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Abstract

The 2016 papers of J. Solomon and S. Tukachinsky use bounding chains in Fukaya’s A-algebras
to define numerical disk counts relative to a Lagrangian under certain regularity assumptions
on the moduli spaces of disks. We present a (self-contained) direct geometric analogue of their
construction under weaker topological assumptions, extend it over arbitrary rings in the process,
and sketch an extension without any assumptions over rings containing the rationals. This
implements the intuitive suggestion represented by their drawing and P. Georgieva’s perspective.
We also note a curious relation for the standard Gromov-Witten invariants readily deducible
from their work. In a sequel, we use the geometric perspective of this paper to relate Solomon-
Tukachinsky’s invariants to Welschinger’s open invariants of symplectic sixfolds, confirming
their belief and G. Tian’s related expectation concerning K. Fukaya’s earlier construction.
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1 Introduction

Let (X, w) be a compact symplectic manifold of real dimension 2n with n¢ 27, Y < X be a compact
Lagrangian submanifold, and

H*(X,Y;R) = H"" (X, Y;R)® @DH¥(X;R)
pEZ
2p#n+1
for any commutative ring R with unity 1. Fix a relative OSpin-structure os=(0,5) on Y, i.e. a pair
consisting of an orientation o on Y and a relative Spin-structure s on the oriented manifold (Y, 0).

Based on Ay-algebra considerations, K. Fukaya [6] uses bounding chains to define counts
<>ESEER with e Hyo(X,Y;7Z),

of J-holomorphic degree 5 disks in X with boundary in Y under the assumption that (X,w) is a
Calabi-Yau threefold and the Maslov index

M?;HQ(X,Y,Z) — 7 (11)

of Y vanishes. These counts do not depend on the choice of bounding chains, but may depend on
the choice of the almost complex structure J compatible with (X,w).

Motivated by [5, 6] and after some preparation in [18], J. Solomon and S. Tukachinsky [19] use
bounding chains in Fukaya’s Ay -algebras to define counts

0]
Yok 69 *X,Y;R)® — R, BeHyX,Y:Z), keZ?°, (1.2)
1=0

of J-holomorphic disks in (X,Y) under the assumption that the (uncompactified) moduli spaces
Mo ,o(5;J) on unmarked J-holomorphic degree 3 disks are regular and the evaluation maps

eVb1: 9ﬁ170(,6; J) E— Y

from the moduli spaces of disks with one boundary marked point are submersions. If Y is an
R-homology odd-dimensional sphere, the relevant bounding chains exist and the counts (1.2) are



independent of the choices of bounding chains. These counts also remain invariant under deforma-
tion of the almost complex structure that respect the above regularity assumptions. The authors
of [19] call the counts (1.2) open Gromov-Witten invariants. Inline with G. Tian’s perspective on
K. Fukaya’s construction in [6], they expect these invariants to be related to Welschinger’s open
Gromov-Witten invariants [24], which count multi-disks weighted by self-linking numbers.

As informally noted by the authors of [18, 19] and by P. Georgieva (who described the idea below
to the author), the construction in [19] based on primarily algebraic considerations should have a
geometric interpretation generalizing [24] via linking numbers of arbitrary-dimensional cycles in Y.
More precisely, suppose C is a generic collection of constraints in Y and X so that the (expected)
dimension of the space Dcs(8, C) of J-holomorphic degree 5 disks in (X,Y’) passing through C
is 0. A relative OSpin-structure os then determines a signed cardinality n%s(C) of this finite set.
For any splittings

B=01+62¢€ HQ(X,Y;Z) and C=CuCy (1.3)

of the degree and constraints, the total (expected) dimension of the circle bundles Bds(5, Cy)
and Bds(f2,C3) in Y formed by the boundaries of the disks in Decs(f81, C1) and Des(fs2, Co),
respectively, is n—1, the correct dimension for taking a linking number 1k 5(C1, Cg) of Bds(51, C1)
and Bds(f2,C2) in Y. A lift of a generic path of almost complex structures J; and constraints C;
to Des(B, C) could terminate at a nodal disk corresponding to a pair of disks in Des(f1, Cy) and
Dcs(32, C2) intersecting along their boundaries. Its lift to Decs(51, C1) x Des(B2, Co) also passes
through this pair of disks, with a change in the associated linking number lkj 5(Ci,Cs). One
might thus hope that some combination of the numbers nf’(C) and Ikj 5(Ci, Cs2), with (51, Cr)
and (B2, Cs) as in (1.3), remains invariant over a generic path of almost complex structures J; and
constraints C;.

If n =3, the families Dcs(51,C1) and Dces(f2, Ca) are compact, as needed for defining a linking
number lkz ;5 (C1, Cq) of Bds(81, C1) and Bds(82, C2). The reasoning in the previous paragraph
then leads to the open Gromov-Witten invariants of [24] enumerating linked multi-disks. If n>3,
these families are generally not compact, as the disks in Des(f5;, C;) might degenerate to nodal disks.
The resulting (codimension 1) boundaries of Bds(5;, C;) then need to be canceled in some way.
J. Solomon and S. Tukachinsky do so by choosing auxiliary differential forms, which are then
integrated over moduli spaces of J-holomorphic disks, in a consistent manner.

The present paper is a geometric “translation” of (some of) the definitions and arguments in [18,
19] in terms of auxiliary bordered pseudocycles to Y, chosen in a consistent manner, which are
intersected with moduli spaces of J-holomorphic disks. This “translation” makes sense of the
linking number picture above and realizes [19, Fig 1]. It applies over any commutative ring R
with unity under the topological assumptions that

w(B) >0, {c1(X,w),B)>3-dimY = {e1(X,w),B) =0 (1.4)
for every spherical class Be Ho(X;Z) and
WB) >0, W(B)>3—dimY — (5 >0 (15)

for every e Ho(X,Y;Z) representable by a map from (D?, S'). In order for the regularity assump-
tions of [19] to hold for a fixed almost complex structure J, the last inequalities in (1.4) and (1.5)



must hold for all B representable by J-holomorphic maps from S? and for all 3 representable by
J-holomorphic maps from (D?, S'), respectively. By (1.4) and (1.5), the regularity assumptions
of [19] hold over the moduli spaces of simple J-holomorphic disk maps for a generic w-compatible
almost complex structure J on X and the images of the multiply covered maps under evaluation
maps are of codimension at least 2. If Y is an R-homology odd-dimensional sphere, the disk counts
we construct are independent of the choice of J and thus are invariants of (X,w, Y 0s); this is a
stronger invariance property than in [19]. The main statements of the present paper are Theo-
rems 2.7 and 2.9. In Appendix A, we sketch an adaptation of the geometric construction described
in this paper compatible with standard virtual class approaches.

The idea behind the notion of bounding chain of Definition 2.1, which is a geometric analogue
of the notions used in [6, 18, 19], can be roughly described as follows. Let € Hy(X,Y;Z) and
C be a generic collection of constraints in Y and X. A boundary stratum S of Bds(s3,C) is
the total space of the S'v Sl-bundle formed by the fibers of Bds(;, C1) over Dcs(B1, Cq) and
Bds(2, C2) over Dcs(f2, Ca) that intersect in Y, for some (81, Ci) and (52, C2) as in (1.3). Sup-
pose, by inductive hypothesis, that we have already defined closed cycles bb(51, C1) and bb(53, Cs)
in Y containing Bds(f1, C1) and Bds(f2, Ca), respectively. If Y is a homology sphere and the di-
mension of Bds(f2,Cs) is not 0 or n, we can take a bordered pseudocycle b(f2,Cs) in Y that
bounds bb(Bs, Cz). The fibers of Bds(81,Cy) that intersect b(82,C2) in Y form an S!-bundle
bb(B1,Cq; B2, C2). The fibers of Bds(f1,C1) that intersect Bds(S2, C2) < db(f2,C2) in Y form
part of dbb(f1,Cy;P2,C2). Since this part is isomorphic to S, we can glue bb(8;, Cy; f2, C2)
to Bds(3, C) along their common boundary. Doing this for all (81, Cy) and (2, C2) satisfying (1.3),
we eliminate the boundary of Bds(3, C). (By the nature of this construction, the remaining parts
of the boundaries of the various pseudocycles bb(31, Cy; 2, C2) cancel with each other in a sim-
ilar manner.) We thus obtain a closed cycle bb(/3,C) in Y and complete the inductive step; see
Lemma 3.1 and the proof of Proposition 2.4. If the dimension of this cycle is n, we can take its
degree and obtain a count of J-holomorphic disks in (X,Y’) as in (1.2). If Y is a homology sphere,
this count does not depend on the choice of b(52, C2) above; see Section 2.2.

Analogously to [19], we relate the disk counts arising from the bounding chains of Definition 2.1
to the real Gromov-Witten invariants of [22, 23, 17, 10] in the appropriate real settings; see The-
orems B.3 and B.4. We also translate the statements of the WDV V-type relations for the open
Gromov-Witten invariants obtained in [20] into relations for these disk counts; see Theorem 2.10.
Combining Theorems 2.9 and 2.10, we obtain an intriguing relation between the standard, closed
Gromov-Witten invariants of (X, w); see Corollary 2.11. In [2], we show that the open invariants of
Theorem 2.9 reduce to the open Gromov-Witten invariants of [24] if n=3, as expected in [19] and
earlier envisioned by G. Tian based on [6]. This then yields WDV V-type relations for Welschinger’s
open invariants.

We hope that our geometric interpretation of Solomon-Tukachinsky’s construction of open GW-
invariants will make them accessible to a broader audience and will be developed further. Via
relatively orientable pseudocycles (as defined in [1]), this interpretation might lead to a construction
of such invariants for the cases when n is even or the Lagrangian Y is not orientable. Along with a
similar geometric interpretation of [20], this should in turn lead to WDV V-type equations for open
GW-invariants in such settings as well.



Remark 1.1. The present paper is based on the first version of [19]. While this paper was be-
ing completed, the second version of [19] partly extended (1.2) to odd-dimensional cohomology
on (X,Y) and even-dimensional Y. The signs are a more delicate issue in these cases.

The author would like to thank Penka Georgieva for hosting her at the Institut de Mathématiques
de Jussieu in March 2019 and for the enlightening discussions that inspired the present paper. She
would also like to thank Sara Tukachinsky and Jake Solomon for clarifying some statements in [20]
and Aleksey Zinger for many detailed discussions and help with the exposition.

2 Setup and main statements

2.1 Notation and terminology

For ke Z>°, we define [k] = {1,2,...,k}. We denote by D? c C the unit disk with the induced
complex structure, by D?vD? the union of two disks joined at a pair of boundary points, and by
S1cD? and S'vS! cD?vD? the respective boundaries. We orient the boundaries counterclockwise;
thus, starting from a smooth point zo of S'v S, we proceed counterclockwise to the node nd, then
circle the second copy of S! counterclockwise back to nd, and return to o counterclockwise from nd.
We call smooth points xg, 1,...,z; on St or S'v .S ordered by position if they are traversed in
counterclockwise order; see the first diagram in Figure 1 on page 19.

Let Y be a smooth compact manifold. For a continuous map f: Z—Y, let

f) = [/(Z-K)

KcZ cmpt

be the limit set of f. A continuous map f: Z—Y from a manifold, possibly with boundary, is a
Zo-pseudocycle into Y if there exists a smooth map h: Z’—Y such that

dim2Z’' <dimZ-2 and  f(02),Q(f) c h(Z).

The codimension of such a Zs-pseudocycle is dimY —dim Z. A continuous map f: Z—Yisa
bordered Zs-pseudocycle with boundary f: Z—Y if there exist an open subset Z* ¢ Z and a
smooth map h: Z'—Y such that

Z*c0Z, flzx = flzx, dimZ' <dimZ-2, f(Z2-2%),f(02-2%),9(f) c h(Z).

Throughout the paper, we take oriented pseudocycles with coefficients in a commutative ring R
with unity. Every R-homology class in a manifold can be represented by a pseudocycle in this
sense, which is unique up to equivalence; see Theorem 1.1 in [25].

Let (X,w) be a compact symplectic manifold of dimension 2n, Y < X be a compact Lagrangian
submanifold,
HY(X,Y) ={BeHy(X,Y;Z): w(B)>0 or =0}, (2.1)

and 7, be the space of w-compatible almost complex structures on X. We denote by PC(X) the
collection of pseudocycles to X with coefficients in R, by FPC(X) the collection of finite subsets
of PC(X), and by FPt(Y") the collection of finite subsets of Y. Let

Co(Y) = {(B,K, L): peHy(X,Y), KeFPt(Y), LeFPC(X), (8, K, L)#(O,@,@)}. (2.2)



This collection has a natural partial order:
(B ,K',L') < (8,K,L) if —p' e HY(X,Y), K'cK, and L'cL. (2.3)

The elements (0, K, L) of C,(Y) with |K|+|L| =1 are minimal with respect to this partial order.
For each element a= (3, K, L) of C,(Y), we define
Bla)=p, K(o)=K, L(a)=1L,

dim(a) = p(B) +n—3—(n—1)|K|— > (codimT=2), Cua(Y) = {o/€Cu(Y): o’ <a}.
I'eL

For a=(8, K, L)eC,(Y), let

Dafa) = {(ﬁ.,k.,L.,mz)@e w)): BeE HE (X, V), ko770, Loc L, aseCu(Y) Vie[ka],

ke ke e (2.4)
(Bas ko, L) # (0,1, &), Bt Y, Blai) =B, | |K (i) =K, L.u|_|L(az»>=L}-
i=1 i=1 i=1
Since a; < « for every
77 - (/807k07L.7 (al)ze[ ) (/807k07L07(ﬁ17K17L )7,6[ ]) € Dw(a) (25)

and every i€ [ks], ke =0 if v is a minimal element of C,,(Y). Thus,

D, (0, {pt},F) = @ VpteY and D,(0,,{T}) = {(0,0,{T'},()} VIePC(X).

For neD,(«) as in (2.5) and i€ [k.], we define

50(77) = Boa k?-(77) = k'? L-(U) = L07
Bi(n) = Bi, Ki(n) = Ki, Li(n) = Li, «i(n) =i = (8, Ki, Ly).

We denote by f’?](X ) the collection of bordered pseudocycles to [0,1] x X with coefficients in R
and boundary in {0, 1} x X, by FPC(X) the collection of finite subsets of PC(X), and by FPt(Y)
the collection of finite sets of paths in [0,1] xY from {0} xY to {1} xY. We define the partially
ordered set C(Y ) as in (2.2) and (2.3) with FPt(Y") replaced by FPt(Y) and FPC(X) by FPC(X).
For an clement &= (3, K, L) of CNW(Y), we define the collection D, (&) as in (2.4) with C,(Y), K,
and L replaced by CNM(Y), K, and L, respectively. Let

dim(&) = 5 (8)+n—3—(n—1)|K|- Y (codimT'—2), C,a(Y) = {&deC,(Y): & <a}.
Fel

We define 5(a), K (&), L(d) for & € Co(Y) and Bu (@), k(@) Lo (@), Bi(@), Ki(@), La(i), & (7)) for
n€D, (&) similarly to the analogous objects for «€C,(Y) and ne D, («).

For Ty, I'1 e FPC(X) and I'e FPC(X), we write

oL = {1} xI'1 —{0} xTg



if |Tol, |T1| = ]f’] and there is an ordering Fo;i,l“ln-,fi of the elements of Fo,Fl,f‘, respectively,
so that N
6I‘Z = {1} xFl;i — {0} Xro;i Y.

For Ko, K1€FPt(Y) and K eFPt(Y), we write
0K = {1} x K1 —{0} x K
if the analogous condition holds. For ag, a1 €C,(Y) and aeC,(Y), we write

0a = {1} xa1—{0}xag if B(a),B(c1) = B(a),
OK (&) = {1} x K (o) — {0} x K (ag), OL(&) = {1} x L(a1)—{0} x L(ayg) .

If in addition n9€ D, (), m €Dy (1), and €D, (&), we write

on={1}xm—{0}xno if Be(no), Be(m) = Be(), ke(m0),ke(m) = ka(7),
OLe(7) = {1} x La(m) —{0} x La(no), 0cvi(i) = {1} x cvi(m) —{0} x i (o) Vi€ [ka ().

Let k€ Z>% L be a finite set, € HY(X,Y), and J € J,. We denote by EITZI:L(,B;J) the moduli
space of stable simple J-holomorphic degree 8 maps from (D?, S') and (D?vD?, S'vSt) to (X,Y)
with the interior marked points indexed by L and the boundary marked points indexed by 1,...,k

and ordered by the position. A relative OSpin-structure 0s on Y determines an orientation 0,5
of Dﬁ:L(ﬂ; J); see Section 5.2. For i € [k] and i€ L, let

evbizi)ﬁ,‘;L(B; J)—Y and evii:fm,:L(ﬁ;J)—>X

be the evaluation morphisms at the i-th boundary marked point and the i-th interior marked
point, respectively. If M c Em: 1 (B;J), we denote the restrictions of evb; and evi; to M also
by evb; and evi;.

If in addition m,m/eZ>Y,

(bs: Zy,—Y) and  (Ts: Zp,— X)

se[m] se[m/]

are tuples of maps and iy, ...,i,€[k] and ji, ..., j,v €L are distinct elements, let

M, ((is, bs)se[m]§ (Js Fs)se[m’])

= Mevb,, ,....evb evijl,...,evijm/)xb1><...><bm><I‘1X...me/(Zb1 X X Ly X Zpy X X Zp )

be their fiber product with M; see Section 5.1. If M is an oriented manifold and by and I'y are
smooth maps from oriented manifolds satisfying the appropriate transversality conditions, then we
orient this space as in Section 5.1. For i€ [k] with i#4, for any se[m] (resp. i€ L with i # j, for
any s€[m’]), we define

evb; (resp. evi;): fob((is,bs)se[m]; (js,FS)Se[m/]) —> Y (resp. X)

to be the composition of the evaluation map evb; (resp. evi;) defined above with the projection to
the first component.



For a path J= (Jt)te[m] in J,, let

MF (B T) = {(t,): te[0,1], ueME, (B; 1)}
For i € [k] and i€ L, we define

~

evb;: M* (8;J) — [0,1]xY,  evbi(t,u) = (t,evbi(u)),  and
evig: MF (B ) — [0,1]x X, eviy(t,u) = (t,evis(u)),

\/2

respectively. For M mx, (6; j), tuples (%S)se[m] and (fs)se[m/] of maps to [0,1]xY and [0, 1]x X,
respectively, i1,...,im€[E], J1,- .., Jm €L, and i€[k] (resp. i€ L) as above, we define

é—;Bi (l"esp. erVlz) fob((i& Es)se[m]; (jSa 1N—‘s)se[m’]) - [07 1] xY (resp. [07 1] X X)

as in the previous paragraph.

A relative OSpin-structure 0s on Y determines an orientation on im,:‘ (B J ) with the base direction
first. In other words, the exact sequence

o—mmﬁwm—ﬂmmh@>“wﬂwu 0

induced by the projection e to [0, 1] at a regular pomt (t,u) of e is orientation-compatible (as defined
in Section 5.1) if and only if the dimension of Emk L(B, J¢) is even. If b and Ty are smooth maps
from oriented manifolds, then a relative OSpin- structure 0s on Y also determines an orientation
on the above fiber product space.

By the assumptions (1.4) and (1.5), products of the evaluation maps from Sﬁ,’: (B3 J) are bordered
pseudocycles for a generic w-compatible almost complex structure J on X. Since py(8) € 2Z

for all 5, the same applies to products of evaluation maps from zm (B ) for a generic path J
of w-compatible almost complex structures between two generic w- compatlble almost complex
structures Jy, Ji.

