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In this paper, we use the G-spin theorem to show that the Davis hyperbolic 4-manifold
admits harmonic spinors. This is the first example of a closed hyperbolic 4-manifold
that admits harmonic spinors. We also explicitly describe the spinor bundle of a spin
hyperbolic 2- or 4-manifold and show how to calculated the subtle sign terms in the
G-spin theorem for an isometry, with isolated fixed points, of a closed spin hyperbolic
2- or 4-manifold.
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1. Introduction

The Dirac operator /D acting on sections of the spinor bundle S of a closed spin
Riemannian manifold M is one of the fundamental elliptic operators of Riemannian
geometry. The operator is self-adjoint, and in even dimensions the spinors split as
S = S+⊕S−, with /D interchanging sections of S±. The elements of the kernel H of
/D are called harmonic spinors, and H = H+ ⊕H− where H± are, respectively, the
kernel of the chiral Dirac operator /D

+ : C∞(S+) → C∞(S−) and its adjoint /D
−.
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The spinor-index of M is the index of /D
+ which is defined to be

Spin(M) = dimH+ − dimH−. (1.1)

The spinor-index was determined by Atiyah and Singer [5] to be the Â-genus, that
is, the integral of a polynomial in the Pontrjagin classes of M . Lichnerowicz [14]
made the seminal observation that for manifolds with positive scalar curvature,
both H+ and H− are {0}, and hence the topologically invariant Â-genus van-
ishes. The method extends to show the vanishing of certain spin bordism invariants
[12]. The use of such index-theoretic methods to give topological restrictions on
manifolds admitting a metric of positive scalar curvature has been extensive; see
the survey [19].

In this paper, we address a converse to the Lichnerowicz result, looking for
nonzero harmonic spinors on manifolds with negative curvature, in particular for
hyperbolic manifolds. Note that by a result of Chern [8] the Pontrjagin classes
of a hyperbolic manifold vanish, and so the spinor-index is 0. Hence, the index
theorem cannot be used directly to prove the existence of nonzero harmonic spinors.
Moreover, for a generic metric on a manifold of dimension at least 3, the kernel of
the Dirac operator is as small as required by the index theorem [1], so a metric
whose associated Dirac operator has nontrivial kernel must be somewhat special.
Hitchin [12] used the interpretation of the Dirac operator as a twisted ∂̄ operator to
show that for certain spin structures and hyperbolic metrics on a Riemann surface
of genus g, the kernel can have dimension as large as $(g + 1)/2% .

The main result of this paper is the existence of closed hyperbolic 4-manifolds
for which the kernel of the Dirac operator is nontrivial. To our knowledge, these are
the first known examples of such hyperbolic manifolds in higher dimensions. Our
primary example is the Davis hyperbolic 4-manifold [9], which was shown to have
a spin structure in [18].

Theorem 1.1. Let M be the Davis closed hyperbolic 4-manifold. Then M has
a spin structure such that the kernel H of the Dirac operator /D has (complex)
dimension at least 20.

By passing to finite covers of M , we obtain infinitely many examples.

Corollary 1.1. There are closed spin hyperbolic 4-manifolds of arbitrarily high
volume with nonzero harmonic spinors.

Our method is to use the G-spin theorem (the G-index theorem for the Dirac
operator [6]) where G is a group of orientation preserving isometries of a Riemannian
spin manifold M . Suppose that the action of G lifts to the spinor bundle, and denote
by ĝ the lift of an element g ∈ G. Then G acts on H+ and H−, and we get two
characters of G whose difference in the representation ring R(G) is the spinor-
index Spin(G, M) of the action. The value of Spin(G, M) at an element g of G is
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the G-equivariant index

Spin(ĝ, M) := tr(ĝ,H+) − tr(ĝ,H−). (1.2)

Proposition 1.1. Let M be a hyperbolic spin manifold of even dimension, and G
a spin action as above. If for some g ∈ G, we have Spin(ĝ, M) '= 0, then M admits
nonzero harmonic spinors.

Proof. If H+ = {0}, then H− = {0} as well, by the vanishing of the spinor-index
Spin(M). Hence if Spin(ĝ, M) '= 0, then H+ must have positive dimension.

To apply Proposition 1.1 to the Davis manifold M , we consider a particular spin
structure and cyclic group G generated by an isometry g of order 15 with a lift ĝ to
the spinor bundle of order 15. By understanding the fixed point behavior of g and its
powers, we use the G-spin theorem to determine Spin(G, M) in the representation
ring R(G). This gives the lower bound of 20 for dimH stated in Theorem 1.1.

The calculation of the local contributions at fixed points to the equivariant
index in (1.2) involves a careful determination of the lift of the G-action on the
manifold to its spinor bundle. This is carried out by interpreting spin structures
on a hyperbolic manifold in representation—theoretic terms, and is presented in
some generality in this paper. In principle, this same method will work to prove
the existence of nonzero harmonic spinors on hyperbolic manifolds in other even
dimensions. We give some examples to show that our method works for hyperbolic
2-manifolds.

Theorem 1.1 also implies that the generic vanishing theorem for H in [1] does
not have a direct equivariant analogue.

Corollary 1.2. There is an open set in the space of Z15-invariant Riemannian
metrics on the Davis hyperbolic 4-manifold for which the kernel of the Dirac operator
is nontrivial.

A more reasonable equivariant extension of the result of [1] might be that for a spin
manifold with a smooth action of a finite group G, a generic G-invariant metric has
kernel and cokernel as small as allowed by the G-spin theorem.

Outline

Our paper is organized as follows: In Sec. 2, we give an algebraic characterization
of a spin structure on a hyperbolic n-manifold. In Sec. 3, we define the spin group
Spin+(n, 1) in terms of Clifford algebras. In Sec. 4, we show that the complex
spin representation ∆2m : Spin(2m) → C(2m) extends to a representation ∆2m,1 :
Spin+(2m, 1) → C(2m). In Sec. 5, we describe ∆2,1 in terms of the group SU(1, 1; C).
In Sec. 6, we describe ∆4,1 in terms of the group SU(1, 1; H). In Sec. 7, we give a
new formulation of the complex spinor bundle of a hyperbolic spin 2m-manifold.
In Sec. 8, we give a refined formulation of the G-spin theorem for an isometry
of a hyperbolic spin manifold with only isolated fixed points. In Sec. 9, we use
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the G-spin theorem to prove the existence of nonzero harmonic spinors on two
hyperbolic surfaces. In Sec. 10, we use the G-spin theorem to prove the existence
of nonzero harmonic spinors on the Davis hyperbolic 4-manifold.

2. Preliminaries

2.1. Hyperbolic n-space

Let fn be the Lorentzian quadratic form in n + 1 variables x1, . . . , xn+1 given by

fn(x) = x2
1 + · · · + x2

n − x2
n+1.

The hyperboloid model of hyperbolic n-space is

Hn = {x ∈ Rn+1 : fn(x) = −1 and xn+1 > 0}.

The orthogonal group of the quadratic form fn is defined to be

O(n, 1) = {A ∈ GL(n + 1, R) : fn(Ax) = fn(x) for all x ∈ Rn+1}.

Let O+(n, 1) be the subgroup of O(n, 1) consisting of all A ∈ O(n, 1) that leave Hn

invariant. Then O+(n, 1) has index 2 in O(n, 1). Restriction induces an isomorphism
from O+(n, 1) to the group Isom(Hn) of isometries of Hn. We will identify O+(n, 1)
with Isom(Hn). Let SO+(n, 1) be the subgroup of O+(n, 1) of matrices of determi-
nant 1. Under the identification of O+(n, 1) with Isom(Hn), the group SO+(n, 1)
corresponds to the group of orientation preserving isometries of Hn.

2.2. Hyperbolic n-manifold

A hyperbolic n-manifold is a complete Riemannian n-manifold of constant sectional
curvature −1. As a reference for hyperbolic manifolds, see [17]. An n-dimensional
hyperbolic space-form is the orbit space Γ\Hn of a torsion-free discrete subgroup Γ
of O+(n, 1). A hyperbolic space-form Γ\Hn is a hyperbolic n-manifold, and every
hyperbolic n-manifold is isometric to a hyperbolic space-form Γ\Hn. The manifold
Γ\Hn is orientable if and only if Γ is a subgroup of SO+(n, 1).

Consider the Lorentzian inner product on Rn+1 given by

x ◦ y = x1y1 + · · · + xnyn − xn+1yn+1.

We denote Rn+1 with this inner product by Rn,1. The tangent space of Hn at a
point x of Hn is

Tx(Hn) = {y ∈ Rn,1 : x ◦ y = 0}.

Now Tx(Hn) is a n-dimensional space-like vector subspace of Rn,1 for each x in
Hn, and so the Lorentzian inner product on Rn,1 restricts to a positive definite
inner product on Tx(Hn).

The tangent bundle of Hn is the set

T(Hn) = {(x, v) ∈ Hn × Rn,1 : v ∈ Tx(Hn)}

with the subspace topology from Hn × Rn+1.
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Let Γ\Hn be a hyperbolic space-form. Then Γ acts diagonally on T(Hn);
moreover, Γ acts freely and discontinuously on T(Hn). The tangent bundle T(Γ\Hn)
of Γ\Hn is the orbit space Γ\T(Hn).

2.3. Orthonormal frame bundle

The oriented orthonormal frame bundle of Hn is the set F(Hn) of all ordered
(n + 1)-tuples (v1, . . . , vn, x) in (Rn,1)n+1, with the subspace topology, such that
x ∈ Hn, and {v1, . . . , vn} is an orthonormal basis for Tx(Hn), and v1, . . . , vn, x is
a positively oriented basis of Rn+1. We have the projection map π : F(Hn) → Hn

defined by π(v1, . . . , vn, x) = x.
Define ξ : F(Hn) → SO+(n, 1) by ξ(v1, . . . , vn, x) = A, where A, is the

matrix whose columns vectors are v1, . . . , vn, x. Then ξ is a diffeomorphism. Let
e1, . . . , en+1 be the standard basis of Rn+1. Then

F(Hn) = {(Ae1, . . . , Aen+1) : A ∈ SO+(n, 1)}.

Let ε : SO+(n, 1) → Hn be the evaluation map at en+1. Then εξ = π.
Now SO+(n, 1) is a principal SO(n)-bundle over Hn with projection map ε

and B ∈ SO(n) acting freely on the right of SO+(n, 1) by right multiplication by B̂
where B̂ ∈ SO+(n, 1) is the block diagonal matrix with blocks B and (1). Moreover,
SO+(n, 1) is a trivial principal SO(n)-bundle over Hn. The group SO(n) acts freely
on the right of F (Hn) by

(Ae1, . . . , Aen+1)B = (AB̂e1, . . . , AB̂en+1)

making F(Hn) into a principal SO(n)-bundle over Hn equivalent to SO+(n, 1) via
the diffeomorphism ξ.

Let Γ\Hn be an orientable hyperbolic space-form. Then Γ acts diagonally on
the left of F(Hn); moreover, Γ acts freely and discontinuously on F(Hn). The
orthonormal frame bundle F(Γ\Hn) of Γ\Hn is the orbit space Γ\F(Hn). The
left action of Γ on F(Hn) corresponds to the left action of Γ on SO+(n, 1) by
group multiplication. We will identify F(Hn) with SO+(n, 1) and F(Γ\Hn) with
Γ\SO+(n, 1). We have that Γ\SO+(n, 1) is a principal SO(n)-bundle over Γ\Hn

with right action of SO(n) induced by the right action of SO(n) on SO+(n, 1) and
bundle map ε : Γ\SO+(n, 1) → Γ\Hn defined by ε(ΓA) = Γε(A).

It is standard that SO(2) is homeomorphic to S1, and so π1(SO(2)) ∼= Z. If
n > 2, then π1(SO(n)) ∼= Z/2Z, and so π1(SO(n)) has a unique subgroup of
index 2 for each n ≥ 2. Hence SO(n) has a connected double covering space
which is unique up to covering space equivalence. We will give a formal definition
of Spin(n) later in the paper, but for now Spin(n) is a connected double cover-
ing space of SO(n) for each n ≥ 2. As SO(n) is a Lie group, Spin(n) is a Lie
group such that the covering projection σ : Spin(n) → SO(n) is a group homomor-
phism by [11, Theorem 6.11]. We denote the nonidentity element of the kernel of σ
by −1.
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2.4. Spin structure

Let Γ\Hn be an orientable hyperbolic space-form. A spin structure on Γ\Hn is
a double covering projection ρ : P → Γ\SO+(n, 1) such that P is a principal
Spin(n)-bundle P over Γ\Hn, with bundle projection ερ : P → Γ\Hn, and such
that if x is in P and s is in Spin(n), then ρ(xs) = ρ(x)σ(s). This last condition
implies that ρ double projects each fiber of ερ : P → Γ\Hn onto a fiber of ε :
Γ\SO+(n, 1) → Γ\Hn.

