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Abstract

The tuneability and control of quantum nanostructures in two-dimensional materials offer
promising perspectives for their use in future electronics. It is hence necessary to analyze quantum
transport in such nanostructures. Material properties such as a complex dispersion, topology, and
charge carriers with multiple degrees of freedom, are appealing for novel device functionalities but
complicate their theoretical description. Here, we study quantum tunnelling transport across a
few-electron bilayer graphene quantum dot. We demonstrate how to uniquely identify single- and
two-electron dot states’ orbital, spin, and valley composition from differential conductance in a
finite magnetic field. Furthermore, we show that the transport features manifest splittings in the
dot’s spin and valley multiplets induced by interactions and magnetic field (the latter splittings
being a consequence of bilayer graphene’s Berry curvature). Our results elucidate spin- and
valley-dependent tunnelling mechanisms and will help to utilize bilayer graphene quantum dots,
e.g., as spin and valley qubits.

1. Introduction

Carbon-based materials are considered promising candidates for spin-based quantum computation devices
due to their low spin—orbit and hyperfine coupling entailing long spin coherence life times [1-3]. Any
spin-qubit operation using a quantum dot will necessarily include the steps of controlled loading
(transferring a charge carrier onto the dot) and storage (keeping the charge carrier on the dot). Such an
operation hence requires understanding and control of the dot’s few-electron states and tunnel transport
processes.

In bilayer graphene, recent experiments achieve confinement of charge carriers in one- and
zero-dimensional structures by electrostatic gating [4—10]. To electrostatically define a nanostructure in
bilayer graphene multiple gates locally modulate the bilayer graphene band gap and charge carrier density,
cf figure 1(a). Split gates can define a channel (pink stripe in figure 1(a)), while finger gates on top create a
dot-like region within this channel (dark pink region), bounded by gapped regions acting as barriers
(white regions). This confinement method offers immense gate-control of the nanostructure, e.g., the
confinement width, depth, barriers, and bilayer graphene gap. It is now possible to operate such an
electrostatically confined bilayer graphene dot controllably in the single and few-electron regime [11-20].
The rapid experimental progress in device design, quality, and control, calls for a theoretical investigation of
single and few-electron tunnelling processes in such structures.

The two internal degrees of freedom, valley and spin, enrich the spectra of bilayer graphene-based
devices compared to usual semiconductors [21-23]. The result is highly degenerate multiplets split in
various ways by a magnetic field and weak perturbations. The transitions between the single- and
two-particle states with different multiplicities and splittings determine tunnelling through the dot in the
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Figure 1. (a) Bilayer graphene lead-dot-lead setup. (b) Single (A" = 1) to two-particle (A = 2) tunnelling transitions allow
characterising the dot’s orbital, spin and valley states. The ground state transition defines the conductive region between the

N = 1land N/ = 2 Coulomb blockade regime in the bias (V) and gate voltage (V) plane. Within this conductive region,
different transitions (distinguished in (b) by colour) contribute to transport depending on spin and valley selection rules.

(c) Differential conductance at fixed but finite bias (horizontal cuts along the dotted line in (b)). The slope of the lines with the
magnetic field (dominated by the difference of the two-particle and single-particle valley g-factors) teaches about the orbital and
valley composition of the two-particle dot state. The splittings between transitions at B = 0 manifest the interaction-induced
two-particle state gaps.

single and two-particle sectors, as sketched in figure 1(b). In this work, we investigate tunnelling transport
through a bilayer graphene quantum dot in the single and few-electron regime as a tool to unravel some of
the dot’s two-particle states’ unusual characteristics. We demonstrate how the specifics of the dot’s
multiplets manifest in tunnelling current, such as the differential conductance patterns in figure 1(c)
calculated within a rate equation approach applied to a microscopic model of the bilayer graphene quantum
dot and its level structure. We show how to link such experimentally observable transport features with
interaction and field-induced gaps between different spin and valley configurations. We determine the
particular tunnelling sequences for spin and valley states of differently ordered multiplets and relate them to
microscopic parameters, such as short-range interaction coupling constants, g, £, £o,» £, [24—27], and
topological valley g-factors (the latter induced by Berry-curvature [28—31]). Besides spin- and valley
selection rules, these tunnelling sequences depend on the dot-lead coupling characteristics, such as
asymmetric coupling to the source and drain and cotunnelling corrections. By combining the aspects of
state multiplicity, electronic interactions, and dot-lead couplings, our results add to the understanding of
tunnelling transport in complex few-electron systems.

The paper is structured as follows. In section 2, we introduce our theoretical model of the bilayer
graphene quantum dot and the leads, discussing the dot’s state structure in the single- and two-particle
sector. Section 3 describes the rates for tunnelling between these states and the leads, and the calculation of
tunnel current using rate equations [32, 33]. Section 4 presents our calculations of tunnel transport through
a bilayer graphene quantum dot. We provide maps of the differential conductance, dI/dV, in the plane
spanned by the gate voltage and the magnetic field for representative cases of interaction parameters. This
way, we characterise regimes in which different electronic interactions dominate, as tabulated in figure 2.
We have established these regimes in our previous work in reference [27], showing that for weak mutual
interactions, two electrons on the dot occupy a symmetric combination of single-particle orbitals, whereas
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Figure 2. We consider transport through bilayer graphene quantum dots in regimes dominated by different types of
interactions. Weak or strong long-range Coulomb interactions favour two-particle states with symmetric or antisymmetric
orbital states and distinct degeneracies of the spin and valley multiplets. Possible short-range interaction mechanisms include
couplings generated by inter- and intra-valley scattering or ‘current—current’ interactions, and spin—orbit coupling. In brackets,
we indicate the corresponding section number.