2.2 Bounding chains
Let R, (X,w,Y), n, and o0s be as before with n>3 odd. Thus,
dim(a) € 2Z Vael,(Y) (2.6)

if the dimension of every pseudocycle I'e L(«) is even. This implies that the pseudocycles b/, bg,
bb,s, and bbs of Definitions 2.1 and 2.2, (2.11), and (2.16) below satisfy

dim b/, dimbby € 2Z and dimbb,/, dim by ¢ 27Z Vo' eCua(Y), &'GCNw;&(Y) . (2.7)
For n € D, () for some aeC,(Y) and J € J,,, let

My = MGl ) D, =ME (Bl ). 23)
For 7j € D,,(&) for some &eC,(Y) and a path J in 7, define
L= +  _ gpx
m mdJ T mk (7] (5'( ) )7 mﬁ,j_ mk.(n)JrlL (5'( ) )

For a point pteY, we denote its inclusion into Y also by pt.



Definition 2.1. Let a= (5, K, L)eC,(Y) be generic so that the dimension of every pseudocycle
I'e L(a) is even and J€ J,, be generic. A bounding chain on (a, J) is a collection (bys)arec,,.(v) Of
bordered pseudocycles to Y such that

(BC1) dim b, =dim(a’)+2 for all &/ €Cpo(Y);

(BC2) by =g if dim(a/) <—2 and o/ # (0, {pt}, &) for any pte K or if dim(a/) =n—1;

(BC3) b0 (pt}, @) pt for all pte K;

(BC4) for all &’€C,,,o(Y") such that dim(a/) <n—2,

(9[10/ = <eVb1: U (_1)’?-(77)5):)1;;(] be((i-l-l, bai(ﬁ))ie[k-(n)]; (’L I; )1" €Le(n )) —> > (29)
n€Dy ()

Since the dimension of every pseudocycle I'e L to the even-dimensional space X is even, Lemma 5.3
implies that the oriented morphism

b, = (evblz (1) X, (i1, By Diefia (s (6 Do) — ) (2.10)

in (2.9) does not depend on the choice of identification of L4(n) with [|L.(n)|]; see the first diagram
in Figure 1 on page 19. By Lemma 3.1, the map

bby= | oo, (2.11)
neDy, (o)

with orientation induced by the OSpin-structure os is a pseudocycle for every o/ €Cp.o (Y)u{a}. If
in addition dim(a) =n—1, then bb, is a pseudocycle of codimension 0. It then has a well-defined
degree, and we set

(Lyg = degbb,. (2.12)

In general, this degree may depend on the choices of J, | K| points in Y, pseudocycle representatives
['e L for their homology classes [['|x in X, and the bordered pseudocycles (bos)arec, .o (v)-

Definition 2.2. Suppose ag, a1 €C,(Y) and Jy, J1 € T, are generic, the dimension of every pseudo-
cycle I'e L(ayp) is even, and (bo,a’)arec,in, (v) a0d (b1,0/)avec,,.q, (v) are bounding chains on (o, Jo)

and (o, Jy), respectively. Let &€C,,(Y) be generic with
oa = {1} x a3 —{0} x g (2.13)

and J = (Jt)teo,)] be a generic path in J, from Jo to Ji. A pseudo-isotopy on (@, j) be-
tween (bo.o/)arec,,. g (v) and (bl;a’)a’eCu;al(Y) is a collection (ba/)&’e(j'w;&(Y) of bordered pseudocycles
0 [0,1] xY such that

dim by =dim(&’)+3 for all & egwa( Y);

by = 1fd1m( < —2 and & # (0, {pt}, &) for any pte K (&) or if dim(&’)=>n—1;

b =pt for all pteK,

}-U
w2
w

(0,{pt},2)

(PS1)
(PS2)
(PS3)
(PS4) for all a{€Chiay(Y), &) €Cuia, (Y), and &’e@w;&(Y) such that

PS4

a' = {1} xa) —{0} x (2.14)



and —2 <dim(&’) <n—2,
by =<€§f)1: U (—1)(k.2(ﬁ))m%:jxfb((i+17 bz, iclka ()3 (6 T e, ) — [051] ><Y>
€D (&)
+{1} xby,0r —{0} x bo,q -
Definition 2.3. Let ag,a; and Jy, J1 be as in Definition 2.2. Bounding chains (bO;a’)a’eCw;ao(Y)
and (bl;a/)alecw;al(y) on («ap, Jo) and (aq, J1), respectively, are pseudo-isotopic if there exist J and &
as in Definition 2.2 such that IT'nY = J for every I'e L(&) with dimI" =n and a pseudo-isotopy

~

(b&/)a’eéu;a(Y) on (&a J) between (bO;a’)a’ECw;aO(Y) and (bl;a’)a’ecw;al(Y)-

With the notation and setup as in Definition 2.2, the dimension of every pseudocycle fei(&) to
the odd-dimensional space [0,1] x X is odd. Along with Lemma 5.3, this implies that the oriented
morphism

~

—~ ke (1) . .
bbﬁE <evb1: (—1)( 2! )mt;ijb((Z+17 b&i(ﬁ))ie[k.(ﬁ)]Q (1, Fi)f‘iez.(ﬁ)) — [0, 1] x Y> (2.15)
in (PS4) does not depend on the choice of identification of L (7) with [|L.(7)|].

Let oy €Curao (Y){an}, o) €Cuia, (Y)U{ar}, and &/G(Z,J;&(Y)U{&} be so that (2.14) holds and bby,.,
and bby,,, be the pseudocycles as in (2.11) determined by the bounding chains (bo;a/)afecw;ao(y)
and (bl;a’)a’ecw;al(Y)v respectively. By Lemma 3.3, the boundary of the bordered pseudocycle

bby = | Jbby (2.16)
7€Dw (&)

is {0} xbbg,; —{1}xbbyo . If in addition dim(ag) =n—1 (or equivalently dim(c;)=n—1), then the
above implies that
deg bbg.o, = degbby,q, .

Thus, pseudo-isotopic bounding chains determine the same numbers (2.12).

Propositions 2.4 and 2.5 below are geometric analogues of the surjectivity and injectivity statements
of [19, Thm 2]. They guarantee the existence of bounding chains and their uniqueness up to pseudo-
isotopy under the topological conditions determined by the authors of [19].

Proposition 2.4 Let « and J be as in Definition 2.1. If Y is an R-homology sphere, then there
exists a bounding chain (by/)arec,,.. (v) o0 (@, J).

Proposition 2.5 Let ag, a1, @, Jo, J1, J, and (bo;a/)a’ecw.,ao(Y) and (bl;a’)a’e(}w;al(Y) be as in Defini-
tion 2.2 so that TY = ¢ for every Te E(&) with dim'=n. If Y is an R-homology sphere, then there

~

exists a pseudo-isotopy (b&’)&'eCNWA&(Y) on (&, J) between (bo,a)aec,.a, (v) @04 (b1;07)arec,n, (v)-

Remark 2.6. By the assumption (1.5) and Definition 2.1(BC2), b, =& if K(o/), L(a/)=¢J. Thus,
all non-empty bordered pseudocycles by, ;) in the fiber product (2.9) are distinct. This implies that
this fiber product is transverse if the bordered pseudocycles b, with o’ <’ are chosen generically.
The same considerations apply to the fiber product in Definition 2.2(PS4).
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2.3 Definitions of open Gromov-Witten invariants

Let (X,w,Y), n, and o0s be as before. Suppose in addition that fe HY(X,Y), K Y is a finite
subset, and L = {I'q,...,I';} are generic pseudocycles to X of even dimensions. The genericity
assumptions in particular include that each I'; is traverse to Y and thus disjoint from Y if the
dimension of ['; is less than n. We denote by

[[i] € Ho(X;R) (resp. [I] € Hy(X,Y; R))
the homology class of I'; if the dimension I'; is not n—1 (resp. is n—1).
Let a= (8, K, L), J€ J,, be a generic, and (ba/) e, (v) Pe @ bounding chain on («, J). For pte K

and I'e L, define
a;t = (’B’K_{pt}’L) and O‘(lc—‘ = (ﬁ’ KaL_{F})

The bounding chain (ba/)aec,, .. (v) determines a count
w,apt

(L) oy = deg bag,

as in (2.12) of J-holomorphic multi-disks through k& points in Y, the pseudocycles I';, and the
auxiliary pseudocycles b, with o/ < agg- As noted after Definition 2.2, this count does not depend
on the input (ag,J) and (bi%a’>a’60w;a§)t (v) that differs by a pseudo-isotopy. Below we provide

geometric interpretations of two other versions of such counts. In an analogy with Lemma 4.9
in [20], the three counts agree on the overlaps of the domains of their definitions in suitable
settings; see Theorem 2.7(2).

We denote the signed cardinality of a finite set S of signed points by |S|*. If S is not a finite set
of signed points, we set |S|*=0. For I'e L, let

DL (a) = {neDy(a): TeL.(n)}. (2.17)

If in addition neD,, (), let

() = =5 i ka(n) 20, ©n) = i k() #0,
1, if ko(n) =0; 1, if ko (1) =0.

For 7€ D,,(&') for some & €C,,(Y), we define s*(7) similarly. Define

+
Dhx= D (—1)k'(")5*(77)’9ﬂn;J X (%, Bovy (1) iehee ()] (iari)FieL.(n))’

€D, ()

K . » (2.18)
T3 2 <F>B;7Kf{pt} ;
pteK
r o ) ) *

<L—{F}>5;K = Z (—1)k(s (W)‘fmw X (7 Bas () )ieke ()] (Z7Fi)rieL.(n))' : (2.19)

neDg (@)

Both numbers above vanish unless dim(a)) =0. Let

gy : Ha(X;Z) — Hy (X, Y Z) (2:20)
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be the natural homomorphism. By Definition 2.2, a pseudo-isotopy between bounding chains on
pairs (ayg, Jo) and (o, J1) determines a bijection between the sets L(ap) and L(a) of pseudocycles
to X.

Theorem 2.7 Suppose (X,w) is a compact symplectic manifold of real dimension 2n with n>3

odd, Y c X is a compact Lagrangian submanifold, € Ho(X,Y;Z), os is a relative OSpin-structure

on Y, and the conditions (1.4) and (1.5) hold.

(1) Let g, a1, Jo,J1, and (bO;a’)a’GCW;QO(Y) and (bl;a’)o/ecw;al(Y) be as in Definition 2.2. If the
bounding chains (bO;a’)a’eCw;ao(Y) and (bl;a/)a/ecw;al(y) are pseudo-homotopic, then the num-
bers (2.12) associated to them are the same. If in addition

K(ag) # I or  B¢Im(gy: Ho(X;Z)— Ho(X,Y; Z)), (2.21)

then the numbers (2.18) (resp. (2.19)) associated to the two bounding chains are also the same.
(2) Let a, J, and (bor)avec,.q(v) be as in Definition 2.1. If pte K(a), then

Lgik oty = Lbixc - (2.22)
If Te L and the condition (2.21) with «g =« is satisfied, then
r
L=ATH gk = Dfuxc - (2.23)

For a, J, and (bos)arec, . (v) @s in Definition 2.1, o' €Cy:a(Y), and neDy(a’), define

ke ()

bby. ;= (—1)("2 )fmn;J X 1b((1 Bas () ie[ke ()13 (6 TidTieLa () -

~

With the assumptions as in Theorem 2.7(1), let (&, J) and (bs/)
For &’GCNM;EY(Y) and 7€ D, (&), define

&el, 5 (Y) be as in Definition 2.3.

ke (1) . e
b0 = (=1) 0200, (4, b, e s (0 T ) -
As already noted, the sentence containing (2.16) implies the claim of Theorem 2.7(1) concerning
the numbers (2.12). Suppose dim(&)=0. We show in Section 3.2 that

a( |_|s*(ﬁ)bb:~;>: | |s*(m) ({13 x 662 ) — | ] s*(no) (0} x bb% 50) - (2.24)

7€Dw (&) m€Dy (1) 10€Dw ()

This implies the claim of Theorem 2.7(1) concerning the numbers (2.18). The claim of Theo-
rem 2.7(1) concerning the numbers (2.19) then follows from (2.23). The condition (2.21) precludes
sphere bubbling; it ensures that the stable map compactification of 90,.; contains no additional
codimension one boundary for any 7 € D, (a). The proof of Theorem 2.7(2) in Section 3.3 is a
fairly straightforward application of the orientation comparisons for fiber products collected in
Section 5.1.

Let Be HY(X,Y), keZ?°, and L={I'1,..., T} be as above. If the number (2.12) with |K|=k—1
and the number (2.18) with |K|=k do not depend on the choices of the relevant bounding chains
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or on K cY, we will denote all three numbers (2.12), (2.18), and (2.19) by (I'y, ... ,FOE]}?; there is
then no ambiguity in this notation by Theorem 2.7(2). If in addition this number does not depend
on generic choices of pseudocycle representatives for the homology classes [I';], let

0], gy =T TS € R (2.25)

In this case, we obtain open GW-invariants as in (1.2) via the Poincare and Lefschetz Dualities
PDy: H,(X;R) => H* ?(X;R), PDxy:H,(X-Y;R) = H* ?(X,Y;R);  (2.26)

see Theorems 67.1 and 70.2 in [15], for example. By Propositions 2.4 and 2.5, all of the above
independence assumptions are satisfied in particular if Y is an R-homology sphere. For dimensional
reasons, the numbers (2.25) vanish unless

-

15 (B)+n—3 = (n—1)k+ ), (codimT';—2). (2.27)

1

]

Remark 2.8. If (X,w,Y) satisfies (1.4) and (1.5), there are no nonzero counts of J-holomorphic
disks without constraints due to dimensional reasons. As shown in the proof of (2.22) in Section 3.3,
the signed cardinalities of the ko(n) fiber products in (2.19) obtained by circularly permuting the
components of (a;(1))ie[k, ()] are the same. Therefore, the sum in (2.19) can be re-written without
Se(n) = 1/ke(n). Along with Theorem 2.7(2), this implies that (2.12), (2.18), and (2.19) provide
counts of J-holomorphic disks in (X,w,Y’) with coefficients in any commutative ring R with unity
under the assumptions (1.4) and (1.5).

2.4 Properties of open Gromov-Witten invariants

Let (X,w) be a compact symplectic manifold of real dimension 2n, Y < X be a connected compact
Lagrangian submanifold, and os be a relative OSpin-structure on Y. Denote by [Y]x € H,(X; R)
the image of the fundamental class of Y with respect to the orientation determined by os. The
kernel of the homomorphism

H, (X-Y;R) — H,_1(X;R)

is generated by the homology class [S(NV,Y)] of a unit sphere S(N,Y) in the fiber of N'Y over any
yeY. We orient S(NV,Y) as in [3, Sec 2.5] and denote the image of [S(NV,Y')] under the p=n—1
case of the Lefschetz Duality isomorphism (2.26) by 1% y-. For Be Ha(X;Z), let

o0
Cos ¥ H*(X;R)® — R
=1

be the standard GW-invariants of (X, w).

The properties of the open GW-invariants (2.29) stated below are as in Theorem 4 of [19] and
Corollary 1.5 and Theorem 6 of [20]. The first four of them are the direct analogues of standard
properties of the closed GW-invariants. The fifth property, called Wall crossing in [20], is the
direct generalization of Proposition 2.1 in [3]. The two remaining properties describe new geometric
phenomena discovered in [20].
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Theorem 2.9 Let (X,w) be a compact symplectic 2n-fold with n>3 odd, Y be a connected com-
pact Lagrangian submanifold, os be a relative OSpin-structure on Y, k,1€ Z>°, and fe HY(X,Y)
with

k#@ or  B¢Im(qy: Ho(X;Z)— Hy(X,Y; 7). (2.28)
Suppose the assumptions (1.4) and (1.5) are satisfied and the numbers (2.18) with |K|=Fk do not
depend on the choices of the relevant bounding chains, K <Y, or generic choices of pseudocycle
representatives I'; € L in their homology classes [I';]. The open GW-invariants (2.25) then determine
symmetric multilinear functionals

e}
AN @H*(X,Y;R)® — R (2.29)
1=0
with the following properties.
(OGW1) {(v,... ,71>5’°5 =0 unless (2.27) with codimI'; replaced by deg~; holds.

(OGW2) T B=0, (... 0 = {<vl,pt>, if (k. )= (1,1);
— oty B,k

0, otherwise.

(OGW?’) <1,’Y2a e 77l>ﬂ:k =

(OGW4) If 70€H2(X5Y;R)7 <70|X771a s a7l>w = <70,5><’717 s 77l>ﬂ705

(OGWS5) (Y y s 115+ s Wik = e e s W st
(OGW6) If k=1 and yvge H"(X; R),

o, [Y1x){ s - Zzﬁ = Z(—1)<w2(°5)’3><PDX([Y]X),’Ym71\X7---,’Yz|X>°;-
Beqy ' (8)

0, otherwise.

.08 {1, if (8,k,0)=(0,1,1);

OGWT7) If [Y]x #0 and k=2, then (y1,...,v)%y =0.
( 1, Y B,k

The vanishing property (OGW1) holds because the dimensions of the relevant moduli spaces and
the constraints are different unless (2.27) with codim I'; replaced by deg~; holds. The symmetry
property of the open GW-invariants (2.29) is immediate from the fiber products in (2.12), (2.18),
and (2.18) being independent of the order of the elements I'y,...,T'; of L. Both properties apply to
the counts (2.12), (2.18), and (2.19) without any assumptions on the independence of these counts
of the choice of the bounding chain.

We establish the remaining properties of the GW-invariants (2.29) stated in Theorem 2.9 in Sec-
tion 4 by showing that the stated properties are satisfied by the numbers (2.25). We note which of
the many assumptions of Theorem 2.9 are actually necessary for each given property to be satisfied
by the numbers (2.12), (2.18), and (2.19).

2.5 WDVV-type relations

We now translate the statements of the WDV V-type equations of Theorem 3 of [20] to relations
for the open GW-invariants (2.29) under the assumption that R is a field.
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Let (X,w) be a connected compact symplectic manifold and Y < X be a connected compact
Lagrangian submanifold. Define

¢ ={(¥: HY(X,Y)—R): |{BeHy(X,Y): ¥(B)#0, w(B) < E}| <o Y E€R}.

We write an element ¥ of A§ as

U= ) ¥(B)”
BeHY (X,Y)

and multiply two such elements as powers series in ¢ with the exponents in H5(X,Y).

Since dim Y =n, the cohomology long exact sequence for the pair (X,Y") implies that the restriction
homomorphism

H*(X,Y;R) — H**(X;R)

is surjective. Let
YE=1,7F,..., 7% € H*(X,Y;R)

be homogeneous elements such that v, v¥|x, ... KYRHX is a basis for H**(X; R), (gij)i; be the
N x N-matrix given by

= (XD (2.30)
and (g% )i be its inverse. Let F{‘,F;, e ,FN be generic pseudocycles to X representing the
Poincare duals of 72*, e ,7]’\*,. For a tuple t=(t1,...,ty) of formal variables, let

’7:' = 'yft1+...+’y]\\}t]v.