Two spin structures ρ : P → Γ\SO+(n, 1) and ρ′ : P ′ → Γ\SO+(n, 1) on Γ\Hn

are said to be equivalent if there is a diffeomorphism ξ : P → P ′ such that ρ′ξ = ρ
and if x is in P and s is in Spin(n), then ξ(xs) = ξ(x)s.

The mapping B ,→ B̂ embeds SO(n) isomorphically onto a subgroup ŜO(n)
of SO+(n, 1) which is the fiber of the SO(n)-bundle projection ε : SO+(n, 1) →
Hn over the point en+1. The embedding, B ,→ B̂, of SO(n) into SO+(n, 1) is a
homotopy equivalence, since Hn is contractible. Therefore, π1(SO+(2, 1)) ∼= Z and
π1(SO+(n, 1)) ∼= Z/2Z for all n > 2. Hence, π1(SO+(n, 1)) has a unique subgroup of
index 2 for each n ≥ 2. Therefore, SO+(n, 1) has a connected double covering space
which is unique up to covering space equivalence. We will give a formal definition
of Spin+(n, 1) later in the paper, but for now Spin+(n, 1) is a connected double
covering space of SO+(n, 1) for each n ≥ 2. As SO+(n, 1) is a Lie group, Spin+(n, 1)
is a Lie group such that the covering projection η : Spin+(n, 1) → SO+(n, 1) is a
group homomorphism by [11, Theorem 6.11]. We denote the nonidentity element
of the kernel of η by −1.

The embedding, B ,→ B̂, of SO(n) into SO+(n, 1) lifts to an isomorphic
embedding of Spin(n) onto the subgroup Ŝpin(n) = η−1(ŜO(n)) of Spin+(n, 1).

The Lie group Spin+(n, 1) is a principal Spin(n)-bundle over Hn, with bun-
dle projection εη : Spin+(n, 1) → Hn and right action of Spin(n) on Spin+(n, 1)
corresponding to right multiplication by Ŝpin(n). Moreover, if g is in Spin+(n, 1)
and s is in Spin(n), then η(gs) = η(g)σ(s). Therefore, the double covering projec-
tion η : Spin+(n, 1) → SO+(n, 1) is a spin structure on Hn. Note that Spin+(n, 1)
is a trivial principal Spin(n)-bundle over Hn, since SO+(n, 1) is a trivial principal
SO(n)-bundle over Hn.

The next theorem is known to experts. We could not find a proof in the litera-
ture, and so we give a proof that relies only on covering space theory.

Theorem 2.1. Let Γ be a torsion-free discrete subgroup of SO+(n, 1), and let
η : Spin+(n, 1) → SO+(n, 1) be the double covering epimorphism. Then the set
of equivalence classes of spin structures on the hyperbolic space-form Γ\Hn is in
one-to-one correspondence with the set of subgroups Γ̂ of Spin+(n, 1) such that η
maps Γ̂ isomorphically onto Γ.

If Γ̂ is a subgroup of Spin+(n, 1) such that η maps Γ̂ isomorphically onto Γ, then
Γ̂ corresponds to the equivalence class of the spin structure ρ : Γ̂\Spin+(n, 1) →
Γ\SO+(n, 1) induced by η.
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Proof. Let ρ : P → Γ\SO+(n, 1) be a spin structure on Γ\Hn. Then ρ is a double
covering projection. Let x0 be a point of P such that ρ(x0) = Γ. Then ρ∗π1(P, x0)
is a subgroup of π1(Γ\SO+(n, 1), Γ) of index 2. Subgroups of index 2 are normal,
and so ρ∗π1(P, x0) is a normal subgroup of π1(Γ\SO+(n, 1), Γ).

Let ρ′ : P ′ → Γ\SO+(n, 1) be a spin structure on Γ\Hn such that ρ is equivalent
to ρ′. Then there exists a diffeomorphism ξ : P → P ′ such that ρ′ξ = ρ. Hence, P
and P ′ are equivalent covering spaces of Γ\SO+(n, 1). Let x′

0, be a point of P ′ such
that ρ′(x′

0) = Γ. Then ρ′∗π1(P ′, x′
0) = ρ∗π1(P, x0) by [15, Theorem V.6.6]. Hence,

the equivalence class of the spin structure ρ determines the subgroup ρ∗π1(P, x0)
of π1(Γ\SO+(n, 1), Γ) of index 2.

Let G = Spin+(n, 1). If n = 2, let G̃ be a universal covering space of G, and let
κ : G̃ → G be a covering projection. Then G̃ has a Lie group structure such that
κ : G̃ → G is a group homomorphism by [11, Theorem 6.11]. If n > 2, then G is
simply connected, and we let G̃ = G and κ : G̃ → G be the identity map. Then, we
have the following commutative diagram whose rows are exact sequences:

1 → K → G̃
κ−→ G → 1

↓ || ↓ η
1 → Λ → G̃ −→ SO+(n, 1) → 1.

The group Λ = Ker(ηκ) acts freely on G̃ by left multiplication as the group of
covering transformations of the universal covering projection ηκ : G̃ → SO+(n, 1).
Therefore Λ is isomorphic to the fundamental group of SO+(n, 1). Hence, Λ is
infinite cyclic if n = 2 and Λ = {±1} if n > 2. As Λ = κ−1({±1}), we have that K
is a subgroup of Λ of index 2. Moreover, K = {1} if n > 2.

Let Γ̃ = η−1(Γ). Then {±1} is a normal subgroup of Γ̃ and {±1}\Γ̃ ∼= Γ. Let
Γ̃′ = κ−1(Γ̃). Let π : SO+(n, 1) → Γ\SO+(n, 1) be the quotient map. The group Γ̃′

acts freely on G̃ by left multiplication. The set of orbits Γ̃′\G̃ is the set of fibers of
the universal covering projection πηκ : G̃ → Γ\SO+(n, 1), since κ, η, and π induce
the following bijections:

Γ̃′\G̃ ∼= (K\Γ̃′)\(K\G̃) ∼= Γ̃\G ∼= ({±1}\Γ̃)\({±1}\G) ∼= Γ\SO+(n, 1).

Hence Γ̃′ acts on G̃ as the group of covering transformations of πηκ. Therefore
Γ̃′ ∼= π1(Γ\SO+(n, 1), Γ). Subgroups of index 2 are normal. Therefore the equiva-
lence classes of connected double covering spaces of Γ\SO+(n, 1) correspond to the
subgroups of Γ̃′ of index 2 by [15, Theorems V.6.6 and V.10.2].

The group Γ̃ is the fiber of the covering projection πη : G → Γ\SO+(n, 1) over
the point Γ. Therefore Γ̃ is a discrete subgroup of G, and so Γ̃ acts freely and
discontinuously on G by left multiplication.

The map ι : SO(n) → Γ\SO+(n, 1), defined by ι(B) = ΓB̂, maps SO(n)
homeomorphically onto the fiber of ε : Γ\SO+(n, 1) → Γ\Hn over the point Γen+1.
The exact sequence

1 → Λ i−→Γ̃′ → Γ → 1.
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corresponds to the exact sequence of fundamental groups

1 → π1(SO(n), I) ι∗−→π1(Γ\SO+(n, 1), Γ) ε∗−→π1(Γ\Hn, Γen+1) → 1.

Let Γ̂′ be a subgroup of Γ̃′ of index 2. Then Γ̂′ corresponds to an equivalence
class of connected double covering spaces of Γ\SO+(n, 1). Now Γ\SO+(n, 1) has a
connected double covering space, corresponding to Γ̂′, such that the fiber ι(SO(n))
is double covered by a copy of Spin(n) if and only if i−1(Γ̂′) = K, that is, Λ∩Γ̂′ = K,
by [15, Proposition V.11.1]. As Λ ⊆ Γ̃′, we have that K ⊆ Γ̂′. The subgroups of Γ̃′

of index 2 that contain K correspond via κ to the subgroups of Γ̃ of index 2.
Now κ maps Γ̂′ onto a subgroup Γ̂ of Γ̃ of index 2. We have that Λ ∩ Γ̂′ = K if

and only if {±1}∩Γ̂ = {1}. Therefore if Γ\Hn has a spin structure, whose principal
Spin(n)-bundle corresponds to Γ̂′, then {±1} ∩ Γ̂ = {1}.

Conversely, suppose {±1} ∩ Γ̂ = {1}. Let s ,→ ŝ be the embedding of
Spin(n) into Spin+(n, 1). Then Spin(n) acts on the right of Γ̂\Spin+(n, 1) by
(Γ̂g)s = Γ̂gŝ. Suppose that (Γ̂g)s = Γ̂g. Then gŝg−1 is in Γ̂. Hence η(gŝg−1) =
η(g)η(ŝ)η(g)−1 is in Γ. Now η(g)η(ŝ)η(g)−1 fixes the point η(g)en+1 of Hn. There-
fore η(g)η(ŝ)η(g)−1 = I, since Γ acts freely on Hn. Hence η(ŝ) = I, and so ŝ = ±1.
Hence ±1 = gŝg−1 is in Γ̂. As {±1} ∩ Γ̂ = {1}, we must have that ŝ = 1, and so
s = 1. Therefore Spin(n) acts freely on Γ̂\Spin+(n, 1).

Define ζ : Γ̂\Spin+(n, 1) → Γ\Hn by ζ(Γ̂g) = Γεη(g). If s is in Spin(n), then

ζ(Γ̂gs) = Γ(εη(gs)) = Γη(g)σ(s)en+1 = Γη(g)en+1 = Γεη(g).

Therefore Spin(n) acts on each fiber of ζ.
Suppose that ζ(Γ̂h) = ζ(Γ̂g). Then Γη(h)en+1 = Γη(g)en+1. Hence there exists

γ in Γ such that η(g)en+1 = γη(h)en+1. As η(Γ̃) = Γ and Γ̃ is the disjoint union of
Γ̂ and −Γ̂, we have that η(Γ̂) = Γ. Hence there exists γ̂ in Γ̂ such that η(γ̂) = γ.
We have that η(g)−1η(γ̂)η(g)en+1 = en+1, and so η(g−1γ̂h)en+1 = en+1. Therefore
η(g−1γ̂h) is in ŜO(n). Hence g−1γ̂h is in Ŝpin(n). Therefore there is a ŝ in Ŝpin(n)
such that g−1γ̂h = ŝ. Hence γ̂h = gŝ, and so Γ̂h = Γ̂gŝ. Therefore Spin(n) acts
transitively on each fiber of ζ.

Moreover Γ̂\Spin+(n, 1) is a principal Spin(n)-bundle with projection ζ, since
the trivialization of the principal Spin(n)-bundle Spin+(n, 1) descends under the
action of Γ̂ to a local trivialization of ζ.

The double covering epimorphism η : Spin+(n, 1) → SO+(n, 1) induces a double
covering projection ρ : Γ̂\Spin+(n, 1) → Γ\SO+(n, 1) defined by ρ(Γ̂g) = Γ(η(g)).
We have that

ρ((Γ̂g)s) = ρ(Γ̂(gŝ)) = Γ(η(gŝ))

= Γ(η(g)σ(s))

= (Γ(η(g)))σ(s) = ρ(Γ̂g)σ(s).

Therefore ρ is a spin structure on Γ\Hn such that the connected double covering
space Γ̂\Spin+(n, 1) of Γ\SO+(n, 1) corresponds to Γ̂′ and to Γ̂.
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Suppose ρ′ : P ′ → Γ\SO+(n, 1) is another spin structure on Γ\Hn that
corresponds to Γ̂′. Then ρ and ρ′ are equivalent covering spaces of Γ\SO+(n, 1).
Hence there is a diffeomorphism ξ : Γ̂\Spin+(n, 1) → P ′ such that ρ′ξ = ρ. Let g
be in Spin+(n, 1), let x = Γ̂g, and let s be in Spin(n). Then, we have that

ρ′(ξ(xs)) = ρ(xs) = ρ(x)σ(s)

while on the other hand

ρ′(ξ(x)s) = ρ′(ξ(x))σ(s) = ρ(x)σ(s).

Hence ξ(xs) = ξ(x)(±s), and so ξ(xs)s−1 = ξ(x)(±1). Now s ,→ ξ(xs)s−1 is a
continuous function from Spin(n) to {ξ(x), ξ(x)(−1)}. As Spin(n) is connected and
1 ,→ ξ(x), we have that ξ(xs)s−1 = ξ(x) for all s in Spin(n). Hence ξ(xs) =
ξ(x)s. Therefore ρ and ρ′ are equivalent spin structures on Γ\Hn. Thus Γ̂′ and Γ̂
correspond to an equivalence class of spin structures on Γ\Hn.

Now {±1} ∩ Γ̂ = {1} if and only if η maps Γ̂ isomorphically onto Γ. Thus the
set of equivalence classes of spin structures on Γ\Hn is in one-to-one correspon-
dence with the set of subgroups Γ̂ of Spin+(n, 1) mapped isomorphically onto Γ
by η.

