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Our previous paper describes a geometric translation of the construction of open
Gromov-Witten invariants by Solomon and Tukachinsky from a perspective of A -
algebras of differential forms. We now use this geometric perspective to show that these
invariants reduce to Welschinger's open Gromov-Witten invariants in dimension 6,
inline with their and Tian's expectations. As an immediate corollary, we obtain a trans-
lation of Solomon-Tukachinsky’'s open WDVV equations into relations for Welschinger's

invariants.

1 Introduction

Fukaya-Oh-Ohta-Ono [5] associated A -algebras with Lagrangian submanifolds of
symplectic manifolds and extensively studied the theory of bounding chains in
A -algebras, from both the point of view of differential forms and geometrically.
Numerical counts of J-holomorphic disks have since been extracted from the
A -algebras of [5] in some settings. In the present paper, we compare certain disk
invariants of symplectic six-folds arising from [5] with the disk invariants constructed
differently by Welschinger [17].
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Let (X, w) be a compact symplectic six-fold and ¥ C X be a compact Lagrangian
submanifold. We denote by

,: Hy(X,Y;7) — T (1.1)
the Maslov index of the pair (X, Y). This pair is called positive if

©(B) >0, up(F)>0 =  uP(p) >0 (1.2)

for every B € H,(X,Y;Z) representable by a continuous map from (D?,S'). If this
condition holds, then every non-constant J-holomorphic map from (D?,S!) to (X, Y) has
a positive Maslov index for a generic w-compatible almost complex structure J. The
same happens along a generic path of almost complex structures if in addition Y is
orientable (which implies that 1§ takes only even values). Suppose 0s= (0, ) is a relative
OSpin-structure on Y, that is, a pair consisting of an orientation o on Y and a relative
Spin-structure s on the oriented manifold (Y, o).

Let R be a commutative ring with unity 1. If the homomorphism
ty. H{(Y;R) — H,;(X;R) (1.3)

induced by the inclusion iy : ¥ — X is injective, the boundaries of maps from (D?,S')
to (X,Y) are homologically trivial in ¥ and thus have well-defined linking numbers
with values in R. Under this injectivity assumption and the positivity condition (1.2),
Welschinger [17] defines open Gromov-Witten (GW) invariants

o0
(R Vi Pr*x,v;R® — R, BeH,(X,Y;Z)-{0}, keZ™, (1.4)
=0

enumerating J-holomorphic multi-disks of total degree g weighted by R-valued linking
numbers of their boundaries; see [17, Section 4.1] and (3.4). In “real settings” (when
Y is a topological component of the fixed locus of anti-symplectic involution on X),
these invariants encode the real Gromov-Witten invariants defined in [11, 15, 16]; see
Remark 3.3. A special case of the setting of [17] is when Y is an R-homology S°.

Based on A -algebra considerations, Fukaya [4] defines a count ()‘5:85 € Q of
J-holomorphic degree g disks in X with boundary in ¥ under the assumption that (X, w)
is a Calabi—Yau three-fold and the Maslov index ug of (X,Y) vanishes; this count may

in general depend on the w-compatible almost complex structure J on X. Motivated
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Comparing Open GW-Invariants In Dimension 6 7023

by [4], Solomon and Tukachinsky [12] further extend the theory of bounding chains of

differential forms to define counts

oo
GV PH*X, VR — R, BeH,(X,Y;2), keZ°, (1.5)
=0

of J-holomorphic disks in symplectic manifolds X of arbitrary dimension 2n and show
that bounding chains that are equivalent in a suitable sense define the same counts.
They also prove that bounding chains exist and any two relevant bounding chains are
equivalent if n is odd and Y is an R-homology sphere. The resulting open Gromov-Witten
invariants (1.5) of (X,Y) depend on the choice of a (relative) OSpin-structure os on Y but
are independent of all other auxiliary choices (such as J).

Well before [12], Tian expressed a belief that the construction of [17] is a
geometric realization of the algebraic considerations behind the construction of [4]. The
same sentiment is expressed in [12, Section 1.2.7]. The present paper uses the geometric
interpretation of the construction of [12] described in [2], which is applicable over
any commutative ring R with unity under the positivity condition (1.2) in the case of
symplectic six-folds, to confirm Tian’'s and Solomon-Tukachinsky's expectations; see
Theorem 1.2 below. Proposition 3.2, a kind of open divisor relation that trades real
codimension 1 bordered insertions at boundary marked points for linking numbers
of their boundaries with the boundaries of the disks, provides a transition from
bounding chains to linking numbers. As an immediate consequence of Theorem 1.2,
the basic structural properties and the Witten-Dijkgraaf-Verlinde-Verlinde (WDVV)-type
relations for open Gromov-Witten invariants obtained in [13] yield similar properties
and relations for Welschinger’s invariants (1.4); see Corollaries 1.4 and 1.6.

The positivity condition (1.2) ensures that virtual techniques are not necessary
for the purposes of this paper. However, the reasoning extends to general symplectic
six-folds satisfying the injectivity condition (1.2) via the setup of Appendix A in [2] if
R D Q. This setup is compatible with standard virtual class approaches, such as in [6,
8-10]. As we only need evaluation maps from the (J,v)-spaces to be pseudocycles, a
full virtual cycle construction and gluing across all strata of the (J, v)-spaces are not

necessary.

Remark 1.1. In[17, Corollary 2], the insertions for the open invariants (1.4) are taken in
H*(X; R) instead of Hz*(X, Y; R). However, there is a minor omission in [17, Section 4.2.3].
For this reason, the insertions do need to be taken in H?*(X, Y; R) for the invariants to
be well defined.
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1.1 Comparison theorem

Let (X,w) be a compact symplectic manifold of dimension 2n, ¥ C X be a compact
Lagrangian submanifold, and os = (0,5) be a relative OSpin-structure on Y. Let
a = (B,K,L) be a tuple consisting of 8 € H,(X,Y;Z), a generic finite subset K of Y,
and a generic set L of pseudocycles I';,...,T'; in X —Y representing Poincaré duals of
some cohomology classes y;, ...,y on (X, Y). For a generic w-compatible almost complex
structure J on X, a bounding chain (b,)ycc, ., (v) o0 (2, J) in the geometric perspective of
[2] is a tuple of bordered pseudocycles with certain properties specified in the dim X =6
case by Definition 2.6 in the present paper. Such a tuple determines a pseudocycle bb,,

into Y; see (2.11). It has a well-defined degree, and we set

®,08

<y1,...,yl)ﬂ,|K‘+1 = (L)‘/g;'f{5 = degbb,; (1.6)

if the dimension of bb, is not n, the above numbers are defined to be 0. This degree

may depend on the choices of K, L, J, and (b,) .(v)- Bounding chains differing by a

a’eCy,
pseudo-isotopy of [2, Definition 2.2] determine the same degrees (1.6); see [2, Section 2.2].
This guarantees that the numbers in (1.6) depend only on w, 0s, 8, [K|, and y;,...,y;if nis
odd and Y is an R-homology sphere. However, the injectivity of (1.3) does not guarantee
the existence of a pseudo-isotopy between a pair of bounding chains associated even
with the same K, L, and J. Nevertheless, the following statement shows that the open
w,086

invariants (1.6) are equivalent to Welschinger’'s invariants (...) BK|+1 and thus are

independent of the choice of bounding chain.

