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Abstract

The 2016 papers of J. Solomon and S. Tukachinsky use bounding chains in Fukaya’s A8-algebras
to define numerical disk counts relative to a Lagrangian under certain regularity assumptions
on the moduli spaces of disks. We present a (self-contained) direct geometric analogue of their
construction under weaker topological assumptions, extend it over arbitrary rings in the process,
and sketch an extension without any assumptions over rings containing the rationals. This
implements the intuitive suggestion represented by their drawing and P. Georgieva’s perspective.
We also note a curious relation for the standard Gromov-Witten invariants readily deducible
from their work. In a sequel, we use the geometric perspective of this paper to relate Solomon-
Tukachinsky’s invariants to Welschinger’s open invariants of symplectic sixfolds, confirming
their belief and G. Tian’s related expectation concerning K. Fukaya’s earlier construction.
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1 Introduction

Let pX,ωq be a compact symplectic manifold of real dimension 2n with nR2Z, Y ĂX be a compact
Lagrangian submanifold, and

pH2˚pX,Y ;Rq ” Hn`1pX,Y ;Rq ‘
à

pPZ
2p‰n`1

H2ppX;Rq

for any commutative ring R with unity 1. Fix a relative OSpin-structure os”po, sq on Y , i.e. a pair
consisting of an orientation o on Y and a relative Spin-structure s on the oriented manifold pY, oq.

Based on A8-algebra considerations, K. Fukaya [6] uses bounding chains to define counts

xyω,osβ,0 P R, with β PH2pX,Y ;Zq,

of J-holomorphic degree β disks in X with boundary in Y under the assumption that pX,ωq is a
Calabi-Yau threefold and the Maslov index

µω
Y : H2pX,Y ;Zq ÝÑ Z (1.1)

of Y vanishes. These counts do not depend on the choice of bounding chains, but may depend on
the choice of the almost complex structure J compatible with pX,ωq.

Motivated by [5, 6] and after some preparation in [18], J. Solomon and S. Tukachinsky [19] use
bounding chains in Fukaya’s A8-algebras to define counts

x¨, . . . , ¨yω,osβ,k :
8à

l“0

pH2˚pX,Y ;Rq‘l ÝÑ R, β PH2pX,Y ;Zq, kPZě0, (1.2)

of J-holomorphic disks in pX,Y q under the assumption that the (uncompactified) moduli spaces
M0,0pβ; Jq on unmarked J-holomorphic degree β disks are regular and the evaluation maps

evb1 : M1,0pβ; Jq ÝÑ Y

from the moduli spaces of disks with one boundary marked point are submersions. If Y is an
R-homology odd-dimensional sphere, the relevant bounding chains exist and the counts (1.2) are
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independent of the choices of bounding chains. These counts also remain invariant under deforma-
tion of the almost complex structure that respect the above regularity assumptions. The authors
of [19] call the counts (1.2) open Gromov-Witten invariants. Inline with G. Tian’s perspective on
K. Fukaya’s construction in [6], they expect these invariants to be related to Welschinger’s open
Gromov-Witten invariants [24], which count multi-disks weighted by self-linking numbers.

As informally noted by the authors of [18, 19] and by P. Georgieva (who described the idea below
to the author), the construction in [19] based on primarily algebraic considerations should have a
geometric interpretation generalizing [24] via linking numbers of arbitrary-dimensional cycles in Y .
More precisely, suppose C is a generic collection of constraints in Y and X so that the (expected)
dimension of the space Dcspβ,Cq of J-holomorphic degree β disks in pX,Y q passing through C

is 0. A relative OSpin-structure os then determines a signed cardinality nos
β pCq of this finite set.

For any splittings
β “ β1`β2 P H2pX,Y ;Zq and C “ C1\C2 (1.3)

of the degree and constraints, the total (expected) dimension of the circle bundles Bdspβ1,C1q
and Bdspβ2,C2q in Y formed by the boundaries of the disks in Dcspβ1,C1q and Dcspβ2,C2q,
respectively, is ń 1, the correct dimension for taking a linking number lkosβ1,β2

pC1,C2q of Bdspβ1,C1q
and Bdspβ2,C2q in Y . A lift of a generic path of almost complex structures Jt and constraints Ct

to Dcspβ,Cq could terminate at a nodal disk corresponding to a pair of disks in Dcspβ1,C1q and
Dcspβ2,C2q intersecting along their boundaries. Its lift to Dcspβ1,C1qˆDcspβ2,C2q also passes
through this pair of disks, with a change in the associated linking number lkosβ1,β2

pC1,C2q. One
might thus hope that some combination of the numbers nos

β pCq and lkosβ1,β2
pC1,C2q, with pβ1,C1q

and pβ2,C2q as in (1.3), remains invariant over a generic path of almost complex structures Jt and
constraints Ct.

If n “ 3, the families Dcspβ1,C1q and Dcspβ2,C2q are compact, as needed for defining a linking
number lkosβ1,β2

pC1,C2q of Bdspβ1,C1q and Bdspβ2,C2q. The reasoning in the previous paragraph
then leads to the open Gromov-Witten invariants of [24] enumerating linked multi-disks. If ną3,
these families are generally not compact, as the disks in Dcspβi,Ciq might degenerate to nodal disks.
The resulting (codimension 1) boundaries of Bdspβi,Ciq then need to be canceled in some way.
J. Solomon and S. Tukachinsky do so by choosing auxiliary differential forms, which are then
integrated over moduli spaces of J-holomorphic disks, in a consistent manner.

The present paper is a geometric “translation” of (some of) the definitions and arguments in [18,
19] in terms of auxiliary bordered pseudocycles to Y , chosen in a consistent manner, which are
intersected with moduli spaces of J-holomorphic disks. This “translation” makes sense of the
linking number picture above and realizes [19, Fig 1]. It applies over any commutative ring R

with unity under the topological assumptions that

ωpBq ą 0,
@
c1pX,ωq, B

D
ě 3´dimY ùñ

@
c1pX,ωq, B

D
ě 0 (1.4)

for every spherical class B PH2pX;Zq and

ωpβq ą 0, µω
Y pβq ě 3´dimY ùñ µω

Y pβq ą 0 (1.5)

for every β PH2pX,Y ;Zq representable by a map from pD2, S1q. In order for the regularity assump-
tions of [19] to hold for a fixed almost complex structure J , the last inequalities in (1.4) and (1.5)
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must hold for all B representable by J-holomorphic maps from S2 and for all β representable by
J-holomorphic maps from pD2, S1q, respectively. By (1.4) and (1.5), the regularity assumptions
of [19] hold over the moduli spaces of simple J-holomorphic disk maps for a generic ω-compatible
almost complex structure J on X and the images of the multiply covered maps under evaluation
maps are of codimension at least 2. If Y is an R-homology odd-dimensional sphere, the disk counts
we construct are independent of the choice of J and thus are invariants of pX,ω, Y, osq; this is a
stronger invariance property than in [19]. The main statements of the present paper are Theo-
rems 2.7 and 2.9. In Appendix A, we sketch an adaptation of the geometric construction described
in this paper compatible with standard virtual class approaches.

The idea behind the notion of bounding chain of Definition 2.1, which is a geometric analogue
of the notions used in [6, 18, 19], can be roughly described as follows. Let β P H2pX,Y ;Zq and
C be a generic collection of constraints in Y and X. A boundary stratum S of Bdspβ,Cq is
the total space of the S1 _S1-bundle formed by the fibers of Bdspβ1,C1q over Dcspβ1,C1q and
Bdspβ2,C2q over Dcspβ2,C2q that intersect in Y , for some pβ1,C1q and pβ2,C2q as in (1.3). Sup-
pose, by inductive hypothesis, that we have already defined closed cycles bbpβ1,C1q and bbpβ2,C2q
in Y containing Bdspβ1,C1q and Bdspβ2,C2q, respectively. If Y is a homology sphere and the di-
mension of Bdspβ2,C2q is not 0 or n, we can take a bordered pseudocycle bpβ2,C2q in Y that
bounds bbpβ2,C2q. The fibers of Bdspβ1,C1q that intersect bpβ2,C2q in Y form an S1-bundle
bbpβ1,C1;β2,C2q. The fibers of Bdspβ1,C1q that intersect Bdspβ2,C2qĂBbpβ2,C2q in Y form
part of Bbbpβ1,C1;β2,C2q. Since this part is isomorphic to S, we can glue bbpβ1,C1;β2,C2q
to Bdspβ,Cq along their common boundary. Doing this for all pβ1,C1q and pβ2,C2q satisfying (1.3),
we eliminate the boundary of Bdspβ,Cq. (By the nature of this construction, the remaining parts
of the boundaries of the various pseudocycles bbpβ1,C1;β2,C2q cancel with each other in a sim-
ilar manner.) We thus obtain a closed cycle bbpβ,Cq in Y and complete the inductive step; see
Lemma 3.1 and the proof of Proposition 2.4. If the dimension of this cycle is n, we can take its
degree and obtain a count of J-holomorphic disks in pX,Y q as in (1.2). If Y is a homology sphere,
this count does not depend on the choice of bpβ2,C2q above; see Section 2.2.

Analogously to [19], we relate the disk counts arising from the bounding chains of Definition 2.1
to the real Gromov-Witten invariants of [22, 23, 17, 10] in the appropriate real settings; see The-
orems B.3 and B.4. We also translate the statements of the WDVV-type relations for the open
Gromov-Witten invariants obtained in [20] into relations for these disk counts; see Theorem 2.10.
Combining Theorems 2.9 and 2.10, we obtain an intriguing relation between the standard, closed
Gromov-Witten invariants of pX,ωq; see Corollary 2.11. In [2], we show that the open invariants of
Theorem 2.9 reduce to the open Gromov-Witten invariants of [24] if n“3, as expected in [19] and
earlier envisioned by G. Tian based on [6]. This then yields WDVV-type relations for Welschinger’s
open invariants.

We hope that our geometric interpretation of Solomon-Tukachinsky’s construction of open GW-
invariants will make them accessible to a broader audience and will be developed further. Via
relatively orientable pseudocycles (as defined in [1]), this interpretation might lead to a construction
of such invariants for the cases when n is even or the Lagrangian Y is not orientable. Along with a
similar geometric interpretation of [20], this should in turn lead to WDVV-type equations for open
GW-invariants in such settings as well.
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Remark 1.1. The present paper is based on the first version of [19]. While this paper was be-
ing completed, the second version of [19] partly extended (1.2) to odd-dimensional cohomology
on pX,Y q and even-dimensional Y . The signs are a more delicate issue in these cases.

The author would like to thank Penka Georgieva for hosting her at the Institut de Mathématiques
de Jussieu in March 2019 and for the enlightening discussions that inspired the present paper. She
would also like to thank Sara Tukachinsky and Jake Solomon for clarifying some statements in [20]
and Aleksey Zinger for many detailed discussions and help with the exposition.

2 Setup and main statements

2.1 Notation and terminology

For k P Zě0, we define rks “ t1, 2, . . . , ku. We denote by D2 Ă C the unit disk with the induced
complex structure, by D2_D2 the union of two disks joined at a pair of boundary points, and by
S1 ĂD2 and S1_S1 ĂD2_D2 the respective boundaries. We orient the boundaries counterclockwise;
thus, starting from a smooth point x0 of S1_S1, we proceed counterclockwise to the node nd, then
circle the second copy of S1 counterclockwise back to nd, and return to x0 counterclockwise from nd.
We call smooth points x0, x1, . . . , xk on S1 or S1_S1 ordered by position if they are traversed in
counterclockwise order; see the first diagram in Figure 1 on page 19.

Let Y be a smooth compact manifold. For a continuous map f : Z ÝÑY , let

Ωpfq “
č

KĂZ cmpt

fpZ´Kq

be the limit set of f . A continuous map f : Z ÝÑY from a manifold, possibly with boundary, is a
Z2-pseudocycle into Y if there exists a smooth map h : Z 1 ÝÑY such that

dimZ 1 ď dimZ´2 and fpBZq,Ωpfq Ă hpZ 1q .

The codimension of such a Z2-pseudocycle is dimY ´dimZ. A continuous map rf : rZ ÝÑY is a
bordered Z2-pseudocycle with boundary f : Z ÝÑY if there exist an open subset Z˚ Ă Z and a
smooth map rh : rZ 1 ÝÑY such that

Z˚ Ă B rZ, rf |Z˚ “ f |Z˚ , dim rZ 1 ď dim rZ´2, fpZ´Z˚q, rf
`
B rZ´Z˚

˘
,Ωp rfq Ă rhp rZ 1q .

Throughout the paper, we take oriented pseudocycles with coefficients in a commutative ring R

with unity. Every R-homology class in a manifold can be represented by a pseudocycle in this
sense, which is unique up to equivalence; see Theorem 1.1 in [25].

Let pX,ωq be a compact symplectic manifold of dimension 2n, Y Ă X be a compact Lagrangian
submanifold,

Hω
2 pX,Y q “

 
β PH2pX,Y ;Zq : ωpβqą0 or β“0

(
, (2.1)

and Jω be the space of ω-compatible almost complex structures on X. We denote by PCpXq the
collection of pseudocycles to X with coefficients in R, by FPCpXq the collection of finite subsets
of PCpXq, and by FPtpY q the collection of finite subsets of Y . Let

CωpY q “
 

pβ,K,Lq : β PHω
2 pX,Y q, K PFPtpY q, LPFPCpXq, pβ,K,Lq‰p0,H,Hq

(
. (2.2)
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This collection has a natural partial order:

pβ1,K 1, L1q ĺ pβ,K,Lq if β´β1 P Hω
2 pX,Y q, K 1 ĂK, and L1 ĂL. (2.3)

The elements p0,K, Lq of CωpY q with |K|`|L| “ 1 are minimal with respect to this partial order.
For each element α”pβ,K,Lq of CωpY q, we define

βpαq ” β, Kpαq ” K, Lpαq ” L,

dimpαq “ µω
Y pβq`n´3´pn´1q|K|´

ÿ

ΓPL

`
codimΓ´2

˘
, Cω;αpY q “

 
α1 PCωpY q : α1

ăα
(
.

For α”pβ,K,LqPCωpY q, let

Dωpαq “

"̀
β‚, k‚, L‚, pαiqiPrk‚s

˘
: β‚ PHω

2 pX,Y q, k‚ PZě0, L‚ ĂL, αi PCωpY q @ iPrk‚s,

pβ‚, k‚, L‚q‰p0, 1,Hq, β‚`
k‚ÿ

i“1

βpαiq“β,

k‚ğ

i“1

Kpαiq“K, L‚\
k‚ğ

i“1

Lpαiq“L

*
.

(2.4)

Since αi ăα for every

η ”
`
β‚, k‚, L‚, pαiqiPrk‚s

˘
”
`
β‚, k‚, L‚, pβi,Ki, LiqiPrk‚s

˘
P Dωpαq (2.5)

and every iPrk‚s, k‚ “0 if α is a minimal element of CωpY q. Thus,

Dω

`
0, tptu,H

˘
“ H @ptPY and Dω

`
0,H, tΓu

˘
“
 `
0, 0, tΓu, pq

˘(
@ΓPPCpXq .

For ηPDωpαq as in (2.5) and iPrk‚s, we define

β‚pηq “ β‚, k‚pηq “ k‚, L‚pηq “ L‚,

βipηq “ βi, Kipηq “ Ki, Lipηq “ Li, αipηq “ αi “ pβi,Ki, Liq.

We denote by ĂPCpXq the collection of bordered pseudocycles to r0, 1sˆX with coefficients in R

and boundary in t0, 1uˆX, by ĆFPCpXq the collection of finite subsets of ĂPCpXq, and by ĄFPtpY q
the collection of finite sets of paths in r0, 1sˆY from t0uˆY to t1uˆY . We define the partially

ordered set rCωpY q as in (2.2) and (2.3) with FPtpY q replaced by ĄFPtpY q and FPCpXq by ĆFPCpXq.
For an element rα” pβ, rK, rLq of rCωpY q, we define the collection Dωprαq as in (2.4) with CωpY q, K,
and L replaced by rCωpY q, rK, and rL, respectively. Let

dimprαq “ µω
Y pβq`n´3´pn´1q| rK|´

ÿ

rΓPrL

`
codim rΓ´2

˘
, rCω;rαpY q “

 
rα1 P rCωpY q : rα1

ă rα
(
.

We define rβprαq, rKprαq, rLprαq for rα P rCωpY q and β‚prηq, k‚prηq, rL‚prηq, βiprηq, rKiprηq, rLiprηq, rαiprηq for
rηPDωprαq similarly to the analogous objects for αPCωpY q and ηPDωpαq.

For Γ0,Γ1 PFPCpXq and rΓPĆFPCpXq, we write

BrΓ “ t1uˆΓ1´t0uˆΓ0
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if |Γ0|, |Γ1| “ |rΓ| and there is an ordering Γ0;i,Γ1;i, rΓi of the elements of Γ0,Γ1, rΓ, respectively,
so that

BrΓi “ t1uˆΓ1;i ´ t0uˆΓ0;i @ i.

For K0,K1 PFPtpY q and rK P ĄFPtpY q, we write

B rK “ t1uˆK1´t0uˆK0

if the analogous condition holds. For α0, α1 PCωpY q and rαP rCωpY q, we write

Brα “ t1uˆα1´t0uˆα0 if βpα0q, βpα1q “ βprαq,

B rKprαq “ t1uˆKpα1q´t0uˆKpα0q, BrLprαq “ t1uˆLpα1q´t0uˆLpα0q .

If in addition η0 PDωpα0q, η1 PDωpα1q, and rηPDωprαq, we write

Brη “ t1uˆη1´t0uˆη0 if β‚pη0q, β‚pη1q “ β‚prηq, k‚pη0q, k‚pη1q “ k‚prηq,

BrL‚prηq “ t1uˆL‚pη1q´t0uˆL‚pη0q, Bαiprηq “ t1uˆαipη1q´t0uˆαipη0q @ iP
“
k‚prηq

‰
.

Let k P Zě0, L be a finite set, β P Hω
2 pX,Y q, and J P Jω. We denote by M‹

k,Lpβ; Jq the moduli

space of stable simple J-holomorphic degree β maps from pD2, S1q and pD2_D2, S1_S1q to pX,Y q
with the interior marked points indexed by L and the boundary marked points indexed by 1, . . . , k
and ordered by the position. A relative OSpin-structure os on Y determines an orientation oos
of M‹

k,Lpβ; Jq; see Section 5.2. For i P rks and iPL, let

evbi : M
‹

k,Lpβ; Jq ÝÑ Y and evii : M
‹

k,Lpβ; Jq ÝÑ X

be the evaluation morphisms at the i-th boundary marked point and the i-th interior marked
point, respectively. If M Ă M‹

k,Lpβ; Jq, we denote the restrictions of evbi and evii to M also
by evbi and evii.

If in addition m,m1 PZě0,

`
bs : Zbs ÝÑY

˘
sPrms

and
`
Γs : ZΓs ÝÑX

˘
sPrm1s

are tuples of maps and i1, . . . , im Prks and j1, . . . , jm1 PL are distinct elements, let

Mˆfb

`
pis, bsqsPrms; pjs,ΓsqsPrm1s

˘

” Mpevbi1 ,...,evbim ,evij1 ,...,evijm1 q̂ b1ˆ...ˆbmˆΓ1ˆ...ˆΓm1

`
Zb1 ˆ. . .ˆZbm ˆZΓ1 ˆ. . .ˆZΓm1

˘

be their fiber product with M ; see Section 5.1. If M is an oriented manifold and bs and Γs are
smooth maps from oriented manifolds satisfying the appropriate transversality conditions, then we
orient this space as in Section 5.1. For iP rks with i‰ is for any sP rms (resp. iPL with i‰ js for
any sPrm1s), we define

evbi presp. eviiq : Mˆfb

`
pis, bsqsPrms; pjs,ΓsqsPrm1s

˘
ÝÑ Y presp. Xq

to be the composition of the evaluation map evbi (resp. evii) defined above with the projection to
the first component.
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For a path rJ ”pJtqtPr0,1s in Jω, let

M‹

k,Lpβ; rJq “
 

pt,uq : tPr0, 1s, uPM‹

k,Lpβ; Jtq
(
.

For i P rks and iPL, we define

Ąevbi : M‹

k,Lpβ; rJq ÝÑ r0, 1sˆY, Ąevbipt,uq “
`
t, evbipuq

˘
, and

Ăevii : M‹

k,Lpβ; rJq ÝÑ r0, 1sˆX, Ăeviipt,uq “
`
t, eviipuq

˘
,

respectively. For ĂM ĂM‹

k,Lpβ; rJq, tuples prbsqsPrms and prΓsqsPrm1s of maps to r0, 1sˆY and r0, 1sˆX,
respectively, i1, . . . , im Prks, j1, . . . , jm1 PL, and iPrks (resp. iPL) as above, we define

Ąevbi presp. Ăeviiq : ĂMˆfb

`
pis,rbsqsPrms; pjs, rΓsqsPrm1s

˘
ÝÑ r0, 1sˆY presp. r0, 1sˆXq

as in the previous paragraph.

A relative OSpin-structure os on Y determines an orientation on M‹

k,Lpβ; rJq with the base direction
first. In other words, the exact sequence

0 ÝÑ TuM
‹

k,Lpβ; Jtq ÝÑ Tpt,uqM
‹

k,Lpβ; rJq
dpt,uqe
ÝÝÝÝÑ Ttr0, 1s ÝÑ 0

induced by the projection e to r0, 1s at a regular point pt,uq of e is orientation-compatible (as defined
in Section 5.1) if and only if the dimension of M‹

k,Lpβ; Jtq is even. If rbs and rΓs are smooth maps
from oriented manifolds, then a relative OSpin-structure os on Y also determines an orientation
on the above fiber product space.

By the assumptions (1.4) and (1.5), products of the evaluation maps from M‹

k,Lpβ; Jq are bordered
pseudocycles for a generic ω-compatible almost complex structure J on X. Since µω

Y pβq P 2Z

for all β, the same applies to products of evaluation maps from M‹

k,Lpβ; rJq for a generic path rJ
of ω-compatible almost complex structures between two generic ω-compatible almost complex
structures J0, J1.

2.2 Bounding chains

Let R, pX,ω, Y q, n, and os be as before with ně3 odd. Thus,

dimpαq P 2Z @αPCωpY q (2.6)

if the dimension of every pseudocycle ΓPLpαq is even. This implies that the pseudocycles bα1 , brα1 ,
bbα1 , and bbrα1 of Definitions 2.1 and 2.2, (2.11), and (2.16) below satisfy

dim bα1 , dim bbrα1 P 2Z and dim bbα1 , dim brα1 R 2Z @α1 PCω;αpY q, rα1 P rCω;rαpY q . (2.7)

For η P Dωpαq for some αPCωpY q and J P Jω, let

Mη;J ” M‹

k‚pηq,L‚pηqpβ‚pηq; Jq, M`
η;J ” M‹

k‚pηq`1,L‚pηqpβ‚pηq; Jq. (2.8)

For rη P Dωprαq for some rαP rCωpY q and a path rJ in Jω, define

Mrη; rJ ” M‹

k‚prηq,rL‚prηq
pβ‚prηq; rJq, M`

rη; rJ ” M‹

k‚prηq`1,rL‚prηq
pβ‚prηq; rJq.