strong correlations between the dot electrons induce an antisymmetric orbital state with a significantly
altered wave function, reminiscent of a Wigner molecule [34—38]. Now, the differential conductance in a
proper bias interval reveals the transitions between the one- and two-particle states in the quantum dot.
The levels’ energies are closely related to the symmetries of the corresponding orbital wave functions. The
multiplicity and ordering of the two-particle levels depends on the orbital symmetry, the short-range part
of interactions, and the external magnetic field. The latter allows one to affect the level ordering. The
interpretation of such tunnelling data may depend on device characteristics, e.g., the lead-dot coupling
strength or uniformity of source and drain coupling. Taking these device features into account, we show
how to use the differential conductance maps to identify the dot’s two-particle ground state and determine
the dominant microscopic interaction parameters. Section 5 contains step-by-step instructions how to use
our results to interpret differential conductance data for identifying the single-and two-particle state
structure of a bilayer graphene quantum dot.

2. Model

We consider a lead-dot-lead setup in which a bilayer graphene quantum dot is tunnel-coupled to bilayer
graphene quantum point contacts as in figure 1(a).

Single-particle states of the bilayer graphene quantum dot. We focus on the experimentally accessible
regime of small and moderate displacement fields in the dot region. For a small gap, the bilayer graphene
dispersion in the vicinity of the K-points is approximately quadratic, and a quantum dot’s single-particle
level structure resembles that of harmonic confinement, featuring an orbitally singly degenerate ground
state [27].

These single-particle dot states are characterized by the orbital quantum number, 7, and the electron’s
spin (s = 71, ) and valley (t = 4+, —) degree of freedom. We denote a one-electron dot state by
n,s,t) = d!,|0), where d_, is the electron creation operator and |0) is the empty dot state. The nth spin
and valley multiplet at zero magnetic field is characterized by energy, E,. In the regime of sufficiently small
dots and gaps, in which dots are currently achieved in experiments [20], the lowest orbital single-particle
state is generally singly degenerate and single-particle splittings can be of the order of several meV [27].
Zero-point vibrations enhance Kane—Mele spin—orbit coupling [39], Agp, leading to reversed spin splitting
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in opposite two valleys [10, 18, 20]. Each multiplet splits upon the application of a magnetic field, B,
perpendicular to the bilayer graphene plane as,

1
En,s:T,i,t - En + Ec(l) + tASO + Eg:U/BB + tgg,U/BB) (1)

according to the free electron spin g-factor, g = 2, and valley g-factor, g} (¢ being the Bohr magneton).
The latter is a consequence of gapped bilayer graphene’s nontrivial Bloch band Berry curvature entailing a
topological orbital magnetic moment with opposite sign in the two different valleys [28—31]. As the orbital
magnetic moment is a function of wave number in each valley, the topological valley g-factor depends on
the gap and the states’ momentum space distribution (and, consequently, on the orbital quantum number,
n), determining how much orbital magnetic moment is picked up by the dot states [27, 40—42]. The second
term in equation (1) accounts for the presence of a gate with capacitance Cg, which, at gate voltage Vg,
induces an effective charge on the dot, changing the dot’s electrostatic potential by

(Ne—Cg Vi)?

W) = 2eC

(2)
Here, N is the dot occupation number and C is the total capacitance of the dot.

Two-particle states of the bilayer graphene quantum dot. The dot’s two-particle sector is non-trivial, due
to the large number of states arising from different combinations of the orbital, spin, and valley degrees of
freedom. Moreover, these three degrees of freedom combined must form an overall antisymmetric
two-particle wave function. As we showed in reference [27], Coulomb interaction between the two dot
electrons further impacts the correlations between the different degrees of freedom.

The long-range Coulomb interaction on the scale of the dot state wave functions is given by,

He = %Z / / dr dv' (W) (000, (1)] Velr — 1) (W], () B, (1),
U, (1) = (b OB Wl = o ol el =l T, (3)

between the low-energy electronic fields, ¥, (r), on the non-dimer sites A and B’ of the bilayer graphene
lattice. We employ the 2D screened Coulomb interaction in a weakly gapped bilayer graphene [27, 43], with
#:05 ﬁ, where ¢ is the vacuum permittivity, € is the encapsulating
substrate material’s dielectric constant, R, = v/32%k / VmA, taking into account gapped bilayer graphene’s
polarisability [43], x* = 2me* /(4mepehn/A)?, with m being the effective mass and A the bilayer graphene
gap. The Coulomb repulsion in equation (3) determines the spatial extent of the wave functions and the
exchange energy. The competition of single-particle energies, direct-, and exchange-interaction terms
determines the mixing of single-particle orbitals forming orbitally symmetric or antisymmetric two-particle
states [27]. For zero or weak Coulomb interaction (strong screening by the surrounding medium), two
electrons on the dot form an orbitally symmetric wave function, both occupying the same single-particle
orbital, n. If the Coulomb repulsion dominates (weak screening), the gain in exchange energy overcomes
the cost of occupying higher single-particle orbitals, and the two-particle ground state forms an
antisymmetric orbital wave function involving different single-particle orbitals, n and m.

