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Our previous paper describes a geometric translation of the construction of open

Gromov–Witten invariants by Solomon and Tukachinsky from a perspective of A∞-

algebras of differential forms. We now use this geometric perspective to show that these

invariants reduce to Welschinger’s open Gromov–Witten invariants in dimension 6,

inline with their and Tian’s expectations. As an immediate corollary, we obtain a trans-

lation of Solomon–Tukachinsky’s open WDVV equations into relations for Welschinger’s

invariants.

1 Introduction

Fukaya–Oh–Ohta–Ono [5] associated A∞-algebras with Lagrangian submanifolds of

symplectic manifolds and extensively studied the theory of bounding chains in

A∞-algebras, from both the point of view of differential forms and geometrically.

Numerical counts of J-holomorphic disks have since been extracted from the

A∞-algebras of [5] in some settings. In the present paper, we compare certain disk

invariants of symplectic six-folds arising from [5] with the disk invariants constructed

differently by Welschinger [17].
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7022 X. Chen

Let (X, ω) be a compact symplectic six-fold and Y ⊂ X be a compact Lagrangian

submanifold. We denote by

μω : H2(X, Y;Z) −→ Z (1.1)

the Maslov index of the pair (X, Y). This pair is called positive if

ω(β) > 0, μω
Y(β) � 0 �⇒ μω

Y(β) > 0 (1.2)

for every β ∈ H2(X, Y;Z) representable by a continuous map from (D2, S1). If this

condition holds, then every non-constant J-holomorphic map from (D2, S1) to (X, Y) has

a positive Maslov index for a generic ω-compatible almost complex structure J. The

same happens along a generic path of almost complex structures if in addition Y is

orientable (which implies that μω
Y takes only even values). Suppose os≡(o, s) is a relative

OSpin-structure on Y, that is, a pair consisting of an orientation o on Y and a relative

Spin-structure s on the oriented manifold (Y, o).

Let R be a commutative ring with unity 1. If the homomorphism

ιY∗ : H1(Y; R) −→ H1(X; R) (1.3)

induced by the inclusion ιY : Y −→ X is injective, the boundaries of maps from (D2, S1)

to (X, Y) are homologically trivial in Y and thus have well-defined linking numbers

with values in R. Under this injectivity assumption and the positivity condition (1.2),

Welschinger [17] defines open Gromov–Witten (GW) invariants

〈〈 ·, . . . , · 〉〉ω,os
β,k :

∞⊕
l=0

H2∗(X, Y; R)⊕l −→ R, β ∈H2(X, Y;Z)−{0}, k∈Z+, (1.4)

enumerating J-holomorphic multi-disks of total degree β weighted by R-valued linking

numbers of their boundaries; see [17, Section 4.1] and (3.4). In “real settings” (when

Y is a topological component of the fixed locus of anti-symplectic involution on X),

these invariants encode the real Gromov–Witten invariants defined in [11, 15, 16]; see

Remark 3.3. A special case of the setting of [17] is when Y is an R-homology S3.

Based on A∞-algebra considerations, Fukaya [4] defines a count 〈〉ω,os
β,0 ∈ Q of

J-holomorphic degree β disks in X with boundary in Y under the assumption that (X, ω)

is a Calabi–Yau three-fold and the Maslov index μY
ω of (X, Y) vanishes; this count may

in general depend on the ω-compatible almost complex structure J on X. Motivated
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Comparing Open GW-Invariants In Dimension 6 7023

by [4], Solomon and Tukachinsky [12] further extend the theory of bounding chains of

differential forms to define counts

〈·, . . . , ·〉ω,os
β,k :

∞⊕
l=0

H2∗(X, Y;R)⊕l −→ R, β ∈H2(X, Y;Z), k∈Z�0, (1.5)

of J-holomorphic disks in symplectic manifolds X of arbitrary dimension 2n and show

that bounding chains that are equivalent in a suitable sense define the same counts.

They also prove that bounding chains exist and any two relevant bounding chains are

equivalent if n is odd and Y is an R-homology sphere. The resulting open Gromov–Witten

invariants (1.5) of (X, Y) depend on the choice of a (relative) OSpin-structure os on Y but

are independent of all other auxiliary choices (such as J).

Well before [12], Tian expressed a belief that the construction of [17] is a

geometric realization of the algebraic considerations behind the construction of [4]. The

same sentiment is expressed in [12, Section 1.2.7]. The present paper uses the geometric

interpretation of the construction of [12] described in [2], which is applicable over

any commutative ring R with unity under the positivity condition (1.2) in the case of

symplectic six-folds, to confirm Tian’s and Solomon–Tukachinsky’s expectations; see

Theorem 1.2 below. Proposition 3.2, a kind of open divisor relation that trades real

codimension 1 bordered insertions at boundary marked points for linking numbers

of their boundaries with the boundaries of the disks, provides a transition from

bounding chains to linking numbers. As an immediate consequence of Theorem 1.2,

the basic structural properties and the Witten-Dijkgraaf-Verlinde-Verlinde (WDVV)-type

relations for open Gromov–Witten invariants obtained in [13] yield similar properties

and relations for Welschinger’s invariants (1.4); see Corollaries 1.4 and 1.6.

The positivity condition (1.2) ensures that virtual techniques are not necessary

for the purposes of this paper. However, the reasoning extends to general symplectic

six-folds satisfying the injectivity condition (1.2) via the setup of Appendix A in [2] if

R ⊃ Q. This setup is compatible with standard virtual class approaches, such as in [6,

8–10]. As we only need evaluation maps from the (J, ν)-spaces to be pseudocycles, a

full virtual cycle construction and gluing across all strata of the (J, ν)-spaces are not

necessary.

Remark 1.1. In [17, Corollary 2], the insertions for the open invariants (1.4) are taken in

H∗(X; R) instead of H2∗(X, Y; R). However, there is a minor omission in [17, Section 4.2.3].

For this reason, the insertions do need to be taken in H2∗(X, Y; R) for the invariants to

be well defined.
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7024 X. Chen

1.1 Comparison theorem

Let (X, ω) be a compact symplectic manifold of dimension 2n, Y ⊂ X be a compact

Lagrangian submanifold, and os ≡ (o, s) be a relative OSpin-structure on Y. Let

α ≡ (β, K, L) be a tuple consisting of β ∈ H2(X, Y;Z), a generic finite subset K of Y,

and a generic set L of pseudocycles �1, . . . , �l in X −Y representing Poincaré duals of

some cohomology classes γ1, . . . , γl on (X, Y). For a generic ω-compatible almost complex

structure J on X, a bounding chain (bα′)α′∈Cω;α(Y) on (α, J) in the geometric perspective of

[2] is a tuple of bordered pseudocycles with certain properties specified in the dim X =6

case by Definition 2.6 in the present paper. Such a tuple determines a pseudocycle bbα

into Y; see (2.11). It has a well-defined degree, and we set

〈
γ1, . . . , γl

〉ω,os
β,|K|+1 ≡ 〈L〉ω,os

β;K ≡ deg bbα; (1.6)

if the dimension of bbα is not n, the above numbers are defined to be 0. This degree

may depend on the choices of K, L, J, and (bα′)α′∈Cω;α(Y). Bounding chains differing by a

pseudo-isotopy of [2, Definition 2.2] determine the same degrees (1.6); see [2, Section 2.2].

This guarantees that the numbers in (1.6) depend only on ω, os, β, |K|, and γ1, . . . , γl if n is

odd and Y is an R-homology sphere. However, the injectivity of (1.3) does not guarantee

the existence of a pseudo-isotopy between a pair of bounding chains associated even

with the same K, L, and J. Nevertheless, the following statement shows that the open

invariants (1.6) are equivalent to Welschinger’s invariants 〈〈 . . . 〉〉ω,os
β,|K|+1 and thus are

independent of the choice of bounding chain.

Theorem 1.2. Suppose R is a commutative ring with unity, (X, ω) is a compact

symplectic six-fold, Y ⊂ X is a compact Lagrangian submanifold so that the positivity

condition (1.2) holds and the homomorphism (1.3) is injective, and os is a relative OSpin-

structure on Y. Let β ∈H2(X, Y;Z), K be a generic finite subset of Y, L≡{�1, . . . , �l} be a

generic set of even-dimensional pseudocycles to X −Y, α ≡ (β, K, L), and J be a generic

ω-compatible almost complex structure on X.

(W1) There exists a bounding chain (bα′)α′∈Cω;α(Y) on (α, J).

