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In this paper, we use the G-spin theorem to show that the Davis hyperbolic 4-manifold
admits harmonic spinors. This is the first example of a closed hyperbolic 4-manifold
that admits harmonic spinors. We also explicitly describe the spinor bundle of a spin
hyperbolic 2- or 4-manifold and show how to calculated the subtle sign terms in the
G-spin theorem for an isometry, with isolated fixed points, of a closed spin hyperbolic
2- or 4-manifold.
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1. Introduction

The Dirac operator I acting on sections of the spinor bundle S of a closed spin
Riemannian manifold M is one of the fundamental elliptic operators of Riemannian
geometry. The operator is self-adjoint, and in even dimensions the spinors split as
S = ST @S, with ) interchanging sections of S*. The elements of the kernel H of
I are called harmonic spinors, and H = HT @& H~ where H* are, respectively, the
kernel of the chiral Dirac operator )7 : C®(S+) — C(S~) and its adjoint )~
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The spinor-index of M is the index of IZ)+ which is defined to be
Spin(M) = dimH* — dimH . (1.1)

The spinor-index was determined by Atiyah and Singer [5] to be the ﬁ—genus7 that
is, the integral of a polynomial in the Pontrjagin classes of M. Lichnerowicz [14]
made the seminal observation that for manifolds with positive scalar curvature,
both H™ and H~ are {0}, and hence the topologically invariant ./Z—genus van-
ishes. The method extends to show the vanishing of certain spin bordism invariants
[12]. The use of such index-theoretic methods to give topological restrictions on
manifolds admitting a metric of positive scalar curvature has been extensive; see
the survey [19].

In this paper, we address a converse to the Lichnerowicz result, looking for
nonzero harmonic spinors on manifolds with negative curvature, in particular for
hyperbolic manifolds. Note that by a result of Chern [§] the Pontrjagin classes
of a hyperbolic manifold vanish, and so the spinor-index is 0. Hence, the index
theorem cannot be used directly to prove the existence of nonzero harmonic spinors.
Moreover, for a generic metric on a manifold of dimension at least 3, the kernel of
the Dirac operator is as small as required by the index theorem [I], so a metric
whose associated Dirac operator has nontrivial kernel must be somewhat special.
Hitchin used the interpretation of the Dirac operator as a twisted 0 operator to
show that for certain spin structures and hyperbolic metrics on a Riemann surface
of genus g, the kernel can have dimension as large as |(g +1)/2].

The main result of this paper is the existence of closed hyperbolic 4-manifolds
for which the kernel of the Dirac operator is nontrivial. To our knowledge, these are
the first known examples of such hyperbolic manifolds in higher dimensions. Our
primary example is the Davis hyperbolic 4-manifold [9], which was shown to have
a spin structure in [18].

Theorem 1.1. Let M be the Davis closed hyperbolic 4-manifold. Then M has
a spin structure such that the kernel H of the Dirac operator 1) has (complex)
dimension at least 20.

By passing to finite covers of M, we obtain infinitely many examples.

Corollary 1.1. There are closed spin hyperbolic 4-manifolds of arbitrarily high
volume with nonzero harmonic spinors.

Our method is to use the G-spin theorem (the G-index theorem for the Dirac
operator [6]) where G is a group of orientation preserving isometries of a Riemannian
spin manifold M. Suppose that the action of G lifts to the spinor bundle, and denote
by ¢ the lift of an element g € G. Then G acts on H* and H™, and we get two
characters of G whose difference in the representation ring R(G) is the spinor-
index Spin(G, M) of the action. The value of Spin(G, M) at an element g of G is
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the G-equivariant index
Spin(g, M) i= tr(3, H*) — tr(3, HO). (1.2)

Proposition 1.1. Let M be a hyperbolic spin manifold of even dimension, and G
a spin action as above. If for some g € G, we have Spin(g, M) # 0, then M admits
nonzero harmonic spinors.

Proof. If H* = {0}, then H~ = {0} as well, by the vanishing of the spinor-index
Spin(M). Hence if Spin(g, M) # 0, then H™ must have positive dimension. O

To apply Proposition [I.1] to the Davis manifold M, we consider a particular spin
structure and cyclic group G generated by an isometry g of order 15 with a lift § to
the spinor bundle of order 15. By understanding the fixed point behavior of g and its
powers, we use the G-spin theorem to determine Spin(G, M) in the representation
ring R(G). This gives the lower bound of 20 for dim H stated in Theorem [L.1]

The calculation of the local contributions at fixed points to the equivariant
index in (L2) involves a careful determination of the lift of the G-action on the
manifold to its spinor bundle. This is carried out by interpreting spin structures
on a hyperbolic manifold in representation—theoretic terms, and is presented in
some generality in this paper. In principle, this same method will work to prove
the existence of nonzero harmonic spinors on hyperbolic manifolds in other even
dimensions. We give some examples to show that our method works for hyperbolic
2-manifolds.

Theorem [L.1] also implies that the generic vanishing theorem for H in [1] does
not have a direct equivariant analogue.

Corollary 1.2. There is an open set in the space of Zys-invariant Riemannian
metrics on the Davis hyperbolic 4-manifold for which the kernel of the Dirac operator
s montrivial.

A more reasonable equivariant extension of the result of [1] might be that for a spin
manifold with a smooth action of a finite group G, a generic G-invariant metric has
kernel and cokernel as small as allowed by the G-spin theorem.

Outline

Our paper is organized as follows: In Sec. 2, we give an algebraic characterization
of a spin structure on a hyperbolic n-manifold. In Sec. 3, we define the spin group
Spin™*(n,1) in terms of Clifford algebras. In Sec. 4, we show that the complex
spin representation Ag,, : Spin(2m) — C(2™) extends to a representation Aoy, 1 :
Spin™ (2m, 1) — C(2™). In Sec. 5, we describe As 1 in terms of the group SU(1, 1; C).
In Sec. 6, we describe Ay in terms of the group SU(1,1;H). In Sec. 7, we give a
new formulation of the complex spinor bundle of a hyperbolic spin 2m-manifold.
In Sec. 8, we give a refined formulation of the G-spin theorem for an isometry
of a hyperbolic spin manifold with only isolated fixed points. In Sec. 9, we use
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the G-spin theorem to prove the existence of nonzero harmonic spinors on two
hyperbolic surfaces. In Sec. 10, we use the G-spin theorem to prove the existence
of nonzero harmonic spinors on the Davis hyperbolic 4-manifold.

2. Preliminaries
2.1. Hyperbolic n-space
Let f,, be the Lorentzian quadratic form in n + 1 variables x1,...,Z,41 given by
fol@)=ai+ a2 —a2,,.
The hyperboloid model of hyperbolic n-space is
H'"={z cR"™: f,(z) = -1 and x,41 >0}
The orthogonal group of the quadratic form f,, is defined to be
O(n,1) ={A € GL(n + 1,R) : fo(Az) = fu(x) forall z R}

Let O (n, 1) be the subgroup of O(n, 1) consisting of all A € O(n, 1) that leave H™
invariant. Then O™ (n, 1) has index 2 in O(n, 1). Restriction induces an isomorphism
from OT(n, 1) to the group Isom(H™) of isometries of H". We will identify O (n, 1)
with Isom(H™). Let SO*(n, 1) be the subgroup of O (n, 1) of matrices of determi-
nant 1. Under the identification of O (n, 1) with Isom(H™), the group SO™(n,1)
corresponds to the group of orientation preserving isometries of H™.

2.2. Hyperbolic n-manifold

A hyperbolic n-manifold is a complete Riemannian n-manifold of constant sectional
curvature —1. As a reference for hyperbolic manifolds, see [17]. An n-dimensional
hyperbolic space-form is the orbit space T\ H" of a torsion-free discrete subgroup I’
of O™ (n,1). A hyperbolic space-form T\ H" is a hyperbolic n-manifold, and every
hyperbolic n-manifold is isometric to a hyperbolic space-form I'\ H". The manifold
I'\H" is orientable if and only if I is a subgroup of SO (n, 1).

Consider the Lorentzian inner product on R™*! given by

oYy =2x1Y1 + -+ TpYn — Tn4+1Ynt1-
We denote R"*! with this inner product by R™!. The tangent space of H™ at a
point = of H™ is
T,(H") = {y e R™ :z0y=0}.
Now T, (H") is a n-dimensional space-like vector subspace of R™! for each z in
H", and so the Lorentzian inner product on R™! restricts to a positive definite

inner product on T, (H").
The tangent bundle of H™ is the set

T(H") = {(z,v) € H" x R™! 1 v € T,(H")}
with the subspace topology from H™ x R"*+1.
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Let T\H™ be a hyperbolic space-form. Then T' acts diagonally on T(H");
moreover, I acts freely and discontinuously on T(H™). The tangent bundle T(T'\H™)
of T\ H™ is the orbit space I'\T(H™").

2.3. Orthonormal frame bundle

The oriented orthonormal frame bundle of H™ is the set F(H™) of all ordered
(n + 1)-tuples (vi,...,v,,x) in (R™H"*F1 with the subspace topology, such that
x € H", and {v1,...,v,} is an orthonormal basis for T,(H™), and v1, ..., vy, i8
a positively oriented basis of R"*1. We have the projection map = : F(H") — H"
defined by m(vy,...,v,,2) = 2.

Define ¢ : F(H") — SO*(n,1) by &(vi,...,v,,7) = A, where A, is the
matrix whose columns vectors are vq,...,v,,2z. Then £ is a diffeomorphism. Let
€1,...,€ent1 be the standard basis of R"*!. Then

F(H™) = {(Aey,...,Aepy1) : A €SO0T(n,1)}.

Let € : SO (n,1) — H™ be the evaluation map at e, ;. Then e£ = 7.

Now SO™(n,1) is a principal SO(n)-bundle over H™ with projection map e
and B € SO(n) acting freely on the right of SO* (n, 1) by right multiplication by B
where B € SOT(n, 1) is the block diagonal matrix with blocks B and (1). Moreover,
SO (n, 1) is a trivial principal SO(n)-bundle over H™. The group SO(n) acts freely
on the right of F(H™) by

(Ael, ey A6n+1)B = (ABel, ey AB€n+1)

making F(H™) into a principal SO(n)-bundle over H™ equivalent to SO (n,1) via
the diffeomorphism &.

Let T'\H™ be an orientable hyperbolic space-form. Then I' acts diagonally on
the left of F(H™); moreover, I' acts freely and discontinuously on F(H™). The
orthonormal frame bundle F(T\H™) of T\H" is the orbit space T\F(H"). The
left action of ' on F(H™) corresponds to the left action of I' on SOT(n,1) by
group multiplication. We will identify F(H™) with SOT(n,1) and F(I'\H") with
I'\SO™(n,1). We have that I'\SO™ (n, 1) is a principal SO(n)-bundle over '\ H"
with right action of SO(n) induced by the right action of SO(n) on SO™(n, 1) and
bundle map & : T\SO"(n, 1) — I'\H™ defined by e(I'A) = I'e(A).

