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Abstract: Many humans carry genes from Neanderthals, an important legacy of past admixture. 
Several methods have been described for detecting this archaic hominin ancestry within human 
genomes using patterns of linkage disequilibrium or direct comparison to Neanderthal genomes. 15 
Each of these methods is limited in sensitivity and scalability. We describe a new ancestral 
recombination graph inference algorithm that is scalable to large genome-wide data sets and 
demonstrate its accuracy on real and simulated data. We then generate the first genome-wide 
ancestral recombination graph of both human and archaic hominin genomes. From this, we 
generate a map within human genomes of archaic ancestry and of genomic regions devoid of 20 
genes shared with archaic hominins by either admixture or incomplete lineage sorting. We find 
that only 1.5-7% of the modern human genome is uniquely human. We also find evidence of at 
least two bursts of adaptive changes specific to modern humans within the last 600,000 years, 
consisting of both coding and regulatory changes, many of which may relate to brain 
development and function.  25 
One Sentence Summary: A new method for mapping archaic hominin ancestry in human 
genomes reveals specific evolutionary changes unique to modern humans, including many 
involved in brain development and function. 

Main Text:  
Much of the current genetic variation within humans predates the split, estimated at 520-30 

630 thousand years ago (kya) (1), between the populations that would become modern humans 
and Neanderthals. The shared genetic variation present in our common ancestral population is 
still largely present amongst humans today and was present in Neanderthals up until the time of 
their extinction. This phenomenon, which is known as incomplete lineage sorting (ILS), means 
that any particular human will share many alleles with a Neanderthal that are not shared with 35 
some other humans. Therefore, humans often share genetic variation with Neanderthals not by 
admixture but rather by shared inheritance from a population ancestral to us both. Because of 
this, any effort to map ancestry from archaic hominins in human genomes must disentangle 
admixture from ILS. Furthermore, a technique able to identify both admixture and ILS could 
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produce a catalog of uniquely human genomic regions that is free of both, and thereby shed light 
on the evolutionary processes that have been important in our origin as a unique species.   

 Ancestral recombination graph (ARG) inference (2) is a powerful starting point for such 
an analysis. An ARG can be conceptualized as a series of trees, mapped to individual sites, over 
phased haplotypes (chromosomes) in a panel of genomes. Ancestral recombination events, or 5 
sites at which chromosome segments with different histories were joined together by historical 
recombination, form boundaries between trees. Each ancestral recombination event manifests as 
a clade of haplotypes, all of which descend from the first ancestral haplotype to possess it, 
moving from one position in the tree upstream of the event to a new position in the downstream 
tree (3). ARGs are complete descriptions of phylogenomic data sets and present for recombining 10 
genomes what single trees present for nonrecombining genomes, i.e., a complete description of 
their genetic relationships. As prior techniques for ancestry mapping can be thought of as 
summaries of the ancestral recombination graph, higher resolution ancestry maps could be 
produced if the ARG were known. Additionally, the ARG can be used to estimate the TMRCA 
between admixed and admixer haplotypes, providing additional information about historical 15 
admixture between humans and archaic hominins.  

Given the utility of an ARG, it is not surprising that several methods have been devised 
for estimating ARGs from genetic data. These published approaches all have different strengths 
and limitations. BEAGLE (3), ArgWeaver (4), and Rent+ (5) were designed for small data sets 
and require substantial time and/or memory to be used with large sequencing panels. Margarita 20 
(6), randomly samples histories at ancestral recombination event boundaries and does not seek to 
produce parsimonious recombination histories (6). ArgWeaver (4), which is widely considered 
the gold standard in ARG inference, requires prior knowledge of demographic model parameters. 
Relate (7) is a relatively new method that scales well to large data sets and produces fully 
articulated trees with branch lengths, but in doing so necessarily describes relationships inferred 25 
from but not directly observed in the data, as do several other methods (4, 5). The most 
computationally efficient approach, tsinfer (8), also scales to large data sets but does not infer 
branch lengths and assumes that frequency of an allele is correlated with its age. Since this 
assumption is violated at loci undergoing either admixture or selection, tsinfer is not well-suited 
for ARG inference using genetic data from Neanderthals, Denisovans, and modern humans.   30 

Here, we present a heuristic, parsimonious ARG inference algorithm called SARGE 
(Speedy Ancestral Recombination Graph Estimator) and use it to build a genome-wide ARG of 
both modern human and archaic hominin genomes. SARGE can run on thousands of phased 
genomes, makes no prior assumptions other than parsimony, estimates branch lengths, and 
represents uncertainty due to missing mutations as polytomies in output trees. We validate 35 
SARGE using simulated data and demonstrate that it has high specificity compared to existing 
methods in reconstructing the topology of trees, but does so without assumptions about 
demographic history, making it more suitable for identifying archaic admixture segments. To 
achieve this high specificity, SARGE leaves uncertainty (polytomies) in output trees, resulting in 
lower sensitivity than existing methods. 40 

We run SARGE on a panel of 279 modern human genomes, two high-coverage 
Neanderthal genomes, and one high-coverage Denisovan genome. Using the resulting ARG, we 
map Neanderthal and Denisovan ancestry, ILS, and the absence of both across modern human 
genomes. We find evidence of at least one wave of Neanderthal admixture into the ancestors of 
all non-Africans. We also identify several long and deeply divergent Neanderthal haplotype 45 
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blocks that are specific to some human populations. We find support for the hypothesis that 
Denisovan-like ancestry is the result of multiple introgression events from different source 
populations (9, 10). We also detect an excess of Neanderthal and Denisovan haplotype blocks 
unique to South Asian genomes. Finally, we pinpoint human-specific changes likely to have 
been affected by selection since the split with archaic hominins, many of which are involved in 5 
brain development.  

ARG Algorithm 
 To build an ARG containing both modern human and archaic hominin genomes without 
the use of a demographic model or the need to infer ancestral haplotypes, we developed a 
parsimony-based ARG inference technique, SARGE.  SARGE uses both shared derived alleles 10 
and inferred, shared ancestral recombination events to articulate trees (Supplementary methods, 
Fig. 1A). SARGE uses the four-gamete test (11) to determine regions of recombination and the 
affected haplotypes. The crux of SARGE is a fast algorithm for choosing the branch 
movement(s) capable of explaining the highest number of discordant clades across a genomic 
segment that fails the four-gamete test. Once the branch movements, i.e.,inferred ancestral 15 
recombinations, are determined, further definition of clades is possible. Thus, the trees are 
articulated by both shared alleles and shared ancestral recombination events (Fig. S1, Fig. S2, 
Supplementary methods). 

 In the interest of parsimony, our method attempts to infer a set of ancestral recombination 
events that each explain as many four gamete test failures as possible. Because the four gamete 20 
test is known to underestimate the true number of ancestral recombination events (12, 13), 
SARGE will systematically underestimate the true number of ancestral recombination events in a 
data set by design. Because of this, SARGE is not well-suited to certain tasks, such as the 
creation of fine-grained recombination maps. We have attempted to mitigate cases where a clade 
in the ARG should be broken by an unobserved ancestral recombination event, however, by 25 
introducing a propagation distance parameter that limits the genomic distance over which each 
observed clade is allowed to persist (Supplementary Methods, Fig. 1A). 

SARGE is scalable to large data sets and achieves higher specificity than many other 
methods at the cost of lower sensitivity, by leaving uncertainty (polytomies) in the output data. 
Using simulated data, we find that SARGE runs quickly (Fig. S5D, Fig. S 7), requires little 30 
memory, and has 78.93% specificity (95% C.I. 78.09-78.95%) on average across a range of 
simulated data sets that include between 50-500 haplotypes (Supplementary Methods). SARGE 
is at least as specific as alternative techniques (Fig. S6A,C). Conversely, SARGE’s sensitivity 
(25.36%; 95% C.I. 25.32-25.40%) is lower than that of other methods  (Fig. S6B,D), as SARGE 
leaves an increasingly large number of polytomies in output trees as the number of input 35 
haplotypes increases (Fig. 1B,C ).  

We also find that the sensitivity of SARGE can be increased by increasing the 
propagation distance parameter (Supplementary Text, Fig. S 8), that missing clades are likely to 
be small clades that are close to the leaves of trees (Supplementary Text, Fig. S 9), and that 
incorrectly-inferred clades tend to be within a few kb of sites at which those clades exist in truth 40 
(Supplementary Text, Fig. S 10). We also find, using simulated data, that SARGE’s branch 
lengths do not appear to be systematically biased upward or downward (Supplementary Text, 
Fig. S 11). 
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We ran SARGE on 279 phased human genomes from the Simons Genome Diversity 
Project (SGDP) (14), together with two high-coverage Neanderthal genomes (1, 15) and one 
high-coverage Denisovan genome (16). In our analyses, we relied on modern human population 
labels defined by the SGDP for many analyses, but we split sub-Saharan Africans into one 
population containing only the most deeply-diverged lineages (Biaka, Mbuti, and Khomani-San), 5 
which we call “Africa-MBK,” and the remaining genomes (“Africa”). Using these data, we find 
that the completeness of trees in the ARG is positively correlated with the local mutation rate to 
recombination rate ratio (Fig. S13A; Spearman’s rho = 0.40; p < 2.2 x 10-16), and that the number 
of inferred ancestral recombination events per genomic window agrees with a previously 
published population recombination map (17) (Fig. S13B; Spearman’s rho = 0.46; p < 2.2 x 10-10 
16), as expected. Estimates of the mean time to most recent common ancestor (TMRCA) of 
groups, taken across all trees, were also concordant with prior knowledge (Fig. 2A). We note, 
however, that these TMRCA estimates are different from both pairwise coalescent times and 
population split times. Because we have included hundreds of modern human genomes, and 
because incomplete lineage sorting between modern humans and archaic hominins is 15 
widespread, the mean TMRCA of all humans in the SGDP panel is close to the mean TMRCA of 
all hominins in our data set (Fig. 2A). Our reported TMRCA values computed are also 
influenced by the demographic parameters implemented in our models (Supplementary Text). 

Using these data, we found SARGE’s inferences of ancestral recombination events to be 
accurate. Because SARGE articulates tree clades using either shared allelic variation or shared 20 
inferred ancestral recombination, it is possible to test the concordance of trees made from each 
source.  On average, 13.2% of clades in the ARG are known only from inference of shared 
ancestral recombination events and not by the presence of a shared, derived allele. We created a 
similarity score between every pair of phased human genome haplotypes in our data set based on 
how often the haplotypes share ancestral recombination events. This score recapitulates 25 
relationships among humans known from SNP data alone (Fig. 2B,C; Pearson’s r2 with scores 
from SNP data = 0.989; p < 2.2 x 10-16). We note that genomes with the poorest correlation 
between SNP-based and recombination-based similarity scores to other genomes are those most 
likely to contain phasing errors (Table S 1).  
Archaic hominin admixture 30 

We used our ARG to find regions of each phased human genome that derived from 
admixture with archaic hominins (Supplementary Methods, Fig. S16). If humans and the archaic 
hominins in our panel were in populations that had sorted their lineages, this exercise would be 
simple with a complete and correct ARG. However, since human genome regions are often 
within a clade that includes hominin haplotypes due to incomplete lineage sorting, finding 35 
admixed segments requires analysis beyond simply finding clades that unite some human and 
archaic hominin haplotypes. 

We started by selecting clades from ARG trees that united some modern humans with 
archaic hominins to the exclusion of some other modern humans. We then assigned each human 
genome haplotype in each such clade as putative Neanderthal, Denisovan, or ambiguous 40 
ancestry, depending on whether the clade contained Neanderthal, Denisovan, or both types of 
haplotypes. We then performed several filtering steps to remove such clades likely to result from 
ILS. First, we removed any clades that included more than 10% of the Africa-MBK haplotypes 
from the most basal human lineages, which are unlikely to be admixed. We then discarded clades 
that persisted for a short distance along the chromosome, or in which the TMRCA between 45 
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modern humans and archaic hominins was high (Supplementary Methods, Fig. S16). Because 
our method relies on both the haplotype block length and the TMRCA between admixed and 
introgressor haplotypes to identify admixed segments, we were able to identify some haplotypes 
that resemble archaic admixture in modern humans but that have relatively high sequence 
divergence to published archaic genomes (manifesting as high TMRCAs between archaic and 5 
modern genomes within these segments). 

 Using the resulting maps, we calculated genome-wide percent admixture estimates 
across populations and compared them to estimates based on the population-wide D-statistic (18, 
19) using basal Africa-MBK lineages as an outgroup. ARG-based estimates are similar to, but 
lower than, D-statistic based estimates in all non-African genomes. We detected slightly more 10 
admixture in sub-Saharan Africans (excluding Africa-MBK) than using the D-statistic (Fig. 3A), 
even when considering the lower end of 95% confidence weighted block jackknife intervals 
(Table S2). We note that a recent study that used an outgroup-free method to detect Neanderthal 
ancestry blocks in human genomes also found a higher average amount of Neanderthal ancestry 
in African genomes than has been previously reported (20). 15 

We next looked for population-specific differences in archaic hominin ancestry in 
modern humans. Lengths of archaic haplotype segments and the TMRCA to admixer across 
those segments are both affected by the time of admixture and the divergence between the true 
admixers and available archaic hominin genomes. We therefore computed these two values for 
each ancestry type and compared them across individuals from different populations to look for 20 
evidence of distinctive, population-specific admixture events. This analysis revealed distinctive 
population-specific patterns for Neanderthal and Denisovan ancestry. Segments of ambiguous 
ancestry produce a pattern resembling a mixture of Neanderthal and Denisovan ancestry, as 
expected (Fig. 3B-D, Fig. S 17, Fig. S 19, Fig. S 28, Fig. S 29). We caution, however, that our 
approach can artificially shorten haplotype block lengths (Supplementary Methods, Fig. S 14), 25 
especially for populations such as Papuans and Australians that were absent from the 1000 
Genomes Project panel (21) that was used for phasing (14). Nonetheless, Neanderthal haplotype 
block lengths in Oceania are not significantly shorter than in other populations (Fig. 3B), and 
incorrect phasing in archaic genomes does not appear to negatively affect results of admixture 
scans using simulated data (Supplementary text). 30 

As expected, the ARG classifies a smaller fraction (0.10-0.46%) of sub-Saharan African 
genomes (excluding Mozabite and Saharawi individuals) as resulting from Neanderthal 
admixture compared to non-African genomes (0.73-1.3%). The haplotype segments of African 
genomes that are grouped together in clades with Neanderthal haplotypes are distinctive from the 
haplotype segments found in the genomes of people with non-African ancestry (Fig. 3B, Fig. S 35 
17A). Namely, the African haplotypes are more dissimilar to the Neanderthal haplotypes with 
which they are grouped and tend to be shorter. These observations are qualitatively consistent 
with the model wherein genetic drift may group Neanderthal and African haplotypes, 
independent of a specific admixture event. It is also possible that these haplotypes are the result 
of true introgression events from unknown archaic hominins distantly related to the 40 
Neanderthal/Denisovan lineage (22). Another recent study using an inferred ARG also found 
mysterious, divergent haplotypes within sub-Saharan Africans that resembled unknown archaic 
introgression (7).  

Unexpectedly, however, two of the SGDP African populations, Masai and Somali, are 
intermediate between non-African and African genomes when measuring lengths of archaic 45 
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haplotype segments and TMRCA to admixers within them (Fig. 3B).  These Neanderthal 
haplotype blocks may have originated in ancient European migrants to eastern Africa (23) and 
spread beyond eastern Africa through gene flow, which is known to have affected even the basal 
Africa-MBK lineages (24).  

To test this hypothesis, we re-computed the mean length and TMRCA of admixer 5 
genomes within archaic-introgressed haplotype segments across all individuals, using only 
geographically restricted segments. We defined these as any archaic haplotype segments found 
only in genomes that were sampled within a 3,000 km radius of each other (using geodesic 
distance between sampling coordinates). This analysis showed Masai and Somali genomes to 
possess fewer geographically restricted Neanderthal haplotypes than most other African genomes 10 
(Fig. 3C), concordant with the idea that they originated in Eurasian migrants. 

Outside of Africa, our Neanderthal introgression maps largely agree with prior studies. 
We detect a mean TMRCA to Neanderthal of about 54 kya across all Neanderthal haplotype 
blocks in non-African populations, using published corrections for branch shortening in the 
archaic genomes (1). Remarkably, the mean TMRCA between genomic segments detected as 15 
Neanderthal admixture segments and the Neanderthal itself is consistent within several thousand 
years for all populations outside of Africa (Fig. 3B). We see slightly more Neanderthal ancestry 
in Central Asia, East Asia, and the Americas than in Europe, South Asia, and Southwest Asia 
(Fig. 3A). We also find more geographically restricted Neanderthal haplotype blocks in South 
Asia than elsewhere in mainland Eurasia, and the fewest geographically restricted Neanderthal 20 
haplotype blocks in the Americas (Fig. 3C, Fig. S 26).  

Humans in Central and East Asia are known to have elevated Neanderthal ancestry 
compared to other populations (25). However, there is debate over whether this elevated 
Neanderthal ancestry is due to smaller past population size relative to other groups and the 
resulting stronger effect of genetic drift (25) or to additional pulses of Neanderthal admixture 25 
specific to these populations (9, 26). Although we detect more Neanderthal ancestry in Central 
and East Asians than in West Eurasians, we detect a similar number of geographically restricted 
haplotype blocks (unique to a 3,000 km radius) in both groups (Fig. 3C). Further, Neanderthal 
haplotype blocks are shorter on average and therefore older in Central and East Asians than in 
West Eurasians (Fig. 3B). This implies that the excess Neanderthal ancestry in Central and East 30 
Asians mostly comprises broadly shared haplotype blocks from introgression common to all non-
Africans, consistent with the drift scenario. Aside from these broadly shared haplotype blocks,  
we also observe geographically restricted Neanderthal haplotype blocks in each non-African 
population in our panel. These population-specific haplotype blocks tend to be longer than the 
shared haplotype blocks and to have an older TMRCA to the Neanderthal genome than the 35 
broadly shared haplotype blocks (Fig. 3D). These observations suggest that the population-
specific haplotype blocks may be the result of more recent population-specific Neanderthal 
admixture, as has recently been suggested (26, 27, 28).    

 We next investigated population-specific patterns within Denisovan ancestry segments 
and found that such segments probably originate from admixture with multiple, divergent 40 
individuals that were distantly related to the Denisovan genome. This implies that the Denisovan 
genome is not a good model for the actual population that admixed with humans with 
“Denisovan” ancestry. Prior studies have suggested that Denisovan-like haplotype blocks in 
humans have two or three distinct sources with different levels of divergence to the Denisovan 
genome, with the best-matching haplotype blocks in East Asia (9, 10). We uncover the same 45 
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signal: geographically restricted Denisovan haplotype blocks have the lowest TMRCA to the 
Denisovan genome in East Asian genomes (mean TMRCA to Denisovan of 90.3 kya) (Fig. S 17, 
Fig. S 18).  

Unexpectedly, we detected many Neanderthal and Denisovan-like haplotype blocks that 
are unique to South Asia (Fig. 3C, Fig. S 17C, Fig. S36, Fig. S 26, Fig. S 27), and many 5 
Neanderthal haplotype blocks that are unique to Oceania (Fig. 3C, Fig. S35, Fig. S 26). These 
geographically restricted Neanderthal haplotype blocks are no more divergent to the Neanderthal 
genome than those specific to other populations (Fig. 3D), complicating any interpretation of 
these regions.  
Genomic regions free of admixture and ILS 10 

 Our ARG strategy allows us to bin the human genome into regions containing archaic 
admixture in at least some humans, regions of ILS, and regions free of both archaic admixture 
and ILS in all humans (hereafter archaic “deserts”). We find that approximately 7% of the human 
autosomal genome is human-unique and free of both admixture and ILS. Roughly 50% of the 
human genome contains regions where one or more humans has archaic ancestry obtained 15 
through admixture. If deserts are further restricted to regions that contain a high-frequency, 
human-specific derived allele, i.e., a substitution that can be assigned to the human lineage 
(hereafter “human-specific regions”), these comprise only 1.5% of the assayed genome (Fig. 
4A). Despite comprising very little of the genome, however, human-specific regions are 
significantly enriched for genes, exons, and regulatory element binding sites, while deserts are 20 
enriched for both genes and regulatory element binding sites (Table S3). In line with previous 
studies (29, 30), we find admixed regions to be depleted of genes. Regions of ILS are enriched 
for overlap with genes but significantly depleted of exons (Table S3).   
 To obtain an expectation of the extent of these different types of genomic regions, we ran 
a series of coalescent simulations with different amounts of archaic hominin admixture occurring 25 
in two pulses, as well as with no admixture (Supplementary Methods, Supplementary Text). Our 
observation in the real data – that only 7% of the autosomal genome is free of both archaic 
admixture and incomplete lineage sorting – is inconsistent with the results of these simulations, 
which suggest instead that this proportion should be larger (Supplementary Text, Fig. 4A, Fig. S 
38). Two, non-mutually exclusive explanation for this difference are (1) the existence of more, 30 
geographically limited, archaic hominin admixture events than the two we modeled 
(Supplementary Text), and (2) selection acting on archaic admixed segments. 

 The power to detect deserts, i.e. regions in which no human carries a haplotype shared 
with an archaic hominin by ILS or admixture, can be expected to be affected by the number of 
human genomes available for analysis. To be certain we have found the true extent of archaic 35 
deserts, we inferred ARGs over random subsamples of the human panel, computing the extent of 
deserts and human-specific regions for each (Fig. 4B). We were able to recover the full extent of 
deserts using a subsample of 100 haplotypes, less than half the size of the full panel, suggesting 
that the panel is sufficiently large.  
Timing of human-specific mutations 40 

 Given a clade of interest, mutations shared by all members of the clade must have arisen 
between that clade’s TMRCA and its parent clade’s TMRCA. Using this logic, and calibrating 
dates by using the chimpanzee genome as an outgroup and assuming 6.5 Mya human-chimp 
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divergence (31), we estimated ages of all human-specific mutations within deserts. Because the 
order of mutations along any given branch is unknowable, we took the midpoint of each branch, 
in years, to be the approximate age of each mutation. Combining these dates with a catalog of 
high-frequency, human-specific mutations as well as other annotation data (Supplementary 
Methods) allowed us to construct a picture of human-specific evolutionary changes through time.  5 
 We first examined whether there were one or multiple bursts of human-specific adaptive 
changes since divergence with Neanderthals and Denisovans. We compiled the ages of all fixed 
or nearly-fixed human-specific derived mutations within archaic hominin deserts that either were 
annotated as nonsynonymous substitutions (32) or fell within annotated regulatory element 
binding sites. The age distribution of these mutations is unimodal, with a peak around 300 kya 10 
(Fig. 5A).  

We then compared the ages of mutations affecting pairs of genes that interact, according 
to the STRING database (33), to see if any clustered around specific time points (Supplementary 
Methods). We find two distinct bursts of such mutations, one concentrated around 300-350 kya 
and another around 100-150 kya (Fig. 5B). We note that, because many of our human-specific 15 
genes are likely functionally important and purifying selection can decrease genetic diversity, 
some of the time estimates for these mutations may be biased downward. 

Estimating how and when the modern human lineage arose remains controversial. Dating 
the oldest population split within modern humans using genetic data has suggested times as 
recent as 200-100 kya (34, 35). Archaeological evidence paints a more complex and older story, 20 
however: a recent study reported human remains with many modern features but archaic cranial 
morphology dated to about 315 kya (36), suggesting that not all human-specific traits arose at the 
same time. Other studies have found that accumulation of derived morphological features in 
humans occurred in approximately three periods, whose boundaries correspond roughly to the 
timing of mutational bursts we found, along with the 600-700 kya human/archaic hominin 25 
TMRCA (37).  