(W2) If γ1, . . . , γl ∈H2∗(X, Y; R) are the Poincaré duals of �1, . . . , �l, then

〈〈 γ1, . . . , γl 〉〉ω,os
β,|K|+1 = (−1)|K|+1 〈L〉ω,os

β;K

for any bounding chain (bα′)α′∈Cω;α(Y) on (α, J).
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Comparing Open GW-Invariants In Dimension 6 7025

For each α′ ∈ Cω;α(Y) satisfying the dimension condition in Definition 2.6, the

right-hand side of (2.9) consists of the boundaries of some maps from (D2, S1) to

(X, Y); see Proposition 3.1. By the injectivity of (1.3), we can thus choose a bordered

pseudocycle bα′ to Y satisfying (2.9). This implies that a bounding chain (bα′)α′∈Cω;α(Y) on

(α, J) can be constructed by induction on the partially ordered set Cω;α(Y) and estab-

lishes Theorem 1.2(W1).

A key ingredient in the proof of Proposition 3.1 is the open divisor rela-

tion of Proposition 3.2, which replaces real codimension 1 bordered insertions at

boundary marked points with linking numbers. This relation is also combined with

Proposition 3.1 to obtain the identification of the disk counts (1.6) with Welschinger’s

invariants (1.4) stated in Theorem 1.2. This identification in turn implies that the

numbers (1.6) depend only on ω, os, β, |K|, and γ1, . . . , γl.

We denote by

qY : H2(X;Z) −→ H2(X, Y;Z) (1.7)

the natural homomorphism. A bounding chain (bα)α∈Cω;α(Y) as in Definition 2.6 can also

be used to define a count of J-holomorphic degree β disks through |K| (rather than |K|+1)

points in Y if

k ≡ |K| �= 0 or β �∈ Im
(
qY : H2(X;Z)−→H2(X, Y;Z)

)
; (1.8)

see (2.12). The definition of the invariants (1.4) in [17] immediately extends to counts of

multi-disks with k = 0 points in Y if β satisfies the 2nd condition in (1.8). The proof of

Theorem 1.2 can be slightly modified to cover this case. It can also be readily extended

to the open invariants with insertions from H2(Y; R), which are defined in [17].

Remark 1.3. The definition (1.6) of open invariants in [2] is a geometric translation

of the construction of the invariants (1.5) in [12], in the sense that we use submanifolds

instead of differential forms. The two invariants are not explicitly shown to be the same,

but we expect this to be straightforward.

It is immediate from (3.4) that Welschinger’s open invariants are symmetric

linear functionals that satisfy an open divisor relation:

〈〈 γ , γ1, . . . , γl 〉〉ω,os
β,k = 〈γ , β〉 〈〈 γ1, . . . , γl 〉〉ω,os

β,k ∀ γ ∈H2(X, Y; R).
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7026 X. Chen

Combining Theorem 1.2 above with the last three statements of [2, Theorem 2.9], which

in turn are analogues of [3, Proposition 2.1] and [13, Corollary 1.5], we obtain below

additional properties of Welschinger’s open invariants.

Suppose Y is connected. The kernel of the homomorphism

H2(X−Y; R) −→ H2(X; R)

is then generated by the homology class [S(NyY)]X−Y of a unit sphere S(NyY) in the fiber

of NY over any y ∈ Y. We orient S(NyY) as in [3, Section 2.5] and denote the image of

[S(NyY)]X−Y under the Lefschetz duality isomorphism

PDX,Y : H2 (X−Y; R)
≈−→ H4 (X, Y; R)

by η◦
X,Y . For B∈H2(X;Z), let

〈·, . . . , ·〉ωB :
∞⊕

l=0

H∗(X; R)⊕l −→ R

be the standard GW-invariants of (X, ω). We denote by [Y]X the homology class on X

determined by Y and by w2(os) the 2nd Stiefel–Whitney class of os (w2(os)=w2(V) in the

notation of [5, Definition 8.1.2]).

Corollary 1.4. Let (X, ω, Y), os, β, k, and γ1, . . . , γl be as in Theorem 1.2. If the pair

(k, β) satisfies (1.8) and Y is connected, Welschinger’s open invariants (1.4) satisfy the

following properties.

(WGW1) 〈〈 γ ◦
X,Y , γ1, . . . , γl 〉〉ω,os

β,k = −〈〈 γ1, . . . , γl 〉〉ω,os
β,k+1.

(WGW2) If k=1 and γ0 ∈H3(X; R),

〈γ0, [Y]X〉 〈〈 γ1, . . . , γl 〉〉ω,os
β,k = −

∑
B∈q−1

Y (β)

(−1)〈w2(os), B〉 〈PDX

(
[Y]X
)

, γ0, γ1|X , . . . , γl|X
〉ω
B .

(WGW3) If [Y]X �=0 and k�2, then 〈〈 γ1, . . . , γl 〉〉ω,os
β,k =0.

1.2 WDVV-type relations

Let R, (X, ω, Y) and os be as in Theorem 1.2. We now use this theorem to translate the

WDVV-type relations for the open GW-invariants (1.5) obtained in [13] to relations for
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Comparing Open GW-Invariants In Dimension 6 7027

Welschinger’s open invariants (1.4) under the assumptions that R is a field and the

homomorphism

ιY∗ : H2(Y; R) −→ H2(X; R) (1.9)

induced by the inclusion ιY : Y −→X is trivial. For k∈Z�0, define

[k] = {1, . . . , k} .

Under the assumption (1.8), we extend the invariants (1.4) to the degree β =0 and

inputs from H0(X; R) by

〈〈 γ1, . . . , γl 〉〉ω,os
0,k =

⎧⎨⎩−〈γ1, pt〉, if (k, l)=(1, 1);

0, otherwise;

〈〈 γ1, γ2, . . . , γl, 1 〉〉ω,os
β,k =

⎧⎨⎩−1, if (β, k, l)=(0, 1, 0);

0, otherwise.

In light of Theorem 1.2 and the symmetry of the open invariants (1.5), these extensions

are consistent with (OGW2) and (OGW3) in [2, Theorem 2.9]. If [Y]X = 0 and γ is a two-

dimensional pseudocycle to X−Y bounding a pseudocycle b transverse to Y, we define

lkos(γ ) ≡ ∣∣b×fb ιY

∣∣± ;

see Section 2.1 for the sign conventions for fiber products. This linking number of γ and

Y with the orientation determined by the relative OSpin-structure os does not depend

on the choice of b. We set lkos(γ )=0 if γ is not a two-dimensional pseudocycle.

For l ∈ Z�0, B ∈ H2(X;Z), and an ω-tame almost complex structure J, we denote

by MC

{0}�[l](B; J) the moduli space of stable J-holomorphic degree B maps from P1 into X

with marked points indexed by the set {0}�[l]. It carries a canonical orientation. For each

i∈{0}�[l], let

evi : MC

{0}�[l](B; J) −→ X
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7028 X. Chen

be the evaluation morphism at the i-th marked point. If in addition �1, . . . , �l are maps

to X, let

MC

{0}�[l](B; J)×fb

(
(i, �i)i∈[l]

) ≡ MC

{0}�[l](B; J)(ev1,...,evl)
×�1×...×�l

(
(dom �1)×. . .×(dom �l)

)
.

If J is generic and �1, . . . , �l are pseudocycles in general position, then

fCB,(�i)i∈[l]
≡
(
ev0 : MC

{0}�[l](B; J)×fb

(
(i, �i)i∈[l]

) −→ X
)

is a pseudocycle of dimension

dim fCB,(�i)i∈[l]
= μω

(
qY(B)

)− l∑
i=1

(
codim �i−2

)+ 2

transverse to Y.

Since dim Y = 3, the cohomology long exact sequence for the pair (X, Y) implies

that the restriction homomorphism

Hp(X, Y; R) −→ Hp(X; R) (1.10)

is surjective for p=4, 6. Since R is a field and the homomorphism (1.9) is trivial, (1.10) is

also surjective for p=2. Let

γ
�
1 ≡1 ∈ H0(X; R) and γ

�
2 , . . . , γ �

N ∈ H2∗(X, Y; R)

be such that γ
�
1 , γ �

2 |X , . . . , γ �
N |X is a basis for H2∗(X; R), (gij)i,j be the N×N-matrix given

by

gij =
〈
γ

�
i γ

�
j , [X]

〉
and (gij)i,j be its inverse. Let �

�
1 = idX and �

�
2 , . . . , ��

N be pseudocycles to X − Y

representing the Poincaré duals of γ
�
2 , . . . , γ �

N .

Remark 1.5.
∑

i,j∈[N]
gijγ

�
i × γ

�
j ∈ H2n(X × X; R) is the Poincaré dual to the diagonal

modulo Hodd(X; R) ⊗ Hodd(X; R). The corresponding terms in Corollary 1.6 with odd-

degree insertions γ
�
i would vanish for dimensional reasons and thus do not need to

be considered.
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Comparing Open GW-Invariants In Dimension 6 7029

For the purpose of WDVV-type equations for the invariants (1.4), we extend the

signed counts (3.4) to the pairs (k, β) not satisfying (1.8), that is, k=0 and β ∈H2(X, Y;Z)

is in the image of the homomorphism qY in (1.7), as follows. Let γ1, . . . , γl be elements of

{1}�H2∗(X, Y; R). If [Y]X �=0, we define

〈〈 γ1, . . . , γl 〉〉ω,os
β,0 = 0.