Theorem 1.2. Suppose R is a commutative ring with unity, (X,») is a compact
symplectic six-fold, ¥ € X is a compact Lagrangian submanifold so that the positivity
condition (1.2) holds and the homomorphism (1.3) is injective, and os is a relative OSpin-
structure on Y. Let S € H,(X,Y;Z), K be a generic finite subset of ¥, L={TI";,...,I';} be a
generic set of even-dimensional pseudocycles to X—Y, « = (8,K, L), and J be a generic

w-compatible almost complex structure on X.

(W1) There exists a bounding chain (b,/) vy on (&, J).

a'€Chia

(W2) Ify,..., yleHz*(X, Y; R) are the Poincaré duals of 'y, ..., I';, then
, K|+1 .
(Vi) = CDEFL@gEs

for any bounding chain (b,/)ycc,  (v) 00 (@, J).
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For each o € C,,(Y) satisfying the dimension condition in Definition 2.6, the
right-hand side of (2.9) consists of the boundaries of some maps from (D?,S') to
(X,Y); see Proposition 3.1. By the injectivity of (1.3), we can thus choose a bordered
pseudocycle b, to Y satisfying (2.9). This implies that a bounding chain (b,)ycc,,, (v) OB
(a,J) can be constructed by induction on the partially ordered set C,,(Y) and estab-
lishes Theorem 1.2(W1).

A key ingredient in the proof of Proposition 3.1 is the open divisor rela-
tion of Proposition 3.2, which replaces real codimension 1 bordered insertions at
boundary marked points with linking numbers. This relation is also combined with
Proposition 3.1 to obtain the identification of the disk counts (1.6) with Welschinger’s
invariants (1.4) stated in Theorem 1.2. This identification in turn implies that the
numbers (1.6) depend only on w, vs, 8, |K|, and y;,..., ;.

We denote by

Qy: Hy(X;Z) — Hy(X,Y;7Z) (1.7)

the natural homomorphism. A bounding chain (b,) () s in Definition 2.6 can also

aeCy:

be used to define a count of J-holomorphic degree 8 disks through |K| (rather than |[KH+1)

points in Y if
k=|K|l#0 or B¢Im(qy:Hy,(X;Z)— H,(X,Y;Z)); (1.8)

see (2.12). The definition of the invariants (1.4) in [17] immediately extends to counts of
multi-disks with k=0 points in Y if 8 satisfies the 2nd condition in (1.8). The proof of
Theorem 1.2 can be slightly modified to cover this case. It can also be readily extended

to the open invariants with insertions from H,(Y; R), which are defined in [17].

Remark 1.3. The definition (1.6) of open invariants in [2] is a geometric translation
of the construction of the invariants (1.5) in [12], in the sense that we use submanifolds
instead of differential forms. The two invariants are not explicitly shown to be the same,

but we expect this to be straightforward.

It is immediate from (3.4) that Welschinger's open invariants are symmetric

linear functionals that satisfy an open divisor relation:

(V/V1:~~-r1/l);§):;zs = (V/,B) (71,-..,3’1);:25 VVGHZ(X! Y;R)'
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Combining Theorem 1.2 above with the last three statements of [2, Theorem 2.9], which
in turn are analogues of [3, Proposition 2.1] and [13, Corollary 1.5], we obtain below
additional properties of Welschinger's open invariants.

Suppose Y is connected. The kernel of the homomorphism
H,(X-Y;R) — Hy(X;R)

is then generated by the homology class [S(NYY)] x_y of a unit sphere S(Ny Y) in the fiber
of N'Y over any y € Y. We orient S(V,Y) as in [3, Section 2.5] and denote the image of
[SWV, Y)]x_y under the Lefschetz duality isomorphism

PDyy: H, (X—Y;R) — H*(X,Y;R)

by n§(,y. For BeH,(X;Z), let

o0
(o) @H*(X;R)@l —>R
=0

be the standard GW-invariants of (X, ). We denote by [Y]y the homology class on X
determined by Y and by w;,(0s) the 2nd Stiefel-Whitney class of os (w,(0s) =w, (V) in the

notation of [5, Definition 8.1.2]).

Corollary 1.4. Let (X,w,Y), os, B, k, and y,,...,y; be as in Theorem 1.2. If the pair
(k, B) satisfies (1.8) and Y is connected, Welschinger’'s open invariants (1.4) satisfy the

following properties.

WGW1) (ygy v g ==V gki
(WGW2) If k=1 and y,eH3(X;R),

()’o, [Y]X> (J/1, eVl )Cg:]gs = - Z(_]-)<W2(05)'B> (PDX ([Y]X) YorV1 |Xr RN Vl'X)g .
Beqy' (B)

(WGW3) If[Y]y#0and k>2, then (y;,...,y )‘/glr;fzo.

1.2 WDVV-type relations

Let R, (X,w,Y) and os be as in Theorem 1.2. We now use this theorem to translate the

WDVV-type relations for the open GW-invariants (1.5) obtained in [13] to relations for
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Comparing Open GW-Invariants In Dimension 6 7027

Welschinger’s open invariants (1.4) under the assumptions that R is a field and the

homomorphism
ty,: Hy(Y;R) — H,(X;R) (1.9
induced by the inclusion ¢y : ¥ — X is trivial. For keZ>9, define
[kl ={1,...,k}.

Under the assumption (1.8), we extend the invariants (1.4) to the degree =0 and
inputs from H°(X; R) by

(y Jy@es —(y.pt), ifk,D=(1,1);
1re-1 V] 0,k =
0, otherwise;

-1, if(B,k,1)=(0,1,0);

®,08

()/1,3/2/.”,)/1,1)/3’]( =
0, otherwise.

In light of Theorem 1.2 and the symmetry of the open invariants (1.5), these extensions
are consistent with (OGW2) and (OGW3) in [2, Theorem 2.9]. If [Y], =0 and y is a two-

dimensional pseudocycle to X—Y bounding a pseudocycle b transverse to Y, we define

lkos(y) = |bebLY| i;

see Section 2.1 for the sign conventions for fiber products. This linking number of y and
Y with the orientation determined by the relative OSpin-structure os does not depend
on the choice of b. We set Ik .(y)=0 if y is not a two-dimensional pseudocycle.

ForleZ?Y Be H,(X;Z), and an w-tame almost complex structure J, we denote
by Dﬁ({%}um (B; J) the moduli space of stable J-holomorphic degree B maps from P! into X
with marked points indexed by the set {0}U[l]. It carries a canonical orientation. For each
1e{0}ull], let

. onC .
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7028 X. Chen

be the evaluation morphism at the i-th marked point. If in addition I';, ..., I'; are maps
to X, let

C . - _ qnC .
Moy B D %gp (@ T iem) = Moy B Deevs . evp X1y x..xry (dom ) x. .. x (dom T) .

.....

If J is generic and I'y, ..., I'; are pseudocycles in general position, then

C — . omC . 1
fBr(Fi)iG[l] = (eVO . Sﬁ{o}um (B, J)be((l, FL)LE[Z]) —> X)

is a pseudocycle of dimension

l
dimfg(ri)iem =i, (qy(B)) =D (codim I;—2) + 2
i=1
transverse to Y.
Since dim Y =3, the cohomology long exact sequence for the pair (X, Y) implies

that the restriction homomorphism
HP(X,Y;R) — HP(X;R) (1.10)

is surjective for p=4, 6. Since R is a field and the homomorphism (1.9) is trivial, (1.10) is

also surjective for p=2. Let
yX=1cHX;R) and yX,...,yX e H*X,Y;R)

be such that yl*, yz* lxr---s yA’,"|X is a basis for Hz*(X,' R), (gij)i,j be the N x N-matrix given
by

9ij = <Vi*)/j*,[X]>

and (gif)l-J be its inverse. Let Ff = idy and F;,...,F}G’ be pseudocycles to X — Y

representing the Poincaré duals of yz*, ey yN*.