It is standard that SO(2) is homeomorphic to S!, and so m1(SO(2)) = Z. If
n > 2, then m(SO(n)) = Z/2Z, and so 71(SO(n)) has a unique subgroup of
index 2 for each n > 2. Hence SO(n) has a connected double covering space
which is unique up to covering space equivalence. We will give a formal definition
of Spin(n) later in the paper, but for now Spin(n) is a connected double cover-
ing space of SO(n) for each n > 2. As SO(n) is a Lie group, Spin(n) is a Lie
group such that the covering projection ¢ : Spin(n) — SO(n) is a group homomor-
phism by [11, Theorem 6.11]. We denote the nonidentity element of the kernel of o
by —1.
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2.4. Spin structure

Let T\H™ be an orientable hyperbolic space-form. A spin structure on T\H" is
a double covering projection p : P — T'\SOT(n,1) such that P is a principal
Spin(n)-bundle P over I'\H", with bundle projection ep : P — I'\H™, and such
that if z is in P and s is in Spin(n), then p(zs) = p(x)o(s). This last condition
implies that p double projects each fiber of ep : P — T'\H™ onto a fiber of ¢ :
SOt (n,1) — I'\H™".

Two spin structures p : P — I'\SO*(n,1) and p' : P" — I'\SO™(n,1) on "\ H"
are said to be equivalent if there is a diffeomorphism £ : P — P’ such that p'§ = p
and if 2 is in P and s is in Spin(n), then &(zs) = &(x)s.

The mapping B — B embeds SO(n) isomorphically onto a subgroup S/(\)(n)
of SOT(n,1) which is the fiber of the SO(n)-bundle projection € : SOT(n,1) —
H™ over the point e,,1. The embedding, B — B, of SO(n) into SO*(n,1) is a
homotopy equivalence, since H™ is contractible. Therefore, (SO (2,1)) = Z and
71(SOT (n,1)) = Z/27Z for all n > 2. Hence, 71 (SO (n, 1)) has a unique subgroup of
index 2 for each n > 2. Therefore, SO (n, 1) has a connected double covering space
which is unique up to covering space equivalence. We will give a formal definition
of Spin™(n, 1) later in the paper, but for now Spin™(n,1) is a connected double
covering space of SO™ (n, 1) for each n > 2. As SO™ (n, 1) is a Lie group, Spin™ (n, 1)
is a Lie group such that the covering projection 1 : Spin*(n,1) — SO (n,1) is a
group homomorphism by Theorem 6.11]. We denote the nonidentity element
of the kernel of n by —1.

The embedding, B — B, of SO(n) into SO (n,1) lifts to an isomorphic
embedding of Spin(n) onto the subgroup Sp/l\n(n) = n’l(S/b(n)) of Spin™(n, 1).

The Lie group Spin™(n,1) is a principal Spin(n)-bundle over H", with bun-
dle projection en : Spint(n,1) — H™ and right action of Spin(n) on Spin™(n,1)
corresponding to right multiplication by S/pﬁl(n) Moreover, if g is in Spin™(n, 1)
and s is in Spin(n), then n(gs) = n(g)o(s). Therefore, the double covering projec-
tion 7 : SpinT(n,1) — SOT(n, 1) is a spin structure on H". Note that Spin™(n, 1)
is a trivial principal Spin(n)-bundle over H™, since SO™ (n, 1) is a trivial principal
SO(n)-bundle over H™.

The next theorem is known to experts. We could not find a proof in the litera-
ture, and so we give a proof that relies only on covering space theory.

Theorem 2.1. Let T' be a torsion-free discrete subgroup of SO (n,1), and let
n : Spint(n,1) — SOT(n,1) be the double covering epimorphism. Then the set
of equivalence classes of spin structures on the hyperbolic space-form T'\H™ is in
one-to-one correspondence with the set of subgroups r of Spin+(n, 1) such that n
maps r isomorphically onto T'.

Iff‘ is a subgroup of Spin™ (n, 1) such that n maps I' isomorphically onto T, then
r corresponds to the equivalence class of the spin structure p : f\Spin+(n, 1) —

\SO™(n, 1) induced by 7.
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Proof. Let p: P — I'\SO™(n, 1) be a spin structure on '\ H™. Then p is a double
covering projection. Let zg be a point of P such that p(xg) = I'. Then p.m1 (P, zo)
is a subgroup of 71 (I'\SO™"(n, 1),T) of index 2. Subgroups of index 2 are normal,
and so p,m (P, 7o) is a normal subgroup of 71 (I'\SO ™ (n,1),T).

Let p' : P' — I'\SO™ (n, 1) be a spin structure on I'\ H™ such that p is equivalent
to p'. Then there exists a diffeomorphism £ : P — P’ such that p’¢ = p. Hence, P
and P’ are equivalent covering spaces of I'\SO™ (n, 1). Let z{,, be a point of P’ such
that p'(z() = T'. Then plm (P, z{) = p«m1(P,z) by Theorem V.6.6]. Hence,
the equivalence class of the spin structure p determines the subgroup p.mi (P, zo)
of m (I'\SO™(n,1),T) of index 2.

Let G = Spin™(n,1). If n = 2, let G be a universal covering space of G, and let
k : G — G be a covering projection. Then G has a Lie group structure such that
k: G — G is a group homomorphism by Theorem 6.11]. If n > 2, then G is
simply connected, and we let G = G and & : G — G be the identity map. Then, we
have the following commutative diagram whose rows are exact sequences:

1-K—G -2 G — 1

Lol Ln
1—A—G— 80T (n,1)— 1.

The group A = Ker(nk) acts freely on G by left multiplication as the group of
covering transformations of the universal covering projection nx : G — SO™(n, 1).
Therefore A is isomorphic to the fundamental group of SOT(n,1). Hence, A is
infinite cyclic if n =2 and A = {£1} if n > 2. As A = k= }({£1}), we have that K
is a subgroup of A of index 2. Moreover, K = {1} if n > 2.

Let I = 5~ 1(I"). Then {+1} is a normal subgroup of T' and {£1}\I' 2 T'. Let
I" =k H(I). Let 7 : SO (n,1) — I'\SO™ (n, 1) be the quotient map. The group I”
acts freely on G by left multiplication. The set of orbits I \é is the set of fibers of
the universal covering projection mnk : G — I'\SO™ (n, 1), since x,7, and 7 induce
the following bijections:

I\G = (K\IM\(K\G) =T\G = ({£1)\D\{£1\G) = T\SOT(n, 1).

Hence I” acts on G as the group of covering transformations of 7nk. Therefore
I = 7 (T\SO™ (n,1),T). Subgroups of index 2 are normal. Therefore the equiva-
lence classes of connected double covering spaces of T'\SO™(n, 1) correspond to the
subgroups of I of index 2 by Theorems V.6.6 and V.10.2].

The group T is the fiber of the covering projection 71 : G — I'\SO™"(n, 1) over
the point T'. Therefore T' is a discrete subgroup of G, and so I acts freely and
discontinuously on G by left multiplication.

The map ¢ : SO(n) — T\SO"(n,1), defined by «(B) = T'B, maps SO(n)
homeomorphically onto the fiber of & : T\SO™ (n, 1) — '\ H™ over the point T'e,, ;.
The exact sequence

1—>AL>1:‘/—>F—>1.
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corresponds to the exact sequence of fundamental groups
1 — m(SO(n), I)-=5m (D\SO T (n, 1), T) =57y (T\H",Te, 1) — 1.

Let IV be a subgroup of I of index 2. Then I” corresponds to an equivalence
class of connected double covering spaces of I'\SO™ (n, 1). Now I'\SO™(n, 1) has a
connected double covering space, corresponding to I”, such that the fiber (SO (n))
is double covered by a copy of Spin(n) if and only if i’l(f") = K, that is, ANI" = K,
by Proposition V.11.1]. As A C I, we have that K C . The subgroups of I"
of index 2 that contain K correspond via x to the subgroups of [ of index 2.

Now  maps I onto a subgroup I' of T of index 2. We have that ANT’ = K if
and only if {+1}NT = {1}. Therefore if I'\ H" has a spin structure, whose principal
Spin(n)-bundle corresponds to I, then {+1} N T = {1}.

Conversely, suppose {#1} N T' = {1}. Let s — & be the embedding of
Spin(n) into Spin*(n,1). Then Spin(n) acts on the right of I'\Spin™(n,1) by
(I'g)s = I'gs. Suppose that (Ig)s = ['g. Then gdg~' is in I. Hence n(gég—') =
n(g)n(8)n(g)~* is in . Now 1(g)n(3)n(g) " fixes the point n(g)e,+1 of H™. There-
fore n(g)n(8)n(g)~! = I, since I acts freely on H". Hence 7)(8) = I, and so § = +1.
Hence +1 = gég~'is in I'. As {1} NT' = {1}, we must have that § = 1, and so
5 = 1. Therefore Spin(n) acts freely on I'\Spin* (n,1).

Define ¢ : I\Spin™(n,1) — I'\H" by ¢(I'g) = Ten(g). If s is in Spin(n), then

((Tgs) = T(en(gs)) = I'n(g)a(s)ent1 = I'n(g)entr = Ten(g).

Therefore Spin(n) acts on each fiber of ¢.

Suppose that ¢(T'h) = ¢(I'g). Then T'n(h)en 1 = In(g)en 1. Hence there exists
7 in I' such that n(g)ent1 = 'yn(h)enﬂ As ([) =T and T is the disjoint union of
I' and —T, we have that 7(I') = T. Hence there exists 4 in I" such that 7(¥) = .
We have that 1(g) "*n(9)n(g9)ent1 = ens1, and so (g~ 14h)enr1 = eni1. Therefore
n(g=14h) is in SO(n). Hence g~'4h is in Spin(n). Therefore there is a § in Spin(n)
such that g~ '4h = 8. Hence 4h = g4, and so ['h = I'g3. Therefore Spin(n) acts
transitively on each fiber of (.

Moreover f\Spin+ (n,1) is a principal Spin(n)-bundle with projection ¢, since
the trivialization of the principal Spin(n)-bundle Spin™(n, 1) descends under the
action of I' to a local trivialization of C.

The double covering epimorphism 7 : Spin™ (n, 1) — SO (n, 1) induces a double
covering projection p : T\Spin™*(n, 1) — T\SOT (n,1) defined by p(I'g) = L'(n(g)).
We have that

p((Tg)s) = p(T'(g5)) = T'(n(g3))
=T(n(g)o(s))
= (T(n(9)))a(s) = p(Lg)a(s).

Therefore p is a spin structure on I'\ H™ such that the connected double covering
space I'\Spin™ (n, 1) of I'\SO™(n, 1) corresponds to IV and to I.
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Suppose p' : P' — T\SOT(n,1) is another spin structure on I'\H™ that
corresponds to IV. Then p and p’ are equivalent covering spaces of T\SO™ (n, 1).
Hence there is a diffeomorphism ¢ : I'\Spin™ (n, 1) — P’ such that p’¢ = p. Let g
be in SpinT(n, 1), let z = I'g, and let s be in Spin(n). Then, we have that

p'(E(ws)) = p(xs) = p(x)o(s)

while on the other hand

pE(x)s) = p'(f(fl?))U(S) = p(x)o(s).

Hence &(xs) = &(x)(£s), and so (xs)s™ £(z)(£1). Now s +— &(ws)s™t is a
continuous function from Spin(n) to {&(x), ( )(—1)}. As Spin(n) is connected and
1 — &(x), we have that &(zs)s™' = &(z) for all s in Spin(n). Hence §(x5) =

£(z)s. Therefore p and p’ are equivalent spin structures on I'\H". Thus I and T
correspond to an equlvalence class of spin structures on I'\ H™.