For a finite set L, Be Hy(X;Z), and an w-tame almost complex structure .J, we denote by IME(B; J)
the moduli space of stable J-holomorphic degree B maps with marked points indexed by the set L.
It carries a canonical orientation. For each i€ L, let

evi: ME(B; J) — X
be the evaluation morphism at the i-th marked point. If in addition I'y,...,I'; are maps to X, let
Dﬁg._.[l](B; J) < (4, Ti)iep) = zmgcu[,] (B5 J)(ev1,....ev)) XDy x...xy((dom T'p) x ... x (dom Iy)).
If J is generic and I'y,...,I'; are pseudocycles in general position, then
fgv(ri)ie[l] = (eVO‘ mgu[l](B; I (4, Ti)ep)) — X)

is a pseudocycle of dimension

o~

dim f5 p),_, = #w(ay (B) +2(n—2) Z (codim T';—2)

transverse to Y. With v, =PDx ([I';]), let ()\jé’(%)ie[l] )jerni € RY be such that

N
(/5 J(Ta)ieqt Z jB(% eyt Dx (v} |x) € Ha(X; R);
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the tuple (/\%7(72_)%[[])]-6[1\/] depends only on B, y1,...,7, and 7y, ... ,fy]’(‘,.

Suppose in addition os is a relative OSpin-structure. If [Y]x =0 and v is an (n—1)-dimensional
pseudocycle to X —Y bounding a pseudocycle I' to X transverse to Y, we define

lkos (7) = ‘FxbeY|i )

where 1y : Y — X is the inclusion; see Section 5.1 for the sign conventions for fiber products. This
linking number of v and Y with the orientation determined by the relative OSpin-structure os does
not depend on the choice of I'. We set 1kys(y) =0 if v is not an (n—1)-dimensional pseudocycle.

For the purpose of WDV V-type equations for the open GW-invariants (2.29), we extend these
signed disk counts to the pairs (k, §) not satisfying (2.28), i.e. k=0 and fe H§(X,Y) is in the
image of the homomorphism gy in (2.20), as follows. Let v1,...,y€ H*(X,Y;R). If [Y]x #0,
we define
w,08
<’717'-'7’Yl 8,0 = 0.

Suppose next that [Y]x =0. Let I'y,...,I'; be generic pseudocycles to X representing the Poincare
duals of ~1,...,~;. Define

G ;’fj‘ =RHS of (2.18) with a= (3, &, {T1,...,T})

N
+ Z (—1)<w2(05)’B>1k05(fg,(Fi)ie[l] - EAJB,('yi)iE[l]F;>
Begy ' (8) =

in this case. This number depends on the span of the chosen elements ’yi* of H""1(X,Y; R). By the
proof of (2.24), pseudo-isotopic bounding chains (bo,a/)areCy., (v) @04 (b1,0/)avec,.q, (v) determine

the same numbers (71, ... ,7l>g’(0)5-

We define ®F e A [[t1, ..., tn]] and Qe AY([[s, t1,...,tn]] by

B
q
@fus(tl,...,t]v) = Z < Z (_1)<w2(05)73><ry:X,...,’Y:|X>(;>l|7
BeHS (X,Y)\ BeHy (X Z) ; '
1720 qv (B)=58
05 * K\ W08 qﬁsk
QF(s,t1,...,tn) = Z <’Yta---7’Yt Bk LI
BeHS (X,Y) Y o
k,lez>0

By Gromov’s Compactness Theorem, the inner sum in the definition of ®; has finitely nonzero
terms. For the same reason, the coefficients of the powers of ¢1,... ¢y, v in @ and QF lie in A.

Theorem 2.10 Suppose R is a field, (X,w,Y) and os are as in Theorem 2.9 with X and Y
connected, and the independence assumptions of Theorem 2.9 are satisfied by the numbers (2.12)
even if the condition (2.28) does not hold. For all ue{ty,...,ty} and v,we{s, t1,...,tn},

D (0uulr, %) g7 (201, Q) + (0ulu)(0s00)

1<ij<N

(2.31)
= > (0uu0r, B ) g7 (0001, 2%) + (Pudw Y )(0:0,9F).

1<ij<N
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By Propositions 2.4 and 2.5, the above independence assumptions are satisfied if Y is an R-
homology sphere. Theorem 2.10 is mostly a translation of Theorem 3 of [20] to the geometrically
defined invariants of Theorem 2.9. The framework of lifting bordisms from the Deligne-Mumford
moduli spaces of stable curves to the moduli spaces of stable maps as in [1, 3] can be used for
a self-contained geometric analogue of the proof in [20] establishing relations between the disk
counts (2.18) which arise from a fixed bounding chain, without any independence assumptions of
Theorem 2.10. The independence assumptions are used to present these relations succinctly as
the partial differential equations (2.31). This geometric analogue applies over an arbitrary field R
and allows taking v or w to be s even if [Y]x # 0; this case is excluded from the statement of
Corollary 1.6 of [20].

For e Hy(X,Y;Z) and 1€Z>, let

Pe(B) = {(B1, B2) € Ha(X; Z)®Ha(X3 Z): gy (Bi+Ba) = B},
Pio(l) = {(L,J)eP(): {1,2,..., 1} =1uJ, 1,2€1},
Pio(l) = {(I,J)eP(1): {1,2,..., 1} =IuJ, 1€l, 2eJ}.
For a tuple v = (v1,...,7) of elements of H?*(X;R) and I < {1,2,...,1}, we denote by 7, the

|I|-tuple consisting of the entries of v indexed by I. Let 7, ...,v¥ be basis for H?*(X; R), ()i
be the N x N-matrix given by (2.30), and (g%); ; be its inverse.

Corollary 2.11 below for the standard (closed) GW-invariants of (X,w) follows immediately from
the case of Theorem 2.10 with

[Y]x #0, u,ve{tl,...,tN}, and w = s,

(OGW6) and (OGWT7) in Theorem 2.9,

(a) Propositions 2.4 and 2.5 above, and
(b) Theorem 1.1 in [2];

see also Section 1.2 in [2] concerning the second case in Corollary 2.11. A slightly weaker version of
Corollary 2.11 follows from the case of Theorem 2.10 with w,v,we{t1,...,tx}, which is available
in [20] for R=R.

Corollary 2.11 Suppose R is a field, (X,w) is a compact symplectic 2n-fold, Y < X is an oriented
connected compact Lagrangian submanifold, and yoe H"(X; R) with (7o, [Y]x)=1. If either

(a) n=31is odd and Y is an R-homology sphere or
(b) n=3, the homomorphism H;(Y; R)— Hi(X; R) induced by the inclusion Y — X is injective,
and the homomorphism Hy(Y'; R) — H2(X; R) is trivial,

then

Z Z Ol g, 97 PDx ([Y]x) 570,70 g,

(BlvBQ)E,PC(ﬁ) i,jE[N]
(I,J)E'Plz;(l)

= Z <PDX ([Y]X)7W0771>21<PDX([Y]X)77077J>;2
(B1,B2)EPc(B)
(I,J)E'Pl;g(l)

for all Be Hy(X,Y;7Z) and 71,...,v1€ H*(X; R).
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3 Proofs of Propositions 2.4 and 2.5 and Theorem 2.7

We establish Propositions 2.4 and 2.5, which guarantee that the open invariants (2.29) can actually
be constructed via (2.12), (2.18), and (2.19) at least under some topological assumptions on the
Lagrangian submanifold Y of (X,w), in Section 3.1. In Section 3.2, we show that bounding chains
differing by a pseudo-isotopy determine the same counts (2.18). In Section 3.3, we establish the
equivalence of the three definitions of the disk counts in (X,Y’) as stated in Theorem 2.7(2).

3.1 Existence of bounding chains and pseudo-isotopies

The main steps in the inductive proofs of Propositions 2.4 and 2.5 are Lemmas 3.1 and 3.3,
respectively, below. They ensure that the right-hand sides of the identities in Definitions 2.1(BC4)
and 2.2(PS4) are closed pseudocycles of the required dimensions if the bordered pseudocycles b,
with o/ <« and by with & <@ satisfy all conditions of Definitions 2.1 and 2.2. Thus, these right-
hand sides satisfy at least a necessary condition for the existence of bordered pseudocycles by
and ba/.

Lemma 3.1 Let a and J be as in Definition 2.1. If (by/)qaec,,..(v) i @ bounding chain on (o, J),
then the map bb, in (2.11) is a pseudocycle of dimension dim(«)+1.

Proof. For neD, (), let bb,, be as in (2.10). By Definition 2.1(BC1) with o' replaced by a;(n) <,

dim by, = (4§ (B () + (n—3)+ (ke (1) +1) +2| La (n)|)

k) (3.1)
+ Z(dim(ai(n))—l—Q) —nke(n)— ZcodimF = dim(a)+1.
i=1 I'eL+(n)

Thus, the dimension of bb,, is dim(a)+1.

We define
DZ(a) = {(n; B2 k1, ko, L):neDy(a), BIe HY (X,Y), ki, kae[ke(n)+2], L2 Lao(n),
Be(n)—Fee H5 (X,Y), k1 <k, (3.2)
(B2 kp = 1=Ky, L2) # (0,0, @), (0,1, @), (Ba(0), ka (1), La(m)}-
For an element (n; 82, k1, ko, L?) of D2 (a), let

K = [ky—=1]=[k1], k) = ke(n)—|K|+1, kI = |K|, K* = | |Ki1(n), L* = L3u]| | Lia(n),

ieK ek
2 :ﬁg‘FZ Bi-1(n), ai(n), if ie [k —1];
€K azl = OZQ, lf lzkjl,
2 2 2 2 o

In particular, a®€Cy.0(Y),

0" = (Ba(n) = B2, kes Le(n)— L2, (07 )icpr)) € Duo(c),
n* = (B2, k2, L2, (Qiki—1)ie[2]) € Dy (a?).
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bbn(ﬁ) x —bbn1 (kl, 772)

Qe Qs

aq
(e5] Q3

n= (ﬁn 7, {Fla F2}7 (O‘i)ie[ﬂ) U= ( ?a k1=3,ka="7, Lg :{Fl})
771 = (50_5?747 {F2}7 (ala a9, a67a7))
772 = (ﬂ?v 3a {Fl}a (a37a4, 045))

Figure 1: Elements of the domains of bb,, and bb,(?).

We note that the resulting map

D2(a) — Do(@)={(m;4,7): n€Du(), i€ [ke(n)], W' €Du(i(n)},
(; B2, k1, ko, L2) — (05 Kk, n?),

is bijective.
For (n;i,7')eD?(a), define

bbn(i,n/) = (evblz ZUI:;J be((j—i-l, baj(n))je[k.(n)]f{i% (i+1, bbn/>; (j,Fj)pjeL.(n)) — Y) .

For (7];19)67)3(04) with 9= ( ?,kl,kQ,L%), let
S,T(z?) c GDJI;J (3.4)

be the subspace consisting of .J-holomorphic maps from (D?vD?, S'vS!) to (X,Y) with the second
component of degree 32 and carrying the boundary marked points indexed by [ka—1]—[k1] and the
interior marked points indexed by L2. These subspaces are the topological components of 69171:77 J

and thus inherit orientations from the orientation of im;’ g+ Let

bby, (V) = (eVb13 Sy (9) xm((i41, ba, () ietka (s (6 Di)rsenam) — Y);

see the second diagram in Figure 1. If (n'; k1, 7?) is the image of (;1) under (3.3), Corollary 5.10
with B={pt} gives

bb,,(9) = (—1)F %2 . ()% pb 1 (ky,n?) = —bbys (k1,7?). (3.5)

For each neD, (), Lemma 5.2 and the first statement in (2.7) give

0dom(bb,) = Udom(bbn(ﬂ))
(n:0)eD(a)
ke(n)

L L!m;J Xt((7+1, ba; (m)) jetke ()] —{i}> (E+15 O0a,(m)); (G Ti)TeLa(m)) -
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Combining this with (BC2) and (BC4) in Definition 2.1 with o/ replaced by «;(n) < «, we obtain

dbby = | |6by,(¥) L | |66, (i,n%) . (3.6)
(7:9)€DE (@) (n'5i:1%)eD (o)
dim(a;(n'))<n—2

By the bijectivity of (3.3) and (3.5), each term bb,:(i,7?) in (3.6) cancels with the corresponding
term bb, (). Below we show that the remaining terms bb, () either do not contribute to dbb, for
dimensional reasons or cancel in pairs.

Suppose (n;9) e D2 (), 9= (B2, ki1, ko, L2), and the image (n'; kl,nQ)efi(a) of (n;9) under (3.3)
does not satisfy the inequality in (3.6) with i = k;. Thus, dim bbakl(nl) >n. Let Bl = B.(n'),
kl=ke(n'), and LL=L.(n'). Since
dimim:]“w be((i—l-l, bai(nl))ie[k}]f{klﬁ (i, Fi)FieL}) - (n—dim bbakl (’171)) = dim bbn—l
= dim(«)

by (3.1), it follows that

dim mk},Ll (/837 J) be((i+ L, bai(nl))ie[klfl]v (i7 bai(nl))ie[k}]—[k’l]; (17 Fi)Fz—eLl) < dlm(a) (37)

If B0, or k! >3, or L!+# &, the map bb, () thus factors through a manifold of dimension less
than dim(«). Thus, bb, () does not contribute to dbb, in this case.

The remaining case is Bl =0, k! =2, and L! = &J. The associated boundary terms come in pairs
arising from two elements 7€ D, () with the same £4(7), ke(n), and Le(n) and with the tuples
(i(n))ick. (n) differing by the circular permutation moving the first component to the last position.
The pair (k1,k2) is (2, ke(n)+2) in one case and (1, ke(n)+1) in the other. Since dimension of Y’
is odd and the dimension of every b, is even, (3.5) and Lemma 5.3 imply that the boundary
terms in each such pair come with opposite orientations and thus cancel. O

Proof of Proposition 2.4. We use induction with respect to the partial order < on C,(Y") defined
in Section 2.1. We assume that (a,J) and (ba/)arec,.o(v) are as in the statement of Lemma 3.1
with —2 <dim(a) <n—2. By this lemma, bb, is then a pseudocycle with

dim bb, = dim(a)+1 < n—1. (3.8)

By (2.6), this dimension is odd. Since Y is a rational homology sphere, there exists a bordered
pseudocycle b, into Y satisfying (BC1) and (BC4) in Definition 2.1 with o/ replaced by a. O

Remark 3.2. Without the condition (2.6), the pseudocycle bb, in (3.8) could be of dimension 0. If
neD, () and bb, # & in such a case, then either

n=1(0,0,{T'}, () with T € PC(X), dimT = n, or
n=1(0,2,, (a1, a2)) with a1, s € Cia(Y), dimb,, +dim by, = dimY.

The first possibility could be excluded by requiring that I'nY = & whenever dimI' = n. Since
dimY ¢ 27, Lemma 5.3 implies that

0b(0,2,55,(a1,02)) = ~0b(0,2,75,(az,01))
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in the second case. Thus, the pseudocycles bb,, in this case cancel in pairs. In either case, we
could thus take b, = ¢J. We alternatively could restrict the condition in Definition 2.1(BC4) to
o' €Cua(Y) with —2 <dim(a/) <n—2 and treat the additional special case ag,(n') in the proof of
Lemma 3.1 just as in the proof of Lemma 3.3 below.

Lemma 3.3 Let ag,a1,q, Jo,J1,J, and (bO;a’>a’eCW;a0(Y) and (bl;a’)a/ecw;al(Y) be as in Defini-

tion 2.2 so that I'nY = & for every I'e L(&) with dimI'=n. If (by) ) is a pseudo-isotopy

&’e(i,;&(Y
on (&, J) between (bO;a’)a/eCW;ao(Y) and (b1;0/)areC,.q, (v) then the map bbg in (2.16) is a bordered

pseudocycle with
dim bby = dim(@)+2 and 0bbsy = {0} x bbg.qy —{1} xbby.q,. (3.9)

Proof. The proof is similar to that of Lemma 3.1. For each 7€ D, (@), let bby be as in (2.15). By
Definition 2.2(PS1) with &' replaced by &;(7) <@,

dim bb; = (48 (Be () + (n—3) + (ke (/) +1) +2| Lo (7)]) +1
ke (i)
# (@) +3) (0 + Dk~ 3 codim T = dim@)+2. (3.10)
=1 Teld ()

Thus, the dimension of bbg is dim(&)+2.

We define D2 (&) and 5i(5¢) as in (3.2) and (3.3) with a, L4(7), and a;(n) replaced by &, La(7),
and &;(n), respectively, and a bijection

D2(&) —> D (&) (3.11)

as above (3.3). For (7; 1,17 )eD (@), let
bbﬁ(i’ 77’) — (é;l/)l: m;jxfb((j-i-l, b&j(ﬁ))je[k.(ﬁ)]—{i}y (i-i—l, bbﬁ/); (7, fj)fjei.(ﬁ)) — [0, 1] X Y) .

For (?77 ﬁ)epg(&) with ¢ = (/Bov kl) k?a L ) let
Sy () < omt 5 (3.12)

be the subspace consisting of J-holomorphic maps from (D?vD?, S1vS1) to [0,1]x(X,Y) with the
second component of degree 32 and carrying the boundary marked points indexed by [k —1]—[k1]
and the interior marked points indexed by L2. This topological component of ﬁimf_j inherits an

3

orientation from the orientation of ?J)Tf_j. Define

5

bb3(9) = (evbr: SF (9) % (41, b, )iefia )i (6 Do) e ) — 0,11 XY).

If (7';k1,7?) is the image of (7j;19) under (3.11), Corollary 5.10 with B = [0, 1], k= ke(7)+1, and
1] =ke(1) give

(pt+ P (=)

bbﬁ(ﬂ) _ _(_1)k2+/€.(77)(k1+k2) . (_1) . (—1)(k.(n ))b[]~1 (kh )

3.13
_ ] (k.(ﬁ1)+1)7k1 9 ( )
= —(— ) 2 bbﬁl(k‘l,n )

21



For 7€ D,,(&), Lemma 5.2 and the last statement in (2.7) give

(—1)("2") (-1 1! @0 dom (bbs] ) = | _|bbs(0)
(77:9)€D2 (@)

ke(7)
|_| m: = 7% (71,65, () jer )i (1, 05,63 (. T ek ) -

Combining this with (PS2) and (PS4) in Definition 2.2 with &' replaced by &;(7) < &, we obtain

ke (7)+1 ke (i) +1) L
bl = LJEDCF ooz 0 [T ) ey (177) . (3.14)
' (156:7)€D,, (@)
—2<dim(&;(71))<n—2

By the bijectivity of (3.11) and (3.13), each term bby: (i,7%) in (3.14) cancels with the corresponding
term bby(1). Below we show that the remaining terms bbs(¥J) either do not contribute to dbbg|g 1)
for dimensional reasons or cancel in pairs.

Let (77;9) € D2(&), ¥ = (B2, k1, ko, L?), and (7; ki, ﬁq)eﬁi(&) be the image of (7; ) under (3.11). If
the second inequality in (3.14) with i =k; fails, similar reasoning to that in the last two paragraphs
of the proof of Lemma 3.1 and (3.10) imply that the term bby(x)) either does not contribute
to dbbj](o,1) for dimensional reasons or cancels with another term bbg (').

Suppose the first inequality in (3.14) with i =k, fails and E\Em (k1,77) # . Let k2 =ko(7?). Since
dimi)JI;Q;jxfb((i+1,b&( 2))iefk2]; (i r) 72) = dim bbjz = dim (&, (7)) +2, (3.15)
it follows that this dimension is 0. Thus,

dim Mo 5% (1, b, 32) Dieprz)s (4 i)z

If B2 # 0 or k2+2|L2| > 3, this implies that bby (ki,7?) = @, If 82 =0, k2 =0, and L? = (T}
is a single-element set, then the dimension of I is n. Since I is then disjoint from Y, it follows
that %\Eﬁ1(k1,772) = (J in this case as well. The remaining case is 32 = 0, k2 = 2, and E% = .
The associated boundary terms come in pairs arising from the same k; and ko = k1 +3 and from
two elements 7j € D, (&) with the same B4(7), ks (7)), and L.(7) and with the tuples (GAG) =N
differing by the transposition interchanging the k; +1 and k; +2 entries. By Lemma 5.3 and the
last statement in (2.7), the associated cycles bb have opposite orientations. Along with (3.13),
this implies that the paired up boundary terms bbs(2}) come with opposite orientations as well and
thus cancel.