Suppose next that [Y]X =0. Let �1, . . . , �l be generic pseudocycles to X so that �i = idX if

γi = 1 and �i is a pseudocycle into X−Y representing the Poincaré dual of γi otherwise.

For B∈H2(X;Z), let (λ
j
B,(γi)i∈[l]

)j∈[N] ∈RN be such that

[
fCB,(�i)i∈[l]

]
=

N∑
j=1

λ
j
B,(γi)i∈[l]

PDX

(
γ

�
j |X
)

∈ H∗(X; R);

the tuple (λ
j
B,(γi)i∈[l]

)j∈[N] depends only on B, γ1, . . . , γl, and γ
�
2 , . . . , γ �

N . Define

〈〈 γ1, . . . , γl 〉〉ω,os
β,0 = RHS of (3.4) +

∑
B∈q−1

Y (β)

(−1)〈w2(os),B〉lkos

⎛⎝fCB,(�i)i∈[l]
−

N∑
j=1

λ
j
B,(γi)i∈[l]

�
�
j

⎞⎠

in this case. This number depends on the span of the elements γ
�
2 , . . . , γ �

N in H2∗(X, Y; R),

but not on the choice of pseudocycles �1, . . . , �l and �
�
2 , . . . , ��

N representing the

Poincaré duals of γ1, . . . , γl and γ
�
2 , . . . , γ �

N , respectively. For example,

〈〈 γ1, γ2 〉〉ω,os
0,0 = lkos

⎛⎝�1∩�2−
N∑

j=1

λ
j
γ1γ2�

�
j

⎞⎠ , where γ1γ2 ≡
N∑

j=1

λ
j
γ1γ2γ

�
j |X ∈ H∗(X;Q).

Let γ ≡ (γ1, . . . , γl) be a tuple of elements of {1}�H2∗(X, Y; R). For I ⊂ {1, 2, . . . , l},
we denote by γI the |I|-tuple consisting of the entries of γ indexed by I. If in addition

β ∈H2(X, Y;Z), define

kβ(γI) ≡ 1

2

(
μω(β) −

∑
i∈I

(
deg γi−2

))
, 〈〈 γI 〉〉ω,os

β =
⎧⎨⎩〈〈 γI 〉〉ω,os

β,kβ(γI )
, if kβ(γI)�0;

0, otherwise.
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7030 X. Chen

For i, j=1, 2, . . . , l, we define

P(l) = {(I, J) : {1, 2, . . . , l}= I�J, 1∈ I} , Pi;(l) = {(I, J)∈P(l) : i∈ I} ,

P;j(l) = {(I, J)∈P(l) : j∈J} , Pi;j(l) = Pi;(l)∩P;j(l).

For β ∈H2(X, Y;Z), let

P
C
(β) = {(β ′, B)∈H2(X, Y;Z)⊕H2(X;Z) : β ′+qY(B)=β

}
,

PR(β) = {(β1, β2)∈H2(X, Y;Z)⊕H2(X, Y;Z) : β1+β2 =β
}

.

For a relative OSpin-structure os on (X,Y) and B ∈ H2(X;Z), we define a twisted version

of the standard Gromov–Witten invariants

〈·, . . . , ·〉ω,os
B ≡ (−1)w2(os)〈·, . . . , ·〉ωB .

Combining Theorem 1.2 above with [2, Theorem 2.10], we obtain relations between

Welschinger’s open invariants (1.4) as stated below.

Corollary 1.6. Let R be a field and (X, ω, Y), os, β, and γ ≡ (γ1, . . . , γl) be as in Theorem

1.2 with

k ≡ 1

2

(
μω(β) −

l∑
i=1

(
deg μi−2

))−1 � 0.

Suppose in addition that the homomorphism (1.9) is trivial.

(OWDVV1) If l�2 and k�1, then

∑
(β ′,B)∈PC(β)
(I,J)∈P2;(l)

∑
i,j∈[N]

〈
γI |X , γ �

i |X
〉ω,os

B
gij 〈〈 γ

�
j , γJ 〉〉ω,os

β ′ −
∑

(β1,β2)∈PR(β)
(I,J)∈P2;(l)

(
k−1

kβ1
(γI)

)
〈〈 γI 〉〉ω,os

β1
〈〈 γJ 〉〉ω,os

β2

= −
∑

(β1,β2)∈PR(β)
(I,J)∈P;2(l)

(
k−1

kβ1
(γI)−1

)
〈〈 γI 〉〉ω,os

β1
〈〈 γJ 〉〉ω,os

β2
.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/2022/9/7021/6048940 by H
ealth Sciences Library, Stony Brook U

niversity user on 01 M
ay 2022



Comparing Open GW-Invariants In Dimension 6 7031

(OWDVV2) If l�3, then

∑
(β ′,B)∈PC(β)
(I,J)∈P2;3(l)

∑
i,j∈[N]

〈
γI |X , γ �

i |X
〉ω,os

B
gij 〈〈 γ

�
j , γJ 〉〉ω,os

β ′ −
∑

(β1,β2)∈PR(β)
(I,J)∈P2;3(l)

(
k

kβ1
(γI)

)
〈〈 γI 〉〉ω,os

β1
〈〈 γJ 〉〉ω,os

β2

=
∑

(β ′,B)∈PC(β)
(I,J)∈P3;2(l)

∑
i,j∈[N]

〈
γI |X , γ �

i |X
〉ω,os

B
gij 〈〈 γ

�
j , γJ 〉〉ω,os

β ′ −
∑

(β1,β2)∈PR(β)
(I,J)∈P3;2(l)

(
k

kβ1
(γI)

)
〈〈 γI 〉〉ω,os

β1
〈〈 γJ 〉〉ω,os

β2
.

Remark 1.7. The open WDVV equations in [13] are stated for R = R only. However,

a translation of its proof into the geometric language of [2] applies with any field R

without any changes.

2 Preliminaries

Section 2.1 recalls the orientation conventions for fiber products and some of their

properties from [2, Section 5.1]; their proofs are included at the referee’s suggestion. The

combinatorial objects needed for the geometric presentation of the open invariants of

[12] in symplectic six-folds are gathered in Section 2.2. We describe the relevant moduli

spaces of stable disk maps and specify their orientations in Section 2.3. Section 2.4

specializes the geometric definition of bounding chain from [2] to symplectic six-folds

and uses it to define counts J-holomorphic disks.

2.1 Fiber products

We say a short exact sequence of oriented vector spaces

0 −→ V ′ −→ V −→ V ′′ −→ 0

is orientation compatible if for an oriented basis (v′
1, . . . , v′

m) of V ′, an oriented basis

(v′′
1, . . . , v′′

n) of V ′′, and a splitting j : V ′′ −→ V, (v′
1, . . . , v′

m, j(v′′
1), . . . , j(v′′

n)) is an oriented

basis of V. We say it has sign (−1)ε if it becomes orientation compatible after twisting

the orientation of V by (−1)ε . We use the analogous terminology for short exact

sequences of Fredholm operators with respect to orientations of their determinants;

see [19, Section 2].
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7032 X. Chen

Let M be an oriented manifold with boundary ∂M. We orient the normal bundle

N to ∂M by the outer normal direction and orient ∂M so that the short exact sequence

0 −→ Tp∂M −→ TpM −→ N −→ 0 (2.1)

is orientation compatible at each point p ∈ ∂M. We refer to this orientation of ∂M as the

boundary orientation.

We orient M×M by the usual product orientation and the diagonal 
M ⊂ M×M

by the diffeomorphism

M −→ 
M , p −→ (p, p).

We orient the normal bundle N
M of 
M so that the short exact sequence

0 −→ T(p,p)
M −→ T(p,p)(M×M) −→ N
M |(p,p) −→ 0

is orientation compatible for each point p∈M. Thus, the isomorphism

N
M |(p,p) −→ TpM, [v, w] −→ w−v,

respects the orientations.

For maps f : M −→X and g : �−→X, we denote by

f×fbg ≡ Mf ×g� ≡ {(p, q)∈M×� : f (p) = g(q)}

their fiber product. If M, �, and X are oriented manifolds (M, � possibly with boundary)

and f , f |∂M are transverse to g, g|∂�, we orient Mf ×g� so that the short exact sequence

0 −→ T(p,q)(Mf ×g�) −→ T(p,q)(M×�)
[dpf ,dqg]−−−−−→ N
X |(f (p),g(q)) −→ 0

is orientation compatible for every (p, q)∈Mf ×g�. The exact sequence

0 −→ T(p,q)(Mf ×g�) −→ T(p,q)(M×�)
dqg−dpf−−−−−→ Tf (p)X −→ 0 (2.2)

is then orientation compatible as well. We refer to this orientation of Mf ×g� as the fiber

product orientation. The next lemma is straightforward.
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Comparing Open GW-Invariants In Dimension 6 7033

Fig. 1. Commutative square of exact sequences of vector spaces for the statement of Lemma 2.1.