Remark 1.5. > gijyi* X y].* € H®"(X x X;R) is the Poincaré dual to the diagonal
ijeln]

modulo H°d(X; R) ® H°dd(X; R). The corresponding terms in Corollary 1.6 with odd-

degree insertions yi* would vanish for dimensional reasons and thus do not need to

be considered.
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For the purpose of WDVV-type equations for the invariants (1.4), we extend the
signed counts (3.4) to the pairs (k, 8) not satisfying (1.8), that is, k=0 and € H,(X,Y;Z)
is in the image of the homomorphism gy in (1.7), as follows. Let y;, ..., y; be elements of
{1JuH?*(X, Y; R). If [Y]5 #0, we define

wos_o

(V1:-~~,J/z)

Suppose next that [Y],=0. Let I';,...,I'; be generic pseudocycles to X so that I'; =idy if
y;=1andT;isa pseudocycle into X —Y representing the Poincaré dual of y; otherwise.
For BeH,(X;Z), let (AB ien)iel] €RY be such that

N

C * - Ry
I:fBl(Fi)iE[l]] Z )le[l] (V] |X) S H* (X, R),

the tuple (A )]e[N] depends only on B, yy,...,y;, and yz*, e, yN*. Define

B, (vi)iell

N

w,08 _ 1\{w2(0s),B) C _ J *
(virom)je” =RES of B4+ D (=DM ko | firy = 2 480011
Begy' (B) J=1

in this case. This number depends on the span of the elements yz*, e, yN* in H**(X,Y;R),

but not on the choice of pseudocycles T'},...,T; and F;,...,F* representing the

Poincaré duals of y;,...,y; and yz* peees yN* , respectively. For example,

N
, Nk :
(11,7200 = ko | Ty NI~ ka X where vy, =D M,y Ix € H X Q).
1

Let y = (y;,...,¥) be a tuple of elements of (1) uH?*(X,Y;R). For I c{1,2,...,1},
we denote by y; the |I|-tuple consisting of the entries of y indexed by I. If in addition
BeH,(X,Y;Z), define

wos | 5 kgD =0;
ky(yp) = (uww) Z(degyi—Z)), (y)yos =1 RO P

il 0, otherwise.
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Fori,j=1,2,...,1, we define

PO ={d,D:(1,2,....0=Iu], 1D}, P, ={d,J)ePd:iel},

For feH,(X,Y;Z), let

Pe(B) ={(B',B)€H,(X,Y; Z)®H,(X; Z): B'+qy(B)=B},

PrB) = {(B1. By) €Hy(X, Y; L)®H, (X, Y; Z): B1+By=B}.

For a relative OSpin-structure os on (X,Y) and B € H,(X; Z), we define a twisted version

of the standard Gromov-Witten invariants

(_,. ,05 __ (_1)wz(os)(

et = )%,

ey

Combining Theorem 1.2 above with [2, Theorem 2.10], we obtain relations between

Welschinger’'s open invariants (1.4) as stated below.

Corollary 1.6. Let R be a field and (X, 0, Y), 0s, 8, and y =(y;, ..., ;) be as in Theorem
1.2 with

l
1
k= > (Mw(ﬂ) - z (deg,ui—Z))—l > 0.

i=1

Suppose in addition that the homomorphism (1.9) is trivial.

(OWDVV1) Ifl>2 and k>1, then

* 0% i * ©,05 (k_l ) ©,05 ®,06
> Dl rXle) 9 vy > ke, () R O

(B'.B)ePc(B) Lj€lN] (B1,82)€Pr(B)
I J)eP2 (D) I J)eP2: (1)
k-1 )
I (y )&),05(]/ )6!),05 .
Z (kﬂ1 (yp—1 17 J 1B,

(B1,B2)€Pr(B)
I, DeP2()
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(OWDVV2) Ifl>3, then

*, \»os ij * ©,05 k ,05 ®,05
z Z<V1|X, 1z |X>B g (V] 4y Z (kﬂl(yj)) (v ),Bl (vy )52

(B'.B)ePc(B) LjelN] (B1,82)€Pr(B)
I J)ePo;3() I JePo3 (D)
%, @05 * ' k ) :
= Z Z<VI|X' Vi |X>B g (o vs )/2)’05 - Z (k ) (v >(;5)105 (vs )(/gz05 :
(B'.B)Pc(p) ijell] (B1.B2)ePr(p) P11
T, J)eP3;2(D) T, J)ePs3;2(D)

Remark 1.7. The open WDVV equations in [13] are stated for R = R only. However,
a translation of its proof into the geometric language of [2] applies with any field R

without any changes.

2 Preliminaries

Section 2.1 recalls the orientation conventions for fiber products and some of their
properties from [2, Section 5.1]; their proofs are included at the referee’s suggestion. The
combinatorial objects needed for the geometric presentation of the open invariants of
[12] in symplectic six-folds are gathered in Section 2.2. We describe the relevant moduli
spaces of stable disk maps and specify their orientations in Section 2.3. Section 2.4
specializes the geometric definition of bounding chain from [2] to symplectic six-folds

and uses it to define counts J-holomorphic disks.

2.1 Fiber products

We say a short exact sequence of oriented vector spaces

0—wV —>V—V —0

is orientation compatible if for an oriented basis (v},...,v;,) of V’, an oriented basis
(vy{,...,vy) of ¥V, and a splitting j: V' — V, (v},...,Vy,,j(v]),...,j(vy) is an oriented

basis of V. We say it has sign (—1)¢€ if it becomes orientation compatible after twisting
the orientation of ¥V by (—1)¢. We use the analogous terminology for short exact
sequences of Fredholm operators with respect to orientations of their determinants;

see [19, Section 2].
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7032 X. Chen

Let M be an oriented manifold with boundary M. We orient the normal bundle

N to M by the outer normal direction and orient dM so that the short exact sequence
O—>Tp8M—>TpM—>N—>O (2.1)
is orientation compatible at each point p € dM. We refer to this orientation of dM as the
boundary orientation.
We orient M x M by the usual product orientation and the diagonal A,; C M xM
by the diffeomorphism
M — Ay, p — (p,p).
We orient the normal bundle N'A;; of Ay, so that the short exact sequence
0— TppAy — TppMxM) — ./\/AMl(p'p) —0
is orientation compatible for each point p e M. Thus, the isomorphism

J\/AM|(p'p) — T,M, v, w] — w—v,

respects the orientations.

For maps f: M— X and g: ' — X, we denote by

Fxmg =Myx,T = ((p,@) eMxT: f(p) = g(@)

their fiber product. If M, I", and X are oriented manifolds (M, I possibly with boundary)

and f, f|,,, are transverse to g, gl,r, we orient Mex4I" so that the short exact sequence

[dpf.dggl N
0 — Tip,qMpxgl) —> T q)(MXT) ——— NAxlp) gq) — 0

is orientation compatible for every (p, q) €Mpx T The exact sequence

dqg—dpf
0 — Tip,g My xgl) —> T,y MxT) ——— Tpp) X — 0 (2.2)

is then orientation compatible as well. We refer to this orientation of MexgI' as the fiber

product orientation. The next lemma is straightforward.
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0 0 0

Fig. 1. Commutative square of exact sequences of vector spaces for the statement of Lemma 2.1.