Now {+1} NI = {1} if and only if 5 maps I’ isomorphically onto I'. Thus the
set of equivalence classes of spin structures on I'\H™ is in one-to-one correspon-
dence with the set of subgroups I' of Spin* (n,1) mapped isomorphically onto T
by 7. O

2.5. Lifting isometries

Let T be a torsion-free discrete subgroup of SO™(n,1), and let f be an element of
SO (n,1) such that fT'f~' = T'. Then f induces an orientation preserving isometry
f of the hyperbolic space-form I'\H" defined by f(I'z) = I'fz by [I7, Theorem
8.1.5]. Conversely, if ¢ is an orientation preserving isometry of IT'\ H™, then there
exists an element f of SOT(n, 1) such that fI'f~' =T and ¢ = f by Theorem
8.1.5]; moreover, f is unique up to left multiplication by an element of T

Let ¢ be an orientation preserving isometry of I'\ H”, and let f be an element of
SOT(n,1) such that fTf~! =T and ¢ = f. Then ¢ induces a self-diffeomorphism
¢, of T\SO™" (n, 1) defined by ¢,(I'g) = L'fg. Let n : Spint(n,1) — SO (n,1) be
the double covering epimorphism, and let I' be a subgroup of Spin* (n,1) such that
7 maps r 1bomorph1cally onto I'. The isometry ¢ of I'\ H" is said to lift to the spin
structure p : T'\Spin™ (n, 1) — I'\SO™(n,1) on I\H" induced by n if ¢, lifts to a
self-diffeomorphism ¢, of F\Spm (n,1) such that pgb* = ¢.p. If the isometry ¢ of
'\ H™ lifts to a spin structure on I'\ H", we also say that ¢ fizes or leaves invariant
the spin structure on I'\ H".

Theorem 2.2. Let ' be a torsion-free discrete subgroup of SOT (n, 1), and let ¢
be an orientation preserving isometry of the hyperbolic space-form T\H". Let f be
an element of SOT (n,1) such that fTf~' =T and ¢ = f. Let I be a subgroup of
Spin™ (n,1) such that the double covering epimorphism 1 : Spin™ (n 1) — SO*(n,1)
maps ' isomorphically onto T, and let f be an element of Spin™t(n,1) such that

n(f) = f. Then ¢ lifts to the spin. structure p: D\SpinT(n,1) — I'\SO*(n,1) o
T\H" induced by n if and only if fFf L=
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Proof. Suppose that fIf~! = I. Define ¢, : F\Spln (n, 1) — F\Spln (n,1) by
(b*(Fg) = ng If 4 is in T, then Ff’yg = I‘f’yf lfg = ng, and so ¢, is well
defined.

Let f. : Spint(n,1) — Spin*(n,1) be left multiplication by f, and let @ :
Spint(n,1) — f‘\Spin+(n, 1) be the quotient map. Then b0 = wfs, since

¢.w(g) = 0.(I'g) =I'fg = @w(fg) = @ fu(g).

Hence gf)* is smooth, since w is a smooth covering projection. Moreover, d;* is a
diffeomorphism with inverse ¢! defined by ¢! (I'g) = I'f1g.

Observe that pqg* = ¢, p, since

po«(Lg) = p(I'fg) =Tn(fg) =T fnlg) = ¢.(I'n(g)) = d«(p(L'g)).
Therefore ¢ lifts to the spin structure p.

Conversely, suppose that ¢ lifts to the spin structure p. Then ¢, lifts to a self-
diffeomorphism ¢, of f‘\Spin"’(n, 1) such that pd. = b, p. Multiplication by —1 on
the right of f‘\Spin"’(n, 1) is the nonidentity covering transformation of p, and we
denote this covering transformation by left multiplication by —1. Observe that

pou(D) = ¢.p(I') = 6.(T) =T'f.
Hence ¢, (I ( ) = ( ) +I'f. By replacing ¢, by — ¢, if necessary, we may assume
that ¢, (') = T'f. [15] Theorem 5.1] implies that

(¢up)em (I\Spint (n,1),T) C pumy (D\SpinT (n, 1), T'f).
As both (¢,)«p.m1 (I\Spin™ (n,1),T) and p,m; (D\Spin™ (n,1),T'f) are subgroups of
index 2 of m(I'\SO™ (n, 1),Tg), we have that

(P4 )xpsm1 (f‘\Spin+ (n, 1), f‘) = PxT1 (f‘\SpjrfL (n, 1), ff)

Let x : SApﬁﬁ (n,1) — SpinT(n,1) be the universal covering projection
considered in the proof of Theorem Rl and let 7 : SO (n,1) — I'\SOT(n,1)
be the quotient map. Then 7wk : Spin™ (n,1) — I'\SO™(n, 1) is a universal cover-
ing projection. The fiber of mnx over the point I is the subgroup I’ of Sp1n+ (n,1)
considered in the proof of Theorem 2.1l moreover the group [’ acts on Sp1n+ (n,1)
by left multiplication as the group of covering transformations of mnk. There is an
isomorphism

x: TV — 7 (I\SO"(n,1),I)

such that if w : [0,1] — T'\SOT(n,1) is a loop based at the point ', and @ :
0,1] — S/[;ﬁ(n, 1) is the lift of w starting at the identity element 1 of the group
Spln"’(n 1), then x(©(1)) = [w].

Let f be an element of S/;;ﬁ‘ (n,1) such that x(f) = f. The fiber of mnk over
the point I'f is the coset I f . There is an isomorphism

P I — 7T1(F\80+(n, 1),Tf)

such that if w : [0,1] — I'\SO™*(n,1) is a loop based at the point I'f, and & :
[0,1] — Spin™(n, 1) is the lift of w starting at f, then ¥(0(1)f 1) = [w].
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Let w: [0,1] — I'\SO™(n,1) be a loop based at the point T'. Then (¢,).([w]) =
[p,w] and ¢w : [0,1] — T'\SOT(n,1) is a loop based at the point T'f. Let @ :
[0,1] — Spin™(n, 1) be the lift of w starting at 1. Then fr.u [0,1] — Spin*t(n,1) is
the lift of ¢,w starting at f, which implies that w(fw( )f b = [gew)].

As fTf~! =T, we have that fI/f~! = I". Let fﬂ be the automorphism of I
defined by conjugatlng by f. Then, we have that ¢ fﬂ (d4) X

Let IV = k= 1(I). Then, we have

X(F ) = pxT1 (f‘\Spin"‘ (n, 1), f‘)’

and
G(I) = pomri (P\Spin* (n, 1),T'f).
Therefore, we have that
V(1) = () x(I") = (),
and so fﬁ(f") =I". Hence fI'f~1 =1I". After applying , we have fIf~1 =T. O

3. Spin Groups

In this section, we give the formal definitions of Spin(n) and Spin™(n,1) in terms
of Clifford algebras. We follow the development in Chap. IJ.

3.1. Clifford algebra

Let V be a finite-dimensional vector space over K = R or C, and suppose ¢ is
a nondegenerate quadratic form on V. The Clifford algebra CL(V, q) associated to
(V,q) is the associative algebra, with unit 1, obtained from the free tensor algebra

on V by adjoining relations v ® v = —q(v)1 for each v in V. There is a natural
embedding of V into CL(V, q). The algebra CL(V, q) is generated by V and the unit
1 subject to the relations v? = —q(v)1 for each v in V.

The map a(v) = —v on V extends to an algebra automorphism a of CL(Vq).
As o? = id, there is a vector space decomposition

CUV.q) = CL(V.q) & CL'(V.),
where
CU(V, q) = {z € CU(V, ) : afz) = (—1)'z}.

The elements of CL°(V,q) are called the even elements of CU(V,q). Note that
CL°(V,q) is a subalgebra of CL(V,q). The elements of CL'(V,q) are called the odd
elements of CL(V,q). The elements of V are odd. The product of two elements of
the same parity is even, and the product of two elements of different parities is odd.

If v is in V and g(v) # 0, then v is invertible in C{(V, q) with v=1 = —v/q(V).
By [13, Proposition 1.2.2], there is a mapping Ad, : V' — V, defined by Ad,(w) =
vwv~!, and Ad, = —p, where p, is the reflection of V in the subspace of all vectors
orthogonal to v.
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Let P(V, q) be the multiplicative subgroup of CL(V,q) generated by all v in V'
such that ¢(v) # 0, and let O(V, q) be the orthogonal group of (V,q). Then, we
have a homomorphism Ad : P(V, q) — O(V, q), defined by Ad(z)(w) = zwz~".

3.2. Spin group
The spin group of (V,q) is the subgroup of P(V, q) defined to be
Spin(V, q) = {v1 -+ vg s v; € V, with g(v;) = £1 for each i, and k even}.

All the elements of Spin(V, ¢) are even, and so Spin(V; q) is a subset of CL°(V, q). If
K = R, then the homomorphism Ad : P(V, q) — O(V, q) restricts to an epimorphism
Ad : Spin(V, ¢) — SO(V, q) with kernel {£1} by [13] Theorem 1.2.9].

The identity map of V extends to an antiautomorphism ( )¢ : CU(V,q) —
CL(V, q) called the transpose. If x,y are in CL(V,q), then (zy)' = y'zt. The norm
mapping N : CU(V,q) — CL(V,q) is defined by N(z) = za(x?). Note if v is in
V, then N(v) = q(v). Note also that a(x?) = (a(x))t for all x in CU(V,q). By
[13, Proposition 1.2.5], the restriction of N to the group P(V,¢q) gives a homomor-
phism N : P(V,q) — K*.

Lemma 3.1. If K =R, then
Spin(V, q) = {z € P(V,q) N CL°(V,q) : N(z) = £1}.

Proof. Clearly, we have that
Spin(V, q) C {z € P(V,q) N CL*(V,q) : N(x) = +1}.

Suppose z € P(V,q) N CL°(V,¢) and N(z) = £1. Then x = v, - - - vj, with g(v;) # 0
for each i. As x is even and each v; is odd, k must be even. Observe that

q(v1)---gq(vg) = N(v1)--- N(vg) = N(z) = £1.
Let 9; = v;/+/|q(vi)| for each i. Then ¢(9;) = q(v;)/|q(v;)| = £1 for each i, and

T =01 "V =01 Vk |q(vl)q<vk)|:@11}k

Therefore x is in Spin(V, q). |

Now, assume ¢ is the quadratic form 22 + --- + 22 on V = K" If K = R,
we denote CL(V, q) by Cl(n) and SO(V, ¢) by SO(n), and Spin(V, ¢) by Spin(n). If
K = C, we denote CL(V,q) by Cl(n). As discussed in p. 20], both SO(n) and
Spin(n) are connected Lie groups and the epimorphism Ad : Spin(n) — SO(n) is a
double covering for all n > 2.

Let ey, ..., e, be the standard basis of R™. The algebra Cl(n) is generated by
e1,...,e, with relations e;e; = —eje;, for i # j and e? = —1 for each i = 1,...,n.
A basis for Cl(n) is the set of all products e;, ---e;, with 1 <i; < -+ < i < n.
We allow the empty product which is defined to be the unit 1. Therefore Cl(n) is
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a 2"-dimensional vector space. A basis for C£°(n) is the set of all such products of
even length, and so CL°(n) is a 2"~ !-dimensional vector space.

Now, assume g is the quadratic form 23+ - -+a2 —22_ ; on V = K" If K = R,
we denote CL(V, ¢) by Cl(n, 1) and SO(V, ¢) by SO(n, 1) and Spin(V, ¢) by Spin(n, 1)
and P(V, q) by P(n,1). If K = C, we denote CL(V, ¢) by Cl(n, 1). As discussed in
p. 20], both SO(n, 1) and Spin(n, 1) are Lie groups with two connected components
for each n > 2. The connected component of SO(n,1) containing the identity is
SO™(n,1), and so we denote the connected component of Spin(n, 1) containing the
identity by Spin*(n,1). By Theorem 1.2.10], Ad : Spin(n,1) — SO(n,1) is a
double covering that restricts to a double covering Ad : Spin™(n,1) — SO*(n,1)
for all n > 2.