2.5. Lifting isometries

Let Γ be a torsion-free discrete subgroup of SO+(n, 1), and let f be an element of
SO+(n, 1) such that fΓf−1 = Γ. Then f induces an orientation preserving isometry
f of the hyperbolic space-form Γ\Hn defined by f(Γx) = Γfx by [17, Theorem
8.1.5]. Conversely, if φ is an orientation preserving isometry of Γ\Hn, then there
exists an element f of SO+(n, 1) such that fΓf−1 = Γ and φ = f by [17, Theorem
8.1.5]; moreover, f is unique up to left multiplication by an element of Γ.

Let φ be an orientation preserving isometry of Γ\Hn, and let f be an element of
SO+(n, 1) such that fΓf−1 = Γ and φ = f . Then φ induces a self-diffeomorphism
φ$ of Γ\SO+(n, 1) defined by φ$(Γg) = Γfg. Let η : Spin+(n, 1) → SO+(n, 1) be
the double covering epimorphism, and let Γ̂ be a subgroup of Spin+(n, 1) such that
η maps Γ̂ isomorphically onto Γ. The isometry φ of Γ\Hn is said to lift to the spin
structure ρ : Γ̂\Spin+(n, 1) → Γ\SO+(n, 1) on Γ\Hn induced by η if φ$ lifts to a
self-diffeomorphism φ̂$ of Γ̂\Spin+(n, 1) such that ρφ̂$ = φ$ρ. If the isometry φ of
Γ\Hn lifts to a spin structure on Γ\Hn, we also say that φ fixes or leaves invariant
the spin structure on Γ\Hn.

Theorem 2.2. Let Γ be a torsion-free discrete subgroup of SO+(n, 1), and let φ
be an orientation preserving isometry of the hyperbolic space-form Γ\Hn. Let f be
an element of SO+(n, 1) such that fΓf−1 = Γ and φ = f . Let Γ̂ be a subgroup of
Spin+(n, 1) such that the double covering epimorphism η : Spin+(n, 1) → SO+(n, 1)
maps Γ̂ isomorphically onto Γ, and let f̂ be an element of Spin+(n, 1) such that
η(f̂) = f . Then φ lifts to the spin structure ρ : Γ̂\Spin+(n, 1) → Γ\SO+(n, 1) on
Γ\Hn induced by η if and only if f̂ Γ̂f̂−1 = Γ̂.
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Proof. Suppose that f̂ Γ̂f̂−1 = Γ̂. Define φ̂$ : Γ̂\Spin+(n, 1) → Γ̂\Spin+(n, 1) by
φ̂$(Γ̂g) = Γ̂f̂ g. If γ̂ is in Γ̂, then Γ̂f̂ γ̂g = Γ̂f̂ γ̂f̂−1f̂g = Γ̂f̂ g, and so φ̂$ is well
defined.

Let f̂∗ : Spin+(n, 1) → Spin+(n, 1) be left multiplication by f̂ , and let . :
Spin+(n, 1) → Γ̂\Spin+(n, 1) be the quotient map. Then φ̂$. = .f̂∗, since

φ̂$.(g) = φ̂$(Γ̂g) = Γ̂f̂g = .(f̂ g) = .f̂∗(g).

Hence φ̂$ is smooth, since . is a smooth covering projection. Moreover, φ̂$ is a
diffeomorphism with inverse φ̂−1

$ defined by φ̂−1
$ (Γ̂g) = Γ̂f̂−1g.

Observe that ρφ̂$ = φ$ρ, since

ρφ̂$(Γ̂g) = ρ(Γ̂f̂g) = Γη(f̂ g) = Γfη(g) = φ$(Γη(g)) = φ$(ρ(Γ̂g)).

Therefore φ lifts to the spin structure ρ.
Conversely, suppose that φ lifts to the spin structure ρ. Then φ$ lifts to a self-

diffeomorphism φ̂$ of Γ̂\Spin+(n, 1) such that ρφ̂$ = φ$ρ. Multiplication by −1 on
the right of Γ̂\Spin+(n, 1) is the nonidentity covering transformation of ρ, and we
denote this covering transformation by left multiplication by −1. Observe that

ρφ̂$(Γ̂) = φ$ρ(Γ̂) = φ$(Γ) = Γf.

Hence φ̂$(Γ̂) = Γ̂(±f̂) = ±Γ̂f̂ . By replacing φ̂$ by −φ̂$ if necessary, we may assume
that φ̂$(Γ̂) = Γ̂f̂ . [15, Theorem 5.1] implies that

(φ$ρ)∗π1(Γ̂\Spin+(n, 1), Γ̂) ⊆ ρ∗π1(Γ̂\Spin+(n, 1), Γ̂f̂).

As both (φ$)∗ρ∗π1(Γ̂\Spin+(n, 1), Γ̂) and ρ∗π1(Γ̂\Spin+(n, 1), Γ̂f̂) are subgroups of
index 2 of π1(Γ\SO+(n, 1), Γg), we have that

(φ$)∗ρ∗π1(Γ̂\Spin+(n, 1), Γ̂) = ρ∗π1(Γ̂\Spin+(n, 1), Γ̂f̂).

Let κ : S̃pin+(n, 1) → Spin+(n, 1) be the universal covering projection
considered in the proof of Theorem 2.1, and let π : SO+(n, 1) → Γ\SO+(n, 1)
be the quotient map. Then πηκ : S̃pin+(n, 1) → Γ\SO+(n, 1) is a universal cover-
ing projection. The fiber of πηκ over the point Γ is the subgroup Γ̃′ of S̃pin+(n, 1)
considered in the proof of Theorem 2.1, moreover the group Γ̃′ acts on S̃pin+(n, 1)
by left multiplication as the group of covering transformations of πηκ. There is an
isomorphism

χ : Γ̃′ → π1(Γ\SO+(n, 1), Γ)

such that if ω : [0, 1] → Γ\SO+(n, 1) is a loop based at the point Γ, and ω̃ :
[0, 1] → S̃pin+(n, 1) is the lift of ω starting at the identity element 1 of the group
S̃pin+(n, 1), then χ(ω̃(1)) = [ω].

Let f̃ be an element of S̃pin+(n, 1) such that κ(f̃) = f̂ . The fiber of πηκ over
the point Γf is the coset Γ̃′f̃ . There is an isomorphism

ψ : Γ̃′ → π1(Γ\SO+(n, 1), Γf)

such that if ω : [0, 1] → Γ\SO+(n, 1) is a loop based at the point Γf , and ω̃ :
[0, 1] → S̃pin+(n, 1) is the lift of ω starting at f̃ , then ψ(ω̃(1)f̃−1) = [ω].
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Let ω : [0, 1] → Γ\SO+(n, 1) be a loop based at the point Γ. Then (φ$)∗([ω]) =
[φ$ω] and φ$ω : [0, 1] → Γ\SO+(n, 1) is a loop based at the point Γf . Let ω̃ :
[0, 1] → S̃pin+(n, 1) be the lift of ω starting at 1. Then f̃ ω̃ : [0, 1] → S̃pin+(n, 1) is
the lift of φ$ω starting at f̃ , which implies that ψ(f̃ ω̃(1)f̃−1) = [φ$ω].

As fΓf−1 = Γ, we have that f̃ Γ̃′f̃−1 = Γ̃′. Let f̃% be the automorphism of Γ̃′

defined by conjugating by f̃ . Then, we have that ψf̃% = (φ$)∗χ.
Let Γ̂′ = κ−1(Γ̂). Then, we have

χ(Γ̂′) = ρ∗π1(Γ̂\Spin+(n, 1), Γ̂),

and

ψ(Γ̂′) = ρ∗π1(Γ̂\Spin+(n, 1), Γ̂f̂).

Therefore, we have that

ψf̃%(Γ̂′) = (φ$)∗χ(Γ̂′) = ψ(Γ̂′),

and so f̃%(Γ̂′) = Γ̂′. Hence f̃ Γ̂′f̃−1 = Γ̂′. After applying κ, we have f̂ Γ̂f̂−1 = Γ̂.

3. Spin Groups

In this section, we give the formal definitions of Spin(n) and Spin+(n, 1) in terms
of Clifford algebras. We follow the development in [13, Chap. I].

3.1. Clifford algebra

Let V be a finite-dimensional vector space over K = R or C, and suppose q is
a nondegenerate quadratic form on V . The Clifford algebra C2(V, q) associated to
(V, q) is the associative algebra, with unit 1, obtained from the free tensor algebra
on V by adjoining relations v ⊗ v = −q(v)1 for each v in V . There is a natural
embedding of V into C2(V, q). The algebra C2(V, q) is generated by V and the unit
1 subject to the relations v2 = −q(v)1 for each v in V .

The map α(v) = −v on V extends to an algebra automorphism α of C2(V, q).
As α2 = id, there is a vector space decomposition

C2(V, q) = C20(V, q) ⊕ C21(V, q),

where

C2i(V, q) = {x ∈ C2(V, q) : α(x) = (−1)ix}.

The elements of C20(V, q) are called the even elements of C2(V, q). Note that
C20(V, q) is a subalgebra of C2(V, q). The elements of C21(V, q) are called the odd
elements of C2(V, q). The elements of V are odd. The product of two elements of
the same parity is even, and the product of two elements of different parities is odd.

If v is in V and q(v) '= 0, then v is invertible in C2(V, q) with v−1 = −v/q(V ).
By [13, Proposition I.2.2], there is a mapping Adv : V → V , defined by Adv(w) =
vwv−1, and Adv = −ρv where ρv is the reflection of V in the subspace of all vectors
orthogonal to v.
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Let P(V, q) be the multiplicative subgroup of C2(V, q) generated by all v in V
such that q(v) '= 0, and let O(V, q) be the orthogonal group of (V, q). Then, we
have a homomorphism Ad : P(V, q) → O(V, q), defined by Ad(x)(w) = xwx−1.

3.2. Spin group

The spin group of (V, q) is the subgroup of P(V, q) defined to be

Spin(V, q) = {v1 · · · vk : vi ∈ V, with q(vi) = ±1 for each i, and k even}.

All the elements of Spin(V, q) are even, and so Spin(V, q) is a subset of C20(V, q). If
K = R, then the homomorphism Ad : P(V, q) → O(V, q) restricts to an epimorphism
Ad : Spin(V, q) → SO(V, q) with kernel {±1} by [13, Theorem I.2.9].

The identity map of V extends to an antiautomorphism ( )t : C2(V, q) →
C2(V, q) called the transpose. If x, y are in C2(V, q), then (xy)t = ytxt. The norm
mapping N : C2(V, q) → C2(V, q) is defined by N(x) = xα(xt). Note if v is in
V , then N(v) = q(v). Note also that α(xt) = (α(x))t for all x in C2(V, q). By
[13, Proposition I.2.5], the restriction of N to the group P(V, q) gives a homomor-
phism N : P(V, q) → K×.

Lemma 3.1. If K = R, then

Spin(V, q) = {x ∈ P(V, q) ∩ C20(V, q) : N(x) = ±1}.

Proof. Clearly, we have that

Spin(V, q) ⊆ {x ∈ P(V, q) ∩ C20(V, q) : N(x) = ±1}.

Suppose x ∈ P(V, q) ∩ C20(V, q) and N(x) = ±1. Then x = v1 · · · vk with q(vi) '= 0
for each i. As x is even and each vi is odd, k must be even. Observe that

q(v1) · · · q(vk) = N(v1) · · ·N(vk) = N(x) = ±1.

Let v̂i = vi/
√
|q(vi)| for each i. Then q(v̂i) = q(vi)/|q(vi)| = ±1 for each i, and

x = v1 · · · vk = v̂1 · · · v̂k

√
|q(v1) · · · q(vk)| = v̂1 · · · v̂k.

Therefore x is in Spin(V, q).

Now, assume q is the quadratic form x2
1 + · · · + x2

n on V = Kn. If K = R,
we denote C2(V, q) by C2(n) and SO(V, q) by SO(n), and Spin(V, q) by Spin(n). If
K = C, we denote C2(V, q) by C2(n). As discussed in [13, p. 20], both SO(n) and
Spin(n) are connected Lie groups and the epimorphism Ad : Spin(n) → SO(n) is a
double covering for all n ≥ 2.

Let e1, . . . , en be the standard basis of Rn. The algebra C2(n) is generated by
e1, . . . , en with relations eiej = −ejei, for i '= j and e2

i = −1 for each i = 1, . . . , n.
A basis for C2(n) is the set of all products ei1 · · · eik with 1 ≤ i1 < · · · < ik ≤ n.
We allow the empty product which is defined to be the unit 1. Therefore C2(n) is
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a 2n-dimensional vector space. A basis for C20(n) is the set of all such products of
even length, and so C20(n) is a 2n−1-dimensional vector space.