Let €D, (@), noe Dy (), and n1 €Dy, (1) be so that

o = {1} xm—{0} xno . (3.16)
In order to compute the signs of the boundary terms of bbj over 0 and 1, we extend im%”j, by with

o <a, and fzei.(ﬁ) past their boundaries over 0,1€R. In other words, let

= (1,00}, ) oM ([1,2) <)/~
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with the identifications ~ of the elements (0,u) and (1, u) of zmjj with same elements in the added

m

collars. Let .,
evb; : mt;j—> RxY (resp. Rx X)

be extensions of evb; with ie [k ()] (vesp. i€ L4 (7)) so that their compositions with the projections
to R restrict over the two collars to the projections to the first factor. We similarly extend the
domains of by and I by collars over (—1,0) and (1,2) and then extend the maps bz and I; to
smooth maps b%, and f‘g to RxY and R x X, respectively. We extend the use of the notation xg,

defined at the end of Section 2.1 to i)ﬁflj We assume that the map extensions above are chosen

777

generically so that all relevant fiber products are smooth. Let
¢+ Mo (141,05, ) ielra s (6 T ezuy) — R
be the projection map.
Let ¢: [0,1]— R be the inclusion. By Lemma 5.1, (3.10), and (2.6),
M 5 xm (141, ba, ) ieke ) (6T e )
= — ([0, l]bxe/<9ﬁ%:jxfb((i+1, b:ii(ﬁ))ie[k.(ﬁ)]; (i, Fg)fiEE-(ﬁ)D) .

Along with Lemma 5.2, this implies that

ke (1) ~

6(dom bbﬁ) = (*1)( 2 ) <({1}{0})L><6/<m%:j><fb((i+1, blai(ﬁ))ie[k.(ﬁ)]; (i, F;)f‘ZEEo(ﬁ)D
L [0, 1]L><e/(9<9ﬁ;j><fb((i+1, b, () )ic ke )] (4 Fé)fiez.(ﬁ))))
Applying Lemma 5.7, we then obtain

95\677 _ (_1)(k.2(77))'(_1)ko(ﬁ)+<k‘.(f~2})+2)'(_1)’6-(77)({1} x bby,y, —{0} x bbU;no) +(9bb,7|(0 1

Since the last term above vanishes after summing over 7€ D, (&), this establishes the claim. O

Proof of Proposition 2.5. We use induction with respect to the partial order < on C,(Y") defined

in Section 2.1. We assume ag, a1, &, Jo, Ji, J, (bo;a/)a/ecw;ao(y), (bl;a/)a/ecw;al(y), and (b&/)&’eaw;a(Y)
are as in the statement of Lemma 3.3 with
—2 <dim(a) < n—2.
By this lemma and (2.9), bbg+{1} x b1,q, —{0} X bg.q, is then a pseudocycle with
0 < dim(bbg +{1} X b1,a, — {0} X bg,ay) = dim(&)+2 < n.

By (2.6), this dimension is even. Since Y is a rational homology sphere, there exists a bordered
pseudocycle by to [0, 1]xY satisfying (PS1) and (PS4) in Definition 2.2 with & replaced by a. O
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3.2 Pseudo-isotopies and invariance of disk counts

We now complete the proof of Theorem 2.7(1) by establishing (2.24). Its proof is similar to that
of Lemma 3.3, but is more combinatorially involved. It uses Lemma 3.4 below.

For &eC,(Y), let 5i(8<) be as in the proof of Lemma 3.3 and

D (@) = {(71:3,7) €D (8): (Ba(i), ko (i), Lo () (0,2, @)} (3.17)

We define a “rotation” on the elements of D, (&) by

p: Dw(a) - Dw(a)a p(ﬁ‘v k’a E.’ (al>ze[kz.(7~7)]) = (BO, ke, ff.a (&27 &37 s ’&k.(ﬁ)a a1)) (318)

This bijection induces a bijection

T8 — D5 oy ) e@yi=1a), i > 1
p: Dy(a) — Dy(@),  p(i4,77) {(p(ﬁ);k.(ﬁ),ﬁ’), o, (3.19)
it restricts to a bijection on fi* (@).
For i€[ke(7)], we define n\ie D, (&—a&;(7)) by
Be(ii\t) = Be(1); . e e
ko(I\D) = k(M) =1, G;(i\i) = {fj”(”)’ jelk@-i (3.20)
Foii) = (i), Ojivap)s U JE[Re(7) = 1] = [Ka () —1].

Thus, 77\¢ is obtained from 7; by dropping the component &;(7]) and ordering the remaining com-
ponents &;(7) starting from the next one in the circular order.

For (if;,7)€ D, (&), let
o (77)1 1fj: 1;

I Ll
J {Mﬁ’% it je [k 7) +11— {L;

This construction induces a “reflection”

Q¢ N

B = (Ba@), ko () + 1, La (), (@1 era ) 1) -

R: D (@) — DJ@), R 7) = (31,0), (3.21)
such that R®=R. Furthermore, R is invariant under the rotation p in (3.19) and
dim (&; (7)) + dim (&1 (7)) = dim(&)+n—3 (3.22)
with the notation as in (3.21).

For €D, (@), let bbg be as in (2.15). If in addition i€ [ke(7))], define

+
i’ (3.23)
[u7 (:Ej)jE[k.(?])]? (Zj)jef,(?])] - [u7 (:Eh Litly ooy Lhe(f)s X1y - ,$i,1), (ZJ)]ef/(?])]

pmmﬁj—)m
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For (74,7 )eD.r (&), let
005 (i, 7') = My, 5% ew((, 0ay ) selva 1 i1 (6 007); (s )i e ) -

The “backwards” cyclic permutations of the boundary marked points of the moduli space in (3.23)
and of the pseudocycles to [0,1]xY,

Pb: H(domb~ 5) — Hdomb (3.24)
j€lke ()] j€lke ()]

induce diffeomorphisms

by (i—1,77),  ifi>1;

: b — bb* Py s LT —> A
P PR bb* o (ke (i7), 77), if i=1.

The interchange of the moduli space components induces a diffeomorphism

Ry bbZ ( )—»bb;ﬁz(l,ﬁ\i), where (7;1,7\i) = R(7;1,7).

i) = ()

Lemma 3.4 Let &¢C, (Y'). The diffeomorphism pj is orientation-preserving for every neD, ().
The sign of the diffeomorphism

Let

M 7 xm((d, ba, @) etk -2y (G2 Tii ez )

~ ML+ 1 b i) etk rots (O Tk e i)

induced by i—1 “backwards” cyclic permutations of the boundary marked points of the moduli
space and of the pseudocycles to [0,1]xY is (—1)*~! for all 7€ D, (&) and i€ [ks(n)]. The signs of
the diffeomorphisms pj.; 7 with i#1 and Rj,; 7 are —1 and (—=1)<@D)=€(@1) | respectively, for every

~ . o~ —2% ,~
(74,7 €D, ().

Proof. The cyclic permutations of the boundary marked points of the elements of 9ﬁ~ and of the
pseudocycles to [0,1] xY induce a commutative diagram

€ k.~ E.N =
M, 7= ([0,1]xY)*Px([0,1]x X) P < [[(dombg,3)x [T (domT)
VLG T eLe(7)
P PY \Lpb
e ke (7 E. ~
M. ;= ([0,1]x V) *Px([0,1]x x) P —— T[] omb&j@)x [T (domT)

[ 77 fj Gi. (77)

so that the vertical arrows are diffeomorphisms. Since the dimension of Y is odd, the diffeomor-
phism py is orientation-preserving. By the construction of the orientation on zmﬁ, 7 in Section 5.2,

the sign of the diffeomorphism pgy is (—1)%*(M~1_ By the last statement in (2.7), this is also the sign
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of the diffeomorphism py. The first claim of the lemma now follows from Lemma 5.3. The claim
concerning pj.; 7 is obtained in the same way by replacing the odd-dimensional insertion by,
by the even-dimensional insertion bby, (7). Dropping the insertion by, () entirely, we find that the
diffeomorphism induced by the “backwards” rotations is then orientation-reversing; this establishes
the second claim of the lemma.

By the second statement in (2.7) and Lemmas 5.3 and 5.4,
bb3 (i, 1) ~ (93‘17;] w (7, ba ;) jeka 1313 U Tﬁfjez.(m))g;g%bbﬁ/(dombbﬁ')-
Along with the second claim of the lemma, this gives
.~ i— k-( 7\i)
bb%(i,7') ~ (—1) 1(—1)( 4 )(dom bbn\z)bb~\ xbbw/(dom bby ).
Since the dimension of bbjy is even, it follows that

bb% (i, ) ~ (—1)“ P (bbg; < bby ) ~ (1)) (bby x,bbz;) ~ (1)) (—1)“PVpb% (1, 7\i).
This establishes the last claim of the lemma. O

Proof of (2.24). Let ag, a1.d, Jo, J1, J, (b0s0)a/eCuag (V) (01:0)aveCuiay (v) a0 (bar) yrce (v e
as in Definition 2.3. With D2 (&) as in the proof of Lemma 3.3, define

DZH(@) ={(71; B2, k1, ko, L2) € DL (@) : ko <hka () +1, (82, ka—k1, L2) # (Bo(0), ko (W), Lo (M)}

- N (3.25)
o {(7:82,0,1, L) - ke () =0, (7: 52,1, 2, L3) € DE (&)}
The rotation p on D, (&) defined in (3.18) lifts to a bijection
p: D2(&) — DZ(), (3.26)
(p(); B2, k1 =1, ko =1, L2), if k> 1;
p(ﬁ52 kl k?g EQ) _ (p(ﬁ)7 ?7k'(ﬁ)1k'(~)+1 L ) N if k2:27
T ) (@) Be(@) = B2 ke =2 ke () + 1, La ()~ L2), i k=1, k2> 2;
(p(); Ba (i) — B2, 0,1, Lo (i) ~ L2), if k1 =0;
see Figure 2.
For an element (7j; 82, k1, ko, E%) of D2(a), let
K = [ky—1]—[k1], ki = ke(R)—|K|+1, k = |K|, K* = | |Ki®), L* = L2 | |Li(®)
ieK eK
= B+ ) B, & (1), if i& [k];
iek &, =< a2, if i=kq+1;
~2 2 2 T2 ~ ~ e
= (6%, K%, L?), Qiooahyiy (W), if i€ [kL]—[k1+1].
In particular, & 5 a(Y),
ﬁl = (ﬁ'(ﬁ)_ 3,]?},.’5.(77)—_5%, (&zl)ze[k}]) € Dw(a)a (3 27)

7 = (B B (s i) & D)
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%&J () w&jl (') = a; (1)
p
a1 (77) /

~

ag, (1) =aa() (i) = (1)

an (') =az(1)
— ak, (') =1 (1)

(A

Figure 2: The images (7f = p(7}); 1) of two elements of D2*(&) with ke = ke(7)) nonzero under the
map p in (3.26).

The resulting map

is well-defined and injective. Its image consists of the elements (7);4,7) of fi* (@) such that either
i>1 or ke(7)+ke(77)=1. The map (3.28) descends to a bijection from the quotient of the left-hand
side by the equivalence relation generated by the map p in (3.26) to the quotient of the right-hand
side by the equivalence relation generated by p in (3.19) and R in (3.21).

For (7;9)eD?*(&) with 9= (82, k1, ko, E%), we define Sz(¥) cazmﬁ;j as in (3.12). These subspaces
are distinct if ke(77) > 0; otherwise, the tuples

describe the same subspace. Let

~

b6 (9) = S5 (9)x (7, ba, i elra (13 (6 D) et i) -
The bijection (3.26) induces a diffeomorphism
o BB3(0) —> b3 (), where (p(7):) = p(7c).

By the first statement of Lemma 3.4, this diffeomorphism is orientation-preserving. If (7'; k1+1,7?)
is the image of (77; ) under (3.28), Corollary 5.10 with B=[0,1] and k, |I| =k.(7) gives

ke (712)

b5 (9) = (1) (E) - (ke ) ) o (41, 77)
= (1) Do, (1, 7P).

ke (71)+1
SOAE (3.30)

For e D, (&), let



Similarly to (3.14),

(L)

€D (

_ |_|(_1)(’“(2)“)3'(77)55,7(79)

L |_|<> )s* (711 by (7, 72) (3:31)

(7155,72) D., 2
72<d1m(a1( ))<n—2

if (7144,72)eD.(a)—D-(a), bb%, (i, i) = 2.

Let (1;9)eD2*(&), (i';4,72)eD. (&) be its image under (3.28), and

(A" 1.9"i) = R(7:i.7) € DI'(@).

Suppose (7}';4,77?) satisfies both inequalities in (3.31) and (7';1,7'\i) satisfies the corresponding
inequalities. By (3.30), the term bby(¥) on the first line in (3.31) then appears with the op-
posite orientation of the corresponding term on the second line. The p-orbits of (7j';4,7?) and
(7% 1,71\i) in D (&) contain ke (7) and ke (') elements, respectively. By the last two statements
of Lemma 3.4, all ko (77')s* (') + ke (7 ) s* (") associated copies of bbzi (i,7) appear on the second
line of (3.31) with the same orientation. If k4(7j) > 0, the p-orbit of (7j;%) in D2*(&) contains
ke(7) elements. By the first statement of Lemma 3.4, all k.(7)s'(7]) associated copies of bby(¥)
appear on the first line of (3.31) with the same orientation. In this case,

ko()s* () + ke (7)™ (") = ka(7)s' (7])-
If ko(77) =0, the p-equivalence class of (7];1) consists of two elements as in (3.29), which describe
the same space on the first line in (3.31). In this case,

ka(T)s* () + ke (7)s™(7") = 25 (7).
In either case, we conclude that the boundary terms corresponding to the elements of the p-
equivalence class of (7;9) in D**(&) on the first line in (3.31) cancel with the boundary terms

corresponding to the elements of the (p, R)-equivalence class of (7j%;i,7?) in fi* (&) on the sec-
ond line.

Suppose (77';4,7?) does not satisfy the first inequality in (3.31). Similar reasoning to that in the
proof of Lemma 3.3 then implies that the boundary term bbg(vJ) on the first line in (3.31) is
either empty or cancels with another boundary term bbs (¢); the same happens with the term
bbs (1, 71\i) on the second line. The same reasoning with the two disk components interchanged
applies if (7';1,7'\7) does not satisfy the analogue of the second inequality in (3.31).

By the last two paragraphs and (3.22),

o( L)

NeD (

- (3.32)

(0,1)

if dim(&) =0. By the same reasoning as at the end of the proof of Lemma 3.3,

ke (7)+2
P

* ke (1) . o (7)) * * *
obbE = (1) (7). (ke @+ ( (—1)kD ({1} x bb}, —{0} xbb, ) + b0

with 79, m1 as in (3.16). This establishes (2.24). O
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3.3 Equivalence of definitions of disk counts

We next complete the proof of Theorem 2.7(2) by establishing (2.22) and (2.23) under the assump-

tion that dim(a) =0. For ne D, («) and i€ [ke(n)], we define n\ie D, (a—a;(n)) by (3.20) with &

replaced by «a. Similarly to the second statement of Lemma 3.4,
My % 1b((3: bex; (m))jelka (1~ a1 (s Ts)rsera(m))

~ ( )z—1m+

, . (3.33)
i X741 b 60\ jelka (i) (s Tirjera )

Let
apt = (0, {pt}, @) eCu(Y) VpteY, CH(Y)={aeCu(Y): a#ap VpteK}.

Proof of (2.22). Since the dimension of b, is even for every o' € C,.o(Y) by (2.7) and the
dimension of Y is odd, Lemma 5.2, Definition 2.1(BC4), and Lemma 5.3 give

—0(Boy X baey) = BBy X1 by +bry X 1y B0y = BBy X 1 by — BBy X 1 by (3.34)
Vo ooq,00 € Cuin(Y) s.t. dim(aq),dim(az) < n—2.

By Definition 2.1(BC2), the first equality above also holds if
a1, a2 € CH(Y) and dim(a;)+dim(a) = n—3 (ie. dimbby,xgba, = 0);

the second equality holds for all oy, ag. If pte K («) and dim(a) =0, (3.34) implies that

| 660, xmbay = | | (6bayxbay WA(—bayxmbay)) | |6bayx g ba,
a1,a2€Cj (Y) a1,a2€Cj (Y) al,OlQECj:(Y)
al1toas=a al1toas=a al1tas=«
pteK (o) pte K (a2) (3 35)
=2 | |bbayxmbay 1 @ | |(—bayxmbas).
a1,006Ck(Y) ap,02eCH(Y)
o) tag=a alt+az=q
pteK (a2) pteK (a1)
Since the dimension of bb,, is odd for every o/ €Cy.(Y),
* w,
—‘bba;tbebapt} = deg bbac, = <L>ﬂ;;?(a)i{pt} Vpte K(a). (3.36)

If neD,,(«) and i€[ks(n)], then
M1 X (5 by () jelie )] (0> Ti)T 60 (m))
= (=D B YO (4, B ) ka1 335 (s T ) X (0T By )

~~ ~~

Lemma 5.3 Lemma 5.4
i—1 i—1 ke (n\i ke(n)—1
— (1) D) (1) B0y ), B ) = (—1)5+ DBy ¢ B -
(3.33)

Taking :=1 above, we obtain

— =0k 5 x4, ba, ) jeta i s Tidrseratm))

(. 3.37
L[o0p1%mba,p = | ]0baixmbay 0 | ] bbac, xmbay, - (3.37)
n€EDy (o) al,aieCj(Y) pt’'eK (a)
a1toas=a
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If in addition pte K («), then

k-(n)
— |_| Myy.s X 1((F by (m)) jeie )] (0> Ti)T 60 ()
n€D (
1 1
- |_| o) b6, by, U | | ) 66,15 b, ()
neDy(a) ° neDy(a) °
i€[ka (n)] i€[ke (n)]
a;(n)=apt pteK (avi(n)), i (n)#opt
= | |ob,1xmba,, | 66,1 b0y () = Bbag xmbay, | |bba, xmba, -
n€Dy, () n€D, () al,a_ig_EC:’j_(Y)
a1(n)=ops pteK (a1 (n)),a1(n)#apt p%eK(Qa_g)
If dim(«) =0, this statement, (3.37), and (3.35) give
| | (=1 s* ()9 5((, 60ry ) seon 61 (s )Ty 0 (o))
1€D ()
= —bboe, X bay, U |_| bba JXbba, U a | ] (=baxmbas) -
pt’eK a1,oc2€C*(Y)
al1toas=a
pteK (a1)
Along with (2.18) and (3.36), this implies (2.22).
Proof of (2.23). By the proof of (3.37),
|_| (= 1Y%+ 0s° ()05 X (s ber; () et ()i s T (m))
n€Dy ()
I'¢Le(n)
= — |_| bbn\zxfbbaz( = — [ ]obixmbayoy = — | |6bayxmbas -
€Dy ( ) n€Dy, () a1,a26CE(Y)
i€[ke(n)] eL(a1(n) a1taz=a
TeL(a;(n) TeL(az)

Suppose in addition dim(a)=0. By the proof of (3.35),

| 660, x b0, =2 | 660y xmbay 1 @ | | (—bayxmbas).