Let eq,...,ens1 be the standard basis of R™*!. Then ey,...,e,,1 are Lorentz
orthonormal. The algebra Cl(n,1) is generated by e1,...,e, 1 subject to the
relations e;e; = —eje;, for i # j and e? = —1 for each i = 1,...,n, and B%H =1.A

basis for Cl(n, 1) is the set of all products e;, ---e;, with 1 <i; < -+ <ip <n+1.
We allow the empty product which is defined to be the unit 1. Therefore Cl(n, 1) is
a 2" 1-dimensional vector space. A basis for C£°(n, 1) is the set of all such products
of even length, and so C°(n,1) is a 2"-dimensional vector space.

The algebra Cl(n) embeds naturally into Cl(n, 1) as the subalgebra é\ﬂ(n) gen-
erated by ey, ..., e,. We shall identity CL(n) with é\ﬂ(n) via this embedding. Then
Spin(n) is identified with the subgroup S/pﬁl(n) of Spin™(n, 1) that stabilizes e, 1
under the action of Spin®(n,1) on R"*! by conjugation in Cf(n,1). We shall
also identify SO(n) with the subgroup S/(\)(n) of SO*(n,1) via the embedding
B — B. Then Ad : Spin*(n,1) — SOT(n,1) restricts to a double covering
Ad : Spin(n) — SO(n).

Lemma 3.2. For each integer n > 2, we have that

Spint(n,1) = {z € P(n,1)NCL(n,1) : N(z) = 1}.
Proof. Since N : Cl(n,1) — Cl(n,1) is a continuous function, its restriction
N : Spin(n,1) — {#£1} is a continuous function. As N(1) = 1 and Spin™(n,1)

is connected, we have that N (Spin™(n,1)) = 1.
Observe that

N(eren+1) = N(e1)N(ent1) = qler)q(ens1) = 1(=1) = —1.

Hence eje, 1 is in Spin(n, 1) but not in Spin™(n,1), and N maps the connected
component of Spin(n, 1) containing e1e, 11 to —1. Hence

Spint(n,1) = {x € Spin(n,1) : N(z) = 1}.
The desired result now follows from Lemma [B.11 O

Lemma 3.3. Forn = 2,3,4, we have that
SpinT(n,1) = {z € Cl°(n,1) : a'x = 1}.
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Proof. By [16, Proposition 16.15],
Spin(n,1) = {z € CL°(2,1) : N(z) = +1}.
Hence by Lemma [3.2] we have that
SpinT(n,1) = {x € C1°(2,1) : N(z) = 1}.
Let 2 be in C°(n, 1) such that N(z) = 1. Then a(z) = z, and so
1= N(z) = za(z') = z(a(x))" = za’.
Therefore,
SpinT(n,1) = {z € C°(n,1) : za’ = 1}.
The transpose map ( )! restricts to an antiautomorphism of C£%(n, 1). Let y = x.
Then
Spint(n,1) = {y € CL°(2,1) : 'y = 1}. O

4. The Complex Spin Representations

There is a natural embedding of Cl(n) into Cl(n) that maps the standard basis
vector e; of R™ to the same vector e; of C" for each i = 1,...,n. The complex
algebra Cl(n) is generated by eq,..., e, subject to the same relations as in Cl(n).
We identify Cl(n) with the real subalgebra of Cl(n) generated by ey, ..., e,.

Assume that n is even and let n = 2m and k = 2™. Let C(k) be the algebra
of complex k x k matrices. There is an isomorphism 1 : CL(n) — C(k) of complex
algebras by [13, Theorem 1.4.3]. The complex spin representation of Spin(n) is the
faithful representation

A, : Spin(n) — C(k)

obtained by restricting ¢ : Cl(n) — C(k). The algebra C(k) is central simple, and
so every automorphism of C(k) is an inner automorphism by the Skolem—Noether
theorem. Hence A,, is uniquely defined up to conjugation in C(k). Let tr : C(k) — C
be the trace map. Then trA,, : Spin(n) — C does not depend on the choice of the
isomorphism 1 : Cl(n) — C(k).

Let w = e1---e,. Then e;w = —we; for each i = 1,...,n by Proposition
1.3.3]. Hence w commutes with every element of C{°(n). Therefore w is in the center
of Spin(n). We have that (i"w)? = 1 by [13, Formula 1.5.14]. Define a matrix C in
C(k) by C =i A, (w). Then, we have

C? = (—1)"Ap(w?) = Ap((—1)"w?) = A, (1) = 1.
Let WT and W~ be the +1 and —1 eigenspaces of the matrix C. Then
Cr=wtrew".

The elements of W+ and W~ are called the positive and negative Weyl spinors.
We have that dim W+ = dim W~ by [10, Proposition p. 22]. As w is in the center
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of Spin(n), the matrix C' commutes with every matrix in the image of A,,. Hence,
every matrix in the image of A,, leaves both W and W™ invariant. Therefore, we
have complex representations A" and A of Spin(n) into GL(W™) and GL(W ™),
respectively, such that

A, =AF @A

The representations A and A, are called the positive and negative complex spin
representations of Spin(n). The representations A and A, are inequivalent irre-
ducible complex representations of Spin(n) by Proposition 1.5.15].

For each positive integer n, there is a natural embedding of Cl(n, 1) into Cl(n, 1)
that maps the standard basis vector e; of R™*! to the same vector e; of C**! for
each i = 1,...,n + 1. The complex algebra Cl(n, 1) is generated by e1,...,en41
subject to the same relations as in Cl(n,1). We identify Cl(n,1) with the real
subalgebra of Cl(n,1) generated by eq,...,ep41.

Assume that n is even, and let n = 2m and k = 2™. Let w = ey - - - €,,. Define

pt: Cl(n,1) — Cl(n)

by pt(e;) =e; fori =1,...,n and p=(e,11) = £i™w. We have that (+i"w)? =1,
and e;(+£i"w) = —(£i"w)e; for each i = 1,...,n. Therefore p* : Cl(n,1) — Cl(n)
is a homomorphism of complex algebras and a retraction for each choice of +.

Lemma 4.1. The algebra homomorphism p* maps CL°(n, 1) isomorphically onto
Cl(n) for each choice of +.

Proof. We have that
CO%(n,1) = CL°(n) ® CL* (n)enss.
As w is even, we have that
pE(Cl (n)eny1) = Cl (n)(£imw) = CL (n).

Hence p*(Cf°(n, 1)) = Cl(n). As CL°(n, 1) and Cl(n) are complex vector spaces of
the same dimension, we deduce that p* maps C(°(n, 1) isomorphically onto C{(n)
for each choice of =+. |

Let pZ : C%(n,1) — Cl(n) be the isomorphism of complex algebras, obtained
by restricting p*. From the proof of Lemma .1l we have that p, = apg. The
automorphism « of CL(n) is equal to conjugation by w by Proposition 1.3.3].
Therefore pf and p, differ by an inner automorphism of Cf(n).

The complex spin representation of Spin™ (n, 1) is the faithful representation

Ap1:SpinT(n, 1) — C(k)

obtained by restricting v¥pT : Cl(n, 1) — C(k) for some choice of & and some choice
of an isomorphism ¢ : Cl(n) — C(k) of complex algebras. The representation
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A, SpinT(n,1) — C(k) is uniquely defined up to conjugation in C(k). Hence,
the map
trA, 1 : Spint(n,1) — C
does not depend on any of the choices made to define A, ;.
Finally, the complex spin representation A, ; : Spin™(n, 1) — C(k) restricts to

the complex spin representation A, : Spin(n) — C(k) assuming of course that we
are using the same isomorphism ¢ : Cl(n) — C(k) to define both A,, and A, ;.

5. The Complex Spin Representation of Spin™ (2, 1)
Consider the matrices Fy, Fq, E5 in C(2) which are, respectively,

0 1 0 i 1 0
(1 0)’ (i 0)’ (0 1)'
We have that E? = —I,E3 = —1I, and E1Ey; = —FE3E;. Hence the mapping
¥ : {e1,ea} — {FEi,Es}, defined by ¢(e;) = E; and ¢(e2) = FEs, extends
to a homomorphism 1 : Cl(2) — C(2) of complex algebras. The matrices
I, Ey, By, E1Ey are linearly independent in C(2), and so ¢ : CL(2) — C(2) is an
isomorphism of complex algebras.

We shall work with the complex spin representation A : Spin™(2,1) — C(2)
which is the restriction of the homomorphism ¢p~ : CL(2,1) — C(2) of complex
algebras. Note that ¥p~(e;) = E; for i = 1,2, 3.

The conformal disk model of the hyperbolic plane is

B*={zeC:|z| <1}

The group of orientation preserving isometries of B? is the group LF(B?) of linear
fractional transformations of C of the form (az + b)/(bz + @) with a,b in C and
la]? — |b|> = 1. Define a group G by

a b
G:{<_ ):a,be@and|a|2—|b|2:1}.
b @

The natural map from G to LF(B?) is a double covering epimorphism.
If Aisin C(2), let A* be the conjugate transpose of A. Let J = Ej.

Lemma 5.1. Let A be in C(2) with row vectors (a,b) and (c,d). Then A*JA =J
if and only if |a|®> — |c|?> = 1,|d|? — |b]? = 1, and ba = dc.

Proof. The equation J = A*J A is equivalent to the equation

1 0 a © a b la|> —|c|* ab—ed
0 1) \b d)/\=c —a) \ba—dec |p2—1d?) O

Lemma 5.2. We have that
G=SU(1,1;C)={AeC(2): A*JA=J and det A =1}.
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Proof. Solving the system of equations in Lemma [5.1] together with ad — bc = 1,
for ¢ and d, leads to the system of equations ¢ = b,d =@, and |a|?> — [b]> =1. O

Theorem 5.1. The complex spin representation A : Spin™(2,1) — C(2) maps
Spin™(2,1) isomorphically onto G.

Proof. As A is faithful, it suffices to prove that A maps Spin™(2,1) onto G. Let
¢ : CL(2,1) — C(2) be the restriction of 1p~ : CL(2,1) — C(2). Then, we have that
A(Spin™(2,1)) = ¢(Spin*(2,1)).

The real algebra C(2) is an 8-dimensional real vector space. The eight products

L - B, with 1 <4p < --- <4 <3, including the empty product, are linearly

independent over R. Hence ¢ : Cl(2,1) — C(2) is an isomorphism of real algebras.
By Lemma [3.3] we have that

Spint(2,1) = {z € CL°(2,1) : z'z = 1}.

The map o : C(2) — C(2) defined by o(A) = JA*J is an antiautomorphism of the
real algebra C(2). If A has row vectors (a,b) and (¢, d), then

The maps ¢( )!,0¢ : Cl(2,1) — C(2) are antihomomorphisms of real algebras. For
each i = 1,2, 3, we have that

¢(e;) = dlei) = Ei = a(E;) = o¢(e;).
Therefore ¢( ) = 0. Hence
¢(Spin™(2,1)) = {4 € ¢(CL°(2,1)) : 0(A)A = I}.

$(CL0(2,1)) = {(Z f) cabe c}.