Lemma 2.1. Suppose A;; with i,j € [3] are oriented finite-dimensional vector spaces,
the rows and columns in the diagram in Figure 1 are exact sequences of vector-space
homomorphisms, and this diagram commutes. The total number of rows and columns
in this diagram that (do not) respect the orientations is congruent to dim(4,3)dim(45,;)
mod 2.

Lemma 2.2, With the assumptions as above,
d(Myx,T') = (—1)dm¥ ((—1)dimr(aM)f xoT U Mj xgar) .

Proof. We denote the normal bundles of dM in M and of oI" in I by NOM and NAT,
respectively.

Suppose (p, q) € IMpx I The exact sequences (2.1) and (2.2) then induce the 1st
commutative square of exact sequences in Figure 2. The top (resp. middle) row in this
diagram respects the fiber product orientation on 0M;x I' (resp. My x,I'), the boundary
orientation on oM (resp. given orientation on M), and the given orientations on I' and X.
The left column respects the boundary orientation of T, ,(0Mf x4 I'), the fiber product
orientation of Tp,q Mpxgl), and the orientation of NpaM . The middle column respects
the boundary orientation of Tp,q Mpxgl), the product orientation of Tip,gMxT), and
the orientation of NpaM if and only if dim T € 2Z. Along with Lemma 2.1, this implies
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0 0 0
dgg—dpf
0 = Tp.q) (OMy x4T') > T{p,q) (M xT) =T X =0
id
dgg—dyf
0 = Tip.q) (Mg xgT) = Tip,g) (M xT) — Ty X =0
id
0 0
0 0 0
dgg—dy f
0 > T(p,q) (M x40l) = Tp,q) (M x 0T') s Ty X >0
id
dgg—dpf
0 = Tip.q) (Mg xgT) > T{p,q) (M xT) =T X =0
0 N,oT i N,oT 0

Fig. 2. Commutative squares of exact sequences for the proofs of Lemma 2.2.

that the boundary and fiber product orientations of

Tp.g (a(MfXgF)) =Tpq (8fogr)

are the same if and only if dim X+dim I" € 27Z.

Suppose (p,q) € Mgx,0I'. The exact sequences (2.1) and (2.2) then induce the
2nd commutative square of exact sequences in Figure 2. The same statements as in the
previous paragraph apply, except now the middle column always respects the relevant

orientations. Along with Lemma 2.1, this implies that the boundary and fiber product
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orientations of

Tom (B(Mf ng)) = Tpo (Mf xgar)
are the same if and only if dim X € 27Z. ]

For a diffeomorphism o : M —> M’ between oriented manifolds, we define
sgno =1 if ¢ is everywhere orientation preserving and sgno = —1 if o is everywhere

orientation reversing.

Lemma 2.3. Suppose oy, oy, oy are self-diffeomorphisms of M, T, X, respectively, with

well-defined signs. If the diagram

M X r

X g I

commutes, then the sign of the diffeomorphism
Mpex I — Mex I, 9 — (o (). or (@), (2.3)

is (sgnoy,)(sgnoy)(sgnoy).

Proof. Let (p,q) € Msx,I'. The diagram

dgg—dpf
0 = Tp,q) (Mg x4 = Tp,q) (M xT) —— Ty X =0
(2.3)l lde]\/]quO'F \Ldf(p)o'X
degg—dpf
0 ——T{p,q) (Mg x gI') ——T(;, ) (M xT) TypX —=0

of vector space homomorphisms then commutes. Since the signs of the isomorphisms
given by the middle and right vertical arrows in the above diagram are (sgnoy,,)(sgnoy)

and sgn oy, respectively, the sign of the isomorphism given by the left vertical arrow is

(sgnoy)(sgnorp)(sgnoy). |

Let M,I',X and f, g be as above Lemma 2.2. Suppose in addition thate: M — Y
and h: C— Y. Let €': My x,I" — Y be the composition of the projection My x,I" — M
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drh—dpe
00— Tip,q),r) (My % gI)erx, C) —— Ti(,),r) (Mg x gT') x C) ————T(

pY —=0
(2.4)
0 —— Tip,(g,r) (M f,e)% gxn (X C) —— Ty (q,r) (M X (T' X C) —— T 4(p),e(p) (X XY) —0

dqg—dp f

0 Ty X

Ty X

Fig. 3. The maps of Lemma 2.4 and a commutative square of exact sequences for its proof.

with e; see Figure 3. There is then a natural bijection
(fogr) X3 C A M 5% g (T XC). (2.4)

If C,Y are oriented manifolds and all relevant maps are transverse, then both sides
of this bijection inherit fiber product orientations. For any map h : M — Z between

manifolds, let
codimh =dimZ — dim M.

Lemma 2.4. The diffeomorphism (2.4) has sign (—1)(dimX(codimh) with respect to the

fiber product orientations on the two sides.

Proof. Let (p,q).7) € (Mg xg T) g xp, C. The exact sequence (2.2) then induces the
commutative square of exact sequences in Figure 3. The top and middle rows in this

diagram respect the fiber product and product orientations of the relevant spaces. The
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middle and right columns have signs (—1)@mX)@m0) gpd (—1)(dmX@mY) regnectively.

Along with Lemma 2.1, this implies the claim. ]

2.2 Combinatorial notation

Let (X, w) be a compact symplectic six-fold, ¥ € X be a compact Lagrangian submanifold,
Hy(X,Y) ={B€H,(X,Y;Z): w(B)>0 or B=0},
and J, be the space of w-compatible almost complex structures on X. Let

C,(Y)= {(ﬂ,K, L):BeHy(X,Y), K is a finite collection of points inY,
L is a finite collection of pseudocycles inX — YwithR-coefficients,

(B, K,L)#(0,8,4)}.
This collection has a natural partial order:
#.K,L')<(B,K,L) if p-p eHyX,Y), K'CK, and L'CL.

The elements (0, K, L) of C,(Y) with |K|+|L| =1 are minimal with respect to this partial
order. For each element «=(8,K,L) of C,(Y), we define
Bla) =B, K(x) =K, L(o) =L,

dim(a) = ug(ﬂ)—zuq—Z(codimr—Z), Coa(¥) = {0/ €C,(V): o' <at}.
I'eL

ForaeC, (Y), let

D, (a) = [(ﬁ,,k,,L,, (@)icir,)): Bo€HY (X, Y), k,€Z7°, L, CL(a), (B,,k,.L,) #(0,1,0),

ke ke ke
a€C,(V)Vielk,], B+ Ble)=B), | |K@)=K(@), L.I_Il_lLi(a)zL(a)] .

i=1 i=1 i=1

An element in D, («) is a “degeneration” of « into a central piece and k, many branches;

see Figure 4. Since «o; <« for every

1= (Bo K Lay (@)ici)) = (BurKur Lay By Ki Licii)) € Dop(@) (2.5)
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b2

P1
0
b3

aeC,(Y) n€ Dy ()
a=(8,{p1,p2,p3}, {L1, L2})
n= (ﬁ-,& {L1}, (B1, D, {L1}), (B2, {p1, 2}, D). (0, {ps}, @))7 Bo+B14P2+0=0

Fig. 4. An element @ €C,(Y) and a “degeneration” n €D, («) of it.
and every i€lk,], k, =0 if « is a minimal element of C,(Y). Thus,
D, (O,{pt},#) =¥ and D, (0,4, (T} ={(©,0,{T}, )}

for any point pte Y and any R-pseudocycle I' in X—Y. For neD,(«) as in (2.5) and i e [k,],

we define

Bo(m) =B, k,(m) =k, L,(n)=1L,

a;(n) =o; =B, K, L), B;(m) =8, K;n)=K;, L;jn =L,

2.3 Moduli spaces

We denote by D? c C the unit disk with the induced complex structure, by D? vD? the
union of two disks joined at a pair of boundary points, and by S! c D? and S'vS! c D*vD?
the respective boundaries. We orient the boundaries counterclockwise; thus, starting
from a smooth point x; of S!vS!, we proceed counterclockwise to the node nd, then
circle the 2nd copy of S! counterclockwise back to nd, and return to x, counterclockwise
from nd. We call smooth points x,x;, ..., %, on S! or S*vS! ordered by position if they
are traversed counterclockwise.