For a point ptPY , we denote its inclusion into Y also by pt.
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Definition 2.1. Let α” pβ,K,Lq P CωpY q be generic so that the dimension of every pseudocycle
ΓPLpαq is even and J PJω be generic. A bounding chain on pα, Jq is a collection pbα1qα1PCω;αpY q of
bordered pseudocycles to Y such that

(BC1) dim bα1 “dimpα1q`2 for all α1 PCω;αpY q;

(BC2) bα1 “H if dimpα1qď´2 and α1 ‰p0, tptu,Hq for any ptPK or if dimpα1qěn´1;

(BC3) bp0,tptu,Hq “pt for all ptPK;

(BC4) for all α1 PCω;αpY q such that dimpα1qďn´2,

Bbα1 “

ˆ
evb1 :

ď

ηPDωpα1q

p´1qk‚pηqM`
η;J ˆfb

`
pi`1, bαipηqqiPrk‚pηqs; pi,ΓiqΓiPL‚pηq

˘
ÝÑ Y

˙
. (2.9)

Since the dimension of every pseudocycle ΓPL to the even-dimensional space X is even, Lemma 5.3
implies that the oriented morphism

bbη ”

ˆ
evb1 : p´1qk‚pηqM`

η;J ˆfb

`
pi`1, bαipηqqiPrk‚pηqs; pi,ΓiqΓiPL‚pηq

˘
ÝÑ Y

˙
(2.10)

in (2.9) does not depend on the choice of identification of L‚pηq with r|L‚pηq|s; see the first diagram
in Figure 1 on page 19. By Lemma 3.1, the map

bbα1 ”
ď

ηPDωpα1q

bbη (2.11)

with orientation induced by the OSpin-structure os is a pseudocycle for every α1 PCω;αpY qYtαu. If
in addition dimpαq “n´1, then bbα is a pseudocycle of codimension 0. It then has a well-defined
degree, and we set

xLyω,osβ;K “ deg bbα. (2.12)

In general, this degree may depend on the choices of J , |K| points in Y , pseudocycle representatives
ΓPL for their homology classes rΓsX in X, and the bordered pseudocycles pbα1qα1PCω;αpY q.

Definition 2.2. Suppose α0, α1 PCωpY q and J0, J1 PJω are generic, the dimension of every pseudo-
cycle ΓPLpα0q is even, and pb0;α1qα1PCω;α0 pY q and pb1;α1qα1PCω;α1 pY q are bounding chains on pα0, J0q

and pα1, J1q, respectively. Let rαP rCωpY q be generic with

Brα “ t1uˆα1´t0uˆα0 (2.13)

and rJ ” pJtqtPr0,1s be a generic path in Jω from J0 to J1. A pseudo-isotopy on prα, rJq be-
tween pb0;α1qα1PCω;α0 pY q and pb1;α1qα1PCω;α1 pY q is a collection pbrα1qrα1P rCω;rαpY q of bordered pseudocycles

to r0, 1sˆY such that

(PS1) dim brα1 “dimprα1q`3 for all rα1 P rCω;rαpY q;

(PS2) brα1 “H if dimprα1qď´2 and rα1 ‰p0, t rptu,Hq for any rptP rKprαq or if dimprα1qěn´1;

(PS3) bp0,tĂptu,Hq “ rpt for all rptP rK;

(PS4) for all α1
0 PCω;α0pY q, α1

1 PCω;α1pY q, and rα1 P rCω;rαpY q such that

Brα1 “ t1uˆα1
1´t0uˆα1

0 (2.14)
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and ´2ădimprα1qďn´2,

Bbrα1 “

ˆ
Ąevb1:

ď

rηPDωprα1q

p´1qpk‚prηq
2 qM`

rη; rJ ˆfb

`
pi`1, brαiprηqqiPrk‚prηqs; pi, rΓiqrΓiPrL‚prηq

˘
ÝÑ r0, 1sˆY

˙

`t1uˆb1;α1
1
´t0uˆb0;α1

0
.

Definition 2.3. Let α0, α1 and J0, J1 be as in Definition 2.2. Bounding chains pb0;α1qα1PCω;α0 pY q

and pb1;α1qα1PCω;α1 pY q on pα0, J0q and pα1, J1q, respectively, are pseudo-isotopic if there exist rJ and rα
as in Definition 2.2 such that rΓXY “ H for every rΓ P rLprαq with dim rΓ “ n and a pseudo-isotopy
pbrα1q

α1P rCω;rαpY q on prα, rJq between pb0;α1qα1PCω;α0 pY q and pb1;α1qα1PCω;α1 pY q.

With the notation and setup as in Definition 2.2, the dimension of every pseudocycle rΓP rLprαq to
the odd-dimensional space r0, 1sˆX is odd. Along with Lemma 5.3, this implies that the oriented
morphism

bbrη ”

ˆ
Ąevb1: p´1qpk‚prηq

2 qM`

rη; rJ ˆfb

`
pi`1, brαiprηqqiPrk‚prηqs; pi, rΓiqrΓiPrL‚prηq

˘
ÝÑ r0, 1sˆY

˙
(2.15)

in (PS4) does not depend on the choice of identification of rL‚prηq with r|rL‚prηq|s.

Let α1
0 PCω;α0pY qYtα0u, α1

1 PCω;α1pY qYtα1u, and rα1 P rCω;rαpY qYtrαu be so that (2.14) holds and bb0;α1
0

and bb1;α1
1
be the pseudocycles as in (2.11) determined by the bounding chains pb0;α1qα1PCω;α0 pY q

and pb1;α1qα1PCω;α1 pY q, respectively. By Lemma 3.3, the boundary of the bordered pseudocycle

bbrα1 ”
ď

rηPDωprα1q

bbrη (2.16)

is t0uˆbb0;α1
0
´t1uˆbb1;α1

1
. If in addition dimpα0q“n´1 (or equivalently dimpα1q“n´1), then the

above implies that
deg bb0;α0 “ deg bb1;α1 .

Thus, pseudo-isotopic bounding chains determine the same numbers (2.12).

Propositions 2.4 and 2.5 below are geometric analogues of the surjectivity and injectivity statements
of [19, Thm 2]. They guarantee the existence of bounding chains and their uniqueness up to pseudo-
isotopy under the topological conditions determined by the authors of [19].

Proposition 2.4 Let α and J be as in Definition 2.1. If Y is an R-homology sphere, then there
exists a bounding chain pbα1qα1PCω;αpY q on pα, Jq.

Proposition 2.5 Let α0, α1, rα, J0, J1, rJ , and pb0;α1qα1PCω;α0 pY q and pb1;α1qα1PCω;α1 pY q be as in Defini-

tion 2.2 so that rΓXY “H for every rΓP rLprαq with dim rΓ“n. If Y is an R-homology sphere, then there
exists a pseudo-isotopy pbrα1qrα1P rCω;rαpY q on prα, rJq between pb0;α1qα1PCω;α0 pY q and pb1;α1qα1PCω;α1 pY q.

Remark 2.6. By the assumption (1.5) and Definition 2.1(BC2), bα1 “H if Kpα1q, Lpα1q“H. Thus,
all non-empty bordered pseudocycles bαipηq in the fiber product (2.9) are distinct. This implies that
this fiber product is transverse if the bordered pseudocycles bα2 with α2

ăα1 are chosen generically.
The same considerations apply to the fiber product in Definition 2.2(PS4).
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2.3 Definitions of open Gromov-Witten invariants

Let pX,ω, Y q, n, and os be as before. Suppose in addition that β P Hω
2 pX,Y q, K Ă Y is a finite

subset, and L ” tΓ1, . . . ,Γlu are generic pseudocycles to X of even dimensions. The genericity
assumptions in particular include that each Γi is traverse to Y and thus disjoint from Y if the
dimension of Γi is less than n. We denote by

rΓis P H˚pX;Rq
`
resp. rΓis P H˚pX,Y ;Rq

˘

the homology class of Γi if the dimension Γi is not n´1 (resp. is n´1).

Let α“pβ,K,Lq, J PJω be a generic, and pbα1qα1PCω;αpY q be a bounding chain on pα, Jq. For ptPK
and ΓPL, define

αc
pt “

`
β,K´tptu, L

˘
and αc

Γ “
`
β,K,L´tΓu

˘
.

The bounding chain pbα1qα1PCω;αc
pt

pY q determines a count

@
L
Dω,os
β;K´tptu

” deg bbαc
pt

as in (2.12) of J-holomorphic multi-disks through k points in Y , the pseudocycles Γi, and the
auxiliary pseudocycles bα1 with α1

ăαc
pt. As noted after Definition 2.2, this count does not depend

on the input pαc
pt, Jq and pbi;α1qα1PCω;αc

pt
pY q that differs by a pseudo-isotopy. Below we provide

geometric interpretations of two other versions of such counts. In an analogy with Lemma 4.9
in [20], the three counts agree on the overlaps of the domains of their definitions in suitable
settings; see Theorem 2.7(2).

We denote the signed cardinality of a finite set S of signed points by |S|˘. If S is not a finite set
of signed points, we set |S|˘ ”0. For ΓPL, let

DΓ
ωpαq “

 
ηPDωpαq : ΓPL‚pηq

(
. (2.17)

If in addition ηPDωpαq, let

s˚pηq ”

#
1

k‚pηq ´ 1
2
, if k‚pηq‰0,

1, if k‚pηq“0;
s˝pηq ”

#
1

k‚pηq , if k‚pηq‰0,

1, if k‚pηq“0.

For rηPDωprα1q for some rα1 P rCωpY q, we define s˚prηq similarly. Define

xLy˚
β;K ”

ÿ

ηPDωpαq

p´1qk‚pηqs˚pηq
ˇ̌
ˇMη;J ˆfb

`
pi, bαipηqqiPrk‚pηqs; pi,ΓiqΓiPL‚pηq

˘ˇ̌
ˇ
˘

`
1

2

ÿ

ptPK

@
Γ
Dω,os
β;K´tptu

;

(2.18)

@
L´tΓu

DΓ
β;K

”
ÿ

ηPDΓ
ωpαq

p´1qk‚pηqs˝pηq
ˇ̌
ˇMη;J ˆfb

`
pi, bαipηqqiPrk‚pηqs; pi,ΓiqΓiPL‚pηq

˘ˇ̌
ˇ
˘
. (2.19)

Both numbers above vanish unless dimpαq“0. Let

qY : H2pX;Zq ÝÑ H2pX,Y ;Zq (2.20)
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be the natural homomorphism. By Definition 2.2, a pseudo-isotopy between bounding chains on
pairs pα0, J0q and pα1, J1q determines a bijection between the sets Lpα0q and Lpα1q of pseudocycles
to X.

Theorem 2.7 Suppose pX,ωq is a compact symplectic manifold of real dimension 2n with ně 3
odd, Y ĂX is a compact Lagrangian submanifold, β PH2pX,Y ;Zq, os is a relative OSpin-structure
on Y , and the conditions (1.4) and (1.5) hold.

(1) Let α0, α1, J0, J1, and pb0;α1qα1PCω;α0 pY q and pb1;α1qα1PCω;α1 pY q be as in Definition 2.2. If the
bounding chains pb0;α1qα1PCω;α0 pY q and pb1;α1qα1PCω;α1 pY q are pseudo-homotopic, then the num-
bers (2.12) associated to them are the same. If in addition

Kpα0q ‰ H or β R Im
`
qY : H2pX;ZqÝÑH2pX,Y ;Zq

˘
, (2.21)

then the numbers (2.18) (resp. (2.19)) associated to the two bounding chains are also the same.

(2) Let α, J , and pbα1qα1PCω;αpY q be as in Definition 2.1. If ptPKpαq, then

xLyω,os
β;K´tptu “ xLy˚

β;K . (2.22)

If ΓPL and the condition (2.21) with α0 “α is satisfied, then

@
L´tΓu

DΓ
β;K

“ xLy˚
β;K . (2.23)

For α, J , and pbα1qα1PCω;αpY q as in Definition 2.1, α1 PCω;αpY q, and ηPDωpα1q, define

bb˚
η;J “ p´1qpk‚pηq

2 qMη;J ˆfb

`
pi, bαipηqqiPrk‚pηqs; pi,ΓiqΓiPL‚pηq

˘
.

With the assumptions as in Theorem 2.7(1), let prα, rJq and pbrα1qrα1P rCω;rαpY q be as in Definition 2.3.

For rα1 P rCω;rαpY q and rηPDωprα1q, define

bb˚
rη “ p´1qpk‚prηq

2 qMrη; rJ ˆfb

`
pi, brαiprηqqiPrk‚prηqs; pi, rΓiqrΓiPrL‚prηq

˘
.

As already noted, the sentence containing (2.16) implies the claim of Theorem 2.7(1) concerning
the numbers (2.12). Suppose dimprαq“0. We show in Section 3.2 that

B

ˆ ğ

rηPDωprαq

s˚prηqbb˚
rη

˙
“

ğ

η1PDωpα1q

s˚pη1q
`
t1uˆbb˚

η1;J1

˘
´

ğ

η0PDωpα0q

s˚pη0q
`
t0uˆbb˚

η0;J0

˘
. (2.24)

This implies the claim of Theorem 2.7(1) concerning the numbers (2.18). The claim of Theo-
rem 2.7(1) concerning the numbers (2.19) then follows from (2.23). The condition (2.21) precludes
sphere bubbling; it ensures that the stable map compactification of Mη;J contains no additional
codimension one boundary for any η P Dωpαq. The proof of Theorem 2.7(2) in Section 3.3 is a
fairly straightforward application of the orientation comparisons for fiber products collected in
Section 5.1.

Let β PHω
2 pX,Y q, kPZě0, and L”tΓ1, . . . ,Γlu be as above. If the number (2.12) with |K|“k´1

and the number (2.18) with |K|“k do not depend on the choices of the relevant bounding chains
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or on KĂY , we will denote all three numbers (2.12), (2.18), and (2.19) by xΓ1, . . . ,Γly
ω,os
β;k ; there is

then no ambiguity in this notation by Theorem 2.7(2). If in addition this number does not depend
on generic choices of pseudocycle representatives for the homology classes rΓis, let

@
rΓ1s, . . . , rΓls

Dω,os
β;k

“
@
Γ1, . . . ,Γl

Dω,os
β;k

P R . (2.25)

In this case, we obtain open GW-invariants as in (1.2) via the Poincare and Lefschetz Dualities

PDX : Hp

`
X;R

˘ «
ÝÑ H2n´p

`
X;R

˘
, PDX,Y : Hp

`
X´Y ;R

˘ «
ÝÑ H2n´p

`
X,Y ;R

˘
; (2.26)

see Theorems 67.1 and 70.2 in [15], for example. By Propositions 2.4 and 2.5, all of the above
independence assumptions are satisfied in particular if Y is an R-homology sphere. For dimensional
reasons, the numbers (2.25) vanish unless

µω
Y pβq`n´3 “ pn´1qk`

lÿ

i“1

`
codimΓi´2q. (2.27)

Remark 2.8. If pX,ω, Y q satisfies (1.4) and (1.5), there are no nonzero counts of J-holomorphic
disks without constraints due to dimensional reasons. As shown in the proof of (2.22) in Section 3.3,
the signed cardinalities of the k‚pηq fiber products in (2.19) obtained by circularly permuting the
components of pαipηqqiPrk‚pηqs are the same. Therefore, the sum in (2.19) can be re-written without
s‚pηq “ 1{k‚pηq. Along with Theorem 2.7(2), this implies that (2.12), (2.18), and (2.19) provide
counts of J-holomorphic disks in pX,ω, Y q with coefficients in any commutative ring R with unity
under the assumptions (1.4) and (1.5).

2.4 Properties of open Gromov-Witten invariants

Let pX,ωq be a compact symplectic manifold of real dimension 2n, Y ĂX be a connected compact
Lagrangian submanifold, and os be a relative OSpin-structure on Y . Denote by rY sX PHnpX;Rq
the image of the fundamental class of Y with respect to the orientation determined by os. The
kernel of the homomorphism

Hn´1pX´Y ;Rq ÝÑ Hn´1pX;Rq

is generated by the homology class rSpNyY qs of a unit sphere SpNyY q in the fiber of NY over any
y PY . We orient SpNyY q as in [3, Sec 2.5] and denote the image of rSpNyY qs under the p“n´1
case of the Lefschetz Duality isomorphism (2.26) by η˝

X,Y . For B PH2pX;Zq, let

x¨, . . . , ¨yωB :
8à

l“1

H2˚pX;Rq‘l ÝÑ R

be the standard GW-invariants of pX,ωq.

The properties of the open GW-invariants (2.29) stated below are as in Theorem 4 of [19] and
Corollary 1.5 and Theorem 6 of [20]. The first four of them are the direct analogues of standard
properties of the closed GW-invariants. The fifth property, called Wall crossing in [20], is the
direct generalization of Proposition 2.1 in [3]. The two remaining properties describe new geometric
phenomena discovered in [20].
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Theorem 2.9 Let pX,ωq be a compact symplectic 2n-fold with ně3 odd, Y be a connected com-
pact Lagrangian submanifold, os be a relative OSpin-structure on Y , k, lPZě0, and β PHω

2 pX,Y q
with

k ‰ H or β R Im
`
qY : H2pX;ZqÝÑH2pX,Y ;Zq

˘
. (2.28)

Suppose the assumptions (1.4) and (1.5) are satisfied and the numbers (2.18) with |K|“k do not
depend on the choices of the relevant bounding chains, K Ă Y , or generic choices of pseudocycle
representatives Γi PL in their homology classes rΓis. The open GW-invariants (2.25) then determine
symmetric multilinear functionals

x¨, . . . , ¨yω,osβ,k :
8à

l“0

pH2˚pX,Y ;Rq‘l ÝÑ R (2.29)

with the following properties.

(OGW1) xγ1, . . . , γly
ω,os
β,k “0 unless (2.27) with codimΓi replaced by deg γi holds.

(OGW2) If β“0, xγ1, . . . , γly
ω,os
β,k “

#
xγ1, pty, if pk, lq“p1, 1q;

0, otherwise.

(OGW3) x1, γ2, . . . , γly
ω,os
β,k “

#
1, if pβ, k, lq“p0, 1, 1q;

0, otherwise.

(OGW4) If γ0 PH2pX,Y ;Rq, xγ0|X , γ1, . . . , γly
ω,os
β,k “ xγ0, βyxγ1, . . . , γly

ω,os
β,k .

(OGW5) xγ˝
X,Y , γ1, . . . , γly

ω,os
β,k “ xγ1, . . . , γly

ω,os
β,k`1.

(OGW6) If k“1 and γ0 PHnpX;Rq,

xγ0, rY sXy
@
γ1, . . . , γl

Dω,os
β,k

“
ÿ

BPq´1
Y

pβq

p´1qxw2posq,By
@
PDX

`
rY sX

˘
, γ0, γ1|X , . . . , γl|X

Dω
B
.

(OGW7) If rY sX ‰0 and kě2, then xγ1, . . . , γly
ω,os
β,k “0.

The vanishing property (OGW1) holds because the dimensions of the relevant moduli spaces and
the constraints are different unless (2.27) with codimΓi replaced by deg γi holds. The symmetry
property of the open GW-invariants (2.29) is immediate from the fiber products in (2.12), (2.18),
and (2.18) being independent of the order of the elements Γ1, . . . ,Γl of L. Both properties apply to
the counts (2.12), (2.18), and (2.19) without any assumptions on the independence of these counts
of the choice of the bounding chain.

We establish the remaining properties of the GW-invariants (2.29) stated in Theorem 2.9 in Sec-
tion 4 by showing that the stated properties are satisfied by the numbers (2.25). We note which of
the many assumptions of Theorem 2.9 are actually necessary for each given property to be satisfied
by the numbers (2.12), (2.18), and (2.19).

2.5 WDVV-type relations

We now translate the statements of the WDVV-type equations of Theorem 3 of [20] to relations
for the open GW-invariants (2.29) under the assumption that R is a field.
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Let pX,ωq be a connected compact symplectic manifold and Y Ă X be a connected compact
Lagrangian submanifold. Define

Λω
Y ”

 
pΨ: Hω

2 pX,Y qÝÑRq :
ˇ̌
tB PHω

2 pX,Y q : ΨpBq‰0, ωpBqăEu
ˇ̌
ă8 @E PR

(
.

We write an element Ψ of Λω
Y as

Ψ ”
ÿ

BPHω
2 pX,Y q

ΨpBqqB

and multiply two such elements as powers series in q with the exponents in Hω
2 pX,Y q.

Since dimY “n, the cohomology long exact sequence for the pair pX,Y q implies that the restriction
homomorphism

pH2˚pX,Y ;Rq ÝÑ H2˚pX;Rq

is surjective. Let
γ‹

1 ”1, γ‹

2 , . . . , γ
‹

N P pH2˚pX,Y ;Rq

be homogeneous elements such that γ‹

1 , γ
‹

2 |X , . . . , γ‹

N |X is a basis for H2˚pX;Rq, pgijqi,j be the
NˆN -matrix given by

gij “
@
γ‹

i γ
‹

j , rXs
D

(2.30)

and pgijqi,j be its inverse. Let Γ‹

1 ,Γ
‹

2 , . . . ,Γ
‹

N be generic pseudocycles to X representing the
Poincare duals of γ‹

2 , . . . , γ
‹

N . For a tuple t”pt1, . . . , tN q of formal variables, let

γ‹

t
“ γ‹

1 t1`. . .`γ‹

N tN .

For a finite set L, B PH2pX;Zq, and an ω-tame almost complex structure J , we denote byMC
LpB; Jq

the moduli space of stable J-holomorphic degree B maps with marked points indexed by the set L.
It carries a canonical orientation. For each iPL, let

evi : M
C
LpB; Jq ÝÑ X

be the evaluation morphism at the i-th marked point. If in addition Γ1, . . . ,Γl are maps to X, let

MC
0\rlspB; Jqˆfb

`
pi,ΓiqiPrls

˘
” MC

0\rlspB; Jqpev1,...,evl q̂ Γ1ˆ...ˆΓl

`
pdomΓ1qˆ. . .ˆpdomΓlq

˘
.

If J is generic and Γ1, . . . ,Γl are pseudocycles in general position, then

fC
B,pΓiqiPrls

”
´
ev0 : M

C
0\rlspB; J q̂ fb

`
pi,ΓiqiPrls

˘
ÝÑ X

¯

is a pseudocycle of dimension

dim fC
B,pΓiqiPrls

“ µω

`
qY pBq

˘
`2pn´2q´

lÿ

i“1

`
codimΓi´2

˘

transverse to Y . With γi “PDXprΓisq, let pλj

B,pγiqiPrls
qjPrNs PRN be such that

“
fC
B,pΓiqiPrls

‰
“

Nÿ

j“1

λ
j

B,pγiqiPrls
PDX

`
γ‹

j |X
˘

P H˚pX;Rq;
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the tuple pλj

B,pγiqiPrls
qjPrNs depends only on B, γ1, . . . , γl, and γ‹

2 , . . . , γ
‹

N .

Suppose in addition os is a relative OSpin-structure. If rY sX “ 0 and γ is an pn´1q-dimensional
pseudocycle to X´Y bounding a pseudocycle Γ to X transverse to Y , we define

lkospγq ”
ˇ̌
ΓˆfbιY

ˇ̌˘
,

where ιY : Y ÝÑX is the inclusion; see Section 5.1 for the sign conventions for fiber products. This
linking number of γ and Y with the orientation determined by the relative OSpin-structure os does
not depend on the choice of Γ. We set lkospγq“0 if γ is not an pn´1q-dimensional pseudocycle.

For the purpose of WDVV-type equations for the open GW-invariants (2.29), we extend these
signed disk counts to the pairs pk, βq not satisfying (2.28), i.e. k “ 0 and β P Hω

2 pX,Y q is in the

image of the homomorphism qY in (2.20), as follows. Let γ1, . . . , γl P pH2˚pX,Y ;Rq. If rY sX ‰ 0,
we define @

γ1, . . . , γl
Dω,os
β,0

“ 0.

Suppose next that rY sX “0. Let Γ1, . . . ,Γl be generic pseudocycles to X representing the Poincare
duals of γ1, . . . , γl. Define

@
γ1, . . . , γl

Dω,os
β,0

“RHS of (2.18) with α“
`
β,H, tΓ1, . . . ,Γlu

˘

`
ÿ

BPq´1
Y

pβq

p´1q

@
w2posq,B

D
lkos

´
fC
B,pΓiqiPrls

´
Nÿ

j“1

λ
j

B,pγiqiPrls
Γ‹

j

¯

in this case. This number depends on the span of the chosen elements γ‹

i of Hn`1pX,Y ;Rq. By the
proof of (2.24), pseudo-isotopic bounding chains pb0;α1qα1PCω;α0 pY q and pb1;α1qα1PCω;α1 pY q determine

the same numbers xγ1, . . . , γly
ω,os
β,0 .