04170426(:‘% (Y) al,OtzEC:j (Y) al,ageC;“ (Y)
a1toaz=o altog=« a1toaz=o
FGL(O{Q) FEL(al)

Combining the last two statements with (3.37),

| | (=15 s* ()0, % (5, 6ex; m) ) sen 61 (s )T se0 (o))
neDy (o)

= || (=0)F s ()9 s x5 0, () selion (1 s DT ()
neDL (a)

uf | ] bba, mba,, U L | ] (=baxmbas) -

pt’EK a1,oc2€C*( )
al1tas=a
TeL(ai)

Along with (2.18), (2.19), and (3.36), this implies (2.23).
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4 Proof of Theorem 2.9

We confirm the multilinearity of the open invariants (2.29), the pair of properties determining these
invariants for extreme values of the degree and constraints, (OGW2) and (OGW3), and the pair of
properties involving geometrically special insertions, (OGW4) and (OGW5), in Section 4.1. The
two remaining properties, both of which involve topological properties of the Lagrangian Y in X,
are established in Section 4.2.

4.1 Multilinearity and Properties (OGW2)-(OGW35)

Let (X,w,Y), 0s, k,l, B be as in the statement of Theorem 2.9. We fix Je€ J, and K c Y with
|K|=Fk. Given an element ~; of ITIQ"‘(X7 Y; R), we take a pseudocycle I'; to X or X—Y representing
the Poincare dual of ;. We assume that J, K, and L= {I'j,...,I';} are chosen generically, set
a=(f, K, L), and take a bounding chain (by/)aec,,.,(v) o0 (@, J).

Proof of multilinearity. By the symmetry of the open invariants (2.29) and (2.25), it is sufficient
to establish the linearity of these invariants only in the first input. Suppose o’,a” € R, '}, T'] are
generic pseudocycles to X, and I'; =a'T"} +a"T'¥. By the linearity of the intersection numbers,

+
‘mn;J (7, ba; (n) )ik ()]; (1. T1), (4, Fi)z‘eL.(n)—{Fl})‘
+
= a"imw X (1, By () ik (13 (1, T1)5 (4, Fi)FieL.(n)—{Fl})‘
+
+a” S):n'r];(] be((i, bai(n)>i€[l€.(n)]; (17 F/ll)v (Z> Fi)FieL.(n)—{Fl})’
for every ne DLt (). This implies that
(L—{TPH = a(L— TP+ (LT} (4.1)
B;K B;K B;K? ’

if all three counts above arise from the bounding chain (ba/)arec,,. . (v) o0 (af,, J ). This in partic-
w,arl

ular establishes the multilinearity of the open invariants (2.29) and (2.25) under the independence
assumptions of Theorem 2.9. O

The proofs of the two properties determining the open invariants (2.25) for extreme values of the
degree and constraints, (OGW2) and (OGW3), below are closely related.

Proof of (OGW2). Let a = (0,K,L). Since every degree 0 J-holomorphic map from (D?, S!)
to (X,Y) is constant,
mW;J ~ Y x Mk.(n),L.(n) VHGDw(a% (4.2)

where My, (), L.(y) 1 the moduli space of disks with L,(n) interior marked points and ke (7)) bound-
ary marked points ordered by the position. Both moduli spaces in (4.2) are oriented in Section 5.2.
By the definition of the orientation on 9t,.; and the CROrient 5a and 6a properties in [4, Sec-
tion 7.2], the isomorphism (4.2) is orientation-preserving. This implies that the degree of the map

evb1 : ﬁﬁfl((), J)evilxidXX —Y

is 1 and establishes (OGW2) in the case (k,1)=(1,1).
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We now treat the case (k, 1) # (1, 1) under the assumption that (2.27) with 5 =0 holds. Since 8=0,
k=1 by the condition (2.21) and deg~;+ =0 for some * € [[] by (2.27). By the symmetry of the
invariants (2.29), we can assume that i* =1. If k> 1, then [ >1 by (2.27). Thus, we can assume
that [>2.

Suppose neDL1(a) and the fiber product in (2.19) corresponding to 7 is nonempty. By (4.2), the
fiber product in (2.19) is the product of My, () L.(y) With another space. Since this fiber product
has dimension 0, it then follows that

a1 = (Ba(), ke(n)—1,Le(n)) = (0,0,{T1})  and s =ai(n) € CA(Y). (4.3)

By the reasoning in the proof of the first equality in (3.37),

|9, % (1, bay); (1, rl))\ ]bbalebb(m[* (4.4)

Since dim(«) =0 and dim(a;) =n—1, dim(ag) = —2. Thus, by, = & by Definition 2.1(BC2) and
the number (4.4) in fact vanishes. This implies the vanishing of the number (2.19). In light of
Theorem 2.7(2), the latter in turn implies the vanishing of the numbers (2.12) and (2.18) under
the same conditions.

The statement of (OGW2) depends on the boundary insertions being of dimension 0. The argument
in the second case of (OGW2) does not depend on n being odd. O]

Proof of (OGWS3). By (OGW2), it remains to consider the case  # 0 under the assumption
that (2.27) holds. Let neDL!(a) and thus 'y € Le(n). Suppose first that

(Be(n), ke(m), La(m) # (0,1,{T'1}), (0,2, {T'1}).

Since 71 = 1 € H?(X; R), the forgetful morphism dropping the first interior marked point then
induces a fibration

iUtn;J be((i baz( ))zE[k’.(n)] F €Le(n )
— MY L) }(5 ()5 J) X ((7, 6oy (n) itk (m)]; (6 LidrseLe(m—(r1})

with two-dimensional fibers. If (84(1), ke (1), Le(1)) = (0,2, {I'1}), the first fiber product above is the
product of My ; with another space by (4.2). Since the first fiber product above is of dimension 0
by the assumption that (2.27) holds, neither of these two conclusions is possible if it is nonempty.

Suppose (Be(1),ke(n), Le(n)) = (0,1,{I'1}). Since g # 0, it follows that (4.3) holds in this case
as well. Thus, (4.4) and the four sentences immediately after also apply in this case. So do the
considerations in the last paragraph of the proof of (OGW2). O

The proof of the divisor relation, (OGW4), stays below within the same definition, (2.12), (2.18),
or (2.19), of the invariants (2.29) and inductively compares all closed pseudocycles (2.11) associated
with the two open invariants in (OGW4). The proof of (OGW5) makes use of Theorem 2.7(2) iden-
tifying two of the definitions of the open invariants (2.25) and adapts the proof of Proposition 2.1
of [3], establishing the same property in a related setting, to the present situation.
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Proof of (OGW}). Let Ty be a generic pseudocycle to X —Y representing the Poincare dual
of vy. Define

LT = {To}u L, ol = (57](, LT)_ (4.5)
An element o' €C,, ,+(Y) then lies in C,.o(Y) if and only if I'o¢ L(a’). For o/ €C,,,+(Y), let
o, = (B(), K(0!), L)~ (o)), by =1 if Po¢ L(e); (4.6)
T'o = ) ) 05/ o’ T <,>,07 5(a/)>ba,rco’ if FOGL(O{’). .

Let bb], be the map determined by the collection (b,)arec +(v) as in (2.11). We show below that

bb,, if Do¢ L(d);
bb’a,z{ 0¢ L{a’) (4.7)

(0, B(a))bbgye , if Toe L(a).

It then follows that (b/,) o', 4(Y) is a bounding chain on (a, J). Furthermore, the number ( LT>‘§;§
as in (2.12) determined by the bounding chain (bl,)arec (v is the number (L)3% in (2.12)
determined by the bounding chain (by/)aec,.,(v) times <’yo; B).

Let a'€C,.,1(Y). The first case in (4.7) follows immediately from the first case in (4.6). We thus
assume that Tge L(a/). Let n'e D, (), bb%, be the restriction of bb’, to the subspace of its domain
corresponding to 7', and

1y = (Be(1)s ke ('), La(n') —{T0}, (i ()T ik r)]) € Pulcv)- (4.8)

By the assumption that I'y is disjoint from Y and (4.6),

ot = {@7 if B (1) =0, To€ La(n'); (49)

90, Bi(nffy ))0bye - if i€ [ka (s, )], Toe Li(1').

Suppose [Be(n') #0 and T € Le(n'). The forgetful morphism dropping the first interior marked
point induces a map
f: SD’t;;_’;(] be<(2+ 17 bai(n/))ie[k.(n/)ﬁ (Z+1> Fi)FiGL.(n’)>
— m;igo;J be((iﬂa O, (e ) Dielka (ofe 115 (4 Fi)g@.(%ﬂg))

intertwining the maps evb;. The map f restricts to a covering projection of degree (o, B+(7'))
outside of a codimension 2 subspace of its target. Thus,

bb%/ = <707 /60 (nf?o)>bb77f?0

outside of codimension 1 subspaces of the domains of the two sides. Combining this with (4.9),
we obtain

| |66}, = (y0, B(afs,) )by, VneDy(afs).
n'€Dy (o)
e, =n

This establishes the second case in (4.7).
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By the same reasoning with 9171:72; s replaced by 9, ;,

DR (AT PR Y CET W i oy
€Dy ()
e, =n
+

= (Y0, Bty ) )| Ms X (6, by () il ()3 (6 Tidrierai))
for all n € Dy(af,). Thus, the number <LT>Z;  as in (2.18) determined by the bounding chain
(0] ovec +(v) is the number (L)% ;- in (2.18) determined by the bounding chain (ba)aec,.q(v)
times <’yo; B). In light of (2.23), the same statement holds for the analogous numbers (2.19). This

in particular establishes the divisor property of the open invariants (2.29) and (2.25) under the
independence assumptions of Theorem 2.9. O

Proof of (OGW5). Let ppeY be a generic point. With I'g: S(Np,Y) — X —Y denoting the
inclusion of a small generic sphere in the fiber A, Y of the normal bundle of ¥ in X, we define
ateC,(Y) by (4.5). We show that

(D = Y (4.10)

if both counts above arise from the bounding chain (byr)aec, . (v) on (a,J). This in particular
establishes the identity in (OGW5) under the independence assumptions of Theorem 2.9.

We can assume that (2.27) with k replaced by k+1 holds. This implies that

dim 9. 7 % 1,((4, ba, () ielka ()] (6 DidTseLuny) = n—1€ 2Z ¥ neDy(a). (4.11)

For neD,(«), let [n]= Dy, () be the orbit of n under the action of the rotation as in (3.18),

eVbnE evb1 . m;r"] be((i—l-l, bai(n))ie[k-(n)]; (i, Fi)FiEL.(n)) —> Y, evbm = |_| eVbn// .
n"€ln]

If pgeY is generic, evb[jﬁ (po) is a finite set of signed points; the sign of a point U is plus if dgevbpy)
is orientation-preserving. For e DLo(al), let i, € Dw(a) be as in (4.8) and

eVin/ =eviy: Djtn/;J be((i, bai(n’))ie[k-(n’)]; (’i—|—1, Fi)FieL.(n’)—{Fo}) — X.
If pgeY is generic, evi;,l(S (NpoY)) is a finite set of signed points; the sign of a point U is plus if the

composition of dgevi, with the projection to the normal bundle of S(N,,Y) in X is orientation-
preserving. Since the dimensions of X and I'; are even,

My X (65 0o, () ielha ()1 (41 Tidrsera) & evip! (SN Y)) - (4.12)

If Bo(n)=0, evig,l(S(NpOY)) = (f because I'y is disjoint from Y.

Suppose Be(n') #0. The short exact sequence

0 —> Toy D — Ty (M7 X a((4, bary () ik ()13 i+ L D) e () (o))

— Ta (M s (0 0oy o) ielka (e )13 (5 T)rveLare ) — 0
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of vector spaces induced by the forgetful morphism dropping the first interior marked point is
orientation-preserving for every element [u] = [u, z1] of the first fiber product above. The short
exact sequence

0 —> Ty, S — Ta (M) xm((41, ba, () iera 1 (6 Ti)rseLa ()
— T (Mg (7, oy () ielra ()] (6 Ti)TseLa()) — 0

of vector spaces induced by the forgetful morphism dropping the first boundary marked point is
also orientation-preserving for every 7 € [n5 ] and every element [U] = [u, 1] of the first fiber
product above. Along with (4.11), the last two statements imply that the homotopy classes of
isomorphisms

T (Mg X 6((6: by ) Dieta ()13 (4 1. Di)vse )~ (o}))

~ Ta(Mye g %7 basope ) ielraope 13 (6 T eLa e ))) @T=1 D,
Ta (M 5 x (i 41, b0, () )iefra ()i (6 Ti)rer(m)))

~ Tu (Mg % (4 b () )iera (13 (s Ti)TacLa () ) @ Ty S

are orientation-preserving. Combining this with the proof of the equality of the right-hand sides
of the two equations in [3, (6.20)], we obtain

|evi;,1(S(./\/'p0Y))| !evb[ ](p0)| . (4.13)

By (2.19), (4.12), and (4.13),

<L>F.0K _ (_1)16.(7]’)80(77 )}ev1 - ( (Npoy))| (_1)k.(n)}evb;1(p0)’i‘
ﬁ7
n/EDE,O (ah) nED,, (cv)
B ()20 gm0

If Bo(n)=0, evb;l(po) = ¢ by the reasoning in the proof of (OGW2). Thus, the last sum above
equals to the right-hand side of (4.10). O

4.2 Properties (OGW6) and (OGW7)

Throughout this section, we assume that

!
15 (8) + (n—3) 2 deg i —2);

otherwise, all invariants in (OGW6) and (OGWT7) vanish for dimensional reasons. Both of these
properties then follow immediately from Proposition 4.1 below. We state this proposition, which
is analogous to Lemma 4.3 in [20], in a slightly greater generality than necessary for the purposes
of establishing (OGW6) and (OGW?7) to make it readily usable for a geometric translation of the
proof of WDV V-type relations of [20]. With (X,w) and Y as in Theorem 2.9, let 1y : Y — X be
the inclusion.
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Proposition 4.1 Let (X,w,Y), n, 05, a=(6, K, L), J, and (ba)wec,,(v) Pe as in Definition 2.1.
If Ty is a generic dimension n pseudocycle to X, possibly with boundary, and dim(a)=n—1, then

oy xwTo| (LY + (L(a)yp

= 2@ (85 T)xa((0,Y), (1,To), (i1, Ti)rier )| (4.14)
Begy ' (B)

Proof of (OGWE6). If T is a closed pseudocycle to X,
iy To|™ = (PDx([Tolx), [Y]x) € R.
The signed cardinality on the right-hand side of (4.14) is then the degree B closed GW-invariant
(PDx([Y]x), PDx([To]x), (PDx([Tilx)) o, )5 € R

of (X,w). The claim of (OGW®6) is thus the K = ¢J case of Proposition 4.1 with I'g,I'y,..., I
being generic pseudocycle representatives for the Poincare duals of vg, 71, ..., O

Proof of (OGW). The right-hand side of (4.14) vanishes if K # (J for dimensional reasons. The
claim of (OGWT) thus follows from Proposition 4.1 with I'g,I'y,...,I'; being generic pseudocycles
to X such that |ty xpTg|T #0 and the Poincare duals of T'y,..., Ty are 71, ...,7. O

The remainder of this section establishes Proposition 4.1. Let o« and I'g be as in its statement
and LT and of be as in (4.5). We define

e Dlo(al) by (2.4) with Tge Ly LT,
e D2 (al) by (3.2) with D,,(a) replaced by DLo(al), [k (1)+2] replaced by {0} Li[ke(n)+1], and

(B2, ko—1—Fk1, L) # (0,0, ), (0,1, ), (Ba(n), ka(n) =1, La(n)), (Ba(n), ke (n), La(n)),

o D2 (a') by (3.3) with D, (a) replaced by DL (al) and (Ba(n), ke(n), La(n) # (0, 2, &).
Let
DX (al) = {(n; B2, k1, ko, L2) D2 (af): k1 =1 or ka(n) =0}.

The construction above (3.3) determines a bijection
{(: 82 ka. e, LD D2 (a1): Tog L2} — DL (M), (ms B2 ko L) — (n'skat1,7%) . (4.15)

We define “rotations”

p: 52* () — fi*(o/r) and  p: DX (al) — D¥(al) (4.16)
by (3.19) and (3.26). Let
R: {(n; 82, b, ko, L2) €D (o) b =0} — DI (a), (4.17)

R(n,/ﬁ?a 07 k27L%) = (77) /80(77)—537 k’Q—l, k.(n)+1, L.(U)—L%)

Below (4.19), we use the equivalence relation on D2 (a) generated by the maps p in (4.16) and R
in (4.17).
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Let (ba/)alecw;a(y) be as in the statement of Proposition 4.1. For ne DLo(al), we define M,.; and
M., as in (2.8) and bb, as in (2.10). For (n;9) e D2 (al), define S, (¥) = M,.; as in (3.4). All
boundary strata of 9,.; are of this form; two elements of D% (a') describe the same boundary
stratum if and only if one can be mapped to the other by compositions of the map R in (4.17).

For (n;0)€D? (af) and (n;i,7)e Dy (al), let
b6} (9) = Sy () X1y (2, bay () iera ()13 (6 Ti)rseLa(m)) s
667 (i, 7') = My x5 (7, by () jefia (]~ 1 (3 0030)5 (5, Ti)rje () -

For (n;9) e D%*(at) and (n;4,71) efi* (a'), the “backwards” cyclic permutations of the boundary
marked points of the moduli space and of the pseudocycles to Y induce diffeomorphisms

Pz BOY(9) —> 605 ('), ppiy: BOR(E 7)) — .
! ! P R 667y (ke(n),n), ifi=1.

Lemma 4.2 The diffeomorphisms p,p with (n;9) € DZ*(al) and p,;,y with (n;i,n/)eﬁi*(aT)
above are orientation-preserving.

Proof. The proof is similar to that of Lemma 3.4. The cyclic permutations of the boundary marked
points of the elements of 9,.; and of the pseudocycles to Y induce a commutative diagram

M. 7 = Yke () x Le () [[(domb,, ) x ] (domT)

j€lke ()] Ij€Le(n)
psm‘/ PY lpb
M. 7 = Y ke (m)y X Lo (1) [[(dombg, ) x  [](domT;)
j€lke (m)] [jeLe(n)

so that the vertical arrows are diffeomorphisms. Since the dimensions of all b, (,) are even, the
diffeomorphism py is orientation-preserving. By the construction of the orientation on 9,.; in
Section 5.2, the sign of the diffeomorphism pgy is (—1)" (M=1_ Since the dimension of Y is odd, this
is also the sign of the diffeomorphism py. The first claim of the lemma now follows from Lemma 5.3.
The claim concerning p,;.; .y is obtained in the same way with b, (,) replaced by bb,, ). O

Lemma 4.3 If (n!; i,nQ)efi*(aT) is the image of (n; ﬁ)eﬁg(oﬂ) under (4.15), then
1 .
(—1)FMpbk(9) = —(—=1)*bb, (i, n?). (4.18)

Proof. Let ¥ = (82, k1, ko, L?). By the definition of the map (4.15), I'g ¢ L2. The proof of the
B={pt}, I=[ke(n)], and J=L4(n) case of Corollary 5.10 applies with €, for i=1,2, 3 replaced by
€r+e€,., where

(6/1, 6,2, Eé) = (kQ_k1+1, ko—k1—1, 1).

Thus, Corollary 5.10 yields the same conclusion with € =k;+ks+1 under the above assumptions.
Since

ko(n') = ke(n)—(ka—k1—1)+1,
this establishes the claim. O
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Proof of Proposition 4.1. For neDLo(al), let s°(n) be as in Section 2.3 and

s°(n), if ke(n)#£0,
P 0
55°(n), if ke(n)=0.
We denote by 80 c 6917(,7 J the sphere-bubbling stratum with the boundary orientation; it consists

of the maps from (D2, 8% to (X,Y) with S contracted to a point in Y. This stratum is empty

unless
ke(n) =0  and  B.(n) € Im(qy: Ho(X;Z)— Ha(X,Y; Z)).