Let k,1 € ZZ% with k+2I > 3. We denote by M3 the moduli space of k distinct
boundary marked points x;, ..., x; and [ distinct interior marked points z;, ...,z on the
unit disk D (the superscript uo (“unordered”) means that x;, ..., x; do not necessarily lie

in cyclic order on S' C D?). We orient MY9 as a plus point. The space M4S consists of
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two points, C;O with the three boundary points ordered by position and C;, with the

three boundary points not ordered by position. We orient C;O as a plus point and C; , as

a minus point. We identify 9 with the interval (0, 1) by taking z; =0 and z, € (0, 1)
and orient it by the negative orlentatlon of (0, 1).
We orient other M9 inductively. If k> 1, we orient q so that the short exact
sequence
01,8 — s T e o (2.6)

induced by the forgetful morphism fﬂlf dropping x; has sign (—1)k with respect to the

counterclockwise orientation of S!. Thus,
uo ~ uo 1
TMk,l ~ TMk*l,l @ TXkS .
If I>1, we orient M‘,;‘; so that the short exact sequence

dif
0— T,D— TMR —> TMpS | — 0 (2.7)

induced by the forgetful morphism f(lc dropping z; is orientation compatible with respect
to the complex orientation of . By a direct check, the orientations of /\/l‘l1 » induced from
02 Via (2.6) and from M7 via (2.7) are the same, and the orientations of 9 induced
from M7 via (2.6) and from M3 via (2.7) are also the same. Since the flbers of fl are
even dimensional, it follows that the orientation on M};‘; above is well defined.
Let (X,w) be a symplectic manifold, ¥ ¢ X be a Lagrangian submanifold,
B € H)(X,Y), and J € J,. For a finite ordered set K and a finite set L, we denote by
M= *(,3 J) the moduli space of stable J-holomorphic degree 8 maps from (D?,S') and
(]DJZ\/]D)Z, S'vS!) to (X, Y) with boundary and interior marked points indexed by K and L,

respectively. Let
MY, (B; J) € Mgy X(B; )

be the subspace of maps from (D?,S'). If K =[k] for k € Z>° (resp. L=II] for l € Z>°), we

write k for K (resp. [ for L) in the subscripts of these moduli spaces. For

ful = [u: ©,8) — (X, V), (%)ieqys Zodiean | € MEGB: D), (2.8)
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let
Dy T (WTX, ulfy TY) — T (:l'*m)("l@(C Ut (TX, J))

be the linearization of the {9;}-operator on the space of maps from (D, S') to (X,Y). By
[5, Proposition 8.1.1], a relative OSpin-structure os on Y determines an orientation on
det(Dj.,)-

We orient S)ﬁz‘; (B;J) by requiring the short exact sequence

d
0 — ker D, —> T IN5(B;J) < Tjw My — 0

to be orientation compatible, where f is the forgetful morphism dropping the map part
of u. This orientation extends over ‘.mz(;’*(ﬁ;J). If K is a finite ordered set and L is a
finite set, we orient E)ﬁ}?,)i*(ﬁ;J) from S)ﬁll}?"ﬁl(ﬂ;J) by identifying K with [|K|] as ordered

sets and L with [|L|] as sets.

Remark 2.5. The above paragraph endows 971;%*(,3;]) with an orientation under the

assumption that |[K|+2|L| > 3. If |K|+2|L| < 3, one first stabilizes the domain of u by
adding one or two interior marked points, then orients the tangent space of the resulting
map as above, and finally drops the added marked points using the canonical complex

orientation of ID; see the proof of [7, Corollary 1.8].
ForieK and jeL, let

evh;: M X (BiJ)— Y and  evij: MpyX(BiJ) — X

be the evaluation morphisms at the i-th boundary marked point and the i-th interior

marked point, respectively. If M C zm}?i* (B;J), we denote the restrictions of evb; and

evi; to M also by evb; and evi;. If in addition m, m' eZ>9,

(bg: Zy, — Y) and  ([y:Zp, —X)

selml] selm/]

are tuples of maps and iy,...,i,,€lkl and j;,...,j,, €L are distinct elements, let

fob ((is' bs)se[m]; (js' 1—‘s)se[m’])

= M(evbil ,‘..,evbim ,evijl ,.‘.,eVijm,)X by .. xbmxTyx...xTyy (Zbl Koo Xme XZF] Koo XZFm/)
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be their fiber product with M. If M is an oriented manifold and by and I'; are smooth
maps from oriented manifolds satisfying the appropriate transversality conditions,
then we orient this space as in Section 2.1. For i € [k] with i # i for any s € [m] (resp.

jeL with j#j, for any se[m’]), we define
evb; (resp. evij): M xg, ((is, bs)scimy: Gs: Us)seimn) — Y (resp.X)

to be the composition of the evaluation map evb; (resp. evi;) defined above with the

projection to the 1st component.

2.4 Open Gromov-Witten invariants

In the remainder of this paper, we use the term (bordered) pseudocycle to mean (bordered)
pseudocycle in the usual sense taken with R-coefficients; see the last part of [3, Section
3] for precise definitions. We recall that every R-homology class in a manifold can be
represented by a pseudocycle in this sense, which is unique up to equivalence; see [18,
Theorem 1.1].

Let (X, w) be a symplectic six-fold and ¥ € X be a Lagrangian submanifold. For
a point pteY, we denote its inclusion into Y also by pt. For e HY (X, Y), keZ>9, a finite
setL,and JeJ,, let

ME (B T) C > (B; )

be the subspace of maps with the boundary marked points ordered by position. If in

addition ne€ D, («) for some ¢ €C,(Y), define

ook , e .
M, 5= M o 1y B D), ML =M (Ba )i ).

Definition 2.6. Let R, (X,w), Y, 05, and « = (8,K,L) be as in Theorem 1.2. A bounding
chain on (a,J) is a collection (b, )y ¢c, , (v) Of bordered pseudocycles into ¥ such that
(BC1) dimb, =dim(e')+2 for all «’€C,,, (Y);
(BC2) b, =% unless «’=(0, {pt}, ¥) for some pteK or dim(a')=0;
(BC3)  b(g,pt}» =Pt for all ptek;
(BC4) foralla’eC,,,(Y) such that dim(a’) =0,

. ke + . )
b, = |evb,: U(—1) <'7>9)thfb((z+1,bai(n))ie[k.(n)],(L,ri)rid.(n))—>y
n€Dy(a’)

(2.9)
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Since the dimension of every pseudocycle I'; €L is even, the oriented morphism
— . ke ; C (7
b, = (evbl. (-1) <">mt;7ﬁjxfb((z+1,bai(n))idk.(,])], (z,ri)rid.(,])) N Y) (2.10)

in (2.9) does not depend on the choice of identification of L,(n) with [|L,(n)|]. By
[2, Lemma 3.1], the map

bb, = | Jbb, (2.11)
n€D,(a')

with orientation induced by the relative OSpin-structure os on Y is a pseudocycle for
every o’ €C,e (Y)U{er}. If in addition dim(«) =2, then bb, is a pseudocycle of codimension
0. Its degree determines a count of J-holomorphic disks in (X, Y) through |K|+1 points
in Y as in (1.6).