We define Φos
ω PΛω

Y rrt1, . . . , tN ss and Ωos
ω PΛω

Y rrs, t1, . . . , tN ss by

Φos
ω pt1, . . . , tN q “

ÿ

βPHω
2 pX,Y q

lPZě0

˜
ÿ

BPH2pX;Zq
qY pBq“β

p´1qxw2posq,By
@
γ‹

t
|X , . . . , γ‹

t
|Xloooooooomoooooooon

l

Dω
B

¸
qβ

l!
,

Ωos
ω ps, t1, . . . , tN q “

ÿ

βPHω
2 pX,Y q

k,lPZě0

@
γ‹

t
, . . . , γ‹

tlooooomooooon
l

Dω,os
B,k

qβsk

k!l!
.

By Gromov’s Compactness Theorem, the inner sum in the definition of Φos
ω has finitely nonzero

terms. For the same reason, the coefficients of the powers of t1, . . . , tN , u in Φos
ω and Ωos

ω lie in Λω
Y .

Theorem 2.10 Suppose R is a field, pX,ω, Y q and os are as in Theorem 2.9 with X and Y

connected, and the independence assumptions of Theorem 2.9 are satisfied by the numbers (2.12)
even if the condition (2.28) does not hold. For all uPtt1, . . . , tNu and v, wPts, t1, . . . , tNu,

ÿ

1ďi,jďN

`
BuBvBtiΦ

os
ω

˘
gij

`
BwBtjΩ

os
ω

˘
`
`
BuBvΩ

os
ω

˘̀
BsBwΩ

os
ω

˘

“
ÿ

1ďi,jďN

`
BuBwBtiΦ

os
ω

˘
gij

`
BvBtjΩ

os
ω

˘
`
`
BuBwΩ

os
ω

˘̀
BsBvΩ

os
ω

˘
.

(2.31)
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By Propositions 2.4 and 2.5, the above independence assumptions are satisfied if Y is an R-
homology sphere. Theorem 2.10 is mostly a translation of Theorem 3 of [20] to the geometrically
defined invariants of Theorem 2.9. The framework of lifting bordisms from the Deligne-Mumford
moduli spaces of stable curves to the moduli spaces of stable maps as in [1, 3] can be used for
a self-contained geometric analogue of the proof in [20] establishing relations between the disk
counts (2.18) which arise from a fixed bounding chain, without any independence assumptions of
Theorem 2.10. The independence assumptions are used to present these relations succinctly as
the partial differential equations (2.31). This geometric analogue applies over an arbitrary field R

and allows taking v or w to be s even if rY sX ‰ 0; this case is excluded from the statement of
Corollary 1.6 of [20].

For β PH2pX,Y ;Zq and lPZě0, let

PCpβq “
 

pB1, B2qPH2pX;Zq‘H2pX;Zq : qY pB1`B2q“β
(
,

P12;plq “
 

pI, JqPPplq : t1, 2, . . . , lu“I\J, 1, 2PI
(
,

P1;2plq “
 

pI, JqPPplq : t1, 2, . . . , lu“I\J, 1PI, 2PJ
(
.

For a tuple γ ” pγ1, . . . , γlq of elements of H2˚pX;Rq and I Ă t1, 2, . . . , lu, we denote by γI the
|I|-tuple consisting of the entries of γ indexed by I. Let γ‹

1 , . . . , γ
‹

N be basis for H2˚pX;Rq, pgijqi,j
be the NˆN -matrix given by (2.30), and pgijqi,j be its inverse.

Corollary 2.11 below for the standard (closed) GW-invariants of pX,ωq follows immediately from
the case of Theorem 2.10 with

rY sX ‰ 0, u, v P
 
t1, . . . , tN

(
, and w “ s,

(OGW6) and (OGW7) in Theorem 2.9,

(a) Propositions 2.4 and 2.5 above, and

(b) Theorem 1.1 in [2];

see also Section 1.2 in [2] concerning the second case in Corollary 2.11. A slightly weaker version of
Corollary 2.11 follows from the case of Theorem 2.10 with u, v, wPtt1, . . . , tNu, which is available
in [20] for R“R.

Corollary 2.11 Suppose R is a field, pX,ωq is a compact symplectic 2n-fold, Y ĂX is an oriented
connected compact Lagrangian submanifold, and γ0 PHnpX;Rq with xγ0, rY sXy“1. If either

(a) ně3 is odd and Y is an R-homology sphere or

(b) n“3, the homomorphismH1pY ;RqÝÑH1pX;Rq induced by the inclusion Y ÝÑX is injective,
and the homomorphism H2pY ;RqÝÑH2pX;Rq is trivial,

then
ÿ

pB1,B2qPPCpβq
pI,JqPP12;plq

ÿ

i,jPrNs

@
γI , γ

‹

i

Dω
B1

gij
@
γ‹

j ,PDX

`
rY sX

˘
, γ0, γJ

Dω
B2

“
ÿ

pB1,B2qPPCpβq
pI,JqPP1;2plq

@
PDX

`
rY sX

˘
, γ0, γI

Dω
B1

@
PDX

`
rY sX

˘
, γ0, γJ

Dω
B2

for all β PH2pX,Y ;Zq and γ1, . . . , γl PH
2˚pX;Rq.
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3 Proofs of Propositions 2.4 and 2.5 and Theorem 2.7

We establish Propositions 2.4 and 2.5, which guarantee that the open invariants (2.29) can actually
be constructed via (2.12), (2.18), and (2.19) at least under some topological assumptions on the
Lagrangian submanifold Y of pX,ωq, in Section 3.1. In Section 3.2, we show that bounding chains
differing by a pseudo-isotopy determine the same counts (2.18). In Section 3.3, we establish the
equivalence of the three definitions of the disk counts in pX,Y q as stated in Theorem 2.7(2).

3.1 Existence of bounding chains and pseudo-isotopies

The main steps in the inductive proofs of Propositions 2.4 and 2.5 are Lemmas 3.1 and 3.3,
respectively, below. They ensure that the right-hand sides of the identities in Definitions 2.1(BC4)
and 2.2(PS4) are closed pseudocycles of the required dimensions if the bordered pseudocycles bα1

with α1
ăα and brα1 with rα1

ă rα satisfy all conditions of Definitions 2.1 and 2.2. Thus, these right-
hand sides satisfy at least a necessary condition for the existence of bordered pseudocycles bα1

and brα1 .

Lemma 3.1 Let α and J be as in Definition 2.1. If pbα1qα1PCω;αpY q is a bounding chain on pα, Jq,
then the map bbα in (2.11) is a pseudocycle of dimension dimpαq`1.

Proof. For ηPDωpαq, let bbη be as in (2.10). By Definition 2.1(BC1) with α1 replaced by αipηqăα,

dim bbη “
`
µω
Y pβ‚pηqq`pn´3q`pk‚pηq`1q`2|L‚pηq|

˘

`

k‚pηqÿ

i“1

`
dimpαipηqq`2

˘
´nk‚pηq´

ÿ

ΓPL‚pηq

codimΓ “ dimpαq`1 .
(3.1)

Thus, the dimension of bbα is dimpαq`1.

We define

D2
ωpαq “

!̀
η;β2

‚ , k1, k2, L
2
‚

˘
: ηPDωpαq, β2

‚ PHω
2 pX,Y q, k1, k2 Prk‚pηq`2s, L2

‚ ĂL‚pηq,

β‚pηq´β2
‚ PHω

2 pX,Y q, k1 ăk2,

pβ2
‚ , k2´1´k1, L

2
‚q‰p0, 0,Hq, p0, 1,Hq, pβ‚pηq, k‚pηq, L‚pηqq

)
.

(3.2)

For an element pη;β2
‚ , k1, k2, L

2
‚q of D2

ωpαq, let

K “ rk2´1s´rk1s, k1‚ “ k‚pηq´|K|`1, k2‚ “ |K|, K2 “
ğ

iPK

Ki´1pηq, L2 “ L2
‚\

ğ

iPK

Li´1pηq,

β2 “ β2
‚ `

ÿ

iPK

βi´1pηq,

α2 “
`
β2,K2, L2

˘
,

α1
i “

$
’&
’%

αipηq, if iPrk1´1s;

α2, if i“k1;

αi´2`k2´k1pηq, if iPrk1‚s´rk1s.

In particular, α2 PCω;αpY q,

η1 ”
`
β‚pηq´β2

‚ , k
1
‚, L‚pηq´L2

‚, pα1
i qiPrk1‚s

˘
P Dωpαq,

η2 ”
`
β2

‚ , k
2
‚, L

2
‚, pαi`k1´1qiPrk2‚s

˘
P Dωpα2q.
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1

2
3

4

5

6
7

8

α1

α2

α3

α4

α5

α6
α7

Γ1 Γ2

bbη

η“
`
β‚, 7, tΓ1,Γ2u, pαiqiPr7s

˘

1
2

3 4

5

67
8

α1
α2 α3

α4

α5α6
α7

Γ2 Γ1

bbηpϑq«´bbη1pk1, η
2q

ϑ“
`
β2

‚ , k1 “3, k2 “7, L2
‚ “tΓ1u

˘

η1 “
`
β‚´β2

‚ , 4, tΓ2u, pα1, α2, α6, α7q
˘

η2 “
`
β2

‚ , 3, tΓ1u, pα3, α4, α5q
˘

Figure 1: Elements of the domains of bbη and bbηpϑq.

We note that the resulting map

D2
ωpαq ÝÑ D

2

ωpαq”
 

pη; i, η1q : ηPDωpαq, iPrk‚pηqs, η1 PDωpαipηqq
(
,

pη;β2
‚ , k1, k2, L

2
‚q ÝÑ pη1; k1, η

2q,
(3.3)

is bijective.

For pη; i, η1qPD2
ωpαq, define

bbηpi, η1q “

ˆ
evb1: M

`
η;J ˆfb

`
pj`1, bαjpηqqjPrk‚pηqs´tiu, pi`1, bbη1q; pj,ΓjqΓjPL‚pηq

˘
ÝÑ Y

˙
.

For pη;ϑqPD2
ωpαq with ϑ”pβ2

‚ , k1, k2, L
2
‚q, let

S`
η pϑq Ă BM`

η;J (3.4)

be the subspace consisting of J-holomorphic maps from pD2_D2, S1_S1q to pX,Y q with the second
component of degree β2

‚ and carrying the boundary marked points indexed by rk2´1s´rk1s and the
interior marked points indexed by L2

‚. These subspaces are the topological components of BM`
η;J

and thus inherit orientations from the orientation of M`
η;J . Let

bbηpϑq ”
´
evb1: S

`
η pϑqˆfb

`
pi`1, bαipηqqiPrk‚pηqs; pi,ΓiqΓiPL‚pηq

˘
ÝÑ Y

¯
;

see the second diagram in Figure 1. If pη1; k1, η
2q is the image of pη;ϑq under (3.3), Corollary 5.10

with B“tptu gives

bbηpϑq “ p´1qk1`k2 ¨ p´1qk‚pη2qbbη1
`
k1, η

2
˘

“ ´bbη1
`
k1, η

2
˘
. (3.5)

For each ηPDωpαq, Lemma 5.2 and the first statement in (2.7) give

B dompbbηq “
ğ

pη;ϑqPD2
ωpαq

dom
`
bbηpϑq

˘

\

k‚pηqğ

i“1

M`
η;J ˆfb

`
pj`1, bαjpηqqjPrk‚pηqs´tiu, pi`1, Bbαipηqq; pj,ΓjqΓjPL‚pηq

˘
.
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Combining this with (BC2) and (BC4) in Definition 2.1 with α1 replaced by αipηqăα, we obtain

Bbbα “
ğ

pη;ϑqPD2
ωpαq

bbηpϑq \
ğ

pη1;i,η2qPD
2
ωpαq

dimpαipη1qqďn´2

bbη1
`
i, η2

˘
. (3.6)

By the bijectivity of (3.3) and (3.5), each term bbη1pi, η2q in (3.6) cancels with the corresponding
term bbηpϑq. Below we show that the remaining terms bbηpϑq either do not contribute to Bbbα for
dimensional reasons or cancel in pairs.

Suppose pη;ϑq PD2
ωpαq, ϑ“ pβ2

‚ , k1, k2, L
2
‚q, and the image pη1; k1, η

2q PD
2

ωpαq of pη;ϑq under (3.3)
does not satisfy the inequality in (3.6) with i “ k1. Thus, dim bbαk1

pη1q ě n. Let β1
‚ “ β‚pη1q,

k1‚ “k‚pη1q, and L1
‚ “L‚pη1q. Since

dimM`
η1;J

ˆfb

`
pi`1, bαipη1qqiPrk1‚s´tk1u; pi,ΓiqΓiPL1

‚

˘
´
`
n´dim bbαk1

pη1q
˘

“ dim bbη´1

“ dimpαq

by (3.1), it follows that

dimMk1‚ ,L
1
‚
pβ1

‚ ; Jqˆfb

`
pi`1, bαipη1qqiPrk1´1s, pi, bαipη1qqiPrk1‚s´rk1s; pi,ΓiqΓiPL1

‚

˘
ă dimpαq. (3.7)

If β1
‚ ‰ 0, or k1‚ ě 3, or L1

‚ ‰ H, the map bbηpϑq thus factors through a manifold of dimension less
than dimpαq. Thus, bbηpϑq does not contribute to Bbbα in this case.

The remaining case is β1
‚ “ 0, k1‚ “ 2, and L1

‚ “ H. The associated boundary terms come in pairs
arising from two elements η P Dωpαq with the same β‚pηq, k‚pηq, and L‚pηq and with the tuples
pαipηqqiPk‚pηq differing by the circular permutation moving the first component to the last position.
The pair pk1, k2q is p2, k‚pηq`2q in one case and p1, k‚pηq`1q in the other. Since dimension of Y
is odd and the dimension of every bαipηq is even, (3.5) and Lemma 5.3 imply that the boundary
terms in each such pair come with opposite orientations and thus cancel.

Proof of Proposition 2.4. We use induction with respect to the partial order ă on CωpY q defined
in Section 2.1. We assume that pα, Jq and pbα1qα1PCω;αpY q are as in the statement of Lemma 3.1
with ´2ădimpαqďn´2. By this lemma, bbα is then a pseudocycle with

dim bbα “ dimpαq`1 ď n´1. (3.8)

By (2.6), this dimension is odd. Since Y is a rational homology sphere, there exists a bordered
pseudocycle bα into Y satisfying (BC1) and (BC4) in Definition 2.1 with α1 replaced by α.

Remark 3.2. Without the condition (2.6), the pseudocycle bbα in (3.8) could be of dimension 0. If
ηPDωpαq and bbη ‰H in such a case, then either

η “
`
0, 0, tΓu, pq

˘
with Γ P PCpXq, dimΓ “ n, or

η “ p0, 2,H, pα1, α2q
˘

with α1, α2 P Cω;αpY q, dim bα1 `dim bα2 “ dimY.

The first possibility could be excluded by requiring that ΓXY “ H whenever dimΓ “ n. Since
dimY R2Z, Lemma 5.3 implies that

bbp0,2,H,pα1,α2qq “ ´bbp0,2,H,pα2,α1qq
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in the second case. Thus, the pseudocycles bbη in this case cancel in pairs. In either case, we
could thus take bα “ H. We alternatively could restrict the condition in Definition 2.1(BC4) to
α1 PCω;αpY q with ´2ădimpα1q ďn´2 and treat the additional special case αk1pη

1q in the proof of
Lemma 3.1 just as in the proof of Lemma 3.3 below.

Lemma 3.3 Let α0, α1, rα, J0, J1, rJ , and pb0;α1qα1PCω;α0 pY q and pb1;α1qα1PCω;α1 pY q be as in Defini-

tion 2.2 so that rΓXY “ H for every rΓP rLprαq with dim rΓ“n. If pbrα1qrα1P rCω;rαpY q is a pseudo-isotopy

on prα, rJq between pb0;α1qα1PCω;α0 pY q and pb1;α1qα1PCω;α1 pY q, then the map bbrα in (2.16) is a bordered
pseudocycle with

dim bbrα “ dimprαq`2 and Bbbrα “ t0uˆbb0;α0 ´t1uˆbb1;α1 . (3.9)

Proof. The proof is similar to that of Lemma 3.1. For each rη PDωprαq, let bbrη be as in (2.15). By
Definition 2.2(PS1) with rα1 replaced by rαiprηqă rα,

dim bbrη “
`
µω
Y pβ‚prηqq`pn´3q`pk‚prηq`1q`2|rL‚prηq|

˘
`1

`

k‚prηqÿ

i“1

`
dimprαiprηqq`3

˘
´pn`1qk‚prηq´

ÿ

rΓPrL‚prηq

codim rΓ “ dimprαq`2 .
(3.10)

Thus, the dimension of bbrα is dimprαq`2.

We define D2
ωprαq and D

2

ωprαq as in (3.2) and (3.3) with α, L‚pηq, and αipηq replaced by rα, rL‚pηq,
and rαipηq, respectively, and a bijection

D2
ωprαq ÝÑ D

2

ωprαq (3.11)

as above (3.3). For prη; i, rη1qPD
2

ωprαq, let

bbrηpi, rη1q “

ˆ
Ąevb1: M`

rη; rJ ˆfb

`
pj`1, brαjprηqqjPrk‚prηqs´tiu, pi`1, bbrη1q; pj, rΓjqrΓjPrL‚prηq

˘
ÝÑ r0, 1sˆY

˙
.

For prη;ϑqPD2
ωprαq with ϑ“pβ2

‚ , k1, k2,
rL2

‚q, let

S`
rη pϑq Ă BM`

rη; rJ (3.12)

be the subspace consisting of rJ-holomorphic maps from pD2_D2, S1_S1q to r0, 1sˆpX,Y q with the
second component of degree β2

‚ and carrying the boundary marked points indexed by rk2´1s´rk1s
and the interior marked points indexed by rL2

‚. This topological component of BM`

rη; rJ inherits an

orientation from the orientation of M`

rη; rJ . Define

bbrηpϑq ”
´
evb1 : S

`
rη pϑqˆfb

`
pi`1, brαiprηqqiPrk‚prηqs; pi, rΓiqrΓiPrL‚prηq

˘
ÝÑ r0, 1sˆY

¯
.

If prη1; k1, rη2q is the image of prη;ϑq under (3.11), Corollary 5.10 with B “ r0, 1s, k “ k‚prηq`1, and
|I|“k‚prηq give

p´1qpk‚prηq`1
2 qbbrηpϑq “ ´p´1qk2`k‚prηqpk1`k2q ¨ p´1qpk‚prηq`1

2 q ¨ p´1qpk‚prη2q
2 qbbrη1

`
k1, rη2

˘

“ ´p´1qpk‚prη1q`1
2 q´k1bbrη1

`
k1, rη2

˘
.

(3.13)
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For rηPDωprαq, Lemma 5.2 and the last statement in (2.7) give

p´1qpk‚prηq
2 q ¨p´1qk‚prηqB dom

`
bbrη

ˇ̌
p0,1q

˘
“

ğ

prη;ϑqPD2
ωprαq

bbrηpϑq

\

k‚prηqğ

i“1

p´1qiM`

rη; rJ ˆfb

`
pj`1, brαj

prηqqjPrk‚prηqs´tiu, pi`1, Bbrαiprηqq; pj, rΓjqrΓjPrL‚prηq

˘
.

Combining this with (PS2) and (PS4) in Definition 2.2 with rα1 replaced by rαiprηqă rα, we obtain

bbrα
ˇ̌
p0,1q

“
ğ

prη;ϑqPD2
ωprαq

p´1qpk‚prηq`1
2 qbbrηpϑq \

ğ

prη1;i,rη2qPD
2
ωprαq

´2ădimprαiprη1qqďn´2

p´1qpk‚prη1q`1
2 q`ibbrη1

`
i, rη2

˘
. (3.14)

By the bijectivity of (3.11) and (3.13), each term bbrη1pi, rη2q in (3.14) cancels with the corresponding
term bbrηpϑq. Below we show that the remaining terms bbrηpϑq either do not contribute to Bbbrα|p0,1q

for dimensional reasons or cancel in pairs.

Let prη;ϑqPD2
ωprαq, ϑ“pβ2

‚ , k1, k2,
rL2

‚q, and prη1; k1, rη2qPD
2

ωprαq be the image of prη;ϑq under (3.11). If
the second inequality in (3.14) with i“k1 fails, similar reasoning to that in the last two paragraphs
of the proof of Lemma 3.1 and (3.10) imply that the term bbrηpϑq either does not contribute
to Bbbrη|p0,1q for dimensional reasons or cancels with another term bbrη1pϑ1q.

Suppose the first inequality in (3.14) with i“k1 fails and Ăbbrη1pk1, rη2q‰H. Let k2‚ “k‚prη2q. Since

dimM`

rη2; rJ ˆfb

`
pi`1, brαiprη2qqiPrk2‚s; pi, rΓiqrΓiPrL2

‚

˘
“ dim bbrη2 “ dim

`
rαk1prη1q

˘
`2, (3.15)

it follows that this dimension is 0. Thus,

dimMrη2; rJ ˆfb

`
pi, brαiprη2qqiPrk2‚s; pi, rΓiqrΓiPrL2

‚

˘
“ ´1.

If β2
‚ ‰ 0 or k2‚ `2|rL2

‚| ě 3, this implies that Ăbbrη1pk1, rη2q “ H. If β2
‚ “ 0, k2‚ “ 0, and rL2

‚ “ trΓu

is a single-element set, then the dimension of rΓ is n. Since rΓ is then disjoint from Y , it follows
that Ăbbrη1pk1, rη2q “ H in this case as well. The remaining case is β2

‚ “ 0, k2‚ “ 2, and rL2
‚ “ H.

The associated boundary terms come in pairs arising from the same k1 and k2 “ k1`3 and from
two elements rη P Dωprαq with the same β‚prηq, k‚prηq, and rL‚prηq and with the tuples prαiprηqqiPk‚prηq

differing by the transposition interchanging the k1`1 and k1`2 entries. By Lemma 5.3 and the
last statement in (2.7), the associated cycles bbrη2 have opposite orientations. Along with (3.13),
this implies that the paired up boundary terms bbrηpϑq come with opposite orientations as well and
thus cancel.

Let rηPDωprαq, η0 PDωpα0q, and η1 PDωpα1q be so that

Brη “ t1uˆη1´t0uˆη0 . (3.16)

In order to compute the signs of the boundary terms of bbrη over 0 and 1, we extend M`

rη; rJ , brα1 with

rα1
ă rα, and rΓi P rL‚prηq past their boundaries over 0, 1PR. In other words, let

M`1

rη; rJ “
´̀

p´1, 0sˆM`
η0;J0

˘
\M`

rη; rJ \
`
r1, 2qˆM`

η1;J1

˘̄ L
„
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with the identifications „ of the elements p0,uq and p1,uq of M`

rη; rJ with same elements in the added

collars. Let
Ąevb1

i : M
`1

rη; rJ ÝÑ RˆY presp. RˆXq

be extensions of Ąevbi with iPrk‚prηqs (resp. iP rL‚prηq) so that their compositions with the projections
to R restrict over the two collars to the projections to the first factor. We similarly extend the
domains of brα1 and rΓi by collars over p´1, 0q and p1, 2q and then extend the maps brα1 and rΓi to
smooth maps b1

rα1 and rΓ1
i to RˆY and RˆX, respectively. We extend the use of the notation ˆfb

defined at the end of Section 2.1 to M`1

rη; rJ . We assume that the map extensions above are chosen

generically so that all relevant fiber products are smooth. Let

e1 : M`1

rη; rJ ˆfb

`
pi`1,rb1

rαiprηqqiPrk‚prηqs; pi, rΓ1
iqrΓiPrL‚prηq

˘
ÝÑ R

be the projection map.