Lemma 2.1. Suppose Aij with i, j ∈ [3] are oriented finite-dimensional vector spaces,

the rows and columns in the diagram in Figure 1 are exact sequences of vector-space

homomorphisms, and this diagram commutes. The total number of rows and columns

in this diagram that (do not) respect the orientations is congruent to dim(A13)dim(A31)

mod 2.

Lemma 2.2. With the assumptions as above,

∂(Mf ×g�) = (−1)dim X
(
(−1)dim �(∂M)f ×g� � Mf ×g∂�

)
.

Proof. We denote the normal bundles of ∂M in M and of ∂� in � by N ∂M and N ∂�,

respectively.

Suppose (p, q)∈ ∂Mf×g�. The exact sequences (2.1) and (2.2) then induce the 1st

commutative square of exact sequences in Figure 2. The top (resp. middle) row in this

diagram respects the fiber product orientation on ∂Mf ×g� (resp. Mf ×g�), the boundary

orientation on ∂M (resp. given orientation on M), and the given orientations on � and X.

The left column respects the boundary orientation of T(p,q)(∂Mf ×g�), the fiber product

orientation of T(p,q)(Mf ×g�), and the orientation of Np∂M. The middle column respects

the boundary orientation of T(p,q)(Mf ×g�), the product orientation of T(p,q)(M×�), and

the orientation of Np∂M if and only if dim � ∈ 2Z. Along with Lemma 2.1, this implies
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7034 X. Chen

Fig. 2. Commutative squares of exact sequences for the proofs of Lemma 2.2.

that the boundary and fiber product orientations of

T(p,q)

(
∂(Mf ×g�)

)
= T(p,q)

(
∂Mf ×g�

)

are the same if and only if dim X+dim �∈2Z.

Suppose (p, q) ∈ Mf ×g ∂�. The exact sequences (2.1) and (2.2) then induce the

2nd commutative square of exact sequences in Figure 2. The same statements as in the

previous paragraph apply, except now the middle column always respects the relevant

orientations. Along with Lemma 2.1, this implies that the boundary and fiber product
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Comparing Open GW-Invariants In Dimension 6 7035

orientations of

T(p,q)

(
∂(Mf ×g�)

)
= T(p,q)

(
Mf ×g∂�

)
are the same if and only if dim X ∈2Z. �

For a diffeomorphism σ : M −→ M ′ between oriented manifolds, we define

sgn σ = 1 if σ is everywhere orientation preserving and sgn σ = −1 if σ is everywhere

orientation reversing.

Lemma 2.3. Suppose σM , σ�, σX are self-diffeomorphisms of M, �, X, respectively, with

well-defined signs. If the diagram

commutes, then the sign of the diffeomorphism

Mf×g� −→ Mf×g�, (p, q) −→ (σM(p), σ�(q)
)

, (2.3)

is (sgn σM)(sgn σ�)(sgn σX).

Proof. Let (p, q)∈Mf×g�. The diagram

of vector space homomorphisms then commutes. Since the signs of the isomorphisms

given by the middle and right vertical arrows in the above diagram are (sgn σM)(sgn σ�)

and sgn σX , respectively, the sign of the isomorphism given by the left vertical arrow is

(sgn σM)(sgn σ�)(sgn σX). �

Let M, �, X and f , g be as above Lemma 2.2. Suppose in addition that e : M −→Y

and h : C −→ Y. Let e′ : Mf ×g� −→ Y be the composition of the projection Mf ×g� −→ M
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7036 X. Chen

Fig. 3. The maps of Lemma 2.4 and a commutative square of exact sequences for its proof.

with e; see Figure 3. There is then a natural bijection

(
Mf ×g�

)
e′×hC ≈ M( f ,e)×g×h(�×C) . (2.4)

If C, Y are oriented manifolds and all relevant maps are transverse, then both sides

of this bijection inherit fiber product orientations. For any map h : M −→ Z between

manifolds, let

codim h = dim Z − dim M .

Lemma 2.4. The diffeomorphism (2.4) has sign (−1)(dim X)(codim h) with respect to the

fiber product orientations on the two sides.

Proof. Let ((p, q), r) ∈ (Mf ×g �)e′ ×h C. The exact sequence (2.2) then induces the

commutative square of exact sequences in Figure 3. The top and middle rows in this

diagram respect the fiber product and product orientations of the relevant spaces. The
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Comparing Open GW-Invariants In Dimension 6 7037

middle and right columns have signs (−1)(dim X)(dim C) and (−1)(dim X)(dim Y), respectively.

Along with Lemma 2.1, this implies the claim. �

2.2 Combinatorial notation

Let (X, ω) be a compact symplectic six-fold, Y ⊂X be a compact Lagrangian submanifold,

Hω
2 (X, Y) = {β ∈H2(X, Y;Z) : ω(β)>0 or β =0

}
,

and Jω be the space of ω-compatible almost complex structures on X. Let

Cω(Y) = {(β, K, L) : β ∈Hω
2 (X, Y), K is a finite collection of points inY,

L is a finite collection of pseudocycles inX−YwithR-coefficients,

(β, K, L) �=(0, ∅, ∅)
}
.

This collection has a natural partial order:

(β ′, K′, L′) � (β, K, L) if β−β ′ ∈ Hω
2 (X, Y), K′ ⊂K, and L′ ⊂L.

The elements (0, K, L) of Cω(Y) with |K|+|L|= 1 are minimal with respect to this partial

order. For each element α≡(β, K, L) of Cω(Y), we define

β(α) ≡ β, K(α) ≡ K, L(α) ≡ L,

dim(α) = μω
Y(β)−2|K|−

∑
�∈L

(codim �−2) , Cω;α(Y) = {α′ ∈Cω(Y) : α′ ≺α
}

.

For α∈Cω(Y), let

Dω(α) =
{(

β•, k•, L•, (αi)i∈[k•]

)
: β• ∈Hω

2 (X, Y), k• ∈Z�0, L• ⊂L(α), (β•, k•, L•) �=(0, 1, ∅),

αi ∈Cω(Y)∀ i∈ [k•], β•+
k•∑

i=1

β(αi)=β(α),
k•⊔

i=1

K(αi)=K(α), L•�
k•⊔

i=1

Li(α)=L(α)

}
.

An element in Dω(α) is a “degeneration” of α into a central piece and k• many branches;

see Figure 4. Since αi ≺α for every

η ≡ (β•, k•, L•, (αi)i∈[k•]

) ≡ (β•, k•, L•, (βi, Ki, Li)i∈[k•]

) ∈ Dω(α) (2.5)
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7038 X. Chen

Fig. 4. An element α∈Cω(Y) and a “degeneration” η∈Dω(α) of it.

and every i∈ [k•], k• =0 if α is a minimal element of Cω(Y). Thus,

Dω (0, {pt}, ∅) = ∅ and Dω (0, ∅, {�}) = {(0, 0, {�}, ())}

for any point pt∈Y and any R-pseudocycle � in X−Y. For η∈Dω(α) as in (2.5) and i∈ [k•],

we define

β•(η) = β•, k•(η) = k•, L•(η) = L•,

αi(η) = αi = (βi, Ki, Li), βi(η) = βi, Ki(η) = Ki, Li(η) = Li.

2.3 Moduli spaces

We denote by D2 ⊂ C the unit disk with the induced complex structure, by D2 ∨D2 the

union of two disks joined at a pair of boundary points, and by S1 ⊂D2 and S1∨S1 ⊂D2∨D2

the respective boundaries. We orient the boundaries counterclockwise; thus, starting

from a smooth point x0 of S1 ∨S1, we proceed counterclockwise to the node nd, then

circle the 2nd copy of S1 counterclockwise back to nd, and return to x0 counterclockwise

from nd. We call smooth points x0, x1, . . . , xk on S1 or S1 ∨S1 ordered by position if they

are traversed counterclockwise.

Let k, l ∈ Z�0 with k+2l � 3. We denote by Muo
k,l the moduli space of k distinct

boundary marked points x1, . . . , xk and l distinct interior marked points z1, . . . , zl on the

unit disk D (the superscript uo (“unordered”) means that x1, . . . , xk do not necessarily lie

in cyclic order on S1 ⊂D2). We orient Muo
1,1 as a plus point. The space Muo

3,0 consists of
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Comparing Open GW-Invariants In Dimension 6 7039

two points, C+
3,0 with the three boundary points ordered by position and C−

3,0 with the

three boundary points not ordered by position. We orient C+
3,0 as a plus point and C−

3,0 as

a minus point. We identify Muo
0,2 with the interval (0, 1) by taking z1 = 0 and z2 ∈ (0, 1)

and orient it by the negative orientation of (0, 1).

