red), clades
incompatible with (failing the four gamete test with) clades at the same site in the SARGE results
(green), and clades missing due to a polytomy in SARGE results (blue) are shown. The x-axis
shows the size of the clades. B: The same as A, but using a larger (500-haplotype) simulation
with no population structure (“QC simulations” in Supplementary Methods).
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Using a simulated data set approximating humans and archaic hominins (see Supplementary
Methods), ARGs were inferred using three different programs, and incorrect clades (clades in
inferred ARG trees that do not exist in the true simulation trees) were considered. For each
incorrect clade, the minimum distance on the chromosome to a position where that clade is
correct (in the true simulation ARG) is shown.
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Fig. S 11

Accuracy of inferred branch lengths, using simulated data. Data are from a 25 Mb simulated data
set using a demographic model of human and archaic hominin evolution, including archaic
hominin admixture (see Supplementary Methods). A: For each correct clade inferred by SARGE,
its true branch length (x axis) is compared to its inferred branch length (y axis). The line shows
the expectation if inferred branch lengths always matched true branch lengths. B: Same as A, but
for the ARG inferred by Relate (7). C: Inferred minus true branch lengths for both SARGE and
Relate. To help with readability, only the 1% to 99" percentile of both distributions is shown. D:
Same as C, but using a larger simulated data set with the same parameters, but 450 modern
human haplotypes and 6 archaic hominin haplotypes. Because Relate trees contain fewer
polytomies and thus have many more branch lengths, only a sample of 5 million branch length
differences was selected from each ARG to plot.
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Fig. S 12

Using a simulated data set in which humans received one pulse of Neanderthal admixture 50 kya
and one pulse of Deniosvan admixture 20 kya (Supplementary Methods), all clades grouping
some human haplotypes with archaic hominin haplotypes, to the exclusion of other human
haplotypes, were selected from the true simulation ARG (A) and the ARG inferred from SARGE
(B). Each point is one such clade, colored by the type of archaic hominin genomes it contains
(ambiguous means that human haplotypes are equally related to Neanderthal and Denisovan
genomes within the clade). The persistence of each clade along the genome (x-axis) and mean
TMRCA between archaic and human haplotypes within the clade (y-axis) are shown. In B, many
such clades had a TMRCA to admixer of 0 years and are shown along the bottom of the panel.
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Fig. S13

How mutation and recombination rate variation affects ARG trees. The ARG was inferred on
Simons Genome Diversity Project data (/4) with three archaic hominin genomes (/, 15, 16)
included. A: In 50kb genomic windows, mean tree articulation (number of nodes per tree y-axis)
versus mutation rate to recombination rate ratio within the window (x-axis). B: Number of
inferred ancestral recombination events per 50kb genomic window (y-axis) vs. mean population
recombination rate (cM/Mb; x-axis). Data used Simons Genome Diversity Project data (/4) with
three archaic hominin genomes included. The two numbers are correlated (Spearman’s rho =
0.46; p <2.2e-16).
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Fig. S 14

Persistence of clades (haplotype block lengths) in a true vs. inferred ARG. The true ARG and
input data for the inferred ARG are from a scrm (58) simulation with Neanderthal and Denisovan
admixture proportions of 0.05 (Supplementary Methods). Shown are haplotype block lengths for
100,000 clades randomly sampled from each ARG. The difference in haplotype block length
distribution is owed to SARGE artificially breaking long haplotypes: while the mean true
haplotype block length is 2.46x the mean inferred haplotype block length, the median true
haplotype block length is only 1.04x the median inferred haplotype block length. In real data,
haplotype block lengths can be shorter still due to variation in mutation and recombination rates
across chromosomes, as well as phasing errors in input data, which will introduce artificial
ancestral recombination events that can break haplotypes.
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Fig. S15

Example of a typical tree in our human data set. Shown is the tree for chromosome 1, position
4870939 (hg19 coordinates), which contains 90 nodes (the average for all trees genome-wide).
Branch lengths are measured as a percent of human-chimpanzee divergence (assumed to be 13
million years). Since clades inferred from recombination alone do not receive a branch length, a
pseudocount of 0.0008 (corresponding to about 10 thousand years) was added to each branch
length. All clades whose average distance to leaves is less than 0.005 (approx. 65 ky) are
collapsed, shown as triangles with size proportional to the number of leaves contained within.
The tree was generated using ITOL (93); all populations shown are from the Simons Genome
Diversity Panel (/4) plus Neanderthal (/, /5) and Denisovan (/6)genomes. Africa-MBK consists
of the most basal African lineages (Khomani-San, Mbuti, and Biaka).
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Fig. S16

Separating admixed haplotypes from incomplete lineage sorting (ILS). A: After selecting
candidate admixed haplotypes and excluding any that contained more than 10% outgroup
haplotypes (from the most basal sub-Saharan lineages, here referred to as Africa-MBK), we
assigned each haplotype a score, which increased with both haplotype block length and low time
to most recent common ancestor (TMRCA) with the admixer. For different score cutoffs, we
calculated the coefficient of variation (standard deviation divided by mean) of the TMRCA to
admixer within each population and chose the score at which this value began to stabilize for
each type of admixture as the cutoff (vertical line). B: TMRCA to admixer and haplotype block
length of all admixed haplotypes passing the cutoff.
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Fig. S 17