In gapped bilayer graphene, where the gating needed to form the quantum dot lifts the layer symmetry,
we take into account the lattice-scale symmetry breaking short-range interactions [24-27],

HSR = %Z/drzgij[\IIL(r)§f‘Bl§j+_\I/n/(r)]2, (4)

(5

Fourier representation, Vc(q) =

with g{“B/ (gff) the Pauli matrices in sub-lattice (valley) space and (i, j) = (xx, xy, yx, yy, 2z, 20, 0z). The
interactions in equation (4) originate from symmetry breaking fluctuations and the relevant coupling
constants

8xx = &y = &x = 8y = 81> 822> 8205 802> (5)

favour states with spontaneously broken symmetries [24, 25]. Inter-valley scattering introduces the coupling
g, while intra-valley scattering generates g, . The couplings g, ,, correspond to ‘current—current’
interactions [44], favouring states with spontaneously broken time-reversal invariance [25]. The case

i = j = 0 is already included in equation (3). Other possible combination of indices i, j not listed in
equation (5) do not affect the states in gapped bilayer graphene since the corresponding fluctuations are
suppressed by the layer polarization.
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The short-range interactions in equation (4) introduce anisotropies in the sublattice and valley space for
two-particle states with symmetric orbital wave function. For orbitally antisymmetric two-particle wave
functions, contact interactions as in equation (4) are not relevant due to vanishing electronic density at
small inter-particle distances. Short-range interaction induced splittings hence provide a way to distinguish
orbitally symmetric and antisymmetric dot states.

Any theoretical estimation of the couplings’ numerical values comes with inherent uncertainty since
they depend on the relevant energy scale. The resulting renormalization and additional phonon-mediated
effects can change the couplings g;; in absolute value and sign [25, 26]. By studying tunnelling through
two-particle multiplets for all possible combinations of values in equation (5) we demonstrate how to
identify different parameters in transport. Our results will be relevant for unfolding experimental
measurements using tunnelling spectroscopy of the bilayer graphene quantum dot’s two-particle states as a
tool to extract the microscopic short-range interaction parameters in equation (5).

Depending on the symmetry of the two-particle states’ orbital part, any combination of spin (¢) and
valley (7) states is permissible that combines to an overall antisymmetric two-particle wave function. We
denote an antisymmetric singlet state by * — x’ and the three members of the symmetric triplet state by
‘+xand ‘+ 7.

There are six combinations of spin/valley-singlet (¢ /77%) and -triplet (¢72/77%, 0™ /77,072 /77%)
states and an orbitally symmetric (s) two-particle state of orbital n:

|nn, o, 7% =

:
\[(dnw —djy.d)00),
|nn, o, 77%) = dl _d:ﬂl_|0>,
\nn, o—ix’ > dnT+dn¢+ |0>

nn,o %, r %) =di  df[0),

I, 0%, 7y = \/_(danL_ +df , dl)o),
nn, 02,77 = dl, dl._|0). (6)

The energies of this two-particle multiplet are given by [27],

Epposgte = €+ (€2 + 481 — 0z — &0)J + Ec(2),
Eppo—sxr-2 = &, + (g2 + g0z + &0)J + Ec(2) — 2g, 1B,
ootz = o 4 (82 + oz + 820)T + Ec(2) + 2g) 1B,
Eupozrx = €, + (8 — 481 — g0z — &0)J + Ec(2) — guupB,

E

Enn,ngx;r*X = efm + (gzz - 4gJ_ — 8oz — gzO)J + Ec(z))
Enn,a""z,rfx = Gfm + (gZZ - 4gJ— — 8oz — gZO)3 + EC(Z) +g/~LBB (7)

Here, &, comprises the energy of the nth single-particle orbital and the screened electron—electron
Coulomb interaction computed from equation (3). The factor, J f dr| 1/),15 O nsm(r)]
[wnsst3 (r)]* [wn&m(r)] > 0 (for all combinations of t; corresponding to inter- and intra-valley scattering
channels induced by equation (4)), captures specific dot state characteristics, i.e., dot shape, gap, and mode
number. The short-range interaction constants, g, are a priori unknown and we discuss possible level
orderings for different values of these couplings in section 4. In a finite magnetic field, the two-particle
levels split according to the g-factors in equation (7). The valley g-factor, 2g!, of the two-particle states
computes as the sum of the single-particle g-factors in the two valleys. For valley polarized states, 2¢/
exceeds the single-particle valley and spin g-factors. Conversely, the g-factors from both valleys cancel for
any valley coherent two-particle state.

The ten possible two-particle states with orbitally antisymmetric (a) wave function are,

lnm, 075, 77%) = djwf ¢7‘0>’

|nm, o

’ T > \/_(dan m— + dlifdinj*f)|0>’

[nm, 0%, 77%) = d}_d,;_o),
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|nm, o7 %, T

1
= %(dlu‘ﬂm— +d),_d},)l0),

1
[nm, o, 7) = 5 Sy d, Hdydy 4 dd - d)d)[0),

Inm, ot 7 = \/_(dnH oo +didl o),
[nm, 072, 7%) = di¢+di1¢+|0>>

|nm, o™, T

- \/—(dnTJr m¢++dni+ mT+)|0>
lnm, o2, 777) = dLT+dInT+|0>’
—x X\ i T T T T
lnm, 0%, %) = - (dnT+ boo—dlodl —dldl o +dfdl o). (8)

For brevity we consider the simplest case where the two-particle ground state consists of exactly two
single-particle orbitals # and m (substantial admixing of more than two orbitals is relevant only at higher
energies’ [27]).

The energies of the states in equation (8) are,

tT1

wmo—z7—= = Cn — (& + & )usB + Ec(2) + 2As0 — gusB,
otz = € + Ec(2) — (g + g, ) s B,

wmotzr—z = Co — (& + & )upB + Ec(2) — 2As0 + gusB,
amo—zr+x = g+ Ec(2) — gunB,

ot +x = €+ Ec(2),

(e I R s B s

ozt = € + Ec(2) + gupB,

o2tz = Co + (8 + 80 ) usB + Ec(2) — 2As0 — gusB,

amotx etz = Cp + (80 + &) psB + Ec(2),

ozt = C + (€ + &) usB + Ec(2) + 2As0 + gunB,

o = €+ Ec(2). )

[co RS IS I o '

Here, €%, is the energy of the orbitally antisymmetric states of two screened interacting electrons in
single-particle orbitals # and m (akin to the orbitally symmetric state described above), and (g} + &) is the
valley g-factor of the two-particle multiplet.