We orient other Muo
k,l inductively. If k �1, we orient Muo

k,l so that the short exact

sequence

0 −→ Txk
S1 −→ TMuo

k,l

dfRk−−→ TMuo
k−1,l −→ 0 (2.6)

induced by the forgetful morphism fRk dropping xk has sign (−1)k with respect to the

counterclockwise orientation of S1. Thus,

TMuo
k,l ≈ TMuo

k−1,l ⊕ Txk
S1.

If l�1, we orient Muo
k,l so that the short exact sequence

0 −→ Tzl
D −→ TMuo

k,l

dfCl−−→ TMuo
k,l−1 −→ 0 (2.7)

induced by the forgetful morphism fCl dropping zl is orientation compatible with respect

to the complex orientation of D. By a direct check, the orientations of Muo
1,2 induced from

Muo
0,2 via (2.6) and from Muo

1,1 via (2.7) are the same, and the orientations of Muo
3,1 induced

from Muo
1,1 via (2.6) and from Muo

3,0 via (2.7) are also the same. Since the fibers of fCl are

even dimensional, it follows that the orientation on Muo
k,l above is well defined.

Let (X, ω) be a symplectic manifold, Y ⊂ X be a Lagrangian submanifold,

β ∈ Hω
2 (X, Y), and J ∈ Jω. For a finite ordered set K and a finite set L, we denote by

M
uo,�
K,L (β; J) the moduli space of stable J-holomorphic degree β maps from (D2, S1) and

(D2∨D2, S1∨S1) to (X, Y) with boundary and interior marked points indexed by K and L,

respectively. Let

Muo
K,L(β; J) ⊂ M

uo,�
K,L (β; J)

be the subspace of maps from (D2, S1). If K = [k] for k ∈Z�0 (resp. L = [l] for l ∈Z�0), we

write k for K (resp. l for L) in the subscripts of these moduli spaces. For

[u] ≡
[
u : (D, S1)−→(X, Y), (xi)i∈[k], (zi)i∈[l]

]
∈ Muo

k,l(β; J), (2.8)
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7040 X. Chen

let

DJ;u : �
(
u∗TX, u|∗S1TY

) −→ �
(
T∗D0,1⊗

C
u∗(TX, J)

)
be the linearization of the {∂J}-operator on the space of maps from (D, S1) to (X, Y). By

[5, Proposition 8.1.1], a relative OSpin-structure os on Y determines an orientation on

det(DJ;u).

We orient Muo
k,l(β; J) by requiring the short exact sequence

0 −→ ker DJ;u −→ TuM
uo
k,l(β; J)

df−→ Tf(u)Muo
k,l −→ 0

to be orientation compatible, where f is the forgetful morphism dropping the map part

of u. This orientation extends over M
uo,�
k,l (β; J). If K is a finite ordered set and L is a

finite set, we orient Muo,�
K,L (β; J) from M

uo,�
|K|,|L|(β; J) by identifying K with [|K|] as ordered

sets and L with [|L|] as sets.

Remark 2.5. The above paragraph endows M
uo,�
K,L (β; J) with an orientation under the

assumption that |K|+2|L| � 3. If |K|+2|L| < 3, one first stabilizes the domain of u by

adding one or two interior marked points, then orients the tangent space of the resulting

map as above, and finally drops the added marked points using the canonical complex

orientation of D; see the proof of [7, Corollary 1.8].

For i∈K and j∈L, let

evbi : Muo,�
K,L (β; J)−→ Y and evij : Muo,�

K,L (β; J) −→ X

be the evaluation morphisms at the i-th boundary marked point and the i-th interior

marked point, respectively. If M ⊂ M
uo,�
K,L (β; J), we denote the restrictions of evbi and

evij to M also by evbi and evij. If in addition m, m′ ∈Z�0,

(
bs : Zbs

−→Y
)
s∈[m]

and
(
�s : Z�s

−→X
)
s∈[m′]

are tuples of maps and i1, . . . , im ∈ [k] and j1, . . . , jm′ ∈L are distinct elements, let

M×fb

(
(is, bs)s∈[m]; (js, �s)s∈[m′]

)
≡ M(evbi1 ,...,evbim ,evij1 ,...,evijm′ )×b1×...×bm×�1×...×�m′

(
Zb1

×. . .×Zbm
×Z�1

×. . .×Z�m′

)

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/2022/9/7021/6048940 by H
ealth Sciences Library, Stony Brook U

niversity user on 01 M
ay 2022



Comparing Open GW-Invariants In Dimension 6 7041

be their fiber product with M. If M is an oriented manifold and bs and �s are smooth

maps from oriented manifolds satisfying the appropriate transversality conditions,

then we orient this space as in Section 2.1. For i ∈ [k] with i �= is for any s ∈ [m] (resp.

j∈L with j �= js for any s∈ [m′]), we define

evbi (resp. evij) : M×fb

(
(is, bs)s∈[m]; (js, �s)s∈[m′]

) −→ Y (resp.X)

to be the composition of the evaluation map evbi (resp. evij) defined above with the

projection to the 1st component.

2.4 Open Gromov–Witten invariants

In the remainder of this paper, we use the term (bordered) pseudocycle to mean (bordered)

pseudocycle in the usual sense taken with R-coefficients; see the last part of [3, Section

3] for precise definitions. We recall that every R-homology class in a manifold can be

represented by a pseudocycle in this sense, which is unique up to equivalence; see [18,

Theorem 1.1].

Let (X, ω) be a symplectic six-fold and Y ⊂ X be a Lagrangian submanifold. For

a point pt∈Y, we denote its inclusion into Y also by pt. For β ∈Hω
2 (X, Y), k∈Z�0, a finite

set L, and J ∈Jω, let

M
�
k,L(β; J) ⊂ M

uo,�
k,L (β; J)

be the subspace of maps with the boundary marked points ordered by position. If in

addition η∈Dω(α) for some α∈Cω(Y), define

Mη;J ≡ M
�
k•(η),L•(η)

(β•(η); J), M
+
η;J ≡ M

�
k•(η)+1,L•(η)

(β•(η); J).

Definition 2.6. Let R, (X, ω), Y, os, and α ≡ (β, K, L) be as in Theorem 1.2. A bounding

chain on (α, J) is a collection (bα′)α′∈Cω;α(Y) of bordered pseudocycles into Y such that

(BC1) dim bα′ =dim(α′)+2 for all α′ ∈Cω;α(Y);

(BC2) bα′ =∅ unless α′ =(0, {pt}, ∅) for some pt∈K or dim(α′)=0;

(BC3) b(0,{pt},∅) =pt for all pt∈K;

(BC4) for all α′ ∈Cω;α(Y) such that dim(α′)=0,

∂bα′ =
⎛⎝evb1 :

⋃
η∈Dω(α′)

(−1)k•(η)M
+
η;J ×fb

(
(i+1, bαi(η))i∈[k•(η)]; (i, �i)�i∈L•(η)

) −→ Y

⎞⎠ .

(2.9)
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Since the dimension of every pseudocycle �i ∈L is even, the oriented morphism

bbη ≡
(
evb1 : (−1)k•(η)M

+
η;J ×fb

(
(i+1, bαi(η))i∈[k•(η)]; (i, �i)�i∈L•(η)

)
−→ Y

)
(2.10)

in (2.9) does not depend on the choice of identification of L•(η) with [|L•(η)|]. By

[2, Lemma 3.1], the map

bbα′ ≡
⋃

η∈Dω(α′)
bbη (2.11)

with orientation induced by the relative OSpin-structure os on Y is a pseudocycle for

every α′ ∈Cω;α(Y)∪{α}. If in addition dim(α)=2, then bbα is a pseudocycle of codimension

0. Its degree determines a count of J-holomorphic disks in (X, Y) through |K|+1 points

in Y as in (1.6).

A bounding chain (bα′)α′∈Cω;α(Y) as in Definition 2.6 can also be used to define

the counts (1.6) of J-holomorphic disks in the case of no boundary constraints in the

following way. We denote the signed cardinality of a finite set S of signed points by |S|±.

If S is not a finite set of signed points, we set |S|± ≡0. If η∈Dω(α), let

s∗(η) ≡
⎧⎨⎩

1
k•(η)

− 1
2 , if k•(η) �=0,

1, if k•(η)=0.