Properties of Denisovan-introgressed haplotype blocks. A: For each human genome haplotype
(dots), mean haplotype block length for Denisovan haplotypes (x-axis) and mean TMRCA to
Denisovan within Denisovan haplotyeps (y-axis) are reported. One outlier for short haplotypes
(S_Naxi-2) appears to have phasing errors (7able S I). B: Total number of unique Denisovan
haplotype blocks per genome (x-axis) and number of geographically restricted (unique to a 3,000
km radius) Denisovan haplotype blocks per genome (y-axis). C: Same as B, but with the
Australian, Bougainville, and Papuan cluster removed for readability. D: Same as A, but for only
geographically restricted haplotype blocks. Only genome haplotypes with more than 10 unique
Denisovan haplotype blocks are included.
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TMRCAs to the Denisovan genome in Denisovan-introgressed segments restricted to genomes

sampled within 3,000 km of each other.
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Fig. S 19

Properties of ambiguous (Neanderthal or Denisovan origin) archaic-introgressed haplotype
blocks. A: For each human genome haplotype (dots), mean haplotype block length for
ambiguous haplotypes (x-axis) and mean minimum TMRCA to an admixer haplotype
(Neanderthal or Denisovan) within ambiguous haplotyeps (y-axis). One outlier for short
haplotypes (S_Naxi-2) appears to have phasing errors (Table S 1). B: Total number of unique
ambiguous haplotype blocks per genome (x-axis) and number of geographically restricted
(unique to a 3,000 km radius) ambiguous haplotype blocks per genome (y-axis). C: Same as B,
but with the Australian, Bougainville, and Papuan cluster removed for readability. D: Same as A,
but for only geographically restricted haplotype blocks. Only genome haplotypes with more than
10 unique ambiguous haplotype blocks are included.
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TMRCA to admixer — Neanderthal

Fig. S20

Worldwide distribution of times to most recent common ancestor (TMRCA) to the closest
Neanderthal haplotype of Neanderthal-like haplotypes in modern humans. Points are averages
across all haplotypes within all genomes from each location. Numbers are corrected for branch
shortening, using the values given for the two Neanderthal genomes in (7).
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Global frequency - Neanderthal

Fig. S21

Worldwide distribution of frequencies of individual Neanderthal-like haplotypes in modern
humans. For each introgressed haplotype, its frequency in all humans worldwide was computed,
and these values were averaged across all haplotypes within all human genomes from each
geographic location.
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Fig. S22

Worldwide distribution of times to most recent common ancestor (TMRCA) to the closest
Denisovan haplotype of Denisovan-like haplotypes introgressed in modern humans. Points are
averages across all haplotypes within all genomes from each location. Numbers are corrected for
branch shortening, using the value given for the Denisovan genome in (7).
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Global frequency — Denisovan

Fig. S23

Worldwide distribution of frequencies of individual Denisovan-like haplotypes in modern
humans. For each introgressed haplotype, its frequency in all humans worldwide was computed,
and these values were averaged across all haplotypes within all human genomes from each
geographic location.
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Fig. S24

Worldwide distribution of times to most recent common ancestor (TMRCA) to the closest
admixer haplotype (Neanderthal or Denisovan) of introgressed haplotypes of ambiguous origin
in modern humans. Points are averages across all haplotypes within all genomes from each
location. Numbers are corrected for branch shortening, using the values given in (/). Some
ambiguous haplotypes are the result of merging Neanderthal and Denisovan haplotypes together;
in those cases, TMRCAs are averages of those in the two original haplotypes, weighted by the
number of bases in each.
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Worldwide distribution of frequencies of individual ambiguous origin introgressed haplotypes in
modern humans. For each introgressed haplotype, its frequency in all humans worldwide was
computed, and these values were averaged across all haplotypes within all human genomes from
each geographic location.
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Fig. S 26
For all non-African haplotypes, the percent of geographically restricted (limited to genomes

sampled within 3,000 km of each other) Neanderthal-introgressed segments, of all Neanderthal-
introgressed segments.
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Fig. S 27

For all non-African haplotypes, the percent of geographically restricted (limited to genomes
sampled within 3,000 km of each other) Denisovan-introgressed segments, as a percent of all
Denisovan-introgressed segments.
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Fig. S 28

Sharing of archaic hominin haplotypes between human genome haplotypes. Genomes are
arranged (rows and columns) according to a tree inferred via UPGMA on genome-wide SNPs
from the input data set (top and bottom of matrices); colors below the trees correspond to SGDP
population identifiers (top). A: Sharing of Neanderthal-introgressed haplotypes, as measured by
the Jaccard statistic. B: Sharing of Denisovan-introgressed haplotypes, as measured by the
Jaccard statistic.
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Fig. S 29
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Sharing of archaic hominin haplotypes between human genome haplotypes. Genomes are
arranged (rows and columns) according to a tree inferred via UPGMA on genome-wide SNPs
from the input data set (top and bottom of matrices); colors below the trees correspond to SGDP
population identifiers (top). A: Sharing of ambiguous (Neanderthal or Denisovan) introgressed
haplotypes, as measured by the Jaccard statistic. B: Sharing of ambiguous introgressed
haplotypes, combined with Denisovan introgressed haplotypes, as measured by the Jaccard

statistic.
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Fig. S30

Percent of archaic-introgressed haplotypes in Africa (excluding Biaka, Mbuti, and Khomani-San)
shared with other SGDP populations. Africa-MBK consists of most basal sub-Saharan African
lineages (Mbuti, Biaka, and Khomani-San) used as an outgroup in which all introgressed
haplotypes were required to be < 10% frequency.
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Fig. S31
Percent of archaic-introgressed haplotypes in basal African lineages used as an outgroup (Biaka,
Mbuti, and Khomani-San) shared with other SGDP populations.
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Fig. S32