A bounding chain (b,)ycc,., (v) @s in Definition 2.6 can also be used to define
the counts (1.6) of J-holomorphic disks in the case of no boundary constraints in the
following way. We denote the signed cardinality of a finite set S of signed points by |S|*.
If S is not a finite set of signed points, we set |S|¥=0. If 5 €D, (a), let

%(n)_%l ifk.(n);éol
1, if k, (1) =0.

s*(n) =

Define

1
06 ke . e + ,
Lgr’ = D (~D*Ds") ‘fmwxfb((l' By ictea )i (b Fi)FiELo(ﬂ))‘ + 5 2 LK )
n€Dy () peK

(2.12)

This number vanishes unless dim(«) =0. Unlike (1.6), (2.12) provides a definition of the
counts (1.5) with k=0. By [2, Theorem 2.7(2)],

(L)g;';{5 in (2.12) = <L)73);'10<5—{pt} in (1.6)

for any pteK if (L) .k —(pt} does not depend on pteK.
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3 Proof of Theorem 1.2

For the remainder of the paper, we take (X,,Y) and os as in Theorem 1.2. Let y;, ¥,
be smooth maps from oriented closed one-manifolds into the oriented closed three-
manifold Y with disjoint images. If y; =9b, and y, =3db, for some bordered pseudocycles
b, and b, into Y so that b, is transverse to y, and b, is transverse to y;, we define

= ==t @D

(v, ¥2) = [by Xy ¥va| T = — |y X ba| = [byxgy 1)

the first and last equalities above hold by Lemma 2.2, while the middle one follows from

Lemma 2.3. The sign of a point (p, q@) of b; xg, ¥, is the sign of the isomorphism

Tpdom(bl)@quom(yz) — T, nY=T), Y (v, w) — dphl(v)~|—dqy2(w).

The linking number (3.1) of the one-cycles y; and y, that bound in ¥ does not depend on
the choice of b, b,. In this section, we take linking numbers of the boundaries du of J-
holomorphic maps u from (D?, S') to (X, Y). By the injectivity of (1.3), these boundaries

also bound in Y and thus have well-defined linking numbers.

3.1 Bounding chains and Welschinger’s invariants

For By,..., B, €Hy(X,Y), we denote by E))TI%‘,’L(,BI,. ..+ B J) the moduli space of unions of
m J-holomorphic disks in classes gy, ..., 8, with L-labeled interior marked points and
K-labeled boundary marked points between the m disks. In contrast to [17, Section 2.4],

we do not order the disks or orient this moduli space. Let

M By Bt D) € L By, B ) (3.2)

be the dense open subset of the multi-disks whose m components have pairwise disjoint
boundaries in Y. We extend the definitions of the evaluations maps evb; and evi; and of
the associated fiber product xg, of Section 2.3 to the moduli spaces in (3.2).

Let o = (8,K,L) and J be as in Theorem 1.2 and p;,...,p; be an ordering of
the elements of K. For any element o’ = (8',K’,L) of C,,(Y)U{«}, we endow K’ C K
with the order induced from K. We define the spaces of (constrained) single «’-disks and
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o’-multi-disks by

SD(@) = MY, (ﬁ’;J)xfb((i, Pk iy ri)rieL,) and
o

MD() = |_| |_|mt}l<?yf,(ﬂ1, e r,Bm;J)be((irpi)ieK/; @ Fi)l“ieL/) '
m=1 gy,....Bm€Hy (X,Y)
unordered
,31+---+,3m=,3,

respectively. Note that we do not orient MD(e) but define the sign of a single element
of MD(e') below via the spaces SD(a”).

We write an element u of MD(«’) as

u=[u,. o, with w e M, BiDxe(lPiek,i G To)rer, ) (3.3)

m m
for some m,B,,K,, L, with B,+...+8,, =8, I_lKr =K/, |_|Lr =I.
r=1 r=1

For such an element u of MD(«'), we write u, € u to indicate that u, is a component of
the multi-disk u. Let

Ju:S'u...uS!' — Y
—————

m

be the boundary of the components of u with the orientation induced by the complex
orientation on the unit disk. If dim(¢’) =0 and u, € u, we denote by sgn(u,) the sign of

u, as an element of the fiber product in (3.3) and set

sgn(u) = H sgn(u,);

urcu

this sign does not depend on the order on K. If dim(a’) #0, we define sgn(u)=0.

For u € MD(«) as in (3.3), we denote by K,, the complete graph with vertices
u;,...,u,, Wecall atree T CK,, that is, a connected subgraph without loops, spanning
if T contains all vertices of K, and denote by ST(u) the set of all spanning trees T CK,,.
Let

k(w; T) = [k (0u,, 9uy) YTeSTm) and lkw) = D lkw;T).

edgeeeT TeST(u)
connecting u,us
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Welschinger’s definition of the open GW-invariant (1.4) in [17, Section 4.1] is

equivalent to

Ty TG = > sgn(wlk(u). (3.4)
ueMD ()

The 1st statement of the next proposition establishes (W1). We deduce (W2) from the
2nd statement of this proposition and Proposition 3.2. The two propositions are proved

in Sections 3.2 and 3.3.

Proposition 3.1. LetaeC,(Y) and J be as in Theorem 1.2.

(1) There exists a bounding chain (b,)ycc, vy O (@, J).
(2) For every such bounding chain (b,), ¢, (v) and o’ €C,,,(Y) with dim(a') =0,

the associated closed pseudocycle (2.11) satisfies

db, = bb, = (~1)X| | sgnwlkw)du. (3.5)
ueMD(a')

If keZT and K C[k], let
s * (B ) — MR B D) and  fh: MG X (B D) — Mg (B )

be the forgetful morphisms dropping the boundary marked point with index k and the
boundary marked points indexed by the set K, respectively.

Proposition 3.2 (Open divisor relation). Suppose K’ C K C [k], L C [l], and (b;);.x and

(T'});c1, are tuples of bordered pseudocycles into Y and X, respectively. If the codimension

of b; is 1 for every iK' and
K'clK,. . kjck

for k' € [k], then there exists a dense open subset mrk]_K/l of the target of the induced

forgetful morphism

Tl X (B D u(d, b G Todier) — PGB Dxan (G bdieg—poi G Todier)  (3:6)
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so that (3.6) restricts to a covering map over each connected component 9 of Mg ;. If

in addition the codimensions of all b; are odd and the codimensions of I'; are even, then

deg (fZ;K/!m) = (-1)XI k@, ob,)
ieK’

for any ue.

Remark 3.3. Suppose that ¢ is an anti-symplectic involution on (X, w), that is, ¢ =idy
and ¢*w = —w, Y C X is a topological component of the fixed locus X? of ¢, ¢*J = —J,
and os is an OSpin-structure on Y, that is, a relative OSpin-structure os with w,(0s)=0.