Coupling to the leads. The point contacts in the bilayer graphene channel to the left and right of the
quantum dot provide discrete lead modes due to the transverse confinement. These modes can couple to
the quantum dot. Close to pinching off the lowest of their modes, we can treat the quantum point contacts
as tunnel junctions with tunnelling amplitudes ¢ (£*) for the left (right) quantum point contact. We
describe these single-channel leads with a Hamiltonian,

Hieags = Z Z €;<C;k5kclk5b (10)

I=L,Rk,s,t

where clTk5 . creates a lead electron with momentum k, energy ei, spin s, and valley quantum number t. The
lead-dot tunnelling Hamiltonian is given by,

Hr =3 > (thachadmot + ). (11)

I=L,Rn,k,s,t

In the following sections, we use this tunnelling Hamiltonian in equation (11) to compute the tunnelling
current across the bilayer graphene quantum dot. We treat the tunnel amplitudes as phenomenological

> Which particular combination of single-particle orbitals 7, m is involved in the formation of the two-particle ground state depends
on the orbital wavefunctions’ intricate distribution in real and momentum space (a consequence of the non-quadratic, warped bilayer
graphene dispersion) determining the exchange integrals, as well as the strength of the interaction (determined by screening) and the
single-particle orbital level splitting (depending on the dot size). The general form of the dot’s two-electron ground state is consistent
with our previous studies of interacting two-electron states in bilayer graphene quantum dots.
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input parameters and demonstrate the resulting transport characteristics of the dot for different values of

AR

3. Tunneling rates and rate equations

For our transport calculations, we consider the high-temperature regime
Dust < kpT < |g1,223] < AEn a1,

Duse = 71'21/1‘1‘1[15{|2, (12)
I=L,R

where in the last term we compare to the energy difference of dot states with different particle number and
['ys¢ is the tunnel-coupling induced level broadening with lead density of states v;. For a level broadening
I',s¢ much smaller than the thermal energy kT, we can compute transport perturbatively in the tunnel
Hamiltonian [23, 45, 46], Hr, in equation (11).

The lowest (first) order in the lead-dot tunnel coupling describes the single-electron processes involved
in sequential tunnelling: an electron tunnels either from the leads to the dot or from the dot to the leads
thereby changing the occupation number of the dot by one. Expanding to first order in Hr and applying
Fermi’s golden rule, transition rates for a one-electron tunnelling, which induces a transition of dot from a
single-particle state, N7 = 1: /), to a two-particle dot state, |\ = 2: x), read,

2 . .
Wanery = EZKICKZ : X‘HTU 3X/>|l>\2 P 5(Ef,2:x - Ei,l:x’)
fi

27 ] .
= D G e Pf (B = By = ) =D Wiy (13)
I=L,R I=L,R

Here, N indicates the dot particle number and y identifies the state of the corresponding multiplet. Hence,
a prefix N' = 1 implies x = (n,5,t) and for N' = 2, y indexes the orbital, spin, and valley combinations
from the family of states in equations (6) or (8), respectively. In equation (13), (nst) are the indices of the
electron tunnelling into the dot, forming the two-particle state |2 : x) with the single electron previously on
the dot (the latter having quantum numbers x’). The initial and final states of the leads are |i) = |iL)|ig)
and |[f) = |f)|fk), the former weighted by a thermal distribution p'. Further, f denotes the Fermi function
and 4! is the chemical potential of lead I, which depends on the bias voltage, V3. We consider the case where
the dot is biased symmetrically, ;///R = eV, with respect to the equilibrium chemical potential. The rates
for the reverse transitions, [1: x') < |2: ), follow from equation (13) by replacing f(E) — 1 — f(E). We
provide the explicit rates for each transition in appendix A.

Going to second order in Hy describes correlated two-electron cotunnelling: an electron tunnels from
one lead to the other (or the same lead) via the quantum dot, leaving the occupation number of the dot
invariant. Within each particle number sector (A" = 1 or N = 2), the dot’s state may change (inelastic
cotunnelling) or remain the same (elastic cotunnelling). The corresponding cotunnelling rates read,

_§ : LU
Wl:X“LX’ - Wl:x(—l:x’

2 4 4
=TS P [ [ adi

L x

I I ] ! L
x [1 —flep — )] O(Ery + ey — By — &) Waiyeny = szzxezzx’
Ll

2

! flel =)

Ei,l:x’ - EZ:)Z + GZ + 0+

2

1 U i’
flee —u)

Ei,Z:x’ - El:f( - 65(/ +i07

2
- %Z‘tﬁ( tlxl*\z/ de} del,

L

X [1—flely — "] 0(Boy + €y — Enyr — €h). (14)

These rates involve the intermediate states of higher or lower dot occupation number, N + 1, if they are
allowed by spin and valley selection rules. In equation (14), we take into account transitions via the
single-particle ground state multiplet and the two-particle ground state multiplets of equations (6) and (8).
Projection onto these single-particle and two-particle state spaces is valid for quantum dots where all other
states are separated sufficiently in energy to exclude any virtual transitions to them. It is not straightforward
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to evaluate the cotunneling rates in equation (14) due to the second-order poles causing the integrals to
diverge. These divergences are related to the intermediate state’s zero width and hence infinite lifetime
within this perturbative approach. We follow the standard regularization procedure to extract the correct
cotunneling rates from equation (14) [46—50]: first, a level width v ~ I',,s( is introduced as imaginary parts
in the denominators (accounting for the intermediate states’ tunnel-coupling induced level broadening).
These imaginary parts shift the poles away from the real axis, and the integrals can be carried out. Next, the
resulting expression is expanded in powers of . The leading order term is a sequential-tunnelling
contribution (reflecting that, at finite temperature, the final state of any cotunneling-induced transition can
also be reached via two successive single-electron tunnelings). This term is disregarded to avoid
double-counting sequential tunnelling processes. The next-to-leading-order term in the v expansion gives
the regularized expression for the cotunneling rate, where the limit v — 0 can be taken. We provide the
regularization calculations and resulting expressions for the cotunnelling rates W, s in appendix B.