Percent of archaic-introgressed haplotypes in America shared with other SGDP populations.
Africa-MBK consists of most basal sub-Saharan African lineages (Mbuti, Biaka, and Khomani-
San) used as an outgroup in which all introgressed haplotypes were required to be < 10%
frequency.
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Fig. S33

Percent of archaic-introgressed haplotypes in CentralAsiaSiberia shared with other SGDP
populations. Africa-MBK consists of most basal sub-Saharan African lineages (Mbuti, Biaka,
and Khomani-San) used as an outgroup in which all introgressed haplotypes were required to be
< 10% frequency.
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Fig. S34

Percent of archaic-introgressed haplotypes in EastAsia shared with other SGDP populations.
Africa-MBK consists of most basal sub-Saharan African lineages (Mbuti, Biaka, and Khomani-
San) used as an outgroup in which all introgressed haplotypes were required to be < 10%
frequency.
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Percent of archaic-introgressed haplotypes in Oceania shared with other SGDP populations.
Africa-MBK consists of most basal sub-Saharan African lineages (Mbuti, Biaka, and Khomani-
San) used as an outgroup in which all introgressed haplotypes were required to be < 10%

frequency.
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Fig. S36

Percent of archaic-introgressed haplotypes in SouthAsia shared with other SGDP populations.
Africa-MBK consists of most basal sub-Saharan African lineages (Mbuti, Biaka, and Khomani-
San) used as an outgroup in which all introgressed haplotypes were required to be < 10%
frequency.
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Population Population
Percent of archaic-introgressed haplotypes in WestEurasia shared with other SGDP populations.
Africa-MBK consists of most basal sub-Saharan African lineages (Mbuti, Biaka, and Khomani-
San) used as an outgroup in which all introgressed haplotypes were required to be < 10%
frequency.
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Fig. S 38

Coalescent simulations with one Neanderthal and one Denisovan admixture event were run, with increasing
admixture proportions (Supplementary Methods). An ARG was inferred over each, and several values were
computed and compared to those from real data. A: Percent of the genome in regions containing archaic hominin
admixture in any individual, incomplete lineage sorting in any individual, neither (deserts), or neither plus a derived
allele specific to and fixed in all humans (human-specific regions). Left: Using the ARG inferred on our full real
data set, but considering only the most basal (Africa-MBK) human lineages, thought to be relatively free of
admixture. Human-specific regions still require alleles to be fixed across all humans, not only Africa-MBK
individuals. Right: results using a simulation that did not include any archaic hominin admixture. B: The full extent
of regions containing admixture or ILS with any archaic hominin across all sampled humans, and the extent of
regions free of both admixture and ILS (deserts). Horizontal lines show values computed from real data. C: The
range of percent archaic ancestry per individual (f) (points are mean values; error bars show maximum and
minimum value). The horizontal dotted line shows this (mean) value for real data, and the shaded rectangle shows
maximum and minimum values.

94



Submitted Manuscript: Confidential

A Colon - Sigmoid
Brain — Caudate (basal ganglia)

Heart - Left Ventricle

Minor Salivary Gland

B

0-100 kya Category

Brain — Spinal cord (cervical c-1) metabolic
Adipose — Subcutaneous
Heart — Atrial Appendage
Nerve - Tibial

I 3 Brain — Cerebellar Hemisphere
Brain — Cerebellum

Ovary

1 Kidney - Cortex
Thyroid

- 0 Testis
Bladder

Brain — Nucleus accumbens (basal ganglia)
Brain - Frontal Cortex (BA9)

Spleen

Pancreas

Skin — Not Sun Exposed (Suprapubic)

Lung

Prosite 600-700 kya

Artery — Aorta

Whole Blood

Skin - Sun Exposed (Lower leg)

Liver 700-800 kya

Artery — Tibial

Adrenal Gland

Esophagus — Mucosa

Small Intestine — Terminal lleum

Muscle — Skeletal

Count/ 100-200 kya

background developmental

200-300 kya immune system

2
reproductive

300-400 kya

400-500 kya

500-600 kya

800-900 kya

Breast - Mammary Tissue

900 kya - Tmya

00t
00¢
00€
00
00S
009
002
008

0 50 100 150 200
Number of GO terms

el 00l -0

eAy 002
efy 00g
el 0or
ey 00
ehy 009
efy 00L
eAy 008

el 006
eAw | - eAy 006

Fig. S 39

Human-specific derived changes through time. A: For human-specific derived mutations
affecting tissue-specific genes (tau > 0.9) in time bins dating back 1 my, enrichment of affected
5 tissues in each time bin. Expression data came from the per-gene median tissue expression

values across many samples from the GTEx database (66), with cell line “tissues” excluded.
Values shown are the percent of all mutations in a time bin affecting a given tissue, divided by
the percent of all total tissue-specific genes affecting that tissue. B: For human-specific derived
mutations affecting all genes in time bins dating back 1 my, the relative number of Gene

10 Ontology (65) terms per time bin below the terms “metabolic process,” “developmental process,’
“immune system process,” and “reproductive process” are shown.

b
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Fig. S40.