Suppose also that for every i €[l] there exists a diffeomorphism ¢, of domI'; such that
¢oT; =Topr,  and  sgnep, = (-1 @m/2, (3.7)

Let Hy 4 (X, Y) be the quotient of H,(X, Y; Z) by the image of the endomorphism {Id+¢,}.
For BeH2;¢(X, Y), we denote by {I'y, ..., Fl}‘é’:l‘};jl the real genus 0 GW-invariant of (X, w, ¢)
enumerating degree B real J-holomorphic spheres through the constraints I'y,...,I'; and
|K| generic points in Y as defined in [3]. This invariant is a re-interpretation of the

invariants defined in [11, 15, 16]; see also [2, Remark B.4]. We show below that

w,08 -1 ’
T T =25 DTy TGS (3.8)
peB

that is, Welschinger's invariants (3.4) sum up to the real genus 0 GW-invariants as

expected.

Proof. Define

SD(B,K,L) = |_| SD(¢'),  MD(B,K,L) = |_| MD(c!) .
o'€C,(Y),B(e’)EB o'€C,(Y),B(e’)EB
K(a')=K,L(a')=L K(«)=K,L(a")=L

We show below that the collection

{(u,T): ueMD(B,K,L)—SD(B,K,L), TeST(un)} (3.9
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splits into subcollections A; so that

sgn(u)=sgn(u’) V(u,T), W, T)eA and Zlk(u; T)=0. (3.10)
u,T)eA;

In light of (3.4), this implies that

Z( ry,.. .,Fl)gflgl = Z ngn(u)lk(u; T) = ngn(u). (3.11)

BeB ueMD(B,K,L) TeST(u) ueSD(B,K,L)

By the next paragraph, the elements of SD(B, K, L) come in pairs of the same sign.
The union of the elements in such a pair is a degree B real J-holomorphic sphere through
the constraints I'y,...,I;. Conversely, a degree B real J-holomorphic sphere through
I'y,...,I'; determines a pair of elements of SD(B, K, L). However, {I';,..., Fl}g’l";‘ counts
each degree B real J-holomorphic sphere along with its contact points with I';,..., I}

and thus 2! times (because the contact points come in conjugate pairs). By the 2nd

condition in (3.7), all such decorated J-holomorphic spheres contribute to {T';, ..., Fl};‘;:flgl
with the same sign. Thus, {T'y,..., rl}‘g;(;; is 21/2 times the right-hand side of (3.11).

Let ¢ be the complex conjugation on D?. The replacement of u, eu as in (3.3) with

= ([#ouroc, (iek, (€Eries, | G Poie, i (b, @D rer, )

€ M, (9, (B DX, e (i Ty, )

preserves MD(B, K, L). Let u' € MD(B, K, L) be the resulting element. By [11, Proposition
5.1], sgn(u,) = sgn(u,); see also [2, Lemma B.7]. Thus, sgn(u’) = sgn(u). However, du,
and du, are the same circles with the opposite orientations. If precisely one edge of a
tree T € ST(u) contains u, € u as a vertex, that is, u, is a “leaf” of T, this implies that

Ik(u; T)=—1k(u’; T), where T’ is the tree obtained from T by replacing the vertex u, with

/

u,.

Given an element (u, T) of the collection (3.9), let 4; be the subcollection of (3.9)
consisting of all pairs (u’, T') obtained from (u, T) by replacing some of the leaves u,eT
by u/ as in the previous paragraph. If T contains N leaves, then |4;|=2". By the previous
paragraph, A; satisfies the 1st condition in (3.10) and

N
> Ik@'; T) = D (- DMk(; T)(IZ) =1k T) 1+(-1)" = 0.
k=0

(W, T)eA;
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Thus, A; satisfies the 2nd condition in (3.10), as required. | |

3.2 Main argument

We continue with the setting of Theorem 1.2 and Proposition 3.1. Let o’ € Coa (V) U{a}.
Recall that an element n € D, (¢') is a “degeneration” of ¢’ into a center and branches.

For neD,(¢'), define

Ki(m) = {ielk,(m]: o;(n) # (0, {pt}, ¥) YpteK},

KM = {pteK: (0,{pt}, #) =c;(n) for some i€ k,(n)]};
these are the set of indices of the non-point branches and the set of point branches. Let

oB8 ) = (B, K2, L) € Cpo (DU, TT = aZX (B )
For n,n' €D, («), define n~»n' if

(Bo), kg, Ly) = (B, k(). Ly(0")) and
(ai(n))ie[k.(n)] is a permutation of (ai(n/))ie[k.(n)] ,

that is, they have the same center and their branches differ by a permutation. Denote by

[n] the equivalence class of n. With bb, as in (2.10), let

bby,; = | oo, .
n'eln]

We define

DMD(«) = {(u,u,, T): ueMD(¢), u,eu, TeST()},

DMD(@) = { (1, U, @iex; ) 1€ D, (@), , €SDE (),
(3.12)
i, e DMD(q; (1)) Vier(n)}.

The notation “DMD” stands for “decorated multi-disk”: an element in DMD(«') is an
o’-multi-disk u with a choice of “base component” u, and a spanning tree T. An element
in DMD(c') is an element in DMD(«’) with the branches ordered; this is the content of the

bijection (3.13). See Figure 5. We define elements (1, u,, (U;);cxx () and (0, uy, (0)) ek ()

220z RelN 1.0 uo Josn AsIoAlun Yooug AUuols ‘Aleiqr] seousios uyesH Ad 0v68709/1.20./6/2202/2101ME/ulw/w0d"dno-olwapese)/:Sdly Wouj papeojumoq



Comparing Open GW-Invariants In Dimension 6 7049

Q0 .. Qo
OC JOING
) ] )

€y Clo
(u, u., T)eDMD(a') (1, ua, (1;)) e DMD (/)

Fig. 5. An element in DMD(e’) and its corresponding element in ﬁ/[_]S(o/).

of D/M]S(a’) to be equivalent if u, =u,, k,(n) =k, (1), and there exists a permutation o of
[k, ()] such that

() = a, () Yielk,m)], o (Kim)C K@), and U; =1, VieK;(n),

that is, the branches are permuted. We denote by DMD(«’) the quotient of the space in
(3.12) by this equivalence relation.
Let (u,u,, T) e DMD(¢). For each u, €u, let

B(u,) € HY (X, Y), L(u,)CL(¢'), and K(u,)CK(x)

be the degree of u,, the interior marked points carried by u,, and the boundary marked
points carried by u,, respectively. We denote by Br(u,; T) the set of branches of T at
u,, that is, the trees T; obtained by removing the vertex u, from the graph T. For each
i € Br(u,; T), we denote by u; the set of all vertices of T; and by u], € u; the vertex

connected by an edge of T to u,. Define

Bi= > B, K= |]|Kkw), L;=|]|L@), o= K;L)eC,, 1Y)

ureu; ureug ureug
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Let o (0, {pt}, ®) for each pteK(u,) and

pt~—
k, = |K(u,)|+|Br(u,; T)|.

Identifying K(u,)uBr(u,; T) with [k,], we obtain an element

(= (B, ko LW, (@icpe)) Uar (W Wy, Ty jepriuiy) € DMD(@)).