Given the rates for transitions between different dot states, we write a master equation describing the
dynamics of the probabilities, P, , for the state, |V: x), to be occupied at a given time,

PMX = Z(WMxeNéx’PNéx’ - WNéx’eMxPMx)’ (15)
Ny

where the terms with changing particle number, 1 < 2, describe current flow whereas cotunnelling terms
introduce relaxation within the multiplets at fixed particle number. We solve these rate equations,

equation (15), in the stationary limit, Pxz, = 0, using the normalization condition Ao PAéy = 1. From the
probabilities we compute the total particle current I = Iy.q + Lo, with the sequential tunnel currents
flowing from the dot to lead I,

Iieq = Z (Wll:)(eZ:X’)ePZZX/ - (Wé:)(’elzx)epli)(’ (16)
1o, 2:x/

and the cotunneling current between lead /' and I,

1 14 'l
Icot = Z (WJ\/:x’<—Mx - WMX’HMX)ePMX' (17)
N, Nex!

It depends on the tunnelling strength compared to the isolated dot’s level splitting whether second-order
cotunnelling processes contribute significantly to transport. We define the regime of purely sequential
tunnelling for weak dot-lead tunnel coupling, and the regime of sequential + cotunnelling for stronger
dot-lead tunnel coupling, where second order effects contribute. Numerically, we find that the first regime is
realized for |t!,,| ~ AEx r+1/1000 while reaching the latter regime requires approximately
|theel ~ AEx,p41/100.

4. Resolving the two-particle dot states

4.1. Spectroscopy of an orbitally symmetric two-particle ground state

This section considers dots with orbitally symmetric two-particle ground state wave functions. We discuss
the possible level orderings which can result from equation (7) and at zero and finite magnetic field and
how to distinguish the spin and valley states in tunnelling transport.

Possible level orderings of orbitally symmetric two-particle dot states. We illustrate the various level
orderings of the states in equation (6) for different signs and relative magnitudes of the short-range
couplings g, g,,> and g in figure 3. Generally, there are three levels at zero magnetic field, being singly,
doubly, and three-fold degenerate, respectively. These degeneracies are lifted by a finite magnetic field,
splitting different valley and spin states. According to equation (7), the coupling constant g, shifts all
energies equally. The mutual splitting between the two inter-valley coherent states, 7%, is proportional to
the coupling g, , while these states are split from the valley polarized states, 7%, proportionally to the sum
&+ &0

Tunnelling transitions in the single- and two-particle sector allow identifying the spin and valley states
and determining the short-range couplings by combining the two following considerations: firstly, the
single- and two-particle states split in a magnetic field. Transition energies hence depend on the difference
in single- and two-particle valley g-factors. Besides, any single-particle-to-two-particle tunnelling transition
is subject to spin and valley selection rules. Therefore, we can identify the two-particle states that can be
reached, e.g., from the single-particle ground state. With the two-particle levels being identified, we can
relate the level splittings to the short-range interaction couplings g, g,» and g, as in figure 3. Hence,




10P Publishing New J. Phys. 24 (2022) 043003 A Knothe et al

'|1 (I) 1| (9oz+g20) / g .
| I | g
= = h ——
— — :bg
< -8, 3
o [ =280, + 803 12: 2)
v 2(80: + 80T g | - X
Y -80.3 N o+ 803 T
o % 88,3 l |nn, o™, )
| - 2(80: + 8003 4_
-8, | nn, 6™, 77%)
< |nn, 67, 77%)
0 -7
S Y | nn, %%, 77°)
86,3 | nn, o™, t7%)
o E —2(80: + 803 |nn, 6~ T_x>
/}| o 88, ] 280, + 80— !
o —2(goz + gm)d 82,3
| 2(80, + 8003 [
— l 82,3
9. v -
B=0 B>0 B=0 B>0 B=0 B>0 B=0 B>0
Figure 3. The ordering of the dot’s two-particle lowest-state multiplet with symmetric orbital wave function at zero bias voltage,
equation (7), depend on the relative magnitude and sign of the short-range interaction coupling constants, g, , g,,, and g, and
on the magnetic field.

classifying the dot’s two-particle states and their mutual gaps is a way to quantify bilayer graphene’s
microscopic short-range interaction parameters.

4.1.1. Two-particle states with broken time-inversion symmetry

Single-to-two-particle transitions to the levels in figure 3 yield differential conductance features as in

figure 4. Here, we consider sequential tunnelling and symmetric coupling to the leads. Differential
conductance maps as the ones in figure 4 are cuts at finite bias voltage (we chose Vi = 0.45 meV) through
the Coulomb diamonds for different values of magnetic field (cf figure 1). Each allowed
single-to-two-particle transition manifests as an increase/decrease in conductance (red/blue lines) once this
transition enters/leaves the bias window. The differential conductance features at zero magnetic field reflect
the splittings of the two-particle multiplets in figure 3. At finite magnetic field, the conductance lines
disperse according to the two-particle and single-particle g-factors. Hence, for similar zero-field splittings
and similar g-factors, the conductance maps can coincide even for distinct two-particle level orderings.