Define

〈L〉ω,os
β;K ≡

∑
η∈Dω(α)

(−1)k•(η)s∗(η)

∣∣∣Mη;J ×fb

(
(i, bαi(η))i∈[k•(η)]; (i, �i)�i∈L•(η)

)∣∣∣± + 1

2

∑
p∈K

〈L〉ω,os
β;K−{p} .

(2.12)

This number vanishes unless dim(α)=0. Unlike (1.6), (2.12) provides a definition of the

counts (1.5) with k=0. By [2, Theorem 2.7(2)],

〈L〉ω,os
β;K in (2.12) = 〈L〉ω,os

β;K−{pt} in (1.6)

for any pt∈K if 〈L〉β;K−{pt} does not depend on pt∈K.
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Comparing Open GW-Invariants In Dimension 6 7043

3 Proof of Theorem 1.2

For the remainder of the paper, we take (X, ω, Y) and os as in Theorem 1.2. Let γ1, γ2

be smooth maps from oriented closed one-manifolds into the oriented closed three-

manifold Y with disjoint images. If γ1 =∂b1 and γ2 =∂b2 for some bordered pseudocycles

b1 and b2 into Y so that b1 is transverse to γ2 and b2 is transverse to γ1, we define

lk(γ1, γ2) ≡ ∣∣b1×fbγ2

∣∣± = − ∣∣γ1×fbb2

∣∣± = ∣∣b2×fbγ1

∣∣± = − ∣∣γ2×fbb1

∣∣± ; (3.1)

the first and last equalities above hold by Lemma 2.2, while the middle one follows from

Lemma 2.3. The sign of a point (p, q) of b1×fbγ2 is the sign of the isomorphism

Tpdom(b1)⊕Tqdom(γ2) −→ Tb1(p)Y =Tγ2(q)Y, (v, w) −→ dpb1(v)+dqγ2(w).

The linking number (3.1) of the one-cycles γ1 and γ2 that bound in Y does not depend on

the choice of b1, b2. In this section, we take linking numbers of the boundaries ∂u of J-

holomorphic maps u from (D2, S1) to (X, Y). By the injectivity of (1.3), these boundaries

also bound in Y and thus have well-defined linking numbers.

3.1 Bounding chains and Welschinger’s invariants

For β1, . . . , βm ∈Hω
2 (X, Y), we denote by Muo

K,L(β1, . . . , βm; J) the moduli space of unions of

m J-holomorphic disks in classes β1, . . . , βm with L-labeled interior marked points and

K-labeled boundary marked points between the m disks. In contrast to [17, Section 2.4],

we do not order the disks or orient this moduli space. Let

M
uo,◦
K,L (β1, . . . , βm; J) ⊂ Muo

K,L(β1, . . . , βm; J) (3.2)

be the dense open subset of the multi-disks whose m components have pairwise disjoint

boundaries in Y. We extend the definitions of the evaluations maps evbi and evii and of

the associated fiber product ×fb of Section 2.3 to the moduli spaces in (3.2).

Let α ≡ (β, K, L) and J be as in Theorem 1.2 and p1, . . . , pk be an ordering of

the elements of K. For any element α′ ≡ (β ′, K′, L′) of Cω;α(Y)∪ {α}, we endow K′ ⊂ K

with the order induced from K. We define the spaces of (constrained) single α′-disks and
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7044 X. Chen

α′-multi-disks by

SD(α′) ≡ Muo
K′,L′(β ′; J)×fb

(
(i, pi)i∈K′ ; (i, �i)�i∈L′

)
and

MD(α′) ≡
∞⊔

m=1

⊔
β1,...,βm∈Hω

2 (X,Y)

unordered
β1+...+βm=β ′

M
uo,◦
K′,L′(β1, . . . , βm; J)×fb

(
(i, pi)i∈K′ ; (i, �i)�i∈L′

)
,

respectively. Note that we do not orient MD(α′) but define the sign of a single element

of MD(α′) below via the spaces SD(α′′).
We write an element u of MD(α′) as

u ≡ [u1, . . . , um

]
with ur ∈ Muo

Kr ,Lr
(βr; J)×fb

(
(i, pi)i∈Kr

; (i, �i)�i∈Lr

)
(3.3)

for some m, βr, Kr, Lr with β1+. . .+βm = β ′,
m⊔

r=1

Kr = K′,
m⊔

r=1

Lr = L′ .

For such an element u of MD(α′), we write ur ∈ u to indicate that ur is a component of

the multi-disk u. Let

∂u : S1�. . .�S1︸ ︷︷ ︸
m

−→ Y

be the boundary of the components of u with the orientation induced by the complex

orientation on the unit disk. If dim(α′) = 0 and ur ∈ u, we denote by sgn(ur) the sign of

ur as an element of the fiber product in (3.3) and set

sgn(u) ≡
∏

ur∈u

sgn(ur) ;

this sign does not depend on the order on K. If dim(α′) �=0, we define sgn(u)≡0.

For u ∈ MD(α′) as in (3.3), we denote by Ku the complete graph with vertices

u1, . . . , um. We call a tree T ⊂Ku, that is, a connected subgraph without loops, spanning

if T contains all vertices of Ku and denote by ST(u) the set of all spanning trees T ⊂Ku.

Let

lk(u; T) ≡
∏

edge e∈T
connecting ur ,us

lk
(
∂ur, ∂us

) ∀ T ∈ST(u) and lk(u) ≡
∑

T∈ST(u)

lk(u; T) .
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Comparing Open GW-Invariants In Dimension 6 7045

Welschinger’s definition of the open GW-invariant (1.4) in [17, Section 4.1] is

equivalent to

〈〈 �1, . . . , �l 〉〉ω,os
β,|K| =

∑
u∈MD(α)

sgn(u)lk(u) . (3.4)

The 1st statement of the next proposition establishes (W1). We deduce (W2) from the

2nd statement of this proposition and Proposition 3.2. The two propositions are proved

in Sections 3.2 and 3.3.

Proposition 3.1. Let α∈Cω(Y) and J be as in Theorem 1.2.

(1) There exists a bounding chain (bα′)α′∈Cω;α(Y) on (α, J).

(2) For every such bounding chain (bα′)α′∈Cω;α(Y) and α′ ∈Cω;α(Y) with dim(α′)=0,

the associated closed pseudocycle (2.11) satisfies

∂bα′ = bbα′ = (−1)|K(α′)|⊔
u∈MD(α′)

sgn(u)lk(u)∂u . (3.5)

If k∈Z+ and K ⊂ [k], let

fbk : Muo,�
k,l (β; J) −→ M

uo,�
k−1,l(β; J) and fbk;K : Muo,�

k,l (β; J) −→ M
uo,�
[k]−K,l(β; J)

be the forgetful morphisms dropping the boundary marked point with index k and the

boundary marked points indexed by the set K, respectively.

Proposition 3.2 (Open divisor relation). Suppose K′ ⊂ K ⊂ [k], L ⊂ [l], and (bi)i∈K and

(�i)i∈L are tuples of bordered pseudocycles into Y and X, respectively. If the codimension

of bi is 1 for every i∈K′ and

K′ ⊂ {k′, . . . , k
} ⊂ K

for k′ ∈ [k], then there exists a dense open subset M∗
[k]−K′,l of the target of the induced

forgetful morphism

fbk : Muo,�
k,l (β; J)×fb

(
(i, bi)i∈K ; (i, �i)i∈L

) −→ M
uo,�
k−1,l(β; J)×fb

(
(i, bi)i∈K−{k}; (i, �i)i∈L

)
(3.6)
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so that (3.6) restricts to a covering map over each connected component M of M∗
[k]−K′,l. If

in addition the codimensions of all bi are odd and the codimensions of �i are even, then

deg
(
fbk;K′
∣∣
M

)
= (−1)|K′|∏

i∈K′
lk(∂u, ∂bi)

for any u∈M.

Remark 3.3. Suppose that φ is an anti-symplectic involution on (X, ω), that is, φ2 = idX

and φ∗ω = −ω, Y ⊂ X is a topological component of the fixed locus Xφ of φ, φ∗J = −J,

and os is an OSpin-structure on Y, that is, a relative OSpin-structure os with w2(os)=0.

Suppose also that for every i∈ [l] there exists a diffeomorphism φ�i
of dom �i such that

φ◦�i = �i◦φ�i
and sgn φ�i

= (−1)(dim �i)/2 . (3.7)

Let H2;φ(X, Y) be the quotient of H2(X, Y;Z) by the image of the endomorphism {Id+φ∗}.
For B∈H2;φ(X, Y), we denote by {�1, . . . , �l}ω,os

B,|K| the real genus 0 GW-invariant of (X, ω, φ)

enumerating degree B real J-holomorphic spheres through the constraints �1, . . . , �l and

|K| generic points in Y as defined in [3]. This invariant is a re-interpretation of the

invariants defined in [11, 15, 16]; see also [2, Remark B.4]. We show below that

{
�1, . . . , �l

}ω,os
B,|K| = 2l−1

∑
β∈B

〈〈�1, . . . , �l 〉〉ω,os
β,|K| , (3.8)

that is, Welschinger’s invariants (3.4) sum up to the real genus 0 GW-invariants as

expected.