Functional consequences of human-specific mutations 
Comparison of the human and extinct hominin genomes could reveal instances of 

positive selection that are undetectable via allele frequency or haplotype-based analyses within 
modern humans or through comparative genomics between humans and other primate genomes 30 
(38). The ARG framework is an attractive approach as it pinpoints truly human-specific genomic 
regions unaffected by either admixture of ILS.  

We performed a Gene Ontology (GO) (39) enrichment analysis on the human-specific 
haplotype regions that accounted for the lengths of candidate genes (Supplementary Methods)  
and found these regions to be heavily enriched for genes related to neuron growth, synapse 35 
assembly and function, and cell adhesion (Table S4). We note that this may occur because of 
positive selection in the ancestors of all humans, strong purifying selection that reduces the 
TMRCA within humans so that it excludes extinct hominins, or a combination of both. Further, 
this test does not suggest specific functional consequences of specific mutations.  

We ordered human-specific derived mutations within desert regions found in our ARG by 40 
the strength of evidence that they were targeted by selection. To this end, we first sought to limit 
analysis to potentially functionally relevant mutations, defined as mutations that either caused a 
nonsynonymous substitution relative to archaic hominin genomes or fell within annotated 
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binding sites for regulatory elements known to affect specific genes (Supplementary Methods). 
We developed a simple score for each mutation based on its inferred age, where available, and 
the length of the surrounding desert region (Fig. 5C). The rationale for this approach is that older 
human-specific substitutions should be in shorter haplotypes as they would have undergone more 
generations of recombination. Mutations in haplotype regions that run counter to this expectation 5 
are a priori more likely to have been affected by positive selection. This approach is similar to 
the recently-described extended lineage sorting (ELS) scan (40), which prioritized long genomic 
intervals where modern human and archaic hominin lineages are completely sorted. Unlike the 
ELS method, however, our method only considers alleles that are fixed in modern humans, Our 
model also does not use a hidden Markov model to smooth transitions between sorted and 10 
unsorted haplotypes.  

Several patterns emerge when considering genes with high-scoring human-specific 
mutations, and we highlight some of these key findings. Gene Ontology terms related to mRNA 
splicing, processing, and export are enriched in genes with high-scoring mutations (Table S 6). 
Of these, we find a regulatory mutation affecting one – LUC7L3 – that is somewhat tissue 15 
specific (tau, a measure of tissue specificity scaled from 0 to 1 = 0.713), most highly expressed 
in cerebellar tissue, and annotated to be involved in splice site selection. Its paralog LUC7L and 
the gene KHDC4, both of which also possess high-scoring (top 50th percentile) regulatory 
mutations, are involved in the same process. Additionally, the gene NOVA1, which harbors a 
nonsynonymous mutation in the top 95th percentile of our score distribution (Fig. 5C), is a 20 
neuronal splicing factor that regulates splicing of genes involved in synapse formation within the 
brain (41).  

Other types of genes, largely related to brain function and development, appear to be 
affected by high-scoring mutations. Many genes localized to the centrosome and mitotic spindle 
are involved in maintaining the polarity of dividing neuroblasts, and some mutations affecting 25 
such genes are thought to be critical for the development of the human neocortex (42). We find 
the term “asymmetric neuroblast division” to be enriched in high-scoring genes (Table S 6). 
Among individual genes, we find a high-scoring nonsynonymous mutation affecting the 
centrosomal protein RABL6, which is highly expressed in cerebellar tissue and overexpressed in 
cancer (43) and a high-scoring regulatory mutation affecting INCENP, a protein crucial for 30 
cytokinesis that localizes to the mitotic spindle and centromere (44). Axon pathfinding is another 
process suggested to have been targeted by human-specific changes; the gene PIEZO1 is 
involved in this process (45) and harbors a high-scoring nonsynonymous mutation. Additionally, 
the protocadherin PCDHGB7, which contains a nonsynonymous substitution within a long desert 
region but which we could not date, is a member of a gene family that generates neuronal cell 35 
surface identity and is thought to help guide growing neurites (46). In addition to these, we find a 
number of other mutations potentially affecting genes involved in histone acetylation, neural cell 
migration, and the clearing of toxic substances from the brain (Supplementary Text). 

Discussion 
We implemented a new ancestral recombination graph inference approach, SARGE, and 40 

used it to build the first genome-wide ARG of both human and archaic hominin genomes. 
Analysis of the topology of these ARG trees confirms prior findings about archaic hominin 
admixture, but with important new biological insights. For one, we find that a surprisingly low 
fraction – 1.5-7% – of the human genome is uniquely human, with the remainder comprising 
lineages shared with archaic hominins from either incomplete lineage sorting or admixture. This 45 
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small human-specific fraction of the genome is enriched for genes related to neural development 
and function. We also find evidence for multiple waves of human-specific mutations that 
occurred through time, suggesting that the modern human phenotype may have developed in 
stages. 

In addition to Neanderthal admixture into the ancestors of all modern non-African 5 
populations, we find evidence for other, population-specific episodes of admixture throughout 
Eurasia.  The TMRCA to these population-specific Neanderthal haplotype blocks is deeper than 
the TMRCA to the Neanderthal haplotype blocks shared by all non-African populations. This 
deeper TMRCA suggests that Neanderthals contributing population-specific ancestry were less 
closely related to published (Altai and Vindija) Neanderthal genomes than were the Neanderthals 10 
that contributed the broadly shared Neanderthal haplotype blocks. We also find that Neanderthal 
ancestry is present to a smaller extent in some African genomes due to back-migration, 
consistent with other recent reports (20).  

We note that our estimated TMRCA to Neanderthal within Neanderthal-introgressed 
segments in all non-African populations is recent – ~54 kya – and implies therefore that little 15 
genetic drift separates admixed humans from sequenced Neanderthals in these segments. This 
recent TMRCA suggests that the majority of Neanderthal ancestry in modern humans originated 
from Neanderthal gene flow into the ancestors of all non-Africans before populations diversified. 
It also suggests that at least one of the Neanderthal genomes used here is closely related to the 
Neanderthal(s) involved in this admixture event. The slightly elevated Neanderthal ancestry that 20 
others have described in Central and East Asian populations also appears to have originated in 
this first pulse, as Central and East Asian Neanderthal haplotypes are mostly shared with other, 
geographically distant populations. This observation favors the hypothesis that the increased 
Neanderthal ancestry in these populations relative to others is due to weaker selection against 
alleles that may be mildly deleterious (47), made possible because of smaller historical 25 
population sizes in this part of Eurasia, rather than to additional admixture events (25). 

Finally, the genomes of some Oceanian and other populations harbor genes from a 
population most closely related to the archaic Denisovan genome. Importantly, the available 
Denisovan genome is less genetically similar to the admixing genome than the available 
Neanderthal genomes are to the admixing Neanderthals. While we are hopeful that future work 30 
may uncover a DNA-bearing fossil better representing the population involved in the Denisovan 
admixture, our approach allows identification of admixed regions that can be used to better 
describe the genome of the archaic hominin group involved in the admixture event. Larger 
panels of Denisovan admixed genomes may one day provide a nearly complete Denisovan 
genome scavenged in parts from the genomes of admixed human individuals.  35 

The ARG also allows for prioritizing the selective importance of mutations specific to, 
and shared by, all modern humans by considering the TMRCAs of those mutations together with 
the lengths of their surrounding human-unique regions. Many of these selected human-specific 
mutations appear to affect genes involved in neural development and function, as well as RNA 
splicing. Using new tools for genome editing and brain organoid models for neural function, 40 
these mutations are obvious and important targets for experimental studies to determine what 
was selected in our human ancestors after divergence from our most closely related, extinct 
relatives. 
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Fig. 1 

A: schematic of data structure. Top: rectangles are “tree nodes” representing clades in trees. Each clade has member 
haplotypes (shown with letters A-G), and a start and end coordinate (blue numbers in brackets) determined by 5 
coordinates of SNP sites tagging the clade (yellow numbers in braces), along with a propagation distance parameter 
(100 in this example). Parent/child edges (vertical arrows) also have start and end coordinates determined by the 
nodes. Ovals are candidates for clades sharing an ancestral recombination event that can explain four gamete test 
failures; colored edges indicate potential paths between tree nodes through candidate nodes that could explain four 
gamete test failures (colors indicate types of paths). The candidate node with the most edges (here, AB) is eventually 10 
chosen as the most parsimonious branch movement, allowing for the inference of new nodes. The two trees at the 
bottom show the “solved” ancestral recombination event with the branch movement marked in red and all clades 
inferred without SNP data marked with yellow stars (haplotypes A and B share an ancestral recombination event; 
their ancestry is shared with haplotypes C,D, and G upstream of the recombination event and haplotype E 
downstream of it). The coordinates of the recombination event (blue numbers in brackets) are taken to be midway 15 
between the highest-coordinate upstream site (left side) and the lowest-coordinate downstream site (right side) 
involved in recombination. B: Accuracy of SARGE on simulated data (defined as percent of all clades correct 
according to the true ARG in the simulation), with increasing numbers of human-like haplotypes from an 
unstructured population. Error bars are one standard deviation across 5 replicates. C: Number of nodes per tree with 
increasing number of haplotypes in simulated data.  20 
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Fig. 2 

A: Times to most recent common ancestor for various groups, averaged across all trees in the ARG. Branch 
shortening values for archaic samples were incorporated into calculations; error bars show the maximum and 
minimum value given using the maximum and minimum branch shortening values reported in (1). The lower value 5 
for humans comes from removing archaic-admixed clades from trees. B: UPGMA trees computed using nucleotide 
diversity from SNP data (top and left) against similarity matrix from shared recombination events inferred by 
SARGE. Light yellow boxes (similar groups) are Native Americans and Papuans. C: Average similarity between 
Orcadian haplotypes in the SGDP panel and other European haplotypes, calculated based on the number of shared 
ancestral recombination events. The best matches are in England, Iceland, and Norway, as expected.  10 
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Fig. 3 

A: Genome-wide percent Neanderthal, Denisovan, and ambiguous (either Neanderthal or Denisovan) across SGDP 
populations, using the ARG and an estimator based on the D-statistic. D-statistic calculations considered only one 
archaic population at a time as introgressor and thus does not detect ambiguous ancestry and also might count some 5 
Denisovan ancestry as Neanderthal, and vice-versa. B: For individual phased human genome haplotypes (points), 
mean time to most recent common ancestor (TMRCA) with Neanderthal in Neanderthal haplotype blocks (y-axis) 
and mean Neanderthal haplotype block length (x-axis). TMRCA calculations assume a total of 6.5 my human-chimp 
divergence and branch shortening values from (1), with a mutation rate of 1 x 10-9 per site per year.. C: Overall 
number Neanderthal haplotype blocks versus geographically restricted (unique to a 3,000 km radius) Neanderthal 10 
haplotype blocks. D: Same as B, but limited to geographically restricted (unique to a 3,000 km radius) Neanderthal 
haplotype blocks. 
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Fig. 4 

A: Left panel: in the SGDP data set, fractions of the genome where any individual has archaic ancestry (Admixture), 
where any individual is incompletely sorted with archaic hominin lineages but where there is no archaic admixture 
(ILS), where there is no evidence of either admixture or ILS with archaic hominins (Deserts), and where there is a 5 
fixed derived allele private to and shared by all humans (Human-specific regions). Right panel: the same values 
from a simulated data set with single pulses of Neanderthal and Denisovan admixture, both with an admixture 
proportion (5%) that produced reasonable amounts of archaic ancestry per individual genome (Fig. S 38C) (right). 
B: For random subsamples of the SGDP data set, along with the full data set, fractions of the genome comprising 
deserts, deserts filtered for candidate archaic alleles using another data set, and human-specific regions are shown. 10 
The points on the far right (full data set) correspond to the desert and ILS bars in the left pane of A. 
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Fig. 5 

A: Ages of candidate human-specific functional mutations (nonsynonymous substitutions and 
mutations within regulatory element binding sites) inferred by SARGE within desert regions 
(free of ILS and admixture between archaic hominins and modern humans). B: For interacting 5 
pairs of genes in the STRING database (33) for which candidate human-specific functional 
mutations affect both genes, the ages of the two mutations are shown. C: For each candidate 
human-specific functional mutation, the length of the surrounding desert region (x-axis) and 
inferred mutation age (y-axis) are shown. Mutations for which SARGE did not infer a date 
(mutations within CpG sites or for which the ancestral allele was unknown) are shown in the 10 
bottom panel. Mutations were scored based on length of desert and age; genes with regulatory 
mutations in the top 99.5th percentile of this distribution, or nonsynonymous mutations in the top 
95th percentile, are shown, with nonsynonymous changes in bold.  
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Materials and Methods 
Data processing 
 

We downloaded data from the Simons Genome Diversity Project (SGDP) panel (14), 
along with two Neanderthal (1, 15) genomes and one Denisovan (16) genome. The Simons data 5 
were downloaded in pre-phased form from 
https://sharehost.hms.harvard.edu/genetics/reich_lab/sgdp/phased_data/; phasing was done using 
SHAPEIT2 (48). We note that the hosts of the data state that the genotypes they provide at sites 
lacking a homologous chimpanzee are unreliable; we discarded all such sites from analysis. 

Existing variant call sets for the ancient samples were either created using a genotype 10 
caller that did not account for ancient DNA damage (15, 16) or were subjected to a mapability 
filter that discarded many sites in the genome (1). Because our method is sensitive to genotype 
errors and seeks to make inferences at every possible site in the genome, we chose to re-call 
variants in these three genomes using the ancient DNA-aware genotype caller snpAD version 
0.3.0 (49). For all snpAD runs, we required a minimum base quality of 25 and treated different 15 
types of libraries separately, separating UDG-treated and non-UDG treated libraries in the case 
of the Vindija Neanderthal, and separating single-stranded and double-stranded library data for 
the Altai Neanderthal and Denisovan.  

Although the SGDP data were already phased, phasing posed a challenge for the 
Neanderthal and Denisovan data, for which there is no reference panel and for which DNA is 20 
fragmented into short segments. Fortunately, the comparatively low nucleotide diversity in these 
archaic hominins results in the presence of long runs of homozygosity, which are phased by 
definition. As an unbiased first step, we performed read-backed phasing using WhatsHap version 
0.16 (50) (with default parameters, plus –ignore-read-groups). Before filtering SNPs for quality 
and coverage, this phased 722,828 of 11,746,838 heterozygous sites (6.2%) in the Altai 25 
Neanderthal, 346,992 of 48,083,469 heterozygous sites (0.7%) in the Vindija Neanderthal, and 
514,575 of 33,951,346 heterozygous sites (1.5%) in the Denisovan. Many of the remaining, 
unconfidently phased heterozygous sites were excluded by other, later filtering steps, however: 
in our final, filtered data set, we were left with only 1,677,774 of 49,876,210 total SNPs (3.4%) 
for which at least one archaic hominin individual was heterozygous and not phased by read-30 
backed phasing. 

Following read-backed phasing, we merged archaic hominin VCF files (using bcftools 
merge from bcftools version 1.8 (51)) and then phased the merged files using Eagle2.4 (52), with 
the 1000 Genomes Project data (21) as a reference panel. We used Eagle2’s default parameters, 
but specified that it should not impute missing data (--noImpMissing) and that it should output 35 
alleles that it could not phase (--outputUnphased). After this, we randomly assigned both alleles 
at every unphased heterozygous site to one or the other haplotype. Although this decision, along 
with the use of a modern human reference panel, undoubtedly introduced haplotype switch 
errors, we deemed this preferable to excluding sites that were not confidently phased (which 
would require us to exclude data from all of the Simons Genome Diversity Project individuals at 40 
the same sites). To mitigate problems arising from this decision, we avoided performing any 
haplotype-specific analyses on the archaic hominin genomes. When creating maps of archaic 
hominin ancestry in modern humans, for example, we track only whether a modern human 
haplotype is in a clade with one or more archaic hominin haplotypes at each site, but not which 
specific archaic hominin haplotype is in the clade. After running the ARG, we computed the 45 
discordance between similarity scores per genome haplotype computed using SNP data and 
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computed using shared ancestral recombination events; this discordance should be largely driven 
by phasing switch errors, which can cause the inference of erroneous ancestral recombination 
events. We found that this discordance ranged from about 8x higher (in Denisovan) to 2-3x 
higher (in Neanderthals) in archaic hominins than in the most discordant human genomes (Table 
S 1). 5 

We merged the phased archaic hominin files with the SGDP data, using bcftools merge 
with the –missing-to-ref option, and then used bcftools norm to remove duplicate alleles (-d). To 
avoid mis-identifying all SGDP samples as homozygous reference at sites that were originally 
excluded from the SGDP data set, we limited the variant call set for each chromosome to the 
sites between the first and last site in the SGDP data on that chromosome. To mitigate the same 10 
problem, we also removed any site for which all non-reference alleles in our SGDP data were 
private to archaic hominins, but for which non-reference alleles were present in modern humans 
within the 1000 Genomes data set (21). We then discarded all sites for which any individual had 
a missing genotype or genotype quality below 25 or for which any archaic sample fell within the 
upper or lower tail of its genome-wide coverage distribution (extracted from the VCF file). The 15 
allowed coverage ranges (determined by eye) were 23-70X for the Altai Neanderthal, 10-43X for 
the Denisovan, and 10-47X for the Vindija33.19 Neanderthal.  

Finally, we polarized our variant call set into ancestral and derived alleles, using the 
chimpanzee reference genome panTro4 (53) (mapped to hg19 by the UCSC Genome Browser 
team (54) and downloaded in AXT format) as an ancestral sequence, discarding any variant that 20 
was an indel, had more than two alleles, or lacked a known chimpanzee homolog. We chose 
panTro4 as an ancestral sequence rather than a composite ancestral sequence as some other 
studies have done (e.g. (55)) because it allowed us to more easily estimate branch lengths, at the 
cost of discarding some sites. Additionally, because our approach assumes the infinite sites 
model of mutation, we excluded all CpG dinucleotide sites from analysis, as methylated 25 
cytosines in CpG dinucleotides are highly mutable and are thus more likely than other 
nucleotides to undergo repeated mutations (56).  
 
Ancestral recombination graph inference 
 30 

We developed an ancestral recombination graph inference program called SARGE 
(available at https://github.com/nkschaefer/sarge), which is optimized for speed and low memory 
usage, in addition to making minimal model assumptions. SARGE assumes parsimony and the 
infinite sites model and uses the four gamete test (11) as a central insight. SARGE avoids using 
statistical techniques to smooth branch lengths or infer clades, opting instead to describe only 35 
that which can be inferred directly from the input data. The result is a set of trees that contain 
polytomies and have relatively low-resolution branch lengths. 

Our algorithm centers on the observation that a single tree cannot contain two clades that 
share members unless one is a superset of the other. We assume that every shared derived allele 
in our data set defines a clade. It has been shown that, under this assumption, pairs of sites for 40 
which the inferred clades share members, but for which neither is a superset of the other, mark 
ancestral recombination events, or breakpoints between different trees. This is referred to as the 
“four haplotype test” or “four gamete test” (3, 11). One could use this technique to map ancestral 
recombination events, which mark boundaries between trees, articulate trees using the sites 
within these boundaries. In practice, however, this can only produce minimally articulated trees. 45 
In the case of organisms with low nucleotide diversity, this is because there will not often be 
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enough polymorphic sites between ancestral recombination breakpoints to observe many of the 
possible clades per tree. In the case of organisms with high nucleotide diversity, however, it will 
be possible to detect far more ancestral recombination events, thus making the size of “bins” 
between ancestral recombination breakpoints smaller and leading to the same problem.  

Our algorithm therefore seeks to infer all relevant information about each ancestral 5 
recombination event. An ancestral recombination event can be conceptualized as a branch 
movement (3), and so each consists of a set of haplotypes moving from one clade in an upstream 
tree into a new clade in a downstream tree. Given two clades that share members, but for which 
neither is a superset of the other (henceforth described as a failure of the four haplotype test), and 
assuming that this four haplotype test failure describes only one ancestral recombination event, 10 
there are then three possible branch movements than can explain it (Fig. S1). We refer to the 
clade in the upstream tree from which a subclade moved as α, the clade in the downstream tree 
into which a subclade moved as β, and the subclade that moved positions as γ. Four haplotype 
test failures are possible between the following sets of clades (with the clade in the upstream tree 
listed first and the clade in the downstream tree listed second): α/ α, α/ β, and β/ β. In the case of 15 
an upward branch movement, all four haplotype test failures are α/ α, and all four haplotype test 
failures are of the type β/ β in the case of downward branch movements. The members of the 
moving clade γ can then be inferred once the type of four haplotype test failure is known. 
Denoting the members of the upstream clade as U and the members of the downstream clade as 
D, γ contains U ∖ D in the α/ α case, U ∩ D in the α/ β case, or D ∖ U in the β/ β case. 20 
 
Inferring branch movements between two trees 
 

With this insight, we developed a simple algorithm to infer the most parsimonious 
ancestral recombination event (branch movement) between two trees, if the trees are known a 25 
priori and fully articulated. Consider a clade to be a set of haplotypes, and take U to be the set of 
nodes in the first (upstream) tree and D  to be the set of nodes in the second (downstream tree). 
Then, 

DECLARE set A1 ⟵ 	∅  
DECLARE set A2 ⟵ 	∅ 30 
DECLARE set B1 ⟵ 	∅ 
DECLARE set B2 ⟵ 	∅ 
DECLARE set Γ ⟵ ∅ 
DECLARE bool finished ⟵ FALSE 
DECLARE set F ⟵ ∅ 35 
DECLARE set G ⟵ ∅ 
DECLARE map C ⟵ {}  
FOR u in U: 
 FOR d in D: 
  IF | u ∩ d | > 0 and u ⊈ d and u ⊉ d: 40 
   F ⟵ F ∪ (u, d) 
   FOR g in [(u ∩ d), (u \ d), (d \ u)]: 
    IF g in G: 
     C[g]++ 
    ELSE: 45 
     G ⟵ G ∪ g 
     C[g] ⟵ 1 
DECLARE F’⟵ F 
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WHILE not finished: 
 DECLARE 𝛾 ⟵ argmax(C) 
   
 Γ ⟵ 	Γ∩	𝛾 
 G ⟵ ∅ 5 
C ⟵ {} 
 FOR (u, d) in F’: 
  IF 𝛾 in [(u ∩ d), (u \ d), (d \ u)]: 
   F’ ⟵	F’ \ (u, d) 
  ELSE: 10 
   (u,d) ⟵	(u \	𝛾, d \	𝛾) 
   FOR g in [(u ∩ d), (d \ u), (u \ d)]: 
    IF g in G: 
     C[g]++ 
    ELSE: 15 
     G ⟵ G ∪ g 
     C[g] ⟵ 1 
 IF | F’ | == 0: 
  finished ⟵ TRUE 
FOR 𝛾 in Γ: 20 
 FOR (u,d) in F: 
  IF 𝛾	 ⊂	u: 
   Α1 ⟵ 	A1	 ∪ u 
  ELSE: 
   B1 ⟵ 	B1	 ∪ u 25 
  IF 𝛾	 ⊂ d: 
   Β2	 ← 	Β2	 ∪ d 
  ELSE: 
   Α2 ⟵ 	A2	 ∪ d 
 30 
After this, the sets A1 and A2 contain clades that lost members by recombination, before 

and after the recombination event, respectively. Likewise, B1 and B2 contain clades that gained 
members by recombination, before and after the recombination event, respectively. Γ contains all 
clades defined by shared ancestral recombination events in the genomic interval between the two 
trees. This is also illustrated in Fig. S2.  35 

If the B1 and B2 sets are empty, then the recombination event was an upward movement 
(the clade that moved, defined by recombination, left a clade to join that clade’s parent). If the 
A1 and A2 sets are empty, then the recombination event was a downward movement (the clade 
that moved, defined by recombination, left a clade to join that clade’s child). Otherwise, the 
recombination event was a lateral movement (the clade that was left and the clade that was 40 
joined do not share members). 

