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Cross-fixation interactions of orientations suggest high-

to-low-level decoding in visual working memory

Long Luu, Mingsha Zhang, Misha Tsodyks and Ning Qian

Abstract

Sensory encoding (how stimuli evoke sensory responses) is known to progress from low- to high-1

level features. Decoding (how responses lead to perception) is less understood but is often as-2

sumed to follow the same hierarchy. Accordingly, orientation decoding must occur in low-level ar-3

eas such as V1, without cross-fixation interactions. However, Ding et al (2017) provided evidence4

against the assumption and proposed that visual decoding may often follow a high-to-low-level hi-5

erarchy in working memory, where higher-to-lower-level constraints introduce interactions among6

lower-level features. If two orientations on opposite sides of the fixation are both task relevant and7

enter working memory, then they should interact with each other. We indeed found the predicted8

cross-fixation interactions (repulsion and correlation) between orientations. Control experiments9

and analyses ruled out alternative explanations such as reporting bias and adaptation across trials10

on the same side of the fixation. Moreover, we explained the data using Ding et al’s retrospective11

high-to-low-level Bayesian decoding framework.12
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Introduction13

Sensory processing can be framed as involving encoding and decoding (Seriès et al., 2009;14

Zhaoping, 2014). Encoding reflects how stimuli evoke responses in sensory neurons whereas15

decoding specifies how the responses eventually lead to perceptual judgments of the stimuli. A16

large body of research has established beyond doubt that visual encoding progresses from low to17

high levels, with neurons in later stages of a pathway responding to higher-level features (Felleman18

and Van, 1991; DiCarlo et al., 2012; Yamins and DiCarlo, 2016; Yamins et al., 2014; Riesenhuber19

and Poggio, 1999; Serre et al., 2007; Cichy et al., 2016). Decoding, however, is less understood20

because one has to rely on a decoding model to relate sensory responses to subjective perception.21

Many decoding models assume, sometimes implicitly, that decoding follows the same low-to-high-22

level hierarchy of encoding (exceptions discussed below). For example, to discriminate between23

two line orientations, one first decodes the absolute orientation of each line (a lower-level feature)24

and then compare the two absolute orientations to determine their relationship (a higher-level fea-25

ture) (Green et al., 1966; Paradiso, 1988; Seung and Sompolinsky, 1993; Graf et al., 2011; Teich26

and Qian, 2003). These models essentially assume that sensory responses generate perception27

(decoding) at about the same time the responses are evoked by stimuli (encoding) so that the28

decoding and encoding hierarchies are identical (Fig. 1a).29

However, Ding et al. (2017) argued that perceptual decoding may often occur after initial sensory30

responses have entered working memory. This is likely whenever there is a delay between stim-31

ulus disappearance and perceptual judgment. Even under natural viewing conditions, because of32

our small fovea and frequent saccades, visual decoding may happen in working memory where33

patches of a scene from previous fixations are stored. Although the initial sensory responses to34

stimulus features (encoding) follow the low-to-high-level hierarchy, once all the relevant features35

are stored in working memory, their decoding, in principle, could be in any order. By considering36

invariance, noise tolerance, and behavioral relevance of high- vs. low-level features, Ding et al.37

(2017) proposed that sensory decoding in working memory should follow a high-to-low-level hi-38

erarchy, with the higher-level features producing a prior to constrain the decoding of lower-level39

features (retrospective Bayesian decoding, Fig. 1b). In particular, higher-level features are more40

categorical and thus can be stored in noise-resistant point attractors of working memory (Hopfield,41

1984). In contrast, lower-level features are more continuous and have to be stored in continuous42

attractors which are more prone to noise corruption over time (Compte et al., 2000; Itskov et al.,43

2011). It is therefore advantageous to decode more reliable higher-level features first and use44

them to constrain the decoding of less reliable lower-level features in noisy working memory.45

To test these ideas, Ding et al. (2017) conducted an experiment in which two lines were flashed46

successively and then subjects reported the absolute orientations of both lines and (implicitly)47
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Figure 1: Opposite decoding hierarchies. In both panels, the red arrows indicate the well-

established encoding hierarchy from low- to high-level features. (a) Low-to-high-level decoding

of sensory responses (blue arrows). If encoding and decoding occur in sensory neurons at about

the same time, then they must follow the same low-to-high-level hierarchy along sensory path-

ways. (b) High-to-low-level decoding in working memory (green arrows). If decoding happens

after relevant features enter working memory, then it should progress from high to low levels, with

higher-level features constraining lower-level features, because higher-level features are more in-

variant, reliable, and behaviorally relevant (Ding et al., 2017).
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their ordinal relationship (whether the second line is clockwise or counter-clockwise from the first).48

They found that the two lines interacted perceptually in various ways that can be explained by49

the high-to-low-level decoding but not by the low-to-high-level decoding. For example, the second50

line repelled the first line (backward aftereffect) as much as the first line repelled the second51

line (forward aftereffect). The low-to-high-level decoding cannot explain the backward aftereffect52

because when the first line was decoded directly from its initial sensory response, the second53

line had not yet appeared. In contrast, the high-to-low-level decoding is assumed to occur after54

the encoding of both lines and their relationship have entered working memory where the higher-55

level ordinal relationship is decoded first, and then constrains the decoding of the lower-level56

absolute orientations to produce the observed mutual repulsion. The same mechanism accounts57

for another interaction: the correlation between two reported absolute orientations in a trial.58

A surprising prediction of the high-to-low-level decoding scheme is that two stimuli traditionally59

considered as independent may interact with each other if they are both task relevant and repre-60

sented in working memory. A specific example is two orientation stimuli, or two translation-motion61

stimuli, on opposite sides of the fixation. Orientation or translation-motion interactions (such as62

adaptation aftereffects and simultaneous contrasts) typically require that the stimuli occupy the63

same or nearby regions on retina (Gibson and Radner, 1937; Meng et al., 2006; Xu et al., 2008).64

The standard explanation is that these simple features are first decoded in low-level areas such65

as V1 whose small receptive fields do not include both hemifields to support cross-fixation inter-66

actions. However, in such studies, usually only one stimulus, but not the other, is task relevant and67

stored in working memory. For example, in a standard adaptation paradigm, subjects only report68

the test stimulus, but not the adaptor. Similarly, the rod-and-frame illusion is usually demonstrated69

with the frame around the rod, instead of with the frame and rod on opposite sides of fixation, and70

subjects only report the rod, not the frame (Beh et al., 1971). We thus tested whether two lines71

could interact cross fixation when both lines were task relevant, and indeed found the predicted72

interactions. Moreover, we found the interactions regardless of whether subjects reported the two73

lines’ orientations one after another continuously or with an interruption between the reports. Fi-74

nally, we demonstrated that Ding et al. (2017)’s high-to-low-level decoding framework explained75

the data from both reporting methods.76

We note that a wealth of psychophysical results can be re-interpreted as high-to-low-level de-77

coding in working memory although the studies’ original interpretations of formally similar models78

may be different (Luu and Stocker, 2018; Stocker and Simoncelli, 2008; Qiu et al., 2020; Fritsche79

and de Lange, 2019; Jazayeri and Movshon, 2007; Zamboni et al., 2016; Bronfman et al., 2015;80