Proof. Define

SD(B, K, L) =
⊔

α′∈Cω(Y),β(α′)∈B
K(α′)=K,L(α′)=L

SD(α′) , MD(B, K, L) =
⊔

α′∈Cω(Y),β(α′)∈B
K(α′)=K,L(α′)=L

MD(α′) .

We show below that the collection

{(u, T) : u∈MD(B, K, L)−SD(B, K, L), T ∈ST(u)} (3.9)
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Comparing Open GW-Invariants In Dimension 6 7047

splits into subcollections Ai so that

sgn(u)=sgn(u′) ∀ (u, T), (u′, T ′)∈Ai and
∑

(u,T)∈Ai

lk(u; T) = 0. (3.10)

In light of (3.4), this implies that

∑
β∈B

〈〈 �1, . . . , �l 〉〉ω,os
β,|K| ≡

∑
u∈MD(B,K,L)

∑
T∈ST(u)

sgn(u)lk(u; T) =
∑

u∈SD(B,K,L)

sgn(u) . (3.11)

By the next paragraph, the elements of SD(B, K, L) come in pairs of the same sign.

The union of the elements in such a pair is a degree B real J-holomorphic sphere through

the constraints �1, . . . , �l. Conversely, a degree B real J-holomorphic sphere through

�1, . . . , �l determines a pair of elements of SD(B, K, L). However, {�1, . . . , �l}ω,os
B,|K| counts

each degree B real J-holomorphic sphere along with its contact points with �1, . . . , �l

and thus 2l times (because the contact points come in conjugate pairs). By the 2nd

condition in (3.7), all such decorated J-holomorphic spheres contribute to {�1, . . . , �l}ω,os
B,|K|

with the same sign. Thus, {�1, . . . , �l}ω,os
B,|K| is 2l/2 times the right-hand side of (3.11).

Let c be the complex conjugation on D2. The replacement of ur ∈u as in (3.3) with

u′
r ≡
([

φ◦ur◦c, (xi)i∈Kr
, (c(zi))�i∈Lr

]
, (i, pi)i∈Kr

; (i, φ�i
(qi))�i∈Lr

)
∈ Muo

Kr ,Lr
(−φ∗(βr); J)×fb

(
(i, pi)i∈Kr

; (i, �i)�i∈Lr

)
preserves MD(B, K, L). Let u′ ∈ MD(B, K, L) be the resulting element. By [11, Proposition

5.1], sgn(u′
r) = sgn(ur); see also [2, Lemma B.7]. Thus, sgn(u′) = sgn(u). However, ∂ur

and ∂u′
r are the same circles with the opposite orientations. If precisely one edge of a

tree T ∈ ST(u) contains ur ∈ u as a vertex, that is, ur is a “leaf” of T, this implies that

lk(u; T)=−lk(u′; T ′), where T ′ is the tree obtained from T by replacing the vertex ur with

u′
r.

Given an element (u, T) of the collection (3.9), let Ai be the subcollection of (3.9)

consisting of all pairs (u′, T ′) obtained from (u, T) by replacing some of the leaves ur ∈T

by u′
r as in the previous paragraph. If T contains N leaves, then |Ai|=2N . By the previous

paragraph, Ai satisfies the 1st condition in (3.10) and

∑
(u′,T ′)∈Ai

lk(u′; T ′) =
N∑

k=0

(−1)klk(u; T)

(
N

k

)
= lk(u; T) (1+(−1))N = 0.
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Thus, Ai satisfies the 2nd condition in (3.10), as required. �

3.2 Main argument

We continue with the setting of Theorem 1.2 and Proposition 3.1. Let α′ ∈ Cω;α(Y)∪{α}.
Recall that an element η ∈ Dω(α′) is a “degeneration” of α′ into a center and branches.

For η∈Dω(α′), define

K∗• (η) ≡ {i∈ [k•(η)] : αi(η) �=(0, {pt}, ∅) ∀ pt∈K
}

,

Kpt• (η) ≡ {pt∈K : (0, {pt}, ∅)=αi(η) for some i∈ [k•(η)]
}

;

these are the set of indices of the non-point branches and the set of point branches. Let

α
pt• (η) ≡

(
β•(η), Kpt• (η), L•(η)

)
∈ Cω;α(Y)∪{α}, M

uo,+
η;J = M

uo,�
[k•(η)+1],L•(η)

(
β•(η); J

)
.

For η, η′ ∈Dω(α′), define η∼η′ if

(
β•(η), k•(η), L•(η)

) = (β•(η′), k•(η′), L•(η′)
)

and(
αi(η)
)
i∈[k•(η)] is a permutation of

(
αi(η

′)
)
i∈[k•(η)] ,

that is, they have the same center and their branches differ by a permutation. Denote by

[η] the equivalence class of η. With bbη as in (2.10), let

bb[η] =
⊔

η′∈[η]

bbη′ .

We define

DMD(α′) ≡ {(u, u•, T) : u∈MD(α′), u• ∈u, T ∈ST(u)
}

,

D̃MD(α′) ≡
{(

η, u•, (ũi)i∈K∗• (η)

)
: η∈Dω(α′), u• ∈SD(α

pt• (η)),

ũi ∈DMD(αi(η)) ∀ i∈K∗• (η)
}
.

(3.12)

The notation “DMD” stands for “decorated multi-disk”: an element in DMD(α′) is an

α′-multi-disk u with a choice of “base component” u• and a spanning tree T. An element

in D̃MD(α′) is an element in DMD(α′) with the branches ordered; this is the content of the

bijection (3.13). See Figure 5. We define elements (η, u•, (ũi)i∈K∗• (η)) and (η′, u′•, (ũ′
i)i∈K∗• (η′))
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Fig. 5. An element in DMD(α′) and its corresponding element in D̃MD(α′).

of D̃MD(α′) to be equivalent if u• = u′•, k•(η)= k•(η′), and there exists a permutation σ of

[k•(η)] such that

αi(η) = ασ(i)(η
′) ∀ i∈[k•(η)

]
, σ
(
K∗• (η)

) ⊂ K∗• (η′), and ũi = ũ′
σ(i) ∀ i∈K∗• (η),

that is, the branches are permuted. We denote by DMD(α′) the quotient of the space in

(3.12) by this equivalence relation.

Let (u, u•, T)∈DMD(α′). For each ur ∈u, let

β(ur) ∈ Hω
2 (X, Y), L(ur)⊂L(α′), and K(ur)⊂K(α′)

be the degree of ur, the interior marked points carried by ur, and the boundary marked

points carried by ur, respectively. We denote by Br(u•; T) the set of branches of T at

u•, that is, the trees Ti obtained by removing the vertex u• from the graph T. For each

i ∈ Br(u•; T), we denote by u′
i the set of all vertices of Ti and by u′

i• ∈ u′
i the vertex

connected by an edge of T to u•. Define

βi =
∑

ur∈u′
i

β(ur), Ki =
⊔

ur∈u′
i

K(ur), Li =
⊔

ur∈u′
i

L(ur), αi = (βi, Ki, Li) ∈ Cω;α(Y).
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Let αpt =(0, {pt}, ∅) for each pt∈K(u•) and

k• = ∣∣K(u•)
∣∣+∣∣Br(u•; T)

∣∣ .
Identifying K(u•)�Br(u•; T) with [k•], we obtain an element

(
η≡(β(u•), k•, L(u•), (αi)i∈[k•]

)
, u•, (u′

i, u′
i•, Ti)i∈Br(u•;T)

) ∈ D̃MD(α′).

The induced element of DMD(α′) does not depend on the choice of this identification. In

this way, we obtain a natural bijection

DMD(α′) −→ DMD(α′). (3.13)

For k∈Z�0, we denote by Sk the k-th symmetric group. For σ ∈Sk•(η), define

ι+η;σ : M+
η;J −→ M

uo,+
η;J ,

ι+η;σ

(
u; x1, x2, . . . , xk•(η)+1, (zi)�i∈L•(η)

)
=
(
u; x1, x1+σ(1), . . . , x1+σ(k•(η)), (zi)�i∈L•(η)

)
.

This map is an open embedding and

M
uo,+
η;J =

⊔
σ∈Sk•(η)

(sgn σ)
(
Im ι+η;σ

)
.