How node indices are adjusted when four haplotype test failures are encountered. Black letters
represent clades, yellow numbers in curly braces represent site indices, and blue numbers in
brackets represent start and end coordinates (inclusive). Red text indicates an adjusted value. Red
arrows show four haplotype test failures, and black arrows represent changes made to nodes. A:
a simple case where the furthest donwnstream site owned by node 1 (50) is upstream of the
furthest upstream site owned by node 2 (150). In this case, node 1's end coordinate is set to its
furthest downstream site, and node 2's start coordinate is set to its furthest upstream site. B: Node
4 interrupts the range of node 3. Node 3 must be split into two nodes, and all three resulting
nodes must have their ranges adjusted.
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Fig. S41.

Tree-compatibility in three different situations. Gray squares are nodes, black letters are clades,
yellow numbers in curly braces are genomic positions, and blue numbers in brackets are start/end
coordinates. Red arrows indicate four haplotype test failures, and green ovals denote tree
compatibility. A: three pairs of nodes are compatible (can belong to the same trees as each
other). B: only two pairs of nodes are tree-compatible. C: Only one pair of nodes is tree-
compatible.

97



10

Submitted Manuscript: Confidential

& B

Filtering a recombination graph after finding the initial set of nodes. All upstream nodes in the
set are marked with U, downstream nodes marked with D, and candidate “leaving” nodes are
squares marked with L. Genomic intervals over which each node is known to exist are marked
with solid horizontal lines, and dashed lines represent recombination edges (each connects an
upstream node with a downstream node, through a candidate leaving node). The initial “key”
node is the upstream node marked with an asterisk. After the recombination graph is gathered,
the genomic interval in which the recombination event must have happened is shaded gray. One
of the upstream nodes in the set has a closest downstream recombination partner node within this
interval, which is not part of the downstream set (all three nodes shown in red). This upstream
node therefore does not help describe the same ancestral recombination event as the other nodes
and will be removed.

Fig. S 42
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Fig. S43.

An example case in which multiple ancestral recombination events may be considered as one. A:
The true ARG across three adjacent genomic regions. Clades involved in recombination are
marked o and B; subscripts denote the recombination event (first or second) to which they
correspond. Clades observed in SNP data appear below each tree in the order in which they are
observed; colors mark the true tree to which each clade belongs. Purple branches are true y
clades, and purple arrows show ancestral recombination events. B: The correct grouping of
nodes path through them in a recombination graph. First, (J) moved downward from
(ABCDEFGHI) to (EFGHIJ). Then, (E) moved from (EFGHI) to (ABCE). C: A likely incorrect
inference made, if nodes are not grouped correctly into trees. It appears most parsimonious to say
that (J) moved down from (ABCDEFGHI)) in the first tree to (FGHLJ) in the third tree, skipping
the middle tree altogether. If this choice is made, genomic positions for the ancestral
recombination event will also be wrong, as it chooses the narrowest possible interval, which
would place it between the first and second tree. Note that observing the clade (ABCE) in the
third tree might help avoid this problem.
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Fig. S 44

Probability of a haplotype belonging to the deepest diverging clade in a tree (defined as the
smaller of the two children of the root, only when the root node is bifurcating and the two
children have unequal numbers of leaves) against per-site nucleotide diversity, computed using
only sites used to build the ARG (biallelic SNPs passing quality filters, where the chimpanzee
allele is known, excluding CpG sites). Dotted lines are residuals to the best fit line computed
excluding archaic hominins (solid line).
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Fig. S 45

Effects of choosing different geographic range cutoffs on the distributions of TMRCAs between
admixed and admixing individuals within geographically restricted Neanderthal and Denisovan
introgressed haplotype blocks in modern humans. NEA = Neanderthal-introgressed haplotypes;
DEN = Denisovan-introgressed haplotypes. Asterisks denote distributions significantly different
(via Wilcoxon rank-sum test) from that produced using a 3,000 km cutoff (the choice made in
this study).
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Fig. S 46

Effects of choosing different geographic range cutoffs on the distributions of lengths of
geographically restricted Neanderthal and Denisovan introgressed haplotype blocks in modern
humans. NEA = Neanderthal-introgressed haplotypes; DEN = Denisovan-introgressed
haplotypes. Asterisks denote distributions significantly different (via Wilcoxon rank-sum test)
from that produced using a 3,000 km cutoff (the choice made in this study).
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Genome haplotype Mean % error Genome haplotype Mean % error
(continued) (continued)
Denisova-1 42.27 S Khomani_San-1-1 3.36
Denisova-2 40.68 S Ju hoan North-2-2 3.31
Altai-2 15.72 S Biaka-1-2 3.14
Altai-1 14.95 S Mbuti-2-1 3.10
Vindija33.19-2 12.58 S_BantuHerero-2-2 2.93
Vindija33.19-1 8.79 S Khomani_San-2-2 2.78
S Khomani_San-1-2 5.22 S_Mbuti-1-2 2.59
B Ju hoan North-4-2 5.15 S Ju hoan North-3-1 2.55
S Naxi-2-2 4.56 S BantuTswana-1-2 247
S Ju hoan North-1-2 3.98 S Biaka-2-2 2.46
S Khomani_San-2-1 3.94 S Mbuti-3-1 2.33
B Mbuti-4-2 3.85 S Biaka-2-1 2.17
B Mbuti-4-1 3.82 S Ju hoan North-1-1 2.13
S Naxi-2-1 3.71 S_BantuHerero-2-1 2.00
Table S 1