Talluri et al., 2018; Bae and Luck, 2017; Li et al., 2019) (see Ding et al. (2017) for detailed discus-81

sions). Another set of studies emphasize high-to-low-level processing (Navon, 1977; Chen, 1982;82

Ahissar and Hochstein, 2004; Oliva and Torralba, 2006) but they do not separate encoding and de-83
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coding hierarchies, or consider noisy working memory, or model how higher-level decoding affects84

lower-level decoding. There are also theories proposing bi-directional interactions along process-85

ing pathways (Atkinson and Shiffrin, 1968; Carpenter and Grossberg, 1987; Ullman, 1995; Lee86

and Mumford, 2003). While these theories address other important issues (such as the ART’s so-87

lution to the stability-plasticity dilemma), they are not concerned with how noise in working memory88

may shape the decoding hierarchy (Ding et al., 2017). To our knowledge, previous studies never89

predicted nor tested cross-fixation interactions of remembered orientations. We therefore believe90

that by distinguishing between the encoding and decoding hierarchies and specifying the decod-91

ing mechanisms as high-to-low-level constraints in working memory, the retrospective Bayesian92

scheme (Ding et al., 2017) may provide a coherent framework for understanding a range of per-93

ceptual phenomena. Preliminary results were published in abstract form (Luu et al., 2020).94

Methods95

Experimental procedure96

Fifteen subjects with normal or corrected-to-normal vision (10 males, 5 females; all naïve) partici-97

pated in the experiments. All subjects provided informed consent. The experiments were approved98

by the Institutional Review Board of Columbia University.99

General procedure: During the experiments, subjects sat in a darkened room and viewed the100

stimuli on a large-screen monitor (Samsung QN55Q6F, 55 inch, refresh rate: 120 Hz and reso-101

lution: 3840 x 2160 pixels) at a distance of 56 cm. We enforced the viewing distance and head102

stabilization with a chin rest and head band. All experiments were run in Matlab (Mathworks,103

Inc.) in combination with PsychoPhysics Toobox (Brainard, 1997). A Dell computer (Intel core i7-104

8700, 16GB RAM and NVidia GTX 1060 graphics card) controlled the stimulus presentation, and105

another Dell computer (i5-8400, 8GB RAM) controlled an infrared video-based eye tracker devel-106

oped in Mingsha Zhang’s lab (1000 Hz sampling rate). Subjects’ gaze were always monitored107

during the experiment. There were three experimental conditions run in separate blocks. Before108

each condition, we gave subjects detailed instruction on the task and let them practice until they109

were comfortable with their performance. Each stimulus line was 6◦ by 0.1◦.110

1-line condition: At the beginning of a trial, subjects had to maintain fixation on a white dot111

(diameter: 0.27◦) at the center of the screen. The trial only started when subjects successfully112

maintained fixation within a circular window (radius: 3◦) around the fixation dot for 1 second.113

A line then appeared on either the left or right side (counter-balanced and randomized) of the114

fixation dot, centered at the eccentricity of 8◦. The line color was magenta and green for the left115

5



and right side, respectively. The line’s orientation was either 49◦ or 54◦ from the horizontal in two116

separate blocks. During the presentation, if subjects’ gaze broke the fixation window, a tone (200117

Hz, 0.5 second) was played, and the trial was aborted and repeated. After a 1-second duration,118

the stimulus line disappeared and a beep (400 Hz, 0.2 second) was played to prompt subjects to119

report the orientation of the stimulus line. To report the line’s orientation, subjects first moved the120

mouse along the perceived orientation. After the mouse motion started, a marker line appeared at121

the fixation with an orientation along the mouse’s moving direction. The marker line had the same122

color and length as the stimulus line. Subjects then rotated the marker line with the mouse to123

fine-tune their estimate of the stimulus orientation, and left-clicked to report. They were instructed124

to take time to be as accurate as possible.125

2-line condition: Similar to the 1-line condition, subjects had to successfully maintain fixation for126

1 sec before the stimulus presentation. Then, two colored lines were presented on the opposite127

sides of the fixation dot, each centered at the eccentricity of 8◦. Consistent with the 1-line con-128

dition, the left line was magenta and the right line was green. The lines’ orientations were 49◦129

and 54◦ that were counter-balanced and randomized across trials. As for the 1-line condition, a130

trial was aborted and repeated whenever subjects broke the fixation window during the stimulus131

presentation. This ensured that the two stimulus lines always occupied well-separated retinal lo-132

cations on opposite sides of the fixation. After 1 second, the stimulus lines disappeared and a tone133

prompted subjects to first report the orientation of the left line by drawing and adjusting a magenta134

marker line. After subjects clicked to confirm the estimate of the left line orientation, the marker135

line changed color from magenta to green and subjects rotated it to the estimate of the right line136

orientation and clicked again. Note that subjects always reported the left line first and then the137

right line, to avoid any potential confusion.138

2-line-interrupt condition: The experimental procedure was identical to that for the 2-line con-139

dition except that after subjects clicked to confirm the report of left line, the magenta marker line140

disappeared, and subjects had to move the mouse again to draw the green marker line and used141

it to report the right line’s orientation.142

Data analysis143

Computation and statistical test of repulsion and correlation: To compute the repulsion and cor-144

relation of subjects’ reports of the two lines, we first flipped (mirrored) all the incorrect trials with145

respect to the diagonal line (see Results for explanations). Then we computed the mean differ-146

ence and Pearson correlation between the two reports in a trial. The repulsion was computed147

by subtracting the mean difference of the baseline, 1-line condition from that of the 2-line or 2-148

line-interrupt conditions. To test the significance of the observed effects at the group level, we149
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first obtained the mean values of repulsion and correlation for each individual subject. Then we150

use Wilcoxon sign rank test on these values. For the statistical test of individual subjects, we151

used bootstrapping (n = 10,000) to obtain the 95% confidence interval of the mean difference and152

correlation for each subject. Then we plot the results of the 2-line or 2-line-interrupt conditions153

versus the 1-line condition. If the confidence interval did not touch the diagonal line, the effect was154

statistically significant at 0.05 level.155

Analysis of cross-trial adaptation at the same site: We quantified how much traditional adap-156

tation across trials on the same site contributed to the observed repulsion effect in the 2-line157

condition. In the separate n-back analysis, we split the trials into the "same" and "different" sets158

according to whether stimulus orientations of a given trial and the n-back trial were the same or159