Let ι : r0, 1sÝÑR be the inclusion. By Lemma 5.1, (3.10), and (2.6),

M`

rη; rJ ˆfb

`
pi`1, brαiprηqqiPrk‚prηqs; pi, rΓiqrΓiPrL‚prηq

˘

“ ´
´

r0, 1sι̂ e1

´
M`1

rη; rJ ˆfb

`
pi`1, b1

rαiprηqqiPrk‚prηqs; pi, rΓ1
iqrΓiPrL‚prηq

˘̄ ¯
.

Along with Lemma 5.2, this implies that

B
`
dom bbrη

˘
“ p´1qpk‚prηq

2 q
ˆ̀

t1u´t0u
˘
ι̂ e1

´
M`1

rη; rJ ˆfb

`
pi`1, b1

rαiprηqqiPrk‚prηqs; pi, rΓ1
iqrΓiPrL‚prηq

˘̄

\ r0, 1sι̂ e1 B
´
M`1

rη; rJ ˆfb

`
pi`1, b1

rαiprηqqiPrk‚prηqs; pi, rΓ1
iqrΓiPrL‚prηq

˘̄˙
.

Applying Lemma 5.7, we then obtain

BĂbbη “ p´1qpk‚prηq
2 q ¨p´1qk‚prηq`pk‚prηq`2

2 q ¨p´1qk‚prηq̀ t1uˆbb1;η1 ´t0uˆbb0;η0
˘

`Bbbrη
ˇ̌
p0,1q

.

Since the last term above vanishes after summing over rηPDωprαq, this establishes the claim.

Proof of Proposition 2.5. We use induction with respect to the partial order ă on CωpY q defined
in Section 2.1. We assume α0, α1, rα, J0, J1, rJ , pb0;α1qα1PCω;α0pY q, pb1;α1qα1PCω;α1pY q, and pbrα1qrα1P rCω;rαpY q

are as in the statement of Lemma 3.3 with

´2 ă dimprαq ď n´2.

By this lemma and (2.9), bbrα`t1uˆb1;α1 ´t0uˆb0;α0 is then a pseudocycle with

0 ă dim
`
bbrα`t1uˆb1;α1 ´t0uˆb0;α0

˘
“ dimprαq`2 ď n.

By (2.6), this dimension is even. Since Y is a rational homology sphere, there exists a bordered
pseudocycle brα to r0, 1sˆY satisfying (PS1) and (PS4) in Definition 2.2 with rα1 replaced by rα.
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3.2 Pseudo-isotopies and invariance of disk counts

We now complete the proof of Theorem 2.7(1) by establishing (2.24). Its proof is similar to that
of Lemma 3.3, but is more combinatorially involved. It uses Lemma 3.4 below.

For rαP rCωpY q, let D
2

ωprαq be as in the proof of Lemma 3.3 and

D
2˚
ω prαq “

 
prη; i, rη1qPD

2

ωprαq : pβ‚prηq, k‚prηq, rL‚prηqq‰p0, 2,Hq
(
. (3.17)

We define a “rotation” on the elements of Dωprαq by

ρ : Dωprαq ÝÑ Dωprαq, ρ
`
β‚, k‚, rL‚, prαiqiPrk‚prηqs

˘
“
`
β‚, k‚, rL‚, prα2, rα3, . . . , rαk‚prηq, rα1q

˘
. (3.18)

This bijection induces a bijection

ρ : D
2

ωprαq ÝÑ D
2

ωprαq, ρprη; i, rη1q “

#
pρprηq; i´1, rη1q, if ią1;

pρprηq; k‚prηq, rη1q, if i“1;
(3.19)

it restricts to a bijection on D
2˚
ω prαq.

For iPrk‚prηqs, we define rηziPDωprα´rαiprηqq by

β‚prηziq “ β‚prηq,

k‚prηziq “ k‚prηq´1,

rL‚prηziq “ rL‚prηq,

rαjprηziq “

#
rαj`iprηq, if j Prk‚prηq´is;

rαj`i´k‚prηq, if j Prk‚prηq´1s´rk‚prηq´is.
(3.20)

Thus, rηzi is obtained from rη by dropping the component rαiprηq and ordering the remaining com-
ponents rαjprηq starting from the next one in the circular order.

For prη; i, rη1qPD
2˚
ω prαq, let

pα1
j “

#
rα´rαiprηq, if j“1;

rαj´1prη1q, if j Prk‚prη1q`1s´t1u;
pη “

`
β‚prη1q, k‚prη1q`1, rL‚prη1q, ppα1

j qjPrk‚prη1q`1s

˘
.

This construction induces a “reflection”

R : D
2˚
ω prαq ÝÑ D

2˚
ω prαq, Rprη; i, rη1q “ ppη; 1, rηziq, (3.21)

such that R3 “R. Furthermore, R is invariant under the rotation ρ in (3.19) and

dim
`
rαiprηq

˘
` dim

`
rα1ppηq

˘
“ dimprαq`n´3 (3.22)

with the notation as in (3.21).

For rηPDωprαq, let bbrη be as in (2.15). If in addition iPrk‚prηqs, define

ρM : Mrη; rJ ÝÑ M`

rηzi; rJ ,“
u, pxjqjPrk‚prηqs, pzjqjPrLprηq

‰
ÝÑ

“
u, pxi, xi`1, . . . , xk‚prηq, x1, . . . , xi´1q, pzjqjPrLprηq

‰
.

(3.23)
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For prη; i, rη1qPD
2˚
ω prαq, let

bb˚
rηpi, rη1q ” Mrη; rJ ˆfb

`
pj, brαjprηqqjPrk‚prηqs´tiu, pi, bbrη1q; pj, rΓjqrΓjPrL‚prηq

˘
.

The “backwards” cyclic permutations of the boundary marked points of the moduli space in (3.23)
and of the pseudocycles to r0, 1sˆY ,

ρb :
ź

jPrk‚prηqs

pdom brαjprηqq ÝÑ
ź

jPrk‚prηqs

pdom brαjprηqq, (3.24)

induce diffeomorphisms

ρrη : bb
˚
rη ÝÑ bb˚

ρprηq, ρrη;i,rη1 : bb˚
rηpi, rη1q ÝÑ

#
bb˚

ρprηqpi´1, rη1q, if ią1;

bb˚
ρprηqpk‚prηq, rη1q, if i“1.

The interchange of the moduli space components induces a diffeomorphism

Rrη;i,rη1 : bb˚
rηpi, rη1q ÝÑ bb˚

pηp1, rηziq, where ppη; 1, rηziq ” Rprη; i, rη1q.

Let

ǫprη, iq “

ˆ
k‚prηq`1

2

˙
`i .

Lemma 3.4 Let rαP rCωpY q. The diffeomorphism ρrη is orientation-preserving for every rηPDωprαq.
The sign of the diffeomorphism

Mrη; rJ ˆfb

`
pj, brαjprηqqjPrk‚prηqs´tiu; pj, rΓjqrΓjPrL‚prηq

˘

« M`

rηzi; rJ ˆfb

`
pj`1, brαjprηziqqjPrk‚prηziqs; pj, rΓjqrΓjPrL‚prηziq

˘

induced by i´1 “backwards” cyclic permutations of the boundary marked points of the moduli
space and of the pseudocycles to r0, 1sˆY is p´1qi´1 for all rηPDωprαq and iPrk‚pηqs. The signs of
the diffeomorphisms ρrη;i,rη1 with i‰1 and Rrη;i,rη1 are ´1 and p´1qǫprη,iq´ǫppη,1q, respectively, for every

prη; i, rη1qPD
2˚
ω prαq.

Proof. The cyclic permutations of the boundary marked points of the elements of Mrη; rJ and of the

pseudocycles to r0, 1sˆY induce a commutative diagram

Mrη; rJ
ev //

ρM

��

`
r0, 1sˆY

˘k‚prηq
ˆ
`
r0, 1sˆX

˘rL‚prηq

ρY

��

ś
jPrk‚prηqs

pdom brαjprηqqˆ
ś

rΓjPrL‚prηq

pdom rΓjqoo

ρb

��

Mrη; rJ
ev //

`
r0, 1sˆY

˘k‚prηq
ˆ
`
r0, 1sˆX

˘rL‚prηq ś
jPrk‚prηqs

pdom brαjprηqqˆ
ś

rΓjPrL‚prηq

pdom rΓjqoo

so that the vertical arrows are diffeomorphisms. Since the dimension of Y is odd, the diffeomor-
phism ρY is orientation-preserving. By the construction of the orientation on Mrη; rJ in Section 5.2,

the sign of the diffeomorphism ρM is p´1qk‚prηq´1. By the last statement in (2.7), this is also the sign
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of the diffeomorphism ρb. The first claim of the lemma now follows from Lemma 5.3. The claim
concerning ρrη;i,rη1 is obtained in the same way by replacing the odd-dimensional insertion brαiprηq

by the even-dimensional insertion bbrαiprηq. Dropping the insertion brαiprηq entirely, we find that the
diffeomorphism induced by the “backwards” rotations is then orientation-reversing; this establishes
the second claim of the lemma.

By the second statement in (2.7) and Lemmas 5.3 and 5.4,

bb˚
rηpi, rη1q «

´
Mrη; rJ ˆfb

`
pj, brαjprηqqjPrk‚prηqs´tiu; pj, rΓjqrΓjPrL‚prηq

˘̄
Ąevbiˆbbrη1

`
dom bbrη1

˘
.

Along with the second claim of the lemma, this gives

bb˚
rηpi, rη1q « p´1qi´1p´1qpk‚prηziq

2 q`dom bbrηzi

˘
bbrηzi

ˆbbrη1

`
dom bbrη1

˘
.

Since the dimension of bbrη1 is even, it follows that

bb˚
rηpi, rη1q « p´1qǫprη,iq̀ bbrηziˆfbbbrη1

˘
« p´1qǫprη,iq̀ bbrη1 ˆfbbbrηzi

˘
« p´1qǫprη,iqp´1qǫppη,1qbb˚

pηp1, rηziq.

This establishes the last claim of the lemma.

Proof of (2.24). Let α0, α1.rα, J0, J1, rJ , pb0;α1qα1PCω;α0 pY q, pb1;α1qα1PCω;α1 pY q, and pbrα1qrα1P rCω;rαpY q be

as in Definition 2.3. With D2
ωprαq as in the proof of Lemma 3.3, define

D2˚
ω prαq “

 ̀
rη;β2

‚ , k1, k2,
rL2

‚

˘
PD2

ωprαq : k2 ďk‚prηq`1, pβ2
‚ , k2´k1, rL2

‚q‰pβ‚prηq, k‚prηq, rL‚prηqq
(

\
 ̀
rη;β2

‚ , 0, 1, rL2
‚

˘
: k‚prηq“0,

`
rη;β2

‚ , 1, 2, rL2
‚

˘
PD2

ωprαq
(
.

(3.25)

The rotation ρ on Dωprαq defined in (3.18) lifts to a bijection

ρ : D2˚
ω prαq ÝÑ D2˚

ω prαq, (3.26)

ρ
`
rη;β2

‚ , k1, k2,
rL2

‚

˘
“

$
’’’’&
’’’’%

pρprηq;β2
‚ , k1´1, k2´1, rL2

‚q, if k1 ą1;

pρprηq;β2
‚ , k‚prηq, k‚prηq`1, rL2

‚q, if k2 “2;

pρprηq;β‚prηq´β2
‚ , k2´2, k‚prηq`1, rL‚prηq´rL2

‚q, if k1 “1, k2 ą2;

pρprηq;β‚prηq´β2
‚ , 0, 1, rL‚prηq´rL2

‚q, if k1 “0;

see Figure 2.

For an element prη;β2
‚ , k1, k2,

rL2
‚q of D2

ωprαq, let

K “ rk2´1s´rk1s, k1‚ “ k‚prηq´|K|`1, k2‚ “ |K|, rK2 “
ğ

iPK

rKiprηq, rL2 “ rL2
‚\

ğ

iPK

rLiprηq,

β2 “ β2
‚ `

ÿ

iPK

βiprηq,

rα2 “
`
β2, rK2, rL2

˘
,

rα1
i “

$
’&
’%

rαiprηq, if iPrk1s;

rα2, if i“k1`1;

rαi´2`k2´k1prηq, if iPrk1‚s´rk1`1s.

In particular, rα2 P rCω;rαpY q,

rη1 ”
`
β‚prηq´β2

‚ , k
1
‚,
rL‚prηq´rL2

‚, prα1
i qiPrk1‚s

˘
P Dωprαq,

rη2 ”
`
β2

‚ , k
2
‚,
rL2

‚, prαi`k1qiPrk2‚s

˘
P Dωprα2q.

(3.27)

26



rα2prηq
rα1prηq

rαjprηq
ρ

rα1prη1q“ rα2prηqrαk‚ prη1q“ rα1prηq

rαj´1prη1q“ rαjprηq

rα1prηq rα2prηq

rαjprηq
ρ

rα1prη1q“ rα2prηq
rαk‚ prη1q“ rα1prηq

rαj´1prη1q“ rαjprηq

Figure 2: The images prη1 ”ρprηq;ϑ1q of two elements of D2˚
ω prαq with k‚ ”k‚prηq nonzero under the

map ρ in (3.26).

The resulting map

D2˚
ω prαq ÝÑ D

2˚
ω prαq,

`
rη;β2

‚ , k1, k2,
rL2

‚

˘
ÝÑ

`
rη1; k1`1, rη2

˘
, (3.28)

is well-defined and injective. Its image consists of the elements prη; i, rη1q of D
2˚
ω prαq such that either

ią1 or k‚prηq`k‚prη1q“1. The map (3.28) descends to a bijection from the quotient of the left-hand
side by the equivalence relation generated by the map ρ in (3.26) to the quotient of the right-hand
side by the equivalence relation generated by ρ in (3.19) and R in (3.21).

For prη;ϑqPD2˚
ω prαq with ϑ“pβ2

‚ , k1, k2,
rL2

‚q, we define SrηpϑqĂBMrη; rJ as in (3.12). These subspaces

are distinct if k‚prηqą0; otherwise, the tuples
`
rη;β2

‚ , 0, 1, rL2
‚

˘
and

`
rη;β‚prηq´β2

‚ , 0, 1, rL‚prηq´rL2
‚

˘
(3.29)

describe the same subspace. Let

bb˚
rηpϑq ” Srη

`
ϑ
˘
ˆfb

`
pi, brαiprηqqiPrk‚prηqs; pi, rΓiqrΓiPrL‚prηq

˘
.

The bijection (3.26) induces a diffeomorphism

ρrη;ϑ : bb
˚
rηpϑq ÝÑ bb˚

ρprηqpϑ
1q, where

`
ρprηq;ϑ1q ” ρprη;ϑq.

By the first statement of Lemma 3.4, this diffeomorphism is orientation-preserving. If prη1; k1 1̀, rη2q
is the image of prη;ϑq under (3.28), Corollary 5.10 with B“r0, 1s and k, |I|“k‚prηq gives

p´1qpk‚prηq`1
2 qbb˚

rηpϑq “ p´1qpk‚prηq`1
2 q ¨ p´1qk2`k‚prηqpk1`k2q ¨ p´1qpk‚prη2q

2 qbb˚
rη1
`
k1`1, rη2

˘

“ ´p´1qǫprη
1,k1`1qbb˚

rη1
`
k1`1, rη2

˘
.

(3.30)

For rηPDωprαq, let

s1prηq “

#
s˚prηq, if k‚prηq‰0,
1
2
s˚prηq, if k‚prηq“0.
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Similarly to (3.14),

B

ˆ ğ

rηPDωprαq

s˚prηqbb˚
rη

˙ˇ̌
ˇ̌
p0,1q

“
ğ

prη;ϑqPD2
ωprαq

p´1qpk‚prηq`1
2 qs1prηqbbrηpϑq

\
ğ

prη1;i,rη2qPD
2˚
ω prαq

´2ădimprαiprη1qqďn´2

p´1qǫprη
1,iqs˚prη1qbbrη1

`
i, rη2

˘
;

(3.31)

if prη1; i, rη2qPD
2

ωpαq´D
2˚
ω pαq, bb˚

η1pi, rη2q“H.

Let pη;ϑqPD2˚
ω prαq, prη1; i, rη2qPD

2˚
ω prαq be its image under (3.28), and
`
pη1; 1, rη1zi

˘
” R

`
rη1; i, rη2

˘
P D

2˚
ω prαq.

Suppose prη1; i, rη2q satisfies both inequalities in (3.31) and ppη1; 1, rη1ziq satisfies the corresponding
inequalities. By (3.30), the term bbrηpϑq on the first line in (3.31) then appears with the op-
posite orientation of the corresponding term on the second line. The ρ-orbits of prη1; i, rη2q and

ppη1; 1, rη1ziq in D
2˚
ω prαq contain k‚prη1q and k‚ppη1q elements, respectively. By the last two statements

of Lemma 3.4, all k‚prη1qs˚prη1q`k‚ppη1qs˚ppη1q associated copies of bbrη1pi, rη2q appear on the second
line of (3.31) with the same orientation. If k‚prηq ą 0, the ρ-orbit of prη;ϑq in D2˚

ω prαq contains
k‚prηq elements. By the first statement of Lemma 3.4, all k‚prηqs1prηq associated copies of bbrηpϑq
appear on the first line of (3.31) with the same orientation. In this case,

k‚prη1qs˚prη1q`k‚ppη1qs˚ppη1q “ k‚prηqs1prηq.

If k‚prηq “ 0, the ρ-equivalence class of prη;ϑq consists of two elements as in (3.29), which describe
the same space on the first line in (3.31). In this case,

k‚prη1qs˚prη1q`k‚ppη1qs˚ppη1q “ 2s1prηq.

In either case, we conclude that the boundary terms corresponding to the elements of the ρ-
equivalence class of prη;ϑq in D2˚

ω prαq on the first line in (3.31) cancel with the boundary terms

corresponding to the elements of the pρ,Rq-equivalence class of prη1; i, rη2q in D
2˚
ω prαq on the sec-

ond line.

Suppose prη1; i, rη2q does not satisfy the first inequality in (3.31). Similar reasoning to that in the
proof of Lemma 3.3 then implies that the boundary term bbrηpϑq on the first line in (3.31) is
either empty or cancels with another boundary term bbrη1pϑ1q; the same happens with the term
bbpη1p1, rη1ziq on the second line. The same reasoning with the two disk components interchanged
applies if ppη1; 1, rη1ziq does not satisfy the analogue of the second inequality in (3.31).

By the last two paragraphs and (3.22),

B

ˆ ğ

rηPDωprαq

s˚prηqbb˚
rη

˙ˇ̌
ˇ̌
p0,1q

“ H (3.32)

if dimprαq“0. By the same reasoning as at the end of the proof of Lemma 3.3,

Bbb˚
rη “ p´1qpk‚prηq

2 q ¨p´1qk‚prηq`pk‚prηq`2
2 q´1 ¨ p´1qk‚prηq

`
t1uˆbb˚

1;η1
´t0uˆbb˚

0;η0

˘
` Bbb˚

rη
ˇ̌
p0,1q

with η0, η1 as in (3.16). This establishes (2.24).
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3.3 Equivalence of definitions of disk counts

We next complete the proof of Theorem 2.7(2) by establishing (2.22) and (2.23) under the assump-
tion that dimpαq “ 0. For η PDωpαq and iP rk‚pηqs, we define ηziPDωpα´αipηqq by (3.20) with rα
replaced by α. Similarly to the second statement of Lemma 3.4,

Mη;J ˆfb

`
pj, bαjpηqqjPrk‚pηqs´tiu; pj,ΓjqΓjPL‚pηq

˘

« p´1qi´1M`
ηzi;J ˆfb

`
pj`1, bαjpηziqqjPrk‚pηziqs; pj,ΓjqΓjPL‚pηziq

˘ (3.33)

Let
αpt ” p0, tptu,HqPCωpY q @ptPY, C˚

ωpY q “
 
αPCωpY q : α‰αpt @ptPK

(
.

Proof of (2.22). Since the dimension of bα1 is even for every α1 P Cω;αpY q by (2.7) and the
dimension of Y is odd, Lemma 5.2, Definition 2.1(BC4), and Lemma 5.3 give

´B
`
bα1ˆfbbα2

˘
“ bbα1ˆfbbα2 `bα1ˆfbbbα2 “ bbα1ˆfbbα2 ´bbα2ˆfbbα1 (3.34)

@ α1, α2 P Cω;αpY q s.t. dimpα1q, dimpα2q ď n´2.

By Definition 2.1(BC2), the first equality above also holds if

α1, α2 P C˚
ωpY q and dimpα1q`dimpα2q “ n´3

`
i.e. dim bbα1ˆfbbα2 “ 0

˘
;

the second equality holds for all α1, α2. If ptPKpαq and dimpαq“0, (3.34) implies that
ğ

α1,α2PC˚
ω pY q

α1`α2“α

bbα1ˆfbbα2 “
ğ

α1,α2PC˚
ω pY q

α1`α2“α
ptPKpα1q

`
bbα2ˆfbbα1 \Bp´bα1ˆfbbα2q

˘
\

ğ

α1,α2PC˚
ω pY q

α1`α2“α
ptPKpα2q

bbα1ˆfbbα2

“ 2
ğ

α1,α2PC˚
ω pY q

α1`α2“α
ptPKpα2q

bbα1ˆfbbα2 \ B
ğ

α1,α2PC˚
ω pY q

α1`α2“α
ptPKpα1q

`
´bα1ˆfbbα2

˘
.

(3.35)

Since the dimension of bbα1 is odd for every α1 PCω;αpY q,

´
ˇ̌
bbαc

pt
ˆfbbαpt

ˇ̌˘
“ deg bbαc

pt
“ xLyω,os

β;Kpαq´tptu @ptPKpαq. (3.36)

If ηPDωpαq and iPrk‚pηqs, then

Mη;J ˆfb

`
pj, bαjpηqqjPrk‚pηqs; pj,ΓjqΓjPL‚pηq

˘

“ p´1qk‚pηq´ilooooomooooon
Lemma 5.3

p´1qk‚pηq´1looooomooooon
Lemma 5.4

´
Mη;Jˆfb

`
pj, bαjpηqqjPrk‚pηqs´tiu; pj,ΓjqΓjPL‚pηq

˘̄
evbiˆbαipηq

`
dom bαipηq

˘

“ p´1qi´1p´1qi´1looomooon
(3.33)

´
p´1qk‚pηziqbbηzi

¯
ˆfbbαipηq “ p´1qk‚pηq´1bbηzî fbbαipηq.

Taking i“1 above, we obtain

´
ğ

ηPDωpαq

p´1qk‚pηqMη;J ˆfb

`
pj, bαjpηqqjPrk‚pηqs; pj,ΓjqΓjPL‚pηq

˘

“
ğ

ηPDωpαq

bbηz1̂ fbbα1pηq “
ğ

α1,α2PC˚
ω pY q

α1`α2“α

bbα1ˆfbbα2 \
ğ

pt1PKpαq

bbαc
pt1

ˆfbbαpt1 .
(3.37)
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If in addition ptPKpαq, then

´
ğ

ηPDωpαq

p´1qk‚pηq

k‚pηq
Mη;J ˆfb

`
pj, bαjpηqqjPrk‚pηqs; pj,ΓjqΓjPL‚pηq

˘

“
ğ

ηPDωpαq
iPrk‚pηqs
αipηq“αpt

1

k‚pηq
bbηzî fbbαpt \

ğ

ηPDωpαq
iPrk‚pηqs

ptPKpαipηqq,αipηq‰αpt

1

k‚pηq
bbηzî fbbαipηq

“
ğ

ηPDωpαq
α1pηq“αpt

bbηz1̂ fbbαpt \
ğ

ηPDωpαq
ptPKpα1pηqq,α1pηq‰αpt

bbηz1̂ fbbα1pηq “ bbαc
pt

ˆfbbαpt \
ğ

α1,α2PC˚
ω pY q

α1`α2“α
ptPKpα2q

bbα1ˆfbbα2 .