Therefore ¢(Spin™(2,1)) = G by Lemmas L1 and [5.11 |

We have that

As ¢ : Cl(2,1) — C(2) is an isomorphism of real algebras, all the algebraic
structure of CL(2,1) is carried over to C(2) by ¢. Hence, the matrices Ey, F, Fs
span a 3-dimensional real vector subspace W of C(2) given by

roz
w{(7, [ )remsec]
-z —r

Let B be in W with first row vector (r, z). Define a quadratic form f on W by
f(B) = |z* =12

Let f5 be the Lorentzian quadratic form on R?*'. Then ¢ restricts to an isometry

§: (R, fo) — (W, f).
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Let A be in G and B be in W. Then ABA~! isin W. Define Ad : W — W by
Ada(B) = ABA™!. Then Ady : W — W is in O(W, f). Define a homomorphism
Ad: G — O(W, f) by Ad(4) = Ada.

Define an isomorphism &, : O(2,1) — O(W, f) by 6.(T) = 676 . Then
5.(SO(2,1)) = SO(W, f). Define SOT(W, f) to be the connected component of
SO(W, f) containing the identity. Then §,(SO1(2,1)) = SO (W, f), since 4§, is a
homeomorphism. We have that Ad(G) = SOT(W, f) and the following diagram

commutes:
A

Spint(2,1) — G
Ad | | Ad
SOt(2,1) 2 SOt(W, f).

Define n : G — SO'(2,1) by n = 6;'Ad. Then 7 is a double covering
epimorphism. We regard SOT(2,1) to be a matrix group. If A is in G, then n(A) is
the matrix of the isometry Ad(A) of (W, f) with respect to the basis Ey, Eo, E3.

If z € C, we write z = 21 + 221 with 21, 29 € R; in this notation we compute that

b 1-— 2&% + 2b% 72&1&2 + 2b1b2 72&1()1 + 2a2b2

a

n (5 ) = 2a1a2 + 2b1bsy 1-— 2@% + 2()% —2a1by — 2a9bq
—2a1b1 — 2a2bs  —2a1bs + 2a9bq 1+ 2()% + 2()%

2

Theorem 5.2. The complex spin representation A : Spin™(2,1) — C(2) maps
Spin(2) onto the group

a 0
H{( ):aG(Cand|a|—1}.
0 a

Proof. The group Spin(2) is the stabilizer of e3 under the action of Spin™*(2,1) on
R3 by conjugation. Therefore A(Spin(2)) = ¢(Spin(2)) is the stabilizer of E3 under
the action of G on W by conjugation.

Suppose A is in G. As E3 = J, we have that AE3A~! = E5 if and only if
A71JA =J =A*JA, and so AE3A~" = E5 if and only if A= = A*.

Now suppose that A~! = A*. Let A have row vectors (a,b) and (b,a@). As

A~l = JA*J, we have
a -b a b
b a) \b a)

Hence b = 0. Therefore A is in H.
Conversely, suppose A is in H. Then A is in G by Lemma [5.1l Moreover A~ =
A*, and so A"'JA = J. Therefore A stabilizes J = Ej. O

6. The Complex Spin Representation of Spin™ (4, 1)

Let H be the ring of quaternions. Every element of H can be written in the form
a+bj for unique a, b in C. There is a monomorphism ¥, : H — C(2) of real algebras
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a b
\Ifl(a+bj)—<_5 a).

Let H(2) be the algebra of 2 x 2 matrices over H. There is a monomorphism Uy :
H(2) — C(4) of real algebras defined by

a b \Ill(a) \I/l(b)
U, = .

c d \Ifl(c) ‘I’l(d)
If A is a matrix in H(2), define A = Uy(A
Consider the matrices Fy, ..., E5 in H

defined by

).
(

2) which are, respectively,

S v B i R

We have that E? = —1I for i = 1,...,4. Moreover, E;E; = —E;E; for each i # j.
Hence the mapping ¢ : {e1,...,es} — {E’l, . ,E’4} defined by ¥(e;) = E; extends
to a homomorphism ¢ : CL(4) — C(4) of complex algebras.

The algebra C(4) is a 16-dimensional complex vector space. The 16 products
E’il E’Zk with 1 <41 < -+ < i < 4, including the empty product, are linearly
independent over C. Hence 1) : C{(4) — C(4) is an isomorphism of complex algebras.

We shall work with the complex spin representation A : Spin®(4,1) — C(4)
which is the restriction of the homomorphism ¢p* : Cl(4,1) — C(4) of complex
algebras. Note that ¢¥p*(e;) = E; for i = 1,...,5.

Lemma 6.1. The complex spin representation A : Spin™t(4,1) — C(4) factors
4

1
through H(2), that is, there is a homomorphism A : Spin™ (4,1) — H(2) such that

A = TU5A.

Proof. The homomorphism p* : Cl(4,1) — CL(4) of complex algebras restricts
to a homomorphism p* : Cl(4,1) — CU(4) of real algebras. The mapping 1 :
{e1,...,eq} — {E1,...,E4}, defined by 1(e;) = E; for i = 1,...,4, extends to a
homomorphism 1 : C{(4) — H(2) of real algebras. Let A : Spint(4,1) — H(2) be
the restriction of 5T : CL(4,1) — H(2). Then A = U,yA. O

If A is a matrix in H(2), let A* be the conjugate transpose of A, and let J = Es.
The group G = SU(1, 1;H) is defined by
G={AeH(?2): A"JA=J}.
Let G = Uy(@). Note that ¥y : H(2) — C(4) maps G isomorphically onto G.

Theorem 6.1. The complex spin representation A : Spin™(4,1) — C(4) maps
Spin™ (4,1) isomorphically onto G.
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Proof. There is a homomorphism A : Spin*(4,1) — H(2) such that A = U,A
by Lemma [6.1] Moreover ¥y : H(2) — C(4) is a monomorphism of real algebras.
Hence, it suffices to prove that A maps Spin™ (4, 1) isomorphically onto G.

The real algebra H(2) is a 16-dimensional real vector space. The 16 products
E;, - EB;, with 1 <4; < --- < 1 <4, including the empty product, are linearly
independent over R. Hence ¢ : Cf(4) — H(2) is an isomorphism of real algebras. The
homomorphism p* : Cl(4,1) — Cl(4) of real algebras, restricts to an isomorphism
pe o CLO(4,1) — CL(4) of real algebras by the same argument as in the proof of
Lemma L1l Hence ¢ = ¢)p" restricts to an isomorphism ¢o = ¢pg : CL0(4,1) —
H(2) of real algebras. As Spin™ (4, 1) is a subgroup of C{°(4, 1), the homomorphism
¢ : Cl(4,1) — H(2) maps Spin™ (4, 1) isomorphically onto a subgroup of H(2). As
A is the restriction of ¢, It remains only to show that ¢(Spin™(4,1)) = G.

By Lemma [3.3] we have that

Spint(4,1) = {x € CL°(4,1) : atz = 1}.

The map o : H(2) — H(2) defined by o(A) = JA*J is an antiautomorphism of the
real algebra H(2). If A has row vectors (a,b) and (¢, d), then

The maps ¢( )*,0¢ : Cl(4,1) — H(2) are antihomomorphisms of real algebras.
For each ¢ = 1,...,5, we have that

Therefore ¢( )! = 0¢. As ¢ restricts to an isomorphism ¢y : CL°(4,1) — H(2) of
real algebras, we have that

#(Spin* (4,1)) = {A € H(2) : 0(A)A =1} = G. 0

Consider the homomorphism ¢ : C{(4,1) — C(2) of real algebras defined in the
proof of Theorem [6.1] Then ¢(e;) = E; for i = 1,...,5. The matrices E1,..., Es
span a 5-dimensional real vector subspace W of H(2) and so ¢ : Cl(4,1) — H(2)
restricts to a vector space isomorphism 6 : R® — W.

Lemma 6.2. If A is in G and B is in W, then ABA™! is in W.

Proof. There is an = in Spin™ (4, 1) such that ¢(z) = A by Theorem [6.1l Moreover
there is a v in R® such that ¢(v) = B. Now xva~! is in R® by [13| Proposition
1.2.2]. Hence 6(zva—1) = ¢p(zva—1) = ABA 1 isin W. O
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r q
W:{( );reR,qu}.
_q —r

Let B be in W with first row vector (r,q). Then B? = (r? — |¢q|*)I, and so B? is a
scalar matrix. Define a quadratic form f on W by

We have that

£(B) = ~5tx(B%) = la* ~ .

Let f4 be the Lorentzian quadratic form on R*!. Observe that § : R® — W satisfies
f(5(v)) = fa(v) for all v in R5. Hence d is an isometry from (R, f4) to (W, f).
Let A be in G and let B be in W. Then

f(ABA™Y) = f%tr((ABA’l)Q) = f%tr(ABQA’l) = —%tr(BQ) = f(B).

Hence the map Ads : W — W, defined by Ada(B) = ABA™!, is in O(W, f).
Define a homomorphism Ad : G — O(W, f) by Ad(A) = Ada.

Define an isomorphism 4§, : O(4,1) — O(W, f) by 6.(T) = 676 '. Then
5.(SO(4,1)) = SO(W, f). Define SO (W, f) to be the connected component of
SO(W, f) containing the identity. Then §,(SOT(4,1)) = SO* (W, f), since 4. is a
homeomorphism.

Theorem 6.2. We have Ad(G) = SOT(W,f) and the following diagram
commutes:
Spint(4,1) 2 G
Ad | | Ad
S0*(4,1) = SOT(W.f)

with horizontal maps isomorphisms.

Proof. It suffices to prove that the following diagram commutes:

Spint(4,1) & @
Ad | Ad
SOT(4,1) 2= O(W, f).
Let  be in Spin™ (4, 1). Then, we have that
A(E(2)) = Ad(6(x)) = Adyga).
Whereas
5+(Ad(z)) = 0. (Ad,) = Ad,6 L.
Let B be in W. Then Adg(,)(B) = ¢(z)Bé(z) . Whereas
5Ad,671(B) = SAd, (671 (B)) = 6(26~ (B)a~) = 8(x) Bo(a™Y) = 6lx) Bo(x)"!
Therefore Ady,) = §Ad,6~!, and so AdA = §,Ad. O
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Define  : G — SO (4,1) by n = 67'Ad. Then 7 is a double covering
epimorphism by Theorem [6.20 We regard SOT(4,1) to be a matrix group. If A
is in G, then n(A) is the matrix of the isometry Ad(A) of (W, f) with respect to
the basis Eq, ..., Es.

The proof of the next lemma is the same as for Lemma [5.1]

Lemma 6.3. Let A be in H(2) with row vectors (a,b) and (¢,d). Then A*JA =J
if and only if |a|®> — |c|?> = 1,|d|? — |b]? = 1, and ba = dc.

Define a group H by

a 0
H—{(O d).a,deH and |a|—|d|—1}.

Let H = Wy(H). Note that Wy : H(2) — C(4) maps H isomorphically onto H.

Theorem 6.3. The complex spin representation A : Spin™(4,1) — C(4) maps
Spin(4) isomorphically onto the group H.

Proof. As A = AW, it suffices to prove that A(Spin(4)) = H. The group Spin(4)
is the stabilizer of e5 under the action of Spin™ (4, 1) on R® by conjugation. Therefore
A(Spin(4)) = ¢(Spin(4)) is the stabilizer of E5 under the action of G on W by
conjugation.

Suppose A is in G. As E5 = J, we have that AE5A~! = Ej if and only if
A71JA =J =A*JA, and so AE5;A~" = E5 if and only if A= = A*.

Now suppose that A=! = A*. Let A have row vectors (a,b) and (c,d). As

A=t = o(A), we have
a —c a ¢
5 d) \b d)

Hence b =0 =¢, and so b = 0 = ¢. We have that

(a0

Hence |al? =1 = |d|?, and so |a| = 1 = |d|. Therefore A is in H.