different. In the cumulative n-back analysis, we split the trials into the "same" and "different" sets160

according to whether stimulus orientations of a given trial and all the n previous trials were the161

same or different. This required the n previous trials all had the same orientation, thus halving162

the number of available data points with each increment of n. For each set, we computed the163

repulsion by subtracting the mean difference in the 1-line condition from the mean difference in164

the 2-line condition. To measure how much the traditional adaptation contributed to the observed165

repulsion, we used the adaptation index: (Rd−Rs)/(Rd+Rs), where Rd and Rs are the repulsion166

of the "different" and "same" sets, respectively.167

Decoding models168

Model descriptions169

The 1-line condition: We assume that the two orientations are represented independently, each170

with Gaussian sensory and memory noises, and decoded independently. When stimulus orien-171

tation θi, i = 1, 2 is presented in a trial, a sensory sample si is drawn according to the Gaussian172

probability density p(Si|θi) = N(θi, σs). Then at the report time, a memory sample mi is drawn173

according to the Gaussian probability density p(Mi|si) = N(si, σm). A Bayesian decoder with a174

uniform prior generates an estimate of the stimulus orientation at the center-of-mass of the likeli-175

hood function, which in this case equals the memory sample mi.176

The 2-line condition with low-to-high-level decoding: According to the low-to-high-level decoding177

scheme, the two (lower-level) absolute orientations in a 2-line trial are first decoded independently178

(as in the 1-line case), and the results are then compared to decode the (higher-level) relationship179

between the orientations. Thus, according to this scheme, the 1-line data predicts the 2-line data.180

Specifically, for the low-to-high-level decoding, we sampled from the measured 1-line distributions181

of the two orientations to generate the predicted 2-line joint distribution and its derived proper-182
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ties (difference distribution, correlation, and repulsion). Note that the low-to-high-level decoding183

model does not involve working memory (Fig. 1a) but the 1-line data must contain both sensory184

and memory noise. However, there is no need to separate the noise sources since this model185

predicts the 2-line data poorly regardless of the noise level: the model cannot explain the cross-186

fixation interactions (correlation and repulsion) in the 2-line data because it treats the two absolute187

orientations separately.188

The 2-line condition with high-to-low decoding: The model makes the same assumptions about189

the sensory and memory noise as for the 1-line case to produce a likelihood function for the190

absolute orientations: p(m1,m2|θ1, θ2) = p(m1|θ1)p(m2|θ2) except that we used a different σm for191

the memory noise because subjects had to memorize two lines instead of one. The decoding192

procedure (Ding et al., 2017), however, follows the opposite hierarchy of the low-to-high-level193

scheme above. First, the model uses the sensory sample s1 and s2 of the left and right orientations194

in a trial to decode their ordinal relationship Ô, namely whether the left orientation is larger or195

smaller than the right orientation. Formally, Ô is the option that maximizes the posterior for the196

ordinal choice O given the sensory samples, p(O|s1, s2). Since a priori the two options were197

equally probable in our experiments, we determine Ô according to whether s1 is larger or smaller198

than s2.199

Since the discrete choice Ô can be stored in a noise-resistant, point attractor of the memory200

system, we assume it is immune to the memory noise (Ding et al., 2017). In contrast, the sensory201

sample s1 and s2 for the continuous, absolute orientations have to be stored in continuous, ring202

attractors which are prone to memory noise, and at the report time, they become memory samples203

m1 and m2 in a trial. If the ordinal decoding Ô is usually correct, then using it to constrain the204

likelihood function of m1 and m2 can improve the accuracy of the absolute decoding. Specifically,205

Ô produces a prior, p(θ1, θ2|Ô), which is a step function along the diagonal line in the joint space206

of the two orientations. The opposite choices of Ô produce the corresponding, opposite step207

functions. Multiplying this prior to the likelihood function produces the posterior of the absolute208

orientations:209

p(θ1, θ2|m1,m2, Ô) ∝ p(m1,m2|θ1, θ2) p(θ1, θ2|Ô) (1)

The prior erases the part of the likelihood function either above or below the diagonal line that is210

inconsistent with the ordinal judgment Ô. Then the stimulus absolute orientations are decoded as211

the mean of their posterior:212

θ̂i =

∫∫
θip(θ1, θ2|m1,m2, Ô) dθ1 dθ2 (2)

for i = 1, 2.213

The 2-line-interrupt condition with high-to-low decoding: The model is identical to the high-to-low214

decoding model for the 2-line condition up to the posterior p(θ1, θ2|m1,m2, Ô). However, only the215
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left orientation decoded from the posterior is reported before the interruption (the disappearance216

of the marker line). After the interruption, we assume that the process of redrawing the marker217

line again for the second report means that a new memory sample (m′1,m
′
2) is drawn to form a218

new posterior, p(θ1, θ2|m′1,m′2, Ô), in the same way as we did for p(θ1, θ2|m1,m2, Ô). This time219

only the right orientation decoded from the new posterior is reported. We considered two ways220

for drawing the new memory sample, producing two versions of the model. The first version is to221

draw m′i from the Gaussian density N(mi, σm); this means that the new memory sample is the222

old memory sample further corrupted by memory noise. The second version is to draw m′i from223

the Gaussian density N(θ̂i, σm) where θ̂i are the estimate of the first decoding. This means that224

the new memory sample is the first decoded orientations further corrupted by memory noise. In225

both versions, we assume that the new noise has the same σm as the memory noise for the first226

decoding. We believe this is a good approximation because the reaction times of the first and227

second reports are similar in the 2-line-interrupt condition (see Supplementary Fig. S4b).228

Model fitting procedures229

To fit the models to subjects’ data, we first obtain the distribution of the decoded orientations230

given the actual orientations, p(θ̂1, θ̂2|θ1, θ2), by marginalizing (integrating over) the latent memory231

variables and the ordinal judgment variable:232

p(θ̂1, θ̂2|θ1, θ2) =
∑

Ô
p(Ô|θ1, θ2)

∫∫
p(θ̂1, θ̂2|m1,m2, Ô) p(m1,m2|θ1, θ2) dm1 dm2. (3)

For Gaussian noises, this can also be done with Ding et al. (2017)’s analytical formula (their Eqs. 1233

and 2) for θ̂1 and θ̂2 by samplingm1, m2, and Ô for given θ1 and θ2. (Note thatmi was called ri, and234

σ2s + σ2m = σ2i in Eqs. 1 and 2 of Ding et al. (2017), and the two opposite choices of Ô correspond235

to swapping θ̂1 and θ̂2 in the two equations.)236

We then use p(θ̂1, θ̂2|θ1, θ2) to obtain the difference distribution p(θ̂2− θ̂1|θ1, θ2). We jointly fit the237

model to the 1-line and 2-line data pooled over all subjects by maximizing the likelihood of data238

with respect to the model parameters using Nelder-Mead algorithm. The model has 3 parameters:239

the sensory noise σs and the separate memory noises σm for the 1-line and the 2-line conditions.240