If dimpαq“0, this statement, (3.37), and (3.35) give
ğ

ηPDωpαq

p´1qk‚pηqs˚pηqMη;J ˆfb

`
pj, bαjpηqqjPrk‚pηqs; pj,ΓjqΓjPL‚pηq

˘

“ ´bbαc
pt

ˆfbbαpt \
1

2

ğ

pt1PKpαq

bbαc
pt1

ˆfbbαpt1 \
1

2
B

ğ

α1,α2PC˚
ω pY q

α1`α2“α
ptPKpα1q

`
´bα1ˆfbbα2

˘
.

Along with (2.18) and (3.36), this implies (2.22).

Proof of (2.23). By the proof of (3.37),
ğ

ηPDωpαq
ΓRL‚pηq

p´1qk‚pηqs˝pηqMη;J ˆfb

`
pj, bαjpηqqjPrk‚pηqs; pj,ΓjqΓjPL‚pηq

˘

“ ´
ğ

ηPDωpαq
iPrk‚pηqs
ΓPLpαipηqq

1

k‚pηq
bbηzî fbbαipηq “ ´

ğ

ηPDωpαq
ΓPLpα1pηqq

bbηz1̂ fbbα1pηq “ ´
ğ

α1,α2PC˚
ω pY q

α1`α2“α
ΓPLpα2q

bbα1ˆfbbα2 .

Suppose in addition dimpαq“0. By the proof of (3.35),
ğ

α1,α2PC˚
ω pY q

α1`α2“α

bbα1ˆfbbα2 “ 2
ğ

α1,α2PC˚
ω pY q

α1`α2“α
ΓPLpα2q

bbα1ˆfbbα2 \ B
ğ

α1,α2PC˚
ω pY q

α1`α2“α
ΓPLpα1q

`
´bα1ˆfbbα2

˘
.

Combining the last two statements with (3.37),
ğ

ηPDωpαq

p´1qk‚pηqs˚pηqMη;J ˆfb

`
pj, bαjpηqqjPrk‚pηqs; pj,ΓjqΓjPL‚pηq

˘

“
ğ

ηPDΓ
ωpαq

p´1qk‚pηqs˝pηqMη;J ˆfb

`
pj, bαjpηqqjPrk‚pηqs; pj,ΓjqΓjPL‚pηq

˘

\
1

2

ğ

pt1PKpαq

bbαc
pt1

ˆfbbαpt1 \
1

2
B

ğ

α1,α2PC˚
ω pY q

α1`α2“α
ΓPLpα1q

`
´bα1ˆfbbα2

˘
.

Along with (2.18), (2.19), and (3.36), this implies (2.23).
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4 Proof of Theorem 2.9

We confirm the multilinearity of the open invariants (2.29), the pair of properties determining these
invariants for extreme values of the degree and constraints, (OGW2) and (OGW3), and the pair of
properties involving geometrically special insertions, (OGW4) and (OGW5), in Section 4.1. The
two remaining properties, both of which involve topological properties of the Lagrangian Y in X,
are established in Section 4.2.

4.1 Multilinearity and Properties (OGW2)-(OGW5)

Let pX,ω, Y q, os, k, l, β be as in the statement of Theorem 2.9. We fix J P Jω and K Ă Y with
|K|“k. Given an element γi of pH2˚pX,Y ;Rq, we take a pseudocycle Γi to X or X´Y representing
the Poincare dual of γi. We assume that J , K, and L ” tΓ1, . . . ,Γlu are chosen generically, set
α”pβ,K,Lq, and take a bounding chain pbα1qα1PCω;αpY q on pα, Jq.

Proof of multilinearity . By the symmetry of the open invariants (2.29) and (2.25), it is sufficient
to establish the linearity of these invariants only in the first input. Suppose a1, a2 PR, Γ1

1,Γ
2
1 are

generic pseudocycles to X, and Γ1 “a1Γ1
1`a2Γ2

2. By the linearity of the intersection numbers,

ˇ̌
ˇMη;J ˆfb

`
pi, bαipηqqiPrk‚pηqs; p1,Γ1q, pi,ΓiqiPL‚pηq´tΓ1u

˘ˇ̌
ˇ
˘

“ a1
ˇ̌
ˇMη;J ˆfb

`
pi, bαipηqqiPrk‚pηqs; p1,Γ1

1q, pi,ΓiqΓiPL‚pηq´tΓ1u

˘ˇ̌
ˇ
˘

` a2
ˇ̌
ˇMη;J ˆfb

`
pi, bαipηqqiPrk‚pηqs; p1,Γ2

1q, pi,ΓiqΓiPL‚pηq´tΓ1u

˘ˇ̌
ˇ
˘

for every ηPDΓ1
ω pαq. This implies that

@
L´tΓu

DΓ1

β;K
“ a1

@
L´tΓu

DΓ1
1

β;K
` a2

@
L´tΓu

DΓ2
1

β;K
, (4.1)

if all three counts above arise from the bounding chain pbα1qα1PCω;αc
Γ1

pY q on pαc
Γ1
, Jq. This in partic-

ular establishes the multilinearity of the open invariants (2.29) and (2.25) under the independence
assumptions of Theorem 2.9.

The proofs of the two properties determining the open invariants (2.25) for extreme values of the
degree and constraints, (OGW2) and (OGW3), below are closely related.

Proof of (OGW2). Let α “ p0,K, Lq. Since every degree 0 J-holomorphic map from pD2, S1q
to pX,Y q is constant,

Mη;J « Y ˆMk‚pηq,L‚pηq @ ηPDωpαq, (4.2)

where Mk‚pηq,L‚pηq is the moduli space of disks with L‚pηq interior marked points and k‚pηq bound-
ary marked points ordered by the position. Both moduli spaces in (4.2) are oriented in Section 5.2.
By the definition of the orientation on Mη;J and the CROrient 5a and 6a properties in [4, Sec-
tion 7.2], the isomorphism (4.2) is orientation-preserving. This implies that the degree of the map

evb1 : M
‹

1,1p0; Jqevi1ˆidXX ÝÑ Y

is 1 and establishes (OGW2) in the case pk, lq“p1, 1q.

31



We now treat the case pk, lq‰p1, 1q under the assumption that (2.27) with β“0 holds. Since β“0,
k ě 1 by the condition (2.21) and deg γi˚ “ 0 for some i˚ P rls by (2.27). By the symmetry of the
invariants (2.29), we can assume that i˚ “ 1. If k ą 1, then lą 1 by (2.27). Thus, we can assume
that lě2.

Suppose η PDΓ1
ω pαq and the fiber product in (2.19) corresponding to η is nonempty. By (4.2), the

fiber product in (2.19) is the product of Mk‚pηq,L‚pηq with another space. Since this fiber product
has dimension 0, it then follows that

α1 ”
`
β‚pηq, k‚pηq´1, L‚pηq

˘
“
`
0, 0, tΓ1u

˘
and α2 ” α1pηq P C˚

ωpY q. (4.3)

By the reasoning in the proof of the first equality in (3.37),

ˇ̌
Mη;J ˆfb

`
p1, bα2q; p1,Γ1q

˘ˇ̌˘
“
ˇ̌
bbα1ˆfbbα2

ˇ̌˘
. (4.4)

Since dimpαq “ 0 and dimpα1q “ n´1, dimpα2q “ ´2. Thus, bα2 “ H by Definition 2.1(BC2) and
the number (4.4) in fact vanishes. This implies the vanishing of the number (2.19). In light of
Theorem 2.7(2), the latter in turn implies the vanishing of the numbers (2.12) and (2.18) under
the same conditions.

The statement of (OGW2) depends on the boundary insertions being of dimension 0. The argument
in the second case of (OGW2) does not depend on n being odd.

Proof of (OGW3). By (OGW2), it remains to consider the case β ‰ 0 under the assumption
that (2.27) holds. Let ηPDΓ1

ω pαq and thus Γ1 PL‚pηq. Suppose first that

`
β‚pηq, k‚pηq, L‚pηq

˘
‰
`
0, 1, tΓ1u

˘
,
`
0, 2, tΓ1u

˘
.

Since γ1 “ 1 P H2pX;Rq, the forgetful morphism dropping the first interior marked point then
induces a fibration

Mη;J ˆfb

`
pi, bαipηqqiPrk‚pηqs; pi,ΓiqΓiPL‚pηq

˘

ÝÑ M‹

k‚pηq,L‚pηq´tΓ1upβ‚pηq; Jqˆfb

`
pi, bαipηqqiPrk‚pηqs; pi,ΓiqΓiPL‚pηq´tΓ1u

˘

with two-dimensional fibers. If pβ‚pηq, k‚pηq, L‚pηqq“p0, 2, tΓ1uq, the first fiber product above is the
product of M2,1 with another space by (4.2). Since the first fiber product above is of dimension 0
by the assumption that (2.27) holds, neither of these two conclusions is possible if it is nonempty.

Suppose pβ‚pηq, k‚pηq, L‚pηqq “ p0, 1, tΓ1uq. Since β ‰ 0, it follows that (4.3) holds in this case
as well. Thus, (4.4) and the four sentences immediately after also apply in this case. So do the
considerations in the last paragraph of the proof of (OGW2).

The proof of the divisor relation, (OGW4), stays below within the same definition, (2.12), (2.18),
or (2.19), of the invariants (2.29) and inductively compares all closed pseudocycles (2.11) associated
with the two open invariants in (OGW4). The proof of (OGW5) makes use of Theorem 2.7(2) iden-
tifying two of the definitions of the open invariants (2.25) and adapts the proof of Proposition 2.1
of [3], establishing the same property in a related setting, to the present situation.
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Proof of (OGW4). Let Γ0 be a generic pseudocycle to X ´Y representing the Poincare dual
of γ0. Define

L: “ tΓ0u\L, α: “
`
β,K,L:

˘
. (4.5)

An element α1 PCω;α:pY q then lies in Cω;αpY q if and only if Γ0 RLpα1q. For α1 PCω;α:pY q, let

α1c
Γ0

”
`
βpα1q,Kpα1q, Lpα1q´tΓ0u

˘
, b1

α1 ”

#
bα1 , if Γ0 RLpα1q;

xγ0, βpα1qybα1c
Γ0
, if Γ0 PLpα1q.

(4.6)

Let bb1
α1 be the map determined by the collection pb1

α2qα2PC
ω;α: pY q as in (2.11). We show below that

bb1
α1 “

#
bbα1 , if Γ0 RLpα1q;

xγ0, βpα1qybbα1c
Γ0
, if Γ0 PLpα1q.

(4.7)

It then follows that pb1
α1qα1PC

ω;α: pY q is a bounding chain on pα:, Jq. Furthermore, the number xL:yω,osβ;K

as in (2.12) determined by the bounding chain pb1
α1qα1PC

ω;α: pY q is the number xLyω,osβ;K in (2.12)

determined by the bounding chain pbα1qα1PCω;αpY q times xγ0, βy.

Let α1 PCω;α:pY q. The first case in (4.7) follows immediately from the first case in (4.6). We thus
assume that Γ0 PLpα1q. Let η1 PDωpα1q, bb1

η1 be the restriction of bb1
α1 to the subspace of its domain

corresponding to η1, and

η1c
Γ0

“
`
β‚pη1q, k‚pη1q, L‚pη1q´tΓ0u, pαipη

1qcΓ0
qiPrk‚pη1qs

˘
P Dωpαq. (4.8)

By the assumption that Γ0 is disjoint from Y and (4.6),

bb1
η1 “

#
H, if β‚pη1q“0, Γ0 PL‚pη1q;

xγ0, βipη
1c
Γ0

qybbη1c
Γ0
, if iPrk‚pη1c

Γ0
qs, Γ0 PLipη

1q.
(4.9)

Suppose β‚pη1q ‰ 0 and Γ0 P L‚pη1q. The forgetful morphism dropping the first interior marked
point induces a map

f : M`
η1;J ˆfb

´
pi`1, bαipη1qqiPrk‚pη1qs; pi`1,ΓiqΓiPL‚pη1q

¯

ÝÑ M`
η1c
Γ0

;J
ˆfb

´
pi`1, bαipη1c

Γ0
qqiPrk‚pη1c

Γ0
qs; pi,ΓiqΓiPL‚pη1c

Γ0
q

¯

intertwining the maps evb1. The map f restricts to a covering projection of degree xγ0, β‚pη1qy
outside of a codimension 2 subspace of its target. Thus,

bb1
η1 “

@
γ0, β‚pη1c

Γ0
q
D
bbη1c

Γ0

outside of codimension 1 subspaces of the domains of the two sides. Combining this with (4.9),
we obtain ğ

η1PDωpα1q
η1c
Γ0

“η

bb1
η1 “

@
γ0, βpα1c

Γ0
q
D
bbη @ ηPDωpα1c

Γ0
q .

This establishes the second case in (4.7).
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By the same reasoning with M`
η1;J replaced by Mη1;J ,

ÿ

η1PDωpα1q
η1c
Γ0

“η

ˇ̌
Mη1;J ˆfb

`
pi, bαipη1qqiPrk‚pη1qs; pi`1,ΓiqΓiPL‚pη1q

˘̌̌˘

“
@
γ0, βpα1c

Γ0
q
Dˇ̌
Mη;J ˆfb

`
pi, bαipηqqiPrk‚pηqs; pi,ΓiqΓiPL‚pηq

˘̌̌˘

for all η P Dωpα1c
Γ0

q. Thus, the number xL:y˚
β;K as in (2.18) determined by the bounding chain

pb1
α1qα1PC

ω;α: pY q is the number xLy˚
β;K in (2.18) determined by the bounding chain pbα1qα1PCω;αpY q

times xγ0, βy. In light of (2.23), the same statement holds for the analogous numbers (2.19). This
in particular establishes the divisor property of the open invariants (2.29) and (2.25) under the
independence assumptions of Theorem 2.9.

Proof of (OGW5). Let p0 P Y be a generic point. With Γ0 : SpNp0Y q ÝÑ X´Y denoting the
inclusion of a small generic sphere in the fiber Np0Y of the normal bundle of Y in X, we define
α: PCωpY q by (4.5). We show that @

L
DΓ0

β;K
“
@
L
Dω,os
β;K

(4.10)

if both counts above arise from the bounding chain pbα1qα1PCω;αpY q on pα, Jq. This in particular
establishes the identity in (OGW5) under the independence assumptions of Theorem 2.9.

We can assume that (2.27) with k replaced by k`1 holds. This implies that

dimMη;J ˆfb

`
pi, bαipηqqiPrk‚pηqs; pi,ΓiqΓiPL‚pηq

˘
“ n´1 P 2Z @ ηPDωpαq. (4.11)

For ηPDωpαq, let rηsĂDωpαq be the orbit of η under the action of the rotation as in (3.18),

evbη”evb1 : M
`
η;J ˆfb

`
pi`1, bαipηqqiPrk‚pηqs; pi,ΓiqΓiPL‚pηq

˘
ÝÑ Y, evbrηs ”

ğ

η2Prηs

evbη2 .

If p0 PY is generic, evb´1
rηspp0q is a finite set of signed points; the sign of a point ru is plus if druevbrηs

is orientation-preserving. For η1 PDΓ0
ω pα:q, let η1c

Γ0
PDωpαq be as in (4.8) and

eviη1 “evi1 : Mη1;J ˆfb

`
pi, bαipη1qqiPrk‚pη1qs; pi`1,ΓiqΓiPL‚pη1q´tΓ0u

˘
ÝÑ X.

If p0 PY is generic, evi´1
η1 pSpNp0Y qq is a finite set of signed points; the sign of a point ru is plus if the

composition of drueviη1 with the projection to the normal bundle of SpNp0Y q in X is orientation-
preserving. Since the dimensions of X and Γi are even,

Mη1;J ˆfb

`
pi, bαipη1qqiPrk‚pη1qs; pi`1,ΓiqΓiPL‚pη1q

˘
« evi´1

η1

`
SpNp0Y q

˘
. (4.12)

If β‚pη1q“0, evi´1
η1 pSpNp0Y qq“H because Γ0 is disjoint from Y .

Suppose β‚pη1q‰0. The short exact sequence

0 ÝÑ Tz1D ÝÑ Tru
`
Mη1;J ˆfb

`
pi, bαipη1qqiPrk‚pη1qs; pi`1,ΓiqΓiPL‚pη1q´tΓ0u

˘̆

ÝÑ Tu

`
Mη1c

Γ0
;J ˆfb

`
pi, bαipη1c

Γ0
qqiPrk‚pη1c

Γ0
qs; pi,ΓiqΓiPL‚pη1c

Γ0
q

˘̆
ÝÑ 0
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of vector spaces induced by the forgetful morphism dropping the first interior marked point is
orientation-preserving for every element rrus “ ru, z1s of the first fiber product above. The short
exact sequence

0 ÝÑ Tx1S
1 ÝÑ Tru

`
M`

η;J ˆfb

`
pi`1, bαipηqqiPrk‚pηqs; pi,ΓiqΓiPL‚pηq

˘̆

ÝÑ Tu

`
Mη;J ˆfb

`
pi, bαipηqqiPrk‚pηqs; pi,ΓiqΓiPL‚pηq

˘̆
ÝÑ 0

of vector spaces induced by the forgetful morphism dropping the first boundary marked point is
also orientation-preserving for every η P rη1c

Γ0
s and every element rrus “ ru, x1s of the first fiber

product above. Along with (4.11), the last two statements imply that the homotopy classes of
isomorphisms

Tru
`
Mη1;J ˆfb

`
pi, bαipη1qqiPrk‚pη1qs; pi`1,ΓiqΓiPL‚pη1q´tΓ0u

˘̆

« Tu

`
Mη1c

Γ0
;J ˆfb

`
pi, bαipη1c

Γ0
qqiPrk‚pη1c

Γ0
qs; pi,ΓiqΓiPL‚pη1c

Γ0
q

˘̆
‘Tz1D,

Tru
`
M`

η;J ˆfb

`
pi`1, bαipηqqiPrk‚pηqs; pi,ΓiqΓiPL‚pηq

˘̆

« Tu

`
Mη;J ˆfb

`
pi, bαipηqqiPrk‚pηqs; pi,ΓiqΓiPL‚pηq

˘̆
‘Tx1S

1

are orientation-preserving. Combining this with the proof of the equality of the right-hand sides
of the two equations in [3, (6.20)], we obtain

ˇ̌
evi´1

η1

`
SpNp0Y q

˘ˇ̌˘
“
ˇ̌
evb´1

rη1c
Γ0

s
pp0q

ˇ̌˘
. (4.13)

By (2.19), (4.12), and (4.13),

@
L
DΓ0

β;K
“

ÿ

η1PD
Γ0
ω pα:q

β‚pη1q‰0

p´1qk‚pη1qs˝pη1q
ˇ̌
evi´1

η1

`
SpNp0Y q

˘ˇ̌˘
“

ÿ

ηPDωpαq
β‚pηq‰0

p´1qk‚pηq
ˇ̌
evb´1

η pp0q
ˇ̌˘
.

If β‚pηq “ 0, evb´1
η pp0q “ H by the reasoning in the proof of (OGW2). Thus, the last sum above

equals to the right-hand side of (4.10).

4.2 Properties (OGW6) and (OGW7)

Throughout this section, we assume that

µω
Y pβq`pn´3q “ pn´1qk`

lÿ

i“1

`
deg γi´2q;

otherwise, all invariants in (OGW6) and (OGW7) vanish for dimensional reasons. Both of these
properties then follow immediately from Proposition 4.1 below. We state this proposition, which
is analogous to Lemma 4.3 in [20], in a slightly greater generality than necessary for the purposes
of establishing (OGW6) and (OGW7) to make it readily usable for a geometric translation of the
proof of WDVV-type relations of [20]. With pX,ωq and Y as in Theorem 2.9, let ιY : Y ÝÑX be
the inclusion.
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Proposition 4.1 Let pX,ω, Y q, n, os, α”pβ,K,Lq, J , and pbα1qα1PCω;αpY q be as in Definition 2.1.
If Γ0 is a generic dimension n pseudocycle to X, possibly with boundary, and dimpαq“n´1, then

ˇ̌
ιYˆfbΓ0

ˇ̌˘@
L
Dω,os
β;K

`
@
Lpαq

DBΓ0

β;K

“
ÿ

BPq´1
Y

pβq

p´1qxw2posq,By
ˇ̌
MC

t0,1u\LpB; J q̂ fb

`
p0, Y q, p1,Γ0q, pi`1,ΓiqΓiPL

˘ˇ̌˘
. (4.14)

Proof of (OGW6). If Γ0 is a closed pseudocycle to X,

ˇ̌
ιYˆfbΓ0

ˇ̌˘
“ xPDXprΓ0sXq, rY sXy P R.

The signed cardinality on the right-hand side of (4.14) is then the degree B closed GW-invariant

@
PDXprY sXq,PDXprΓ0sXq,

`
PDXprΓisXq

˘
ΓiPL

Dω
B

P R

of pX,ωq. The claim of (OGW6) is thus the K “ H case of Proposition 4.1 with Γ0,Γ1, . . . ,Γl

being generic pseudocycle representatives for the Poincare duals of γ0, γ1, . . . , γl.

Proof of (OGW7). The right-hand side of (4.14) vanishes if K‰H for dimensional reasons. The
claim of (OGW7) thus follows from Proposition 4.1 with Γ0,Γ1, . . . ,Γl being generic pseudocycles
to X such that |ιYˆfbΓ0|˘ ‰0 and the Poincare duals of Γ1, . . . ,Γl are γ1, . . . , γl.

The remainder of this section establishes Proposition 4.1. Let α and Γ0 be as in its statement
and L: and α: be as in (4.5). We define

‚ DΓ0
ω pα:q by (2.4) with Γ0 PL‚ ĂL:,

‚ D21

ω pα:q by (3.2) with Dωpαq replaced by DΓ0
ω pα:q, rk‚pηq`2s replaced by t0u\rk‚pηq`1s, and

`
β2

‚ , k2´1´k1, L
2
‚

˘
‰ p0, 0,Hq, p0, 1,Hq,

`
β‚pηq, k‚pηq´1, L‚pηq

˘
,
`
β‚pηq, k‚pηq, L‚pηq

˘
,

‚ D
2˚
ω pα:q by (3.3) with Dωpαq replaced by DΓ0

ω pα:q and pβ‚pηq, k‚pηq, L‚pηqq‰p0, 2,Hq.

Let
D2˚

ω pα:q “
 ̀
η;β2

‚ , k1, k2, L
2
‚

˘
PD21

ω pα:q : k1 ě1 or k‚pηq“0
(
.

The construction above (3.3) determines a bijection

 
pη;β2

‚ , k1, k2, L
2
‚qPD21

ω pα:q : Γ0 RL2
‚

(
ÝÑ D

2˚
ω pα:q,

`
η;β2

‚ , k1, k2, L
2
‚

˘
ÝÑ

`
η1; k1`1, η2

˘
. (4.15)

We define “rotations”

ρ : D
2˚
ω pα:q ÝÑ D

2˚
ω pα:q and ρ : D2˚

ω pα:q ÝÑ D2˚
ω pα:q (4.16)

by (3.19) and (3.26). Let

R :
 

pη;β2
‚ , k1, k2, L

2
‚qPD21

ω pα:q : k1 “0
(

ÝÑ D21

ω pα:q, (4.17)

R
`
η;β2

‚ , 0, k2, L
2
‚

˘
“
`
η;β‚pηq´β2

‚ , k2´1, k‚pηq`1, L‚pηq´L2
‚

˘
.

Below (4.19), we use the equivalence relation on D21

ω pαq generated by the maps ρ in (4.16) and R

in (4.17).
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Let pbα1qα1PCω;αpY q be as in the statement of Proposition 4.1. For η PDΓ0
ω pα:q, we define Mη;J and

M`
η;J as in (2.8) and bbη as in (2.10). For pη;ϑq P D21

ω pα:q, define Sηpϑq Ă Mη;J as in (3.4). All

boundary strata of Mη;J are of this form; two elements of D21

ω pα:q describe the same boundary
stratum if and only if one can be mapped to the other by compositions of the map R in (4.17).