Now, assume q is the quadratic form x2
1+· · ·+x2

n−x2
n+1 on V = Kn+1. If K = R,

we denote C2(V, q) by C2(n, 1) and SO(V, q) by SO(n, 1) and Spin(V, q) by Spin(n, 1)
and P(V, q) by P(n, 1). If K = C, we denote C2(V, q) by C2(n, 1). As discussed in [13,
p. 20], both SO(n, 1) and Spin(n, 1) are Lie groups with two connected components
for each n ≥ 2. The connected component of SO(n, 1) containing the identity is
SO+(n, 1), and so we denote the connected component of Spin(n, 1) containing the
identity by Spin+(n, 1). By [13, Theorem I.2.10], Ad : Spin(n, 1) → SO(n, 1) is a
double covering that restricts to a double covering Ad : Spin+(n, 1) → SO+(n, 1)
for all n ≥ 2.

Let e1, . . . , en+1 be the standard basis of Rn+1. Then e1, . . . , en+1 are Lorentz
orthonormal. The algebra C2(n, 1) is generated by e1, . . . , en+1 subject to the
relations eiej = −ejei, for i '= j and e2

i = −1 for each i = 1, . . . , n, and e2
n+1 = 1. A

basis for C2(n, 1) is the set of all products ei1 · · · eik with 1 ≤ i1 < · · · < ik ≤ n+1.
We allow the empty product which is defined to be the unit 1. Therefore C2(n, 1) is
a 2n+1-dimensional vector space. A basis for C20(n, 1) is the set of all such products
of even length, and so C20(n, 1) is a 2n-dimensional vector space.

The algebra C2(n) embeds naturally into C2(n, 1) as the subalgebra Ĉ2(n) gen-
erated by e1, . . . , en. We shall identity C2(n) with Ĉ2(n) via this embedding. Then
Spin(n) is identified with the subgroup Ŝpin(n) of Spin+(n, 1) that stabilizes en+1

under the action of Spin+(n, 1) on Rn+1 by conjugation in C2(n, 1). We shall
also identify SO(n) with the subgroup ŜO(n) of SO+(n, 1) via the embedding
B ,→ B̂. Then Ad : Spin+(n, 1) → SO+(n, 1) restricts to a double covering
Ad : Spin(n) → SO(n).

Lemma 3.2. For each integer n ≥ 2, we have that

Spin+(n, 1) = {x ∈ P(n, 1) ∩ C20(n, 1) : N(x) = 1}.

Proof. Since N : C2(n, 1) → C2(n, 1) is a continuous function, its restriction
N : Spin(n, 1) → {±1} is a continuous function. As N(1) = 1 and Spin+(n, 1)
is connected, we have that N(Spin+(n, 1)) = 1.

Observe that

N(e1en+1) = N(e1)N(en+1) = q(e1)q(en+1) = 1(−1) = −1.

Hence e1en+1 is in Spin(n, 1) but not in Spin+(n, 1), and N maps the connected
component of Spin(n, 1) containing e1en+1 to −1. Hence

Spin+(n, 1) = {x ∈ Spin(n, 1) : N(x) = 1}.

The desired result now follows from Lemma 3.1.

Lemma 3.3. For n = 2, 3, 4, we have that

Spin+(n, 1) = {x ∈ C20(n, 1) : xtx = 1}.
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Proof. By [16, Proposition 16.15],

Spin(n, 1) = {x ∈ C20(2, 1) : N(x) = ±1}.

Hence by Lemma 3.2, we have that

Spin+(n, 1) = {x ∈ C20(2, 1) : N(x) = 1}.

Let x be in C20(n, 1) such that N(x) = 1. Then α(x) = x, and so

1 = N(x) = xα(xt) = x(α(x))t = xxt.

Therefore,

Spin+(n, 1) = {x ∈ C20(n, 1) : xxt = 1}.

The transpose map ( )t restricts to an antiautomorphism of C20(n, 1). Let y = xt.
Then

Spin+(n, 1) = {y ∈ C20(2, 1) : yty = 1}.

4. The Complex Spin Representations

There is a natural embedding of C2(n) into C2(n) that maps the standard basis
vector ei of Rn to the same vector ei of Cn for each i = 1, . . . , n. The complex
algebra C2(n) is generated by e1, . . . , en subject to the same relations as in C2(n).
We identify C2(n) with the real subalgebra of C2(n) generated by e1, . . . , en.

Assume that n is even and let n = 2m and k = 2m. Let C(k) be the algebra
of complex k × k matrices. There is an isomorphism ψ : C2(n) → C(k) of complex
algebras by [13, Theorem I.4.3]. The complex spin representation of Spin(n) is the
faithful representation

∆n : Spin(n) → C(k)

obtained by restricting ψ : C2(n) → C(k). The algebra C(k) is central simple, and
so every automorphism of C(k) is an inner automorphism by the Skolem–Noether
theorem. Hence ∆n is uniquely defined up to conjugation in C(k). Let tr : C(k) → C
be the trace map. Then tr∆n : Spin(n) → C does not depend on the choice of the
isomorphism ψ : C2(n) → C(k).

Let ω = e1 · · · en. Then eiω = −ωei for each i = 1, . . . , n by [13, Proposition
I.3.3]. Hence ω commutes with every element of C20(n). Therefore ω is in the center
of Spin(n). We have that (imω)2 = 1 by [13, Formula I.5.14]. Define a matrix C in
C(k) by C = im∆n(ω). Then, we have

C2 = (−1)m∆n(ω2) = ∆n((−1)mω2) = ∆n(1) = I.

Let W+ and W− be the +1 and −1 eigenspaces of the matrix C. Then

Ck = W+ ⊕ W−.

The elements of W+ and W− are called the positive and negative Weyl spinors.
We have that dimW+ = dimW− by [10, Proposition p. 22]. As ω is in the center
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of Spin(n), the matrix C commutes with every matrix in the image of ∆n. Hence,
every matrix in the image of ∆n leaves both W+ and W− invariant. Therefore, we
have complex representations ∆+

n and ∆−
n of Spin(n) into GL(W+) and GL(W−),

respectively, such that

∆n = ∆+
n ⊕ ∆−

n .

The representations ∆+
n and ∆−

n are called the positive and negative complex spin
representations of Spin(n). The representations ∆+

n and ∆−
n are inequivalent irre-

ducible complex representations of Spin(n) by [13, Proposition I.5.15].
For each positive integer n, there is a natural embedding of C2(n, 1) into C2(n, 1)

that maps the standard basis vector ei of Rn+1 to the same vector ei of Cn+1 for
each i = 1, . . . , n + 1. The complex algebra C2(n, 1) is generated by e1, . . . , en+1

subject to the same relations as in C2(n, 1). We identify C2(n, 1) with the real
subalgebra of C2(n, 1) generated by e1, . . . , en+1.

Assume that n is even, and let n = 2m and k = 2m. Let ω = e1 · · · en. Define

ρ± : C2(n, 1) → C2(n)

by ρ±(ei) = ei for i = 1, . . . , n and ρ±(en+1) = ±imω. We have that (±imω)2 = 1,
and ei(±imω) = −(±imω)ei for each i = 1, . . . , n. Therefore ρ± : C2(n, 1) → C2(n)
is a homomorphism of complex algebras and a retraction for each choice of ±.

Lemma 4.1. The algebra homomorphism ρ± maps C20(n, 1) isomorphically onto
C2(n) for each choice of ±.

Proof. We have that

C20(n, 1) = C20(n) ⊕ C21(n)en+1.

As ω is even, we have that

ρ±(C21(n)en+1) = C21(n)(±imω) = C21(n).

Hence ρ±(C20(n, 1)) = C2(n). As C20(n, 1) and C2(n) are complex vector spaces of
the same dimension, we deduce that ρ± maps C20(n, 1) isomorphically onto C2(n)
for each choice of ±.

Let ρ±0 : C20(n, 1) → C2(n) be the isomorphism of complex algebras, obtained
by restricting ρ±. From the proof of Lemma 4.1, we have that ρ−0 = αρ+

0 . The
automorphism α of C2(n) is equal to conjugation by ω by [13, Proposition I.3.3].
Therefore ρ+

0 and ρ−0 differ by an inner automorphism of C2(n).
The complex spin representation of Spin+(n, 1) is the faithful representation

∆n,1 : Spin+(n, 1) → C(k)

obtained by restricting ψρ± : C2(n, 1) → C(k) for some choice of ± and some choice
of an isomorphism ψ : C2(n) → C(k) of complex algebras. The representation
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∆n,1 : Spin+(n, 1) → C(k) is uniquely defined up to conjugation in C(k). Hence,
the map

tr∆n,1 : Spin+(n, 1) → C

does not depend on any of the choices made to define ∆n,1.
Finally, the complex spin representation ∆n,1 : Spin+(n, 1) → C(k) restricts to

the complex spin representation ∆n : Spin(n) → C(k) assuming of course that we
are using the same isomorphism ψ : C2(n) → C(k) to define both ∆n and ∆n,1.

5. The Complex Spin Representation of Spin+(2, 1)

Consider the matrices E1, E2, E3 in C(2) which are, respectively,
(

0 1

−1 0

)
,

(
0 i

i 0

)
,

(
1 0

0 −1

)
.

We have that E2
1 = −I, E2

2 = −I, and E1E2 = −E2E1. Hence the mapping
ψ : {e1, e2} → {E1, E2}, defined by ψ(e1) = E1 and ψ(e2) = E2, extends
to a homomorphism ψ : C2(2) → C(2) of complex algebras. The matrices
I, E1, E2, E1E2 are linearly independent in C(2), and so ψ : C2(2) → C(2) is an
isomorphism of complex algebras.

We shall work with the complex spin representation ∆ : Spin+(2, 1) → C(2)
which is the restriction of the homomorphism ψρ− : C2(2, 1) → C(2) of complex
algebras. Note that ψρ−(ei) = Ei for i = 1, 2, 3.

The conformal disk model of the hyperbolic plane is

B2 = {z ∈ C : |z| < 1}.

The group of orientation preserving isometries of B2 is the group LF(B2) of linear
fractional transformations of C of the form (az + b)/(bz + a) with a, b in C and
|a|2 − |b|2 = 1. Define a group G by

G =

{(
a b

b a

)
: a, b ∈ C and |a|2 − |b|2 = 1

}
.

The natural map from G to LF(B2) is a double covering epimorphism.
If A is in C(2), let A∗ be the conjugate transpose of A. Let J = E3.

Lemma 5.1. Let A be in C(2) with row vectors (a, b) and (c, d). Then A∗JA = J
if and only if |a|2 − |c|2 = 1, |d|2 − |b|2 = 1, and ba = dc.

Proof. The equation J = A∗JA is equivalent to the equation
(

1 0

0 −1

)
=

(
a c

b d

)(
a b

−c −d

)
=

(
|a|2 − |c|2 ab − cd

ba − dc |b|2 − |d|2

)
.

Lemma 5.2. We have that

G = SU(1, 1; C) = {A ∈ C(2) : A∗JA = J and detA = 1}.
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Proof. Solving the system of equations in Lemma 5.1, together with ad − bc = 1,
for c and d, leads to the system of equations c = b, d = a, and |a|2 − |b|2 = 1.

Theorem 5.1. The complex spin representation ∆ : Spin+(2, 1) → C(2) maps
Spin+(2, 1) isomorphically onto G.

Proof. As ∆ is faithful, it suffices to prove that ∆ maps Spin+(2, 1) onto G. Let
φ : C2(2, 1) → C(2) be the restriction of ψρ− : C2(2, 1) → C(2). Then, we have that

∆(Spin+(2, 1)) = φ(Spin+(2, 1)).

The real algebra C(2) is an 8-dimensional real vector space. The eight products
Ei1 · · ·Eik with 1 ≤ i1 < · · · < ik ≤ 3, including the empty product, are linearly
independent over R. Hence φ : C2(2, 1) → C(2) is an isomorphism of real algebras.

By Lemma 3.3, we have that

Spin+(2, 1) = {x ∈ C20(2, 1) : xtx = 1}.

The map σ : C(2) → C(2) defined by σ(A) = JA∗J is an antiautomorphism of the
real algebra C(2). If A has row vectors (a, b) and (c, d), then

σ(A) =

(
a −c

−b d

)
.

The maps φ( )t,σφ : C2(2, 1) → C(2) are antihomomorphisms of real algebras. For
each i = 1, 2, 3, we have that

φ(et
i) = φ(ei) = Ei = σ(Ei) = σφ(ei).

Therefore φ( )t = σφ. Hence

φ(Spin+(2, 1)) = {A ∈ φ(C20(2, 1)) : σ(A)A = I}.

We have that

φ(C20(2, 1)) =

{(
a b

b a

)
: a, b ∈ C

}
.

Therefore φ(Spin+(2, 1)) = G by Lemmas 4.1 and 5.1.

As φ : C2(2, 1) → C(2) is an isomorphism of real algebras, all the algebraic
structure of C2(2, 1) is carried over to C(2) by φ. Hence, the matrices E1, E2, E3

span a 3-dimensional real vector subspace W of C(2) given by

W =

{(
r z

−z −r

)
: r ∈ R, z ∈ C

}
.

Let B be in W with first row vector (r, z). Define a quadratic form f on W by

f(B) = |z|2 − r2.