For the 2-line data, we fit the difference distribution instead of the joint distribution because the241

joint distribution is 2D and we do not have a large amount of data to fit it robustly. Moreover,242

fitting the difference distribution can already capture the characteristic bimodal pattern of the joint243

distribution.244

Model prediction for the 2-line-interrupt condition245

Given the fit parameters for the 1-line and 2-line conditions, we predict the 2 line-interrupt condi-246

tion without new free parameters using the two high-to-low-level decoding steps described above.247
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Results248

Cross-fixation interactions of orientations in working memory249

The first experiment was similar to that of Ding et al. (2017) but instead of presenting two lines250

sequentially at the fixation, we presented them simultaneously on opposite sides of the fixation251

point (Fig. 2b), for 1 sec. The lines were 6◦ by 0.1◦, and oriented 49◦ and 54◦ from horizontal, re-252

spectively. The two orientations were counter-balanced and randomized for the two sides over 50253

trials of a block. The center-to-center distance between the lines was 16◦. An infrared eye tracker254

(see Methods) was employed to monitor eye position online, and each trial started after subjects255

acquired fixation for 1 sec. The fixation window was a circle of 3◦ radius, and trials with broken256

fixation during stimulus presentation were aborted and repeated. After the lines disappeared, sub-257

jects first reported the left line’s orientation by drawing a marker line with a mouse according to the258

perceived orientation, adjusting it to match the perceived orientation as closely as possible, and259

clicking a button. They then continued to rotate the marker line to match the right line’s orientation260

as closely as possible and clicked to report. As in Ding et al. (2017), the continuation from the261

first to the second report let subjects implicitly indicate the lines’ ordinal relationship (the second262

experiment below interrupted this continuation). After an inter-trial-interval of 300-600 ms, the next263

trial started. To minimize potential mix-up of the two stimulus lines, we always colored the left and264

right lines magenta and green, respectively, and changed the marker line color from magenta to265

green after the first click (Fig. 2b).266

In addition to the above 2-line condition, we also ran the corresponding baseline, 1-line condi-267

tion, in which only one line (either 49◦ or 54◦ in separate 50-trial blocks) was presented either on268

the left or on the right of the fixation (counter-balanced and randomized) and subjects reported its269

orientation as they did for the first line in the 2-line condition (Fig. 2a).270

We collected data from 15 subjects (all naive). We first describe the distributions of the re-271

ported absolute orientations of the individual lines. In the 1-line condition, the absolute distribu-272

tions (Fig. 2c) are roughly centered at the lines’ actual orientations (49◦ and 54◦). The difference273

between the means of the two distributions is 5.3◦, close to the actual 5◦ difference. In the 2-line274

condition, the absolute distributions (Fig. 2d) for the two lines are further apart compared with275

those of the 1-line condition, with an 8.6◦ difference between the means, indicating a perceptual276

repulsion between the lines. The repulsion is statistically significant (p = 0.00006, Wilcoxon sign277

rank test).278

There was considerable variability of the reported absolute orientations. Because the stimulus279

lines were flashed on the periphery and subjects reported well after the stimuli disappeared, the280

variability must reflect both sensory and memory noises. The variance of absolute distributions in281
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Figure 2: The 1-line and 2-line conditions with data pooled from all 15 naive subjects. (a) Trial

sequence for the 1-line condition. (b) Trial sequence for the 2-line condition. For both conditions,

during the blank after the stimulus disappearance, subjects drew a marker line for reporting. See

text and Methods for details. (c, d) Reported distributions of the stimulus lines’ absolute orien-

tations for the 1-line and 2-line conditions, respectively. For each condition, the distributions for

the 49◦ and 54◦ lines are in blue and orange, respectively. The dashed vertical lines indicate the

means of the distributions. The difference between the means was greater in the 2-line condition

than that in the 1-line condition, indicating repulsion. (e) Simulated joint distribution of the 2-line

condition predicted from the 1-line data according to the low-to-high-level decoding scheme. (f)

The measured joint distribution of the 2-line condition. The red dot indicates the true stimulus ori-

entations, and the cyan dot indicates the means of the reports. The measured distribution showed

a correlation between the two reports in a trial and a bimodal pattern with shifts away from the

diagonal line whereas the joint distribution predicted by the low-to-high-level decoding did not. (g-

h) The difference distributions (the 54◦ line minus the 49◦ line), obtained from the simulated and

measured joint distributions in panels e and f, respectively. They are equivalent to projecting the

joint distributions along the negative diagonal axis.
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the 2-line condition was also greater than that of the 1-line condition (p = 0.00006, Wilcoxon sign282

rank test, see Fig. S1). Since the stimulus orientations and duration were exactly the same for283

the two conditions, the greater variance in the 2-line condition was likely due to increased memory284

noise because subjects had to hold two lines in working memory instead of one line.285

We next examined the joint distribution of the two reported orientations in a trial of the 2-line286

condition. Fig. 2f plots the report for the 54◦ line against that for the 49◦ line. The distribution was287

elongated along the diagonal, indicating a positive correlation between the two reports in a trial (p288

= 0.00006, Wilcoxon sign rank test). The data points above and below the diagonal line were from289

the trials with correct and incorrect ordinal judgments, respectively. There was a gap between290

these two sets of trials as they shifted away from the diagonal (the decision boundary for the291

ordinal judgments), rendering the joint distribution bimodal. By subtracting the 49◦ report from the292

54◦ report in a trial, we obtained the difference distribution (Fig. 2h), which was also bimodal. The293

difference distribution is equivalent to projecting the joint distribution along the negative diagonal294

axis, and the correct and incorrect trials are on the left and right sides of 0, respectively.295

These results were quite similar to those of Ding et al. (2017). Importantly, Ding et al. presented296

the two lines successively at the same spatial location whereas here we presented them simul-297

taneously on opposite sides of the fixation. This suggests that the two lines interacted similarly298

in working memory regardless of whether they were presented at the same or very different loca-299

tions. Also similar to Ding et al.’s findings, the results of the 2-line condition cannot be explained300

by the low-to-high-level decoding scheme, which assumes that V1 cells in opposite hemispheres301

first decode the two lines’ absolute orientations separately, which are then compared to determine302

their relationship. Obviously this decoding scheme cannot reproduce the observed interactions303

between the lines. We simulated this scheme’s predicted joint distribution in Fig. 2e by randomly304

sampling pairs of orientations from the 49◦ and 54◦ distributions of the 1-line condition. This joint305

distribution is unimodal, and centered on, and evenly distributed around, the physical stimulus ori-306

entations, without the correlation, gap, and repulsion in the 2-line data. The predicted difference307

distribution is also unimodal, symmetrically centered on the actual difference between the two308

lines’ orientations (5◦), again unlike the measured difference distribution of the 2-line condition.309