At the step where a “moving clade” (𝛾) representing a single ancestral recombination 
event is chosen, it is possible for ties (candidate moving clades that explain an equal number of 
four haplotype test failures) to exist. This means that there were multiple, equivalent ways to 
describe the ancestral recombination event.  45 
 
General case algorithm 
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Extrapolating this approach to ARG inference poses several problems. First, it cannot be 
known a priori which clades belong together in trees. Grouping clades together into upstream 
and downstream sets is therefore a difficult problem that we solve by exploring many possible 
groupings and bound using heuristic assumptions (Supplemental text). Second, many of the 
clades that could inform ancestral recombination events will be unobserved, if they are not 5 
tagged by mutations at sites in the data set.  

Knowing this, we infer ancestral recombination events using the available mutations and 
then use these inferred ancestral recombination events to infer clades that they imply (Fig. S5B). 
Namely, we assume that γ clades should exist as clades in the ARG, whether or not they are 
tagged by mutations, because the haplotypes in γ share at least one ancestral recombination 10 
event. All subclades within the upstream α clade, with the γ clade haplotypes removed, must also 
exist as clades in the downstream tree. Likewise, all subclades within the downstream β clade, 
with the addition of γ haplotypes, must also exist in the upstream tree. Similarly, all subclades 
within the downstream α clade must exist in the upstream tree, with γ clade haplotypes added, 
and all subclades within the upstream β clade must exist in the downstream tree, with γ clade 15 
haplotypes added (Fig. 1A, bottom panel). Finally, in the case of an upward or downward branch 
movement (inferred by the absence of any β clades or α clades in the four haplotype test failures, 
respectively), the union of all clades failing the four haplotype test should exist as a clade in the 
ARG  

The other key component of our algorithm is a “propagation distance” parameter, p. This  20 
parameter describes how far upstream and downstream (in physical distance) each site’s clade is 
allowed to communicate its existence. Because the all-versus-all clade comparisons required by 
our algorithm would become very computationally expensive without knowing a priori which 
clades belong to adjacent trees, this parameter helps bound the number of comparisons and thus 
the execution time. It also allows us to avoid storing an entire ARG over a chromosome in 25 
memory at once. As we read new sites into memory, we can identify nodes sufficiently far away 
upstream to be unaffected by the new data. We can then “solve” ancestral recombination events 
for those upstream nodes, and other nodes even further upstream, whose ranges leave them 
unaffected by the newly-solved recombination events, can be written to disk and erased. Because 
errors and violations of the infinite sites model (such as back-mutations) invariably exist, this 30 
parameter has the extra benefit of limiting how far along a chromosome erroneous data can 
propagate (although a cascade of incorrect clades inferred by recombination could hypothetically 
propagate errors outside of the range of the original, erroneous node). 

We create a graph containing two types of nodes: “tree nodes,” which are part of the 
ARG, and “recombination nodes,” which represent candidate γ clades for unsolved ancestral 35 
recombination events. Each tree node represents a given clade over a contiguous genomic span 
and has a start and end coordinate, a set of positions of SNPs that tag it, and a set of other sites at 
which it was inferred to exist as part of a recombination event. Tree nodes have parent/child 
edges, also with start and end coordinates, and there is a single root node that spans the entire 
chromosome. Node range coordinates are initially set to the furthest upstream (lowest 40 
coordinate) site owned by the node minus the propagation distance, up to the furthest 
downstream (highest coordinate) site owned by the node, plus the propagation distance. When a 
node encounters another node with which it fails the four haplotype test, however, its coordinates 
are adjusted – either its end coordinate is set to the furthest-downstream site at which it is known 
to exist, or its start coordinate is set to the furthest-upstream site at which it is known to exist. 45 
Nodes also can have recombination edges, which point to nodes with which they fail the four 
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haplotype test, with paths through recombination nodes (Fig. 1A). These edges are analogous to 
the edges described in the two-trees algorithm (Fig. S2). When a recombination event is solved, 
all nodes implied by the recombination event are created as tree nodes in the ARG (Fig. 1A), 
with “solved” recombination edges describing the inferred recombination event, to avoid 
creating redundant recombination events in the future. Furthermore, when no possible γ node 5 
explaining a four haplotype test failure can exist (i.e. all three possible clades fail the four 
haplotype test with existing ARG nodes within the ranges over which they must exist), we add 
“unsolvable” recombination edges connecting the two nodes that fail the four haplotype test. 
These edges allow us to adjust start and end coordinates of the nodes without inferring the 
branch movement that separates them. 10 

The propagation distance parameter p allows us to bin the ARG into regions 2*p bases 
wide, each of which undergoes a different process simultaneously. Because 2*p is the maximum 
number of bases within two sites can affect each other in the ARG, any node tied to a site more 
than 2*p bases upstream of the most recently-observed site is already informed by all available 
input data. This means we can solve ancestral recombination events affecting nodes more than 15 
2*p upstream of the most recently-observed sites. Likewise, nodes far enough upstream to be 
unaffected by these ancestral recombination events being solved can be written to disk, and 
nodes far enough upstream as to not affect those being written to disk can be erased from 
memory. For a cartoon of the different ARG operations allowed in different genomic bins, see 
Fig. S 3.  20 

We determine branch lengths when writing trees. Since each tree is defined only at a 
single site, we determine a node’s branch length by counting the number of mutations it owns 
within the range defined by the edge to its parent at the current site. If this parent/child edge 
expands beyond the range [𝑠 − 𝑝, 𝑠 + 𝑝], where s is the current site and p is the propagation 
distance, we limit to mutations found only within that range. In the case of the root node, because 25 
this node consists of all haplotypes in the data set and cannot be affected by ancestral 
recombination events, the branch length will always equal the total number of fixed differences 
between haplotypes in the data set and the outgroup, divided by two times the propagation 
distance. We then divide the number of mutations by the number of bases in the range over 
which they were collected. In the case where a parent/child edge is valid only at a single site, this 30 
will lead to the extremely large branch length of 1. To help compensate for this, when we load 
trees from an output file, we scale each branch length by dividing it by the total height of the 
tree, both above and below that branch length (Fig. S 4). This puts all branch lengths on a scale 
between 0 and 1. When all fixed differences between the ancestral sequence and the reference 
genome are included as sites that can contribute to the root branch length in the ARG (as in this 35 
study), these branch lengths can then be multiplied by two times the divergence time between the 
ancestral and reference genomes to get approximate (low resolution) branch lengths. We note 
that many clades in our ARG have branch lengths of zero, meaning that no mutations were 
observed on those lineages. We also note that the number of times a given node serves as a γ 
clade in an ancestral recombination event also provides a measure of age. Although we store 40 
these values, we do not use them when computing branch lengths in this study, since it is 
difficult to reconcile time measured using two different types of units (mutations and shared 
recombination events). Thus, clades inferred solely from ancestral recombination events will 
have branch lengths of zero. 
 45 
QC Simulations 



Submitted Manuscript: Confidential 

29 
 

  
For the sake of assessing our and other ARG inference programs, we simulated sampling 

an increasing number of haplotypes from a single panmictic population with no history of growth 
or bottlenecks (QC simulations).  
 Our QC simulations were done using msprime (57). We chose a recombination rate of 1 5 
centimorgan per megabase and a mutation rate of 1*10-9 per year with a 25-year generation time, 
giving a per-generation mutation rate of 2.5*10-8. Additionally, we chose a heterozygosity value 
of 10.1 per 10,000 bases, comparable to the rate in modern sub-Saharan Africans (15). We 
simulated 1 megabase of sequence per run, running 5 replicates each of simulations with 50, 100, 
200, 300, 400, 500, 600, 700, 800, 900, 1000, 2000, 3000, 4000, and 5000 haplotypes. The 10 
complete command used was mspms X 1 -t 1010.0 -r 404.0 1000000 --
precision 6 –T, where X is the number of haplotypes. Whenever there were duplicate base 
positions in a simulated data set, we ignored the allele data at all but the first occurrence of each 
position. We also repeated these simulations with a lower mutation rate of 1*10-8 per site per 
generation, to see how this affected SARGE’s ability to correctly infer clades. The mean 15 
sensitivity and specificity given in the main text are computed on both of these sets of 
simulations, with numbers of haplotypes ranging from 50 to 500.  

We then ran SARGE on each data set with a propagation distance of 25,000 bases, along 
with tsinfer (8) (converting its output to a sequence of trees linked to specific variable sites), 
Relate (7) with the mutation rate set to that known from the simulation and with the haploid 20 
effective population size set to two times the simulation’s effective population size, and Rent+ 
(5) with the –t option to infer branch lengths. For each inferred tree, we loaded the tree output by 
msprime for the same variable site and defined the inferred ARG’s specificity as the fraction of 
all clades in all inferred trees that existed as clades in the msprime tree at the same sites. We also 
computed the sensitivity, defined as the fraction of all clades in true trees that existed as clades in 25 
the inferred ARGs. For the two methods, Relate and Rent+, that produced fully articulated trees, 
these two values were the same. Results of QC simulations are shown in Fig. S5, Fig. S6, and 
Fig. S 7. 
 
Demographic simulations 30 

Several of our other analyses and tests required simulated data more similar to our real data 
(a global panel of human genomes, plus one eastern Neanderthal, one western Neanderthal, and 
one Denisovan genome). We therefore created a second type of simulated data set using a 
popular human demographic model. 

We used scrm (58) for these simulations because it allows users to sample haplotypes from 35 
time points in the past, mimicking the branch shortening due to “missing evolution” when 
analyzing ancient genomes. We combined a popular, three population demographic model for 
modern humans (59) with populations meant to approximate the Altai (15) and Vindija (1) 
Neanderthals and the Altai Denisovan (16). We again assumed a 1 centimorgan per megabase 
recombination rate and a 1*10-9 per year mutation rate, along with a 25-year generation time, 40 
giving a per-generation mutation rate of 2.5*10-8. In addition to the demographic model 
parameters listed in (59), we modeled a Neanderthal/human split time of 575kya (15), an 
Altai/Vindija split time of 137.5kya, a Neanderthal/Denisovan split of 420kya, and modeled the 
heterozygosity in all Neanderthals as 1.6*10-4 and in Denisovans as 1.8*10-5(1). We chose 
100kya as the divergence time between the Vindija and introgressing Neanderthal, no split 45 
between the introgressing and sampled Denisovan populations, and we modeled 
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human/Neanderthal admixture as a single pulse 50kya, in the population ancestral to both 
Europeans and Asians, and human/Denisovan admixture as a single pulse 20kya, in the Asian 
population. We assigned 57.kya of missing evolution to the Vindija haplotypes, 123kya of 
missing evolution to the Altai haplotypes, and 80kya of missing evolution to the Denisovan 
haplotypes (1). Our simulated chromosome was 25 megabases long, and we sampled 2 5 
haplotypes from each Neanderthal and Denisovan (but not the introgressing Neanderthal), as 
well as 20 haplotypes from each modern human population (African, Asian, and European) 
population. For the sake of simplicity ascertaining archaic introgressed haplotypes, we modeled 
no archaic introgression into Africans and set the gene flow parameters between Africans and 
other populations to zero.  10 

We then ran five different simulations, varying the human/archaic admixture proportion in 
each (the admixture proportion was the same for both the Neanderthal and Densisovan admixture 
events). The admixture proportions we used were 5%, 10%, 25%, 50%, and 75%.  The full 
command for each run was scrm 66 1 -t 17253.7128713 -r 7342.00547714 
25000000 -T -I 7 20 20 20 0 0 0 0 -eI 0.0772268560362 0 0 0 0 0 15 
2 0 -eI 0.167529158597 0 0 0 2 0 0 0 -eI 0.108962054372 0 0 0 0 
0 0 2 -n 1 1.68 -n 2 3.74 -n 3 7.29 -n 4 0.231834158238 -n 5 
0.231834158238 -n 6 0.231834158238 -n 7 0.0260813428018 -eg 0 2 
116.010723 -eg 0 3 160.246047 -m 2 3 2.797460 -m 3 2 2.797460 -
ej 0.028985 3 2 -en 0.028985 2 0.287184 -em 0.028985 1 2 20 
7.293140 -em 0.028985 2 1 7.293140 -es 0.027240513593 3 [1-x] -
ej 0.027240513593 8 7 -es 0.0681012839825 2 [1-x] -ej 
0.0681012839825 9 5 -ej 0.136202567965 6 5 -ej 0.197963 2 1 -en 
0.303501 1 1 -ej 0.187278530952 5 4 -ej 0.572050785453 7 4 -ej 
0.783164765799 4 1, where [1-x] means one minus the admixture proportion in a given 25 
run. We again discarded all but the first instance of every unique base position in the output file, 
and we converted the “true” trees into SARGE format for running analyses. 
 We used the simulation with what we deemed was the most realistic admixture 
proportion (0.05) for a variety of other QC assessments of SARGE, including testing the 
propagation distance parameter, comparing sensitivity and specificity to Relate (7) and tsinfer 30 
(8), checking accuracy of inferred branch lengths, and ascertaining whether incorrectly inferred 
clades were inferred to exist near sites where they could be correctly inferred to exist. We also 
ran one more iteration of this simulation, but with 150 haplotypes sampled per human 
population, for a total of 456 simulated genomes. This simulation was used to test the accuracy 
of inferred branch lengths, in addition to the simulation with 50 modern human haplotypes. For 35 
more information see Supplementary Text. 
 
Comparing tree articulation to mutation/recombination rate ratio 
 
 Tree articulation refers to the extent to which all branches in a tree are defined. A fully 40 
articulated tree containing n lineages has n-1 total nodes, whereas a completely un-articulated 
tree would consist of a single large polytomy. Because SARGE leaves polytomies in output 
trees, we sought to determine whether polytomies (which manifest as a lower amount of 
articulation) tend to occur in regions with a low mutation to recombination rate ratio.  

We binned the genome into 50kb blocks and counted the mean number of nodes per tree, 45 
a measure of articulation, across all trees within each window. We then measured the mutation 
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rate by sampling the branch length of the root node of each ARG tree (this is the number of 
mutations separating all hominin lineages from the chimpanzee genome, collected over 
2*(propagation distance) bases and reported in units of mutations per base). Assuming 6.5 Mya 
for the hominin-chimpanzee split and a 25-year generation time, we transformed numbers of 
mutations into a per-site, per-generation mutation rate by dividing by 13,000,000 divided by 25 5 
and taking means across windows. Finally, we took the mean recombination rate in cM/Mb from 
the sex-averaged Oxford map contained within Eagle2 (52) and converted it to Morgans per 
base, to get a value in the same units.  
 
Comparing number of ancestral recombination events to recombination rate 10 
 
 We binned the genome into 50kb blocks and counted the number of ancestral 
recombination events occurring completely within each bin. We then computed the mean 
recombination rate in cM/Mb in the same windows, using the sex-averaged Oxford map 
contained in Eagle2 (52). 15 
 
Admixture scans 
 
 The central challenge of creating admixture maps is to disentangle incomplete lineage 
sorting (ILS) from admixture. Both processes create local trees in the genome that group 20 
candidate admixed haplotypes with admixer haplotypes. Clades resulting from ILS are older than 
those resulting from admixture, however; they should therefore persist for shorter stretches along 
the genome and have older times to most recent common ancestor (TMRCAs). Clades resulting 
from ILS are separable from those resulting from admixture using these two metrics, although 
the low resolution of branch lengths in the inferred ARG makes this problem more difficult than 25 
when true branch lengths are known (Fig. S 12). Because of this, we established several filtering 
steps to distinguish ILS from admixed clades in our data set.   

To map Neanderthal and Denisovan ancestry, we first scanned through ARG output for 
all clades that grouped some modern human haplotypes with one or more admixer haplotypes 
(Neanderthal and/or Denisovan) to the exclusion of some other modern human haplotypes. Since 30 
SARGE produces many polytomies, this carries the risk of observing a parent of one or more 
true admixed clades, but not the true admixed clade. This would manifest as a clade containing 
many modern humans, in addition to one or more archaic hominins, and would falsely be 
interpreted as a very high-frequency archaic-introgressed haplotype. To mitigate this problem, 
we defined the Mbuti, Biaka, and Khomani-San genomes as an outgroup population (Africa-35 
MBK) and discarded any clade that contained more than 10% of the outgroup members. We set 
this 10% threshold, rather than excluding all clades containing outgroup members, because of 
later filtering steps also designed to eliminate ILS clades. Next, we discarded any clades that 
persisted for less than 5kb along the chromosome, as well as one extremely long haplotype that 
fell within a centromere, as annotated by the UCSC Genome Browser (54). For each clade that 40 
passed our selection criteria, we visited each non-archaic hominin member and determined 
whether that member possessed candidate Neanderthal, Denisovan, or undetermined ancestry by 
assessing whether it was closer (by tree topology, ignoring branch lengths) to a Neanderthal or 
Denisovan haplotype, or equidistant to both.  

We then computed the mean time to most recent common ancestor (TMRCA) between 45 
each human member and the candidate archaic introgressor across each haplotype. SARGE 
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reports each branch length as a percent of the total height of the tree both above and below that 
branch (Fig. S 4), which in our data set includes all fixed differences between the genomes in our 
data set and the reference chimpanzee genome. The units in which these TMRCAs are expressed 
are therefore a percent of two times the total divergence time between humans and chimpanzees. 
These values were then corrected for branch shortening, according to the mean branch shortening 5 
or “missing evolution” values published in a prior study (1), converted to branch units by 
dividing each number by 13 million years. To correct for branch shortening, we added the 
amount of missing evolution reported for a given archaic genome (in the same units as ARG 
branch lengths) to the archaic genome’s branch when computing TMRCAs. In other words, if the 
TMRCA between a modern and archaic haplotype is x and the branch shortening value for the 10 
archaic haplotype is y, then the corrected TMRCA between them is (2x + y)/2. We note that the 
values published in (1) were produced assuming a 13 my human/chimpanzee split time and a 
mutation rate of 0.5 x 10-9 per base per year. Our TMRCA estimates produced assuming a 6.5 
my human/chimp divergence time were in line with prior estimates, however (Fig. 2A). We 
therefore chose to use a 6.5 Mya human/chimp divergence time to scale all of our branch lengths. 15 
Using this value along with the branch shortening values in (1) is equivalent to assuming a 1 x 
10-9 mutation rate per base per year. We are aware that this value is controversial, and that 
mutation rates estimated using human pedigrees and the fossil record are sometimes in conflict 
(15) (Supplementary Text). 
 Our ascertainment strategy allowed some candidate admixed haplotypes to intersect. If a 20 
human haplotype was inferred to have Neanderthal ancestry at one site and Denisovan ancestry 
at the next variable site, for instance, it is likely that the two haplotypes actually originated from 
the same source. Because of this possibility, we merged all such haplotypes together, averaging 
the TMRCA to admixer in each, weighting by the relative lengths of the two haplotypes being 
merged. We then repeated this process until each haplotype was unable to merge with any others. 25 
Because each such haplotype resulted from the combination of haplotypes with different types of 
ancestry, all merged haplotypes were labeled as ambiguous, rather than Neanderthal or 
Densiovan, origin. 

At this stage, the set of haplotypes likely still contained haplotypes resulting from 
incomplete lineage sorting rather than admixture. To help mitigate this, we assigned each a score 30 
designed to be high in cases of admixture and low in cases of ILS. We chose a date that predates 
the human/archaic hominin separation – 700 kya – and computed the p-value of each haplotype 
having originated at that time or earlier according to its length and according to its TMRCA to 
the candidate admixer. For this, we assumed both TMRCAs to admixer and haplotype lengths to 
be exponentially distributed, and we assumed neutral evolution, a standard recombination rate of 35 
1 cM/Mb, a 25-year generation time, and 6.5 Mya human-chimp divergence. We assigned each 
haplotype a probability of resulting from ILS, based on its TMRCA: if the TMRCA (as a percent 

of the height of the tree) is y, then  𝑝!"#$% = 1 −	𝑒&'
!"#$
%&&&&&((*). We then assigned each a 

probability of resulting from ILS, based on its length: if x is the length of a haplotype, in bases, 
then 𝑝,-. =	𝑒

&%&&&&&!#'∗)*/ . We then computed a score, using a pseudocount of 0.001 to avoid taking 40 
the logarithm of 0:	𝑆012 =	−(log34(𝑝!"#$% + 0.001) +	 log34(𝑝,-. + 0.001)).  

Because our prior filtering strategies already removed many ILS haplotypes, we sought to 
find the smallest threshold for 𝑆012that gave reasonable results. We therefore tested 𝑆012 
cutoffs at every fifth percentile of the distribution across all haplotypes, and computed the 
coefficient of variation (standard deviation divided by mean) for TMRCAs to admixer in each 45 
class of archaic-introgressed haplotypes (Neanderthal, Denisovan, and ambiguous) within each 
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human population defined within the Simons Genome Diversity Project (14). Because we expect 
members of these populations to have somewhat shared histories, we expected the coefficient of 
variation to the admixer to decrease and level out as an appropriate cutoff was reached, reflecting 
the removal of highly variable segments with old TMRCAs (ILS). We found such a cutoff at the 
30th percentile of the score distribution and excluded haplotypes with scores below this threshold 5 
(Fig. S16). Because our resulting archaic introgression maps still underestimated archaic 
ancestry per genome relative to the D-statistic (Fig. 3A) and because our real data set 
overestimated the extent of ILS relative to every demographic simulation we ran and 
underestimated admixture relative to the size of inferred deserts (Fig. 4), we believe that this 
cutoff was reasonable, if not overly conservative. 10 

We also quantified uncertainty in our percent admixture estimates using the weighted 
block jackknife technique (31) with 10 megabase blocks. We generated windows using 
BEDTools, omitted each from our admixture maps in turn, and re-calculated the percent of each 
type of archaic ancestry in each SGDP genome from our admixture maps. We then used this 
distribution of archaic ancestry estimates for each individual to obtain a 95% confidence interval. 15 
Mean percent archaic ancestry, along with the minimum lower and maximum upper bound of the 
95% confidence interval for each type of ancestry across all genomes in each population are 
given in Table S2. 

Because our method relies on phased data, improper phasing could pose problems for this 
by breaking haplotypes where they should not be broken. Improper phasing is most likely to be a 20 
problem in the archaic genomes, for which reads were short and there is no phasing reference 
panel, so many sites were phased randomly, after phasing the others using a (likely inadequate) 
modern human reference panel (see Data Processing section above). We worked around this 
issue by only conducting admixture scans on modern human genomes – those more likely to be 
properly phased – and tracking only whether each candidate admixed clade contained 25 
Neanderthal or Denisovan haplotypes, without regard to which specific Neanderthal or 
Denisovan haplotypes they contained. In other words, a clade containing one modern human 
genome haplotype and one Neanderthal haplotype would still be considered the same clade 
(potentially from the same admixture event) if at the next site the Neanderthal haplotype 
contained within was replaced by another. To ensure that this did not negatively affect our 30 
results, we repeated some admixture scans on simulated data after intentionally introducing 
phasing errors into the archaic genomes; we did not see evidence that this negatively affected the 
results (Supplementary Text). 
 