By Lemma 5.2 and Definition 2.1,

- 5( |_|SO(77)fmn;J X 1b((2, Bas () ik (]; (141, T )FieL.(n))>

neDLO (at)
LI80xa( i+1,T)rera)
neDL0 (af)
o L JE0Rsmeeg @) o [ (=150 (m)bbs (i) (4.19)
(; ﬂ)eDQ*wT) (nsin €D (o)
N ~- dimbbn/<ﬂ
II - ~
III
L L )R s ()90 ¢ (7, B )i (13 (L OT0), (41, D)y (1o} ) -
neD.0 (af)

For 9= (2, ki1, ko, L2), we define ko(9) =ko and L2(¥) = L2. The orbit of (n;9)eD2*(al) under the
action of the second map p in (4.16) consists of 1/s'(n) elements and is contained in the equivalence
class of (;9) in D2 (af). This equivalence class has a unique element (7*;9*) with g ¢ L2(9*)
and ko (9*) =ke(n*)+1. The orbit of (n;i,7) Eﬁi*(aT) under the action of the first map p in (4.16)
consists of 1/s°(n) elements. Each such orbit has a unique element of the form (; ke(n),n’). Along
with Lemma 4.2, this implies that

II = | |(=1)"®eb}(w)  and  III= | | (=1)*bb (ka(n), 7).
(n;9)eD2* (') (ke (n).1)ED (o)
FQ$L% (19) dim hhn/<7’l

ko (9)=ke(n)+1
Since (4.15) restricts to a bijection
{(m:9)eDZ (al): Tog L2AD), ka(9) =ka(n)+1} — {(n:i,0) €D, (o) i=ka(m)},
Lemma 4.3 thus gives

I+ III = — | | (=1)%@bb} (ka(n), ). (4.20)

(nka(n)s )DL (al)
dim hbn/ >n

Since dim(a') =1 and the dimension of each bby, (ke(n),n') in (4.20) is O,
RHS of (4.20) = M}, (0; ) xm((1,bb4); (1,T0)) = — (M 1(0; J) xm(; (1, T0))) evby X b, (dom bbg, );
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the first equality above holds by the reasoning below (3.15) with the two disk components inter-
changed, while the second by Lemmas 5.3 and 5.4. Since the isomorphism in (4.2) is orientation-
preserving,

9001 (0: ) % (1, To))|* = |eyxmLo| ™

Thus,
RHS of (4.20) = —|uyx s, To|™ (deg bby,).

Along with (4.20) and (2.12), this gives

IT+ I = [y x g To [ (L)5 5

Combining this statement with (4.19), (2.12), and Corollary 5.12, we obtain (4.14). O

5 Orientations

Section 5.1 specifies our orientation conventions for fiber products and establishes their properties
that are used throughout the paper. We describe the relevant moduli spaces of stable disk maps
and specify their orientations in Section 5.2. Sections 5.3 and 5.4 compare the induced orientations
on the two types of boundary strata of these moduli spaces with natural intrinsic orientations of
these spaces.

5.1 Fiber products

We say a short exact sequence of oriented vector spaces

0—V —->V-—>V"—50

/

is orientation-compatible if, for an oriented basis (v],...,v},) of V', an oriented basis (vf,...,v))

of V", and a splitting j : V" -V, (v{,...,v},,7(v]),...,7(v])) is an oriented basis of V. We say
it has sign (—1)€ if it becomes orientation-compatible after twisting the orientation of V' by (—1).
We use the analogous terminology for short exact sequences of Fredholm operators with respect to

orientations of their determinants; see [26, Section 2].

Let M be an oriented manifold with boundary 0M. We orient the normal bundle N to dM by the
outer normal direction and orient dM so that the short exact sequence

0 —> TpyoM —> T,M —> N — 0

is orientation-compatible at each point p € M. We refer to this orientation of M as the boundary
orientation.

We orient M x M by the usual product orientation and the diagonal Ay < M x M by the diffeo-
morphism
M — Ay,  p—(p,p)

We orient the normal bundle N'Aj; of Ay so that the short exact sequence

0—>T(p7p)AM—>T( MXM)—>./\/’AM|(p7p)—>O (5.1)

pvp)(
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is orientation-compatible for each point pe M. Thus, the isomorphism
NAM\(p’p) — T, M, [v, w] — w—wv,

respects the orientations. This in turn implies that the isomorphism
NAw, ’(pl,m)@NAM? ‘(pz,pz)

([vr, w1], [va, wa]) — [(v1,v2), (w1, wa)],

N NAMlXMQ{((pl,pz),(m,pz))’ (5.2)

is orientation-preserving for all oriented manifolds M;, My and points p; € My and pye Ms.

For maps f:M — X and ¢g:I' — X, we denote by

fxmg = Mpx,T'={(p,q)e MxT: f(p) =g(q)}

their fiber product. If M,T', and X are oriented manifolds (M,I" possibly with boundary) and
[, flanm are transverse to g, g|or, we orient My x,I' so that the short exact sequence

dof d
1l ], NAX|(f(p),g(Q)) —0

0 — T(p,q) (Mg x gI') —> T(py ) (M xT)
is orientation-compatible for every (p,q)€ My x,I". The exact sequence

dqg—dp f

0 — Tl q) (Mg x gI') —> T(p ) (M xT') Trp X — 0

is then orientation-compatible as well. We refer to this orientation of My x,I" as the fiber product
orientation. The next two observations are straightforward.

Lemma 5.1 If f: M — X is an open embedding, so is the projection Myx,I'—TI'". It has sign
(—1)(dim X)(dimT+1) (with respect to the fiber product orientation on the left-hand side.

Lemma 5.2 IfI'y,... T, are oriented manifolds with boundary and I' =T'; x...xI',,, then

My 1 T) = (-1 (1) @),
m - )
L U(—l)zf:i"’ldlijMf Xg(le. . .xFilxal“ixFin...me)).
=1

For a diffeomorphism o: M — M between oriented manifolds, we define sgn o =1 if ¢ is everywhere
orientation-preserving and sgno = —1 if ¢ is everywhere orientation-reversing; this notion is also
well-defined if M is orientable and o preserves each connected component of M.

Lemma 5.3 Suppose M, ", X and f, g are as above Lemma 5.1 and o)y, o1, 0x are diffeomorphisms
of M,T', X, respectively, with well-defined signs. If the diagram

f g

M X r
U]\/jl le \LO’F (53)
M—t x——9% 7

commutes, then the sign of the diffeomorphism
Mpx gD — Myx,T,  (p,q) — (om(p),or(q)),

is (sgnoys)(sgnor)(sgnox).
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Proof. Let (p,q)e Myx,I'. The commutative diagram (5.3) induces an isomorphism

0

T(p,q)(]wf>< 9F) T(p,q)(M x F) Tpy X —0

| | |

0 ——Tlop(p).or(a)( My xgT) —= T MXT) —— Ty (sp)X —0

on (@) .or(@)

of exact sequences. The signs of the middle and right isomorphisms are (sgnojs)(sgnor) and
sgn o x, respectively. This establishes the claim. O

Let M,I', X and f, g be as above Lemma 5.1. Suppose in addition that e: M —Y and h: C— Y.
Let €': My x,I'—Y be the map induced by e; see the top diagram in Figure 3. There is then a
natural bijection

(MyxgD)oxp,Cx Mg exgxn(TxC). (5.4)
If C,Y are oriented manifolds and all relevant maps are transverse, then both sides of this bijection
inherit fiber product orientations. They are compared in Lemma 5.4 below.

For any map h: M — Z between manifolds, let
codimh = dim Z — dim M .

Lemma 5.4 The diffeomorphism (5.4) has sign (—1)(dimX)(codimr)

uct orientations on the two sides.

with respect to the fiber prod-

Proof. Suppose (p,q),c) € (Mg x4I')erx,C. We use the commutative square of exact sequences
in Figure 3. The right column is induced by the isomorphism (5.2); it is compatible with the
canonical orientations on the normal bundles if and only if (dim X)(dimY") is even. The top and
middle rows are orientation-compatible with respect to the fiber-product orientations on the left-
hand and right-hand sides of (5.4), respectively. The middle column is orientation-compatible with
respect to the fiber-product orientation on My x,I" if and only if (dim X')(dim C) is even. Thus,
the diffeomorphism (5.4) is orientation-preserving at ((p, q), ¢) if and only if

(dim X)(dim Y) + (dim X)(dim C) € 2Z;
see Lemma 6.3 in [1]. O
Let M,I', X and f, g be as above with
g=g1xg2: I'=T'1xI'y — X =X x Xo.
Suppose in addition that
e1: My —Y, e:My—Y, fi1:M; — X1, and fo: My — Xy

are maps such that
M = (M)e, XM and  f=fix fo|,,.

Let €] : (Mi)p, xg,T'1 — Y and €} : (Ma)f, X4, I'a — Y be the maps induced by e; and ey,
respectively; see the top diagram in Figure 4. There are natural bijections

My I~ ((Ml)ﬁxglrl)e'lxe’z((MQ)f2X92F2) ~ (Ml)(f1,61) Xglxe'g(rl X((MQ)hxng?)) : (5.5)
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I'<——TIxC——C

S

Myx,T X<——XxY —=Y

e /

0 0 0
0 —— Ti(p,q),0) (M X g D)erxn C) —— Ty ) (M %, T)DT.C NAy |, ——=0
(5.4)
0 ——T(p,(g.0)M(f.e)< g0 (L' x C) T,MeT, I ®T.C NAxr | ey —0
Id
0 NAx|s NAx4 >0
0 0

Figure 3: The maps of Lemma 5.4 and a commutative square of exact sequences for its proof.

If My, M>,Y are oriented manifolds and all relevant maps are transverse, then the middle and right
spaces above inherit orientations as fiber products of fiber products.

Lemma 5.5 The first diffeomorphism in (5.5) has sign (—1)¢ with respect to the fiber product
orientations on the two sides, where

€ = (dim M3)(codim g1 ) + (dim X ) (codim g2)+ (dim Y) (codim g).

Proof. Suppose (p,q) € My x4I" with p= (p1,p2) € M1 x My and ¢=(q1,q2) €'t xI's. We use the
commutative square of exact sequences in Figure 4. The nonzero isomorphism in the bottom is the
inverse of (5.2); it respects the canonical orientations on the normal bundles. The left column and
the top row are orientation-compatible with respect to the fiber-product orientations on the left
and middle spaces in (5.5), respectively. The middle row is orientation-compatible with respect to
the fiber-product orientation on M if and only if

(dimI'y)(dim M3) + (dimI')(dimY") € 2Z.

The middle column is orientation-compatible with respect to the fiber-product orientations on
(My) ,xg,T1 and (M3) g,x 4,12 if and only if (dim X )(dim((M2) s, xg4,I'2)) is even. Thus, the first
diffeomorphism in (5.5) is orientation-preserving at (p, ¢) if and only if

(dimT')(dim M) + (dimT')(dim Y") + (dim X ) (dim(M2) £, % g,I'2) + (dim X)(dimY") € 2Z;
see Lemma 6.3 in [1]. O
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F1<7F1XF2—>F2

P T A

(Ml)fl Xg1F1 Xl%Xl XX2—>X2 (MQ)f2X92F2

0 0 0
0—> T(p,q)(Mf xgl) = L(p1,q1) ((Ml)flxglrl)@T(pz,qg) (<M2)f2><92r2) NAY|61(IJ1) 0
Id
0 ——T,MaT,l Tipy ) (M xT1)@T(p, g,) (M X T2) NAY o) 0
0 NAx ‘f(l’) NAXl ‘fl (Pl)@NAX2 }fz(m) 0
0 0

Figure 4: The maps of Lemma 5.5 and a commutative square of exact sequences for its proof.

Corollary 5.6 The composition of the two diffeomorphisms in (5.5) has sign (—1)¢ with respect
to the fiber product orientations on the two sides, where

€ = (dim M>)(codim g1 )+ (dim X7 ) (codim ez) 4+ (dim Y) (codim g).
Proof. By Lemma 5.4 with M,I", X, C, f, g, e, h replaced by
My, Ti, X1, (Ma)pxgl2, fi, f2, e1, ey,
respectively, the second diffeomorphism in (5.5) has sign (—1) with
€2 = (dim X1)(codim e) = (dim X7)(codim g +codim ey) .
Combining this with Lemma 5.5, we obtain the claim. O
Let M,I', X, T"y,..., '), and f, g be as in Lemma 5.2 with

f=(fi,. . fm) M — X=X1x...xX,;, and g=¢g1x...Xgp:'=T1x...xI"), — X.
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Suppose in addition that B is another manifold and e: M — B and e;: I'; — B with i€ [m] are
maps. Define

F=(e.f1)s (e fm): M —> X=(BxX1)x...x (Bx Xp),
G=(e1,91)%...x(em,gm): T — X=(BxX1)x...x (BxXp).

Let €': Mf><§F—>B be the map induced by e. For each be B, define
szefl(b), fb=f|Mb: My, — X, I‘b:e;l(b)X...XG;@l(b), gb=g|pb: I'y — X;
see the top diagram in Figure 5. Let ¢: {b} — B be the inclusion map. The natural map
{b}LbX€/<MJ?><§F) — (Mb)fbxgbf‘b C MfXgF (5.6)
dropping the b component is then a bijection.

Suppose also that the maps e and e; are smooth, the maps f, f |oar are transverse to g, glor, and b
is a regular value of e, e; with i€[m], and ¢’. This implies that the spaces M, and T, are smooth
manifolds, the sequences

0— T,My, — T,M 25 T,B—0  and (5.7)
dg, e;
0 — Ty(e; (b)) — Ty Ty =5 T,B — 0, (5.8)

are exact for all pe My, g=(q1,...,qm)€s, and i€[m], and the bijection (5.6) is a diffeomorphism
between smooth manifolds.

Lemma 5.7 Suppose the manifolds M, I', B, M, and I'y are oriented so that the exact se-
quences (5.7) and (5.8) have signs

(71)(dime)(dimB) and (71)(dimei_1(b))(dimB)’

respectively, for all pe My, ¢=(q1,...,Gm) €, and i€ [m]. The diffeomorphism (5.6) then has
sign (—1)¢ with respect to the fiber product orientations on the two sides, where

m
€ = (dim B) <dim Mb+2(i+1)codimgi}ei—1(b)> .

1=
Proof. Let (p,q) € (Mp)f,xg,I's with ¢ = (q1,...,¢m). We use the commutative square of exact
sequences in Figure 5. The two maps in the right column are given by

v —> (U, (v,...,v)) and (v,(wl,...,wm)) — (wl—v,...,wm—v);

this column is thus compatible with the direct sum orientations. The bottom row is compatible
with the product orientations if and only if

(dim B) )" idim X; € 2Z.
=1
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X X B™ > p™ MfXg].—‘

fkﬂ\ \f / \Le'

M, M = B3b

0 0 0

dp,q)€
0 T(P#I) ((Mb)fbxgbrb) 4>T(p q)(foﬁr) B 0
0 —— T, M ®T,T T,M®T,T TyB®&mT,B —0
dggy—dp fo dgg—dpf

0———— T X ————=Tj,) X mT, B 0

0 0 0

Figure 5: The maps of Lemma 5.7 and a commutative square of exact sequences for its proof.

The middle row is orientation-compatible if and only if

m

(dim B) <dim My+ Z (i+1)dime; (b)) € 2Z.
i=1

The left and middle columns are compatible with the fiber product orientations on the top spaces.

The top row is compatible with the orientation on the left-hand side of (5.6) and the fiber product
orientation on T, o) (M 51). Along with Lemma 6.3 in [1], this implies that the diffeomor-

phism (5.6) is orientation-preserving at (b, p, q) if and only if

m m
(dim B) Z idim X; + (dim B) (dime+Z(i+ l)dimeil(b)> + (dim X)(dim B) € 27Z.
i=1 i=1

This establishes the claim. O

5.2 Moduli spaces

Suppose k,l € Z*° and k+20 > 3. Let M. be the moduli space of k distinct boundary marked
points x1, ...,z placed in counter-clockwise order and [ distinct interior marked points z1, ..., 2
on the unit disk D. We orient My, ; as follows. Let M;j; and M3q be plus points. We identify
M2 with the interval (0,1) by taking z; =0 and z2€(0, 1) and orient it by the negative orientation
of (0,1). We then orient other M ; inductively. If £ >1, we orient My ; so that the short exact
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sequence
d R
0 — T, 8" — TMyy 25 TMy_1 ) — 0 (5.9)

induced by the forgetful morphism f],lf dropping 3 has sign (—1)* with respect to the counter-
clockwise orientation of S'. Thus,

TMpg~TMp_1,®T,, S

If I>1, we orient M, ; so that the short exact sequence

ds¢
0—T1T,D—TMp; —>TMp;—1 —0 (5.10)

induced by the forgetful morphism ﬁc dropping z; is orientation-compatible with respect to the
complex orientation of . By a direct check, the orientations of M 2 induced from Mg o via (5.9)
and from M ; via (5.10) are the same, and the orientations of M3 induced from M, ; via (5.9)
and from M3 via (5.10) are also the same. Since the fibers of ﬁc are even-dimensional, it follows
that the orientation on M, ; above is well-defined. This orientation extends to the Deligne-Mumford
compactification Mk,l of My,;.

Fix a symplectic manifold (X,w) of dimension 2n, a Lagrangian submanifold Y, a relative OSpin-
structure os on Y, and fe H§(X,Y). Let JeJ,. For

[u] = [u: (D, ") — (X, Y), (20)ie[t] (2i)iefy ] € M (B: ), (5.11)

let
Dy T (0*TX,u[5nTY) — T(T*D" @cu*(TX, J))
be the linearization of the {@;}-operator on the space of maps from (D, S') to (X,Y). By Propo-

sition 8.1.1 in [7], the OSpin-structure os determines an orientation on det(D j.y).

Suppose B is a smooth manifold (possibly with boundary) and J = (J¢)tep is a smooth generic
family in 7,. We define the moduli spaces

My (85 T) < ¥, (85 )
of j—holomorphic degree 8 maps, evaluation maps
evb: X, (8; J) — BxY, ic[k], and evi;: MY, (8;J) — Bx X, ie[l],

and the fiber products involving these spaces and maps as at the end of Section 2.1. If Y admits
a relative OSpin-structure and thus is orientable, the Maslov index (1.1) is even. If in addition n
is odd, then

dimm:’l(ﬁ; J) = k+dim B mod 2. (5.12)

For each te B and [u]e My, ;(B; J¢) as above, define
Dyu: TiBOT (W' T X, u[f1 TY) — T(T*D* ! @cu*(TX, J)),

~

~ 1 .
Dt;u(vvf) = iv( )Oduoj + DJt;ngﬂ
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where j is the complex structure on ). We orient the determinant of lNDt;u so that the short exact
sequence
0— Dt;u e Dt;u — (EB—>O) — 0

of operators has sign (—1)dimB)(dimY) “Phyg,
ker Et;u % TtB® ( ker Dt;u)

if the operator Dy, is surjective. We orient im;:l(ﬁ; J ) by requiring the short exact sequence

~ ~ d JRE—
0 —> ker Dy — Tyt (8; J) D> Ty My — 0 (5.13)

to be orientation-compatible, where f is the forgetful morphism dropping the map part of u.
Remark 5.8. The above paragraph endows 93?:1(5; J ) with an orientation under the assumption
that k420> 3. If k42l <3, one first stabilizes the domain of u by adding one or two interior marked
points, then orients the tangent space of the resulting map as above, and finally drops the added
marked points using the canonical complex orientation of D; see the proof of Corollary 1.8 in [9)].