Although we pooled all subjects’ data above, the interactions between the lines in the 2-line310

condition (repulsion and correlation) were consistently observed across all subjects (see Supple-311

mentary Fig. S2 for the joint distributions of all individual subjects). We computed each subject’s312

repulsion and correlation in the 2-line condition, and compared with those predicted from the low-313

to-high-level decoding scheme applied to the 1-line data. Since the repulsion and correlation314

occurred separately for the correct and incorrect trials (trials above and below the diagonal line315

in Fig. 2f), we flipped (mirrored) the incorrect trials with respect to the diagonal line before the316

computation, and applied the same procedure to the simulated joint distributions from the 1-line317
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data. (Without the flipping, we would underestimate the repulsion and correlation, particularly for318

subjects with a large number of incorrect trials, because the repulsion values in the two opposite319

directions away from the diagonal would cancel each other, and the separation, along the nega-320

tive diagonal, of the two positive-diagonal elongations would reduce the actual correlation.) Fig. 3a321

shows that all 15 subjects reported greater orientation difference in the 2-line condition than in the322

1-line condition. We computed the 95% confidence interval using bootstrapping for each subject,323

and found that for 12 out of the 15 subjects, the 95% confidence interval did not touch the diag-324

onal line in Fig. 3a. Therefore, the repulsion in the 2-line condition is significant for the majority325

of subjects individually. Fig. 3b shows that the correlation in the 2-line condition was greater than326

that in the 1-line condition. Again, the 95% confidence interval for each subject calculated with327

bootstrapping indicates that 12 out of the 15 subjects showed significant correlation individually.328

Finally, Fig. 3c shows that the ordinal discrimination performance in the 2-line condition was329

better than that predicted by the 1-line data according to the low-to-high-level decoding (mean330

accuracy: 90% vs. 77%). The difference is significant at the group level (p = 0.025, Wilcoxon331

sign rank test). This can also be seen in the joint and difference distributions in Fig. 2 which332

show a larger portion of correct trials in the 2-line condition compared to the 1-line condition. At333

the individual level, 11 out of the 15 subjects showed the same trend (Fig. 3c) although only 5334

subjects reached significance based on the bootstrapping test.335
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Figure 3: Comparison of the 1-line and 2-line conditions for individual subjects. Each color rep-

resents one subject. (a) The mean absolute difference between the reports for the 49◦ and 54◦

lines. (b) The correlation coefficient between the two reports in a trial. The correlation for the

1-line condition was based on the prediction of the low-to-high-level decoding. (c) The percent-

age correct of ordinal discrimination between the two lines. The percentage correct for the 1-line

condition was based on the prediction of the low-to-high-level decoding. All error bars were 95%

confidence intervals obtained by bootstrapping 10,000 times.

The above results suggest that when stimulus orientations are decoded in working memory,336

they interact with each other even when presented on opposite sides of the fixation. However,337
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there are two potential confounds and we address them below.338

Orientation interactions under a different report method339

The first potential confound is that in the 2-line condition above, subjects rotated the marker line340

continuously from the first report to the second report, and this continuity might introduce interac-341

tions artificially. For example, subjects might over-rotate to ensure that the two reports were differ-342

ent even though the instructions emphasized accuracy. This, however, was unlikely because the343

actual 5◦ orientation difference was well above the orientation discrimination threshold of around 1◦344

at fovea where the marker line was placed. To directly address any potential problems of the con-345

tinuous report method above, we did a control experiment by running the same group of subjects346

on the 2-line condition with an interruption between the two reports (2-line-interrupt condition). It347

was identical to the above 2-line condition except that after subjects clicked to report the left ori-348

entation, the marker line immediately disappeared and subjects had to move the mouse to redraw349

the marker line according to their perceived right orientation, adjusted it to match the perception350

as closely as possible, and then clicked (Fig. 4a). This method was very similar to that used by351

Bae and Luck (2017) but they presented stimuli at fovea and did not measure cross-fixation inter-352

actions. We planned both reporting methods before the data collection and randomized the order353

of the 2-line and 2-line-interrupt conditions across subjects.354

20 40 60 80

20

40

60

80

-20 0 20 40
Orientation difference (deg)

0

0.02

0.04

0.06

0.08
Fr

eq
ue

nc
y 

of
 o

cc
ur

en
ce

20 40 60 80
Reported orientation (deg)

0

10

20

30

40

50

60

C
ou

nt

Reported orientation for 49o line 

R
ep

or
te

d 
or

ie
nt

at
io

n 
fo

r 5
4o  l

in
e

10.1o difference
49o line
54o line

1 second

blank

report left line 

report right line 

blank

2-
lin

e-
in

te
rr

up
t c

on
di

tio
n

Joint distribution Difference distributionAbsolute distribution
a b c d

Figure 4: The 2-line-interrupt condition with data pooled from all 15 naive subjects. The plot format

is identical to that of Fig. 2. (a) Trial sequence for the 2-line-interrupt condition. During each blank,

subjects drew a marker line for reporting. The second blank interrupted the continuity of the two

reports. See text and Methods for details. (b) Reported distributions of the stimulus lines’ absolute

orientations, showing even larger repulsion between the 49◦ and 54◦ lines than that for the 2-line

condition (Fig. 2d). (c) The joint distribution, showing much reduced correlation and bimodality

compared with the 2-line condition (Fig. 2f). (d) The distribution of the difference between the

two reported orientations, again showing a much reduced bimodality compared with the 2-line

condition (Fig. 2h).
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The results pooled across all subjects are shown in Fig. 4. The distributions of the reported355

absolute orientations (Fig. 4b) showed a significant repulsion compared with the 1-line condition356

(p = 0.0003, Wilcoxon sign rank test). In fact, the repulsion in the 2-line-interrupt condition (mean357

orientation difference 10.1◦) was even larger than that in the 2-line condition (mean orientation358

difference 8.6◦). However, the interrupt report method changed the joint distribution of the two359

reports in a trial (Fig. 4c). Although the joint distribution shifted away from the diagonal, there360

was no clear gap between the correct and incorrect trials along the diagonal, and the difference361

distribution was unimodal (Fig. 4d). The correlation between the two reports in a trial was much362

reduced though still significant (p = 0.035, Wilcoxon sign rank test).363
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Figure 5: Comparison of the 1-line and 2-line-interrupt conditions for individual subjects. The plot

format is identical to that of Fig. 3. (a) The mean absolute difference between the reports for the

49◦ and 54◦ lines. (b) The correlation coefficient between the two reports in a trial. The correlation

for the 1-line condition is based on the prediction of the low-to-high-level decoding in Fig. 2e. (c)

The percentage correct of ordinal discrimination between the two lines. Note that the subjects did

not explicitly perform the ordinal discrimination task so the percent correct was inferred from their

reported absolute orientations of the stimuli. All error bars were 95% confidence intervals obtained

by bootstrapping 10,000 times.