To facilitate the electron transport through a dot, the bias window must allow
single-particle-to-two-particle transitions between the ground state of the dot with one and two electrons,
respectively. When the two-particle ground state is valley coherent, the corresponding lines in the
differential conductance maps have positive slope in a magnetic field. While these coherent two-particle
states do not disperse with B, the single-particle ground state, |1, |, —) is pushed down and the energy
required for this transition increases. Conversely, a K~ valley polarized two-particle ground states is pushed
down even faster with B (since 2¢)} > gI'), causing the transitions energy to decrease. This leads to lines with
negative slopes limiting the bias window range in figure 4 for these cases. Within the bias window, whether
energetically allowed single-particle-to-two-particle transitions contribute to transport is determined by
spin and valley selection rules. For example, the K™ excited single-particle states can be populated via
transitions to valley coherent two-particle states. However, if there are no such transitions available at equal
or lower gate voltage, the K single-particle states are depopulated, causing the corresponding lines to
terminate in the differential conductance maps in figure 4.

4.1.2. Two-particle states preserving time-inversion invariance
In the following sections 4.1.2, 4.2 and 4.3, we exemplify the quantum dot’s tunnelling characteristics for
one specific level arrangement of the orbitally symmetric two-particle states and study different regimes of
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Figure 4. Differential conductance maps for the two-particle multiplets in figure 3 for the different possible regimes of
short-range interaction constants g, g,,, and g,,. (Sequential tunnelling and symmetric coupling to both leads). The
conductance increases/decreases when a single-particle-to-two-particle transition enters/leaves the bias window at fixed bias
voltage Vi = 0.45 mV (red/blue lines). Permissible single-to-two-particle transitions depend on spin and valley selection rules
and whether the two-particle ground state is spin and valley coherent or polarized. The difference of the two-particle and
single-particle valley g-factors dominates the slope of the lines with magnetic field. Here, k7' = 0.003 meV.

lead couplings as well as the impact of a finite spin—orbit coupling gap. Numerical values we have estimated
previously in one specific dot model [27], yielded g,, = g,, = 0, (preserving time-reversal invariance),

g, > 0,¢, < 0 (favouring the spin and valley coherent ground state |nn, o, 77%)), and Jg.. > 4|Jg. |. For
this choice of short-range couplings, the two-particle triplet is equally spaced at B = 0 (top left panel of
figure 5). A finite magnetic field splits the levels according to the spin and valley configuration (top row of
figure 5).

The contrasting magnetic field coupling of valley polarized and valley coherent two-particle states leads
to level crossings at finite B. For zero and small magnetic field the state |nn, 0, 77) is the two-particle
ground state. This spin- and valley-coherent state does not couple to the magnetic field. At sufficiently large
B, the valley polarized state, |nn, 0~*, 77%), being pushed down by the magnetic field, becomes the
two-particle ground state. Being able to identify the differential conductance characteristics in figure 5 with
the possible single-particle-to-two-particle transitions allows extracting information about a symmetric
two-particle dot state.

In the regime of sequential tunnelling, transport is possible, once the gate voltage sufficed to induce the
ground state-to-ground state transition. For zero or weak magnetic field, this is the transition,

®: |n,d,—) = |nn, o, 7). (18)

The involved two-particle state occupies all four different spin and valley states. Hence, when one electron
leaves the dot in the subsequent tunnelling process, the remaining electron can be in any of the
single-particle states. Consequently, with increasing gate voltage, all single-particle-to-two-particle
transitions become possible and manifest in the differential conductance maps within the bias window. At
higher magnetic fields, the ground state-to-ground state transition changes to,

sl =) = nn, o, T, (19)

where the valley K~ polarized two-particle state entails that after the next tunnelling process, the remaining
electron occupies one of the K~ single-particle states. As a consequence, transitions from the K™
single-particle states do not contribute to conductance in this regime if there is no transition to a
valley-coherent two-particle state lower in gate voltage. The corresponding © lines terminate in the
differential conductance maps in figure 5. We note that coupling stronger to the source (left lead in our
convention) and suppressing the drain coupling (right lead) suppresses transport features from the
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Figure 5. Transport characteristics of a bilayer graphene quantum dot with an orbitally symmetric two-particle ground state
preserving time-inversion invariance (in which case, g,, = g,, = 0, compared to figure 4). Top: single-particle and two-particle
dot levels for different magnetic fields. Bottom left: differential conductance across the dot in different tunnelling regimes and
symmetric or asymmetric lead coupling (suppressing coupling to the right lead = source or the left lead = drain, respectively)
depending on a magnetic field, B. For the conductance maps, we fix Vy = 0.45 mV and ks T'= 0.003 meV. The sequential
tunnelling regime is realized for |t | ~ AEu-\+1/1000 while significant cotunnelling contributions require approximately

|tho (] ~ AEy41/100. Cotunnelling induces relaxation processes within each fixed particle number multiplet and hence opens
additional transport channels compared to purely sequential tunnelling. The panels on the right consider the potential influence
of a finite spin—orbit coupling gap, Aso, possibly smaller (here [Aso| = 0.02 meV) or larger (here |[Aso| = 0.1 meV) than the
splitting induced by g, and of different sign. The labels @), ®, ©), @) indicate transitions which we discuss in detail in the main
text.

transitions involving valley polarized two-particle states. In comparison, stronger coupling to the drain
decreases the amplitudes of all transport channels. A finite spin—orbit coupling gap, Aso, further splits the
states and corresponding transitions depending on its sign and magnitude relative to the short-range
splittings. When the spin—orbit gap overcomes the short-range couplings, |Aso| > 4[g1 J|, transitions may
occur in a different order, exemplified by the transition © in figure 5. We depict representative differential
conductance maps in the regime of sequential tunnelling and symmetric lead-coupling in the bottom right
panels of figure 5.