Genome haplotypes with poor correlation between SNP-based and inferred ancestral
recombination event-based similarity scores to other genomes. We created a SNP-based distance
matrix by counting the number of clades that include one but not the other of each pair of
genome haplotypes; we then repeated this process using clades defined by shared ancestral
recombination events to build a recombination-based distance matrix. After dividing both
matrices by their maximum values and subtracting them from 1 to transform them into similarity
matrices, we computed the percent error between the similarity scores in both matrices. This
value was |Sgyp — Srecomp|/ (0.5 * (Ssnp + Srecomp))> Where Sgypis a similarity score from the
SNP matrix and Sy¢comp 18 the corresponding similarity score from the recombination matrix. We
report here all genome haplotypes for which the mean percent error across all columns was
greater than 2%. All genomes reported here are either archaic hominins (for which there are only
short read fragments and no phasing reference panels), sub-Saharan African genomes, including
some from the most basal lineages, for which there is little published data and for which
reference panels are poor, and the S Naxi-2 genome, which another study reported showed signs
of improper phasing .
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Population Percent Percent Percent Mean Mean Mean
Neanderth | Denisova | ambiguou | frequency frequency | frequency
al n ] (Neandertha | (Denisova | (Ambiguou

D n) s)
Africa 0.28% (0.15- | 0.13% (0.06- | 0.12% (0.09- 7.7 % 8.1% 7.5%
0.80%) 0.19%) 0.17%)

Africa-MBK 0.12% (0.10- 0.091% 0.08% (0.06- 4.5% 3.5% 3.6%

(Mbuti, Biaka, 0.16%) (0.07- 0.12%)

Khomani-San) 0.12%)

America 1.1% (0.96- 0.091% 0.14% (0.12- 9.6 % 18% 13%
1.2%) (0.07- 0.18%)
0.12%)
CentralAsiaSiber | 1.1% (0.92- 0.095% 0.14% (0.10- 9.0 % 17% 13%
ia 1.3%) (0.07- 0.19%)
0.12%)
EastAsia 1.1% (0.90- | 0.10% (0.07- | 0.15% (0.12- 8.7% 17% 12%
1.3%) 0.14%) 0.18%)
Oceania 1.2% (1.0- | 0.44% (0.09- | 0.44% (0.13- 7.5% 5.5% 6.1%
1.3%) 0.62%) 0.65%)
SouthAsia 1.0% (0.85- 0.092% 0.16% (0.11- 7.8% 17% 11%
1.2%) (0.06- 0.20%)
0.13%)
WestEurasia 0.97% (0.73- 0.068% 0.14% (0.11- 8.5% 20% 13%
1.2%) (0.05- 0.19%)
0.10%)
Table S2

Demographic parameters of Neanderthal and Denisovan admixture from ARG inference.
Genome-wide percents given are the percent of the autosomal genome classified as Neanderthal
or Denisovan origin (or equidistant from each; “ambiguous” column), using a score cutoff
(Supplementary Methods, Fig. S16). Numbers in parenthesis are minimum lower end and
maximum upper end of 95% block jackknife confidence intervals across all genomes in each
population. Frequencies given are calculated using only confidently admixed haplotypes and are
the frequencies across all human haplotypes in the Simons Genome Diversity Project Panel.
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Map type Feature type Projection upper p Distance p
Admixture genes 0.995* 0.268
Admixture exons 0.978 0.624
Admixture regulatory elt. binding sites 5.95e-2 0.585

ILS genes 4.10e-05* 0.575

ILS exons 0.999* 1.27e-05*

ILS regulatory elt. binding sites 0.00* 5.22e-09*
Deserts genes 0.00* 0.107
Deserts exons 0.410 2.73e-09*
Deserts regulatory elt. binding sites 0.00* 1.90e-09*

Deserts with human mutation genes 0.00* 2.53e-05*

Deserts with human mutation exons 0.00* 7.95e-06*

Deserts with human mutation | regulatory elt. binding sites 0.00* 3.20e-03*

Table S3

Overlap of genomic regions with archaic admixture in any human genome (Admixture),
incomplete lineage sorting with archaic hominins in any human genome (ILS), neither admixture
nor ILS with archaic hominins in any human genome (Deserts), and deserts with a fixed derived
allele specific to humans (Deserts with human mutation) with other genomic features. Genes are
whole protein coding genes from Gencode (63), using Ensembl version 94 on human genome
version GRCh38 lifted over to GRCh37 coordinates. Exons are for protein-coding genes from
the same annotation. Regulatory elements are from the filtered “double-elite” set in the
GeneHancer database (64), obtained from the UCSC Genome Browser’s Table Browser utility
(54). Distance-based p-values are from the “relative distance” Kolmogorov-Smirnov test and
project p-vaues measure overlap, both implemented in the GenometricCorr R package (62).
Significant (p <0.01 or p > 0.99) values are marked with asterisks.
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GO ID term