~

If L is a finite set, we orient M (B; J) from Dﬁ:wl(ﬁ; J) by identifying L with [|L|] as sets. The
resulting orientation does not depend on the choice of the identification.

5.3 Disk bubbling strata

In this section, we compare two natural orientations on the disk bubbling strata of Qﬁzl(ﬁ ;J) and
on associated fiber products. Corollary 5.10 at the end of this section ensures pairwise cancellations
of boundary components of fiber product spaces in the proofs of Lemmas 3.1 and 3.3 in Section 3.1,
of (2.24) in Section 3.2, and of (OGW6) and (OGWT7) in Section 4.2.

We continue with the setup of Section 5.2. Suppose in addition fi, f2 € HS (X, Y) with 81+82=0,
[l[]=L1uLy, and ki1, ko€ {0}u[k+1] with k1 <ks. Let S < 09)1;1(5; J) consist of J-holomorphic maps
from (D?vD? S'vS) to (X,Y) of degrees 31 and 32 on the two components, with the second
component carrying the boundary marked points indexed by ki1+1,...,ko—1 and the interior
marked points indexed by Lo. We re-index the boundary marked points on the second disk in the
counterclockwise order starting with the node and on the first disk starting with z if k&1 > 1 and
with the node otherwise. Define

~ ~

My = My—(ho—kr)+2,0, (B3 J), - Mo =My, k.1, (B2; J).
As a space, S is the fiber product

S = 9j’tl evbkﬁlxevbl f)ﬁg.

Lemma 5.9 If n=dimY is odd, the orientation of S as a boundary of Em,’:l(ﬁ; j) differs from the
orientation of S as the above fiber product by (—1)¢, where

€ = kiko+kki +kko+ki+1 + (dim B) (k1 +ka+1).
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0 TuS: TuS T:B 0
0—— Tu1 ml;teBTuQmQ;t Tu1 th@TuzmQ ﬂB@TtB —0
0 > NAY|(evb1(u2),evb1(u2)) > NABXY|((t,evb1(u2)),(t,evb1(ug))) > NAB‘(M) =0

Figure 6: A commutative square of exact sequences for the proof of Lemma 5.9.

Proof. Suppose first that B is a point. The conclusion of Lemma 6.4 in [3] and its proof apply
to any n ¢ 2Z and imply the claim in this special case. The difference in the sign is due to the
placement of the node of the first disk according to its cyclic order position here instead of the last
position in [3]. Below we deduce the general case.

For te B, denote
Mt = My (hy—kr) 2,00 (P15 J)s - Mo = My ky 1, (B3 1), S =S 0 IG5 (B5 ) -

For ue &y, let u; e My,; and ug € My, be the corresponding component maps. For the simplicity
of terminology, we assume that D, is onto. We use the commutative square of exact sequences
in Figure 6. The last column is as in (5.1); it is thus orientation-compatible. The bottom row is
induced by the isomorphism (5.2); it is compatible with the canonical orientations on the normal
bundles if and only if (dimY)(dim B) is even. The middle row is orientation-compatible if and
only if

(dim My, ) (dim B) + (dim Moy ) (dim B) + (dim My, ) (dim B) = (dim B) (k+k1 +k2) mod 2

is even; the congruence above follows from (5.12). The top row is compatible with the boundary
orientations of §; and S if and only if

(dim &) (dim B) = (dim B)(k—1) mod 2

is even. The left and middle columns respect the fiber-product orientations on S; and S, respec-
tively. Along with the B =pt case above and Lemma 6.3 in [1], this implies that the boundary and
fiber-product orientations on 7S are the same if and only if

(dim Y)(dim B) + (dim B) (k+k1 +k2) + (dim B)(k—1)
+ (kiko+kki+kko+k1 +1) +(dim Y)(dim B) = € mod 2

is even. OJ
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With the setup as above Lemma 5.9, denote
Ky={ki+1,...,ka—1}, K{={1,... .k}, K{=1{ks,....k}, Ki=KlUK].
Suppose in addition I < [k] and J <[] are such that KouK? < I. Let
{bi: Zs, — BxY} _, and {Ii:Zr, — BxX},_;
be smooth maps from oriented manifolds in general positions so that

codimb; ¢ 2Z Viel and codimI; e 2Z VielJ.

Define
bb = evby : Moxpm((i—k1+1, b;)icks; (4, T5)iesnr,) — BxY.

Under the assumptions above, this is a smooth map of even codimension.

Corollary 5.10 The natural isomorphism

Sx (4, 03)ier; (i, Ti)ies )
~ k(6 B0yt (141, 08), (=i +2, ) o3 (5, Ty (5.14)
has sign (—1)¢ with respect to the boundary orientation of S, where

€ = ky+ko+ (dim B) (k+k1 + (k1 + ko +1)|1]).
Proof. For r=1,2, let

gr= Hbi X HI‘i: G,= HZ;,Z, X HZpi — X, =(BxY)I"Er (Bx X)L
ielnK, icJAL, ielnK,  ieJnL,

We orient G, and X, based on the orderings of the elements of InK, and JnL,. By Corollary 5.6
with

fi=(evbi)icrniis (€Vbimkark+2)ic k2, (eVii)iesnry) : M —> X1, e1=evby41: My — BxY,

f2=((evbi—g,+1)icks, (eVii)iesnLy) : Mo —> Xo, ea=evby: My — BxY,

and (5.12), the sign of the diffeomorphism (5.14) with respect to the fiber product orientation on S,
the orientations G; x G2 and X1 x X9 on the domain and target of g; x g2, and the orientations

G1 X (QﬁQbe((i—k1+1, bi)iel@; (i, Pi)iEJmL2)> and Xj x (B X Y)
on the domain and target of g; x e}, is (—1)%, where

61 = (dim B+ko—k1)|[InK1| + ((dim B) (I nK1|+]J N L1|)+ I n K1) (k2 —k1+1)
+ (dim B+1)|I].

By Lemma 5.3, the above orientations on the domain and target of g1 x go twist the resulting
orientation on the left-hand side of (5.14) by (—1), where

€y = (k—k2+1)(k2—k1—1) + (k‘Q—kl—l)‘JﬁLl‘(dimB).
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The above orientations on the domain and target of g; x €}, twist the resulting orientation on the
right-hand side of (5.14) by (—1), where

€3 = (k—ko+1)(dim B+1).
Along with Lemma 5.9, this implies that the claim of the corollary holds with
€ = kiko+kki+kka+ki1+1 + (dim B) (k1 + ko +1) + €1 + €2+ €3.

This completes the proof. ]

5.4 Sphere bubbling strata
We next establish an analogue of Corollary 5.10 for the sphere bubbling stratum

Sh < 0Mo,L(B;J)

of the stable map compactification 9% 1, (8;J) of Qﬁ(’; .(B;J). Corollary 5.12 at the end of this
section is used to prove Proposition 4.1 in Section 4.2. As before, we assume that (X,w) is a
symplectic manifold, Y < X is a Lagrangian submanifold, os is a relative OSpin-structure on Y,
BeHS(X,Y), and L is a finite set. However, the dimension of Y need not be odd for the purposes
of the present section.

Let Be Hy(X;Z) and -
§ = Spim.e = Mo (ax(B); J)

be the open subspace of the sphere bubbling stratum consisting of the maps from D? that descend
to degree B maps from P!. This codimension 1 stratum inherits a boundary orientation from
the orientation of My 1,(¢x(B);J) induced by the relative OSpin-structure os on Y. This induced
orientation depends on the orientation o on Y determined by 0s and on (wsy(0s), B) only. As a
space, S is the fiber product

S = My,1 (B Nevox iy Y, (5.15)

where 1y : Y — X is the inclusion.

Lemma 5.11 The orientation of S as a boundary of My 1.(qy (B); J) differs from the orientation
of S as the above fiber product by (—1)w2(09).5,

Proof. In light of Remark 5.8, it is sufficient to establish the claim under the assumption that
|L|>2. Weienote by M({Co}uL the moduli space of distinct points on P! labeled by the set {0}LL.
Let So.r, = Mo,1, be the sphere bubbling stratum, Ay, be its oriented normal bundle, and A be
the oriented normal bundle of S in 9 1,(gy (B); J). Let U€S, (u,y) be the corresponding element
of the fiber product in (5.15), and C and C be the marked domains of @ and u, respectively. We
denote by
DY : T(*TX) — D (T*PHY*" ' ®cu*(T X, J))

the linearization of the {0}-operator on the space of maps from P! to X at u. The determinant
of this Fredholm operator has a canonical complex orientation.

A forgetful morphism §: Mg —> My dropping all but two of the marked points induces the
short exact sequences given by the columns in the first diagram of Figure 7. The middle and right
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columns and the top row in this diagram respect the orientations; the middle row is orientation-
compatible with respect to the boundary orientation on 758, 1. By the definition of the orientation
on My o, the single element C~2 €S0,2 is a plus point with respect to the boundary orientation. Thus,
the isomorphism in the bottom row is orientation-preserving. Along with Lemma 6.3 in [1], this
implies that the isomorphism in the left column is also orientation-preserving with respect to the
complex orientation on its domain and the boundary orientation on its target.

The forgetful morphism f: Mo 1,(gy (B); J) —> Mo,z dropping the map component induces the
short exact sequences given by the columns in the second diagram of Figure 7. The middle and
right columns and the top row in this diagram respect the orientations; the middle and bottom
rows are orientation-compatible with respect to the boundary orientations on T3S and T3S, 1,
respectively. Along with Lemma 6.3 in [1], this implies that the isomorphism in the left column is
also orientation-compatible with respect to the boundary orientations on T3S and T80, L.

The forgetful morphism § of the previous paragraph and its complex analogue induce the short
exact sequences given by the columns in the third diagram of Figure 7. The middle column
respects the complex orientations on ker Dgu, Tuim‘?o}u . (B;J), and Tc./\/l({co}u .- By the proof of
Proposition 8.1.1 in [7], the sign of the top row in this diagram with respect to the orientation
on ker D ;.4 induced by the relative OSpin-structure 05 and the complex orientation on ker Dgu
is (—1)(w2(05).B) " By the conclusion concerning the first diagram, the isomorphism in the bottom
row is orientation-preserving with respect to the boundary orientation on T5Sp 1, and the complex
orientation on 7 CM(?O}u .- By the conclusion concerning the second diagram, the left column in the
third diagram respects the boundary orientations on T3S and 75Sp,. By definition, the middle
row respects the fiber product orientation on T5S. Along with Lemma 6.3 in [1], this implies that
the boundary and fiber product orientations on TS differ by (—1)w2(0s).5), O

From Lemmas 5.11 and 5.4, we immediately obtain the following statement.

Corollary 5.12 Let (X,w), Y, os, and [ be as above Lemma 5.11 and L=(T"1,...,I) be a tuple
of smooth maps from oriented manifolds to X in general position. The natural isomorphism

Shrxm(; (L Trer) ~ | (=)@ BmE, | (B; J)xw((1,Y), (i+1,T)r.er)
Begy ' (B)

is then orientation-preserving with respect to the boundary orientation of 527 ;, and the fiber product
orientation on the right-hand side.

A General symplectic manifolds

We now sketch an adaptation of the geometric construction described in this paper to general
symplectic manifolds, dropping the positivity assumptions (1.4) and (1.5), in a way compatible
with standard virtual class approaches, such as in [14, 8, 13, 16]. As we only need evaluation
maps from the disk moduli spaces to be pseudocycles, a full virtual class construction and gluing
across all strata of these spaces are not necessary. Throughout this appendix, R is a commutative
ring containing Q, (X,w) is a compact symplectic manifold, Y < X is a compact Lagrangian
submanifold, and os is a relative OSpin-structure on Y.
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0——=TeM MM

C C
{0}uL {0}uL

0— T

dg dgf

00— TCNQSOQ —_— T52M0,2 L‘ N(),

0,L — TCNMO,L I ./\/.07

.0

& —>0

0 0 0
0 0
0 —>ker D5 —— > ker D4 0
0 T3S TaMo,z(qv (B); J) Nl 0
dgf dgf dgaf
0 TeSo.z T(?MO,L ./\/'07L|54>0
0 0 0
0 0 0
0 ——=kerD ;5 ———ker DS;UC—BTyY T,X 0
1d
0 T5S T, (B: J)®T,Y T,X 0
dﬁf duf
0——=T58.1 = TeM,y, ———0
0 0

Figure 7: Commutative squares of exact sequences for the proof of Lemma 5.11.
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We denote Hs(X,Y;Z) modulo torsion by Hs(X,Y). Let B be a basis for Ho(X,Y) so that all
elements of HY(X,Y) are linear combinations of the elements of B with nonnegative coefficients
and Hy(X,Y) be the collection of finite subsets of BxZ. We write an element 3 of Hy(X,Y) as
(Ap)peB, With each Ay cZ being a finite subset (possibly empty). For such an element 3, define

Ay(B) = Ay <z voeB, AB) =[[(14B)) ez, B = |AB)|be Hy(X,Y).
beB beB

For 5, B/EﬁQ(X, Y') such that Ab(g)mAb(B’) = for every be B, define

~ o~

B+B = (As(B) L Ap(F) o -
The subset

~

HY(X,Y) = {BeHy(X,Y): |Ble HY(X,Y)}

of Hy(X,Y) has a natural partial order. We deﬁne Co(Y ) wia(Y), Dy(a), Co(Y), CNw;a(Y), and
D, (&) as the collections Cy,(Y), Cowia(Y), Dy(er), Co(Y), Co ( ), and D, (&) in Section 2.1 with
H$(X,Y) replaced by HS(X,Y).

Let JeJ,,. For k€Z>°, a finite set L, and fe HY(X,Y), let

mx (B T) = AB)x (181 7) -
The natural immersion

Log: |_| M1 z5(B1; S )evby Xevby M5 (B2; ) — Mo (55 J)
51,/;:26125’()53/)
B1+B2=p5
is then a degree 2 covering map. This statement extends to the disk moduli spaces with marked
points.

We take a generic collection v = (VE) ) of multi-valued inhomogeneous perturbations for

BeHy (XY
the moduli spaces o R o N
Mo (B J) = A(B)! Mo (185 )

compatible with the immersions ¢
turbations for the moduli spaces

My 1, (57 J) = A(ﬁ)!ﬁk,L(@; J)

o with vz =0. They lift to multi-valued inhomogeneous per-

via the forgetful morphisms; we denote the lifted perturbations also by v;. These perturbations
are compatible with the analogues of the immersions ¢ of for the disk moduli spaces with marked

points and vanish on the moduli spaces ﬁk, L(; J) of degree 0 disks. All combinations of the
evaluation maps evb; and evi; from main strata of the distinct moduli spaces

My (B J,v5) = AB) My 1 (1B]; T, v5)

of (J,v)-disks are transverse.
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We denote by N L
my L (6;J, Vg) < My, (B; J, Vg)
the subspace of maps from (D?,S') and (D? vD? S!v S1) to (X,Y) and extend the use of the

notation xg, defined at the end of Section 2.1 to the moduli spaces of (.J,v)-disks. For aeC,(Y)
and neD(«), we replace (2.8) with

Mg = M o 1oy (Be i Loy ) My =X o (Bem): g )

We then define a bounding chain on (o, J,v) as in Definition 2.1 and and bb,s in (2.11).~F0r the
sake of proper scaling, we divide the right-hand sides of (2.12), (2.18), and (2.19) by A(8)! when
defining the associated disk counts with e HY(X,Y") replaced by fe HY(X,Y).

For a path J = (Jt)te[o,1] in T and a compatible path U= (14)e[o,1] of inhomogeneous perturbations,
we modify the deﬁmtlons of Z)JTN , M 7 pseudo-isotopy, and bbgs in Section 2.2 analogously. The
statements and proofs in Sectlons 2- 4nthen readily adapt. In particular, pseudo-isotopic bounding
chains still determine the same disk counts (2.25). The proofs of Propositions 2.4 and 2.5 now
ensure the existence of a bounding chain for every («,J,v) and its uniqueness up to pseudo-
isotopy, without the positivity assumptions (1.4) and (1.5). If Y is an R-homology sphere, we
then obtain disk counts (2.25) that depend only on ||, rather than 3, and thus well-defined open
GW-invariants (2.29).

B Real Gromov-Witten invariants

We next interpret Solomon-Tukachinsky’s adaptation of the main construction in [19] to the “real
setting” geometrically. Throughout this appendix, (X,w, ¢) is a compact real symplectic manifold,
i.e. ¢ is an involution on X so that ¢*w=—w, Y < X? is a topological component of the fixed locus
(which is a Lagrangian submanifold of X), and o0s is an OSpin-structure on Y. We assume that
the dimension of X is 2n with n odd. Let

T ={JeJs: ¢J=~T}, HF(X,Y;R)=@D {yeH?(X,Y;R): ¢*y=(~1)P}.
p=0

There is a natural doubling map
Oy : HQ(X,Y;Z) — HQ(X;Z), (B.1)

which glues each map f: (2,0X) — (X,Y) from an oriented bordered surface with the map ¢o f
from (X, 0%) with the opposite orientation; see [3, Sec 1.1]. This homomorphism vanishes on the
image of the homomorphism Id+ ¢, on H2(X,Y;Z) and thus descends to a homomorphism

oy Hy(X,Y;Z) /Im{Id+ ¢y } — Ha(X;Z).
We call a bordered pseudocycle
r-zZ—X (resp. T': Z — [0,1]x X)

¢-invariant if there exists an involution ¢z on Z, which is either orientation-preserving or reversing,
such that

pol' =Togy (resp. {id[g1jx¢}ol’ = Togyz). (B.2)
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We define sgn,I" to be +1 if ¢z above is orientation-preserving and —1 if ¢ is orientation-reversing.
We call a ¢-invariant bordered pseudocycle I' real as above if the codimension of I is even and

(B.3)

+1, ifdimI'=0,1 mod 4;
sgn¢F = o
—1, ifdimI’=2,3 mod 4.

If 2 € R is a unit, the Poincare dual of every element of ﬁg*(X ,Y; R) can be represented by a
pseudocycle with R coefficients uniquely up to pseudocycle equivalence.

B.1 Bounding chains and curve counts

We denote by PCy(X) and PNC¢(X ) the collections of real pseudocycles to X and of real bordered
pseudocycles to [0, 1] x X, respectively, with coefficients in R. Let FPCy4(X) and FPCy(X) be the

collections of finite subsets of PCy(X) and 15z3¢(X ), respectively. The action of —¢, on Ha(X,Y;Z)
restricts to an action of the cone H (X,Y") defined in (2.1). Let

HS4(X,Y) = {eHY(X,Y)}/Im{ld+¢s} < Hy(X,Y;Z)/Im{Id+ ¢, }. (B.4)

Since w vanishes on Im{Id+¢,}, the natural partial order on H§(X,Y") descends to a partial order
on H3 ((X,Y).

For Be Hy ,(X,Y), keZ>, a finite set L, and JeJ2, let

MEL (B T) = | | mEL8).
BGH‘;(X,Y)
[B]=B

For a path Jin 2 , we define the moduli space Dﬁ,’: 1 (B; J ) analogously. We apply the notation
for evaluation maps and fiber products from the disk moduli spaces introduced in Section 2.1 to
MX, (B;J) and MF, (B; J) as well.