We also analyzed the 2-line-interrupt data for each subject individually, as we did for the 2-line364

condition. We found that 14 out of 15 subjects showed a significant repulsion (Fig. 5a), and the365

repulsion magnitudes were generally greater than those for the 2-line condition (cf. Fig. 3a). The366

correlations were weaker than those for the 2-line condition (cf. Figs. 5b and 3b). This can also be367

seen from shapes of individual subjects’ joint distributions of the 2-line-interrupt condition in Sup-368

plementary Fig. S3. Although some subjects showed similar joint distributions for the two report369

methods, others showed little elongation along the diagonal under the interrupted report method.370

Finally, Fig. 5c shows the subjects’ ordinal discrimination performances; unlike the original 2-line371

condition, the mean was not significantly better than that predicted by the 1-line data (p = 0.23).372

This is perhaps not surprising because the interruption must make it difficult (and unnecessary) for373
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Figure 6: Cross-trial adaptation at the same site cannot explain the observed repulsion (a) The

orientations of the current (blue) and a previous (yellow) trial can be either the same (top) or

different (bottom). The "different" case could produce cross-trial adaptation aftereffect whereas

the "same" case could not. (b) n-back cross-trial adaptation index for the 2-line condition, with n =

1, 2, 3 and 4 separately. The index values of 0 and 1 indicate that cross-trial adaptation explains

none and all of the measured repulsion, respectively. (c) Cumulative n-back cross-trial adaptation

index for the 2-line condition, with n = 1, 2, 3 and 4. All error bars represent ± 1 SEM. They

grow with n in panel c because the number of available data points is halved for each increment

of cumulative n.

the subjects to indicate the ordinal relationship through the two absolute reports. In other words,374

the ordinal discrimination performances calculated from the 2-line-interrupt data did not reflect the375

subjects’ actual ordinal discrimination performances.376

In sum, interrupting the continuity of the two reports in a trial did not eliminate the cross-fixation377

interactions of orientations. Both the repulsion and correlation remained significant at the group378

level. Although the correlation was much weaker, the repulsion appeared stronger. We will explain379

these data and their differences in a modeling section later.380

The repulsion cannot be explained by adaptation across trials at the same site381

Another potential confound of the 2-line condition is that the observed repulsion might be explained382

by traditional adaptation aftereffects across trials on the same side of the fixation. Specifically, at383

a given site, if the stimulus orientation in the current trial was different from that in a previous trial,384

subjects’ perceived orientation in the current trial could be repelled away from the orientation of385

the previous trial (Fig. 6a). However, if the stimulus orientations for the two trials were identical,386

then there would be no adaptation-induced repulsion (Gibson and Radner, 1937). We first note387

that such cross-trial adaptation aftereffects must be small because of the long intervals between388
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stimuli of successive trials (around 8 sec for the 2-line condition) compared to the stimulus duration389

(1 sec). It might be further reduced by the attractive, serial effect (Fischer and Whitney, 2014).390

Nevertheless, we analyzed this possibility in great detail. First, we split each subject’s 2-line data391

into the "same" and "different" sets according to whether the stimulus orientation in a trial and that392

n trials back were identical or not, for n = 1, 2, 3, and 4. We quantified the n-back cross-trial393

adaptation effect by calculating the index (Rd−Rs)/(Rd+Rs), where Rd and Rs are the repulsion394

of the "different" and "same" sets, respectively. If the repulsion all came from the n-back cross-395

trial adaptation, instead of from cross-fixation interactions, then Rs would be 0, and the index396

would be 1. Conversely, if the repulsion all came from cross-fixation interactions, then Rd and397

Rs would be identical, and the index would be 0. The results are shown in Fig. 6b. We found398

that as expected, the contribution of the cross-trial adaptation to the repulsion was small even for399

n = 1 and disappeared for n = 4. The sum of the indices across n is around 0.2, well below 1,400

and thus cannot account for the observed repulsion. Second, we investigated the possibility that401

different n-back adaptation effects might sum superlinearly to explain the repulsion. We therefore402

determined the cumulative n-back adaptation effect directly, instead of summing the separate n-403

back effects. To this end, we defined the "same" and "different" sets according to whether the404

stimulus orientation of a trial were identical to, or different from, those of all n previous trials (which405

had to have the same orientation). The results in Fig. 6c show that the n-back cumulative effect had406

the index saturated around 0.25 for n = 3, again well below 1. The error bar grew with n because407

when n increased by 1, the available data was halved. We conclude that traditional adaptation408

aftereffects across trials at the same site cannot explain the repulsion in the 2-line condition.409

The first and second reports in a trial showed similar repulsion410

Ding et al. (2017) presented two lines in a trial sequentially (and subjects reported them sequen-411

tially); this allowed them to measure both the forward aftereffect (how much the first line repelled412

the second line) and the backward aftereffect (how much the second line repelled the first line).413

They found that the two aftereffects were similar for a given subject. As they noted, this result414

contradicts standard adaptation theories whose sequential considerations of sensory responses415

predict only the forward aftereffect, and prompted them to propose high-to-low-level decoding in416

working memory. In the current study, we presented two lines in a trial simultaneously so the417

forward and backward aftereffects were not defined. Nevertheless, subjects had to report the two418

lines sequentially, and we analyzed whether the first and second reports of a line were similar or419

not. For both the 2-line and 2-line-interrupt conditions, we calculated the means of the first and420

second reports for the 49◦ line separately, and did the same for the 54◦ line. Using the means421

of the 49◦ and 54◦ lines of the 1-line condition as the baselines, we determined the repulsion422

values for each line when it was reported first and second. The results (Fig. 7) indicate that the423
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Figure 7: First and second reports showed similar repulsion. The left and right panels are for the

2-line and 2-line-interrupt conditions, respectively. In each panel, the second-report repulsion is

plotted against the first-report repulsion across subjects. Each subject had two data points, one

for the 49◦ line (round dot) and the other for the 54◦ line (diamond).

first and second reports showed similar repulsion, analogous to the similar backward and forward424

aftereffects in Ding et al. (2017).425

High-to-low-level Bayesian decoding explains the data from both report methods426

The cross-fixation interactions of orientations established above, in the form of repulsion and corre-427

lation, cannot be explained by the low-to-high-level decoding scheme (Figs. 2-5). We thus adopted428

Ding et al. (2017)’s high-to-low-level decoding scheme to account for the data. The main hypoth-429

esis is that in a 2-line trial, subjects (implicitly) judged the lines’ ordinal relationship and used this430

higher-level information to constrain the decoding of the lower-level, absolute orientations of the431

lines (Ding et al., 2017). To explain the differences between the two report methods, we applied432

the scheme twice to take into account the interruption in the second report method, as detailed433

below.434

We started with the 1-line condition; we simply assumed that subjects made a noisy sensory435

measurement of the stimulus line’s orientation in a trial. Then the sensory sample was corrupted by436

memory noise to produce a memory sample. We assumed both the sensory and memory noises437

are Gaussian. With a uniform prior on orientation, the posterior was the same as the likelihood438

function which was a Gaussian around the memory sample. Consequently, the decoded estimate439
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Figure 8: High-to-low-level Bayesian decoding scheme. (a) Model for the 2-line condition. First

panel: a sensory sample (black dot) is drawn from the sensory distribution of the two lines (black

circle) centered on the stimulus orientations (red dot). Second panel: a memory sample (blue dot)

is drawn from the memory distribution (blue circle) centered on the sensory sample (black dot).