Analysis of introgressed haplotypes 35 
  
 We obtained geographic coordinates for each human genome from the Simons Genome 
Diversity Project data (14). For each type of archaic hominin ancestry, we then found segments 
of consensus across all our haplotypes using BEDTools multiinter (60). In addition to computing 
the frequency of each introgressed haplotype across our human genome panel (“global 40 
frequency”) this way, we also used this data set to obtain the set of geographic coordinates for 
each human sharing each archaic hominin haplotype. Using geopy 
(https://github.com/geopy/geopy), we then computed the geodesic distance in kilometers 
between each pair of humans and selected the maximum such value as the geographic radius 
covered by the haplotype. To obtain geographically restricted haplotypes, we then discarded any 45 
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archaic hominin haplotypes for which any part intersected a consensus haplotype with a 
geographic radius of 3,000 km or more (using bedtools subtract –A).  
 
Creating the four-part map (admixture, deserts, human-specific regions, and ILS) 
 Once our individual admixed haplotypes were compiled (see Admixture Scans section), 5 
we merged all admixed haplotypes passing filters (using BEDTools merge (60)) to create a full 
set of all regions containing admixture. 
 Next, we defined a desert region as a region lacking any clade that fails the four gamete 
test with a clade comprising all modern human genomes in our data set. We required desert 
regions to begin and end with such trees. The possibility exists, however, that alleles indicative 10 
of archaic hominin admixture and/or ILS could exist within these regions, but at sites excluded 
from the Simons Genome Diversity Project data set. To help mitigate this possibility, we 
downloaded a de-identified set of genome-wide variant calls from up to tens of thousands of 
human genomes from the gnomAD database (61). We then polarized gnomAD variants into 
ancestral and derived alleles using the chimpanzee genome panTro4 (53) and compiled a catalog 15 
of non-fixed derived alleles in modern humans, defined as non-chimpanzee alleles existing at 
greater than 1% and less than 99% frequency in the gnomAD database. We chose these cutoffs 
because the large size of the database introduces the possibility of back-mutations and false 
variant calls due to sequencing error. We then identified all such variants matching any archaic 
hominin variants in our call set, at positions passing our quality filters. These variants were 20 
treated as indicators of archaic hominin admixture and/or ILS.  
 To filter our desert regions according to this set of admixture and/or ILS-indicative 
alleles, we first compiled the set of all such alleles falling within each desert region, using 
BEDTools intersect. We then split our desert regions containing these alleles into two new 
regions, one with the original start coordinate and an end coordinate halfway between the start 25 
coordinate and the first admixture and/or ILS-indicative allele, by genome coordinate (rounded 
down). The second region was defined with a start coordinate halfway between the last such 
admixture and/or ILS-indicative allele (rounded up) and the original end coordinate. All desert 
regions not containing any such alleles were kept unchanged. 
 To find human-specific regions, we downloaded a published catalog of human-specific 30 
derived mutations, based on an aggregate of multiple mutation databases (32). We filtered this 
catalog to variants where the archaic hominin frequency was 0 and the human-specific frequency 
was above 99%; we chose this cutoff rather than 100% due to the large numbers of samples in 
databases introducing the possibility for back-mutations and false variant calls due to sequencing 
errors. We found that, of 118,519 sites passing these criteria, 51,162 had matching archaic 35 
variants in our call set and were therefore discarded. This is likely due to the fact that the catalog 
was generated using mapability-masked variant calls for the archaic hominins, while our archaic 
allele call set spanned the entire genome. Another 46,206 variants from the catalog were missing 
from our data set, either because they were missing from the Simons Genome Diversity Project 
data set, lacked a chimpanzee allele, were not biallelic, failed one or more quality filters, or fell 40 
within a CpG site.   
 Ultimately, 17,888 alleles from the catalog fell within our filtered set of deserts, resulting 
in 10,503 “human-specific” desert regions containing these alleles. 
 With deserts, human-specific, and admixed regions thus defined, we created a BED file 
of ILS regions by subtracting these other regions from the autosomal genome (using BEDTools 45 
complement (60)).  
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 We tested our four types of genomic regions for enrichment or depletion of intersection 
with various genomic features using the GenometriCorr R package (62). We used the Gencode 
gene annotation (63), using Ensembl version 94 on human genome version GRCh38 lifted over 
to GRCh37 coordinates, limited to protein coding genes, for locations of both genes and exons. 
For both gene and exon annotations, we merged together the locations of all annotations on the 5 
autosomes. Our regulatory element binding sites are from the filtered “double-elite” set within 
the GeneHancer database (64), downloaded from the UCSC Genome Browser (“interactions” 
table on hg19) (54), which we also limited to autosomes and merged. Our overlap p-values were 
computed using the projection test in GenometriCorr, and our distance p-values are from the 
Kolmogorov-Smirnov distance correlation test in the same package. For each test, we limited 10 
background regions to 50kb genomic windows that contained polymorphic sites in the Simons 
Genome Diversity Project data. 
  
Comparing desert sizes to coalescent simulations 

For the sake of having a model against which to compare the extent of genomic regions 15 
we found to contain admixture, ILS, the absence of both (archaic hominin deserts), and the 
absence of both plus a fixed derived allele specific to modern humans (human-specific regions), 
we ran a coalescent simulation based on a simple three-population demographic model for 
modern humans (59), with the addition of two Neanderthals from different populations, both 
differently related to the population that admixed with modern humans (1, 15) and one 20 
Densiovan (see “Demographic simulations section” above).  
 After obtaining our set of deserts and human-specific regions using real data, we scanned 
our inferred ARG on data from each demographic simulation for deserts, human-specific 
regions, and admixture. Due to the small size of the simulated chromosome, the small number of 
simulated samples, the presence of an unadmixed outgroup unlike in real data, we did not use the 25 
same technique as in real data to detect admixture. Instead, we first scanned for all clades that 
grouped one or more modern human haplotypes with archaic hominin haplotypes to the 
exclusion of other modern human haplotypes, discarding any haplotype containing African 
genomes. Since we had prior knowledge of the admixture times in our simulations, we then 
required all admixed haplotypes to have a TMRCA to the admixer of no greater than four times 30 
the time of introgression (80 kya for Denisovan ancestry, or 200 kya for Neanderthal or 
ambiguous ancestry). This worked well, producing admixture proportions in agreement with 
expectation (Fig. 4C) and comparable to the D-statistic, owing to the presence of an unadmixed 
outgroup, as well as the uniform mutation and recombination rates producing more uniform 
haplotype block lengths. We then computed deserts the same way as in real data, but without the 35 
need to filter out regions missing from our input data. We then identified human-specific regions 
by searching for deserts that contained a derived allele specific to, and fixed in, our simulated 
human genomes. With maps of admixture, deserts, and human-specific regions produced this 
way, we then determined ILS regions by subtracting these regions from the rest of the genome 
(using BEDTools complement (60)).   40 
 For each simulation, we plotted the different metrics of interest (individual percent 
archaic ancestry and extent of regions of admixture, desert regions, and human-specific regions 
across all genomes) and modeled the space between points as straight lines. We then compared 
the same metrics computed using real data and found the intersections between our real data 
values and the lines between simulated data points; the x-value of each point of intersection was 45 
taken to be the inferred admixture proportion using each statistic (Fig. 4).  
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Haplotype block lengths in SARGE-inferred versus true ARGs 
 Using the results of our coalescent simulations (see Comparing desert sizes to coalescent 
simulations above), we sought to assess whether haplotype block lengths inferred by SARGE 5 
were reliable compared to true haplotype block lengths given by the ARG output by the 
simulation software. Haplotype block lengths manifest in the ARG as the number of bases for 
which the clade sharing the haplotype persists along the chromosome. We therefore randomly 
sampled the distance of persistence of 100,000 clades from the simulation’s true ARG and that 
inferred by running SARGE with a 25kb propagation distance. Although the median haplotype 10 
block length in the inferred ARG is close to the median haplotype block length in the true ARG, 
the mean true haplotype block length is 2.46 times the mean inferred haplotype block length 
(Fig. S 14). This suggests that SARGE artificially breaks some haplotypes, possibly due to 
mistakes made inferring ancestral recombination events. 
 We note that this problem is almost certainly exacerbated in real data, for several reasons. 15 
For one, the clustering of SNPs and the existence recombination hotspots in real data, in contrast 
to the uniform mutation and recombination rates used in our simulation, will require SARGE to 
infer more ancestral recombination events, and the proximity of these ancestral recombination 
events to each other will increase the likelihood of making mistakes when inferring them. 
Second, phasing errors will create false ancestral recombination events and artificially shorten 20 
haplotype block lengths. We see evidence that incorrect phasing due to the absence of suitable 
reference data likely caused the inference of incorrect ancestral recombination events, which 
defined clades that disagreed with those learned from SNP data (Table S 1). Wherever this 
happens in the genome, it will incorrectly break haplotypes. 
 Because of this potential limitation, we do not seek to biologically interpret haplotype 25 
block lengths, i.e. to infer times of admixture directly from lengths of haplotypes resulting from 
admixture. Instead, we only compare haplotype block lengths across admixed individuals and 
populations to gain an idea of relative times of admixture. 
 
Determining true extent of deserts 30 
 
 To determine if the deserts and human-specific regions we detected represent the full 
extent of those regions across all humans, or whether they are a superset that would decrease 
with the examination of more genomes, we randomly sampled (without regard to population or 
phylogenetic position) sets of 10, 50, and 100 human haplotypes from the SGDP data set and 35 
added all archaic hominin haplotypes (Altai, Vindija33.19, and Denisovan) to each set. We re-
ran SARGE on each of these data sets, with the same parameters as the full run (excluding CpG 
sites, and with 25kb propagation distance) and scanned the results of each for deserts and human-
specific regions. For each desert region, we report both the full extent of the desert region and 
the extent after removing regions around alleles shared between modern and archaic hominins 40 
and present at between 1% and 99% in modern humans, according to the gnomAD database (61). 
 
Functional analysis of human-specific alleles 
 Our first test for functional significance of human-specific regions was a position-based 
Gene Ontology enrichment analysis. Using the October 29, 2018 version of the Gene Ontology 45 
(GO) database (65) together with the Gencode gene annotation (63), using Ensembl version 94 
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on human genome version GRCh38 lifted over to GRCh37 coordinates, limited to whole protein 
coding genes (introns included), we created a merged BED file of all genome regions mapped to 
each GO term. We then performed an overlap enrichment test between human-specific regions 
and each GO term’s regioons using the GenometriCorr R package (62), with the merged set of 
all 50 kb windows in the genome containing variant sites in the Simons Genome Diversity 5 
Project data as background regions. We took the right-tailed projection test p-value, multiplied 
by the number of tests, as the p-value for each term. 

We then sought to look at specific mutations hypothesized to have a functional impact. 
After obtaining a catalog of human-specific derived alleles in deserts (see Creating the four-part 
map section), we screened these alleles for potential functional impact in two ways. First, we 10 
selected any of these mutations reported as nonsynonymous variants (“HHMCs”) by the 
catalog’s authors. We then intersected all mutations with a heavily-filtered “double elite” set of 
regulatory element binding sites, mapped to the genes they regulate, by the GeneHancer database 
(64). We used the resulting set of 2,686 candidate functionally-significant human-specific 
mutations within deserts, mapped to their affected genes, in all downstream functional analyses. 15 
 Dates were obtained, where available, for these mutations by searching ARG trees for 
clades tagged with their SNP positions. Since each of these lineages was human-specific, all 
haplotypes within each clade were modern humans and no adjustments needed to be made for 
branch shortening. Because it is impossible to determine the order of mutations along a branch of 
a tree, each mutation’s age was taken to be the height of the midpoint of the branch on which it 20 
occurred. In other words, for each clade tagged with a SNP of interest, we calculated the height 
(distance from the present time) of the clade and the height of its parent; the mean of these two 
values was used as the age of the mutation. 
 We compared the ages of mutations affecting interacting sets of genes using data from 
the STRING database (33), limited to interactions with a score of greater than 700. Each pair of 25 
candidate functional mutations (nonsynonymous or regulatory) with dates inferable from the 
ARG were searched for interactions of any kind among the genes they affect. 
 We searched genes affected by our candidate functional mutations for tissue specificity 
using data from the GTEx database (66). We downloaded a data set containing the median 
expression value for each gene across a set of tissues in a wide variety of samples. We then 30 
discarded all expression values for cell lines, which may exhibit unusual expression patterns that 
do not correspond to healthy living tissues. In case a gene still had data for multiple tissues 
reported in this data set, we re-computed the mean across all tissues reported. For each gene, we 
then computed tau, a measure of tissue specificity, due to its robustness when compared to 
several other tissue-specificity metrics (67). For analyses we performed that required tissue-35 
specific genes, we chose a tau cutoff of 0.9 to determine specificity.  
 When analyzing tissue-specific expression of genes affected by human-specific mutations 
through time, simply reporting the number of genes affecting each tissue would likely only 
reflect the fact that many more genes are specifically expressed in certain tissues than others 
(66). To highlight tissues affected by mutations at specific time points, we used the genome-wide 40 
tissue specific expression pattern as background. For each time bin we chose, we compiled a list 
of all genes affected by candidate regulatory and nonsynonymous human-specific mutations 
within that time bin. We then limited these genes to those showing tissue-specific expression (tau 
> 0.9) and counted the number of affected tissue-specific genes each non-cell line tissue in the 
GTEx database had in each time point. We normalized these counts by the total number of 45 
affected tissue-specific genes per time point. Next, we obtained a background distribution by 
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counting the number of total tissue-specific genes per tissue genome wide, normalized by the 
total count of tissue-specific genes genome-wide. In each time bin, we reported our normalized 
counts per tissue by the background normalized count to obtain a measure of enrichment. 
 For determining the types of biological processes affected by human-specific mutations 
through time, we first discarded all mutations inferred to be older than 1 my and placed all other 5 
mutations into bins 100 ky wide. For each time bin, we then gathered the set of all genes falling 
within that time bin and compiled all Gene Ontology terms with which each such gene is 
annotated. For each GO term, we then searched up the GO term hierarchy for parent terms 
“developmental process” (GO:0032502), “immune system process” (GO: 0002376), “metabolic 
process” (GO: 0008152), and “reproductive process” (GO: 0022414). We counted the number of 10 
times each of these terms was the parent of one or more terms in a given time bin, allowing each 
term to count toward more than one parent category. 
 We created scores for each human-specific mutation based on the age of the mutation as 
well as the length of the desert region surrounding it. Taking each variant’s TMRCA to be t and 
each variant’s surrounding desert length to be l, and the maximum TMRCA for all variants tmax 15 
and the maximum desert length for all variants lmax, then each variant’s score was calculated as 
𝑠5 =	− log34 61 −

,
,+,-63

7 − log34 6
7

7+,-
7 for variants with known TMRCA and 𝑠5 =

	− log34 61 −
,

,+,-63
7 for variants without a known TMRCA. As this score was intended to be 

higher for selected variants (with long desert length and recent TMRCA), we performed Gene 
Ontology enrichment analysis using the Wilcoxon rank-sum test implemented in FUNC (68), 20 
running the refinement routine with p-value cutoffs of 0.01 and reporting genes enriched in high 
scores. 

Supplementary Text 
Adding nodes to the ARG 
 Every node in the ARG must be “anchored” at one or more genomic positions. This is 25 
because each node's start and end coordinates depend on these positions, along with the 
propagation distance p. When a node's range is interrupted by a new node with which it fails the 
four haplotype test being created in the middle of its range, for example, the set of genomic sites 
the node “owns” are used to determine its new range. Additionally, to make it easier to look 
through the ARG, we store a mapping of sites to ARG nodes with those sites. Since it is set up 30 
this way, we do not allow any node to be created if the site at which it is originally anchored 
already is tied to an existing ARG node with which it fails the four haplotype test. 

When a new node is to be created, we first check to see if it can be merged with an existing 
node. If two nodes have the same clade, if the ranges implied by their sites and the propagation 
distance overlap, and if they do not fail the four gamete test with a node between them, then they 35 
can be merged. If the new node matches two existing nodes that it overlaps both upstream and 
downstream, then all three nodes are merged. 

If a new node does not merge with an existing node, then we compile all four haplotype test 
failures it has with other nearby nodes (within propagation distance). If the new node is in the 
middle of an existing node's range and the new node fails the four haplotype test with that node, 40 
then that existing node is split into two nodes. Otherwise, start and end coordinates are adjusted: 
if node A and B fail the four haplotype test and node A is upstream of (has lower coordinates 
than) B, the end coordinate of A is set to the highest coordinate site that it owns and the start 
coordinate of B is set to the lowest coordinate site that it owns (Fig. S40).  
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Once all node ranges have been adjusted according to four haplotype test failures, then all 
parent/child relationships are created. To do this, a depth-first search is performed across the 
ARG down from the root, across the entire range of the new node. The new node may have 
different parents and children across its range: each parent/child edge has start and end 
coordinates (Fig. 1A).  5 

After all parent/child edges are added, recombination edges are added to the graph. 
Upstream and downstream nodes failing the four gamete test with the new node are sorted by 
distance from the new node. If any pair of upstream or downstream nodes in these sets fail the 
four gamete test with each other, the one further away from the new node is removed from the 
set. Recombination edges are then added between the new node and all remaining nodes, except 10 
for four gamete test failures that can be explained by a previously-solved recombination event. 

Recombination edges include paths through candidate moving clades, which are not yet part 
of the ARG (Fig. 1A). Normally, if an upstream clade u and a downstream clade d fail the four 
haplotype test, then clades with the members of u ∩ d, u \ d, and d \ u are added as candidate 
moving clades. If any of these candidate moving clades fails the four gamete test with a node 15 
already in the ARG between u and d, however, it will not be created. 

A special case for adding nodes exists for clades where every haplotype shares the derived 
allele. These sites can only contribute to the branch length of the root node. Therefore, we store a 
single root node whose start and end coordinates span the entire chromosome. If a mutation is 
observed for which every haplotype shares the derived allele, it is added to the root node. 20 
Inferred (non-mutation) sites with this clade are ignored and not added to the root node. 

Similarly, clades where every haplotype shares the ancestral allele are not informative for 
the ARG and are skipped altogether. 

 
Solving ancestral recombination events 25 
 The process of “solving” ancestral recombination events consists of finding a node with 
unsolved recombination edges connecting it to one or more nodes downstream, finding a 
subgraph of the ARG containing other nodes involved in this or possibly other recombination 
events, filtering the subgraph so that it only describes a single recombination event, and then 
choosing the most likely γ node that could explain the recombination event (similar to the “two-30 
trees” algorithm, Fig. S1). Finally, the chosen γ node is added to the ARG as a standard tree 
node, the start and end coordinates of all nodes involved are adjusted to account for the inferred 
recombination event, and any nodes that do not exist in the ARG but whose existence is implied 
by the recombination event are created (Fig. S2B). This process is the core of the ARG inference 
algorithm, as it allows for the creation of nodes not directly observed in the input SNP data. 35 

One concept used by several stages of this algorithm is that of tree-compatibility between 
two nodes (Fig. S41). Two nodes are tree-compatible if, according to their clades, genomic 
positions, and genomic positions of their four haplotype test-failing partner nodes, they can both 
exist in the same tree. At this stage in ARG building, start and end coordinates have not yet been 
finalized, so we cannot define compatibility based on coordinates alone. However, if two nodes 40 
already have overlapping start and end coordinates, then they must be compatible. Additionally, 
two nodes that fail the four haplotype test cannot be compatible. Otherwise, we must rely, for 
upstream nodes, on the lowest start coordinate of all downstream tree nodes connected to the 
node via recombination edges. Likewise, for downstream nodes, we consider the highest end 
coordinate of all upstream tree nodes connected to the node via recombination edges. We refer to 45 
this value, in both cases, as the “closest recombination partner” of the node; this determines how 
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far the node’s end coordinate (if upstream of a recombination event) or start coordinate (if 
downstream of a recombination event) could be extended in the ARG. Whether or not any two 
tree nodes are tree-compatible depends on the location of both nodes’ closest recombination 
partners. If a node A is upstream of node B, then in order for nodes A and B to be tree-
compatible, node B must be upstream of node A's closest downstream recombination partner and 5 
node A must be downstream of node B's closest upstream recombination partner (Fig. S41). 

Before solving an ancestral recombination event, SARGE must find a subgraph of the 
ARG containing a set of tree-compatible upstream nodes U, a set of tree-compatible downstream 
nodes D, and a set of candidate γ nodes L that connect together nodes in U and D. Ideally, U, D, 
and L should correspond to a single ancestral recombination event; however, in practice, there 10 
are situations in which a single event is difficult or impossible to distinguish from multiple 
events (Fig. S43). We will hereafter refer to this ARG subgraph used to infer ancestral 
recombination events as a “recombination graph.” 

Collecting a recombination graph begins with a “key” node k, which is a tree node in the 
ARG with unsolved recombination edges to downstream nodes. To begin, we visit each 15 
candidate γ node downstream of k and add it to L. Next, we visit all upstream tree nodes 
connected to every node in L and add them to U, if they are tree-compatible with k. We then 
follow all recombination edges from nodes in U, through candidate γ nodes, to tree nodes with 
start coordinates higher than the end coordinate of k. These nodes are added to D, and all 
candidate γ nodes along their paths to nodes in U are added to L. We then revisit nodes in U; any 20 
that are not connected via recombination edges to nodes in D are removed from U.  

At this point, the highest end coordinate of nodes in U and the lowest start coordinate in 
D give boundaries between which the ancestral recombination event must have happened. 
Therefore, any node in U or D whose closest recombination partner falls within, rather than 
outside, these boundaries, is removed (Fig. S 42).  25 

The next step is to filter U, D, and L to a set of nodes describing only a single 
recombination event. This is the most intensive part of the algorithm, as it must explore a large 
set of choices. At this stage, the recombination graph is likely to represent several different 
recombination events, which must be pared down to one before a branch movement can be 
inferred. The goal of this step is to obtain a set of tree-compatible upstream nodes U and a set of 30 
tree-compatible downstream nodes D, where all nodes in U and D are tree-incompatible with 
each other. Additionally, the closest downstream recombination partner of each node in U must 
be present in D, and the closest upstream recombination partner of each node in D must be 
present in U.  