Let f2 be the Lorentzian quadratic form on R2,1. Then φ restricts to an isometry
δ : (R3, f2) → (W, f).
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Let A be in G and B be in W . Then ABA−1 is in W . Define AdA : W → W by
AdA(B) = ABA−1. Then AdA : W → W is in O(W, f). Define a homomorphism
Ad : G → O(W, f) by Ad(A) = AdA.

Define an isomorphism δ∗ : O(2, 1) → O(W, f) by δ∗(T ) = δT δ−1. Then
δ∗(SO(2, 1)) = SO(W, f). Define SO+(W, f) to be the connected component of
SO(W, f) containing the identity. Then δ∗(SO+(2, 1)) = SO+(W, f), since δ∗ is a
homeomorphism. We have that Ad(G) = SO+(W, f) and the following diagram
commutes:

Spin+(2, 1) ∆−→ G
Ad ↓ ↓ Ad

SO+(2, 1) δ∗−→ SO+(W, f).

Define η : G → SO+(2, 1) by η = δ−1
∗ Ad. Then η is a double covering

epimorphism. We regard SO+(2, 1) to be a matrix group. If A is in G, then η(A) is
the matrix of the isometry Ad(A) of (W, f) with respect to the basis E1, E2, E3.

If z ∈ C, we write z = z1 +z2i with z1, z2 ∈ R; in this notation we compute that

η

(
a b

b a

)
=





1 − 2a2
2 + 2b2

1 −2a1a2 + 2b1b2 −2a1b1 + 2a2b2

2a1a2 + 2b1b2 1 − 2a2
2 + 2b2

2 −2a1b2 − 2a2b1

−2a1b1 − 2a2b2 −2a1b2 + 2a2b1 1 + 2b2
1 + 2b2

2



.

Theorem 5.2. The complex spin representation ∆ : Spin+(2, 1) → C(2) maps
Spin(2) onto the group

H =

{(
a 0

0 a

)
: a ∈ C and |a| = 1

}
.

Proof. The group Spin(2) is the stabilizer of e3 under the action of Spin+(2, 1) on
R3 by conjugation. Therefore ∆(Spin(2)) = φ(Spin(2)) is the stabilizer of E3 under
the action of G on W by conjugation.

Suppose A is in G. As E3 = J , we have that AE3A−1 = E3 if and only if
A−1JA = J = A∗JA, and so AE3A−1 = E3 if and only if A−1 = A∗.

Now suppose that A−1 = A∗. Let A have row vectors (a, b) and (b, a). As
A−1 = JA∗J , we have

(
a −b

−b a

)
=

(
a b

b a

)
.

Hence b = 0. Therefore A is in H .
Conversely, suppose A is in H . Then A is in G by Lemma 5.1. Moreover A−1 =

A∗, and so A−1JA = J . Therefore A stabilizes J = E3.

6. The Complex Spin Representation of Spin+(4, 1)

Let H be the ring of quaternions. Every element of H can be written in the form
a+bj for unique a, b in C. There is a monomorphism Ψ1 : H → C(2) of real algebras
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defined by

Ψ1(a + bj) =

(
a b

−b a

)
.

Let H(2) be the algebra of 2 × 2 matrices over H. There is a monomorphism Ψ2 :
H(2) → C(4) of real algebras defined by

Ψ2

(
a b

c d

)
=

(
Ψ1(a) Ψ1(b)

Ψ1(c) Ψ1(d)

)
.

If A is a matrix in H(2), define Â = Ψ2(A).
Consider the matrices E1, . . . , E5 in H(2) which are, respectively,

(
0 1

−1 0

)
,

(
0 i

i 0

)
,

(
0 j

j 0

)
,

(
0 k

k 0

)
,

(
1 0

0 −1

)
.

We have that E2
i = −I for i = 1, . . . , 4. Moreover, EiEj = −EjEi for each i '= j.

Hence the mapping ψ : {e1, . . . , e4} → {Ê1, . . . , Ê4} defined by ψ(ei) = Êi extends
to a homomorphism ψ : C2(4) → C(4) of complex algebras.

The algebra C(4) is a 16-dimensional complex vector space. The 16 products
Êi1 · · · Êik with 1 ≤ i1 < · · · < ik ≤ 4, including the empty product, are linearly
independent over C. Hence ψ : C2(4) → C(4) is an isomorphism of complex algebras.

We shall work with the complex spin representation ∆ : Spin+(4, 1) → C(4)
which is the restriction of the homomorphism ψρ+ : C2(4, 1) → C(4) of complex
algebras. Note that ψρ+(ei) = Êi for i = 1, . . . , 5.

Lemma 6.1. The complex spin representation ∆ : Spin+(4, 1) → C(4) factors
through H(2), that is, there is a homomorphism ∆ : Spin+(4, 1) → H(2) such that
∆ = Ψ2∆.

Proof. The homomorphism ρ+ : C2(4, 1) → C2(4) of complex algebras restricts
to a homomorphism ρ+ : C2(4, 1) → C2(4) of real algebras. The mapping ψ :
{e1, . . . , e4} → {E1, . . . , E4}, defined by ψ(ei) = Ei for i = 1, . . . , 4, extends to a
homomorphism ψ : C2(4) → H(2) of real algebras. Let ∆ : Spin+(4, 1) → H(2) be
the restriction of ψρ+ : C2(4, 1) → H(2). Then ∆ = Ψ2∆.

If A is a matrix in H(2), let A∗ be the conjugate transpose of A, and let J = E5.
The group G = SU(1, 1; H) is defined by

G = {A ∈ H(2) : A∗JA = J}.

Let Ĝ = Ψ2(G). Note that Ψ2 : H(2) → C(4) maps G isomorphically onto Ĝ.

Theorem 6.1. The complex spin representation ∆ : Spin+(4, 1) → C(4) maps
Spin+(4, 1) isomorphically onto Ĝ.
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Proof. There is a homomorphism ∆ : Spin+(4, 1) → H(2) such that ∆ = Ψ2∆
by Lemma 6.1. Moreover Ψ2 : H(2) → C(4) is a monomorphism of real algebras.
Hence, it suffices to prove that ∆ maps Spin+(4, 1) isomorphically onto G.

The real algebra H(2) is a 16-dimensional real vector space. The 16 products
Ei1 · · ·Eik with 1 ≤ i1 < · · · < ik ≤ 4, including the empty product, are linearly
independent over R. Hence ψ : C2(4) → H(2) is an isomorphism of real algebras. The
homomorphism ρ+ : C2(4, 1) → C2(4) of real algebras, restricts to an isomorphism
ρ+
0 : C20(4, 1) → C2(4) of real algebras by the same argument as in the proof of

Lemma 4.1. Hence φ = ψρ+ restricts to an isomorphism φ0 = ψρ+
0 : C20(4, 1) →

H(2) of real algebras. As Spin+(4, 1) is a subgroup of C20(4, 1), the homomorphism
φ : C2(4, 1) → H(2) maps Spin+(4, 1) isomorphically onto a subgroup of H(2). As
∆ is the restriction of φ, It remains only to show that φ(Spin+(4, 1)) = G.

By Lemma 3.3, we have that

Spin+(4, 1) = {x ∈ C20(4, 1) : xtx = 1}.

The map σ : H(2) → H(2) defined by σ(A) = JA∗J is an antiautomorphism of the
real algebra H(2). If A has row vectors (a, b) and (c, d), then

σ(A) =

(
a −c

−b d

)
.

The maps φ( )t,σφ : C2(4, 1) → H(2) are antihomomorphisms of real algebras.
For each i = 1, . . . , 5, we have that

φ(et
i) = φ(ei) = Ei = σ(Ei) = σφ(ei).

Therefore φ( )t = σφ. As φ restricts to an isomorphism φ0 : C20(4, 1) → H(2) of
real algebras, we have that

φ(Spin+(4, 1)) = {A ∈ H(2) : σ(A)A = I} = G.

Consider the homomorphism φ : C2(4, 1) → C(2) of real algebras defined in the
proof of Theorem 6.1. Then φ(ei) = Ei for i = 1, . . . , 5. The matrices E1, . . . , E5

span a 5-dimensional real vector subspace W of H(2) and so φ : C2(4, 1) → H(2)
restricts to a vector space isomorphism δ : R5 → W .

Lemma 6.2. If A is in G and B is in W, then ABA−1 is in W .

Proof. There is an x in Spin+(4, 1) such that φ(x) = A by Theorem 6.1. Moreover
there is a v in R5 such that φ(v) = B. Now xvx−1 is in R5 by [13, Proposition
I.2.2]. Hence δ(xvx−1) = φ(xvx−1) = ABA−1 is in W .
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We have that

W =

{(
r q

−q −r

)
: r ∈ R, q ∈ H

}
.

Let B be in W with first row vector (r, q). Then B2 = (r2 − |q|2)I, and so B2 is a
scalar matrix. Define a quadratic form f on W by

f(B) = −1
2
tr(B2) = |q|2 − r2.

Let f4 be the Lorentzian quadratic form on R4,1. Observe that δ : R5 → W satisfies
f(δ(v)) = f4(v) for all v in R5. Hence δ is an isometry from (R5, f4) to (W, f).

Let A be in G and let B be in W . Then

f(ABA−1) = −1
2
tr((ABA−1)2) = −1

2
tr(AB2A−1) = −1

2
tr(B2) = f(B).

Hence the map AdA : W → W , defined by AdA(B) = ABA−1, is in O(W, f).
Define a homomorphism Ad : G → O(W, f) by Ad(A) = AdA.

Define an isomorphism δ∗ : O(4, 1) → O(W, f) by δ∗(T ) = δT δ−1. Then
δ∗(SO(4, 1)) = SO(W, f). Define SO+(W, f) to be the connected component of
SO(W, f) containing the identity. Then δ∗(SO+(4, 1)) = SO+(W, f), since δ∗ is a
homeomorphism.

Theorem 6.2. We have Ad(G) = SO+(W, f) and the following diagram
commutes:

Spin+(4, 1) ∆−→ G
Ad ↓ ↓ Ad

SO+(4, 1) δ∗−→ SO+(W, f)

with horizontal maps isomorphisms.

Proof. It suffices to prove that the following diagram commutes:

Spin+(4, 1) ∆−→ G
Ad ↓ ↓ Ad

SO+(4, 1) δ∗−→ O(W, f).

Let x be in Spin+(4, 1). Then, we have that

Ad(∆(x)) = Ad(φ(x)) = Adφ(x).

Whereas

δ∗(Ad(x)) = δ∗(Adx) = δAdxδ
−1.

Let B be in W . Then Adφ(x)(B) = φ(x)Bφ(x)−1 . Whereas

δAdxδ
−1(B) = δAdx(δ−1(B)) = δ(xδ−1(B)x−1) = δ(x)Bδ(x−1) = φ(x)Bφ(x)−1 .

Therefore Adφ(x) = δAdxδ−1, and so Ad∆ = δ∗Ad.
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Define η : G → SO+(4, 1) by η = δ−1
∗ Ad. Then η is a double covering

epimorphism by Theorem 6.2. We regard SO+(4, 1) to be a matrix group. If A
is in G, then η(A) is the matrix of the isometry Ad(A) of (W, f) with respect to
the basis E1, . . . , E5.

The proof of the next lemma is the same as for Lemma 5.1.

Lemma 6.3. Let A be in H(2) with row vectors (a, b) and (c, d). Then A∗JA = J
if and only if |a|2 − |c|2 = 1, |d|2 − |b|2 = 1, and ba = dc.

Define a group H by

H =
{(

a 0
0 d

)
: a, d ∈ H and |a| = |d| = 1

}
.

Let Ĥ = Ψ2(H). Note that Ψ2 : H(2) → C(4) maps H isomorphically onto Ĥ.

Theorem 6.3. The complex spin representation ∆ : Spin+(4, 1) → C(4) maps
Spin(4) isomorphically onto the group Ĥ.

Proof. As ∆ = ∆Ψ2, it suffices to prove that ∆(Spin(4)) = H . The group Spin(4)
is the stabilizer of e5 under the action of Spin+(4, 1) on R5 by conjugation. Therefore
∆(Spin(4)) = φ(Spin(4)) is the stabilizer of E5 under the action of G on W by
conjugation.

Suppose A is in G. As E5 = J , we have that AE5A−1 = E5 if and only if
A−1JA = J = A∗JA, and so AE5A−1 = E5 if and only if A−1 = A∗.

Now suppose that A−1 = A∗. Let A have row vectors (a, b) and (c, d). As
A−1 = σ(A), we have

(
a −c

−b d

)
=

(
a c

b d

)
.

Hence b = 0 = c, and so b = 0 = c. We have that
(

a 0

0 d

)(
a 0

0 d

)
=

(
1 0

0 1

)
.

Hence |a|2 = 1 = |d|2, and so |a| = 1 = |d|. Therefore A is in H .
Conversely, suppose A is in H . Then A is in G by Lemma 6.3. Moreover A−1 =

A∗, and so A−1JA = J . Therefore A stabilizes J = E5. Thus H is the stabilizer of
E5 under the action of G on W by conjugation. Hence ∆(Spin(4)) = H .