Third panel: The posterior distribution (solid green arc above diagonal) is obtained by multiplying

the likelihood function (green circle) centered on the memory sample (blue dot) and a Bayesian

prior (shaded step function along the diagonal) from the ordinal judgment. The posterior mean

is the decoded estimate of the two orientations (green dot). (b) Model for the 2-line-interrupt

condition. It is similar to the 2-line model above except that the memory decoding process is

repeated, one before and the other after the interruption, and each process reports only one of

the two estimated orientations. The second decoding process is represented by the darker blue

and green colors. The distribution (dark blue circle) for the second memory sample (dark blue dot)

can be centered either on the first memory sample (top row) or on the first estimate (bottom row),

resulting in two versions of the model.
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was identical to the memory sample. These estimates were used in the above simulations of the440

low-to-high-level decoder that used the 1-line data to predict the 2-line data. As noted above, the441

low-to-high-level predictions did not match the data.442

In the high-to-low-level decoding model for the 2-line condition (Fig. 8a), we also started with443

drawing sensory and memory samples (black and light blue dots, respectively) for a trial according444

to the sensory and memory noise distributions (black and light blue circles, respectively). The key445

difference was that the prior was not uniform but determined by subjects’ ordinal judgment based446

on the sensory measurements. For instance, if the ordinal judgment was that the 54◦ orientation447

was greater than the 49◦ orientation, then the prior was non-zero only above the diagonal line in448

the joint space (the shaded region in the last panel of Fig. 8a). As a result, combining the likeli-449

hood function (green circle) and this step-function prior led to a posterior distribution (solid green450

arc) whose center of mass (green dot), the decoded estimate, was shifted away from the diago-451

nal. Note that here we modeled sensory and memory noises separately instead of grouping them452

together as in (Ding et al., 2017). The reason was that here the stimulus lines were presented453

simultaneously so that subjects could make ordinal judgments based solely on the sensory ev-454

idence. As explained in Ding et al. (2017), the binary, ordinal judgments were assumed to be455

resistant to memory noise. In contrast, the continuous, absolute orientations of the lines were456

degraded by the memory noise.457

For the 2-line-interrupt condition, we used the same high-to-low-level decoding scheme as for458

the 2-line condition but we assumed that there were two decoding processes (Fig. 8b), one before,459

and the other after, the interruption (the disappearance of the marker line). Specifically, the first460

decoding process was identical to that for the 2-line condition. However, although both absolute461

orientations were decoded, only the left orientation was reported before the interruption. With462

the redrawing of the marker line after the interruption, we assumed a repeat of the decoding463

process but this time only the right orientation was reported. The second memory sample could464

be based on the first memory sample but further corrupted by the memory noise (Fig. 8b, first465

row). Alternatively, it could be based on the first estimate, also further corrupted by the memory466

noise (Fig. 8b, second row). We considered both versions of the model. We let the additional467

memory noise for the second decoding be the same as that for the first decoding because the468

reaction times of the two reports were similar in the 2-line-interrupt condition (see Supplementary469

Fig. S4).470

The free parameters were the standard deviations for the sensory and memory noises (see471

Methods). We first jointly fit the parameters by maximizing the likelihood of the data of the 1-line472

and 2-line conditions. The resulting model matched the data well (Fig. 9, the first two columns).473

Notably, the model reproduced the characteristic repulsion, correlation, and the bimodel pattern in474

the 2-line joint distribution (Fig. 9, second column). We then used the fit parameters to generate475
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Figure 9: Model fit of the 1-line and 2-line data, and prediction of the 2-line-interrupt data. The first

row shows the data (pooled over all subjects) and the second row shows the model fit or prediction.

The first column shows the absolute distributions of the 1-line condition. The second column

shows the joint distribution of the 2-line condition. The third column shows the joint distribution of

the 2-line-interrupt condition, with two different model versions.

parameter-free predictions for the 2-line-interrupt condition. Both model versions for the 2-line-476

interrupt conditions (Fig. 9, last column) fit the data similarly well. We also compared the measured477

and the modeled difference distributions in Fig. 10, again showing good agreements.478

Discussion479

In this study, we tested a prediction of Ding et al. (2017)’s theory positing that visual decoding often480

occurs in working memory where it progresses from high- to low-level features, with higher-level481

features, which are more invariant, reliable, and behaviorally relevant, constraining the decod-482

ing of lower-level features. Since the high-to-low-level constraints introduce interactions between483

lower-level features, the theory predicts that low-level features that are traditionally considered as484

independent may interact with each other when they are decoded in working memory.485

In our experiment, the lower- and higher-level features were the absolute orientations of two lines486

(on opposite sides of the fixation) and their ordinal relationship, respectively. Their encoding likely487

follows the standard low-to-high-level hierarchy of sensory responses (Hubel and Wiesel, 1968;488
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Figure 10: Model fit and prediction of the difference distributions. The first panel shows the fit (red

curve) to the 2-line difference distribution (blue histogram). The last two panels shows the two

model versions’ predictions (red curves) of the 2-line-interrupt data (blue histogram).

Riesenhuber and Poggio, 1999; Anzai et al., 2007). The traditional view is that their decoding489

follows the same hierarchy, and the absolute orientations are decoded in an early visual area with490

small receptive fields and thus should be mutually independent. In contrast, according to Ding et al.491

(2017), the encoded absolute orientations and their ordinal relationship enter working memory492

after the disappearance of the stimuli. During the delay before the reports, the stored binary493

ordinal relationship is noise resistant whereas the continuous absolute orientations are corrupted494

by noise over time. By the report time, the brain decodes the reliable ordinal relationship first, and495

uses it to constrain the decoding of the unreliable absolute orientations, producing interactions496

between the absolute orientations. Using an eye-tracker to ensure fixation, we indeed found the497

predicted cross-fixation interactions of the orientations in the form of repulsion and correlation.498