0 GO:0050775 positive regulation of dendrite morphogenesis

0 G0:0099151 regulation of postsynaptic density assembly

0 G0O:0099545 trans-synaptic signaling by trans-synaptic complex

0 G0:1905606 regulation of presynapse assembly
1.45E-11 G0:0051965 positive regulation of synapse assembly
1.86E-11 G0:0099560 synaptic membrane adhesion
1.18E-10 G0O:0045944 positive regulation of transcription by RNA polymerase 11
1.40E-10 GO:0007185 transmembrane receptor protein tyrosine phosphatase signaling pathway
3.28E-10 G0:0030182 neuron differentiation
1.76E-09 GO:0010828 positive regulation of glucose transmembrane transport
6.08E-09 GO:0007157 heterophilic cell-cell adhesion via plasma membrane cell adhesion molecules
7.35E-09 G0:0070413 trehalose metabolism in response to stress
7.47E-09 G0:0097105 presynaptic membrane assembly
9.96E-09 G0:0032446 protein modification by small protein conjugation
1.99E-08 G0O:0043367 CD4-positive, alpha-beta T cell differentiation
3.42E-08 G0:0006796 phosphate-containing compound metabolic process
3.48E-08 G0:0007059 chromosome segregation
3.85E-08 GO:0051463 negative regulation of cortisol secretion
3.85E-08 GO:0061582 intestinal epithelial cell migration
1.02E-07 G0:0016575 histone deacetylation
1.08E-07 G0O:2000773 negative regulation of cellular senescence
1.44E-07 G0:0033277 abortive mitotic cell cycle
1.49E-07 G0:0043523 regulation of neuron apoptotic process
1.52E-07 GO:0000381 regulation of alternative mRNA splicing, via spliceosome
2.02E-07 GO:0010764 negative regulation of fibroblast migration
2.43E-07 G0:0033628 regulation of cell adhesion mediated by integrin
3.48E-07 GO:1901407 regulation of phosphorylation of RNA polymerase II C-terminal domain
5.62E-07 G0O:0043369 CD4-positive or CD8-positive, alpha-beta T cell lineage commitment
6.15E-07 G0:0060134 prepulse inhibition
8.72E-07 G0:0006362 transcription elongation from RNA polymerase I promoter
8.90E-07 G0:2000301 negative regulation of synaptic vesicle exocytosis
9.16E-07 G0:0002318 myeloid progenitor cell differentiation
1.01E-06 G0O:0048680 positive regulation of axon regeneration
1.19E-06 G0:0015728 mevalonate transport
1.19E-06 G0:0051780 behavioral response to nutrient
1.22E-06 G0:0021707 cerebellar granule cell differentiation
1.40E-06 G0O:0000122 negative regulation of transcription by RNA polymerase II
1.66E-06 G0O:0008380 RNA splicing
2.77E-06 GO:0046642 negative regulation of alpha-beta T cell proliferation
3.40E-06 G0:1901673 regulation of mitotic spindle assembly
3.43E-06 G0:0070475 rRNA base methylation
6.61E-06 G0:0032922 circadian regulation of gene expression
7.49E-06 G0:0031401 positive regulation of protein modification process
1.01E-05 G0:0032528 microvillus organization
1.10E-05 G0:0060325 face morphogenesis
1.18E-05 G0:0006805 xenobiotic metabolic process
1.20E-05 G0:0035019 somatic stem cell population maintenance
2.15E-05 G0:0042593 glucose homeostasis
2.15E-05 G0:0043153 entrainment of circadian clock by photoperiod
2.95E-05 G0:0002669 positive regulation of T cell anergy
3.06E-05 G0:0007049 cell cycle
4.18E-05 GO:0090085 regulation of protein deubiquitination
5.70E-05 G0:1900424 regulation of defense response to bacterium
6.24E-05 GO:0072619 interleukin-21 secretion
6.24E-05 GO:1901256 regulation of macrophage colony-stimulating factor production
6.24E-05 GO:2001182 regulation of interleukin-12 secretion
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6.61E-05 G0O:0061470 T follicular helper cell differentiation
7.01E-05 G0O:0045580 regulation of T cell differentiation
8.00E-05 G0:1904861 excitatory synapse assembly
0.00010737 G0:1901509 regulation of endothelial tube morphogenesis
0.000107471 G0O:0030520 intracellular estrogen receptor signaling pathway
0.00011123 GO:0030099 myeloid cell differentiation
0.000112339 G0:0090050 positive regulation of cell migration involved in sprouting angiogenesis
0.000122928 G0:0032480 negative regulation of type I interferon production
0.000128903 G0:0072757 cellular response to camptothecin
0.000132611 G0:0030220 platelet formation
0.000152959 G0:0042117 monocyte activation
0.000158838 G0:0031532 actin cytoskeleton reorganization
0.000167342 G0:1905377 response to D-galactose
0.000172017 G0:0035926 chemokine (C-C motif) ligand 2 secretion
0.000213716 GO:0045655 regulation of monocyte differentiation
0.000214274 GO:0006357 regulation of transcription by RNA polymerase I1
0.000242844 G0O:2000646 positive regulation of receptor catabolic process
0.000248198 G0:0048609 multicellular organismal reproductive process
0.000258532 GO:0090150 establishment of protein localization to membrane
0.000267499 G0:0072711 cellular response to hydroxyurea
0.000304723 GO:0050706 regulation of interleukin-1 beta secretion
0.000315893 G0:0000303 response to superoxide
0.000380935 GO:0001525 angiogenesis
0.000394229 G0:0042921 glucocorticoid receptor signaling pathway
0.000400655 GO:0050658 RNA transport
0.000403785 G0:1902476 chloride transmembrane transport
0.000409687 G0:1902605 heterotrimeric G-protein complex assembly
0.000413288 G0:0021697 cerebellar cortex formation
0.000425503 G0:0060323 head morphogenesis
0.000426453 G0:0009887 animal organ morphogenesis
0.00043196 G0O:0032784 regulation of DNA-templated transcription, elongation
0.000747324 GO:0046887 positive regulation of hormone secretion
Table S4