7. The Complex Spinor Bundle of a Hyperbolic Spin Manifold

Let Γ be a torsion-free discrete subgroup of SO+(n, 1). Then Γ\SO+(n, 1) is a
principal SO(n)-bundle over the hyperbolic space-form Γ\Hn with bundle projec-
tion ε : Γ\SO+(n, 1) → Γ\Hn defined by ε(ΓA) = ΓAen+1, and right action of
SO(n) on Γ\SO+(n, 1) defined by (ΓA)B = Γ(AB).
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Suppose we have a spin structure on the hyperbolic space-form Γ\Hn. Let Γ̂ be
the corresponding subgroup of Spin+(n, 1) as in Theorem 2.1. Then Γ̂\Spin+(n, 1)
is a principal Spin(n)-bundle over the space-form Γ\Hn with bundle projection
ζ : Γ̂\Spin+(n, 1) → Γ\Hn defined by ζ(Γ̂g) = Γ(Ad(g)en+1), and right action of
Spin(n) on Γ̂\Spin+(n, 1) defined by (Γ̂g)s = Γ̂(gs).

The double covering epimorphism Ad : Spin+(n, 1) → SO+(n, 1) induces a spin
structure ρ : Γ̂\Spin+(n, 1) → Γ\SO+(n, 1) on Γ\Hn defined by ρ(Γ̂g) = Γ(Ad(g))
by Theorem 2.1.

Assume that n is even. Let n = 2m and k = 2m. Let ∆n : Spin(n) → C(k) be the
complex spin representation. We let Spin(n) act on the left of Ck by sv = ∆n(s)v.
Then Spin(n) acts freely on the right of (Γ̂\Spin+(n, 1)) × Ck by

(Γ̂g, v)s = (Γ̂gs, s−1v).

Let S = Spin(n). The complex spinor bundle S of Γ\Hn with respect to the spin
structure on Γ\Hn corresponding to the lift Γ̂ of Γ is the complex vector bundle

Γ̂\Spin+(n, 1) ×∆n Ck = ((Γ̂\Spin+(n, 1)) × Ck)/S

over Γ\Hn with bundle projection µ defined by

µ((Γ̂g, v)S) = Γ(Ad(g)en+1).

Note that the complex spinor bundle S is the bundle associated to the principal
Spin(n)-bundle Γ̂\Spin+(n, 1) via the representation ∆n : Spin(n) → C(k).

Likewise the positive and negative complex spinor bundles S± of Γ\Hn with
respect to the spin structure on Γ\Hn corresponding to Γ̂ are the complex vector
bundles

Γ̂\Spin+(n, 1) ×∆±
n

W± =
(
(Γ̂\Spin+(n, 1)) × W±)/S

over Γ\Hn with bundle projection µ± defined by

µ±((Γ̂g, v)S) = Γ(Ad(g)en+1).

The positive and negative complex spinor bundles S± are the bundles associated
to the principal Spin(n)-bundle Γ̂\Spin+(n, 1) via the representations

∆±
n : Spin(n) → GL(W±).

As Ck = W+⊕W−, we have the direct sum decomposition S = S+⊕S− of complex
vector bundles.

Let ∆n,1 : Spin+(n, 1) → C(k) be the complex spin representation of Spin+(n, 1)
that extends ∆n. Define a left action of Spin+(n, 1) on Ck by gv = ∆n,1(g)v. Then
Spin+(n, 1) acts diagonally on the left of Hn × Ck by

g(x, v) = (Ad(g)x, gv).

The group Γ̂ acts freely and discontinuously on Hn ×Ck. Moreover, the orbit space
Γ̂\(Hn×Ck) is a complex vector bundle over Γ\Hn with bundle projection ν defined
by ν(Γ̂(x, v)) = Γx.
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Define a map

ξ : Γ̂\Spin+(n, 1) ×∆n Ck → Γ̂\(Hn × Ck)

by the formula

ξ((Γ̂g, v)S) = Γ̂(Ad(g)en+1, gv).

Theorem 7.1. For each positive even integer n, the map

ξ : Γ̂\Spin+(n, 1) ×∆n Ck → Γ̂\(Hn × Ck)

is a complex vector bundle equivalence from the complex spinor bundle S of Γ\Hn,

µ : Γ̂\Spin+(n, 1) ×∆n Ck → Γ\Hn,

to ν : Γ̂\(Hn × Ck) → Γ\Hn.

Proof. Define a map

υ : Spin+(n, 1) × Ck → Hn × Ck

by υ(g, v) = (Ad(g)en+1, gv). Then υ is a smooth surjection. The compact Lie group
S = Spin(n) acts freely on the right of Spin+(n, 1) × Ck by (g, v)s = (gs, s−1v).
The S-orbits are the fibers of υ, and so υ induces a diffeomorphism

υ : (Spin+(n, 1) × Ck)/S → Hn × Ck

defined by

υ((g, v)S) = (Ad(g)en+1, gv).

The group Γ̂ acts on the left of (Spin+(n, 1) × Ck)/S by γ̂((g, v)S) = (γ̂, v)S. The
map υ is Γ̂-equivariant, and so Γ̂ acts freely and discontinuously on (Spin+(n, 1)×
Ck)/S. The manifold Γ̂\((Spin+(n, 1) × Ck)/S) is canonically diffeomorphic to
((Γ̂\Spin+(n, 1)) × Ck)/S, and so we have a smooth covering projection

p : (Spin+(n, 1) × Ck)/S → Γ̂\Spin+(n, 1) ×∆n Ck

defined by p((g, v)S) = (Γ̂g, v)S.
Let q : Hn × Ck → Γ̂\(Hn × Ck) be the quotient map. Then q is a smooth

covering projection. We have that qυ = ξp. Therefore ξ is a diffeomorphism.
Observe that νξ = µ, since

νξ((Γ̂g, v)S) = ν(Γ̂(Ad(g)en+1, gv))

= Γ(Ad(g)en+1)

= ζ(Γ̂g) = µ((Γ̂g, v)S)).

Therefore ξ is an equivalence of fiber bundles.
Let x be a point of Hn, and let g in Spin+(n, 1) be such that Ad(g)en+1 = x.

The fiber of µ : Γ̂\Spin+(n, 1)) ×∆n Ck → Γ\Hn over Γx is

Fx(µ) = {(Γ̂g, v)S : v ∈ Ck}.
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The mapping ig : Ck → Fx(µ) defined by ig(v) = (Γ̂g, v)S is a linear isomorphism.
The fiber of ν : Γ̂\(Hn × Ck) → Γ\Hn over Γx is

Fx(ν) = {Γ̂(x, v) : v ∈ Ck}.

The mapping jx : Ck → Fx(ν) defined by jx(v) = Γ̂(x, v) is a linear isomorphism.
Let ξx : Fx(µ) → Fx(ν) be the restriction of ξ. Let g∗ : Ck → Ck be defined
by g∗(v) = gv. Then g∗ is a linear automorphism. We have that ξxig = jxg∗,
and so ξx is a linear isomorphism. Hence ξ is an equivalence of complex vector
bundles.

Let φ be an orientation preserving isometry of Γ\Hn, and let f be an element
of SO+(n, 1) such that fΓf−1 = Γ and φ = f . Suppose that φ lifts to the spin
structure ρ : Γ̂\Spin+(n, 1) → Γ\SO+(n, 1) on Γ\Hn. Let f̂ be an element of
Spin+(n, 1) such that Ad(f̂) = f . Then f̂ Γ̂f̂−1 = Γ̂ by Theorem 2.2, and the self-
diffeomorphism φ$ of Γ\SO+(n, 1) induced by φ lifts to a self-diffeomorphism φ̂$ of
Γ̂\Spin+(n, 1) induced by f̂ .

The diffeomorphism φ̂$ induces a self-diffeomorphism φ̂ of the vector bundle
Γ̂\Spin+(n, 1)×∆n Ck defined by φ̂((Γ̂g, v)S) = (Γ̂f̂ g, v)S. We have that µφ̂ = φµ,
and so φ̂ maps fibers of µ to fibers of µ. Let x be a point of Hn, and let φ̂x :
Fx(µ) → Ffx(µ) be the restriction of φ̂. Then φ̂xig = if̂g, and so φ̂x is a linear
isomorphism. Hence φ̂ is a vector bundle automorphism of µ.

Likewise φ̂$ induces a self-diffeomorphism φ̂′ of the vector bundle Γ̂\(Hn ×Ck)
defined by φ̂′(Γ̂(x, v)) = Γ̂(fx, f̂v). We have that νφ̂′ = φν, and so φ̂′ maps fibers
of ν to fibers of ν. Let x be a point of Hn, and let φ̂′x : Fx(ν) → Ffx(ν) be the
restriction of φ̂′. Then φ̂′xjx = jfxf̂∗, and so φ̂′x is a linear isomorphism. Hence φ̂′

is a vector bundle automorphism of ν.
We have that ξφ̂ = φ̂′ξ, since

ξφ̂((Γ̂g, v)S) = ξ((Γ̂f̂g, v)S)

= Γ̂(Ad(f̂ g)en+1, f̂ gv)

= φ̂′(Γ̂(Ad(g)en+1, gv)) = φ̂′ξ((Γ̂g, v)S).

Theorem 7.2. Let Γ be a torsion-free discrete subgroup of SO+(n, 1) with n even,
and let φ be an orientation preserving isometry of the hyperbolic space-form Γ\Hn.
Let f be an element of SO+(n, 1) such that fΓf−1 = Γ and φ = f . Let Γ̂ be a
subgroup of Spin+(n, 1) such that the double covering Ad : Spin+(n, 1) → SO+(n, 1)
maps Γ̂ isomorphically onto Γ, and let f̂ be an element of Spin+(n, 1) such that
Ad(f̂) = f . Suppose that f̂ Γ̂f̂−1 = Γ̂ and φ fixes the point Γx of Γ\Hn. Let γ
be the element of Γ such that γfx = x, and let γ̂ be the element of Γ̂ such that
Ad(γ̂) = γ. Let φ̂ be the vector bundle automorphism of the complex spinor bundle
µ : Γ̂\Spin+(n, 1) ×∆n Ck → Γ\Hn induced by f̂ , and let φ̂x be the restriction of φ̂
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to the fiber of µ over the point Γx. Then, we have that

tr(φ̂x) = tr(∆n,1(γ̂f̂)).

Proof. We have that

φ̂′(Γ̂(x, v)) = Γ̂(fx, f̂v) = Γ̂γ̂(fx, f̂v) = Γ̂(γfx, γ̂f̂v).

and so

φ̂′xjx = jγfx(γ̂f̂)∗ = jx(γ̂f̂)∗.

Hence, we have that

tr(φ̂x) = tr(ξ−1
x φ̂′xξx) = tr(φ̂′x) = tr(jx(γ̂f̂)∗j−1

x ) = tr((γ̂f̂)∗) = tr(∆n,1(γ̂f̂)).

8. The Equivariant Index for an Isometry with Only
Isolated Fixed Points

Let Γ be a torsion-free discrete subgroup of SO+(n, 1) with n even and n = 2m.
Let φ be an orientation preserving isometry of the hyperbolic space-form Γ\Hn.
Suppose that φ fixes the point P = Γx of Γ\Hn and P is an isolated fixed point.
Then the differential dφP : TP (Γ\Hn) → TP (Γ\Hn) is an orientation preserving
isometry that fixes no nonzero tangent vector by the discussion in [3, p. 472].

Let f be an element of SO+(n, 1) such that fΓf−1 = Γ and φ = f . Let γ be
the element of Γ such that γfx = x. Then dφP isometrically lifts to an orientation
preserving isometry Tx(γf) : Tx(Hn) → Tx(Hn), defined by Tx(γf)y = γfy,
which fixes no nonzero vector of Tx(Hn). Hence, we may decompose Tx(Hn) into
a direct sum of Lorentz orthogonal 2-planes

Tx(Hn) = E1 ⊕ E2 ⊕ · · ·⊕ Em,

which are invariant under Tx(γf). Let {ek, e′k} be a Lorentz orthonormal basis of Ek

chosen so that the matrix A in O+(n, 1), with column vectors e1, e′1, . . . , em, e′m, x,
has determinant 1. Relative to such a basis, Tx(γf) acts as a rotation by an angle
θk in the 2-plane Ek for each k. We call the resulting set of angles {θk} a coherent
system of angles for dφP .

By [3, Theorem 8.35] and the discussions in [4, p. 20] and [21, p. 175], we have
the following theorem.