Because the nodes in U must all be tree-incompatible with the nodes in D, then if there 35 
exists a pair (u, d) of candidate upstream and downstream nodes that are tree-compatible, either u 
or d must be excluded. We therefore define a set C containing pairs of sets of upstream and 
downstream nodes (us, ds). For each such pair, including the nodes in us in the recombination 
graph requires excluding the nodes in ds, and vice versa. 
DECLARE set C ← 	∅ 40 
FOR u in U: 

DECLARE set us ←	[u] 
DECLARE set ds ← 	∅ 
FOR d in D: 
 IF tree-compatible(u, d): 45 
  ds ← ds ∪ d 
DECLARE bool found ← FALSE 
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FOR (us’, ds’) in C: 
 IF ds’ ⊆ ds: 
  ds’  ← ds’ ∪ ds 

  us’  ← us’ ∪ us 

  found ← TRUE 5 
  break 
IF not found: 
 C ← C ∪ (us, ds) 
Next, because of the rule that the closest downstream recombination partner of each node 

in U must exist in D and vice versa, we store a collection of pairs of “partner” sets P. Each 10 
member of P is a pair of sets of upstream and downstream nodes (us, ds), where including the 
nodes in us requires also including the nodes in ds. 
DECLARE set P ← 	∅ 
FOR u in U: 

DECLARE set us ←	[u] 15 
DECLARE set ds ←	[closest_recombination_partner(u)] 
FOR (us’, ds’) in P: 
 IF |us ∩ us’| > 0 or |ds ∩ ds’| > 0: 
  us’  ← us’ ∪ us 

  ds’  ← ds’ ∪ ds 20 
  found ← TRUE 
  break 
IF not found: 
 P ← P ∪ (us, ds) 
Given all choices described by the node sets in C and P, we now build a set S, where each 25 

entry is a set of upstream and downstream nodes (𝑈, 𝐷) that could describe a single 
recombination event. To populate S, we first enumerate all possible choices in C, then filter 
according to the constraints imposed by the pairs in P.  
DECLARE pair of sets (ufirst, dfirst) ← first set pair in C 
C ← C \ (ufirst, dfirst) 30 
DECLARE set S ← [(ufirst, D \ dfirst), (U \ ufirst, dfirst)] 
FOR (u, d) in C: 

DECLARE set Snew ← 	∅ 
FOR (u’, d’) in S: 
 IF | u ∩ u’ | > 0 and | d ∩ d’ | > 0: 35 
  IF | u’ \ u | > 0 and | d’ \ d | > 0: 
   Snew ← Snew ∪ (u’ \ u, d’) 
   Snew ← Snew ∪ (u’, d’ \ d) 
S ← Snew 

FOR (u, d) in S: 40 
FOR (u’, d’) in P: 
 IF | u ∩ u’ | > 0 or | d ∩ d’ | > 0: 
  IF not ( u ⊇ u’ and d ⊇ d’): 
   u ← u \ u’ 
   d ← d \ d’ 45 
   IF u == ∅ or d == ∅: 
    S ← S \ (u, d) 
We now have in S a set of choices of full recombination graphs. In the spirit of 

parsimony, we choose the set with the highest total node count (the recombination graph 
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containing the most possible four gamete test failures). If there is a tie, we choose the set of 
nodes covering the smallest genomic span (the lowest start coordinate in D minus the highest end 
coordinate in U). The reasoning behind this choice is that sets of nodes covering greater genomic 
distances are more likely to be affected by multiple ancestral recombination events than sets 
spanning smaller genomic distances. 5 

Before solving the recombination event, we check pairs of upstream and downstream 
nodes in the recombination graph (members of U and D) that fail the four gamete test, to see 
whether their four gamete test failure could be explained by a previously-solved ancestral 
recombination event. If so, both nodes in the pair are removed from the recombination graph. 

At this stage, there are still boundary cases in which it is impossible to determine if a 10 
given recombination graph describes one or more recombination events (Fig. S43). Because of 
this, we employ a heuristic check to see whether the graph might describe multiple 
recombination events. If the last (highest-coordinate) node in U, UL, does not fail the four 
gamete test with the first (lowest-coordinate) node in D, DF, then we gather two alternative 
recombination graphs. One excludes UL and includes any additional downstream nodes in D 15 
made possible by this exclusion. The other excludes DF and includes any additional upstream 
nodes in U made possible by this exclusion. If either of these alternative recombination graphs 
covers a smaller genomic distance than the main graph being considered, we take this as 
evidence that the main recombination graph might describe multiple ancestral recombination 
events. If this is the case, we defer solving it until neighboring recombination events have been 20 
solved. If a given “key” node is visited a second time, and thus the same recombination graph is 
revisited, the recombination graph is solved regardless of the outcome of these checks. 
 At this stage, nodes in U should belong to a single upstream tree, nodes in D should 
belong to a single downstream tree, and nodes in L represent candidate ancestral recombination 
clades. Similar to the “two trees” algorithm explained in Materials and Methods and Fig. S2, we 25 
choose the L clade that explains the most four gamete test failures between nodes in U and D. If 
there is a tie, we choose the node in L that is the most compatible with the existing ARG 
topology in the surrounding region. We determine this by checking how many bases the L clade 
– and each other new clade it implies – can exist along the chromosome. If p is the propagation 
distance parameter, and a candidate L clade is γ, then: 30 
DEFINE function fourhap_test(set x, set y): 

IF | x ∩ y | > 0 and x ⊈ y and x ⊉ y: 
 RETURN TRUE 
ELSE: 
 RETURN FALSE 35 

DEFINE clade_type(set x, set γ): 
RETURN clade type stored in recombination edge connecting node x 

to node γ 
DEFINE set dists ← 	∅ 
DEFINE recomb_start ← max(end coordinate in U) 40 
DEFINE recomb_end ← min(start coordinate in D) 
DEFINE int ldist1 ← p 

FOR int pos = recomb_start-1; pos >= recomb_start– p; --pos: 
FOR ARG clade at pos c: 
 IF fourhap_test(c, γ): 45 
  ldist1 ← recomb_start – pos 
  break 

DEFINE int ldist2 ← p 
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FOR int pos = recomb_end + 1; pos <= recomb_end + p; ++pos: 
FOR ARG clade at pos c: 
 IF fourhap_test(c, γ): 
  ldist2 ← pos – recomb_end 
  break 5 

dists ← dists ∪ (ldist1 + ldist2) 
FOR u in U: 

u’ ← u 
IF clade_type(u, γ) == α: 
 u’ ← u / γ 10 
ELSE IF clade_type(u, γ) == β: 
 u’ ← u ∪ γ 
IF | u’ | > 0: 
 DEFINE udist ← p 

FOR int pos = recomb_end + 1; pos <= recomb_end + p; ++pos: 15 
  FOR ARG clade at pos c: 
   IF fourhap_test(c, u’): 
    udist ← pos – recomb_end 
    break 
 dists ← dists ∪ udist 20 

FOR d in D: 
d’ ← d 
IF clade_type(d, γ) == α: 
 d’ ← d ∪ γ 
ELSE IF clade_type(d, γ) == β: 25 
 d’ ← d \ γ 
IF | d’ | > 0: 
 DEFINE ddist ← p 
 FOR int pos = recomb_start - 1; pos <= recomb_start - p;  

--pos: 30 
  FOR ARG clade at pos c: 
   IF fourhap_test(c, d’): 
    ddist ← recomb_start - pos 
    break 
 dists ← dists ∪ ddist 35 

meandist = 
1

|𝑑𝑖𝑠𝑡𝑠|
∑ 𝑑𝑖𝑠𝑡𝑠𝑖
|𝑑𝑖𝑠𝑡𝑠|
𝑖=1   

Then, the clade in L tied for the most four haplotype test failures in U and D, with the 
highest meandist is chosen as the correct γ clade. 

The recombination event must have happened between the highest end coordinate in U 
and the lowest start coordinate in D. We choose two adjacent sites within this interval, as close to 40 
the center of it as possible, as the boundaries of the inferred recombination event. Naming these 
site coordinates x and y, where x is lower than y, we expand the end coordinate of each node in 
U to x and the start coordinate of each node in D to y. 

 Finally, we create new nodes implied by the recombination event. If the chosen moving 
clade from L is denoted γ, x and y are the chosen coordinates between which the recombination 45 
event happened, and p is the propagation distance, then 

DEFINE set U_new ← 	∅ 
DEFINE set D_new ← 	∅ 
DEFINE set union_all ← 	∅ 
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DEFINE bool alpha_exists ← FALSE 
DEFINE bool beta_exists ← FALSE 
FOR u in U: 
 union_all ← union_all ∪ u 
 IF clade_type(u, γ) == α: 5 
  alpha_exists ← TRUE 
  D_new ← D_new ∪ (u \ γ) 
 ELSE IF clade_type(u, γ) == β: 
  beta_exists	← TRUE 
  D_new ← D_new ∪ (u ∪	γ) 10 
FOR d in D: 
 union_all ← union_all ∪ d 
 IF clade_type(d, γ) == α: 
  alpha_exists ← TRUE 
  U_new ← U_new ∪ (d ∪ γ) 15 
 ELSE IF clade_type(d, γ) == β: 
  beta_exists	← TRUE 
  U_new ← U_new ∪ (d \ γ) 
 
The γ clade is added to the ARG, anchored at x and y, with range [x-p, y+p]. All nodes in 20 

U_new are added, anchored at x and with range [x-p,x]. All nodes in D_new are added, anchored 
at y and with range [y, y+p]. Finally, if there were no α nodes, or if there were no β nodes 
(determined by the values of alpha_exists and beta_exists), we create an ARG node with the 
members of union_all. If there were no α nodes (alpha_exists is false), this node is anchored at x 
with range [x-p, x+p]; if no β nodes (beta_exists is false), it is anchored at y with range [y-p, 25 
y+p].  
 Information about the solved recombination event is stored in another type of edge, in 
order to distinguish four gamete test failures belonging to solved recombination events from 
unsolved ones. 
 30 
Finalizing ARG node ranges 
 Because of the heuristic nature of our method, some ancestral recombination events go 
unsolved. Additionally, some may be unsolvable (for example, if all three candidate γ nodes for a 
four haplotype test failure fail the four haplotype test with existing ARG nodes in their range). 
When this is the case, we seek to expand the ranges of all nodes involved in recombination to 35 
their fullest extent. In other words, for every pair of nodes that fail the four haplotype test with 
each other, we want to ensure that the upstream node’s end coordinate and the downstream 
node’s start coordinate are set to sites approximately in the center of the genomic interval 
between the two nodes. If this is not done, there will be additional polytomies in the ARG. 
Therefore, when we are about to write a tree at site index s to disk, we seek to ensure that site 40 
index s + 1 will be covered either by a node in the tree covering s	or by a downstream node that 
fails the four haplotype test with a node in the tree covering s. In this case, s + 1 is not the very 
next genomic position after s, but the next genomic position with a SNP in the ARG: 
DEFINE set U ← 	∅ 
DEFINE set D ← 	∅ 45 
FOR ARG node u at site s: 

IF u end coordinate < s + 1 and u end coordinate + p >= s+1: 
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 DEFINE bool u_pass ← TRUE 
 FOR downstream recombination partner d of u: 
  IF d start coordinate <= s + 1: 
   u_pass ← FALSE 
   break 5 
 IF u_pass: 
  U ← U ∪ u 
  FOR downstream recombination partner d of u:  
   D ← D ∪ d 

FOR d in D: 10 
FOR upstream recombination partner u of d: 
 IF u end coordinate <= s: 
  U ← U ∪ u 

FOR site z = s + 1; z <= lowest site among nodes in D; ++z: 
DEFINE set UZ ← 	∅ 15 
DEFINE set DZ ← 	∅ 
FOR u in U: 
 IF u end coordinate > z and u end coordinate + p >= z: 
  DEFINE bool u_pass ← TRUE 
  FOR downstream recombination partner d of u: 20 
   IF d start coordinate <= z: 
    u_pass ← FALSE 
    break 
  IF u_pass: 
   UZ ← UZ ∪ u 25 
FOR d in D: 
 IF d start coordinate > z and d start coordinate – p <= z: 
  DEFINE bool d_pass ← TRUE 
  FOR upstream recombination partner u of d: 
   IF u end coordinate >= z: 30 
    d_pass ← FALSE 
  IF d_pass: 
   DZ ← DZ ∪ d 
IF | Uz | == 0: 
 FOR d in Dz: 35 
  Expand d start coordinate to z 
ELSE IF | Dz | == 0: 
 FOR u in Uz: 
  Expand u end coordinate to z 
ELSE: 40 
 DEFINE int udist ← z – highest end coordinate in Uz 
 DEFINE int ddist ← lowest start coordinate in Dz – z 
 DEFINE float r ← random decimal in [0,1] 
 IF udist < ddist or (udist == ddist and r < 0.5): 
  FOR u in Uz: 45 
   Expand u end coordinate to z  
 ELSE IF ddist < udist or (udist == ddist and r >= 0.5): 
  FOR d in Dz: 
   Expand d start coordinate to z 
 50 

Collapsing to trees 
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 To avoid making it necessary to hold the ARG over an entire chromosome in memory at 
once, or to load the entire ARG for all analyses, we represent the ARG on disk as a series of 
trees. At every site, the ARG collapses to a tree, so we write out each tree independently to disk, 
along with its chromosome and base position, in a custom serial binary format. We find that our 5 
files compress well with GZIP, and we provide utilities for indexing and retrieving specific 
genomic regions from files, and for converting our trees to Newick format. 
 
Testing the propagation distance parameter 

Using data from the demographic simulation with the plausible admixture proportion of 10 
0.05 (see “Demographic simulations” section in Supplementary Methods), we sought to assess 
the impact of the choice of propagation distance on SARGE’s ability to correctly define clades. 
We ran SARGE on this data set using a variety of propagation distances: 5 kb, 10 kb, 25 kb, 50 
kb, 100 kb, and 500 kb.  

For each simulation, we measured the specificity (defined as the percent of clades in each 15 
tree inferred by SARGE that were present in the true tree from the simulation) and sensitivity 
(defined as the percent of clades in the true tree from the simulation that were correctly 
recovered by SARGE). For comparison, we also ran tsinfer, a recently described ARG inference 
program that scales well to large data sets and also leaves polytomies in output trees (8) and 
Relate, another recently described program that does not produce polytomies (7). For the Relate 20 
run, we used the mutation rate from the simulation and set the haploid effective population size 
to two times the effective population size in Africans, according to simulation parameters. We 
note that this simulation only contained 66 haplotypes and thus SARGE likely achieved higher 
sensitivity on this data set than it would on one with more haplotypes, as its specificity falls on 
large data sets, due to increasing numbers of polytomies (Fig. S6). 25 

Using SARGE over increasingly large propagation distanves, specificity converged to 0.70 
and sensitivity to 0.49 (Fig. S 8). Using tsinfer, sensitivity was the same as what SARGE 
achieved with the 500 kb propagation distance (0.49) but specificity was 10% lower (0.60). 
Relate performed similarly to tsinfer, but with higher sensitivity (0.55) and lower specificity 
(0.55). Interestingly, although Relate and tsinfer recovered more true clades than SARGE, due to 30 
both methods producing fewer polytomies, this difference was minimal (0% for tsinfer and 5% 
for Relate) when using a large propagation distance on this data set. 

A propagation distance as large as 500 kb is impractical on large data sets because it 
drastically increases the number of comparisons between sites and therefore the execution time. 
We used a propagation distance of 25 kb for all our analyses of real data, which in this case 35 
allowed for reasonably fast computation, as well as high specificity (0.74) and reasonable 
sensitivity (0.40, compared to the maximum of 0.49).  
 
Properties of missing and incorrectly-inferred clades 

Some clades inferred by SARGE are inaccurate. For each such clade, we sought to 40 
determine how problematic it might be for downstream inferences. To do this, we used the 
results of our demographic simulation with a 0.05 admixture proportion (see Supplementary 
Methods) and found all clades inferred by SARGE with a 25 kb propagation distance that were 
absent from the true simulation ARG at those sites. We then looked along the chromosome, both 
upstream and downstream, for the nearest true ARG tree in which the incorrect clade did exist (if 45 
the clade existed at all elsewhere in the ARG). If this number was very large, this would suggest 
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that these clades often do not exist anywhere near where they are inferred, possibly because they 
are the result of incorrectly solving ancestral recombination events. If small, however, then many 
incorrectly inferred clades are the result of getting the boundaries between ancestral 
recombination events slightly wrong, and downstream inferences will suffer less, as wrong 
clades will be in close proximity to loci where they are correct.   5 

In addition to performing this analysis for SARGE, we also ran Relate (7) and tsinfer (8) on 
the same data set, using the mutation rate known from the simulation and two times the effective 
population size in Africans in the simulation as the haploid effective population size for Relate. 
We also computed the distance of each incorrectly-inferred clade to the nearest site where it was 
correct in both of these simulations. 10 

Overall, we found that about 14% of clades incorrectly inferred by SARGE did not exist on 
the chromosome. Of the 86% that did exist, the median distance to a locus where the clade was 
correct is 3.5 kb (mean distance 92 kb). This is a lower percent of completely missing clades, and 
a lower distance to positions where clades are correct than that obtained using both Relate and 
tsinfer (Table S 7, Fig. S 10).  15 

We also sought to learn where in ARG trees incorrectly-inferred and missing (due to 
polytomy) clades tended to occur. Using this same demographic simulation, we labeled every 
clade in every true ARG tree as either correctly identified (present at the same site in SARGE 
results), incorrectly identified (failing the four gamete test with another clade present at the same 
site in SARGE results), or missing due to polytomy (not present in the SARGE tree at the same 20 
site, but passing the four gamete test with all present clades). We then examined the size (number 
of member haplotypes) distribution of clades falling into each category. We find that missing 
clades skew smaller (closer to the leaves of trees) than correctly and incorrectly identified clades. 
Incorrectly identified clades tend to be larger (closer to the root), and correctly identified clades 
are intermediate in size between the other two categories. Repeating this analysis with a larger 25 
simulated data set (an unstructured population of 500 haplotypes from our QC simulations 
described in Supplementary Methods), the pattern becomes more visible, although there are 
many more missing clades (Fig. S 9). 

We conclude from these analyses that SARGE’s inaccurate inferences are less problematic 
(and more likely to occur close in the genome to where they are accurate) than those produced by 30 
both Relate and tsinfer. SARGE does leave far more polytomies than either of the other two 
programs, however, although these polytomies are often concentrated near the leaves of trees, 
where clades are less useful for making broad phylogenetic inferences. 
 
Testing the accuracy of inferred branch lengths 35 

We sought to test the accuracy of SARGE’s inferred branch lengths, compare to those 
inferred by the recently-described ARG inference program Relate (7), and uncover any 
systematic biases in branch length estimates, using simulated data. For this, we used data from 
our demographic simulation with a 0.05 admixture proportion (see “Demographic simulations” 
section in Supplementary Methods). We ran SARGE with a 25 kb propagation distance (the 40 
same as was used on our real data set) on the simulated data. We also ran Relate, using two times 
the simulation’s effective population size of Africans as the haplotype N parameter, and using 
the same per-generation mutation rate as in the simulation. Using both the SARGE and Relate 
output, we then scanned for clades that were correct according to the true ARG. We then 
extracted the branch lengths from these clades in both the true and inferred ARG, converting the 45 
simulated branch lengths into years (by multiplying by 4*base N*generation time) and SARGE’s 
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branch lengths into years (by multiplying by the simulation’s TRMCA of all groups). This 
strategy is slightly different from our real data, in which we collected all fixed differences 
between sample haplotypes an outgroup (chimpanzee) genome and multiplied by two times the 
human/chimp divergence time. In the case of this simulated data, ancestral and derived alleles 
were known a priori and we therefore did not need to use an outgroup. Similarly, Relate requires 5 
model parameters for estimating branch lengths, and these were directly known from running the 
simulation. 

We found that SARGE branch lengths were less tightly correlated to true branch lengths 
than Relate branch lengths were to true branch lengths (SARGE r2 = 0.60; Relate r2 = 0.79). 
However, we also found that Relate systematically underestimated branch lengths (Fig. S 11). 10 
The median difference between SARGE’s inferred branch lengths and true branch lengths was 
approximately -15 ky, while the same value for Relate data was -26 ky. We then scaled these 
same values by the true branch lengths to obtain a percent error of each inferred branch length 
estimate: |9.:-;;-1&7;<-|

7;<-
. These percent error estimates were very similar for both programs: 

SARGE median = 1; Relate median = 0.97, which suggests that many inferred branch lengths 15 
were either close to zero or double their true value. One cause of this could be the inherent 
difficulty of inferring lengths of branches with zero mutations – SARGE sets such branch lengths 
to zero, guaranteeing a percent error of one; Relate’s randomly sampled estimates are apparently 
not much more reliable. 

Because SARGE produces more polytomies than Relate as the size of data set increases, we 20 
repeated this test using a larger data set: we re-ran the same simulation, but with 450 instead of 
50 modern human haplotypes. In this case, we found that SARGE’s performance suffered some: 
r2 between true and inferred branch lengths SARGE = 0.44; Relate = 0.79. The median 
difference between inferred and true branch lengths decreased, however: SARGE = -4.6 kb and 
Relate = -6.0 kb. Median percent error stayed roughly the same: Relate = 0.98 and SARGE = 1. 25 
SARGE’s branch length estimates also remained unbiased, unlike those from Relate (Fig. S 11). 

We take from this exercise that SARGE’s branch length estimates, which are based purely 
on counting mutations and are not smoothed by a model, are imperfect but relatively unbiased 
estimates of true branch lengths. Relate, on the contrary, is accurate more of the time, but 
systematically biased toward underestimation. 30 
 
Converting branch lengths into years in real data 

Because branch lengths in SARGE are divided by the total height of the tree both above and 
below each branch (Fig. S 4), they are reported in units of the total divergence time between the 
genomes in the data set and the outgroup genome used to determine ancestral and derived states. 35 
If the divergence time between the genomes in the data set and the outgroup species is known, 
then these branch lengths can be converted to years by multiplying by two times this divergence 
time. In the previous exercise where we assessed accuracy of branch lengths on simulated data, 
the coalescence time of all lineages under study, as well as the ancestral or derived state of each 
allele, was already known. We therefore did not simulate an outgroup genome, and the total 40 
height of the tree was converted to years by multiplying branch lengths by the coalescence time 
of all lineages. In real data, where these parameters are unknown, this is not possible. 

The mutation rate in humans has been the subject of controversy. Mutation rates estimated 
by comparing parents to offspring are about half as fast (~1x10-8 per base per generation) as 
mutation rates estimated by calibrating with dated fossils (~2x10-8 per base per generation) (15); 45 
this discrepancy has led at least one recent study to set the human-chimpanzee split time at 13 
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Mya rather than 6.5 Mya, so as to account for a slower assumed mutation rate (1). Other methods 
for estimating the mutation rate have been developed that use population genetic techniques to 
estimate the mutation to recombination rate ratio. These methods, as well as a recent approach 
that used the rate of heterozygosity within identical-by-descent sequences that individuals 
inherited from a recent common ancestor as a proxy for the de novo mutation rate, have 5 
produced rate estimates that are intermediate between these two values (~1.5-1.7x10-8 per base 
per generation) (69). Interestingly, both this recent study and prior work (70) suggest that 
mutation rates, as well as their sequence contexts, can differ among human populations.  

The divergence time between humans and chimpanzees is also controversial. Early studies 
using genetic divergence to estimate this time placed the human/chimpanzee split time too 10 
recently to reconcile with some paleontological data. An approach that combined human and 
chimpanzee generation time estimates with estimated per-generation mutation rates (to avoid 
fossil date calibration) placed the split at 7-8 Mya, which is compatible with the fossil record 
(71). Some researchers took issue with this estimate, however, in part because of its use of slow 
single-generation mutation rates inferred from parent/offspring sequencing data (72). Another 15 
split time estimated using mutations accumulated at CpG sites placed the divergence around 12 
Mya (73). One possible explanation for the variation in estimated divergence times is a complex 
speciation scenario (74), involving multiple splits interspersed with periods of interspecific 
hybridization. The study describing this scenario produced a divergence time estimate of less 
than 6.3 Mya (74). 20 

Our method is mostly agnostic about the human mutation rate: branch lengths can be 
converted into years by multiplying by two times the human-chimpanzee divergence time. We 
obtained TMRCA estimates that agree with previous knowledge including the timing of the out-
of-Africa migration event using a 6.5 Mya split time (Fig. 2A), and so we chose this value for 
downstream analyses. In general, branch lengths can be rescaled to use a different chimpanzee 25 
divergence time T, by multiplying by T/6.5x106. For TMRCAs of clades that include archaic 
hominin genomes, however, we also incorporated branch shortening values, which quantify 
“missing evolution” due to sampling genomes from the past, which were reported in a prior 
study (1). This study reported branch shortening values in years that were calculated assuming 
the slow mutation rate reported in parent/offspring sequencing studies (~1x10-8 per base per 30 
generation) and a relatively old human/chimpanzee split time (13 Mya). By using these values in 
our study, along with a 6.5 Mya human/chimpanzee split time, we implicitly assumed a higher 
mutation rate (~2x10-8 per base per generation) more in line with estimates calibrated using fossil 
dates than per-generation estimates produced using parent/offspring sequencing data.  