Significantly enriched (p < 0.001) Gene Ontology (39) biological process terms in desert regions
containing fixed human-specific derived alleles. Enrichment was tested by fetching all regions of
the genome annotated with each GO term, then testing for overlap with filtered desert regions
containing human-specific differences, using the projection test implemented in the
GenometriCorr R package (62), then applying the Bonferonni correction to p-values.
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Time bin | P GO ID term
(kya)
100 0.000104124 GO:0035878 nail development
100 0.000152424 G0O:0009650 UV protection
100 0.000152424 G0O:0031581 hemidesmosome assembly
100 0.000209759 G0O:0071391 cellular response to estrogen stimulus
100 0.000331521 G0:0008283 cell proliferation
100 0.000435455 G0:0006293 nucleotide-excision repair, preincision complex stabilization
100 0.000630144 GO:0070911 global genome nucleotide-excision repair
100 0.000630144 G0O:0097186 amelogenesis
100 0.000959005 GO:0048565 digestive tract development
100 0.000959005 GO:1901796 regulation of signal transduction by p53 class mediator
300 0.00044997 G0O:1904645 response to amyloid-beta
300 0.000935046 G0:0000304 response to singlet oxygen
300 0.000935046 G0O:0018964 propylene metabolic process
300 0.000935046 G0:1905429 response to glycine
300 0.000935046 GO:1905430 cellular response to glycine
300 0.000935046 G0O:1990771 clathrin-dependent extracellular exosome endocytosis
Table S 5

Singificantly enriched (p < 0.001) biological process Gene Ontology terms attached to