Theorem 8.1. Let Γ be a torsion-free discrete cocompact subgroup of SO+(n, 1)
with n even and n = 2m. Let φ be an orientation preserving isometry of the hyper-
bolic space-form M = Γ\Hn with only isolated fixed points {P}. Suppose that M
admits a spin structure and φ lifts to an automorphism φ̂, of the same order, of the
corresponding spinor bundle S of M . The equivariant index Spin(φ̂, M) is given by

Spin(φ̂, M) =
∑

ν(P ),



August 15, 2021 11:59 WSPC/243-JTA 2050024

Harmonic spinors on the Davis hyperbolic 4-manifold 725

where P ranges over the fixed points of φ and

ν(P ) = ε(P, φ̂)im2−m
m∏

k=1

csc(θk/2),

where θ1, . . . , θm is a coherent system of angles for dφP and ε(P, φ̂) = ±1.
Moreover, if 0 < |θk| < π for each k, then

tr(φ̂P ) = ε(P, φ̂)
m∏

k=1

2 cos(θk/2),

and so we have that

ν(P ) = im2−mtr(φ̂P )
m∏

k=1

csc(θk).

9. Some Hyperbolic 2-Manifolds that Admit Harmonic Spinors

As explained in the introduction, our goal is to show how the equivariant index
theorem can be used to show the existence of harmonic spinors. In this section, we
use this method to prove the existence of nonzero harmonic spinors on two examples
of hyperbolic surface; one is hyperelliptic and the other is not.

9.1. Hyperelliptic example

Consider a regular hyperbolic decagon P centered at the center C = e3 of H2 as
in Fig. 1. Let Γ be the group generated by the 10 hyperbolic translations of H2

that translate a side of P to its opposite side and translates P to an adjacent

Fig. 1. The regular hyperbolic decagon P in H2 viewed from −e3.
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decagon. Then Γ is a torsion-free discrete group of isometries of H2 with funda-
mental polygon P by Poincaré’s theorem. The orbit space M = Γ\H2 is a closed
orientable hyperbolic surface of genus 2.

The side-pairing of P by the generators of Γ determines a cell decomposition of
M with two 0-cells, five 1-cells, and one 2-cell. A 0-cell corresponds to a cycle of 5
alternate vertices of P . A 1-cell corresponds to a pair of opposite sides of P , and
the 2-cell corresponds to P .

Let f be the rotation of H2 of 2π/5 about the center C. Then f conjugates each
generator of Γ to another generator of Γ, and so fΓf−1 = Γ. Hence f induces an
orientation preserving isometry φ of M so that φ = f . The isometry φ has order
5 and fixes just 3 points of M corresponding to C, and the two cycles of vertices
of P represented by the points A and B; moreover, all three fixed points of φ are
isolated.

The rightmost vertex of P is (2
√

2 +
√

5, 0, 2 +
√

5), and the other vertices are
found by rotations of multiples of π/5 about the center C. The vertices A, B, A′, B′

are (
ε

√
1
2

(
1 +

√
5
)
, δ

√
1
2

(
15 + 7

√
5
)
, 2 +

√
5

)

with (ε, δ) = (−1, 1), (1, 1), (−1,−1), (1,−1), respectively. The hyperbolic
translation g1 that maps A to A′ and B and B′ is represented in SO+(2, 1) by
the matrix 



1 0 0

0 6 + 3
√

5 −2
√

20 + 9
√

5

0 −2
√

20 + 9
√

5 6 + 3
√

5



.

Let ρ be the rotation of P about C by π/5. The other side-pairing maps of P are
then obtained by conjugating g1 by multiples of ρ. These side-pairing maps generate
a torsion-free discrete subgroup Γ of SO+(2, 1) with generators gk = ρk−1g1ρ1−k

for k = 1, . . . , 10, and defining relators gk+5gk, for i = 1, . . . , 5 and g7g3g9g5g1

(corresponding to the A cycle) and g5g9g3g7g1 (corresponding to the B cycle).
We lift the rotation ρ, with respect to the double covering epimorphism

η : SU(1, 1; C) → SO+(2, 1)

defined in Sec. 5, to

ρ̂ =

(
eiπ/10 0

0 e−iπ/10

)
,

and we lift the hyperbolic translation g1 to

ĝ1 =





1
2
(−3 −

√
5) −i

√
1
2
(5 + 3

√
5)

i
√

1
2
(5 + 3

√
5)

1
2
(−3 −

√
5)




.
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We then define the lifts of the remaining side-pairing maps by conjugating ĝ1 by
powers of ρ̂. These 10 elements generated a subgroup Γ̂ of SU(1, 1; C) isomorphic
to Γ, since the defining relations of Γ also hold in SU(1, 1; C), and so we have a spin
structure on M by Theorems 2.1 and 5.1.

We have that f = ρ2, and so we lift f to f̂ = −(ρ̂)2. As f̂ Γ̂f̂−1 = Γ̂, the map φ
lifts to the spin structure defined on M by Theorem 2.2. We have that

f̂ =
(
−eiπ/5 0

0 −e−iπ/5

)
.

The matrix f̂ has order 5 and induces a self-diffeomorphism φ̂$ of Γ̂\SU(1, 1; C) of
order 5. Moreover f̂ induces an automorphism φ̂ of order 5 of the corresponding
spinor bundle of M . By Theorems 5.1 and 7.2, we have that

tr(φ̂C) = tr(f̂) = −1
2
(1 +

√
5).

Hence, we have that

ν(C) =
i
2
tr(φ̂C) csc(2π/5) = −i

√
1
10

(5 +
√

5).

Let γA = g7g3. Then γAfA = A, and γAf is a rotation of −4π/5 about A. Let
γ̂A = ĝ7ĝ3. By Theorems 5.1 and 7.2, we have that

tr(φ̂A) = tr(γ̂Af̂) = −1
2
(1 −

√
5).

Hence, we have that

ν(A) =
i
2
tr(φ̂A) csc(−4π/5) = −i

√
1
10

(5 −
√

5).

Let γB = g6g2. Then γBfB = B, and γBf is a rotation of −4π/5 about B. Let
γ̂B = ĝ6ĝ2. By Theorems 5.1 and 7.2, we have that

tr(φ̂B) = tr(γ̂B f̂) = −1
2
(1 −

√
5).

Hence ν(B) = ν(A). By Theorem 8.1, we have that

Spin(φ̂, M) = ν(A) + ν(B) + ν(C) = −i

√
1
2
(5 +

√
5).

Therefore, M admits nonzero harmonic spinors by Proposition 1.1. Recall that

Spin(φ̂, M) = tr(φ̂,H+) − tr(φ̂,H−).

Moreover dimH± = 1, since

dimH± ≤ $(2 + 1)/2% = 1.

Hence Spin(φ̂, M) is the difference of two 5th roots of unity. In fact, we have

−i
√

1
2
(
5 +

√
5
)

= e−2πi/5 − e2πi/5.

The fact that dimH+ is odd has a topological interpretation. By [2], it is equivalent
to saying that M , together with the spin structure described above, is nontrivial in



August 15, 2021 11:59 WSPC/243-JTA 2050024

728 J. G. Ratcliffe, D. Ruberman & S. T. Tschantz

the 2-dimensional Spin cobordism group, or in other words that its Arf invariant
is nontrivial. It would be interesting to give a purely topological argument for this
fact, perhaps based on the 5-fold symmetry of the surface.

Note that the surface M has genus 2, and so M is hyperelliptic. The theory of
harmonic spinors on hyperelliptic Riemann surfaces is well understood [7]. We next
consider an example of a non-hyperelliptic hyperbolic surface that admits nonzero
harmonic spinors by the combination of Proposition 1.1 and Theorem 8.1.

9.2. Non-hyperelliptic example

Consider the Coxeter (2, 5, 6)-triangle ∆ in H2 shown in Fig. 2 with one vertex at
the center e3. The reflections in the sides of ∆ are represented in O+(2, 1) by the
matrices





1 0 0

0 −1 0

0 0 1



,





1
2

√
3

2
0

√
3

2
−1

2
0

0 0 1




,





−2 −
√

5 0 2
√

2 +
√

5

0 1 0

−2
√

2 +
√

5 0 2 +
√

5



.

These three reflections generate a discrete subgroup Γ0 of O+(2, 1). Consider the
subgroup Γ of Γ0 of index 60 whose fundamental domain is the 18-sided hyperbolic
polygon P shown in Fig. 2. The polygon P is subdivided into 60 copies of ∆ and is
invariant under the rotation ρ of 2π/3 about the center e3 of P . A set of generators

Fig. 2. An 18-sided hyperbolic polygon P in H2 viewed from −e3.
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for Γ is a set of side-pairing transformations for P where sides A, B, C are paired to
sides A′, B′, C′, respectively, by hyperbolic translations and the remaining side-pair
transformations are such that the side-pairing is invariant under the rotation ρ. The
orbit space M = Γ\H2 is an orientable hyperbolic surface of genus 3 by Poincaré’s
theorem.

The rotation ρ induces an orientation preserving isometry φ = ρ of M of order 3
with exactly 5 fixed points all of which are isolated. The fixed points are represented
by the center of P and the 4 cycles of vertices of P . The quotient of M under the
action of φ is an orientable hyperbolic 2-orbifold O of genus 0 with 5 cone points
of order 3 corresponding to the fixed points of φ. A fundamental polygon for the
2-orbifold O is the hyperbolic octagon Q that is the third of P between the two radii
drawn in Fig. 2. The orbifold O is constructed by folding Q along the midline from
the center and then gluing together the sides. Hence M is trigonal, and therefore
M is non-hyperelliptic [22].

The isometry φ acts as a rotation by an angle of 2π/3 about the fixed point
corresponding to the center of P , and φ acts as a rotation by an angle of −2π/3
about each of the fixed points corresponding to the 4 cycles of vertices of P . The
isometry φ fixes a spin structure of M by [2, Proposition 5.2]. In fact φ fixes a
unique spin structure of M . We lift φ to an automorphism φ̂ of the corresponding
spinor bundle of M of order 3, and by Theorem 8.1, we compute that

Spin(φ̂, M) = −i
√

3.

Therefore M admits nonzero harmonic spinors by Proposition 1.1. As described
in [12, Sec. 2.2], the space of harmonic spinors H+ on a genus 3 surface has
dimension 0, 1, or 2. The latter case occurs only for hyperelliptic surfaces, and
so dimH± = 1 for this example. Therefore Spin(φ̂, M) is the difference of two 3rd
roots of unity. In fact, we have

−i
√

3 = e−2πi/3 − e2πi/3.

10. Harmonic Spinors on the Davis Hyperbolic 4-Manifold

In this section, we combine Proposition 1.1 and Theorem 8.1 to show that the Davis
hyperbolic 4-manifold [9] admits nonzero harmonic spinors. The Davis manifold M
is constructed geometrically by gluing together the opposite sides of a regular 120-
cell P in H4 by hyperbolic translations whose axis passes through the centers of
the opposite sides.

10.1. The 120-cell

The 120-cell P has 600 vertices, 1200 edges, 720 ridges (regular pentagons), and
120 sides (regular dodecahedra). The side-pairing defining the Davis manifold M
identifies all 600 vertices to one vertex cycle, identifies 20 edges within each cycle
of edges, identifies 5 ridges within each cycle of ridges, and identifies 2 sides
with each cycle of sides. Therefore, the cell structure of P projects to a cell
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structure of M consisting of one 0-cell, 60 1-cells, 144 2-cells, 60 3-cells and one
4-cell.

Define

τ = (1 +
√

5)/2 and κ =
√

1 + 3τ .

We will work with the regular 120-cell P centered at the center e5 of H4 which is
barycentrically subdivided by a (5, 3, 3, 5) Coxeter 4-simplex ∆ in H4 whose vertices
are given by the equations

v1 = ((2 + 3τ)κ, (1 + τ)κ, 0,κ, 5 + 8τ),

v2 = ((1 + τ)κ, 0, 0, 2 + 3τ),

v3 = (τκ, (−1 + 2τ)κ/5, (3 − τ)κ/5, 0, 1 + 2τ),

v4 = (κ, 0, 0, 0, 1 + τ),

v5 = (0, 0, 0, 0, 1).

The vertices v1, . . . , v5 are, respectively, a vertex, center of an edge, center of a
ridge, center of a side, and the center of the 120-cell P . The Lorentz normal vector
si of the side of ∆ opposite the vertex vi is given by the equations

s1 = (0, 0, 0,−1, 0), s2 =
(
0, (1 − τ)/2, 1/2, τ/2, 0),

s3 = (0, 0,−1, 0, 0), s4 = ((1 − τ)/2, τ/2, 1/2, 0, 0), s5 = (1 + τ, 0, 0, 0,κ).

10.2. Davis manifold construction

The 120 side-pairing maps for the 120-cell P defining the Davis manifold M are
represented by symmetric Lorentzian 5 × 5 matrices of the form





1 +
a2
1

1 + a5

a1a2

1 + a5

a1a3

1 + a5

a1a4

1 + a5
a1

a1a2

1 + a5
1 +

a2
2

1 + a5

a2a3

1 + a5

a2a4

1 + a5
a2

a1a3

1 + a5

a2a3

1 + a5
1 +

a2
3

1 + a5

a3a4

1 + a5
a3

a1a4

1 + a5

a2a4

1 + a5

a3a4

1 + a5
1 +

a2
4

1 + a5
a4

a1 a2 a3 a4 a5





.