If η∼η′ are such that αi(η) = ασ(i)(η
′) for all i ∈ [k•(η)], then

(−1)k•(η)bbη′ ≈
(
evb1 : (sgn σ)

(
Im ι+η;σ

)
×fb

(
(i+1, bαi(η))i∈[k•(η)]; (i, �i)�i∈L•(η)

)
−→ Y

)
by Lemma 2.3. Therefore,

bb[η] ≈ (−1)k•(η)
(
evb1 : Muo,+

η;J ×fb

(
(i+1, bαi(η))i∈[k•(η)]; (i, �i)�i∈L•(η)

)
−→ Y

)
. (3.14)

Proof of (W2). We establish this statement with K replaced by K −{p1} under the

assumption that dim(α)=0.

Let α′ and η be as above with 1 �∈K(α′). With p1 ≡(0, {p1}, ∅),

bb[η]×fbbp1
= (−1)k•(η)︸ ︷︷ ︸

(3.14)

(−1)k•(η)︸ ︷︷ ︸
Lemma 2.3

(−1)k•(η)︸ ︷︷ ︸
Lemma 2.4

M
uo,+
η;J ×fb

(
(1, bp1

), (i+1, bαi(η))i∈[k•(η)]; (i, �i)�i∈L•(η)

)
.
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Suppose in addition dim(α′) = 2. By the above identity, Proposition 3.2 with K′ = K∗• (η),

and (3.5) with α′ replaced by αi(η),

∣∣∣bb[η]×fbbp1

∣∣∣± = (−1)|K
pt• (η)|∑

u•∈SD(α
pt• (η)+p1)

⎛⎝sgn(u•)
∏

i∈K∗• (η)

lk(∂u•, ∂bαi(η))

⎞⎠

= (−1)|K(α′)|∑
u•∈SD(α

pt• (η)+p1)

⎛⎜⎜⎝sgn(u•)
∏

i∈K∗• (η)

⎛⎜⎜⎝ ∑
ui∈MD(αi(η))

Ti∈ST(ui)

sgn(ui)lk(ui; Ti)lk(∂u•, ∂ui)

⎞⎟⎟⎠
⎞⎟⎟⎠ .

(3.15)

Since lk(∂u•, ∂ui)=
∑

ui•∈ui
lk(∂u•, ∂ui•), the last expression equals to

(−1)|K(α′)| ∑
[η]∈Dω(α′)/∼

u•∈SD(α
pt• (η)+p1)

⎛⎜⎜⎝ ∑
(ui,ui•,Ti)∈DMD(αi(η))

for each i∈K∗• (η)

sgn(u•)
∏

i∈K∗• (η)

sgn(ui)lk(ui; Ti)lk(∂u•, ∂ui•)

⎞⎟⎟⎠ .

Using the bijectivity of the map (3.13), we thus obtain

− deg bbα′ = (−1)|K(α′)| ∑
(u,u•,T)∈DMD(α′+p1)

u• passes thr. p1

sgn(u)lk(u; T) = (−1)|K(α′)|∑
u∈MD(α′+p1)

sgn(u)lk(u) .

Taking α′ =(β, K−{p1}, L) above and using (1.6) and (3.4), we obtain

〈L〉ω,os
β,K−{p1} = (−1)|K| 〈〈 �1, . . . , �l 〉〉ω,os

β,|K|

and establish the claim. �

Proof of Proposition 3.1. We prove both statements by induction on the set Cω(Y)

with respect to the partial order ≺ defined in Section 2.2. It is sufficient to consider the

elements α′ ∈Cω(Y) with dim(α′)=0 only.

Suppose α ∈ Cω(Y) with dim(α) = 0 and (bα′)α′∈Cω;α(Y) is a collection of bordered

pseudocycles into Y satisfying the conditions of Definition 2.6 as well as the 2nd

equality in (3.5) if dim(α′) = 0. By (3.14), Proposition 3.2 with K′ = K∗• (η), and (3.5) with
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α′ replaced by αi(η),

bb[η] = (−1)|K
pt• (η)| ⊔
u•∈SD(α

pt• (η))

⎛⎝sgn(u•)
∏

i∈K∗• (η)

lk(∂u•, ∂bαi(η))

⎞⎠ ∂u•

= (−1)|K(α)| ⊔
u•∈SD(α

pt• (η))

⎛⎜⎜⎝sgn(u•)
∏

i∈K∗• (η)

⎛⎜⎜⎝ ∑
ui∈MD(αi(η))

Ti∈ST(ui)

sgn(ui)lk(ui; Ti)lk(∂u•, ∂ui)

⎞⎟⎟⎠
⎞⎟⎟⎠ ∂u• .

(3.16)

Summing up (3.16) over the equivalence classes [η] of η in Dω(α) and using the

bijectivity of the map (3.13), we obtain

bbα ≡
⊔

[η]∈Dω(α)/∼
bb[η] = (−1)|K(α)|⊔

u∈MD(α)
u•∈u,T∈ST(u)

sgn(u)lk(u; T)∂u• = (−1)|K(α)|⊔
u∈MD(α)

sgn(u)lk(u)∂u .

This establishes the 2nd equality in (3.5) with α′ replaced by α. Along with the injectivity

of (1.3), it implies that bbα bounds in Y. Thus, we can choose a bordered pseudocycle bα

into Y satisfying the 1st equality in (3.5) with α′ replaced by α. �

3.3 Open divisor relation

We deduce Proposition 3.2 from the following lemma, which confirms the K′ = {k} case

of this proposition.

Lemma 3.4. Let β, k, l, K, L, (bi)i∈K , and (�i)i∈L be as in Proposition 3.2. If k∈K and the

codimension of bk is 1, then there exists a dense open subset M∗
k−1,l of the target of the

induced forgetful morphism

fbk : Muo,�
k,l (β; J)×fb

(
(i, bi)i∈K ; (i, �i)i∈L

) −→ M
uo,�
k−1,l(β; J) ×fb

(
(i, bi)i∈K−{k}; (i, �i)i∈L

)
(3.17)

so that (3.17) restricts to a covering map over each connected component M of M∗
k−1,l. If

in addition the codimensions of all bi are odd and the codimensions of �i are even, then

the degree of this restriction is −lk(∂u, ∂bk) for any u∈M.

Proof. We denote the right-hand side of (3.17) by M and define

K′′ = K − {k}, M̃ ≡ M
uo,�
k,l (β; J)×fb

(
(i, bi)i∈K′′ ; (i, �i)i∈L

)
.
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By Lemma 2.4,

LHS of (3.17) = (−1)|K|−1
(
M̃evbk

×bk
(dom bk)

)
. (3.18)

If the pseudocycles bi with i ∈ K have odd codimensions and the pseudocycles �i have

even codimensions, then

dim M̃evbk
×bk

(dom bk) ∼= k−|K| mod 2. (3.19)

Let M ′ ⊂ M be the image of the elements of the left-hand side of (3.17), which meet the

boundary of any of the pseudocycles bi and �i or the pairwise intersection of any pair

of these pseudocycles. The dense open subset M∗
k−1,l of M is the open subset of M−M ′

consisting of the maps u from D2 with ∂u transverse to bk.

We compute the sign of fbk at a preimage (ũ, qk) of u in the fiber product space

in (3.18) under (3.17). Denote the k-th boundary marked point of ũ by xk and the image

of u in YK′′×XI by y. All rows and the right column in the 1st diagram of Figure 6 are

orientation compatible. The short exact sequence

0 −→ Txk
S1 −→ Tũ′Muo

k,l(β; J) −→ Tu′Muo
k−1,l(β; J) −→ 0,

where ũ′ and u′ are the projections of ũ and u, respectively, to the corresponding disk

moduli spaces, has sign (−1)k−1. Along with Lemma 2.1, this implies that the middle

and left columns in the 1st diagram also have signs (−1)k−1. Thus, the middle column in

the 2nd diagram has sign (−1)k−1 as well. The middle row and the side columns in this

diagram are orientation compatible. The sign of the top row is the sign of (xk, qk) in the

fiber product (∂u) ×fbbk. Along with Lemma 2.1 and (3.19), this implies that the sign of

the bottom row is (−1)|K|−1 times the sign of (xk, qk) in the fiber product (∂u)×fbbk.

Combining the last conclusion with (3.18), we obtain

∑
(ũ,qk)∈{fb

k}−1(u)

sgn
(
d(ũ,qk)f

b
k

)
= ∣∣(∂u)×fbbk

∣∣± .

Along with (3.1), this establishes the degree claim. �

Proof of Proposition 3.2. The 1st claim follows immediately from the 1st claim of

Lemma 3.4. By Lemma 2.3, a reordering of the pseudocycles bis with i=k′, . . . , k does not

change the oriented space on the left-hand side of (3.6). We can thus assume that

K′ = {k−|K′|+1, . . . , k
} ⊂ [k].
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Fig. 6. Commutative squares of exact sequences for the proof of Lemma 3.4.

The 2nd claim then follows from the 2nd claim of Lemma 3.4 by induction. �
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