interacting sets of genes affected by candidate regulatory element mutations or nonsynonymous
substitutions, where all such mutations occurred within the listed time bin (100 = between 100-
150 kya; 300 = between 300-350 kya).
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p GO ID term
0.000111966 GO:0038063 collagen-activated tyrosine kinase receptor signaling pathway
0.00011562 G0:0010569 regulation of double-strand break repair via homologous recombination
0.000139583 G0O:0048025 negative regulation of mRNA splicing, via spliceosome
0.000149125 G0O:2000327 positive regulation of nuclear receptor transcription coactivator activity
0.000156365 GO:0055059 asymmetric neuroblast division
0.000167805 G0:1902412 regulation of mitotic cytokinesis
0.000181854 GO:1901842 negative regulation of high voltage-gated calcium channel activity
0.000218898 GO:0000462 maturation of SSU-rRNA from tricistronic rRNA transcript (SSU-rRNA, 5.8S rRNA,
LSU-rRNA)
0.00022847 GO:0007076 mitotic chromosome condensation
0.000236442 G0:0071044 histone mRNA catabolic process
0.000270717 GO:1905064 negative regulation of vascular smooth muscle cell differentiation
0.000305361 G0:0098789 pre-mRNA cleavage required for polyadenylation
0.000313394 GO:0043928 exonucleolytic nuclear-transcribed mRNA catabolic process involved in deadenylation-
dependent decay
0.000360947 G0:1990414 replication-born double-strand break repair via sister chromatid exchange
0.000362148 G0:0003192 mitral valve formation
0.000418857 G0:0010792 DNA double-strand break processing involved in repair via single-strand annealing
0.000421671 G0:0010793 regulation of mRNA export from nucleus
0.000434558 GO:0010724 regulation of definitive erythrocyte differentiation
0.000442968 G0:0040016 embryonic cleavage
0.000484611 G0:0099527 postsynapse to nucleus signaling pathway
0.000488376 GO:0006376 mRNA splice site selection
0.000488585 G0:0043983 histone H4-K12 acetylation
0.000514264 G0:0043981 histone H4-K5 acetylation
0.000514264 G0:0043982 histone H4-K8 acetylation
0.000522681 G0O:0010842 retina layer formation
0.000524426 GO:0097676 histone H3-K36 dimethylation
0.00053366 GO:0045577 regulation of B cell differentiation
0.000536417 G0:0035166 post-embryonic hemopoiesis
0.000595826 G0:0000027 ribosomal large subunit assembly
0.000632034 G0:0010603 regulation of cytoplasmic mRNA processing body assembly
0.000632994 GO:1904431 positive regulation of t-circle formation
0.000643467 GO:0031124 mRNA 3'-end processing
0.000649581 GO:0097155 fasciculation of sensory neuron axon
0.000658939 G0:0021747 cochlear nucleus development
0.000767928 GO:0055113 epiboly involved in gastrulation with mouth forming second
0.000773163 GO:0070550 rDNA condensation
0.000773163 GO:1905406 positive regulation of mitotic cohesin loading
0.000777374 GO:0010711 negative regulation of collagen catabolic process
0.000777374 GO:0060311 negative regulation of elastin catabolic process
0.000778431 GO:1901630 negative regulation of presynaptic membrane organization
0.000778431 GO:1903002 positive regulation of lipid transport across blood brain barrier
0.000778431 GO:1905855 positive regulation of heparan sulfate binding
0.000778431 GO:1905860 positive regulation of heparan sulfate proteoglycan binding
0.000778431 GO:1905890 regulation of cellular response to very-low-density lipoprotein particle stimulus
0.000801461 G0O:0062030 negative regulation of stress granule assembly
0.000805269 G0:0035971 peptidyl-histidine dephosphorylation
0.000812273 G0O:0048024 regulation of mRNA splicing, via spliceosome
0.000822891 G0O:0018323 enzyme active site formation via L-cysteine sulfinic acid
0.000822891 GO:0036471 cellular response to glyoxal
0.000822891 GO:0036526 peptidyl-cysteine deglycation
0.000822891 GO:0036527 peptidyl-arginine deglycation
0.000822891 GO:0036528 peptidyl-lysine deglycation
0.000822891 GO:0036529 protein deglycation, glyoxal removal
0.000822891 GO:0036530 protein deglycation, methylglyoxal removal
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0.000822891 GO:0036531 glutathione deglycation
0.000822891 G0:0045560 regulation of TRAIL receptor biosynthetic process
0.000822891 G0:0050787 detoxification of mercury ion
0.000822891 GO:0106045 guanine deglycation, methylglyoxal removal
0.000822891 GO:0106046 guanine deglycation, glyoxal removal
0.000822891 GO:1903073 negative regulation of death-inducing signaling complex assembly
0.000822891 GO:1903122 negative regulation of TRAIL-activated apoptotic signaling pathway
0.000822891 GO:1903168 positive regulation of pyrroline-5-carboxylate reductase activity
0.000822891 G0:1903178 positive regulation of tyrosine 3-monooxygenase activity
0.000822891 G0:1903197 positive regulation of L-dopa biosynthetic process
0.000822891 G0:1903200 positive regulation of L-dopa decarboxylase activity
0.000822891 G0O:2000277 positive regulation of oxidative phosphorylation uncoupler activity
0.000829029 G0:1902889 protein localization to spindle microtubule
0.000829029 GO:1990280 RNA localization to chromatin
0.000851135 G0:0002380 immunoglobulin secretion involved in immune response
0.000867097 G0:0035855 megakaryocyte development
0.000870262 G0O:2000795 negative regulation of epithelial cell proliferation involved in lung morphogenesis
0.000874578 G0O:0031397 negative regulation of protein ubiquitination
0.00088442 G0:0009443 pyridoxal 5'-phosphate salvage
0.000898789 GO:0072334 UDP-galactose transmembrane transport
0.000905934 G0:0032049 cardiolipin biosynthetic process
0.000916438 G0:0120049 snRNA (adenine-N6)-methylation
0.000933051 GO:0110024 positive regulation of cardiac muscle myoblast proliferation
0.000937536 G0:0045403 negative regulation of interleukin-4 biosynthetic process
0.000937536 GO:0060377 negative regulation of mast cell differentiation
0.000944871 G0:0044794 positive regulation by host of viral process
0.000948251 GO:0071348 cellular response to interleukin-11

0.0009655 GO:0045951 positive regulation of mitotic recombination
0.000970954 G0:0000184 nuclear-transcribed mRNA catabolic process, nonsense-mediated decay

Table S 6

Significantly enriched (p < 0.001) Gene Ontology (65) terms describing genes affected by fixed
human-specific derived mutations in candidate regulatory element binding sites or
nonsynonymous mutations, ranked by size of surrounding desert region and age of mutation
(longer deserts and more recent mutations were ranked higher). Low p-values may indicate
continued strength of purifying selection on these mutations. Testing was done using the
Wilcoxon rank-order test implemented in FUNC (686).
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Program % missing on chrom | Median dist (kb) Mean dist (kb)
SARGE 13.7% 3.51 91.9
Relate 35.7% 10.2 565
tsinfer 37.7% 10.5 406
Table S 7

For a single demographic simulation of humans and archaic hominins (Supplementary Methods),
ARGs were inferred using SARGE, and two published programs, Relate (7) and tsinfer (8). Each
time an inferred ARG contained a clade that did not exist in the true tree at the same site, the
physical distance along the chromosome to the nearest site at which that clade did exist in the
true ARG was computed. Incorrectly-inferred clades which did not exist anywhere in the true
ARG are also shown (% missing on chrom column).
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