Cotunnelling leads to relaxation processes within the multiplets of each separate particle number sector
and can hence make additional transport channels available. In the coupling regime where cotunnelling
processes play a significant role, the transitions from the K single-particle states to the 77 two-particle
states (© in figure 5) reappear compared to the regime of purely sequential tunnelling as a result of
population of these single-particle states via the |n, |, —) — |#,1,+), |1, |, +) cotunnelling transitions
(cotunnelling assisted sequential tunnelling [23]). Besides, we observe features outside the Coulomb
diamond, where cotunnelling events populate states that do not yet fall into the bias window for a certain
gate voltage value. Increasing magnetic field and any asymmetry in the lead couplings suppress
cotunneling-induced transport features. The former is due to energy differences between states growing
with B, suppressing inelastic events. The latter suppression comes from the fact that at finite bias, the
relevant contributions to cotunnelling scattering rates involve tunnelling at both leads (cf equation (14)).

The occupation probabilities, Ps, shown in figure 6 for different values of magnetic field support the
conclusions above about states contributing to transport in different regimes. Allowed transitions manifest
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Figure 7. Two-particle dot states with antisymmetric orbital wave function are degenerate at zero magnetic field and split
linearly with B, cf equation (9).

as steps where state occupation numbers change. Cotunnelling processes alter these steps by introducing
alternative transitions between dot states (see appendix C).
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4.2. Spectroscopy of an orbitally antisymmetric two-particle ground state
Level ordering of orbitally antisymmetric two-particle dot states.

The ten-fold degenerate spin and valley two-particle states’ multiplet with orbitally antisymmetric wave
function, equation (8), splits in a magnetic field according to the states’ spin and valley g-factors as in
figure 7. Hence, since g >> g, identifying the allowed single-particle-to-two-particle transitions for
tunnelling transport at finite B yields information about the orbitally antisymmetric two-particle dot state.
For non-zero magnetic field, |nm, 0%, 77%) is the two-particle ground state (cf figure 8 top row). By purely
sequential tunnelling, the following transitions are accessible,
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along the gate voltage axis through the symmetrically coupled differential conductance maps in figure 8 in the sequential
tunnelling regime.
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Each transition in equation (20) contributes a line to the differential conductance maps in figure 8, the
slopes of which are given by the g-factor difference of the involved single-particle and two-particle states.
The first transition listed in equation (20) is the ground state-to ground state transition. The single-particle
excited state |1, 1, —) is populated from the spin coherent two-particle state |nm, o+, 77%) via the
tunnelling sequence |1, |, —) — |nm, o™, 77%) — |n, 1, —). The transitions

®: |mdo +), [ 1 +)

z +x>

— |mm, 0%, T +x

ynmy o Y lnm, o T, [, o7, T, (21)

are absent in the sequential tunnelling differential conductance maps as the K single-particle states are not
populated at the values of gate voltage needed for these transitions. Electrons cannot reach the K™
single-particle states because all transitions lower in gate voltage, including the ground state-to-ground state
transition |n, |, —) — |nm, 0%, 77 %), occur between valley K~ polarized states. Cotunnelling transitions,
when relevant, enable the transitions in equation (21), by populating the K™ single-particle states via
inelastic cotunnelling |n, |, —) — |n,T,+), |1, |, +). This cotunnelling-induced repopulation makes
sequential tunnelling from the K™ single-particle states possible leading to weak features in the differential
conductance maps at the gate voltages required for the transitions in equation (21) (bottom row of

figure 8). Additionally, we observe cotunnelling-induced transport features outside the Coulomb diamond
similar to the case of the orbitally symmetric multiplet, section 4.1. Similarly, all cotunnelling features are
suppressed by magnetic field and asymmetric coupling to the leads. Figure 9 demonstrates the
cotunnelling-mediated redistribution of electrons among the states by comparing the occupation
probabilities in the purely sequential tunnelling and sequential tunnelling 4+ cotunnelling regimes. We note
that a finite spin—orbit coupling gap Ago leads to two split copies of fanning lines in the differential
conductance maps as those in figure 8.

4.3. Interplay of ground- and excited two-particle state multiplets
The dot’s two-particle ground and first excited state can be sufficiently close in energy for both to
contribute transport signatures within the bias window [27]. We consider the cases in which the

14



10P Publishing New J. Phys. 24 (2022) 043003 A Knothe et al

a) 9 9 9
)c» > >
SE OSSN e
g% 8.4-/ .
% < -
o
® 7.8 7.8 7.8

VelmVl,,
VelmVl,

Regime of sequential
+ cotunneling
oo
N

S,
o

0 0.1 BIT] 0.5 . 0 0.1 BIT10.5 0.1 BIT10.5
tt1tR =1 tR1tt=0.5 t1tR=0.5

o

S
V[mV]

0]
\

(0]
oo

-

VelmV] ;

Regime of
sequential tunneling
-.d
w
-.d
w
-..l
w

o

/}\ |

8.