If we were to re-calculate TMRCAs between admixed modern humans and archaic hominin 35 
genomes within archaic-introgressed haplotype blocks using the older (13 Mya) human/chimp 
divergence time, TMRCAs between humans and the Neanderthal genome would predate the out-
of-Africa migration event, which is estimated to have happened within the last 70 ky (75). 
Conversely, if we adjusted the archaic branch shortening values to use the low (~1x10-8 per base 
per generation) mutation rate along with the recent (6.5 Mya) human/chimp divergence, these 40 
branch lengths would be reduced by half and would therefore further lower our human/archaic 
hominin TMRCAs within these haplotype blocks. The estimated TMRCA would then be more 
recent than the timing of the settlement of Australia, which was estimated recently from mtDNA 
sequences to be around 50 kya (76). We therefore feel that our results comprise evidence in favor 
of using the faster (1x10-8 per site per generation) mutation rate estimated using fossil 45 
calibration, along with a 6.5 Mya human/chimpanzee divergence time. 
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Comparing nucleotide diversity to phylogenetic position in ARG trees 

One simple model for human demographic history is the serial founder effect model 
wherein each human population diverged from a previous source population by undergoing a 
dispersal-related population bottleneck (77). This model has been invoked to explain the 5 
decreasing genetic and haplotype diversity seen in populations as a function of their distance 
from Africa, the geographic source of much of human genetic diversity. Under this model, each 
human population was founded by members of a preceding population and carries a subset of 
that population’s genetic diversity. As a result, the degree to which a population is ancestral to 
others – measured as how often that population occupies a basal position in ARG trees – should 10 
correlate with the nucleotide diversity within that population. We calculated the probability of 
each genome haplotype belonging to the smaller of the two clades at the deepest split in well-
articulated trees, and plotted this value against per-site nucleotide diversity (Fig. S 44). The 
residuals to the best-fit line computed excluding archaic hominins provide a measure of how well 
each haplotype’s phylogenetic placement agrees with this model. Among modern humans, 15 
residuals are highest in basal sub-Saharan Africans (Africa-MBK) and Papuans. One possible 
explanation for this observation is that both groups have undergone bottlenecks subsequent to 
their formation. Additionally, the residual for the Denisovan is 9.5% higher than for the 
Neanderthals. Although the Denisovan lineage is thought to have separated from modern humans 
at the same time as the Neanderthal lineage (1), it is also thought to possess up to 8% ancestry 20 
from a more-diverged, “super archaic” source (15), which could help explain this observation. 
 
Testing the effect of incorrect phasing on admixture mapping 

SARGE requires phased input, and improper phasing causes SARGE to infer incorrect 
ancestral recombination events (Table S 1). This is especially a problem for archaic genomes, 25 
which certainly contain phasing errors because they lack representation in phasing reference 
panels and are too fragmented to be experimentally phased. Because of this issue, we do not 
perform any analyses on individual archaic genomes; rather, we use the archaic genomes to 
locate and track segments of archaic ancestry in modern human genomes. We infer the existence 
of blocks of archaic admixture and/or incomplete lineage sorting wherever a tree places a 30 
modern human closer to archaic hominins than to other modern humans; we allow the archaic 
hominin genome haplotypes to change places within these blocks without breaking them, 
provided they are of the same type (all Neanderthal genome haplotypes can trade places with 
each other within these blocks, and Denisovan genome haplotypes can also trade places with 
each other). Nonetheless, we sought to assess whether incorrectly phased archaic hominin 35 
genomes would introduce problems for admixture scans in modern humans. 

We started with the output of our demographic simulation (see “Demographic simulations” 
section in Supplementary Methods) with a 0.05% admixture proportion. For each archaic 
hominin genome in the simulation (Altai Neanderthal, Vindija Neanderthal, and Denisovan), we 
then simulated phasing errors by randomly swapping the two haplotype’s alleles at a randomly-40 
chosen 50% of sites. We then ran SARGE on this data set with the same parameters as before 
(25 kb propagation distance) and scanned human haplotypes for archaic admixture. Because 
SARGE makes some decisions randomly and this can produce different output even in two runs 
with the same parameters on the same data set, we also re-ran SARGE on the original, properly 
phased data set to get a second replicate unaffected by phasing errors.  45 
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When computing the overall percent Neanderthal and Denisovan ancestry for each modern 
human haplotype using the different data sets, results are very similar. Comparing the two 
replicates of the properly phased data set, r2 = 0.9998, and the mean difference in admixture 
proportion estimates is 0.017%. Comparing the properly phased with the improperly phased data 
set, r2 = 0.9990 and the mean difference in admixture proportion estimates is 0.044%.  5 

We also checked to see whether improper phasing impaired our ability to locate specific 
archaic ancestry blocks (in specific parts of the genome). To this end, for each modern human 
genome in the simulation, we computed the Jaccard statistic (using BEDTools) between its 
ancestry maps produced using the properly and improperly phased data sets, as well as between 
the two replicate ancestry maps using the properly phased data set. The Jaccard statistic is a ratio 10 
of set intersection to set union, where 0 indicates no overlap and 1 indicates complete overlap 
between two maps. Overlap was high in all cases: for the two replicate properly phased data sets, 
the mean Jaccard statistic between ancestry maps was 0.899 (full range 0.772-0.973) and the 
mean Jaccard between ancestry maps using properly and improperly phased data was 0.937 (full 
range 0.859-0.982). 15 

We concluded from these experiments that the phasing errors present in archaic hominin 
genomes likely do not have a large effect on our admixture analyses, and that whatever effect 
they do have is likely smaller in magnitude than the effects of the random choices built into 
SARGE. 
 20 
Setting a distance for geographically restricted introgressed haplotypes 

In order to better understand how Neanderthal and Denisovan admixture might have 
affected different human populations differently, we sought to define whether each introgressed 
haplotype block was broadly shared by many different human populations or limited to specific 
geographic regions. Because the SGDP population labels we used (Africa, Africa-MBK, 25 
America, CentralAsiaSiberia, EastAsia, Oceania, SouthAsia, and WestEurasia) are very broad, 
we decided to use geodesic distances between reported sampling coordinates of each individual 
instead. For each introgressed haplotype, we computed a maximum pairwise distance (in km) 
between each pair of genomes that possessed that haplotype. We then chose 3,000 km as a cutoff  
below which all introgressed haplotypes were considered geographically restricted, and above 30 
which all introgressed haplotypes were considered geographically widespread. 

To test whether 3,000 km was a reasonable cutoff, we also applied cutoffs of 1,000, 2,000, 
and 10,000 km (as well as no cutoff, treating all introgressed haplotypes as geographically 
restricted). For each cutoff, we then plotted the distribution of TMRCAs to admixers and 
haplotype block lengths across all modern human genomes in geographically restricted 35 
introgressed haplotypes. We also used the Wilcoxon rank-sum test (wilcox.test in R) to compare 
each of these distributions to that created using the 3,000 km cutoff. Considering TMRCAs to 
admixers, neither the 1,000 or 2,000 km cutoffs were significantly different from the 3,000 km 
cutoff, using a significance threshold of 0.001. 1,000, 2,000, and 3,000 km cutoffs were all 
significantly different from the 10,000 km cutoff and no cutoff, however (Fig. S 45). Considering 40 
lengths, every cutoff (and no cutoff) was significantly different from the 3,000 km cutoff for 
Neanderthal haplotype blocks. For Denisovan haplotype block lengths, however, neither the 
1,000 nor 2,000 km cutoff significantly differed from the 3,000 km cutoff, while the 10,000 km 
cutoff and no cutoff both did (Fig. S 46).  

From this exercise, we deduced that a 3,000 km cutoff produced results that did not 45 
significantly differ from those produced using 1,000 or 2,000 km cutoffs, but that did differ from 
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a 10,000 km cutoff. As 3,000 km is large – over 1/3 the width of Eurasia – we took it to be a 
cutoff that would still allow for some widespread sharing of introgressed haplotype blocks and 
avoid discarding too many archaic haplotypes and causing sampling error in some genomes.  
 
Results of coalescent simulations  5 
 
 We ran a series of coalescent simulations against which to compare the amount of the 
human genome we found to contain admixture with archaic hominins, ILS with archaic 
hominins, regions free of both (deserts) and deserts containing fixed human-specific derived 
alleles (human-specific regions) (Supplementary Methods). We did not seek to model all 10 
structure within modern human populations or widely-hypothesized selection against weakly 
deleterious archaic hominin alleles (47). Rather, we used a simple, three-population model of 
human history (59), which included Africans, Europeans, and Asians, but without migration to 
and from Africa, in order to have an unadmixed outgroup for ascertaining archaic hominin 
admixture. Our goal was to obtain a null model for the relative extents of regions of admixture, 15 
ILS, deserts, and human-specific regions throughout the genome. We modeled one pulse of 
Neanderthal admixture into the ancestors of all non-Africans, followed by a later pulse of 
Denisovan admixture into Asians. We repeated our simulations with increasing admixture 
proportions, in order to find the best-fit admixture proportion for each observation in our real 
data. Ultimately, comparing these simulations with our real data suggests that we have 20 
underestimated the amount of admixture relative to ILS in our real data, and that there were 
probably numerous population-specific archaic admixture events aside from those we modeled. 
 In the absence of admixture, the entire genome is separable into regions of ILS and 
deserts. Selection aside, the extent of ILS in our simulation with no admixture depends only on 
fairly well-understood parameters, and is not affected by details omitted from the model such as 25 
population structure in modern humans. We find ILS to cover 37% of the genome and deserts to 
cover 63% in our simulation with no admixture (Fig. S 38A).  

For the closest possible comparison with real data, we computed the extent of desert 
regions in our outgroup Africa-MBK population, in which admixture was minimal (covering 5% 
of the genome). In this population, ILS covers 64% of the genome and deserts cover only 31% of 30 
the genome (Fig. S 38A). Assuming that human speciation involved selection for uniquely 
human alleles and against alleles shared with archaic hominins, our simulation with no admixture 
should place more of the genome in regions of ILS and less of it in desert regions than in real 
data, meaning that the extent of deserts in this simulation should be considered a lower bound. 
The presence of fewer deserts in real data than in this simulation therefore suggests either that 35 
some regions in which we detect ILS haplotypes actually contain admixture from archaic 
hominins, that selection actually worked to decrease rather than increase the extent of desert 
regions, or that another more fundamental model parameter, such as the split time between 
modern humans and archaic hominins, was incorrect.  

Because SARGE produces slightly shorter haplotypes on average than the true ARG, 40 
using simulated data (Fig. S 14) and because this problem is likely exacerbated in real data due 
to uneven mutation and recombination rates across chromosomes, it is likely that we have 
underestimated admixture and incorrectly labeled some of it as ILS. This is supported by our 
finding lower population-average archaic ancestry proportions than the D-statistic-based 
estimator (Fig. 3A). Another reason we may have under-estimated archaic ancestry in some 45 
populations is that we require admixed individuals to remain in a clade with at least one admixer 
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haplotype for the full extent of the admixed haplotypes. In the event that there is admixture but 
the introgressor is highly diverged from the archaic hominin genomes in our panel, we would be 
likely to break such admixed haplotypes into erroneously small pieces. This, in turn, would make 
them more likely to be labeled as ILS rather than admixture (Supplementary Methods, Fig. S16). 
The fact that we discover more ILS (43%) in our full panel than in any simulation, including our 5 
admixture-free simulation (37%) supports this.  

As we increased the amount of admixture in our simulations, we expected admixture to 
overwrite ILS and desert regions equally often, due to the absence of selection. In real data, 
however, we expect selection to remove admixed alleles from desert regions more often than 
from ILS regions, resulting in more extensive deserts and less extensive ILS relative to simulated 10 
data. Working from this assumption, the amount of admixture included in the simulation that 
most resembles our data (in terms of the extent of deserts versus admixture and ILS across the 
genome) should be lower than the amount of admixture that occurred in reality. 

We plotted the extent of admixture + ILS versus deserts + human-specific regions across 
all simulations, along with those values computed from real data and found that the real data 15 
values correspond to simulations with 18.2% admixture proportions (Fig. S 38B). Such 
simulations produced unrealistically high individual percent archaic ancestry estimates, however 
(Fig. S 38C). In real data, the existence of population structure can help explain this discrepancy 
in two ways.  

First, population structure could increase the power of drift to randomly eliminate some, 20 
and increase the frequency of other, archaic hominin haplotypes in individual human 
populations. This could result in individual populations each maintaining small numbers of 
archaic haplotypes from a shared, ancestral admixture event, each covering different parts of the 
genome.  

Second, later admixture events involving small, isolated populations would increase the 25 
total amount of the human genome containing admixture without contributing to the overall 
percent archaic hominin ancestry in individuals that do not belong to those populations. If this 
happened, migrants from these populations could later contribute archaic hominin haplotypes to 
other populations, which would then be widely shared within those populations and exist at 
relatively high frequency in our panel; this is what we see, for example, in the case of Denisovan 30 
haplotypes in West Eurasians (Fig. S23, Fig. S 28B). We also find further evidence of 
population-specific admixture events in the presence of geographically restricted Neanderthal 
and Denisovan haplotype blocks in our real data set, which have different distributions of 
haplotype block lengths and TMRCAs to admixer than geographically widespread archaic 
hominin haplotype blocks (Fig. 3B,D; Fig. S 17A,D). 35 

If we also allow for the possibility of more admixture events than the two we modeled, 
then each could have had a lower admixture proportion than those in our model. This seems 
likely, given the presence of many geographically restricted archaic hominin haplotype blocks 
(Fig. 3C, Fig. S 17B-C, Fig. S 18B-C), the existence of mysterious Neanderthal and Denisovan-
like haplotype blocks detected in sub-Saharan Africans but unlike those detected in non-Africans 40 
(Fig. 3B, Fig. S 17B), findings of prior studies (9, 22, 78), and the evidence that we may have 
mis-labeled some ILS as admixture, even in the deeply-divergent Africa-MBK lineages thought 
to be free of Neanderthal and Denisovan ancestry. 
 
Timing and functional consequences of human-specific mutations 45 
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After identifying regions of the human genome free of incomplete lineage sorting and 
admixture with archaic hominins in all modern human genomes sampled, we identified fixed or 
nearly-fixed human-specific derived mutations within these regions (Supplementary Methods). 
Using the chimpanzee genome as an outgroup and assuming 6.5 mya human-chimpanzee 
divergence (31), we computed the TMRCA in years of each human-specific clade and its parent. 5 
We then took the mean of these two numbers (the midpoint of the branch containing all derived 
alleles specific to and shared by all modern humans) to be the age of each human-specific 
mutation. We then compiled all such mutations that either created nonsynonymous substitutions 
relative to the Neanderthal and Denisovan genomes (32) or fell within an annotated binding site 
for a regulatory element known to target specific genes (64) (Supplementary Methods). We then 10 
performed several analyses to determine whether particular biological processes or tissues were 
predominately affected by mutations that occurred at distinct points in time. 

With our list of affected genes and approximate ages of mutations affecting them, we 
compared ages of mutations affecting interacting pairs of genes, according to the STRING 
database (33) (Supplementary Methods) and found two distinct bursts of mutations affecting 15 
interacting sets of genes, at approximately 100 kya and 300 kya (Fig. 5B). We then performed 
Gene Ontology (GO) enrichment analyses on the sets of genes affected by mutations 300-350 ky 
old, and affected by mutations 100-150 ky old, using FUNC (68) to determine whether different 
biological processes were affected by mutations at the different time points. We found a variety 
of biological process terms to be enriched in the gene sets at both time points (Table S 5); we 20 
were therefore unable to identify any specific biological process as the main target of selection at 
either time point. 

We next sought to identify whether any tissues were predominantly affected by mutations 
clustered together in time, or whether the same tissues tended to be acted on repeatedly by 
different mutations over time. To this end, we computed the tissue specificity of each gene in our 25 
set by calculating tau (67) from median tissue-specific expression values across many samples in 
the GTEx database (66), excluding cell line data. We then compared the ages of all mutations 
affecting high-tau (> 0.9) genes specific to the same tissues. After normalizing counts of 
mutations affecting specific tissues at specific time points to account for the overall number of 
genes specific to each tissue (Supplementary Methods), we found that most tissues were acted on 30 
repeatedly by mutations over time (Fig. S 39A). 

There are several exceptions to this pattern, however. For example, the two tissues acted 
on most recently but not affected by older mutations are the frontal cortex and basal ganglia, 
with mutations 100-200 ky old (Fig. S 39A). The genes affected by these mutations are CREG2 
and SLC32A1. CREG2 has little known about its function. SLC32A1 codes for a transmembrane 35 
protein that transports the inhibitory neurotransmitter GABA into synaptic vesicles (79), with a 
nonsynonymous substitution in one of its intra-vesicle, lumenal domains (32).  

In addition, most mutations affecting brain-specific genes happened after 300 kya (Fig. S 
39A), coincident with a peak in changes to developmentally-relevant genes (Fig. S 39B) and 
postdating the age of human remains discovered to have some modern features coupled with 40 
archaic cranial morphology (36). 

We then sought to identify whether broad functional categories of genes (genes involved 
in developmental, immune system, metabolic, and/or reproductive processes as annotated in the 
Gene Ontology database (39)) were affected by mutations occurring at specific points in time 
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(Supplementary Methods). When considering relative numbers of mutations affecting 
development, immunity, metabolism, and reproduction, we find an uptick in metabolic changes 
beginning 700 kya; the rate of accumulation of such changes was consistent until 400 kya, when 
it accelerated (Fig. S 39B). In contrast, developmental changes took an extra 100 kya to begin to 
rapidly accumulate (Fig. S 39B). Although our data are low-resolution, this could imply that 5 
changes in diet or energy usage were important in the very early development of our species. 
 
Prioritizing selected human-specific derived mutations 
 Starting with our list of human-specific derived mutations within deserts, limited to those 
that either caused a nonsynonymous substitution relative to archaic hominins or fell within an 10 
annotated binding site for a regulatory element believed to affect specific genes (Supplementary 
Methods), we sought to prioritize these mutations by the strength of evidence that they were 
acted on by selection. To this end, we created a score for each mutation based on its age (where 
available) and the length of the surrounding desert region (Supplementary Methods). We 
expected mutations targeted by selection to have a recent age (both because they arose recently 15 
in time and should have reduced haplotype diversity in the event of either positive or purifying 
selection) and a long surrounding desert region (because recombination has not yet had time to 
break down such haplotypes into smaller pieces). We ranked genes by scores of mutations 
affecting them (Fig. 5C), in order to identify genes and biological processes acted upon by 
selection since the split between modern humans and archaic hominins. According to a Wilcoxon 20 
rank-sum test using these scores, many biological processes appear to have been affected by such 
selection (Table S 6).  

In addition to genes involved in mRNA splicing and brain development (main text), we 
find a number of high-scoring regulatory mutations affecting genes involved in histone 
acetylation (Table S 6), which suggests another way that a small number of mutations could lead 25 
to large-scale changes in gene expression that could in turn cause phenotypic differences. These 
include four mutations affecting KAT7 and KAT8, three affecting ASH1L, three affecting ING4, 
and one affecting SETD2.  

We find several mutations affecting centrosomal and/or mitotic spindle or kinetochore-
associated genes that may be involved in neural cell proliferation, beyond those mentioned in the 30 
main text. We find three high-scoring regulatory mutations affecting ARHGEF2, which is a Rho 
GTPase activator involved in cell division and cell migration localized to the mitotic spindle, 
whose mutation has been linked to microcephaly and other brain development disorders (80). All 
mutations affecting genes localized to the centrosome or kinetochore are in the top 50th 
percentile of our score distribution; these include nonsynonymous mutations affecting ALMS1, 35 
KATNA1, KIF18A, RABL6, and SPAG5. We also find centrosomal genes affected by multiple 
candidate regulatory mutations, including 10 mutations affecting the nucleoporin NUP62, which 
maintains centrosomes and is required for successful mitotic division (81), 9 affecting 
MAP3K11, which influences microtubule organization (82), and 8 affecting ATF5, which is a 
cancer drug target, suggesting it can affect cell proliferation (83).  40 

In addition to mutations affecting axon pathfinding-related genes mentioned in the main 
text, we find a moderately high-scoring potential regulatory mutation affecting NTM 
(neurotrimin), a brain-specific gene also thought to contribute to cell-surface protein diversity 
involved in axon guidance (84), and two regulatory mutations affecting NAV1, a gene believed 
to be involved in axon guidance due to homology with a similar C. elegans gene (85). 45 
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Control of the migration of neural cells might also play a factor in human-specific 
developmental changes. We find a regulatory element mutation affecting the transcription factor 
NIPBL to be in the top 99.5th percentile of the score distribution; aside from many other 
functions, this gene is involved in brain development and required for proper cortical neuron 
migration (86).   5 

Some other top-scoring mutations may be involved in control of toxic substances in the 
brain. One top-scoring regulatory mutation affects the ferritin heavy chain gene FTH1, which 
can sequester iron, an element whose over-accumulation in brain tissue can cause 
neurodegenerative disease (87). Amyloid-beta, which aggregates to form pathogenic plaques 
involved in Alzheimer’s disease, is another regulated substance that is cleared from the brain 10 
during sleep (88). Two of the highest-scoring regulatory mutations affect amyloid-beta binding 
proteins CST3, which can inhibit amyloid-beta aggregation (89), and APOE, which also 
influences amyloid-beta accumulation in Alzheimer’s disease and may play neurodevelopmental 
roles as well (90).  

There is evidence that amyloid-beta, when properly regulated, helps control synaptic 15 
activity by regulating other genes (91); the Gene Ontology term “response to amyloid-beta” is 
enriched in interacting sets of genes affected by mutations that arose in the burst 300-350 kya 
(Table S 5). This is due to five regulatory mutations affecting FYN, a tyrosine kinase activated 
by amyloid-beta that influences synaptic plasticity through NMDA receptor phosphorylation, 
among other neurological functions (92); its interaction partner GRIN1, an NMDA receptor 20 
subunit, also has four regulatory mutations, the two of which we could date arose around the 
same time.  
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Fig. S1. 
Different types of four haplotype test failures. In each, the γ clade is highlighted in purple, α in 5 
red, and β in blue. A: Lateral branch movement. Four haplotype test failures of type α/ α, α/ β, 
and β/ β are observed. B: Upward branch movement. Only α/ α four haplotype test failures are 
observed. C: Downward branch movement. Only β/ β four haplotype test failures are observed. 
 