Conversely, suppose A is in H. Then A is in G by Lemma [6.3 Moreover A~ =
A*, and so A~1JA = J. Therefore A stabilizes J = F5. Thus H is the stabilizer of
E5 under the action of G on W by conjugation. Hence A(Spin(4)) = H. O

7. The Complex Spinor Bundle of a Hyperbolic Spin Manifold

Let T be a torsion-free discrete subgroup of SO™(n,1). Then I'\SO™(n,1) is a
principal SO(n)-bundle over the hyperbolic space-form I'\ H" with bundle projec-
tion £ : I\SO"(n,1) — T'\H" defined by e(T'A) = I'Ae, 41, and right action of
SO(n) on T'\SO™(n, 1) defined by (I'A)B = T'(AB).
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Suppose we have a spin structure on the hyperbolic space-form I'\ H™. Let I' be
the corresponding subgroup of Spin™ (n, 1) as in Theorem 211 Then I'\Spin™ (n, 1)
is a principal Spin(n)-bundle over the space-form I'\H" with bundle projection
¢ : T\Spin*(n,1) — D\H" defined by ¢(I'g) = T'(Ad(g)en41), and right action of
Spin(n) on I'\Spin™(n, 1) defined by (I'g)s = I'(gs).

The double covering epimorphism Ad : Spin™ (n, 1) — SO (n, 1) induces a spin
structure p : I'\Spint (n,1) — I\SO " (n,1) on T\ H" defined by p(I'g) = T'(Ad(g))
by Theorem [2.1]

Assume that n is even. Let n = 2m and k = 2™. Let A,, : Spin(n) — C(k) be the
complex spin representation. We let Spin(n) act on the left of C* by sv = A, (s)v.
Then Spin(n) acts freely on the right of (I'\Spin*(n,1)) x C* by

(Tg,v)s = (I'gs, s v).

Let S = Spin(n). The complex spinor bundle S of T\ H™ with respect to the spin
structure on I'\ H" corresponding to the lift T of I is the complex vector bundle

P\Spin (n,1) x4, C* = (M\Spin” (n,1)) x C*)/S
over '\ H" with bundle projection p defined by

#((Pg,1)S) = D(Ad(g)ent ).
Note that the complex spinor bundle S is the bundle associated to the principal
Spin(n)-bundle I'\Spin™ (n, 1) via the representation A,, : Spin(n) — C(k).
Likewise the positive and negative compler spinor bundles ST of T\ H™ with

respect to the spin structure on T'\H™ corresponding to I' are the complex vector
bundles

[\Spin™(n, 1) x y+ W* = ((I'\Spin™ (n, 1)) x W*)/S
over '\ H" with bundle projection p*t defined by
p*((Tg,v)S) = T(Ad(g)ent1)-
The positive and negative complex spinor bundles ST are the bundles associated
to the principal Spin(n)-bundle f‘\Spin+(n, 1) via the representations
AFE : Spin(n) — GL(W*).
As CF = W@ W, we have the direct sum decomposition S = ST @S~ of complex
vector bundles.

Let A, 1 : Spin'(n, 1) — C(k) be the complex spin representation of Spin™ (n, 1)
that extends A,,. Define a left action of Spin™ (n, 1) on C* by gv = A, 1(g)v. Then
Spin™(n,1) acts diagonally on the left of H™ x C*¥ by

9(z,v) = (Ad(g)z, gv).
The group I acts freely and discontinuously on H™ x C*. Moreover, the orbit space

[\ (H" x CF) is a complex vector bundle over I'\ H" with bundle projection v defined
by v(I'(z,v)) = Tx.



722 J. G. Ratcliffe, D. Ruberman € S. T. Tschantz

Define a map
€:1\Spin*(n,1) xa, C* — I\ (H" x CF)
by the formula
£((Tg,v)8) = T(Ad(9)ens1, 9v)-

Theorem 7.1. For each positive even integer n, the map
€ :T\Spin'(n,1) xa, CF — T\ (H" x CF)
is a complex vector bundle equivalence from the complex spinor bundle S of T\H",
p: D\Spin* (n,1) xa, CF — T\H",
tov:T\(H" x C*¥) — T\H".

Proof. Define a map
v : Spint(n,1) x C* — H" x CF
by v(g,v) = (Ad(g)en+1,gv). Then v is a smooth surjection. The compact Lie group
S = Spin(n) acts freely on the right of Spin™(n,1) x C* by (g,v)s = (gs,s v).
The S-orbits are the fibers of v, and so v induces a diffeomorphism
T : (Spint(n,1) x C¥)/S — H™ x C*
defined by

0((g,v)S) = (Ad(g)en+1, gv)-
The group I acts on the left of (Spin*(n, 1) x C¥)/S by 4((g,v)S) = (5, v)S. The
map T is [-equivariant, and so I' acts freely and discontinuously on (Spin™(n, 1) x
Ck)/S. The manifold T'\((Spin*(n,1) x C¥)/S) is canonically diffeomorphic to
((D\Spin* (n,1)) x C¥)/S, and so we have a smooth covering projection
p: (Spint(n,1) x C*)/S — I'\Spin*(n,1) xa, C*

defined by p((g,v)S) = (I'g,v)S.
Let ¢ : H" x CF — f‘\(H” x C*) be the quotient map. Then ¢ is a smooth
covering projection. We have that qu = &p. Therefore ¢ is a diffeomorphism.
Observe that v€ = p, since

vE((Lg,v)8) = v(I(Ad(g)ent1, gv))
= F(Ad<g)en+1)
= ((Tg) = u((Lg,v)5)).
Therefore € is an equivalence of fiber bundles.

Let 2 be a point of H", and let g in Spin™(n, 1) be such that Ad(g)e,+1 = .
The fiber of p: I'\Spin*(n, 1)) xa, C* — I'\H" over I'z is

F,(pn) = {(Tg,v)S : v e CF.
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The mapping i, : C¥ — F, (1) defined by i,(v) = (I'g,v)S is a linear isomorphism.
The fiber of v : T'\(H" x C*¥) — T'\H™ over 'z is

F,(v) = {T(z,v) : v e CF}.

The mapping j, : C¥ — F,(v) defined by j,(v) = f(x,v) is a linear isomorphism.
Let & : F.(u) — F.(v) be the restriction of . Let g. : C¥ — C* be defined
by g«(v) = gv. Then g, is a linear automorphism. We have that i, = jzgs,
and so &, is a linear isomorphism. Hence £ is an equivalence of complex vector
bundles. O

Let ¢ be an orientation preserving isometry of I'\H™, and let f be an element
of SO*(n,1) such that fT'f~' =T and ¢ = f. Suppose that ¢ lifts to the spin
structure p : ['\Spin™(n, 1) — F\SO+(n 1) on T\H". Let f be an element of
SpinT (n, 1) such that Ad(f) = f. Then fI'f~! = T' by Theorem 22 and the self-
diffeomorphism ¢, of 1"\SO+ (n,1) induced by ¢ lifts to a self-diffeomorphism ¢, of
['\Spin™ (n,1) induced by f.

The diffeomorphism gb* induces a self- dlffeomorphlsm ng of the vector bundle
['\Spin ™" (n,1) xa, C* defined by ¢((I'g,v)S) = (I'fg,v)S. We have that pu¢p = D,
and so ng maps fibers of u to fibers of - Let x be a point of H", and let gbx :
F,(p) — Fyz(p) be the restriction of ¢. Then gbng = ij,, and so ¢ is a linear
isomorphism. Hence (;5 is a vector bundle automorphism of .

Likewise ¢, induces a self-diffeomorphism ¢’ of the vector bundle I'\ (H" x CF)
defined by é’(A( v)) = f(fx fv) We have that v¢/ = qﬁu and so ¢’ maps fibers
of v to fibers of v. Let = be a point of H", and let ¢, Fu(v) — Fy(v) be the
restriction of ¢’. Then ng Jr = Jfx f., and so gb’ is a linear isomorphism. Hence ¢’
is a vector bundle automorphism of v.

We have that £¢ = ¢/€, since

£d((Lg,0)8) = £((T'fg,v)S)
( (fg)€n+1,fgv)
¢ (T(Ad(g)en+t1, gv)) = '€((Tg,v)S).

Theorem 7.2. Let T be a torsion-free discrete subgroup of SO (n, 1) with n even,
and let ¢ be an orientation preserving isometry of the hyperbolic space-form T\H™.
Let f be an element of SOT (n,1) such that fTf~' =T and ¢ = f. Let I be a
subgroup of Spin™ (n, 1) such that the double covering Ad : Spin™ (n, 1) — SOT (n, 1)
maps I isomorphically onto T, and let f be an element of Spin™(n,1) such that
Ad(f) = f. Suppose that fIf~1 = T and ¢ fizes the point Tz of F\H" Let ~

be the element of [ such that vfz = x, and let 4 be the element of T' such that
Ad( ) =1. Let (b be the vector bundle automorphzsm of the complex spinor bundle
o D\Spint (n, 1) xa, CF — T\H" induced by f, and let ¢, be the restriction of ¢
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to the fiber of u over the point I'z. Then, we have that
tr(ds) = tr(An,1 (3))-
Proof. We have that

¢ (D(z,v)) = T(fz, fv) = D4(fz, fv) = D(vfz, 4 fv).
and so
O.jn = Gyt () = Ju(A ).

Hence, we have that

tr(ds) = tr(&, 1 0h&s) = tr(d)) = tr(ju(3)uds b) = tr((3)s) = tr(An 1 (3f)). O

8. The Equivariant Index for an Isometry with Only
Isolated Fixed Points

Let T' be a torsion-free discrete subgroup of SOT(n,1) with n even and n = 2m.
Let ¢ be an orientation preserving isometry of the hyperbolic space-form T'\ H".
Suppose that ¢ fixes the point P = 'z of I'\H™ and P is an isolated fixed point.
Then the differential d¢p : Tp(I'\H™) — Tp(I'\H") is an orientation preserving
isometry that fixes no nonzero tangent vector by the discussion in [3, p. 472].

Let f be an element of SO (n,1) such that fT'f~' =T and ¢ = f. Let v be
the element of I' such that v fx = x. Then d¢p isometrically lifts to an orientation
preserving isometry T, (vf) : To(H"™) — T.(H™), defined by T.(vf)y = vfv,
which fixes no nonzero vector of T, (H"). Hence, we may decompose T, (H") into
a direct sum of Lorentz orthogonal 2-planes

T, (H")=FE1®E:® - ® E,,

which are invariant under T, (7 f). Let {e, e}, } be a Lorentz orthonormal basis of Ej,
chosen so that the matrix A in O%(n, 1), with column vectors ey, €, ..., em,€l,,
has determinant 1. Relative to such a basis, T, (vf) acts as a rotation by an angle
0y, in the 2-plane Ej, for each k. We call the resulting set of angles {0} a coherent
system of angles for dop.

By [3, Theorem 8.35] and the discussions in [4, p. 20] and [21, p. 175], we have

the following theorem.