The vector (a1, a2, a3, a4, a5) is the center of the 120-cell adjacent to P that is the
translated image of P by the corresponding side-pairing map of P . All the 120
matrices representing the side-pairing maps have a5 = 3 + 6τ .
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We call (a1, a2, a3, a4) the direction vector for the corresponding side-pairing
map of P . The direction vectors for the 120 side-pairing maps are the 60 vectors
listed in [18, Table 1] together with their negatives. The 120 side-pairing maps
g1, . . . , g120 of P are ordered so that g1, . . . , g60 have the same order as their direction
vectors in Table 1 and g61, . . . , g120 are ordered so that g121−i has direction vector
equal to the negative of the ith vector in Table 1.

By Poincaré’s fundamental polyhedron theorem, the 120 matrices representing
the side-pairing maps g1, . . . , g120 generate a discrete subgroup Γ of SO+(4, 1) such
that M = Γ\H4. Moreover Γ has a presentation with 120 generators x1, . . . , x120,
corresponding to the 120 side-pairing maps of P in the same order above, 60 side-
pairing relations xix121−i = 1, with i = 1, . . . , 60, and 144 ridge cycle relations
xixjxkx*xm = 1 where (i, j, k, 2, m) is one of the 5-tuples listed in [18, Table 2].

10.3. Symmetric spin structure

We next describe a symmetric spin structure on the Davis manifold M with which
we will work. The direction vector of the first side-pairing map g1 is

((2 + 2τ)κ, 0, 0, 0).

The matrix in SO+(4, 1) representing g1 lifts, with respect to the double covering

η : SU(1, 1; H) → SO+(4, 1),

to the real 2 × 2 matrix

ĝ1 =

(
−1 − τ κ

κ −1 − τ

)
.

The four reflections ρ1, . . . , ρ4 in the sides of ∆ that contain the vertex v5 = e5

generated the group Sym(P ) of symmetries of P , which is a group of order 14,400.
The group SU(1, 1; H) is a subgroup of index 2 in the group

U(1, 1; H) = {A ∈ H(2) : A∗JA = ±J}

and η : SU(1, 1; H) → SO+(4, 1) extends to a double covering epimorphism

η̃ : U(1, 1; H) → O+(4, 1)

such that ρ1, . . . , ρ4 lift, respectively, to 2 × 2 matrices R1, . . . , R4 of the form
(

r q

−q −r

)

with r ∈ R, q ∈ H, and |q|2 − r2 = 1, and if q = a + bi + cj + dk, then (a, b, c, d, r)
is the corresponding normal vector si given above.

We will not describe the extension η̃, since it involves Pin groups which we have
avoided discussing. It suffices to say that the matrices R1, . . . , R4 generate a group
S̃ym(P ) of order 28,800 and the subgroup S̃ym(P )0 consisting of even products of
R1, . . . , R4 has order 14,400, and η : SU(1, 1; H) → SO+(4, 1) maps S̃ym(P )0 onto
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the subgroup Sym(P )0 of Sym(P ) of index 2 consisting of the orientation preserving
symmetries of P .

The orbit of ĝ1 under the action of S̃ym(P )0 by conjugation consists of 120 matri-
ces ĝ1, . . . , ĝ120 such that η(ĝi) = gi for each i = 1, . . . , 120. The matrices ĝ1, . . . , ĝ120

satisfy the same relations as g1, . . . , g120. Hence η : SU(1, 1; H) → SO+(4, 1) maps
the group Γ̂ generated by ĝ1, . . . , ĝ120 isomorphically onto Γ. Therefore M has a
spin structure that is invariant under Sym(P )0 by Theorems 2.1, 2.2, and 6.2. This
spin structure is unique, since −ĝ1, . . . ,−ĝ120 do not satisfy the same relations as
g1, . . . , g120 since the ridge cycle relations are of odd length.

10.4. Analysis of isometries of M of odd order

Let Isom0(M) be the group of orientation preserving isometries of the Davis
manifold M (see [18]), and let φ be an element of Isom0(M) of odd order with
only isolated fixed points. The possible orders of φ are 3, 5, and 15. If φ has order 3
or 15, then φ has only 2 fixed points, namely, the points represented by the center
of P and the cycle of vertices of P .

The isometry φ lifts to an automorphism φ̂, of the same order, of the spinor
bundle of M , with respect to the symmetric spin structure on M described above. If
the order of φ is 3, then φ is unique up to conjugation in Isom0(M), and we compute
that Spin(φ̂, M) = 0. If the order of φ is 5, then φ lies in one of 3 possible conjugacy
classes of Isom0(M). The constant value of Spin(φ̂, M) on these conjugacy classes
is 0,−5

√
5, and 5

√
5. The latter two conjugacy classes determine a single conjugacy

class of subgroups of Isom0(M) of order 5. If the order of φ is 15, then φ lies in one of
2 possible conjugacy classes of Isom0(M). The constant value of Spin(φ̂, M) on these
conjugacy classes is −

√
5 and

√
5. These two conjugacy classes determine a single

conjugacy class of subgroups of Isom0(M) of order 15. If the order of φ is 15, then
each power φk for k = 1, . . . , 14 has isolated fixed points, and Spin(φ̂k, M) = ±5

√
5

for k = 3, 6, 9, 12.

10.5. Order 15 example

Let f be the symmetry of P of order 15 represented in SO+(4, 1) by the matrix




0 −1 0 0 0

τ

2
0 −1

2
−1

2
+
τ

2
0

−1
2

+
τ

2
0

τ

2
1
2

0

−1
2

0
1
2
− τ

2
τ

2
0

0 0 0 0 1





.

Then f conjugates each generator of Γ to another generator of Γ, and so fΓf−1 = Γ.
Hence f induces an orientation preserving isometry φ of M so that φ = f . The
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isometry φ has order 15 and fixes just two points C and A of M , with C represented
by the center e5 of P , and A represented by the cycle of vertices of P ; moreover
the two fixed points of φ are isolated. The angles of rotation of φ are −8π/15 and
2π/15 about C, and −14π/15 and 4π/15 about A.

The symmetry f lifts, with respect to η : SU(1, 1; H) → SO+(4, 1), to the matrix

f̂ =





−τ
2
− 1

2
i +
(

1
2
− τ

2

)
j 0

0 −1
2

+
τ

2
i +
(

1
2
− τ

2

)
k




.

The matrix f̂ has order 15 and induces a self-diffeomorphism φ̂$ of Γ̂\SU(1, 1; H).
Moreover f̂ induces an automorphism φ̂ of order 15 of the corresponding spinor
bundle of M . By Theorems 6.1 and 7.2, we have that

tr(φ̂C) = tr(Ψ2(f̂)) = −1 − τ.

Hence, we have that

ν(C) = i22−2tr(φ̂C) csc(−8π/15) csc(2π/15) = −τ.

Let γA = g2g87g46g71g79g10g115g16g107g15g73. Then γAfv1 = v1. Let γ̂A be the
product of the corresponding lifts ĝi. By Theorems 6.1 and 7.2, we have that

tr(φ̂A) = tr(Ψ2(γ̂Af̂)) = −2 + τ.

Hence, we have that

ν(A) = i22−2tr(φ̂A) csc(−14π/15) csc(4π/15) = 1 − τ.

By Theorem 8.1, we have that

Spin(φ̂, M) = ν(A) + ν(C) = 1 − 2τ = −
√

5.

Thus the Davis manifold M admits nonzero harmonic spinors by Proposition 1.1,
and so dim(H+) ≥ 1. We will obtain a better lower for the dimension of the space
H+ of positive harmonic spinors on M from our next example.

10.6. Order 5 example

We maintain the notation from the previous example. Then f3 has order 5 and is
represented in SO+(4, 1) by the matrix





−1
2

+
τ

2
τ

2
1
2

0 0

−τ
2

−1
2

+
τ

2
0 −1

2
0

−1
2

0 −1
2

+
τ

2
τ

2
0

0
1
2

−τ
2

−1
2

+
τ

2
0

0 0 0 0 1





.
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The corresponding isometry φ3 of M has order 5 and fixes exactly 26 points C, A
and B1, . . . , B24 of M , with C represented by the center e5 of P , and A represented
by the cycle of vertices of P , and B1, . . . , B24 represented by 24 ridge center cycles
one of which is the cycle of v3; moreover all the fixed points of φ3 are isolated. The
angles of rotation of φ3 are 2π/5 and 2π/5 about C, and −4π/5 and 4π/5 about A
and −2π/5 and 4π/5 about Bi for each i.

For each side S of P there are two opposite sides of S whose centers α and β
represent two of the fixed points of φ3. In fact, the 2-dimensional cross-section of
P passing through α and β and the center C of P is the decagon in Fig. 1 with
the same identification pattern and the same order 5 symmetry and whose cycles
of vertices are the ridge center cycles of α and β (labeled A and B in Fig. 1).

The symmetry f3 lifts, with respect to η : SU(1, 1; H) → SO+(4, 1), to the
matrix

f̂3 =




−1

2
+
τ

2
− τ

2
i − 1

2
j 0

0 1



.

The matrix f̂3 has order 5 and induces the self-diffeomorphism φ̂3
$ of Γ̂\SU(1, 1; H).

Moreover f̂3 induces the automorphism φ̂3 of order 5 of the corresponding spinor
bundle of M . By Theorems 6.1 and 7.2, we have that

tr((φ̂3)C) = tr(Ψ2(f̂3)) = 1 + τ.

Hence, we have that

ν(C) = i22−2tr((φ̂3)C) csc(2π/5) csc(2π/5) = −2
5
− τ

5
.

Let γA = g3g86g46g73g79g10g113g18g107g15g71g89. Then γAf3v1 = v1. Let γ̂A be the
product of the corresponding lifts ĝi. By Theorems 6.1 and 7.2, we have that

tr((φ̂3)A) = tr(Ψ2(γ̂Af̂3)) = 2 − τ.

Hence, we have that

ν(A) = i22−2tr((φ̂3)A) csc(−4π/5) csc(4π/5) =
3
5
− τ

5
.

Let B be one of the points B1, . . . , B24. We found that tr((φ̂3)B) = −1 and

ν(B) = i22−2tr((φ̂3)B) csc(−2π/5) csc(4π/5) =
1
5
− 2τ

5
.

By Theorem 8.1, we have that

Spin(φ̂3, M) = ν(A) + 24ν(B) + ν(C) = 5 − 10τ = −5
√

5.

Recall that

Spin(φ̂3, M) = tr(φ̂3,H+) − tr(φ̂3,H−).

Let d = dimH±. Then tr(φ̂3,H±) is a sum of d 5th roots of unity. The number
−5

√
5 cannot be written as the sum of nine 5th roots of unity minus the sum of
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nine 5th roots of unity, and so d ≥ 10. We will obtain the lower bound d ≥ 10 in a
more elegant manner in Sec. 10.7 (see Corollary 10.1).

10.7. Spinor-index

Let G be the cyclic group generated by the order 15 automorphism φ̂ in Sec. 10.5.
Then G acts on H+ and H−. We get two characters of G whose difference in the
representation ring R(G) is the spinor-index Spin(G, M) of the action. The value
of Spin(G, M) at an element g of G is

Spin(g, M) = tr(g,H+) − tr(g,H−).

We have that R(G) ∼= Z[x]/(x15 − 1). The next theorem neatly summarizes our
computations concerning the action of G on H = H+ ⊕H−.

Theorem 10.1. The spinor-index Spin(G, M) in R(G) corresponds to the coset
[p(x)] in Z[x]/(x15 − 1) where

p(x) = 2x2 + x3 + 2x7 + 2x8 + x12 + 2x13 − 2x − 2x4 − x6 − x9 − 2x11 − 2x14

and

Spin(φ̂k, M) = p(e2kπi/15) for k = 1, 2, . . . , 15.

Proof. Our computations show that Spin(φ̂k, M) = p(e2kπi/15) for k = 1, 2, . . . , 15.
Every coset in Z[x]/(x15−1) is represented by a unique polynomial in Z[x] of degree
at most 14. Suppose q(x) is another polynomial in Z[x] of degree at most 14 such
that

Spin(φ̂k, M) = q(e2kπi/15) for k = 1, 2, . . . , 15.

Then p(x) − q(x) has e2kπi/15 for k = 1, 2, . . . , 15 as roots, and so p(x) − q(x) = 0.
Thus p(x) = q(x), and therefore Spin(G, M) corresponds to the coset [p(x)] in
Z[x]/(x15 − 1).

The next corollary completes the proof of Theorem 1.1.

Corollary 10.1. The (complex) dimension of H is at least 20.

Proof. If dimH+ were less than 10, then Spin(G, M) would be represented by a
polynomial in Z[x] of degree at most 14 whose positive coefficients sum to less than
10, which is not the case by Theorem 10.1.

Our computations are consistent with dimH = 20. We end the paper with the
following intriguing question.

Question

What is the dimension of the space H of harmonic spinors on the Davis hyperbolic
4-manifold M?
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