  10 
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Fig. S2. 
Example of algorithm for inferring branch movements between to trees known a priori. A: Two 
trees, which differ by one branch movement. B: Clades from the two trees that fail the four 
haplotype test. Left column shows clades from the first (upstream) tree and right column shows 5 
clades from the second (downstream) tree; arrows indicate four haplotype test failures. C: Graph 
showing all possible branch movements that could explain the four haplotype test failures shown 
in B. The left and right columns are “tree” nodes, while the center column lists candidate γ 
clades. Colors indicate types of four haplotype test failures: red paths are conditional on a failure 
being the α/ α type, green on it being α/ β, and blue on it being β/ β. In this case, a single 10 
candidate γ clade (C) has the most edges and can explain all four haplotype test failures. This is 
interpreted as the clade C moving from the smallest observed α clade in the first tree (CD) to the 
smallest observed β clade in the second tree (CH). If no β clades from the second tree are 
observed, the branch movement goes upward to a clade containing the union of all clades failing 
the four haplotype test. If no α clades from the first tree are observed, the branch movement goes 15 
downward from a clade containing the union of all clades failing the four haplotype test. 
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Fig. S 3 

How the propagation distance parameter affects the operations SARGE performs on ARG nodes 
(clades). SARGE does not store all nodes across an entire chromosome in memory at once; once 
sites that define nodes are sufficiently far away from the most recently-observed site as to not be 5 
affected by it, they can be written to disk and erased. In this figure, c is the position (in reference 
genome coordinates) of the most recently-read site, and p is the propagation distance (in base 
pairs). Clades within 2p bases of one another can “communicate” with one another and form 
parent/child and recombination edges.  
 10 
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Fig. S 4 

Calculation of branch lengths. Each non-root branch (A-I) stores the number of mutations that 
tag its child clade, as well as the genomic interval over which it exists. Each green letter 
represents a branch length, calculated as the number of mutations on the branch divided by the 5 
genomic interval over which those mutations were observed. In the case of the root branch (R), 
this genomic interval will always be two times the propagation distance, since the root clade 
(consisting of all haplotypes in the data set) cannot be affected by ancestral recombination 
events. The red values below the green values are the sum of all branch lengths above each 
branch, and the blue values are the sum of all branch lengths below each branch. The scaled 10 
branch lengths used in this study are then the individual branch lengths divided by the height of 
the tree at those branches, or the green values divided by the sum of the red and blue values. 
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Fig. S5. 
Properties of SARGE performance on simulated data with a sub-Saharan African-like level of 
heterozygosity, constant population size history, and no structure. Points are means; error bars 5 
show one standard deviation. A: Tree articulation as a percent of all nodes possible (given the 
number of haplotypes), with increasing number of haplotypes. B: Percent of all clades (across all 
trees) inferred from solving recombination events (rather than shared mutations). C: Number of 
trees across the chromosome with two children of the root node (no root-level polytomies). D: 
Execution time as a function of the number of input haplotypes. Real data, where SNPs and 10 
recombination events cluster in the genome, is likely to increase execution time. 
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Fig. S6 
 
Comparisons of SARGE to three other ARG inference programs (5, 7, 8), using a simulated data 5 
with sub-Saharan African-like heterozosity, constant population size, and no structure. In each 
comparison, error bars represent one standard deviation across 5 replicates and ARGs were 
inferred across data sets with increasing numbers of haplotypes. A and B used a 2.5 x 10-8 
mutation rate per site per generation; C and D used a 1.0 x 10-8 mutation rate per site per 
generation. A and C show specificity, defined as the percent of nodes in an inferred ARG that 10 
were correct according to the true ARG. B and D show sensitivity, defined as the percent of 
nodes in the true ARG that were present in the inferred ARG. Sensitivity and specificity are 
equal for the two methods (Rent+ and Relate) that produce fully articulated trees (without 
polytomies). 
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Fig. S 7 

Execution time for SARGE and three other tested ARG inference programs (5, 7, 8), using a 
simulated data set with sub-Saharan African-like heterozygosity, constant population size, and 
no structure, with a 2.5 x 10-8 mutation rate per site per generation. Because tsinfer is a Python 5 
module, its execution time does not include file I/O. A: Showing all programs. B: Omitting 
Rent+.  
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Fig. S 8 

Effect of propagation distance parameter on SARGE sensitivity and specificity on simulated 
data. A: Using a simulated data set of human and archaic genomes (see Supplementary Methods, 
“Demographic simulations” section), specificity (percent clades from inferred ARG present in 5 
true trees) on y-axis versus sensitivity (percent true trees recovered correctly by inferred ARG) 
on x-axis. Numbers at the top of boxes are SARGE propagation distances (in kb) or other 
programs (tsinfer or Relate) used to infer ARGs (8) instead of SARGE. Relate shows a unique 
pattern because it, like the simulation, produces fully articulated trees (without polytomies); 
sensitivity and specificity are both therefore always equal (the denominators – the number of 10 
inferred clades and the number of true clades – are identical). Horizontal lines are mean 
specificity across the entire ARG and vertical lines are mean sensitivity across the entire ARG. 
B: Mean sensitivity and specificity values (same as horizontal and vertical lines in A) across 
SARGE runs with different propagation distances, compared to tsinfer and Relate. Colors show 
programs used (green = SARGE, blue = tsinfer, red = Relate). 15 
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Fig. S 9 

A: SARGE was run on a simulated data set of 66 human and archaic hominin genomes 
(Supplementary Methods), and each clade in each tree in the true (simulation) ARG was 
searched for in the SARGE-inferred ARG. Clades present in the SARGE results (red), clades 5 
incompatible with (failing the four gamete test with) clades at the same site in the SARGE results 
(green), and clades missing due to a polytomy in SARGE results (blue) are shown. The x-axis 
shows the size of the clades. B: The same as A, but using a larger (500-haplotype) simulation 
with no population structure (“QC simulations” in Supplementary Methods). 
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Fig. S 10 

Using a simulated data set approximating humans and archaic hominins (see Supplementary 
Methods), ARGs were inferred using three different programs, and incorrect clades (clades in 
inferred ARG trees that do not exist in the true simulation trees) were considered. For each 5 
incorrect clade, the minimum distance on the chromosome to a position where that clade is 
correct (in the true simulation ARG) is shown. 
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Fig. S 11 

Accuracy of inferred branch lengths, using simulated data. Data are from a 25 Mb simulated data 
set using a demographic model of human and archaic hominin evolution, including archaic 5 
hominin admixture (see Supplementary Methods). A: For each correct clade inferred by SARGE, 
its true branch length (x axis) is compared to its inferred branch length (y axis). The line shows 
the expectation if inferred branch lengths always matched true branch lengths. B: Same as A, but 
for the ARG inferred by Relate (7). C: Inferred minus true branch lengths for both SARGE and 
Relate. To help with readability, only the 1st to 99th percentile of both distributions is shown. D: 10 
Same as C, but using a larger simulated data set with the same parameters, but 450 modern 
human haplotypes and 6 archaic hominin haplotypes. Because Relate trees contain fewer 
polytomies and thus have many more branch lengths, only a sample of 5 million branch length 
differences was selected from each ARG to plot. 
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Fig. S 12 

Using a simulated data set in which humans received one pulse of Neanderthal admixture 50 kya 
and one pulse of Deniosvan admixture 20 kya (Supplementary Methods), all clades grouping 5 
some human haplotypes with archaic hominin haplotypes, to the exclusion of other human 
haplotypes, were selected from the true simulation ARG (A) and the ARG inferred from SARGE 
(B). Each point is one such clade, colored by the type of archaic hominin genomes it contains 
(ambiguous means that human haplotypes are equally related to Neanderthal and Denisovan 
genomes within the clade). The persistence of each clade along the genome (x-axis) and mean 10 
TMRCA between archaic and human haplotypes within the clade (y-axis) are shown. In B, many 
such clades had a TMRCA to admixer of 0 years and are shown along the bottom of the panel. 
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Fig. S13 

How mutation and recombination rate variation affects ARG trees. The ARG was inferred on 
Simons Genome Diversity Project data (14) with three archaic hominin genomes (1, 15, 16) 5 
included. A: In 50kb genomic windows, mean tree articulation (number of nodes per tree y-axis) 
versus mutation rate to recombination rate ratio within the window (x-axis). B: Number of 
inferred ancestral recombination events per 50kb genomic window (y-axis) vs. mean population 
recombination rate (cM/Mb; x-axis). Data used  Simons Genome Diversity Project data (14) with 
three archaic hominin genomes included. The two numbers are correlated (Spearman’s rho = 10 
0.46; p < 2.2e-16). 
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Fig. S 14 

Persistence of clades (haplotype block lengths) in a true vs. inferred ARG.  The true ARG and 
input data for the inferred ARG are from a scrm (58) simulation with Neanderthal and Denisovan 
admixture proportions of 0.05 (Supplementary Methods). Shown are haplotype block lengths for 5 
100,000 clades randomly sampled from each ARG. The difference in haplotype block length 
distribution is owed to SARGE artificially breaking long haplotypes: while the mean true 
haplotype block length is 2.46x the mean inferred haplotype block length, the median true 
haplotype block length is only 1.04x the median inferred haplotype block length. In real data, 
haplotype block lengths can be shorter still due to variation in mutation and recombination rates 10 
across chromosomes, as well as phasing errors in input data, which will introduce artificial 
ancestral recombination events that can break haplotypes.  
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Fig. S15 

Example of a typical tree in our human data set. Shown is the tree for chromosome 1, position 
4870939 (hg19 coordinates), which contains 90 nodes (the average for all trees genome-wide). 
Branch lengths are measured as a percent of human-chimpanzee divergence (assumed to be 13 5 
million years). Since clades inferred from recombination alone do not receive a branch length, a 
pseudocount of 0.0008 (corresponding to about 10 thousand years) was added to each branch 
length. All clades whose average distance to leaves is less than 0.005 (approx. 65 ky) are 
collapsed, shown as triangles with size proportional to the number of leaves contained within. 
The tree was generated using ITOL (93); all populations shown are from the Simons Genome 10 
Diversity Panel (14) plus Neanderthal (1, 15) and Denisovan (16)genomes. Africa-MBK consists 
of the most basal African lineages (Khomani-San, Mbuti, and Biaka).  
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Fig. S16 
Separating admixed haplotypes from incomplete lineage sorting (ILS). A: After selecting 5 
candidate admixed haplotypes and excluding any that contained more than 10% outgroup 
haplotypes (from the most basal sub-Saharan lineages, here referred to as Africa-MBK), we 
assigned each haplotype a score, which increased with both haplotype block length and low time 
to most recent common ancestor (TMRCA) with the admixer. For different score cutoffs, we 
calculated the coefficient of variation (standard deviation divided by mean) of the TMRCA to 10 
admixer within each population and chose the score at which this value began to stabilize for 
each type of admixture as the cutoff (vertical line). B: TMRCA to admixer and haplotype block 
length of all admixed haplotypes passing the cutoff. 
  



Submitted Manuscript: Confidential 

73 
 

 
Fig. S 17 

Properties of Denisovan-introgressed haplotype blocks. A: For each human genome haplotype 
(dots), mean haplotype block length for Denisovan haplotypes (x-axis) and mean TMRCA to 
Denisovan within Denisovan haplotyeps (y-axis) are reported. One outlier for short haplotypes 5 
(S_Naxi-2) appears to have phasing errors (Table S 1). B: Total number of unique Denisovan 
haplotype blocks per genome (x-axis) and number of geographically restricted (unique to a 3,000 
km radius) Denisovan haplotype blocks per genome (y-axis). C: Same as B, but with the 
Australian, Bougainville, and Papuan cluster removed for readability. D: Same as A, but for only 
geographically restricted haplotype blocks. Only genome haplotypes with more than 10 unique 10 
Denisovan haplotype blocks are included. 
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Fig. S 18 

TMRCAs to the Denisovan genome in Denisovan-introgressed segments restricted to genomes 
sampled within 3,000 km of each other.  
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Fig. S 19 

Properties of ambiguous (Neanderthal or Denisovan origin) archaic-introgressed haplotype 
blocks. A: For each human genome haplotype (dots), mean haplotype block length for 
ambiguous haplotypes (x-axis) and mean minimum TMRCA to an admixer haplotype 5 
(Neanderthal or Denisovan) within ambiguous haplotyeps (y-axis). One outlier for short 
haplotypes (S_Naxi-2) appears to have phasing errors (Table S 1). B: Total number of unique 
ambiguous haplotype blocks per genome (x-axis) and number of geographically restricted 
(unique to a 3,000 km radius) ambiguous haplotype blocks per genome (y-axis). C: Same as B, 
but with the Australian, Bougainville, and Papuan cluster removed for readability. D: Same as A, 10 
but for only geographically restricted haplotype blocks. Only genome haplotypes with more than 
10 unique ambiguous haplotype blocks are included. 
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Fig. S20 
Worldwide distribution of times to most recent common ancestor (TMRCA) to the closest 
Neanderthal haplotype of Neanderthal-like haplotypes in modern humans. Points are averages 5 
across all haplotypes within all genomes from each location. Numbers are corrected for branch 
shortening, using the values given for the two Neanderthal genomes in (1). 
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Fig. S21 
Worldwide distribution of frequencies of individual Neanderthal-like haplotypes in modern 
humans. For each introgressed haplotype, its frequency in all humans worldwide was computed, 
and these values were averaged across all haplotypes within all human genomes from each 5 
geographic location.  
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Fig. S22 
Worldwide distribution of times to most recent common ancestor (TMRCA) to the closest 
Denisovan haplotype of Denisovan-like haplotypes introgressed in modern humans. Points are 5 
averages across all haplotypes within all genomes from each location. Numbers are corrected for 
branch shortening, using the value given for the Denisovan genome in (1). 
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Fig. S23 
Worldwide distribution of frequencies of individual Denisovan-like haplotypes in modern 
humans. For each introgressed haplotype, its frequency in all humans worldwide was computed, 
and these values were averaged across all haplotypes within all human genomes from each 5 
geographic location.  
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Fig. S24 

Worldwide distribution of times to most recent common ancestor (TMRCA) to the closest 
admixer haplotype (Neanderthal or Denisovan) of introgressed haplotypes of ambiguous origin 5 
in modern humans. Points are averages across all haplotypes within all genomes from each 
location. Numbers are corrected for branch shortening, using the values given in (1). Some 
ambiguous haplotypes are the result of merging Neanderthal and Denisovan haplotypes together; 
in those cases, TMRCAs are averages of those in the two original haplotypes, weighted by the 
number of bases in each. 10 
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Fig. S 25 

Worldwide distribution of frequencies of individual ambiguous origin introgressed haplotypes in 
modern humans. For each introgressed haplotype, its frequency in all humans worldwide was 
computed, and these values were averaged across all haplotypes within all human genomes from 5 
each geographic location.  
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Fig. S 26 

For all non-African haplotypes, the percent of geographically restricted (limited to genomes 
sampled within 3,000 km of each other) Neanderthal-introgressed segments, of all Neanderthal-
introgressed segments. 5 
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Fig. S 27 

For all non-African haplotypes, the percent of geographically restricted (limited to genomes 
sampled within 3,000 km of each other) Denisovan-introgressed segments, as a percent of all 
Denisovan-introgressed segments. 5 
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Fig. S 28 

Sharing of archaic hominin haplotypes between human genome haplotypes. Genomes are 
arranged (rows and columns) according to a tree inferred via UPGMA on genome-wide SNPs 
from the input data set (top and bottom of matrices); colors below the trees correspond to SGDP 5 
population identifiers (top). A: Sharing of Neanderthal-introgressed haplotypes, as measured by 
the Jaccard statistic. B: Sharing of Denisovan-introgressed haplotypes, as measured by the 
Jaccard statistic. 
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Fig. S 29 

Sharing of archaic hominin haplotypes between human genome haplotypes. Genomes are 
arranged (rows and columns) according to a tree inferred via UPGMA on genome-wide SNPs 
from the input data set (top and bottom of matrices); colors below the trees correspond to SGDP 5 
population identifiers (top). A: Sharing of ambiguous (Neanderthal or Denisovan) introgressed 
haplotypes, as measured by the Jaccard statistic. B: Sharing of ambiguous introgressed 
haplotypes, combined with Denisovan introgressed haplotypes, as measured by the Jaccard 
statistic. 

  10 
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Fig. S30 
Percent of archaic-introgressed haplotypes in Africa (excluding Biaka, Mbuti, and Khomani-San) 5 
shared with other SGDP populations. Africa-MBK consists of most basal sub-Saharan African 
lineages (Mbuti, Biaka, and Khomani-San) used as an outgroup in which all introgressed 
haplotypes were required to be < 10% frequency. 
  

0.00

0.25

0.50

0.75

1.00

Pe
rc

en
t h

ap
lo

ty
pe

s 
sh

ar
ed

Population
Africa
Africa-MBK

America
CentralAsiaSiberia

EastAsia
Oceania

SouthAsia
WestEurasia

Neanderthal

0.00

0.25

0.50

0.75

1.00

Pe
rc

en
t h

ap
lo

ty
pe

s 
sh

ar
ed

Denisovan

0.00

0.25

0.50

0.75

1.00

Pe
rc

en
t h

ap
lo

ty
pe

s 
sh

ar
ed

Ambiguous

Africa haplotype sharing



Submitted Manuscript: Confidential 

87 
 

 
Fig. S31 
Percent of archaic-introgressed haplotypes in basal African lineages used as an outgroup (Biaka, 
Mbuti, and Khomani-San) shared with other SGDP populations.  
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Fig. S32 
Percent of archaic-introgressed haplotypes in America shared with other SGDP populations. 
Africa-MBK consists of most basal sub-Saharan African lineages (Mbuti, Biaka, and Khomani-
San) used as an outgroup in which all introgressed haplotypes were required to be < 10% 5 
frequency. 
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Fig. S33 
Percent of archaic-introgressed haplotypes in CentralAsiaSiberia shared with other SGDP 
populations. Africa-MBK consists of most basal sub-Saharan African lineages (Mbuti, Biaka, 
and Khomani-San) used as an outgroup in which all introgressed haplotypes were required to be 5 
< 10% frequency. 
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Fig. S34 
Percent of archaic-introgressed haplotypes in EastAsia shared with other SGDP populations. 
Africa-MBK consists of most basal sub-Saharan African lineages (Mbuti, Biaka, and Khomani-
San) used as an outgroup in which all introgressed haplotypes were required to be < 10% 5 
frequency. 
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Fig. S35 
Percent of archaic-introgressed haplotypes in Oceania shared with other SGDP populations. 
Africa-MBK consists of most basal sub-Saharan African lineages (Mbuti, Biaka, and Khomani-
San) used as an outgroup in which all introgressed haplotypes were required to be < 10% 5 
frequency. 
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Fig. S36 
Percent of archaic-introgressed haplotypes in SouthAsia shared with other SGDP populations. 
Africa-MBK consists of most basal sub-Saharan African lineages (Mbuti, Biaka, and Khomani-
San) used as an outgroup in which all introgressed haplotypes were required to be < 10% 5 
frequency. 
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Fig. S37 
Percent of archaic-introgressed haplotypes in WestEurasia shared with other SGDP populations. 
Africa-MBK consists of most basal sub-Saharan African lineages (Mbuti, Biaka, and Khomani-
San) used as an outgroup in which all introgressed haplotypes were required to be < 10% 5 
frequency. 
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Fig. S 38 

Coalescent simulations with one Neanderthal and one Denisovan admixture event were run, with increasing 
admixture proportions (Supplementary Methods). An ARG was inferred over each, and several values were 
computed and compared to those from real data. A: Percent of the genome in regions containing archaic hominin 5 
admixture in any individual, incomplete lineage sorting in any individual, neither (deserts), or neither plus a derived 
allele specific to and fixed in all humans (human-specific regions). Left: Using the ARG inferred on our full real 
data set, but considering only the most basal (Africa-MBK) human lineages, thought to be relatively free of 
admixture. Human-specific regions still require alleles to be fixed across all humans, not only Africa-MBK 
individuals. Right: results using a simulation that did not include any archaic hominin admixture. B: The full extent 10 
of regions containing admixture or ILS with any archaic hominin across all sampled humans, and the extent of 
regions free of both admixture and ILS (deserts). Horizontal lines show values computed from real data. C: The 
range of percent archaic ancestry per individual (f) (points are mean values; error bars show maximum and 
minimum value). The horizontal dotted line shows this (mean) value for real data, and the shaded rectangle shows 
maximum and minimum values. 15 
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Fig. S 39 

Human-specific derived changes through time. A: For human-specific derived mutations 
affecting tissue-specific genes (tau > 0.9) in time bins dating back 1 my, enrichment of affected 
tissues in each time bin. Expression data came from the per-gene median tissue expression 5 
values across many samples from the GTEx database (66), with cell line “tissues” excluded. 
Values shown are the percent of all mutations in a time bin affecting a given tissue, divided by 
the percent of all total tissue-specific genes affecting that tissue. B: For human-specific derived 
mutations affecting all genes in time bins dating back 1 my, the relative number of Gene 
Ontology (65) terms per time bin below the terms “metabolic process,” “developmental process,” 10 
“immune system process,” and “reproductive process” are shown. 
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Fig. S40. 
How node indices are adjusted when four haplotype test failures are encountered. Black letters 
represent clades, yellow numbers in curly braces represent site indices, and blue numbers in 5 
brackets represent start and end coordinates (inclusive). Red text indicates an adjusted value. Red 
arrows show four haplotype test failures, and black arrows represent changes made to nodes. A: 
a simple case where the furthest donwnstream site owned by node 1 (50) is upstream of the 
furthest upstream site owned by node 2 (150). In this case, node 1's end coordinate is set to its 
furthest downstream site, and node 2's start coordinate is set to its furthest upstream site. B: Node 10 
4 interrupts the range of node 3. Node 3 must be split into two nodes, and all three resulting 
nodes must have their ranges adjusted. 
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Fig. S41. 
Tree-compatibility in three different situations. Gray squares are nodes, black letters are clades, 
yellow numbers in curly braces are genomic positions, and blue numbers in brackets are start/end 
coordinates. Red arrows indicate four haplotype test failures, and green ovals denote tree 5 
compatibility. A: three pairs of nodes are compatible (can belong to the same trees as each 
other). B: only two pairs of nodes are tree-compatible. C: Only one pair of nodes is tree-
compatible. 
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Fig. S 42 

Filtering a recombination graph after finding the initial set of nodes. All upstream nodes in the 
set are marked with U, downstream nodes marked with D, and candidate “leaving” nodes are 
squares marked with L. Genomic intervals over which each node is known to exist are marked 5 
with solid horizontal lines, and dashed lines represent recombination edges (each connects an 
upstream node with a downstream node, through a candidate leaving node). The initial “key” 
node is the upstream node marked with an asterisk. After the recombination graph is gathered, 
the genomic interval in which the recombination event must have happened is shaded gray. One 
of the upstream nodes in the set has a closest downstream recombination partner node within this 10 
interval, which is not part of the downstream set (all three nodes shown in red). This upstream 
node therefore does not help describe the same ancestral recombination event as the other nodes 
and will be removed.  
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Fig. S43. 
An example case in which multiple ancestral recombination events may be considered as one. A: 5 
The true ARG across three adjacent genomic regions. Clades involved in recombination are 
marked α and β; subscripts denote the recombination event (first or second) to which they 
correspond. Clades observed in SNP data appear below each tree in the order in which they are 
observed; colors mark the true tree to which each clade belongs. Purple branches are true γ 
clades, and purple arrows show ancestral recombination events. B: The correct grouping of 10 
nodes path through them in a recombination graph. First, (J) moved downward from 
(ABCDEFGHIJ) to (EFGHIJ). Then, (E) moved from (EFGHI) to (ABCE). C: A likely incorrect 
inference made, if nodes are not grouped correctly into trees. It appears most parsimonious to say 
that (J) moved down from (ABCDEFGHIJ) in the first tree to (FGHIJ) in the third tree, skipping 
the middle tree altogether. If this choice is made, genomic positions for the ancestral 15 
recombination event will also be wrong, as it chooses the narrowest possible interval, which 
would place it between the first and second tree. Note that observing the clade (ABCE) in the 
third tree might help avoid this problem. 
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Fig. S 44 

Probability of a haplotype belonging to the deepest diverging clade in a tree (defined as the 
smaller of the two children of the root, only when the root node is bifurcating and the two 
children have unequal numbers of leaves) against per-site nucleotide diversity, computed using 5 
only sites used to build the ARG (biallelic SNPs passing quality filters, where the chimpanzee 
allele is known, excluding CpG sites). Dotted lines are residuals to the best fit line computed 
excluding archaic hominins (solid line). 
  