€z,

Theorem 8.1. Let T' be a torsion-free discrete cocompact subgroup of SOT (n, 1)
with n even and n = 2m. Let ¢ be an orientation preserving isometry of the hyper-
bolic space-form M = T\H™ with only isolated fixed points {P}. Suppose that M
admits a spin structure and ¢ lifts to an automorphism qAS, of the same order, of the
corresponding spinor bundle S of M. The equivariant index Spin(q@, M) is given by

Spin(¢, M) = " v(P),
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where P ranges over the fized points of ¢ and

v(P) = e(P,)i"m2™™ H csc(0r/2),

k=1

where 01, ..., 0, is a coherent system of angles for dpp and (P, d;) =+£1.
Moreover, if 0 < |0x| < 7 for each k, then

tr(dp) = e(P, d) H 2 cos(0x/2),

k=1
and so we have that

v(P) =im2 "tr(¢p) H csc(Oy).

k=1

9. Some Hyperbolic 2-Manifolds that Admit Harmonic Spinors

As explained in the introduction, our goal is to show how the equivariant index
theorem can be used to show the existence of harmonic spinors. In this section, we
use this method to prove the existence of nonzero harmonic spinors on two examples
of hyperbolic surface; one is hyperelliptic and the other is not.

9.1. Hyperelliptic example

Consider a regular hyperbolic decagon P centered at the center C' = e3 of H? as
in Fig. [[. Let T be the group generated by the 10 hyperbolic translations of H?
that translate a side of P to its opposite side and translates P to an adjacent

Fig. 1. The regular hyperbolic decagon P in H? viewed from —e3.
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decagon. Then T is a torsion-free discrete group of isometries of H? with funda-
mental polygon P by Poincaré’s theorem. The orbit space M = '\ H? is a closed
orientable hyperbolic surface of genus 2.

The side-pairing of P by the generators of I' determines a cell decomposition of
M with two 0-cells, five 1-cells, and one 2-cell. A 0-cell corresponds to a cycle of 5
alternate vertices of P. A 1-cell corresponds to a pair of opposite sides of P, and
the 2-cell corresponds to P.

Let f be the rotation of H? of 27 /5 about the center C. Then f conjugates each
generator of I' to another generator of I', and so fI'f~! = I'. Hence f induces an
orientation preserving isometry ¢ of M so that ¢ = f. The isometry ¢ has order
5 and fixes just 3 points of M corresponding to C, and the two cycles of vertices
of P represented by the points A and B; moreover, all three fixed points of ¢ are
isolated.

The rightmost vertex of P is (2v/2 + V5,0,2 + \/5), and the other vertices are
found by rotations of multiples of /5 about the center C. The vertices A, B, A’, B’

are
1 1
<6\/§ (1+\/5), 5\/5 (15+7\/5>, 2+\/5>
with (¢,6) = (-1,1),(1,1),(—=1,—-1),(1,—1), respectively. The hyperbolic

translation g; that maps A to A’ and B and B’ is represented in SO'(2,1) by
the matrix

1 0 0
0 6+ 3v5 —24/204 95

0 —2v/20+9V5 6+ 35

Let p be the rotation of P about C' by 7/5. The other side-pairing maps of P are
then obtained by conjugating g; by multiples of p. These side-pairing maps generate
a torsion-free discrete subgroup I' of SOT(2,1) with generators gx = p*~lgip*=*
for £ = 1,...,10, and defining relators gxisgx, for i = 1,...,5 and g793999591
(corresponding to the A cycle) and gsg9g3g791 (corresponding to the B cycle).

We lift the rotation p, with respect to the double covering epimorphism

n:SU(1,1;C) — SO™(2,1)

) eiﬂ'/lO 0
p= 0 efiﬂ'/10 ’

and we lift the hyperbolic translation g; to

%(f?, —/5) 4,/%(5 +3v/5)
i,/%(5 +3/5) %(—3 —V5)

defined in Sec. 5, to
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We then define the lifts of the remaining side-pairing maps by conjugating g1 by
powers of p. These 10 elements generated a subgroup I' of SU(1, 1; C) isomorphic
to I, since the defining relations of T" also hold in SU(1, 1; C), and so we have a spin
structure on M by Theorems [2.1] and [5.1]

We have that f = p2, and so we lift f to f = —(p)2. As fI'f 1 =T, the map ¢
lifts to the spin structure defined on M by Theorem 2.2l We have that

R 76“/5 0
f = ( 0 6i‘n’/5) :

The matrix f has order 5 and induces a self- dlﬁeomorphmm b of F\SU(I, 1;C) of
order 5. Moreover f induces an automorphism (;5 of order 5 of the corresponding
spinor bundle of M. By Theorems [5.1] and [7.2, we have that

x(dc) = u(f) = —5(1+ VB).
Hence, we have that
W(C) = %tr(ésc)csc(zw/&s) - i 1i0<5 + V).

Let v4 = grgs. Then y4fA = A, and v4f is a rotation of —4w/5 about A. Let
Y4 = §793. By Theorems[5.1] and [Z.2] we have that

tr(ba) = tr(af) = _%(1 —V3).
Hence, we have that
V(A) = %tr(gZA)A)csc(f47r/5) =i %(5 —V5).

Let v5 = g6g2. Then vgfB = B, and vgf is a rotation of —47/5 about B. Let
A8 = Gego. By Theorems [5.1] and [7.2] we have that

tx(d) = tr(3f) = 5 (1~ V5).
Hence v(B) = v(A). By Theorem B.1] we have that
Spin(@, M) = v(A) + v(B) + v(C) = —i %(5 +VE).
Therefore, M admits nonzero harmonic spinors by Proposition [.1l Recall that
Spin(¢, M) = tr(¢p, H*) — tr(d, H™).
Moreover dim H* = 1, since
dimH*E < [(2+1)/2] = 1.
Hence Spin(é, M) is the difference of two 5th roots of unity. In fact, we have

—i4 /%(5 + \/5) — 6—27ri/5 _ 6271'1/5.

The fact that dim H™ is odd has a topological interpretation. By [2], it is equivalent
to saying that M, together with the spin structure described above, is nontrivial in
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the 2-dimensional Spin cobordism group, or in other words that its Arf invariant
is nontrivial. It would be interesting to give a purely topological argument for this
fact, perhaps based on the 5-fold symmetry of the surface.

Note that the surface M has genus 2, and so M is hyperelliptic. The theory of
harmonic spinors on hyperelliptic Riemann surfaces is well understood [7]. We next
consider an example of a non-hyperelliptic hyperbolic surface that admits nonzero
harmonic spinors by the combination of Proposition [L.1] and Theorem [8.1]

9.2. Non-hyperelliptic example

Consider the Coxeter (2,5, 6)-triangle A in H? shown in Fig. 2 with one vertex at
the center e3. The reflections in the sides of A are represented in O%(2,1) by the
matrices

LoV
1 00 2 2 —2-v5 0 2V2+5
0 -1 0], V31 ol 0 1 0
0 01 2 2 V2 i VE 0 2445
0 0 1

These three reflections generate a discrete subgroup I'y of O7(2,1). Consider the
subgroup I' of I'y of index 60 whose fundamental domain is the 18-sided hyperbolic
polygon P shown in Fig.[2. The polygon P is subdivided into 60 copies of A and is
invariant under the rotation p of 27/3 about the center ez of P. A set of generators

Fig. 2. An 18-sided hyperbolic polygon P in H? viewed from —es.
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for I is a set of side-pairing transformations for P where sides A, B, C are paired to
sides A’, B’, C’, respectively, by hyperbolic translations and the remaining side-pair
transformations are such that the side-pairing is invariant under the rotation p. The
orbit space M = I'\ H? is an orientable hyperbolic surface of genus 3 by Poincaré’s
theorem.

The rotation p induces an orientation preserving isometry ¢ = p of M of order 3
with exactly 5 fixed points all of which are isolated. The fixed points are represented
by the center of P and the 4 cycles of vertices of P. The quotient of M under the
action of ¢ is an orientable hyperbolic 2-orbifold O of genus 0 with 5 cone points
of order 3 corresponding to the fixed points of ¢. A fundamental polygon for the
2-orbifold O is the hyperbolic octagon @ that is the third of P between the two radii
drawn in Fig. 2. The orbifold O is constructed by folding @ along the midline from
the center and then gluing together the sides. Hence M is trigonal, and therefore
M is non-hyperelliptic [22].

The isometry ¢ acts as a rotation by an angle of 27/3 about the fixed point
corresponding to the center of P, and ¢ acts as a rotation by an angle of —27/3
about each of the fixed points corresponding to the 4 cycles of vertices of P. The
isometry ¢ fixes a spin structure of M by [2, Proposition 5.2]. In fact ¢ fixes a
unique spin structure of M. We lift ¢ to an automorphism qAS of the corresponding
spinor bundle of M of order 3, and by Theorem [8.1] we compute that

Spin(d;, M) = —iV3.

Therefore M admits nonzero harmonic spinors by Proposition [[LI} As described
in [12, Sec. 2.2], the space of harmonic spinors HT on a genus 3 surface has
dimension 0, 1, or 2. The latter case occurs only for hyperelliptic surfaces, and
so dimH* = 1 for this example. Therefore Spin(é, M) is the difference of two 3rd
roots of unity. In fact, we have

—i\/g — 6—271'1/3 _ 62711/3.

10. Harmonic Spinors on the Davis Hyperbolic 4-Manifold

In this section, we combine Proposition[l.I]and Theorem[8.1]to show that the Davis
hyperbolic 4-manifold [9] admits nonzero harmonic spinors. The Davis manifold M
is constructed geometrically by gluing together the opposite sides of a regular 120-
cell P in H* by hyperbolic translations whose axis passes through the centers of
the opposite sides.

10.1. The 120-cell

The 120-cell P has 600 vertices, 1200 edges, 720 ridges (regular pentagons), and
120 sides (regular dodecahedra). The side-pairing defining the Davis manifold M
identifies all 600 vertices to one vertex cycle, identifies 20 edges within each cycle
of edges, identifies 5 ridges within each cycle of ridges, and identifies 2 sides
with each cycle of sides. Therefore, the cell structure of P projects to a cell
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structure of M consisting of one 0-cell, 60 1-cells, 144 2-cells, 60 3-cells and one
4-cell.
Define

7-:(1+\/5)/2 and k= 1+ 37.

We will work with the regular 120-cell P centered at the center es of H* which is
barycentrically subdivided by a (5, 3, 3, 5) Coxeter 4-simplex A in H* whose vertices
are given by the equations

(2+37)k, (14 7)k,0,k,5+ 87),

(14 7)k,0,0,2+ 37),

(
(
= (15, (=1 +27)K/5, (3 — 7)K/5,0,1 + 27),
vs = (K,0,0,0,1+7),

= (

0,0,0,0,1).

The vertices vy, ...,vs5 are, respectively, a vertex, center of an edge, center of a
ridge, center of a side, and the center of the 120-cell P. The Lorentz normal vector
s; of the side of A opposite the vertex v; is given by the equations

s1=(0,0,0,-1,0), s2=(0,(1-7)/2,1/2,7/2,0),
s3 = (0,0,—1,0,0), s4=((1-7)/2,7/2,1/2,0,0), s5=(1+7,0,0,0,r).

10.2. Dawvis manifold construction

The 120 side-pairing maps for the 120-cell P defining the Davis manifold M are
represented by symmetric Lorentzian 5 x 5 matrices of the form

- a? aiaz aaz aiaq @
1+a5 1+CL5 1+CL5 1+CL5
a1a2 1+ a% ao2a3 a2y a3
1+CL5 1+a5 1+CL5 1+CL5
a1as as0a3 a% a3a4 a
1+ as 1+ as l+as 1+as 3
aiaq a20a4 azay n ai a
1+as 1+as 1+as 1+ a5 4
a1 as as aq as

The vector (a1, az,as, aq,as) is the center of the 120-cell adjacent to P that is the
translated image of P by the corresponding side-pairing map of P. All the 120
matrices representing the side-pairing maps have as = 3 + 67.
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We call (a1, as,as,aq) the direction vector for the corresponding side-pairing
map of P. The direction vectors for the 120 side-pairing maps are the 60 vectors
listed in [18, Table 1] together with their negatives. The 120 side-pairing maps
g1, - .-, 9120 of P are ordered so that g1, . . ., ggo have the same order as their direction
vectors in Table 1 and gg1, . . ., g120 are ordered so that gi21—; has direction vector
equal to the negative of the ith vector in Table 1.