The induced element of DMD(«’) does not depend on the choice of this identification. In

this way, we obtain a natural bijection
DMD(«') — DMD(a). (3.13)
For keZ>%, we denote by S the k-th symmetric group. For o € Sk. ;) define

+ .apt uo,+
et O, —> T,

+ . .
tnio (u, X1 Xp1 - Ky (410 (Zi)FiEL.(’})) = (u X1 X oy XL yo k() (Zi)FiGL-(U))'

This map is an open embedding and

zm};‘}* = |_| (sgno) (Imc%) )

0 E€Sky ()

If n~n' are such that «;(n) = &, ;,(n') for all i € [k, ()], then
(—l)k'(”)bbn, A (evblz (sgno) (Im z;;(,) xfb((i—H, Bu () icticn ()1’ (i,Fi)rieL_(n)) — Y)
by Lemma 2.3. Therefore,
by~ (~1)k) (evb1 : mgfﬁxfb((iﬂ, Bayin)icik, (7 (i ri)rieL.(n)) — y) _ (3.14)

Proof of (W2). We establish this statement with K replaced by K —{p;} under the
assumption that dim(«)=0.
Let o’ and n be as above with 1¢K (). With p; =(0, {p;}, %),

(ke (D (13 Ka ) (1 yke() gyuos+ : i
bbgy X by, = (DT (D™ (DM, be((l’bpl)’(l+1’bdi(n))ie[k.(77)]' (l’ri)riGL.(ﬂ))'

(3.14) Lemma 2.3 Lemma 2.4
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Suppose in addition dim(a’) = 2. By the above identity, Proposition 3.2 with K’ =K} (n),
and (3.5) with «’ replaced by «;(n),

pt
|00y, x by, | £ = CDET@TS (sgneu,) [Tik@u,, b))
u,eSD(s" (n)+p1) ik

= (=DK@ Z sgn(u,) H Z sgn(u)lk(u;; T)lk(du,, du;)

u.eSD@ (n)+p1) tek3(n et
(3.15)
Since lk(du,, du;) =, ,1k(du,, du;,), the last expression equals to
(—1)IK @l > > sgn(u,) [] sgnylk; T)lk(ou,, du;,)
[neDy(a')/~ (u;,u;,,T;) EDMD (et; (17)) ieK*(n)
u.eSD(a?t(n)erl) for each ieK} ()
Using the bijectivity of the map (3.13), we thus obtain
—degbb, = (-1 3" sgnlkw T) = (—1FY sgnwlk(w).
(u,u,,T)eDMD(c'+p1) ueMD(o’+p;)
u, passes thr. p;
Taking o’ =(8,K—{p,},L) above and using (1.6) and (3.4), we obtain
, K .
(L>?3)'10{i{p1} = (_1)| | ( Fll ceey Fl )j;ﬂ;
and establish the claim. |

Proof of Proposition 3.1. We prove both statements by induction on the set C,(Y)
with respect to the partial order < defined in Section 2.2. It is sufficient to consider the
elements o’ €C,(Y) with dim(«’) =0 only.

Suppose « € C,(Y) with dim(«) =0 and (ba,)a,ecw;a(y) is a collection of bordered
pseudocycles into Y satisfying the conditions of Definition 2.6 as well as the 2nd
equality in (3.5) if dim(a’) = 0. By (3.14), Proposition 3.2 with K’ = K} (5), and (3.5) with
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o' replaced by «;(n),

bb[n]=(—1)‘K?t(”)‘ | | [sen,)]]1kun,, o8| ou,

u.eSD(d () 1eK3(n)
(3.16)
= (DE@H | Isgny] | > sgn(ulk(u; T)lk(du,, duy|| ou, .
u.eSD( () i€k (n) | w;eMD(e;(n)
T;eST(u;)

Summing up (3.16) over the equivalence classes [5] of n in D, (o) and using the

bijectivity of the map (3.13), we obtain

bb, = | Joby,) = —DF@| |sgnwlk; T)ou, = (-1)*@!| |sgn(u)lk)ou.

€Dy () /~ ueMD(«) ueMD(«)
U,€u,TeST(u)

This establishes the 2nd equality in (3.5) with o’ replaced by «. Along with the injectivity
of (1.3), it implies that bb, bounds in Y. Thus, we can choose a bordered pseudocycle b,
into Y satisfying the 1st equality in (3.5) with «’ replaced by a. |
3.3 Open divisor relation

We deduce Proposition 3.2 from the following lemma, which confirms the K’ = {k} case

of this proposition.

Lemma 3.4. Let 8,k,l, K, L, (b));cx, and (I';);; be as in Proposition 3.2. If ke K and the
codimension of by is 1, then there exists a dense open subset M} _, ; of the target of the

induced forgetful morphism

721 X (B % (G 0 (6 T)ier) — I (Bi ) xfb((i, b)ick k) G ngd) (3.17)

so that (3.17) restricts to a covering map over each connected component 9t of M;_, ;. If
in addition the codimensions of all b; are odd and the codimensions of I'; are even, then

the degree of this restriction is —1k(du, db;) for any ue <M.

Proof. We denote the right-hand side of (3.17) by M and define

K'=K—1{k}, M=% B ¥ b)icxri G Tjer) -
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By Lemma 2.4,

LHS of (3.17) = (—1)KI~! (Mevbkxbk(dom bk)) : (3.18)
If the pseudocycles b; with i € K have odd codimensions and the pseudocycles I'; have

even codimensions, then
dim M, x, (dom by) = k—|K|  mod 2. (3.19)

Let M’ C M be the image of the elements of the left-hand side of (3.17), which meet the
boundary of any of the pseudocycles b; and I'; or the pairwise intersection of any pair
of these pseudocycles. The dense open subset 9)?*,;_1'1 of M is the open subset of M —M'
consisting of the maps u from D? with du transverse to by.

We compute the sign of fz at a preimage (U, g;) of u in the fiber product space
in (3.18) under (3.17). Denote the k-th boundary marked point of U by x; and the image
of uin YX¥'x x! by y. All rows and the right column in the 1st diagram of Figure 6 are

orientation compatible. The short exact sequence
0 —> T, S' — TegMR9(B;J) — Ty M2, (B;J) —> O,

where U’ and u’ are the projections of U and u, respectively, to the corresponding disk
moduli spaces, has sign (—1)¥"!. Along with Lemma 2.1, this implies that the middle
and left columns in the 1st diagram also have signs (—1)¥~1. Thus, the middle column in

yk=1 as well. The middle row and the side columns in this

the 2nd diagram has sign (-1
diagram are orientation compatible. The sign of the top row is the sign of (x;, g;) in the
fiber product (du) xg,by. Along with Lemma 2.1 and (3.19), this implies that the sign of
the bottom row is (—1)XI=! times the sign of (x, g;) in the fiber product (du) x g, by.

Combining the last conclusion with (3.18), we obtain

> sen (dggnft) = [Owxgby|*.
@qrelf2)t )

Along with (3.1), this establishes the degree claim. |

Proof of Proposition 3.2. The 1st claim follows immediately from the 1st claim of
Lemma 3.4. By Lemma 2.3, a reordering of the pseudocycles b;s withi=Fk/, ..., k does not

change the oriented space on the left-hand side of (3.6). We can thus assume that

K ={k—|K'|+1,...,k} C [kl
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0 0
0 T,, S 1 T, St 0
0 TsM T (925(8; J)x [ (dom by X[ [(dom T)) ——= N Ayrer ], — 0
e K" €L
Id
0 TuM Tu (9 (85 J)x [ ] (dom b;)x[ J(dom T;)) HNAYK"XXLL/ —0
ieK" ieL
0 0 0
0 0
. dg,br—ds, ou
0 T, S'®Ty,(dom by) ——— T, (q)Y —=0
1d
~ ~ qubk—dﬁevbk
0—— T(ﬁ,qk)(Mevkabk(dom bk)) - TﬁM@Tde0m<bk) - bk(Qk)Y —0
Id
~ da,ap 7
0 —— T(ﬁ,qk)(Mevkabk(dom bk)) —— TuM 0
0 0

Fig. 6. Commutative squares of exact sequences for the proof of Lemma 3.4.

The 2nd claim then follows from the 2nd claim of Lemma 3.4 by induction. |
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