Submitted Manuscript: Confidential 

101 
 

 
Fig. S 45 

Effects of choosing different geographic range cutoffs on the distributions of TMRCAs between 
admixed and admixing individuals within geographically restricted Neanderthal and Denisovan 
introgressed haplotype blocks in modern humans. NEA = Neanderthal-introgressed haplotypes; 5 
DEN = Denisovan-introgressed haplotypes. Asterisks denote distributions significantly different 
(via Wilcoxon rank-sum test) from that produced using a 3,000 km cutoff (the choice made in 
this study). 
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Fig. S 46 

Effects of choosing different geographic range cutoffs on the distributions of lengths of 
geographically restricted Neanderthal and Denisovan introgressed haplotype blocks in modern 
humans. NEA = Neanderthal-introgressed haplotypes; DEN = Denisovan-introgressed 5 
haplotypes. Asterisks denote distributions significantly different (via Wilcoxon rank-sum test) 
from that produced using a 3,000 km cutoff (the choice made in this study).  
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Genome haplotype Mean % error Genome haplotype 

(continued) 
Mean % error 
(continued) 

Denisova-1 42.27 S_Khomani_San-1-1 3.36 
Denisova-2 40.68 S_Ju_hoan_North-2-2 3.31 
Altai-2 15.72 S_Biaka-1-2 3.14 
Altai-1 14.95 S_Mbuti-2-1 3.10 

Vindija33.19-2 12.58 S_BantuHerero-2-2 2.93 
Vindija33.19-1 8.79 S_Khomani_San-2-2 2.78 

S_Khomani_San-1-2 5.22 S_Mbuti-1-2 2.59 
B_Ju_hoan_North-4-2 5.15 S_Ju_hoan_North-3-1 2.55 

S_Naxi-2-2 4.56 S_BantuTswana-1-2 2.47 
S_Ju_hoan_North-1-2 3.98 S_Biaka-2-2 2.46 
S_Khomani_San-2-1 3.94 S_Mbuti-3-1 2.33 

B_Mbuti-4-2 3.85 S_Biaka-2-1 2.17 
B_Mbuti-4-1 3.82 S_Ju_hoan_North-1-1 2.13 
S_Naxi-2-1 3.71 S_BantuHerero-2-1 2.00 

 
Table S 1 

Genome haplotypes with poor correlation between SNP-based and inferred ancestral 
recombination event-based similarity scores to other genomes. We created a SNP-based distance 5 
matrix by counting the number of clades that include one but not the other of each pair of 
genome haplotypes; we then repeated this process using clades defined by shared ancestral 
recombination events to build a recombination-based distance matrix. After dividing both 
matrices by their maximum values and subtracting them from 1 to transform them into similarity 
matrices, we computed the percent error between the similarity scores in both matrices. This 10 
value was	|𝑠=>? − 𝑠;-@A2B| (0.5 ∗ (𝑠=>? +	𝑠;-@A2B))⁄ , where 𝑠=>?is a similarity score from the 
SNP matrix and 𝑠;-@A2B is the corresponding similarity score from the recombination matrix. We 
report here all genome haplotypes for which the mean percent error across all columns was 
greater than 2%. All genomes reported here are either archaic hominins (for which there are only 
short read fragments and no phasing reference panels), sub-Saharan African genomes, including 15 
some from the most basal lineages, for which there is little published data and for which 
reference panels are poor, and the S_Naxi-2 genome, which another study reported showed signs 
of improper phasing . 
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Population Percent 

Neanderth
al 

Percent 
Denisova
n 

Percent 
ambiguou
s 

Mean 
frequency 
(Neandertha
l) 

Mean 
frequency 
(Denisova
n) 

Mean 
frequency 
(Ambiguou
s) 

Africa 0.28% (0.15-
0.80%) 

0.13% (0.06-
0.19%) 

0.12% (0.09-
0.17%) 

7.7 % 8.1% 7.5% 

Africa-MBK 
(Mbuti, Biaka, 
Khomani-San) 

0.12% (0.10-
0.16%) 

0.091% 
(0.07-
0.12%) 

0.08% (0.06-
0.12%) 

4.5% 3.5% 3.6% 

America 1.1% (0.96-
1.2%) 

0.091% 
(0.07-
0.12%) 

0.14% (0.12-
0.18%) 

9.6 % 18% 13% 

CentralAsiaSiber
ia 

1.1% (0.92-
1.3%) 

0.095% 
(0.07-
0.12%) 

0.14% (0.10-
0.19%) 

9.0 % 17% 13% 

EastAsia 1.1% (0.90-
1.3%) 

0.10% (0.07-
0.14%) 

0.15% (0.12-
0.18%) 

8.7% 17% 12% 

Oceania 1.2% (1.0-
1.3%) 

0.44% (0.09-
0.62%) 

0.44% (0.13-
0.65%) 

7.5% 5.5% 6.1% 

SouthAsia 1.0% (0.85-
1.2%) 

0.092% 
(0.06-
0.13%) 

0.16% (0.11-
0.20%) 

7.8% 17% 11% 

WestEurasia 0.97% (0.73-
1.2%) 

0.068% 
(0.05-
0.10%) 

0.14% (0.11-
0.19%) 

8.5% 20% 13% 

Table S2 

Demographic parameters of Neanderthal and Denisovan admixture from ARG inference. 
Genome-wide percents given are the percent of the autosomal genome classified as Neanderthal 
or Denisovan origin (or equidistant from each; “ambiguous” column), using a score cutoff 5 
(Supplementary Methods, Fig. S16). Numbers in parenthesis are minimum lower end and 
maximum upper end of 95% block jackknife confidence intervals across all genomes in each 
population. Frequencies given are calculated using only confidently admixed haplotypes and are 
the frequencies across all human haplotypes in the Simons Genome Diversity Project Panel.     
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Map type Feature type Projection upper p Distance p 

Admixture genes 0.995* 0.268 
Admixture exons 0.978 0.624 
Admixture regulatory elt. binding sites 5.95e-2 0.585 
ILS genes 4.10e-05* 0.575 
ILS exons 0.999* 1.27e-05* 
ILS regulatory elt. binding sites 0.00* 5.22e-09* 
Deserts genes 0.00* 0.107 
Deserts exons 0.410 2.73e-09* 
Deserts regulatory elt. binding sites 0.00* 1.90e-09* 

Deserts with human mutation genes 0.00* 2.53e-05* 
Deserts with human mutation exons 0.00* 7.95e-06* 
Deserts with human mutation regulatory elt. binding sites 0.00* 3.20e-03* 
 

Table S3 

Overlap of genomic regions with archaic admixture in any human genome (Admixture), 5 
incomplete lineage sorting with archaic hominins in any human genome (ILS), neither admixture 
nor ILS with archaic hominins in any human genome (Deserts), and deserts with a fixed derived 
allele specific to humans (Deserts with human mutation) with other genomic features. Genes are 
whole protein coding genes from Gencode (63), using Ensembl version 94 on human genome 
version GRCh38 lifted over to GRCh37 coordinates. Exons are for protein-coding genes from 10 
the same annotation. Regulatory elements are from the filtered “double-elite” set in the 
GeneHancer database (64), obtained from the UCSC Genome Browser’s Table Browser utility 
(54). Distance-based p-values are from the “relative distance” Kolmogorov-Smirnov test and 
project p-vaues measure overlap, both implemented in the GenometricCorr R package (62). 
Significant (p < 0.01 or p > 0.99) values are marked with asterisks. 15 
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p GO ID term 

0 GO:0050775 positive regulation of dendrite morphogenesis 
0 GO:0099151 regulation of postsynaptic density assembly 
0 GO:0099545 trans-synaptic signaling by trans-synaptic complex 
0 GO:1905606 regulation of presynapse assembly 

1.45E-11 GO:0051965 positive regulation of synapse assembly 
1.86E-11 GO:0099560 synaptic membrane adhesion 
1.18E-10 GO:0045944 positive regulation of transcription by RNA polymerase II 
1.40E-10 GO:0007185 transmembrane receptor protein tyrosine phosphatase signaling pathway 
3.28E-10 GO:0030182 neuron differentiation 
1.76E-09 GO:0010828 positive regulation of glucose transmembrane transport 
6.08E-09 GO:0007157 heterophilic cell-cell adhesion via plasma membrane cell adhesion molecules 
7.35E-09 GO:0070413 trehalose metabolism in response to stress 
7.47E-09 GO:0097105 presynaptic membrane assembly 
9.96E-09 GO:0032446 protein modification by small protein conjugation 
1.99E-08 GO:0043367 CD4-positive, alpha-beta T cell differentiation 
3.42E-08 GO:0006796 phosphate-containing compound metabolic process 
3.48E-08 GO:0007059 chromosome segregation 
3.85E-08 GO:0051463 negative regulation of cortisol secretion 
3.85E-08 GO:0061582 intestinal epithelial cell migration 
1.02E-07 GO:0016575 histone deacetylation 
1.08E-07 GO:2000773 negative regulation of cellular senescence 
1.44E-07 GO:0033277 abortive mitotic cell cycle 
1.49E-07 GO:0043523 regulation of neuron apoptotic process 
1.52E-07 GO:0000381 regulation of alternative mRNA splicing, via spliceosome 
2.02E-07 GO:0010764 negative regulation of fibroblast migration 
2.43E-07 GO:0033628 regulation of cell adhesion mediated by integrin 
3.48E-07 GO:1901407 regulation of phosphorylation of RNA polymerase II C-terminal domain 
5.62E-07 GO:0043369 CD4-positive or CD8-positive, alpha-beta T cell lineage commitment 
6.15E-07 GO:0060134 prepulse inhibition 
8.72E-07 GO:0006362 transcription elongation from RNA polymerase I promoter 
8.90E-07 GO:2000301 negative regulation of synaptic vesicle exocytosis 
9.16E-07 GO:0002318 myeloid progenitor cell differentiation 
1.01E-06 GO:0048680 positive regulation of axon regeneration 
1.19E-06 GO:0015728 mevalonate transport 
1.19E-06 GO:0051780 behavioral response to nutrient 
1.22E-06 GO:0021707 cerebellar granule cell differentiation 
1.40E-06 GO:0000122 negative regulation of transcription by RNA polymerase II 
1.66E-06 GO:0008380 RNA splicing 
2.77E-06 GO:0046642 negative regulation of alpha-beta T cell proliferation 
3.40E-06 GO:1901673 regulation of mitotic spindle assembly 
3.43E-06 GO:0070475 rRNA base methylation 
6.61E-06 GO:0032922 circadian regulation of gene expression 
7.49E-06 GO:0031401 positive regulation of protein modification process 
1.01E-05 GO:0032528 microvillus organization 
1.10E-05 GO:0060325 face morphogenesis 
1.18E-05 GO:0006805 xenobiotic metabolic process 
1.20E-05 GO:0035019 somatic stem cell population maintenance 
2.15E-05 GO:0042593 glucose homeostasis 
2.15E-05 GO:0043153 entrainment of circadian clock by photoperiod 
2.95E-05 GO:0002669 positive regulation of T cell anergy 
3.06E-05 GO:0007049 cell cycle 
4.18E-05 GO:0090085 regulation of protein deubiquitination 
5.70E-05 GO:1900424 regulation of defense response to bacterium 
6.24E-05 GO:0072619 interleukin-21 secretion 
6.24E-05 GO:1901256 regulation of macrophage colony-stimulating factor production 
6.24E-05 GO:2001182 regulation of interleukin-12 secretion 
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6.61E-05 GO:0061470 T follicular helper cell differentiation 
7.01E-05 GO:0045580 regulation of T cell differentiation 
8.00E-05 GO:1904861 excitatory synapse assembly 
0.00010737 GO:1901509 regulation of endothelial tube morphogenesis 
0.000107471 GO:0030520 intracellular estrogen receptor signaling pathway 
0.00011123 GO:0030099 myeloid cell differentiation 
0.000112339 GO:0090050 positive regulation of cell migration involved in sprouting angiogenesis 
0.000122928 GO:0032480 negative regulation of type I interferon production 
0.000128903 GO:0072757 cellular response to camptothecin 
0.000132611 GO:0030220 platelet formation 
0.000152959 GO:0042117 monocyte activation 
0.000158838 GO:0031532 actin cytoskeleton reorganization 
0.000167342 GO:1905377 response to D-galactose 
0.000172017 GO:0035926 chemokine (C-C motif) ligand 2 secretion 
0.000213716 GO:0045655 regulation of monocyte differentiation 
0.000214274 GO:0006357 regulation of transcription by RNA polymerase II 
0.000242844 GO:2000646 positive regulation of receptor catabolic process 
0.000248198 GO:0048609 multicellular organismal reproductive process 
0.000258532 GO:0090150 establishment of protein localization to membrane 
0.000267499 GO:0072711 cellular response to hydroxyurea 
0.000304723 GO:0050706 regulation of interleukin-1 beta secretion 
0.000315893 GO:0000303 response to superoxide 
0.000380935 GO:0001525 angiogenesis 
0.000394229 GO:0042921 glucocorticoid receptor signaling pathway 
0.000400655 GO:0050658 RNA transport 
0.000403785 GO:1902476 chloride transmembrane transport 
0.000409687 GO:1902605 heterotrimeric G-protein complex assembly 
0.000413288 GO:0021697 cerebellar cortex formation 
0.000425503 GO:0060323 head morphogenesis 
0.000426453 GO:0009887 animal organ morphogenesis 
0.00043196 GO:0032784 regulation of DNA-templated transcription, elongation 
0.000747324 GO:0046887 positive regulation of hormone secretion 
 

Table S4 

Significantly enriched (p < 0.001) Gene Ontology (39) biological_process terms in desert regions 
containing fixed human-specific derived alleles. Enrichment was tested by fetching all regions of 
the genome annotated with each GO term, then testing for overlap with filtered desert regions 5 
containing human-specific differences, using the projection test implemented in the 
GenometriCorr R package (62), then applying the Bonferonni correction to p-values. 
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Time bin 
(kya) 

P GO ID term 

100 0.000104124 GO:0035878 nail development 
100 0.000152424 GO:0009650 UV protection 
100 0.000152424 GO:0031581 hemidesmosome assembly 
100 0.000209759 GO:0071391 cellular response to estrogen stimulus 
100 0.000331521 GO:0008283 cell proliferation 
100 0.000435455 GO:0006293 nucleotide-excision repair, preincision complex stabilization 
100 0.000630144 GO:0070911 global genome nucleotide-excision repair 
100 0.000630144 GO:0097186 amelogenesis 
100 0.000959005 GO:0048565 digestive tract development 
100 0.000959005 GO:1901796 regulation of signal transduction by p53 class mediator 
300 0.00044997 GO:1904645 response to amyloid-beta 
300 0.000935046 GO:0000304 response to singlet oxygen 
300 0.000935046 GO:0018964 propylene metabolic process 
300 0.000935046 GO:1905429 response to glycine 
300 0.000935046 GO:1905430 cellular response to glycine 
300 0.000935046 GO:1990771 clathrin-dependent extracellular exosome endocytosis 

Table S 5 

Singificantly enriched (p < 0.001) biological_process Gene Ontology terms attached to 
interacting sets of genes affected by candidate regulatory element mutations or nonsynonymous 
substitutions, where all such mutations occurred within the listed time bin (100 = between 100-
150 kya; 300 = between 300-350 kya). 5 
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p GO ID term 
0.000111966 GO:0038063 collagen-activated tyrosine kinase receptor signaling pathway 
0.00011562 GO:0010569 regulation of double-strand break repair via homologous recombination 
0.000139583 GO:0048025 negative regulation of mRNA splicing, via spliceosome 
0.000149125 GO:2000327 positive regulation of nuclear receptor transcription coactivator activity 
0.000156365 GO:0055059 asymmetric neuroblast division 
0.000167805 GO:1902412 regulation of mitotic cytokinesis 
0.000181854 GO:1901842 negative regulation of high voltage-gated calcium channel activity 
0.000218898 GO:0000462 maturation of SSU-rRNA from tricistronic rRNA transcript (SSU-rRNA, 5.8S rRNA, 

LSU-rRNA) 
0.00022847 GO:0007076 mitotic chromosome condensation 
0.000236442 GO:0071044 histone mRNA catabolic process 
0.000270717 GO:1905064 negative regulation of vascular smooth muscle cell differentiation 
0.000305361 GO:0098789 pre-mRNA cleavage required for polyadenylation 
0.000313394 GO:0043928 exonucleolytic nuclear-transcribed mRNA catabolic process involved in deadenylation-

dependent decay 
0.000360947 GO:1990414 replication-born double-strand break repair via sister chromatid exchange 
0.000362148 GO:0003192 mitral valve formation 
0.000418857 GO:0010792 DNA double-strand break processing involved in repair via single-strand annealing 
0.000421671 GO:0010793 regulation of mRNA export from nucleus 
0.000434558 GO:0010724 regulation of definitive erythrocyte differentiation 
0.000442968 GO:0040016 embryonic cleavage 
0.000484611 GO:0099527 postsynapse to nucleus signaling pathway 
0.000488376 GO:0006376 mRNA splice site selection 
0.000488585 GO:0043983 histone H4-K12 acetylation 
0.000514264 GO:0043981 histone H4-K5 acetylation 
0.000514264 GO:0043982 histone H4-K8 acetylation 
0.000522681 GO:0010842 retina layer formation 
0.000524426 GO:0097676 histone H3-K36 dimethylation 
0.00053366 GO:0045577 regulation of B cell differentiation 
0.000536417 GO:0035166 post-embryonic hemopoiesis 
0.000595826 GO:0000027 ribosomal large subunit assembly 
0.000632034 GO:0010603 regulation of cytoplasmic mRNA processing body assembly 
0.000632994 GO:1904431 positive regulation of t-circle formation 
0.000643467 GO:0031124 mRNA 3'-end processing 
0.000649581 GO:0097155 fasciculation of sensory neuron axon 
0.000658939 GO:0021747 cochlear nucleus development 
0.000767928 GO:0055113 epiboly involved in gastrulation with mouth forming second 
0.000773163 GO:0070550 rDNA condensation 
0.000773163 GO:1905406 positive regulation of mitotic cohesin loading 
0.000777374 GO:0010711 negative regulation of collagen catabolic process 
0.000777374 GO:0060311 negative regulation of elastin catabolic process 
0.000778431 GO:1901630 negative regulation of presynaptic membrane organization 
0.000778431 GO:1903002 positive regulation of lipid transport across blood brain barrier 
0.000778431 GO:1905855 positive regulation of heparan sulfate binding 
0.000778431 GO:1905860 positive regulation of heparan sulfate proteoglycan binding 
0.000778431 GO:1905890 regulation of cellular response to very-low-density lipoprotein particle stimulus 
0.000801461 GO:0062030 negative regulation of stress granule assembly 
0.000805269 GO:0035971 peptidyl-histidine dephosphorylation 
0.000812273 GO:0048024 regulation of mRNA splicing, via spliceosome 
0.000822891 GO:0018323 enzyme active site formation via L-cysteine sulfinic acid 
0.000822891 GO:0036471 cellular response to glyoxal 
0.000822891 GO:0036526 peptidyl-cysteine deglycation 
0.000822891 GO:0036527 peptidyl-arginine deglycation 
0.000822891 GO:0036528 peptidyl-lysine deglycation 
0.000822891 GO:0036529 protein deglycation, glyoxal removal 
0.000822891 GO:0036530 protein deglycation, methylglyoxal removal 
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0.000822891 GO:0036531 glutathione deglycation 
0.000822891 GO:0045560 regulation of TRAIL receptor biosynthetic process 
0.000822891 GO:0050787 detoxification of mercury ion 
0.000822891 GO:0106045 guanine deglycation, methylglyoxal removal 
0.000822891 GO:0106046 guanine deglycation, glyoxal removal 
0.000822891 GO:1903073 negative regulation of death-inducing signaling complex assembly 
0.000822891 GO:1903122 negative regulation of TRAIL-activated apoptotic signaling pathway 
0.000822891 GO:1903168 positive regulation of pyrroline-5-carboxylate reductase activity 
0.000822891 GO:1903178 positive regulation of tyrosine 3-monooxygenase activity 
0.000822891 GO:1903197 positive regulation of L-dopa biosynthetic process 
0.000822891 GO:1903200 positive regulation of L-dopa decarboxylase activity 
0.000822891 GO:2000277 positive regulation of oxidative phosphorylation uncoupler activity 
0.000829029 GO:1902889 protein localization to spindle microtubule 
0.000829029 GO:1990280 RNA localization to chromatin 
0.000851135 GO:0002380 immunoglobulin secretion involved in immune response 
0.000867097 GO:0035855 megakaryocyte development 
0.000870262 GO:2000795 negative regulation of epithelial cell proliferation involved in lung morphogenesis 
0.000874578 GO:0031397 negative regulation of protein ubiquitination 
0.00088442 GO:0009443 pyridoxal 5'-phosphate salvage 
0.000898789 GO:0072334 UDP-galactose transmembrane transport 
0.000905934 GO:0032049 cardiolipin biosynthetic process 
0.000916438 GO:0120049 snRNA (adenine-N6)-methylation 
0.000933051 GO:0110024 positive regulation of cardiac muscle myoblast proliferation 
0.000937536 GO:0045403 negative regulation of interleukin-4 biosynthetic process 
0.000937536 GO:0060377 negative regulation of mast cell differentiation 
0.000944871 GO:0044794 positive regulation by host of viral process 
0.000948251 GO:0071348 cellular response to interleukin-11 
0.0009655 GO:0045951 positive regulation of mitotic recombination 
0.000970954 GO:0000184 nuclear-transcribed mRNA catabolic process, nonsense-mediated decay 

 
Table S 6 

Significantly enriched (p < 0.001) Gene Ontology (65) terms describing genes affected by fixed 
human-specific derived mutations in candidate regulatory element binding sites or 
nonsynonymous mutations, ranked by size of surrounding desert region and age of mutation 5 
(longer deserts and more recent mutations were ranked higher). Low p-values may indicate 
continued strength of purifying selection on these mutations. Testing was done using the 
Wilcoxon rank-order test implemented in FUNC (68). 
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Program % missing on chrom Median dist (kb) Mean dist (kb) 
SARGE 13.7% 3.51 91.9 
Relate 35.7% 10.2 565 
tsinfer 37.7% 10.5 406 
Table S 7 

For a single demographic simulation of humans and archaic hominins (Supplementary Methods), 
ARGs were inferred using SARGE, and two published programs, Relate (7) and tsinfer (8). Each 
time an inferred ARG contained a clade that did not exist in the true tree at the same site, the 
physical distance along the chromosome to the nearest site at which that clade did exist in the 5 
true ARG was computed. Incorrectly-inferred clades which did not exist anywhere in the true 
ARG are also shown (% missing on chrom column). 