By Poincaré’s fundamental polyhedron theorem, the 120 matrices representing
the side-pairing maps g1, ..., g120 generate a discrete subgroup I' of SO (4, 1) such
that M = I'\ H*. Moreover I' has a presentation with 120 generators 1, ..., 120,
corresponding to the 120 side-pairing maps of P in the same order above, 60 side-
pairing relations x;x121—; = 1, with ¢ = 1,...,60, and 144 ridge cycle relations
TiTjTRTeTr, = 1 where (4,7, k, £,m) is one of the 5-tuples listed in [I8, Table 2].

10.3. Symmetric spin structure

We next describe a symmetric spin structure on the Davis manifold M with which
we will work. The direction vector of the first side-pairing map g; is

((2+27)k,0,0,0).
The matrix in SO (4, 1) representing g lifts, with respect to the double covering
n:SU(1,1;H) — SO™ (4, 1),

. —1-7 K
g = .
K —1-7

The four reflections p1, ..., p4 in the sides of A that contain the vertex vs; = es
generated the group Sym(P) of symmetries of P, which is a group of order 14,400.
The group SU(1,1;H) is a subgroup of index 2 in the group

U(l,;H)={AcH(2): A"JA=+J}

to the real 2 x 2 matrix

and 7 : SU(1,1; H) — SO (4, 1) extends to a double covering epimorphism
7: UL, 1;H) — 0" (4,1)
such that pi,..., p4 lift, respectively, to 2 x 2 matrices Ry, ..., R4 of the form

()

with 7 € R,q € H, and |q|? — 7? = 1, and if ¢ = a + bi + ¢j + dk, then (a,b,c,d,r)
is the corresponding normal vector s; given above.

We will not describe the extension 7, since it involves Pin groups which we have
avoided discussing. It suffices to say that the matrices Ry, ..., R4 generate a group
%(P) of order 28,800 and the subgroup %(P)o consisting of even products of
Ri,..., Ry has order 14,400, and 7 : SU(1, 1; H) — SO*(4,1) maps Sym(P)o onto
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the subgroup Sym(P)q of Sym(P) of index 2 consisting of the orientation preserving
symmetries of P.

The orbit of §; under the action of %(P)O by conjugation consists of 120 matri-
ces g1, - - - , 120 such that n(g;) = g; for each ¢ = 1,...,120. The matrices g1, . . ., G120
satisfy the same relations as g1, ..., g120. Hence 5 : SU(1,1;H) — SO™(4,1) maps
the group r generated by §i, ..., G120 isomorphically onto I'. Therefore M has a
spin structure that is invariant under Sym(P)o by Theorems 2.1] [2.2] and [6.2] This
spin structure is unique, since —gi, ..., —g120 do not satisfy the same relations as
g1, -- -, 9120 since the ridge cycle relations are of odd length.

10.4. Analysis of isometries of M of odd order

Let Isomg(M) be the group of orientation preserving isometries of the Davis
manifold M (see [18]), and let ¢ be an element of Isomg(M) of odd order with
only isolated fixed points. The possible orders of ¢ are 3, 5, and 15. If ¢ has order 3
or 15, then ¢ has only 2 fixed points, namely, the points represented by the center
of P and the cycle of vertices of P.

The isometry ¢ lifts to an automorphism é, of the same order, of the spinor
bundle of M, with respect to the symmetric spin structure on M described above. If
the order of ¢ is 3, then ¢ is unique up to conjugation in Isomg (M), and we compute
that Spin(é, M) = 0. If the order of ¢ is 5, then ¢ lies in one of 3 possible conjugacy
classes of Isomg(M). The constant value of Spin(¢, M) on these conjugacy classes
is 0, —5v/5, and 5v/5. The latter two conjugacy classes determine a single conjugacy
class of subgroups of Isomg (M) of order 5. If the order of ¢ is 15, then ¢ lies in one of
2 possible conjugacy classes of Isomg (M ). The constant value of Spin(ngS, M) on these
conjugacy classes is —/5 and /5. These two conjugacy classes determine a single
conjugacy class of subgroups of Isomg (M) of order 15. If the order of ¢ is 15, then
each power ¢* for k = 1,..., 14 has isolated fixed points, and Spin(qgk, M) = 455
for k =3,6,9,12.

10.5. Order 15 example
Let f be the symmetry of P of order 15 represented in SO (4,1) by the matrix

0 -1 0 0 0
T 1 1 T
T
1 7 T 1
2tz Y3 3 0
1 1 T T
5 % 373 3 0
0 0 0 0 1

Then f conjugates each generator of I' to another generator of I', and so fTf~! =T.
Hence f induces an orientation preserving isometry ¢ of M so that ¢ = f. The
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isometry ¢ has order 15 and fixes just two points C' and A of M, with C represented
by the center es of P, and A represented by the cycle of vertices of P; moreover
the two fixed points of ¢ are isolated. The angles of rotation of ¢ are —8m/15 and
27 /15 about C, and —147/15 and 47 /15 about A.

The symmetry f lifts, with respect to 1 : SU(1, 1; H) — SO (4,1), to the matrix

The matrix f has order 15 and induces a self-diffeomorphism ¢, of I\SU(1, 1; H).
Moreover f induces an automorphism ¢ of order 15 of the corresponding spinor
bundle of M. By Theorems [6.1] and [.2] we have that

tr(do) = tr(Ua(f)) = -1 - 7.
Hence, we have that
v(C) = i%27%tr(¢¢) ese(—8m/15) ese(2m/15) = —

Let va = 9298794697197991091159169107915973. Then vafvr = v1. Let 4 be the
product of the corresponding lifts §;. By Theorems[6.1] and [.2] we have that

tr(da) = tr(¥2(5af)) = ~2+ 7.
Hence, we have that
v(A) = i22_2tr($A) csc(—147/15) csc(dn/15) =1 — 7.
By Theorem [8.1] we have that
Spin(¢, M) = v(4) +v(C) =127 = —V/5.

Thus the Davis manifold M admits nonzero harmonic spinors by Proposition [1.1],
and so dim(H ™) > 1. We will obtain a better lower for the dimension of the space
H* of positive harmonic spinors on M from our next example.

10.6. Order 5 example

We maintain the notation from the previous example. Then f3 has order 5 and is
represented in SOT (4, 1) by the matrix

SR b

1 1

A 5 0

1 1

) 0 —3+3 3 0O
1 1

0 3 -5 ~5%3 0

0 0 0 0 1
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The corresponding isometry ¢ of M has order 5 and fixes exactly 26 points C, A
and By, ..., Bay of M, with C represented by the center e5 of P, and A represented
by the cycle of vertices of P, and By, ..., Bay represented by 24 ridge center cycles
one of which is the cycle of vs; moreover all the fixed points of ¢® are isolated. The
angles of rotation of ¢3 are 27/5 and 27/5 about C, and —47 /5 and 47/5 about A
and —27/5 and 47/5 about B; for each i.

For each side S of P there are two opposite sides of S whose centers « and
represent two of the fixed points of ¢>. In fact, the 2-dimensional cross-section of
P passing through o and § and the center C' of P is the decagon in Fig. [l with
the same identification pattern and the same order 5 symmetry and whose cycles
of vertices are the ridge center cycles of « and 3 (labeled A and B in Fig. [1).

The symmetry f3 lifts, with respect to 7 : SU(1,1;H) — SOT(4,1), to the
matrix

The matrix f? has order 5 and induces the self-diffeomorphism ¢? of I'\SU(1, 1; H).
Moreover f3 induces the automorphism ¢3 of order 5 of the corresponding spinor
bundle of M. By Theorems [6.1] and [Z.2] we have that

tr((¢%)c) = tr(Wa(f?) =1+ 7.
Hence, we have that

7 2
I/(C) = i22—2tr((¢3)c) csc(27‘r/5) CSC(27T/5) = e %
Let 74 = 93986946973979910911391891079159719s0- Then v f>v1 = v1. Let 44 be the
product of the corresponding lifts g;. By Theorems [6.1] and [[.2] we have that
tr((6°)a) = tr(La(9a %)) =2 - 7.

Hence, we have that

v(A) = i2272tr((¢) ) csc(—4m /5) esc(4r/5) =

ol w
ot 3

Let B be one of the points By, ..., Bys. We found that tr((¢?)5) = —1 and

v(B) = i227%r((¢%) g) csc(—27/5) cse(dn/5) =

Ut =
o

By Theorem [B.1] we have that
Spin(¢*, M) = v(A) + 24v(B) + v(C) = 5 — 107 = —5V/5.
Recall that
Spin(¢®, M) = tr(¢°, H") — tr(¢°, H ™).

Let d = dimHE. Then tr(¢%, H¥) is a sum of d 5th roots of unity. The number
—5v/5 cannot be written as the sum of nine 5th roots of unity minus the sum of
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nine 5th roots of unity, and so d > 10. We will obtain the lower bound d > 10 in a
more elegant manner in Sec. [[0.7 (see Corollary [L0.1]).

10.7. Spinor-index

Let G be the cyclic group generated by the order 15 automorphism é in Sec. [10.5
Then G acts on HT and H~. We get two characters of G whose difference in the
representation ring R(G) is the spinor-index Spin(G, M) of the action. The value
of Spin(G, M) at an element g of G is

Spln(g,M) = tr(gvHJr) - tI‘(g,Hi).

We have that R(G) = Z[x]/(2'® — 1). The next theorem neatly summarizes our
computations concerning the action of G on H = H™ & H .

Theorem 10.1. The spinor-index Spin(G, M) in R(G) corresponds to the coset
[p(x)] in Z[z]/(x'® — 1) where

p(z) =202 + 23 4+ 227 + 228 + 212 + 2213 — 22 — 22 — 26 — 2% — 2211 — 2™
and
Spin(q@k, M) = p(e%“i/ls) for k=1,2,... 15.
Proof. Our computations show that Spin(¢F, M) = p(e2F™/15) for k = 1,2,...,15.
Every coset in Z[x]/(2'® —1) is represented by a unique polynomial in Z[z] of degree

at most 14. Suppose ¢(x) is another polynomial in Z[z] of degree at most 14 such
that

Spin(¢*, M) = q(e2*™/1%) for k=1,2,...,15.

Then p(z) — g(z) has e2*7/15 for k = 1,2,...,15 as roots, and so p(z) — q(x) = 0.
Thus p(z) = g(z), and therefore Spin(G, M) corresponds to the coset [p(z)] in
Z[z]/ (215 = 1). |

The next corollary completes the proof of Theorem [L11

Corollary 10.1. The (complex) dimension of H is at least 20.

Proof. If dim H* were less than 10, then Spin(G, M) would be represented by a
polynomial in Z[z] of degree at most 14 whose positive coefficients sum to less than
10, which is not the case by Theorem [10.11 O

Our computations are consistent with dim H = 20. We end the paper with the
following intriguing question.

Question

What is the dimension of the space H of harmonic spinors on the Davis hyperbolic
4-manifold M?
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