For pη;ϑqPD21

ω pα:q and pη; i, η1qPD
2˚
ω pα:q, let

bb˚
ηpϑq ” Sηpϑqˆfb

`
pi, bαipηqqiPrk‚pηqs; pi,ΓiqΓiPL‚pηq

˘
,

bb˚
ηpi, η1q ” Mη;J ˆfb

`
pj, bαjpηqqjPrk‚pηqs´tiu, pi, bbη1q; pj,ΓjqΓjPL‚pηq

˘
.

For pη;ϑq PD2˚
ω pα:q and pη; i, η1q PD

2˚
ω pα:q, the “backwards” cyclic permutations of the boundary

marked points of the moduli space and of the pseudocycles to Y induce diffeomorphisms

ρη;ϑ : bb
˚
ηpϑq ÝÑ bb˚

ρpηqpϑ
1q, ρη;i,η1 : bb˚

ηpi, η1q ÝÑ

#
bb˚

ρpηqpi´1, η1q, if ią1;

bb˚
ρpηqpk‚pηq, η1q, if i“1.

Lemma 4.2 The diffeomorphisms ρη;θ with pη;ϑq P D2˚
ω pα:q and ρη;i,η1 with pη; i, η1qPD

2˚
ω pα:q

above are orientation-preserving.

Proof. The proof is similar to that of Lemma 3.4. The cyclic permutations of the boundary marked
points of the elements of Mη;J and of the pseudocycles to Y induce a commutative diagram

Mη;J
ev //

ρM

��

Y k‚pηq̂ XL‚pηq

ρY

��

ś
jPrk‚pηqs

pdom bαjpηqqˆ
ś

ΓjPL‚pηq

pdomΓjqoo

ρb

��
Mη;J

ev // Y k‚pηq̂ XL‚pηq
ś

jPrk‚pηqs

pdom bαjpηqqˆ
ś

ΓjPL‚pηq

pdomΓjqoo

so that the vertical arrows are diffeomorphisms. Since the dimensions of all bαjpηq are even, the
diffeomorphism ρb is orientation-preserving. By the construction of the orientation on Mη;J in
Section 5.2, the sign of the diffeomorphism ρM is p´1qk‚pηq´1. Since the dimension of Y is odd, this
is also the sign of the diffeomorphism ρY . The first claim of the lemma now follows from Lemma 5.3.
The claim concerning ρη;i,η1 is obtained in the same way with bαipηq replaced by bbαipηq.

Lemma 4.3 If pη1; i, η2qPD
2˚
ω pα:q is the image of pη;ϑqPD

21

ω pα:q under (4.15), then

p´1qk‚pηqbb˚
ηpϑq “ ´p´1qk‚pη1qbb˚

η1pi, η2q. (4.18)

Proof. Let ϑ “ pβ2
‚ , k1, k2, L

2
‚q. By the definition of the map (4.15), Γ0 R L2

‚. The proof of the
B“tptu, I “rk‚pηqs, and J “L‚pηq case of Corollary 5.10 applies with ǫr for i“1, 2, 3 replaced by
ǫr`ǫ1

r, where `
ǫ1
1, ǫ

1
2, ǫ

1
3

˘
“
`
k2´k1`1, k2´k1´1, 1

˘
.

Thus, Corollary 5.10 yields the same conclusion with ǫ“k1`k2`1 under the above assumptions.
Since

k‚pη1q “ k‚pηq´pk2´k1´1q`1,

this establishes the claim.
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Proof of Proposition 4.1. For ηPDΓ0
ω pα:q, let s˝pηq be as in Section 2.3 and

s1pηq “

#
s˝pηq, if k‚pηq‰0,
1
2
s˝pηq, if k‚pηq“0.

We denote by S0
η Ă BMη;J the sphere-bubbling stratum with the boundary orientation; it consists

of the maps from pD2, S1q to pX,Y q with S1 contracted to a point in Y . This stratum is empty
unless

k‚pηq “ 0 and β‚pηq P Im
`
qY : H2pX;ZqÝÑH2pX,Y ;Zq

˘
.

By Lemma 5.2 and Definition 2.1,

´ B

ˆ ğ

ηPD
Γ0
ω pα:q

s˝pηqMη;J ˆfb

`
pi, bαipηqqiPrk‚pηqs; pi`1,ΓiqΓiPL‚pηq

˘̇

“
ğ

ηPD
Γ0
ω pα:q

S0
η ˆfb

`
; pi`1,ΓiqΓiPLpα:q

˘

\
ğ

pη;ϑqPD2˚
ω pα:q

p´1qk‚pηqs1pηqbb˚
ηpϑq

loooooooooooooooomoooooooooooooooon
II

\
ğ

pη;i,η1qPD
2˚
ω pα:q

dim bbη1 ăn

p´1qk‚pηqs˝pηqbb˚
ηpi, η1q

loooooooooooooooooooomoooooooooooooooooooon
III

\
ğ

ηPD
Γ0
ω pα:q

p´1qk‚pηq`1s˝pηqMη;J ˆfb

`
pi, bαipηqqiPrk‚pηqs; p1, BΓ0q, pi`1,ΓiqΓiPL‚pηq´tΓ0u

˘
.

(4.19)

For ϑ“pβ2
‚ , k1, k2, L

2
‚q, we define k2pϑq”k2 and L2

‚pϑq“L2
‚. The orbit of pη;ϑqPD2˚

ω pα:q under the
action of the second map ρ in (4.16) consists of 1{s1pηq elements and is contained in the equivalence
class of pη;ϑq in D21

ω pα:q. This equivalence class has a unique element pη˚;ϑ˚q with Γ0 R L2
‚pϑ˚q

and k2pϑ˚q“k‚pη˚q`1. The orbit of pη; i, η1qPD
2˚
ω pα:q under the action of the first map ρ in (4.16)

consists of 1{s˝pηq elements. Each such orbit has a unique element of the form pη; k‚pηq, η1q. Along
with Lemma 4.2, this implies that

II “
ğ

pη;ϑqPD2˚
ω pα:q

Γ0RL2
‚pϑq

k2pϑq“k‚pηq`1

p´1qk‚pηqbb˚
ηpϑq and III “

ğ

pη;k‚pηq,η1qPD
2˚
ω pα:q

dim bbη1 ăn

p´1qk‚pηqbb˚
ηpk‚pηq, η1q .

Since (4.15) restricts to a bijection
 

pη;ϑqPD2˚
ω pα:q : Γ0 RL2

‚pϑq, k2pϑq“k‚pηq`1
(

ÝÑ
 

pη; i, η1qPD
2˚
ω pα:q : i“k‚pηq

(
,

Lemma 4.3 thus gives

II ` III “ ´
ğ

pη;k‚pηq,η1qPD
2˚
ω pα:q

dim bbη1 ěn

p´1qk‚pηqbb˚
ηpk‚pηq, η1q . (4.20)

Since dimpα:q“1 and the dimension of each bb˚
ηpk‚pηq, η1q in (4.20) is 0,

RHS of (4.20) “ M‹

1,1p0; Jqˆfb

`
p1, bbαq; p1,Γ0q

˘
“ ´

`
M‹

1,1p0; Jqˆfbp; p1,Γ0qq
˘
evb1ˆbbα

`
dom bbα

˘
;
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the first equality above holds by the reasoning below (3.15) with the two disk components inter-
changed, while the second by Lemmas 5.3 and 5.4. Since the isomorphism in (4.2) is orientation-
preserving, ˇ̌

M‹

1,1p0; Jqˆfbp; p1,Γ0qq
ˇ̌˘

“
ˇ̌
ιYˆfbΓ0

ˇ̌˘
.

Thus,
RHS of (4.20) “ ´

ˇ̌
ιYˆfbΓ0

ˇ̌˘`
deg bbα

˘
.

Along with (4.20) and (2.12), this gives

II ` III “ ´
ˇ̌
ιYˆfbΓ0

ˇ̌˘@
L
Dω,os
β;K

.

Combining this statement with (4.19), (2.12), and Corollary 5.12, we obtain (4.14).

5 Orientations

Section 5.1 specifies our orientation conventions for fiber products and establishes their properties
that are used throughout the paper. We describe the relevant moduli spaces of stable disk maps
and specify their orientations in Section 5.2. Sections 5.3 and 5.4 compare the induced orientations
on the two types of boundary strata of these moduli spaces with natural intrinsic orientations of
these spaces.

5.1 Fiber products

We say a short exact sequence of oriented vector spaces

0 ÝÑ V 1 ÝÑ V ÝÑ V 2 ÝÑ 0

is orientation-compatible if, for an oriented basis pv1
1, . . . , v

1
mq of V 1, an oriented basis pv2

1 , . . . , v
2
nq

of V 2, and a splitting j : V 2 Ñ V , pv1
1, . . . , v

1
m, jpv2

1q, . . . , jpv2
nqq is an oriented basis of V . We say

it has sign p´1qǫ if it becomes orientation-compatible after twisting the orientation of V by p´1qǫ.
We use the analogous terminology for short exact sequences of Fredholm operators with respect to
orientations of their determinants; see [26, Section 2].

Let M be an oriented manifold with boundary BM . We orient the normal bundle N to BM by the
outer normal direction and orient BM so that the short exact sequence

0 ÝÑ TpBM ÝÑ TpM ÝÑ N ÝÑ 0

is orientation-compatible at each point p P BM . We refer to this orientation of BM as the boundary
orientation.

We orient MˆM by the usual product orientation and the diagonal ∆M Ă MˆM by the diffeo-
morphism

M ÝÑ ∆M , p ÝÑ pp, pq.

We orient the normal bundle N∆M of ∆M so that the short exact sequence

0 ÝÑ Tpp,pq∆M ÝÑ Tpp,pqpMˆMq ÝÑ N∆M |pp,pq ÝÑ 0 (5.1)
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is orientation-compatible for each point pPM . Thus, the isomorphism

N∆M |pp,pq ÝÑ TpM, rv, ws ÝÑ w´v,

respects the orientations. This in turn implies that the isomorphism

N∆M1

ˇ̌
pp1,p1q

‘N∆M2

ˇ̌
pp2,p2q

ÝÑ N∆M1ˆM2

ˇ̌
ppp1,p2q,pp1,p2qq

,
`
rv1, w1s, rv2, w2s

˘
ÝÑ

“
pv1, v2q, pw1, w2q

‰
,

(5.2)

is orientation-preserving for all oriented manifolds M1,M2 and points p1 PM1 and p2 PM2.

For maps f :M ÝÑ X and g :Γ ÝÑ X, we denote by

fˆfbg ” Mf ˆgΓ ” tpp, qqPMˆΓ: fppq “ gpqqu

their fiber product. If M,Γ, and X are oriented manifolds (M,Γ possibly with boundary) and
f, f |BM are transverse to g, g|BΓ, we orient Mf ˆgΓ so that the short exact sequence

0 ÝÑ Tpp,qqpMf ˆgΓq ÝÑ Tpp,qqpMˆΓq
rdpf,dqgs
ÝÝÝÝÝÑ N∆X |pfppq,gpqqq ÝÑ 0

is orientation-compatible for every pp, qqPMf ˆgΓ. The exact sequence

0 ÝÑ Tpp,qqpMf ˆgΓq ÝÑ Tpp,qqpMˆΓq
dqg´dpf
ÝÝÝÝÝÑ TfppqX ÝÑ 0

is then orientation-compatible as well. We refer to this orientation of Mf ˆgΓ as the fiber product

orientation. The next two observations are straightforward.

Lemma 5.1 If f : M ÝÑX is an open embedding, so is the projection MfˆgΓÝÑΓ. It has sign
p´1qpdimXqpdimΓ`1q with respect to the fiber product orientation on the left-hand side.

Lemma 5.2 If Γ1, . . . ,Γm are oriented manifolds with boundary and Γ “ Γ1ˆ. . .ˆΓm, then

BpMf ˆgΓq “ p´1qdimX

ˆ
p´1qdimΓpBMqf ˆgΓ

\
mğ

i“1

p´1q
řm

j“i`1 dimΓjMf ˆg

`
Γ1ˆ. . .ˆΓi´1ˆBΓiˆΓi`1ˆ. . .ˆΓm

˘̇
.

For a diffeomorphism σ : M ÝÑM between oriented manifolds, we define sgnσ“1 if σ is everywhere
orientation-preserving and sgnσ “ ´1 if σ is everywhere orientation-reversing; this notion is also
well-defined if M is orientable and σ preserves each connected component of M .

Lemma 5.3 SupposeM,Γ, X and f, g are as above Lemma 5.1 and σM , σΓ, σX are diffeomorphisms
of M,Γ, X, respectively, with well-defined signs. If the diagram

M
f //

σM

��

X

σX

��

Γ
goo

σΓ

��
M

f // X Γ
goo

(5.3)

commutes, then the sign of the diffeomorphism

MfˆgΓ ÝÑ MfˆgΓ, pp, qq ÝÑ
`
σM ppq, σΓpqq

˘
,

is psgnσM qpsgnσΓqpsgnσXq.
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Proof. Let pp, qqPMfˆgΓ. The commutative diagram (5.3) induces an isomorphism

0 // Tpp,qq

`
MfˆgΓ

˘
//

��

Tpp,qq

`
MˆΓ

˘
//

��

TfppqX //

��

0

0 // TpσM ppq,σΓpqqq

`
Mf ˆgΓ

˘
// TpσM ppq,σΓpqqq

`
MˆΓ

˘
// TσXpfppqqX // 0

of exact sequences. The signs of the middle and right isomorphisms are psgnσM qpsgnσΓq and
sgnσX , respectively. This establishes the claim.

Let M,Γ, X and f, g be as above Lemma 5.1. Suppose in addition that e : M ÝÑY and h : CÝÑY .
Let e1 : Mf ˆgΓÝÑY be the map induced by e; see the top diagram in Figure 3. There is then a
natural bijection `

Mf ˆgΓ
˘
e1ˆhC « Mpf,eq̂ gˆhpΓˆCq . (5.4)

If C, Y are oriented manifolds and all relevant maps are transverse, then both sides of this bijection
inherit fiber product orientations. They are compared in Lemma 5.4 below.

For any map h : M ÝÑZ between manifolds, let

codimh “ dimZ ´ dimM .

Lemma 5.4 The diffeomorphism (5.4) has sign p´1qpdimXqpcodimhq with respect to the fiber prod-
uct orientations on the two sides.

Proof. Suppose ppp, qq, cq P pMf ˆgΓqe1ˆhC. We use the commutative square of exact sequences
in Figure 3. The right column is induced by the isomorphism (5.2); it is compatible with the
canonical orientations on the normal bundles if and only if pdimXqpdimY q is even. The top and
middle rows are orientation-compatible with respect to the fiber-product orientations on the left-
hand and right-hand sides of (5.4), respectively. The middle column is orientation-compatible with
respect to the fiber-product orientation on Mf ˆgΓ if and only if pdimXqpdimCq is even. Thus,
the diffeomorphism (5.4) is orientation-preserving at ppp, qq, cq if and only if

pdimXqpdimY q`pdimXqpdimCq P 2Z;

see Lemma 6.3 in [1].

Let M,Γ, X and f, g be as above with

g“g1ˆg2 : Γ“Γ1ˆΓ2 ÝÑ X “X1ˆX2.

Suppose in addition that

e1 : M1 ÝÑ Y, e2 : M2 ÝÑ Y, f1 : M1 ÝÑ X1, and f2 : M2 ÝÑ X2

are maps such that
M “ pM1qe1 ˆe2M2 and f “f1ˆf2

ˇ̌
M

.

Let e1
1 : pM1qf1 ˆg1 Γ1 ÝÑ Y and e1

2 : pM2qf2 ˆg2 Γ2 ÝÑ Y be the maps induced by e1 and e2,
respectively; see the top diagram in Figure 4. There are natural bijections

Mf ˆgΓ «
`
pM1qf1ˆg1Γ1

˘
e1
1
ˆe1

2

`
pM2qf2ˆg2Γ2

˘
« pM1qpf1,e1qˆg1ˆe1

2

`
Γ1 p̂pM2qf2ˆg2Γ2q

˘
. (5.5)
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Γ

g

��

ΓˆC

��

oo // C

h

��
MfˆgΓ

;;✇✇✇✇✇✇✇✇✇✇

##❍
❍❍

❍❍
❍❍

❍

e1

CCX XˆYoo // Y

M

f

OO <<①①①①①①①①①

e

55❧❧❧❧❧❧❧❧❧❧❧❧❧❧❧❧❧❧

0

��

0

��

0

��
0 // Tppp,qq,cq

`
pMf ˆgΓqe1ˆhC

˘

p5.4q

��

// Tpp,qqpMf ˆgΓq‘TcC

��

// N∆Y

ˇ̌
eppq

//

��

0

0 // Tpp,pq,cqq

`
Mpf,eq̂ gˆhpΓˆCq

˘

��

// TpM‘TqΓ‘TcC

��

// N∆XˆY

ˇ̌
pfppq,eppqq

//

��

0

0 // N∆X

ˇ̌
fppq

��

Id // N∆X

ˇ̌
fppq

��

// 0

0 0

Figure 3: The maps of Lemma 5.4 and a commutative square of exact sequences for its proof.

If M1,M2, Y are oriented manifolds and all relevant maps are transverse, then the middle and right
spaces above inherit orientations as fiber products of fiber products.

Lemma 5.5 The first diffeomorphism in (5.5) has sign p´1qǫ with respect to the fiber product
orientations on the two sides, where

ǫ “ pdimM2qpcodim g1q`pdimX1qpcodim g2q`pdimY qpcodim gq.

Proof. Suppose pp, qq P Mf ˆgΓ with p ” pp1, p2q P M1ˆM2 and q ” pq1, q2q P Γ1ˆΓ2. We use the
commutative square of exact sequences in Figure 4. The nonzero isomorphism in the bottom is the
inverse of (5.2); it respects the canonical orientations on the normal bundles. The left column and
the top row are orientation-compatible with respect to the fiber-product orientations on the left
and middle spaces in (5.5), respectively. The middle row is orientation-compatible with respect to
the fiber-product orientation on M if and only if

pdimΓ1qpdimM2q ` pdimΓqpdimY q P 2Z.

The middle column is orientation-compatible with respect to the fiber-product orientations on
pM1qf1ˆg1Γ1 and pM2qf2ˆg2Γ2 if and only if pdimX1qpdimppM2qf2ˆg2Γ2qq is even. Thus, the first
diffeomorphism in (5.5) is orientation-preserving at pp, qq if and only if

pdimΓ1qpdimM2q ` pdimΓqpdimY q ` pdimX1qpdimpM2qf2ˆg2Γ2q ` pdimXqpdimY q P 2Z;

see Lemma 6.3 in [1].
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Γ1

g1

��

Γ1ˆΓ2

g

��

oo // Γ2

g2

��
pM1qf1 ˆg1Γ1

99rrrrrrrrrrr

%%❑❑
❑❑

❑❑
❑❑

❑❑

e1
1

//

X1 X1ˆX2
oo // X2 pM2qf2 ˆg2Γ2

ee▲▲▲▲▲▲▲▲▲▲▲

yysss
ss
ss
ss
s

e1
2

oo

M1

f1

OO

e1

&&▼▼
▼▼

▼▼
▼▼

▼▼
▼▼

pM1qe1 ˆe2M2

f

OO

oo // M2

f2

OO

e2

xxqqq
qq
qq
qq
qq
q

Y

0

��

0

��

0

��
0 // Tpp,qqpMf ˆgΓq

��

// Tpp1,q1q

`
pM1qf1ˆg1Γ1

˘
‘Tpp2,q2q

`
pM2qf2ˆg2Γ2

˘

��

// N∆Y

ˇ̌
e1pp1q

//

Id

��

0

0 // TpM‘TqΓ

��

// Tpp1,q1qpM1ˆΓ1q‘Tpp2,q2qpM2ˆΓ2q

��

// N∆Y

ˇ̌
e1pp1q

//

��

0

0 // N∆X

ˇ̌
fppq

��

// N∆X1

ˇ̌
f1pp1q

‘N∆X2

ˇ̌
f2pp2q

��

// 0

0 0

Figure 4: The maps of Lemma 5.5 and a commutative square of exact sequences for its proof.

Corollary 5.6 The composition of the two diffeomorphisms in (5.5) has sign p´1qǫ with respect
to the fiber product orientations on the two sides, where

ǫ “ pdimM2qpcodim g1q`pdimX1qpcodim e2q`pdimY qpcodim gq.

Proof. By Lemma 5.4 with M,Γ, X,C, f, g, e, h replaced by

M1, Γ1, X1, pM2qf2ˆg2Γ2, f1, f2, e1, e1
2,

respectively, the second diffeomorphism in (5.5) has sign p´1qǫ2 with

ǫ2 “ pdimX1qpcodim e1
2q “ pdimX1q

`
codim g2`codim e2

˘
.

Combining this with Lemma 5.5, we obtain the claim.

Let M,Γ, X,Γ1, . . . ,Γm and f, g be as in Lemma 5.2 with

f “pf1, . . . , fmq : M ÝÑ X “X1ˆ. . .ˆXm and g“g1ˆ. . .ˆgm : Γ“Γ1ˆ. . .ˆΓm ÝÑ X.
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Suppose in addition that B is another manifold and e : M ÝÑB and ei : Γi ÝÑB with iP rms are
maps. Define

rf “
`
pe, f1q, . . . , pe, fmq

˘
: M ÝÑ rX ”pBˆX1qˆ. . .ˆpBˆXmq,

rg “pe1, g1qˆ. . .ˆpem, gmq : Γ ÝÑ rX ”pBˆX1qˆ. . .ˆpBˆXmq.

Let e1 : M rf ˆrgΓÝÑB be the map induced by e. For each bPB, define

Mb “ e´1pbq, fb “f |Mb
: Mb ÝÑ X, Γb “e´1

1 pbqˆ. . .ˆe´1
m pbq, gb “g|Γb

: Γb ÝÑ X;

see the top diagram in Figure 5. Let ιb : tbu ÝÑB be the inclusion map. The natural map

tbuιbˆe1

`
M rfˆrgΓ

˘
ÝÑ pMbqfbˆgbΓb Ă M rfˆrgΓ (5.6)

dropping the b component is then a bijection.

Suppose also that the maps e and ei are smooth, the maps rf, rf |BM are transverse to rg, rg|BΓ, and b

is a regular value of e, ei with iP rms, and e1. This implies that the spaces Mb and Γb are smooth
manifolds, the sequences

0 ÝÑ TpMb ÝÑ TpM
dpe
ÝÝÑ TbB ÝÑ 0 and (5.7)

0 ÝÑ Tqi

`
e´1
i pbq

˘
ÝÑ TqiΓi

dqieiÝÝÝÑ TbB ÝÑ 0, (5.8)

are exact for all pPMb, q”pq1, . . . , qmqPΓb, and iPrms, and the bijection (5.6) is a diffeomorphism
between smooth manifolds.

Lemma 5.7 Suppose the manifolds M , Γ, B, Mb, and Γb are oriented so that the exact se-
quences (5.7) and (5.8) have signs

p´1qpdimMbqpdimBq and p´1qpdim e´1
i pbqqpdimBq,

respectively, for all p P Mb, q ” pq1, . . . , qmq P Γb, and i P rms. The diffeomorphism (5.6) then has
sign p´1qǫ with respect to the fiber product orientations on the two sides, where

ǫ “ pdimBq

ˆ
dimMb`

mÿ

i“1

pi`1qcodim gi
ˇ̌
e´1
i pbq

˙
.