Control experiments and analyses ruled out alternative explanations such as reporting-method499

bias and cross-trial adaptation aftereffects on the same side of the fixation. Finally, we showed500

that Ding et al. (2017)’s retrospective Bayesian decoding model well fit the 2-line data, and without501

new free parameters, predicted the 2-line-interrupt data. Unlike many Bayesian models that adjust502

priors to fit the data, in our simulations, the prior is a step function fully determined by the ordinal503

judgment and only the likelihood function has free parameters.504

We used a continuous and an interrupt report method for the 2-line and 2-line-interrupt condi-505

tions, respectively. The continuous report method was nearly identical that of Ding et al. (2017),506

and the 2-line data here resembled those of Ding et al. (2017) showing repulsion and correlation507

between the two reported orientations in a trial. The interrupt report method was nearly iden-508

tical to that of Bae and Luck (2017), and our 2-line-interrupt data were similar to those of Bae509

and Luck (2017), showing repulsion but reduced correlation. Importantly, however, we placed the510

22



two orientations on opposite sides of the fixation whereas both Ding et al. (2017) and Bae and511

Luck (2017) placed them (successively) at the fixation. Therefore, the current study demonstrated512

cross-fixation interactions of orientations whereas the two previous studies were not designed to513

do so. On the other hand, the three studies collectively indicate that when two orientations are514

both task relevant and decoded in working memory, they interact with each other regardless of515

whether they appear on the same or different retinal locations. In addition to retinal locations,516

these studies also differ in stimulus shape, size, eccentricity, and duration, the magnitude of orien-517

tation difference, and simultaneous vs. sequential presentations. The fact that they still produced518

similar results suggests that stimulus interactions in working memory are a robust phenomenon.519

Both frontal/parietal areas and various sensory cortices have been implicated in working mem-520

ory (Pasternak and Greenlee, 2005). Since working memory does not necessarily require sus-521

tained neuronal firing after stimulus disappearance (Mongillo et al., 2008), it could in principle re-522

side even in low-level sensory areas. However, the working memory area for orientation decoding523

in our experiments is likely a high-level area that does not maintain fine retinotopy but instead, let524

relevant features from different locations affect each other. A related finding is the transfer of per-525

ceptual learning between well-separated retinal locations under certain training procedures (Xiao526

et al., 2008). For example, contrast training at one location transferred to another location that527

only received orientation training. Although there are key differences between short-term working528

memory and long-term perceptual learning, these studies, and that of Ding et al. (2017), sug-529

gest that perceptual decoding of low-level features could occur in high-level brain areas where the530

binding or integration of the features may produce various interactions among them across space531

and time. Alternatively, low-level features might be stored retinotopically in low-level sensory ar-532

eas which are modulated by high-level feedback connections to produce perceptual interactions533

(Pasternak and Greenlee, 2005). In either case, high-level processing must be involved in the534

decoding of low-level features.535

Sensory processing and working memory are often treated as separate topics in the litera-536

ture. Our theory, however, explicitly integrates them by proposing that decoding of perceptual537

judgments may happen in working memory. It is this integration that provides a key reason that538

decoding should proceed from high- to low-level features (Ding et al., 2017), which then leads to539

our prediction of cross-fixation interactions of orientations (see Introduction). Since sensory pro-540

cessing includes both encoding and decoding, we consider decoding in working memory as part541

of sensory processing. Alternatively, one may argue that working memory should not be included542

in sensory processing. Accordingly, our framework becomes the following: sensory processing543

proceeds from low- to high-level features, and high-to-low-level decoding of perceptual judgments544

in working memory should just be viewed as a memory process, not part of the sensory process.545

We note that this is mostly an issue of definition that does not change our reasoning on why de-546
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coding in working memory should proceed from high- to low-level features or how higher-level547

features should constrain the decoding of lower-level features.548

Binary ordinal judgments could also be viewed as perceptual decisions. So an equivalent inter-549

pretation of our model is that the perceptual decision on the ordinal relationship provides a prior550

to constrain the decoding of the absolute orientations. What is important, however, is not the551

different choices of terminology, but the common theme that the higher-level ordinal relationship552

between two lines affects the decoding of the lower-level absolute orientations of the individual553

lines. Therefore, the decision interpretation is consistent with our high-to-low-level decoding hier-554

archy. On the other hand, without the consideration of different noise tolerance of low- vs. high-555

level features in working memory, the decision interpretation alone misses a key reason of why the556

high-to-low-level decoding scheme is desirable (Ding et al., 2017). Also note that the binary, ordi-557

nal decision was not a separate task imposed on the subjects. For the 2-line-interrupt condition,558

the ordinal decision was not even implicitly required. Our study is therefore different from typical559

task-dependence studies where the tasks in question are usually required. Additionally, unlike our560

theory, task dependence alone does not provide a reason on why decoding should proceed from561

high- to low-level features in working memory or how higher-level features should constrain the562

decoding of lower-level features.563

As noted above, according to Ding et al. (2017), interactions between lower-level features in564

working memory stems from higher-level constraints on lower-level decoding. In our experiments,565

the lower-level features were the individual, absolute orientations of the two lines, and the higher-566

level feature was their ordinal relationship. For the continuous report method (2-line condition),567

subjects implicitly indicated their ordinal choice when rotating the marker line continuously from568

the first report to the second report of the absolute orientations. In contrast, for the interrupt re-569

port method (2-line-interrupt condition), because the marker line disappeared after the first report,570

subjects could not use the continuous rotation to indicate their ordinal choice. The fact the the571

2-line-interrupt data can be explained by the same high-to-low-level decoding scheme (applied572

twice but without new free parameters) suggests that the ordinal relationship was still decoded573

first, which then constrained the absolute decoding, even when its reporting was not required. The574

reason, we believe, is that the ordinal relationship is more invariant against viewing conditions,575

more reliable against memory noise, and more behaviorally useful, than the absolute orienta-576

tions so that the brain may automatically prioritize its decoding. When the ordinal relationship is577

decoded correctly, it can then help improve the decoding of less reliable, absolute orientations578

through the high-to-low-level constraint (Ding et al., 2017). High-to-low-level decoding in noisy579

working memory could be a general principle for understanding perception.580
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Figure S1: More memory noise in the 2-line and 2-line-interrupt conditions than in the 1-line

condition. For each condition, the SD is the square root of a subject’s mean of the variances

for the 49◦ and 54◦ absolute distributions. (a) The 2-line condition vs. the 1-line condition. (b) The

2-line-interrupt condition vs. 1-line condition.
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Figure S2: Joint distributions of individual subjects in the 2-line condition.
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Figure S3: Joint distributions of individual subjects in the 2-line-interrupt condition.
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Figure S4: Reaction time distributions in the 2-line (a) and 2-line-interrupt (b) conditions. Data are

pooled from all subjects. In each panel, the reaction time (RT) distributions for the first and second

reports in a trial are shown in blue and orange, respectively. The vertical lines indicate the means.

The mean RT difference between the two reports in a trial were 1.6 and -0.7 sec for the 2-line and

2-line-interrupt conditions, respectively.
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