We define C5(Y), ij;a(Y), DY (), CH(Y), CNj;a(Y), and DY(&) as the collections C,,(Y), Cua(Y),
Do(@), Co(Y), Coa(Y), and Dy, (&) in Section 2.1 with H¥ (X,Y), FPC(X), and FPC(X) replaced
by Hg,(X,Y), FPC4(X), and FPCy(X), respectively. For o€ CJ(Y) and J € JJ, we call a
collection (ba’)a'ec&a(Y) of bordered pseudocycles to Y a real bounding chain on («, J) if it satisfies
all conditions of Definition 2.1 with Cy.o(Y") replaced by ij;a(Y) and

by = & v o/eCf;a(Y) s.t. dim(a’) = 0 mod 4. (B.5)

Suppose ag, a1 €CH(Y) and &eCH(Y) are generic and satisfy (2.13), Jo, Ji€ J¢ are generic, J is a
AECS 0 (V) and <[’1;a’)a/ec$;a1m
chains on (ag, Jy) and (a1, J1), respectively. We call a collection (bg/) v) of bordered pseu-
ety 0 1)
if it satisfies all conditions of Definition 2.2 with wa;&(Y) replaced by 5ia(Y) and

generic path in jﬁj between Jo and Ji, and (bg.qo) are real bounding

a’eCy.4
- ;

docycles to [0,1]xY" a real pseudo-isotopy on (&, J) between (bo.q/) et . (¥)
wiaq

by =& Y &eC (V) s.t. dim(@) =0 mod 4. (B.6)
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Propositions B.1 and B.2 below are the analogues of Propositions 2.4 and 2.5 for the real setting.
They are also geometric analogues of the surjectivity and injectivity statements of (a suitably
modified version of) [19, Thm 3].

Proposition B.1 Let o and J be as above. If 2e R is a unit, n=3 mod 4, and
HP(Y;R) ~ HP(S™; R) VY p=0,3 mod 4, (B.7)

then there exists a real bounding chain (b,/) (ar, J).

o' (v) O

Proposition B.2 Let ag, a1, q, Jo, J1,J, and (bo.or) be as above

o/eCh 0y (v) 0 (bl;a%feci;al(m
Proposition B.1 so that I'nY = ¢F for every I € L(&) with dimT'=n. If R, n, and Y satisfy
the conditions in Proposition B.1, then there exists a real pseudo-isotopy (by), eCa(y) OB (@,J)
between (boﬂl)a’e(,’f;ao v) and (bl%a')a’ecﬁj;al(}f)'
The proofs of Lemmas 3.1 and 3.3 apply verbatim in the real setting of Propositions B.1 and B.2.
The key new feature in this setting vs. the open setting of Propositions 2.4 and 2.5 is that

bb,bby =0 YV a'eCl,(Y), &@eCl(Y) s.t. dim(a), dim(&) = 0 mod 4. (B.8)

As shown in Section B.2, this is a consequence of the computation of the sign of the involution on
the moduli space of J-holomorphic disks obtained in [17]. The bordered pseudocycles b, by = &
thus satisfy the conditions of Definitions 2.1(BC4) and 2.2(PS4) whenever dim(a’) and dim(&’) are
divisible by 4. Analogously to Propositions 2.4 and 2.5, Propositions B.1 and B.2 give rise to open
GW-invariants

8

. ‘1’7“ P HAZ(X,Y;R® — R, BeH$,(X,Y), keZ>, (B.9)
1=0

enumerating J-holomorphic disks of degree .

Theorems B.3 and B.4 below are analogues of Theorems 5 and 6 in [19]. They relate the open GW-
invariants (2.29) and (B.9) constructed from bounding chains (ba/)wec,,..(v) and (ba/)a’eCf;a(Y) to
some of the previously constructed invariants enumerating real rational curves in real symplectic 2n-
dimensional manifolds (X, w, ¢) with n odd and orientable fixed locus Y = X?. In the settings when
both types of invariants are defined, the bounding chains b, can be taken empty for o/ # (0, {pt}, &)

for any pte K (a). The open GW-invariants (2.29) and (B.9) then arise only from the elements

n = (B(a),| K ()], L(e), (%)ie[rc(a)]) € Dwle), Do) with

B.10
= (0,{pt}, &) for some pteY. ( )

The resulting disk counts (2.12) and (2.18) then match previous definitions of counts of real rational
curves up to uniform signs and scaling.

Invariant signed counts of real J-holomorphic degree B spheres in compact real symplectic sixfolds
(X,w, ¢) passing through [ general points in X —X? and

k= %<01(X,W)> -2l
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general points in a topological component Y of X¢ were first defined in [22, 23] under some
restrictions on (B, k). These counts depend on the choice of an OSpin-structure os on Y; we
denote them by Ng’fl’ﬁ. The interpretation of these counts in terms of J-holomorphic maps from
(D2, 8Y) to (X,Y) in [17] relaxed the restriction on (B, k) and led to open GW-invariants

GRS o @ (X, Y;Q% —Q,  BeH§,(X,Y), ke, (B.11)

enumerating J-holomorphic degree ﬁ disks so that

Ng® =271 Z {PDx([pt]),...., PDx([pt])} 57 (B.12)
ﬁe 5 (X,Y) l
Dy(ﬁ) B

The scaling factor of 2/~ above is because each real J-holomorphic sphere passing through I con-
jugate pairs of points corresponds to 2 disks passing through I conjugate pairs of half-points. The
precise sign is provided by [4, Thm 13.2]. Since R = Q and (X,w,Y’) satisfy the conditions of
Proposition B.1 and B.2, the open GW-invariants (B.9) are well-defined in this case. In light of
this identity, the next statement is analogous to [19, Thm 5].

Theorem B.3 Suppose (X,w) is a compact real symplectic sixfold, Y is a topological component
of X% and os is an OSpin-structure on Y. If (X,w,Y) satisfies (1.4) and (1.5), then the disk
counts (B.9) and (B.11) agree.

We now return to compact real symplectic manifolds (X,w, ¢) of dimensions 2n with arbitrary
odd n. Let Y X? be a topological component as before,

HE (X,Y:Q) = {ye HJ*(X,Y;Q): deg ¢ 4Z},
HZ (X;Q) = {ye H¥(X;Q): ¢*y = —v, deg¢#4Z}.

A real bundle pair over (X, ¢) consists of a complex vector bundle £ — X with a conjugation 5
lifting ¢. The fixed locus E® of ¢ is then a real vector bundle over X?. Let

pl o Hy(X,Y;2) —
be the Maslov index of (F, E$|y).

As introduced by Georgieva in Definition 1.3 of [10], a ¢-orientation on (X, ¢,Y") consists of a real
bundle pair (E, ¢) over (X, ¢) such that

42 (8) = 245 (8) mod 4V BeHy(X,Y;Z) with ¢,f=—B, (B.13)

an OSpin-structure osg on E|y @TY, and a choice of representatives f; € HY(X,Y) for the el-
ements of Hy (X,Y) in (B.4). The existence of an OSpin-structure on E[y @TY implies that

wa(TY) =we(E)|y. A ¢-orientation (E, ; 055) determines an orientation of det D,, for every J-
holomorphic map u: (D?,51)— (X,Y) and thus an orientation on the moduli spaces M}, (3;J)
of J-holomorphic disks. A ¢-orientation also determines real GW-invariants

{0} @HE (X;Q —Q, BeHE (X, Y)—aqy (Ha(X;2), (B.14)
=1
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enumerating real J-holomorphic degree dy () spheres without point constraints in Y. The equality
of the dimensions of the moduli space and the constraints implies that u$ (8) =n—3 mod 4 whenever
the invariants (B.14) do not vanish.

Theorem B.4 Suppose (X,w) is a compact symplectic manifold of real dimension 2n with n>3
odd, Y is a topological component of X?, ~q,... ,fylefli;”‘_ (X,Y;Q), (E, gg; 05p) is a ¢-orientation
on (X, ¢,Y), and Je J7 is generic. Let aeCH(Y) be generic so that Bla)¢qy (Ho(X;Z)), K(a) =,
and L(a)={T"1,...,I} be a collection of representatives for the Poincare duals of ~1,...,v;. If
(X,w,Y) satisfies (1.4) and (1.5) and the disk moduli spaces are oriented by the ¢-orientation as
in [10], then the collection (by = &) ) is a real bounding chain on («,J). The associated

disk count (2.18) satisfies

o/ECf;a
L))z = 2" x, - .. 7’Yl|X}§(a) : (B.15)

A ¢-orientation (E, ¢;0sp) on (X,¢,Y) determines an associated relative OSpin-structure os on Y
with wy(0s) = we(E). By the proof of Lemma 7.3 in [10] and the statement of Corollary 3.8(1)
n [12], there exists a map

e: Hy(X,Y;Z2) — Zo with

1 (8) =205 (8)

€(Bi) = 2

{W VBeHy(X,Y:Z),  (B.16)

; ‘ Yfi, (~9uB) = (B)+
such that the orientations on im:,L(B; J) induced by (E, $;0sg) and os differ by (—1)<(%). By the
second condition in (B.16), e(—¢.0) = €(B) if B satisfies the congruence in (B.13). If the latter is
the case for all fe€ Hy(X,Y;Z), as assumed in Theorem 6 of [19], the first claim of Theorem B.4
also holds for the orientations on the disk moduli spaces induced by os (the same proof applies);
the second claim holds up to the multiplication by (—1)6(Bi). Thus, Theorem B.4 is a more general
and precise version of [19, Thm 6.

By Theorem B.4, the open GW-invariants (B.9) depend only on the restrictions of the cohomology
insertions 71, ...,y to X whenever the assumptions of this theorem are satisfied. This implication
is non-vacuous if n=5 mod 4. The resulting invariants need not vanish, as illustrated by Table 2
in [11] in the case of PS.

Remark B.5. For a relative OSpin-structure os on Y, (B.17) would also include (w2 (0s), 0y (Be(7)))
to account for the difference in the trivializations of v*(T'X,TY) and {¢pou}*(TX,TY ") induced
by o0s as in the CROrient los(1) property in Section 7.2 of [4]. For this reason, Propositions B.1
and B.2 do not extend to relative OSpin-structures.

B.2 Proofs of (B.8) and Theorems B.3 and B.4

For aeCH(Y), define

¢e: DY(a) — DY), den = (Ba(n), ka(1), La(1), (ke my+1—i (M))icla (m)]) -
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For a collection (b,/) of maps to Y and neDf (), the composition of the map component

a'eCl.0(Y)
to X with ¢ induces a diffeomorphism

Gy M (641, by () )iefha ()] (6 Ti)TieLa ()
—> ML X1, O, (6um) iclke (s (5 Ti)TieLa(gum))-

For 5eCo(Y), i€ D (&), and a collection (bar) 51ccv ) of maps to [0,1]xY, we define

¢u: DL(@) — DE(@)  and
G M 5 xe((i+1, bz, ) iefra a3 (7 )i et )
_>§)ﬁ+ Nxfb((l_‘_l b, (paei) ik (éui)]3 (0 f‘i)f“iei-(tﬁ*ﬁ))
in the same way.

Lemma B.6 Suppose n =3 mod 4 and os is an OSpin-structure on Y. If (ba/)a,ecqb' ) is a

real bounding chain on («,J), the signs of the diffeomorphism ¢, is (—1)dim(@)/2+1 for every
neDy(a). If (&) aree (v
(—1)dm(@)/2+1 for every fje DS(d).

is a real pseudo-isotopy on (&, J ), the sign of the diffeomorphism gi);lr is

Proof. We denote by ¢gy: S)JT;’ J —>im;f* il the diffeomorphism induced by the composition of the
map component with ¢. Let

o: Yk __, yhe(dxn) and Op Hdom(bai(n)) — Hdom(bai(¢*n))
i€k () i€ke (¢x7)

be the diffeomorphisms reversing the orders of the components. For each I';e L(«), let ¢r, be an
automorphism of dom(I';) as in (B.2) with Z=dom(I';). Define

ngﬁpz.: Hdom(l“i) — Hdom(Fi), er(n) = Hsgnqb]?i.

I'ieLe(n) Ti€Le(n) I;eLe(¢pxn) I';€Le(n)

The diagram

mr, Yke(n) 5 X Lo () [Tdom(b,, () x  [Tdom(I)

o i€ke(n) ieLe(n)
Lqﬁgﬁ o pLe(m) \Lab \Lqﬁr

im;w Y ke (951) 5 X Le(951) [Tdom(by,(gym)*  [Jdom(I;)
i€ke (dsm) TieLe(Ppxn)

then commutes.

By Lemma 5.1(0,¢8) in [3], which applies for all n odd, with k=ke(n), l=|L«(n)|, and |L*|=1 or
Proposition 5.1 in [17], the sign of ¢y is (—1)633(”), where

et (n) = W+(k.(n)+1)+|L.(n)|+ <k'§7)); (B.17)
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the extra binomial coefficient arises due to different orderings of the tangent spaces at the boundary

marked points here vs. [3]. The sign of the diffecomorphism o is (—1)(k'2(n>), while the diffeomor-
phism oy is orientation-preserving. The signs of the diffeomorphisms ¢ and ¢r are (—1)"Ee®)l
and ep(n), respectively. Combining this with Lemma 5.3, (B.3), and the second equality in (3.1),
we conclude that the sign of diffeomorphism qu{ is (—1)¢, where

115 (Be (1))

1=
¢ 2

1 :
+ko(n)— 3 F,E;(gf()dlm I;—2)
' (B.18)

1 . 1
= §d1m(a) - 5(71—3 (n+1)k

ke ()
Z d1m (ai(m )

Along (B.5) applied with o/ =«;(n) <« this establishes the first claim.

l\DM—l

The proof of the second claim is almost identical, with the signs of the analogues of the diffeomor-
phisms ¢ and oy interchanged. In this case, we use (3.10) and (B.6) instead of (3.1) and (B.5). O

Proof of (B.8). Since ¢, is an involution on DJ(a) and DS(&), the two statements of (B.8)
follow from the two statements of Lemma B.6. O

Proof of Theorem B.3. Since n =3, Definition 2.1(BC2) and (B.5) imply that b, = ¢ unless
o' =(0,pt, &) for some pte K(a). The open GW-invariants (B.9) are thus the sums of the signed
cardinalities of the fiber products as in (2.12) and (2.18) over ne€ DS (a) satisfying (B.10). These
sums are counts of (single) disks passing through the collection L(«) of constraints in X and | K (a)|

points in Y traversed by the boundaries of the disks in any order and thus are precisely the disk
counts (B.11) defined in [17]. O

Proof of Theorem B.4. Let o/ €C3.(Y) and ne DS (o). If ko(n) #0, bb, = J because b, =
for all a”eCf;a (Y'). We suppose ke(n) =0 and apply the proof of Lemma B.6 with the disk moduli
spaces oriented by the ¢-orientation as in [10]. This proof now applies with

«(n)] and e—1=—% Z(codimFi—Q)
FiEL.(n)

eds(n) =

n (B.17) and (B.18), respectively. Since deg~;=2 mod 4 for all T';€ L(«a), the diffeomorphism ¢;"
is thus orientation-reversing in this case. It follows that bb, = 0. This establishes the first claim
of the theorem.

Since by =0 for all o/ € Cf;a(Y), the open GW-invariant on the left-hand side of (B.15) is the
signed cardinality of the fiber product as in (2.18) with

n= (ﬁ(a)’()?L(a)a ()) € ,DZ?(OO

This signed cardinality is precisely the disk count on the right-hand side of (B.15) defined in [10]
times 2'7!; the scaling factor appears for the same reason as in (B.12). ]

60



Department of Mathematics, Stony Brook University, Stony Brook, NY 11794
zujia@math. stonybrook. edu

References
[1] X. Chen, Steenrod pseudocycles, lifted cobordisms, and Solomon’s relations for Welschinger’s
invariants, math/1809.08919v2
[2] X. Chen, Solomon-Tukachinsky’s vs. Welschinger’s open Gromov- Witten invariants of sym-
plectic sizfolds, math/1912.05437
[3] X. Chen and A. Zinger, WDV V-type relations for disk Gromov-Witten invariants in dimen-
sion 6, math/1904.04254v2
[4] X. Chen and A. Zinger, Spin/Pin Structures and Real FEnumerative Geometry,
math/1905.11316v3
[5] K. Fukaya, Cyclic symmetry and adic convergence in Lagrangian Floer theory, Kyoto
J. Math. 50 (2010), no. 3, 521-590
[6] K. Fukaya, Counting pseudo-holomorphic discs in Calabi-Yau 3-folds, Tohoku Math. J. 63
(2011), no. 4, 697-727
[7] K. Fukaya, Y.-G. Oh, H. Ohta, and K. Ono, Lagrangian Intersection Theory: Anomaly and
Obstruction, AMS Studies in Advanced Mathematics 46, 2009
[8] K. Fukaya and K. Ono, Arnold Conjecture and Gromov-Witten invariant, Topology 38 (1999),
no. 5, 933-1048
[9] P. Georgieva, The orientability problem in open Gromov-Witten theory, Geom. Topol. 17
(2013), no. 4, 2485-2512
[10] P. Georgieva, Open Gromou- Witten invariants in the presence of an anti-symplectic involution,
Adv. Math. 301 (2016), 116-160
[11] P. Georgieva and A. Zinger, Enumeration of real curves in CP?"~1 and a WDV'V relation for
real Gromov- Witten invariants, Duke Math. J. 166 (2017), no. 17, 3291-3347
[12] P. Georgieva and A. Zinger, Real Gromov-Witten theory in all genera and real enumerative
geometry: properties, J. Symplectic Geom. 17 (2019), no. 4, 1083-1158
[13] H. Hofer, K. Wysocki, and E. Zehnder, Applications of polyfold theory I: The polyfolds of
Gromov-Witten theory, Mem. AMS 248 (2017), no. 1179
[14] J. Li and G. Tian, Virtual moduli cycles and Gromov-Witten invariants of general symplec-
tic manifolds, Topics in Symplectic 4-Manifolds, 47-83, First Int. Press Lect. Ser., I, Inter-
nat. Press, 1998
[15] J. Munkres, Elements of Algebraic Topology, Addison-Wesley, 1984

61



[16]

[17]

[18]

[19]

[20]
[21]

[22]

[23]

[24]

[25]
[26]

J. Pardon, An algebraic approach to virtual fundamental cycles on moduli spaces of pseudo-
holomorphic curves, Geom. Topol. 20 (2016), no. 2, 779-1034

J. Solomon, Intersection theory on the moduli space of holomorphic curves with Lagrangian
boundary conditions, math /0606429

J. Solomon and S. Tukachinsky, Differential forms, Fukaya A algebras, and Gromouv- Witten
azioms, math/1608.01304

J. Solomon and S. Tukachinsky, Point-like bounding chains in open Gromov- Witten theory,
math/1608.02495

J. Solomon and S. Tukachinsky, Relative quantum cohomology, math/1906.04795v2

J.-Y. Welschinger, Invariants of real symplectic 4-manifolds and lower bounds in real enumer-
ative geometry, Invent. Math. 162 (2005), no. 1, 195-234

J.-Y. Welschinger, Spinor states of real rational curves in real algebraic convexr 3-manifolds
and enumerative invariants, Duke Math. J. 127 (2005), no. 1, 89-121

J.-Y. Welschinger, FEnumerative invariants of strongly semipositive real symplectic siz-
manifolds, math/0509121v2

J.-Y. Welschinger, Open Gromov- Witten invariants in dimension siz, Math. Ann. 356 (2013),
no. 3, 1163-1182

A. Zinger, Pseudocycles and integral homology, Trans. AMS 360 (2008), no. 5, 2741-2765

A. Zinger, The determinant line bundle for Fredholm operators: construction, properties, and
classification, Math. Scand. 118 (2016), no. 2, 203—268

62