Proof. Let pp, qq P pMbqfbˆgbΓb with q ” pq1, . . . , qmq. We use the commutative square of exact
sequences in Figure 5. The two maps in the right column are given by

v ÝÑ
`
v, pv, . . . , vq

˘
and pv, pw1, . . . , wmq

˘
ÝÑ

`
w1´v, . . . , wm´v

˘
;

this column is thus compatible with the direct sum orientations. The bottom row is compatible
with the product orientations if and only if

pdimBq
mÿ

i“1

i dimXi P 2Z.
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Γb
//

gb

��

Γ

rg
�� ##●

●●
●●

●●
●●

●

g

xxqqq
qq
qq
qq
qq
qq
q

X // rX // Bm Q bm M rfˆrgΓ

ii❚❚❚❚❚❚❚❚❚❚❚❚❚❚❚❚❚❚❚❚❚

uu❥❥❥❥
❥❥❥

❥❥❥
❥❥❥

❥❥❥
❥❥❥

❥

e1

��
Mb

//

fb

OO

M

rf

OO

e //
f

ff▼▼▼▼▼▼▼▼▼▼▼▼▼
B Q b

0

��

0

��

0

��
0 // Tpp,qqppMbqfbˆgbΓbq

��

// Tpp,qqpM rfˆrgΓq

��

dpp,qqe
1

// TbB //

��

0

0 // TpMb‘TqΓb

dqgb´dpfb

��

// TpM‘TqΓ

dqrg´dp
rf
��

// TbB‘mTbB //

��

// 0

0 // TfppqX

��

// T rfppq
rX

��

// mTbB //

��

0

0 0 0

Figure 5: The maps of Lemma 5.7 and a commutative square of exact sequences for its proof.

The middle row is orientation-compatible if and only if

pdimBq

ˆ
dimMb`

mÿ

i“1

pi`1qdim e´1
i pbq

˙
P 2Z.

The left and middle columns are compatible with the fiber product orientations on the top spaces.
The top row is compatible with the orientation on the left-hand side of (5.6) and the fiber product
orientation on Tpp,qqpM rfˆrg Γq. Along with Lemma 6.3 in [1], this implies that the diffeomor-

phism (5.6) is orientation-preserving at pb, p, qq if and only if

pdimBq
mÿ

i“1

i dimXi ` pdimBq

ˆ
dimMb`

mÿ

i“1

pi`1qdim e´1
i pbq

˙
` pdimXqpdimBq P 2Z .

This establishes the claim.

5.2 Moduli spaces

Suppose k, l P Zě0 and k`2l ě 3. Let Mk,l be the moduli space of k distinct boundary marked
points x1, . . . , xk placed in counter-clockwise order and l distinct interior marked points z1, . . . , zl
on the unit disk D. We orient Mk,l as follows. Let M1,1 and M3,0 be plus points. We identify
M0,2 with the interval p0, 1q by taking z1 “0 and z2 Pp0, 1q and orient it by the negative orientation
of p0, 1q. We then orient other Mk,l inductively. If k ě 1, we orient Mk,l so that the short exact

45



sequence

0 ÝÑ Txk
S1 ÝÑ TMk,l

dfR
kÝÝÑ TMk´1,l ÝÑ 0 (5.9)

induced by the forgetful morphism fRk dropping xk has sign p´1qk with respect to the counter-
clockwise orientation of S1. Thus,

TMk,l « TMk´1,l ‘ Txk
S1.

If lě1, we orient Mk,l so that the short exact sequence

0 ÝÑ TzlD ÝÑ TMk,l

dfC
lÝÝÑ TMk,l´1 ÝÑ 0 (5.10)

induced by the forgetful morphism fCl dropping zl is orientation-compatible with respect to the
complex orientation of D. By a direct check, the orientations of M1,2 induced from M0,2 via (5.9)
and from M1,1 via (5.10) are the same, and the orientations of M3,1 induced from M1,1 via (5.9)
and from M3,0 via (5.10) are also the same. Since the fibers of fCl are even-dimensional, it follows
that the orientation onMk,l above is well-defined. This orientation extends to the Deligne-Mumford
compactification Mk,l of Mk,l.

Fix a symplectic manifold pX,ωq of dimension 2n, a Lagrangian submanifold Y , a relative OSpin-
structure os on Y , and β PHω

2 pX,Y q. Let J PJω. For

rus ”
“
u : pD, S1qÝÑpX,Y q, pxiqiPrks, pziqiPrls

‰
P Mk,lpβ; Jq , (5.11)

let
DJ ;u : Γ

`
u˚TX, u|˚S1TY

˘
ÝÑ Γ

`
T ˚D0,1bCu

˚pTX, Jq
˘

be the linearization of the tBJu-operator on the space of maps from pD, S1q to pX,Y q. By Propo-
sition 8.1.1 in [7], the OSpin-structure os determines an orientation on detpDJ ;uq.

Suppose B is a smooth manifold (possibly with boundary) and rJ ” pJtqtPB is a smooth generic
family in Jω. We define the moduli spaces

Mk,lpβ; rJq Ă M‹

k,lpβ;
rJq

of rJ-holomorphic degree β maps, evaluation maps

evbi : M
‹

k,lpβ;
rJq ÝÑ BˆY, iPrks, and evii : M

‹

k,lpβ;
rJq ÝÑ BˆX, iPrls,

and the fiber products involving these spaces and maps as at the end of Section 2.1. If Y admits
a relative OSpin-structure and thus is orientable, the Maslov index (1.1) is even. If in addition n

is odd, then
dimM‹

k,lpβ;
rJq ” k`dimB mod 2. (5.12)

For each tPB and rusPMk,lpβ; Jtq as above, define

rDt;u : TtB‘Γ
`
u˚TX, u|˚S1TY

˘
ÝÑ Γ

`
T ˚D0,1bCu

˚pTX, Jq
˘
,

rDt;upv, ξq “
1

2
vp rJq˝du˝j ` DJt;uξ,
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where j is the complex structure on D. We orient the determinant of rDt;u so that the short exact
sequence

0 ÝÑ Dt;u ÝÑ rDt;u ÝÑ pTtBÝÑ0q ÝÑ 0

of operators has sign p´1qpdimBqpdimY q. Thus,

ker rDt;u « TtB‘
`
kerDt;u

˘

if the operator Dt;u is surjective. We orient M‹

k,lpβ;
rJq by requiring the short exact sequence

0 ÝÑ ker rDt;u ÝÑ Tpt,uqMk,lpβ; rJq
df
ÝÑ TfpuqMk,l ÝÑ 0 (5.13)

to be orientation-compatible, where f is the forgetful morphism dropping the map part of u.

Remark 5.8. The above paragraph endows M‹

k,lpβ;
rJq with an orientation under the assumption

that k`2lě3. If k`2lă3, one first stabilizes the domain of u by adding one or two interior marked
points, then orients the tangent space of the resulting map as above, and finally drops the added
marked points using the canonical complex orientation of D; see the proof of Corollary 1.8 in [9].

If L is a finite set, we orient M‹

k,Lpβ; rJq from M‹

k,|L|pβ;
rJq by identifying L with r|L|s as sets. The

resulting orientation does not depend on the choice of the identification.

5.3 Disk bubbling strata

In this section, we compare two natural orientations on the disk bubbling strata of M‹

k,lpβ; Jq and
on associated fiber products. Corollary 5.10 at the end of this section ensures pairwise cancellations
of boundary components of fiber product spaces in the proofs of Lemmas 3.1 and 3.3 in Section 3.1,
of (2.24) in Section 3.2, and of (OGW6) and (OGW7) in Section 4.2.

We continue with the setup of Section 5.2. Suppose in addition β1, β2 P Hω
2 pX,Y q with β1`β2 “β,

rls“L1\L2, and k1, k2 Pt0u\rk 1̀s with k1 ăk2. Let S Ă BM‹

k,lpβ;
rJq consist of J-holomorphic maps

from pD2_D2, S1_S1q to pX,Y q of degrees β1 and β2 on the two components, with the second
component carrying the boundary marked points indexed by k1`1, . . . , k2´1 and the interior
marked points indexed by L2. We re-index the boundary marked points on the second disk in the
counterclockwise order starting with the node and on the first disk starting with x1 if k1 ě 1 and
with the node otherwise. Define

M1 ” Mk´pk2´k1q`2,L1
pβ1; rJq, M2 ” Mk2´k1,L2pβ2; rJq.

As a space, S is the fiber product

S “ M1 evbk1̀ 1̂ evb1M2.

Lemma 5.9 If n”dimY is odd, the orientation of S as a boundary of M‹

k,lpβ;
rJq differs from the

orientation of S as the above fiber product by p´1qǫ, where

ǫ “ k1k2`kk1`kk2`k1`1 ` pdimBq
`
k1`k2`1

˘
.
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0

��

0

��

0

��
0 // TuSt

//

��

TuS //

��

TtB //

��

0

0 // Tu1
M1;t‘Tu2

M2;t
//

��

Tu1
M1‘Tu2

M2
//

��

TtB‘TtB //

��

0

0 // N∆Y

ˇ̌
pevb1pu2q,evb1pu2qq

//

��

N∆BˆY

ˇ̌
ppt,evb1pu2qq,pt,evb1pu2qqq

//

��

N∆B

ˇ̌
pt,tq

//

��

0

0 0 0

Figure 6: A commutative square of exact sequences for the proof of Lemma 5.9.

Proof. Suppose first that B is a point. The conclusion of Lemma 6.4 in [3] and its proof apply
to any n R 2Z and imply the claim in this special case. The difference in the sign is due to the
placement of the node of the first disk according to its cyclic order position here instead of the last
position in [3]. Below we deduce the general case.

For tPB, denote

M1;t ” Mk´pk2´k1q`2,L1
pβ1; Jtq, M2;t ” Mk2´k1,L2pβ2; Jtq, St “ S X M‹

k,lpβ; Jtq .

For u PSt, let u1 PM1;t and u2 PM2;t be the corresponding component maps. For the simplicity
of terminology, we assume that DJt;u is onto. We use the commutative square of exact sequences
in Figure 6. The last column is as in (5.1); it is thus orientation-compatible. The bottom row is
induced by the isomorphism (5.2); it is compatible with the canonical orientations on the normal
bundles if and only if pdimY qpdimBq is even. The middle row is orientation-compatible if and
only if

pdimM1;tqpdimBq`pdimM2;tqpdimBq`pdimM2;tqpdimBq ” pdimBq
`
k`k1`k2

˘
mod 2

is even; the congruence above follows from (5.12). The top row is compatible with the boundary
orientations of St and S if and only if

pdimStqpdimBq ” pdimBqpk´1q mod 2

is even. The left and middle columns respect the fiber-product orientations on St and S, respec-
tively. Along with the B“pt case above and Lemma 6.3 in [1], this implies that the boundary and
fiber-product orientations on TuS are the same if and only if

pdimY qpdimBq ` pdimBq
`
k`k1`k2

˘
` pdimBqpk´1q

`
`
k1k2`kk1`kk2`k1`1

˘
`pdimY qpdimBq ” ǫ mod 2

is even.
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With the setup as above Lemma 5.9, denote

K2 ”
 
k1`1, . . . , k2´1

(
, K1

1 ”
 
1, . . . , k1

(
, K2

1 ” tk2, . . . , ku, K1 ” K1
1 YK2

1 .

Suppose in addition I Ărks and J Ărls are such that K2YK2
1 ĂI. Let

 
bi :Zbi ÝÑ BˆY

(
iPI

and
 
Γi :ZΓi

ÝÑ BˆX
(
iPJ

be smooth maps from oriented manifolds in general positions so that

codim bi R 2Z @ iPI and codimΓi P 2Z @ iPJ .

Define
bb ” evb1 : M2̂ fb

`
pi´k1`1, biqiPK2 ; pi,ΓiqiPJXL2

˘
ÝÑ BˆY.

Under the assumptions above, this is a smooth map of even codimension.

Corollary 5.10 The natural isomorphism

Sˆfb

`
pi, biqiPI ; pi,ΓiqiPJ

˘

« M1̂ fb

`
pi, biqiPIXK1

1
, pk1`1, bbq, pi´k2`k1`2, biqiPK2

1
; pi,ΓiqiPJXL1

˘ (5.14)

has sign p´1qǫ with respect to the boundary orientation of S, where

ǫ “ k1`k2`pdimBq
`
k`k1`pk1`k2`1q|I|

˘
.

Proof. For r“1, 2, let

gr ”
ź

iPIXKr

bi ˆ
ź

iPJXLr

Γi : Gr ”
ź

iPIXKr

Zbi ˆ
ź

iPJXLr

ZΓi
ÝÑ Xr ”pBˆY qIXKrˆpBˆXqJXLr .

We orient Gr and Xr based on the orderings of the elements of IXKr and JXLr. By Corollary 5.6
with

f1 ”
`
pevbiqiPIXK1

1
, pevbi´k2`k1`2qiPK2

1
, peviiqiPJXL1

˘
: M1 ÝÑ X1, e1 ”evbk1`1 : M1 ÝÑ BˆY,

f2 ”
`
pevbi´k1`1qiPK2 , peviiqiPJXL2

˘
: M2 ÝÑ X2, e2 ”evb1 : M2 ÝÑ BˆY,

and (5.12), the sign of the diffeomorphism (5.14) with respect to the fiber product orientation on S,
the orientations G1ˆG2 and X1ˆX2 on the domain and target of g1ˆg2, and the orientations

G1ˆ
´
M2̂ fb

`
pi´k1`1, biqiPK2 ; pi,ΓiqiPJXL2

˘̄
and X1ˆpBˆY q

on the domain and target of g1ˆe1
2 is p´1qǫ1 , where

ǫ1 “ pdimB`k2´k1q|IXK1| `
`
pdimBqp|IXK1|`|JXL1|q`|IXK1|

˘
pk2´k1`1q

` pdimB`1q|I|.

By Lemma 5.3, the above orientations on the domain and target of g1 ˆg2 twist the resulting
orientation on the left-hand side of (5.14) by p´1qǫ2 , where

ǫ2 “ pk´k2`1qpk2´k1´1q ` pk2´k1´1q|JXL1|pdimBq.
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The above orientations on the domain and target of g1ˆe1
2 twist the resulting orientation on the

right-hand side of (5.14) by p´1qǫ3 , where

ǫ3 “ pk´k2`1qpdimB`1q.

Along with Lemma 5.9, this implies that the claim of the corollary holds with

ǫ “ k1k2`kk1`kk2`k1`1 ` pdimBq
`
k1`k2`1

˘
`ǫ1`ǫ2`ǫ3.

This completes the proof.

5.4 Sphere bubbling strata

We next establish an analogue of Corollary 5.10 for the sphere bubbling stratum

S0
β,L Ă BM0,Lpβ; Jq

of the stable map compactification M0,Lpβ; Jq of M‹

0,Lpβ; Jq. Corollary 5.12 at the end of this
section is used to prove Proposition 4.1 in Section 4.2. As before, we assume that pX,ωq is a
symplectic manifold, Y Ă X is a Lagrangian submanifold, os is a relative OSpin-structure on Y ,
β PHω

2 pX,Y q, and L is a finite set. However, the dimension of Y need not be odd for the purposes
of the present section.

Let B PH2pX;Zq and
S Ă S0

qXpBq,L Ă BM0,L

`
qXpBq; J

˘

be the open subspace of the sphere bubbling stratum consisting of the maps from D2 that descend
to degree B maps from P1. This codimension 1 stratum inherits a boundary orientation from
the orientation of M0,LpqXpBq; Jq induced by the relative OSpin-structure os on Y . This induced
orientation depends on the orientation o on Y determined by os and on xw2posq, By only. As a
space, S is the fiber product

S “ MC
t0u\LpB; Jqev0ˆιYY, (5.15)

where ιY : Y ÝÑX is the inclusion.

Lemma 5.11 The orientation of S as a boundary of M0,LpqY pBq; Jq differs from the orientation
of S as the above fiber product by p´1qxw2posq,By.

Proof. In light of Remark 5.8, it is sufficient to establish the claim under the assumption that
|L|ě2. We denote by MC

t0u\L
the moduli space of distinct points on P1 labeled by the set t0u\L.

Let S0,L Ă M0,L be the sphere bubbling stratum, N0,L be its oriented normal bundle, and N be
the oriented normal bundle of S in M0,LpqY pBq; Jq. Let ruPS, pu, yq be the corresponding element

of the fiber product in (5.15), and rC and C be the marked domains of ru and u, respectively. We
denote by

DC
J ;u : Γ

`
u˚TX

˘
ÝÑ Γ

`
pT ˚P1q0,1bCu

˚pTX, Jq
˘

the linearization of the tBJu-operator on the space of maps from P1 to X at u. The determinant
of this Fredholm operator has a canonical complex orientation.

A forgetful morphism f : M0,L ÝÑ M0,2 dropping all but two of the marked points induces the
short exact sequences given by the columns in the first diagram of Figure 7. The middle and right
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columns and the top row in this diagram respect the orientations; the middle row is orientation-
compatible with respect to the boundary orientation on T rCS0,L. By the definition of the orientation

on M0,2, the single element rC2 PS0,2 is a plus point with respect to the boundary orientation. Thus,
the isomorphism in the bottom row is orientation-preserving. Along with Lemma 6.3 in [1], this
implies that the isomorphism in the left column is also orientation-preserving with respect to the
complex orientation on its domain and the boundary orientation on its target.

The forgetful morphism f : M0,LpqY pBq; Jq ÝÑ M0,L dropping the map component induces the
short exact sequences given by the columns in the second diagram of Figure 7. The middle and
right columns and the top row in this diagram respect the orientations; the middle and bottom
rows are orientation-compatible with respect to the boundary orientations on TruS and T rCS0,L,
respectively. Along with Lemma 6.3 in [1], this implies that the isomorphism in the left column is
also orientation-compatible with respect to the boundary orientations on TruS and T rCS0,L.

The forgetful morphism f of the previous paragraph and its complex analogue induce the short
exact sequences given by the columns in the third diagram of Figure 7. The middle column
respects the complex orientations on kerDC

J ;u, TuM
C
t0u\L

pB; Jq, and TCM
C
t0u\L

. By the proof of

Proposition 8.1.1 in [7], the sign of the top row in this diagram with respect to the orientation
on kerDJ ;ru induced by the relative OSpin-structure os and the complex orientation on kerDC

J ;u

is p´1qxw2posq,By. By the conclusion concerning the first diagram, the isomorphism in the bottom
row is orientation-preserving with respect to the boundary orientation on T rCS0,L and the complex
orientation on TCM

C
t0u\L

. By the conclusion concerning the second diagram, the left column in the
third diagram respects the boundary orientations on TruS and T rCS0,L. By definition, the middle
row respects the fiber product orientation on TruS. Along with Lemma 6.3 in [1], this implies that
the boundary and fiber product orientations on TruS differ by p´1qxw2posq,By.

From Lemmas 5.11 and 5.4, we immediately obtain the following statement.

Corollary 5.12 Let pX,ωq, Y , os, and β be as above Lemma 5.11 and L”pΓ1, . . . ,Γlq be a tuple
of smooth maps from oriented manifolds to X in general position. The natural isomorphism

S0
β,Lˆfb

`
; pi,ΓiqΓiPL

˘
«

ğ

BPq´1
Y

pβq

p´1qxw2posq,ByMC
t0u\LpB; J q̂ fb

`
p1, Y q, pi`1,ΓiqΓiPLq

is then orientation-preserving with respect to the boundary orientation of S0
β,L and the fiber product

orientation on the right-hand side.

A General symplectic manifolds

We now sketch an adaptation of the geometric construction described in this paper to general
symplectic manifolds, dropping the positivity assumptions (1.4) and (1.5), in a way compatible
with standard virtual class approaches, such as in [14, 8, 13, 16]. As we only need evaluation
maps from the disk moduli spaces to be pseudocycles, a full virtual class construction and gluing
across all strata of these spaces are not necessary. Throughout this appendix, R is a commutative
ring containing Q, pX,ωq is a compact symplectic manifold, Y Ă X is a compact Lagrangian
submanifold, and os is a relative OSpin-structure on Y .
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0

��

0

��
0 // TCM

C

t0u\L

Id //

«

��

TCM
C

t0u\L
//

��

0

��
0 // T rCS0,L

//

d rCf

��

T rCM0,L
//

d rCf

��

N0,L| rC
//

d rCf

��

0

0 // T rC2

S0,2
//

��

T rC2

M0,2
« //

��

N0,2| rC2

//

��

0

0 0 0

0

��

0

��
0 // kerDJ;ru

Id //

��

kerDJ;ru //

��

0

��
0 // TruS //

druf

��

TruM0,LpqY pBq; Jq //

druf

��

N |ru //

druf

��

0

0 // T rCS0,L
//

��

T rCM0,L
//

��

N0,L| rC
//

��

0

0 0 0

0

��

0

��

0

��
0 // kerDJ;ru //

��

kerDC

J;u‘TyY //

��

TyX //

Id

��

0

0 // TruS //

druf

��

TuM
C

t0u\L
pB; Jq‘TyY //

duf

��

TyX //

��

0

0 // T rCS0,L
« //

��

TCM
C

t0u\L
//

��

0

0 0

Figure 7: Commutative squares of exact sequences for the proof of Lemma 5.11.
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We denote H2pX,Y ;Zq modulo torsion by H2pX,Y q. Let B be a basis for H2pX,Y q so that all
elements of Hω

2 pX,Y q are linear combinations of the elements of B with nonnegative coefficients

and rH2pX,Y q be the collection of finite subsets of BˆZ. We write an element rβ of rH2pX,Y q as
pAbqbPB, with each Ab ĂZ being a finite subset (possibly empty). For such an element rβ, define

Abprβq “ Ab Ă Z @ bPB, Aprβq! “
ź

bPB

`
|Abprβq|!

˘
P Z`, |rβ| “

ÿ

bPB

ˇ̌
Abprβq

ˇ̌
b P H2pX,Y q .

For rβ, rβ1 P rH2pX,Y q such that AbprβqXAbprβ1q“H for every bPB, define

rβ` rβ1 “
`
Abprβq\Abprβ1q

˘
bPB

.

The subset
rHω
2 pX,Y q ”

 rβ P rH2pX,Y q : |rβ|P rHω
2 pX,Y q

(

of rH2pX,Y q has a natural partial order. We define CωpY q, Cω;αpY q, Dωpαq, rCωpY q, rCω;rαpY q, and

Dωprαq as the collections CωpY q, Cω;αpY q, Dωpαq, rCωpY q, rCω;rαpY q, and Dωprαq in Section 2.1 with

Hω
2 pX,Y q replaced by rHω

2 pX,Y q.

Let J PJω. For kPZě0, a finite set L, and rβ P rHω
2 pX,Y q, let

M‹

k,L

`rβ; J
˘

“ Aprβq!M‹

k,L

`
|rβ|; J

˘
.

The natural immersion

ι
Brβ :

ğ

rβ1,rβ2P rHω
2 pX,Y q

rβ1`rβ2“rβ

M1,Hprβ1; Jqevb1 êvb1M1,Hprβ2; Jq ÝÑ M‹

0,0

`rβ; J
˘

is then a degree 2 covering map. This statement extends to the disk moduli spaces with marked
points.

We take a generic collection ν ” pνrβqrβP rHω
2 pX,Y q

of multi-valued inhomogeneous perturbations for

the moduli spaces
M0,H

`rβ; J
˘

” Aprβq!M0,H

`
|rβ|; J

˘

compatible with the immersions ι
Brβ , with νH ” 0. They lift to multi-valued inhomogeneous per-

turbations for the moduli spaces

Mk,L

`rβ; J
˘

” Aprβq!Mk,L

`
|rβ|; J

˘

via the forgetful morphisms; we denote the lifted perturbations also by νrβ. These perturbations
are compatible with the analogues of the immersions ι

Brβ for the disk moduli spaces with marked

points and vanish on the moduli spaces Mk,LpH; Jq of degree 0 disks. All combinations of the
evaluation maps evbi and evii from main strata of the distinct moduli spaces

Mk,L

`rβ; J, νrβ
˘

” Aprβq!Mk,L

`
|rβ|; J, νrβ

˘

of pJ, νq-disks are transverse.
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We denote by
M‹

k,L

`rβ; J, νrβ
˘

Ă Mk,L

`rβ; J, νrβ
˘

the subspace of maps from pD2, S1q and pD2 _D2, S1 _S1q to pX,Y q and extend the use of the
notation ˆfb defined at the end of Section 2.1 to the moduli spaces of pJ, νq-disks. For αPCωpY q
and ηPDpαq, we replace (2.8) with

Mη;J ” M‹

k‚pηq,L‚pηq

`rβ‚pηq; J, νrβ‚pηq

˘
, M`

η;J ” M‹

k‚pηq`1,L‚pηq

`rβ‚pηq; J, νrβ‚pηq

˘
.

We then define a bounding chain on pα, J, νq as in Definition 2.1 and and bbα1 in (2.11). For the
sake of proper scaling, we divide the right-hand sides of (2.12), (2.18), and (2.19) by Aprβq! when
defining the associated disk counts with β PHω

2 pX,Y q replaced by rβ P rHω
2 pX,Y q.

For a path rJ ”pJtqtPr0,1s in Jω and a compatible path rν”pνtqtPr0,1s of inhomogeneous perturbations,

we modify the definitions of Mrη; rJ , M
`

rη; rJ , pseudo-isotopy, and bbrα1 in Section 2.2 analogously. The

statements and proofs in Sections 2-4 then readily adapt. In particular, pseudo-isotopic bounding
chains still determine the same disk counts (2.25). The proofs of Propositions 2.4 and 2.5 now
ensure the existence of a bounding chain for every pα, J, νq and its uniqueness up to pseudo-
isotopy, without the positivity assumptions (1.4) and (1.5). If Y is an R-homology sphere, we
then obtain disk counts (2.25) that depend only on |rβ|, rather than rβ, and thus well-defined open
GW-invariants (2.29).

B Real Gromov-Witten invariants

We next interpret Solomon-Tukachinsky’s adaptation of the main construction in [19] to the “real
setting” geometrically. Throughout this appendix, pX,ω, φq is a compact real symplectic manifold,
i.e. φ is an involution on X so that φ˚ω“´ω, Y ĂXφ is a topological component of the fixed locus
(which is a Lagrangian submanifold of X), and os is an OSpin-structure on Y . We assume that
the dimension of X is 2n with n odd. Let

J φ
ω “

 
J PJ φ

ω : φ˚J “´J
(
, pH2˚

φ pX,Y ;Rq “
nà

p“0

 
γ P pH2ppX,Y ;Rq : φ˚γ“p´1qpγ

(
.

There is a natural doubling map

dY : H2

`
X,Y ;Z

˘
ÝÑ H2pX;Zq, (B.1)

which glues each map f : pΣ, BΣq ÝÑ pX,Y q from an oriented bordered surface with the map φ˝f
from pΣ, BΣq with the opposite orientation; see [3, Sec 1.1]. This homomorphism vanishes on the
image of the homomorphism Id`φ˚ on H2pX,Y ;Zq and thus descends to a homomorphism

dY : H2

`
X,Y ;Z

˘L
Im

 
Id`φ˚

(
ÝÑ H2pX;Zq.

We call a bordered pseudocycle

Γ: Z ÝÑ X
`
resp. Γ: Z ÝÑ r0, 1sˆXq

φ-invariant if there exists an involution φZ on Z, which is either orientation-preserving or reversing,
such that

φ˝Γ “ Γ˝φZ

`
resp.

 
idr0,1sˆφ

(
˝Γ “ Γ˝φZ

˘
. (B.2)
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We define sgnφΓ to be `1 if φZ above is orientation-preserving and ´1 if φZ is orientation-reversing.
We call a φ-invariant bordered pseudocycle Γ real as above if the codimension of Γ is even and

sgnφΓ “

#
`1, if dimΓ”0, 1 mod 4;

´1, if dimΓ”2, 3 mod 4.
(B.3)

If 2 P R is a unit, the Poincare dual of every element of pH2˚
φ pX,Y ;Rq can be represented by a

pseudocycle with R coefficients uniquely up to pseudocycle equivalence.

B.1 Bounding chains and curve counts

We denote by PCφpXq and ĂPCφpXq the collections of real pseudocycles to X and of real bordered

pseudocycles to r0, 1sˆX, respectively, with coefficients in R. Let FPCφpXq and ĆFPCφpXq be the

collections of finite subsets of PCφpXq and ĂPCφpXq, respectively. The action of ´φ˚ onH2pX,Y ;Zq
restricts to an action of the cone Hω

2 pX,Y q defined in (2.1). Let

Hω
2;φpX,Y q ”

 
β PHω

2 pX,Y q
(L
Im

 
Id`φ˚

(
Ă H2

`
X,Y ;Z

˘L
Im

 
Id`φ˚

(
. (B.4)

Since ω vanishes on ImtId`φ˚u, the natural partial order on Hω
2 pX,Y q descends to a partial order

on Hω
2;φpX,Y q.

For B PHω
2;φpX,Y q, kPZě0, a finite set L, and J PJ φ

ω , let

M‹

k,LpB; Jq “
ğ

βPHω
2 pX,Y q

rβs“B

M‹

k,Lpβ; Jq .

For a path rJ in J
φ
ω , we define the moduli space M‹

k,LpB; rJq analogously. We apply the notation
for evaluation maps and fiber products from the disk moduli spaces introduced in Section 2.1 to
M‹

k,LpB; Jq and M‹

k,LpB; rJq as well.

We define C
φ
ωpY q, Cφ

ω;αpY q, Dφ
ωpαq, rCφ

ωpY q, rCφ
ω;rαpY q, and D

φ
ωprαq as the collections CωpY q, Cω;αpY q,

Dωpαq, rCωpY q, rCω;rαpY q, and Dωprαq in Section 2.1 with Hω
2 pX,Y q, FPCpXq, and ĆFPCpXq replaced

by Hω
2;φpX,Y q, FPCφpXq, and ĆFPCφpXq, respectively. For α P C

φ
ωpY q and J P J

φ
ω , we call a

collection pbα1q
α1PCφ

ω;αpY q
of bordered pseudocycles to Y a real bounding chain on pα, Jq if it satisfies

all conditions of Definition 2.1 with Cω;αpY q replaced by C
φ
ω;αpY q and

bα1 “ H @ α1 PCφ
ω;αpY q s.t. dimpα1q ” 0 mod 4. (B.5)

Suppose α0, α1 PCφ
ωpY q and rαP rCφ

ωpY q are generic and satisfy (2.13), J0, J1 PJ φ
ω are generic, rJ is a

generic path in J
φ
ω between J0 and J1, and pb0;α1q

α1PCφ
ω;α0

pY q
and pb1;α1q

α1PCφ
ω;α1

pY q
are real bounding

chains on pα0, J0q and pα1, J1q, respectively. We call a collection pbrα1qrα1P rCω;rαpY q of bordered pseu-

docycles to r0, 1sˆY a real pseudo-isotopy on prα, rJq between pb0;α1q
α1PCφ

ω;α0
pY q

and pb1;α1q
α1PCφ

ω;α1
pY q

if it satisfies all conditions of Definition 2.2 with rCω;rαpY q replaced by rCφ
ω;rαpY q and

brα1 “ H @ rα1 PCφ
ω;rαpY q s.t. dimprα1q ” 0 mod 4. (B.6)
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Propositions B.1 and B.2 below are the analogues of Propositions 2.4 and 2.5 for the real setting.
They are also geometric analogues of the surjectivity and injectivity statements of (a suitably
modified version of) [19, Thm 3].

Proposition B.1 Let α and J be as above. If 2PR is a unit, n”3 mod 4, and

HppY ;Rq « HppSn;Rq @ p”0, 3 mod 4, (B.7)

then there exists a real bounding chain pbα1q
α1PCφ

ω;αpY q
on pα, Jq.

Proposition B.2 Let α0, α1, rα, J0, J1, rJ , and pb0;α1q
α1PCφ

ω;α0
pY q

and pb1;α1q
α1PCφ

ω;α1
pY q

be as above

Proposition B.1 so that rΓXY “ H for every rΓ P rLprαq with dim rΓ“n. If R, n, and Y satisfy
the conditions in Proposition B.1, then there exists a real pseudo-isotopy pbrα1qrα1P rCω;rαpY q on prα, rJq

between pb0;α1q
α1PCφ

ω;α0
pY q

and pb1;α1q
α1PCφ

ω;α1
pY q

.

The proofs of Lemmas 3.1 and 3.3 apply verbatim in the real setting of Propositions B.1 and B.2.
The key new feature in this setting vs. the open setting of Propositions 2.4 and 2.5 is that

bbα1 , bbrα1 “ 0 @ α1 PCφ
ω;αpY q, rα1 P rCφ

ω;rαpY q s.t. dimpαq, dimprαq ” 0 mod 4. (B.8)

As shown in Section B.2, this is a consequence of the computation of the sign of the involution on
the moduli space of J-holomorphic disks obtained in [17]. The bordered pseudocycles bα1 , brα1 “H
thus satisfy the conditions of Definitions 2.1(BC4) and 2.2(PS4) whenever dimpα1q and dimprα1q are
divisible by 4. Analogously to Propositions 2.4 and 2.5, Propositions B.1 and B.2 give rise to open
GW-invariants

@
¨, . . . , ¨

Dφ,os
β,k

:
8à

l“0

pH2˚
φ pX,Y ;Rq‘l ÝÑ R, β PHω

2;φpX,Y q, kPZě0, (B.9)

enumerating J-holomorphic disks of degree β.

Theorems B.3 and B.4 below are analogues of Theorems 5 and 6 in [19]. They relate the open GW-
invariants (2.29) and (B.9) constructed from bounding chains pbα1qα1PCω;αpY q and pbα1q

α1PCφ
ω;αpY q

to

some of the previously constructed invariants enumerating real rational curves in real symplectic 2n-
dimensional manifolds pX,ω, φq with n odd and orientable fixed locus Y “Xφ. In the settings when
both types of invariants are defined, the bounding chains bα1 can be taken empty for α1 ‰p0, tptu,Hq
for any ptPKpαq. The open GW-invariants (2.29) and (B.9) then arise only from the elements

η “
`
βpαq, |Kpαq|, Lpαq, pαiqiPr|Kpαq|s

˘
P Dωpαq,Dφ

ωpαq with

αi “ p0, tptu,Hq for some ptPY.
(B.10)

The resulting disk counts (2.12) and (2.18) then match previous definitions of counts of real rational
curves up to uniform signs and scaling.

Invariant signed counts of real J-holomorphic degree B spheres in compact real symplectic sixfolds
pX,ω, φq passing through l general points in X´Xφ and

k ”
1

2

@
c1pX,ωq

D
´ 2l
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general points in a topological component Y of Xφ were first defined in [22, 23] under some
restrictions on pB, kq. These counts depend on the choice of an OSpin-structure os on Y ; we

denote them by N
φ,os
B,l . The interpretation of these counts in terms of J-holomorphic maps from

pD2, S1q to pX,Y q in [17] relaxed the restriction on pB, kq and led to open GW-invariants

 
¨, . . . , ¨

(φ,os
β,k

:
8à

l“1

pH2˚
φ pX,Y ;Qq‘l ÝÑ Q, β PHω

2;φpX,Y q, kPZ`, (B.11)

enumerating J-holomorphic degree β disks so that

N
φ,os
B,l “ 2l´1p´1qpk2q

ÿ

βPHω
2;φpX,Y q

dY pβq“B

 
PDXprptsq, . . . ,PDXprptsqloooooooooooooooomoooooooooooooooon

l

(φ,os
β,k

. (B.12)

The scaling factor of 2l´1 above is because each real J-holomorphic sphere passing through l con-
jugate pairs of points corresponds to 2 disks passing through l conjugate pairs of half-points. The
precise sign is provided by [4, Thm 13.2]. Since R “ Q and pX,ω, Y q satisfy the conditions of
Proposition B.1 and B.2, the open GW-invariants (B.9) are well-defined in this case. In light of
this identity, the next statement is analogous to [19, Thm 5].

Theorem B.3 Suppose pX,ωq is a compact real symplectic sixfold, Y is a topological component
of Xφ, and os is an OSpin-structure on Y . If pX,ω, Y q satisfies (1.4) and (1.5), then the disk
counts (B.9) and (B.11) agree.

We now return to compact real symplectic manifolds pX,ω, φq of dimensions 2n with arbitrary
odd n. Let Y ĂXφ be a topological component as before,

pH2˚
φ;´pX,Y ;Qq “

 
γ P pH2˚

φ pX,Y ;Qq : deg γ R4Z
(
,

H2˚
φ;´pX;Qq “

 
γ PH2˚pX;Qq : φ˚γ “ ´γ, deg γ R4Z

(
.

A real bundle pair over pX,φq consists of a complex vector bundle E ÝÑX with a conjugation rφ
lifting φ. The fixed locus E

rφ of φ is then a real vector bundle over Xφ. Let

µ
rφ
Y : H2pX,Y ;Zq ÝÑ Z

be the Maslov index of pE,E
rφ|Y q.

As introduced by Georgieva in Definition 1.3 of [10], a φ-orientation on pX,φ, Y q consists of a real
bundle pair pE, rφq over pX,φq such that

µω
Y pβq ” 2µ

rφ
Y pβq mod 4 @ β PH2pX,Y ;Zq with φ˚β“´β, (B.13)

an OSpin-structure osE on E|Y ‘TY , and a choice of representatives βi P Hω
2 pX,Y q for the el-

ements of Hω
2;φpX,Y q in (B.4). The existence of an OSpin-structure on E|Y ‘TY implies that

w2pTY q “ w2pEq|Y . A φ-orientation pE, rφ; osEq determines an orientation of detDu for every J-
holomorphic map u : pD2, S1qÝÑpX,Y q and thus an orientation on the moduli spaces M‹

k,Lpβ; Jq
of J-holomorphic disks. A φ-orientation also determines real GW-invariants

 
¨, . . . , ¨

(φ
β
:

8à

l“1

H2˚
φ;´pX;Qq‘l ÝÑ Q, β PHω

2;φpX,Y q´qY
`
H2pX;Zq

˘
, (B.14)
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enumerating real J-holomorphic degree dY pβq spheres without point constraints in Y . The equality
of the dimensions of the moduli space and the constraints implies that µω

Y pβq” ń 3 mod 4 whenever
the invariants (B.14) do not vanish.

Theorem B.4 Suppose pX,ωq is a compact symplectic manifold of real dimension 2n with ně3
odd, Y is a topological component of Xφ, γ1, . . . , γl P pH2˚

φ;´pX,Y ;Qq, pE, rφ; osEq is a φ-orientation

on pX,φ, Y q, and J PJ φ
ω is generic. Let αPCφ

ωpY q be generic so that βpαqRqY pH2pX;Zqq, Kpαq“H,
and Lpαq ” tΓ1, . . . ,Γlu be a collection of representatives for the Poincare duals of γ1, . . . , γl. If
pX,ω, Y q satisfies (1.4) and (1.5) and the disk moduli spaces are oriented by the φ-orientation as
in [10], then the collection pbα1 ” Hq

α1PCφ
ω;αpY q

is a real bounding chain on pα, Jq. The associated

disk count (2.18) satisfies

xLpαqy˚
βpαq;H “ 21´l

 
γ1|X , . . . , γl|X

(φ
βpαq

. (B.15)

A φ-orientation pE, rφ; osEq on pX,φ, Y q determines an associated relative OSpin-structure os on Y

with w2posq “ w2pEq. By the proof of Lemma 7.3 in [10] and the statement of Corollary 3.8(1)
in [12], there exists a map

ǫ : H2pX,Y ;Zq ÝÑ Z2 with

ǫpβiq “

[
µ
rφ
Y pβiq

2

_
@βi, ǫp´φ˚βq “ ǫpβq`

µω
Y pβq´2µ

rφ
Y pβq

2
@β PH2pX,Y ;Zq, (B.16)

such that the orientations on M‹

k,Lpβ; Jq induced by pE, rφ; osEq and os differ by p´1qǫpβq. By the
second condition in (B.16), ǫp´φ˚βq “ ǫpβq if β satisfies the congruence in (B.13). If the latter is
the case for all β PH2pX,Y ;Zq, as assumed in Theorem 6 of [19], the first claim of Theorem B.4
also holds for the orientations on the disk moduli spaces induced by os (the same proof applies);
the second claim holds up to the multiplication by p´1qǫpβiq. Thus, Theorem B.4 is a more general
and precise version of [19, Thm 6].

By Theorem B.4, the open GW-invariants (B.9) depend only on the restrictions of the cohomology
insertions γ1, . . . , γl to X whenever the assumptions of this theorem are satisfied. This implication
is non-vacuous if n”5 mod 4. The resulting invariants need not vanish, as illustrated by Table 2
in [11] in the case of P5.

Remark B.5. For a relative OSpin-structure os on Y , (B.17) would also include xw2posq, dY pβ‚pηqqy
to account for the difference in the trivializations of u˚pTX, TY q and tφ˝uu˚pTX, TY q induced
by os as in the CROrient 1os(1) property in Section 7.2 of [4]. For this reason, Propositions B.1
and B.2 do not extend to relative OSpin-structures.

B.2 Proofs of (B.8) and Theorems B.3 and B.4

For αPCφ
ωpY q, define

φ˚ : D
φ
ωpαq ÝÑ Dφ

ωpαq, φ˚η “
`
β‚pηq, k‚pηq, L‚pηq, pαk‚pηq`1´ipηqqiPrk‚pηqs

˘
.
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For a collection pbα1q
α1PCφ

ω;αpY q
of maps to Y and ηPDφ

ωpαq, the composition of the map component

to X with φ induces a diffeomorphism

φ`
η : M

`
η;J ˆfb

`
pi`1, bαipηqqiPrk‚pηqs; pi,ΓiqΓiPL‚pηq

˘

ÝÑ M`
φ˚η;J

ˆfb

`
pi`1, bαipφ˚ηqqiPrk‚pφ˚ηqs; pi,ΓiqΓiPL‚pφ˚ηq

˘
.

For rαP rCφ
ωpY q, rηPDφ

ωprαq, and a collection pbrα1qrα1PCφ

ω;rαpY q
of maps to r0, 1sˆY , we define

φ˚ : D
φ
ωprαq ÝÑ Dφ

ωprαq and

φ`
rη : M

`

rη; rJ ˆfb

`
pi`1, brαiprηqqiPrk‚prηqs; pi, rΓiqrΓiPrL‚prηq

˘

ÝÑ M`

φ˚rη; rJ ˆfb

`
pi`1, brαipφ˚rηqqiPrk‚pφ˚rηqs; pi, rΓiqrΓiPrL‚pφ˚rηq

˘

in the same way.

Lemma B.6 Suppose n ” 3 mod 4 and os is an OSpin-structure on Y . If pbα1q
α1PCφ

ω;αpY q
is a

real bounding chain on pα, Jq, the signs of the diffeomorphism φ`
η is p´1qdimpαq{2`1 for every

ηPDφ
ωpαq. If pbrα1qrα1P rCφ

ω;rαpY q
is a real pseudo-isotopy on prα, rJq, the sign of the diffeomorphism φ`

rη is

p´1qdimprαq{2`1 for every rηPDφ
ωprαq.

Proof. We denote by φM : M`
η;J ÝÑM`

φ˚η;J
the diffeomorphism induced by the composition of the

map component with φ. Let

σ : Y k‚pηq ÝÑ Y k‚pφ˚ηq and σb :
ź

iPk‚pηq

dompbαipηqq ÝÑ
ź

iPk‚pφ˚ηq

dompbαipφ˚ηqq

be the diffeomorphisms reversing the orders of the components. For each Γi PLpαq, let φΓi
be an

automorphism of dompΓiq as in (B.2) with Z“dompΓiq. Define

φΓ ”
ź

ΓiPL‚pηq

φΓi
:

ź

ΓiPL‚pηq

dompΓiq ÝÑ
ź

ΓiPL‚pφ˚ηq

dompΓiq, ǫΓpηq “
ź

ΓiPL‚pηq

sgnφΓi .

The diagram

M`
η;J

//

φM

��

Y k‚pηqˆXL‚pηq

σ

��

φL‚pηq

��

ś
iPk‚pηq

dompbαipηqqˆ
ś

ΓiPL‚pηq

dompΓiqoo

σb

��

φΓ

��
M`

φ˚η;J
// Y k‚pφ˚ηqˆXL‚pφ˚ηq

ś
iPk‚pφ˚ηq

dompbαipφ˚ηqqˆ
ś

ΓiPL‚pφ˚ηq

dompΓiqoo

then commutes.

By Lemma 5.1(oos8) in [3], which applies for all n odd, with k“k‚pηq, l“ |L‚pηq|, and |L˚| “1 or

Proposition 5.1 in [17], the sign of φM is p´1qǫ
`
ospηq, where

ǫ`
ospηq “

µω
Y pβ‚pηqq

2
`
`
k‚pηq`1

˘
`
ˇ̌
L‚pηq

ˇ̌
`

ˆ
k‚pηq

2

˙
; (B.17)
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the extra binomial coefficient arises due to different orderings of the tangent spaces at the boundary

marked points here vs. [3]. The sign of the diffeomorphism σ is p´1qpk‚pηq
2 q, while the diffeomor-

phism σb is orientation-preserving. The signs of the diffeomorphisms φL‚pηq and φΓ are p´1qn|L‚pηq|

and ǫΓpηq, respectively. Combining this with Lemma 5.3, (B.3), and the second equality in (3.1),
we conclude that the sign of diffeomorphism φ`

η is p´1qǫ, where

ǫ´1 “
µω
Y pβ‚pηqq

2
`k‚pηq´

1

2

ÿ

ΓiPL‚pηq

`
codimΓi´2

˘

“
1

2
dimpαq ´

1

2

`
n´3´pn`1qk‚pηq

˘
´
1

2

k‚pηqÿ

i“1

`
dimpαipηqq`2

˘
.

(B.18)

Along (B.5) applied with α1 “αipηqăα, this establishes the first claim.

The proof of the second claim is almost identical, with the signs of the analogues of the diffeomor-
phisms σ and σb interchanged. In this case, we use (3.10) and (B.6) instead of (3.1) and (B.5).

Proof of (B.8). Since φ˚ is an involution on D
φ
ωpαq and D

φ
ωprαq, the two statements of (B.8)

follow from the two statements of Lemma B.6.

Proof of Theorem B.3. Since n “ 3, Definition 2.1(BC2) and (B.5) imply that bα1 “ H unless
α1 “p0, pt,Hq for some ptPKpαq. The open GW-invariants (B.9) are thus the sums of the signed

cardinalities of the fiber products as in (2.12) and (2.18) over η PD
φ
ωpαq satisfying (B.10). These

sums are counts of (single) disks passing through the collection Lpαq of constraints in X and |Kpαq|
points in Y traversed by the boundaries of the disks in any order and thus are precisely the disk
counts (B.11) defined in [17].

Proof of Theorem B.4. Let α1 PCφ
ω;αpY q and η PDφ

ωpα1q. If k‚pηq ‰0, bbη “ H because bα2 “ H

for all α2 PCφ
ω;αpY q. We suppose k‚pηq“0 and apply the proof of Lemma B.6 with the disk moduli

spaces oriented by the φ-orientation as in [10]. This proof now applies with

ǫ`
ospηq “ 1`

ˇ̌
L‚pηq

ˇ̌
and ǫ´1 “ ´

1

2

ÿ

ΓiPL‚pηq

`
codimΓi´2

˘

in (B.17) and (B.18), respectively. Since deg γi ”2 mod 4 for all Γi PLpαq, the diffeomorphism φ`
η

is thus orientation-reversing in this case. It follows that bbα1 “ 0. This establishes the first claim
of the theorem.

Since bα1 “ 0 for all α1 P C
φ
ω;αpY q, the open GW-invariant on the left-hand side of (B.15) is the

signed cardinality of the fiber product as in (2.18) with

η “
`
βpαq, 0, Lpαq, pq

˘
P Dφ

ωpαq.

This signed cardinality is precisely the disk count on the right-hand side of (B.15) defined in [10]
times 21´l; the scaling factor appears for the same reason as in (B.12).
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