7.3< ]

Regime of sequential
+ cotunneling
[00]

7.3
0 0.1 B[T]0.5 0 0.1 B[T]0.5 0 0.1 B[T] 0.5

th1tR=1 ?1tt=0.5 t1tR=0.5

Figure 10. Differential conductance maps for tunnelling transport through a bilayer graphene quantum dot in which the
two-particle ground- and first excited state are close enough in energy for both to be reached within the bias window are not
merely superpositions of the two maps in figures 5 and 8 for the two states due to interplay of the different multiplet states’
occupation numbers. (a) Orbitally symmetric two-particle ground state and antisymmetric excited state, (b) orbitally
antisymmetric two-particle ground state and symmetric excited state. Parameters as in figure 5.
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two-particle ground state is either orbitally symmetric or antisymmetric, while the first excited state’s
orbital wave function is of the opposite symmetry. These scenarios yield distinct cases compared to the
isolated two-particle ground states discussed in the previous sections. The ground state-to-ground state
transitions originating from the two-particle states of opposite symmetry can enable different transitions in
the excited state multiplet compared to the isolated case. Also, we can clearly distinguish the orbitally
symmetric and antisymmetric two-particle states by their zero-field splittings or absence thereof. Hence,
investigating both simultaneously reveals changes in the orbital composition when comparing the ground
and excited two-particle states.

Figure 10(a) depicts the differential conductance across a dot with an orbitally symmetric two-particle
ground state and orbitally antisymmetric first excited state. Transitions to both two-particle multiplets
manifest in the differential conductance maps. Notably, tunnelling channels involving valley-coherent
two-particle states in the orbitally symmetric two-particle manifold lead to a population of the K™ valley at
sufficiently high gate voltages. These populations enable transitions to all the orbitally antisymmetric
two-particle states by purely sequential tunnelling. The differential conductance lines originating from
either multiplet in figure 10(a) have distinct slopes with B due to the different orbital composition of the
symmetric and antisymmetric orbital two-particle wave functions yielding different valley g-factors. Since
the orbital composition is unequal also for ground and excited states, the valley g-factors differ for the
orbitally antisymmetric states in figures 10(a) and 8.

Similar statements apply to the case of an orbitally antisymmetric two-particle ground state and
orbitally symmetric first excited state, figure 10(b). Also here, an orbitally symmetric state occupies different
orbitals, 1, when being an excited state compared to a ground state, leading to different valley g-factors and
different magnetic field splittings compared to figure 5.

5. Discussion and conclusion

In summary, we have analysed quantum tunnelling across an electrostatically induced bilayer graphene
quantum dot as a spectroscopic tool to resolve the dot’s single and highly degenerate two-electron
multiplets. Here, we summarise how to use tunnelling transport maps as a function of gate voltage and
magnetic field to distinguish the interaction regimes specified in figure 2 and identify two-particle states
with different orbital, spin, and valley compositions:

e The number and the splittings of peaks in the differential conductance at zero magnetic field tell
about the orbital symmetry of the two-particle wave function. Neglecting spin—orbit splitting, an
orbitally antisymmetric two-particle state (as for dots with weak screening and strong long-range
Coulomb interaction, cf figure 2) hosts a tenfold degenerate multiplet of spin and valley states at
B = 0 (cf figure 7), manifesting in one single transition. Conversely, the six possible spin and valley
states of an orbitally symmetric two-particle state (which forms for strongly screened long-range
interactions) are slightly split by short-range lattice-scale interactions (cf figure 3). Such splittings
manifest in multiple possible transitions and corresponding tunnelling transport features within the
bias window at zero magnetic field (figures 4, 5 and 8). While weak Kane—Mele spin—orbit splitting
can induce additional level splittings, cf equations (1) and (8), the overall statement remains that
orbitally symmetric and antisymmetric two-particle states can be distinguished by the number of
allowed transitions which manifest in tunnelling transport.

e The various spin and valley states couple differently to a perpendicular magnetic field. Hence a
magnetic field allows us to identify them and infer their g-factors. Spin- and valley-polarized states
split with B, while spin- and valley-coherent two-particle states do not couple to a magnetic field. In
combination with spin and valley selection rules, this contrasting magnetic field dependence helps
identify the dispersing lines in the magnetic field-dependent differential conductance maps with the
corresponding single-particle-to-two-particle transitions. The slope of these lines is proportional to
the difference of the single-particle and two-particle states’ g-factors. The orbital magnetic moment
induced valley g-factor being much larger than the free particle spin g-factor allows distinguishing
spin and valley splittings.

o If multiple two-particle states can be reached within the bias window, their distinct valley g-factors
will help identify them. The valley g-factor depends on the orbital wave function and its distribution
in momentum space. Hence transitions from the same single-particle state to distinct two-particle
states show as lines with different slopes in the differential conductance maps, as in figure 10.

Parts of our results helped to explain tunnelling transport experiments in bilayer graphene quantum

dots in the one- and two-particle sectors with orbitally symmetric two-particle ground states [20]. All other
regimes described in this work yet remain to be experimentally realized and investigated. The great
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tunability of bilayer graphene quantum dots, e.g., the confinement shape, width, depth and the gap
(controlling the orbital single- and two-particle splittings), by virtue of the gates, is a great advantage
allowing to tune between these different regimes. Conversely, tunnelling through two-particle multiplets
split by the short-range interactions allows to draw conclusions about the short-range couplings, hence
rendering tunnelling spectroscopy in the single- and two-particle sector a tool to study these microscopic
material parameters [20]. Identifying and controlling few-electron states is a crucial step towards using their
degrees of freedom for quantum information storage and processing in future devices.
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Appendix A. Sequential tunnelling rates

The sequential tunnelling rates, Wézx «1,y» 1N equation (13) for transitions from single-particle dot levels to

the orbitally symmetric two-particle states, equation (6), are given by,
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in terms of the tunnelling amplitudes, té, and chemical potential, 11/, of the left (I = L) and right (I = R)
lead. The sequential tunnelling rates involving the orbitally antisymmetric two-particle states, equation (6),
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Appendix B. Cotunnelling rates

By the regularization scheme described in the main text, the cotunnelling rates, equation (14), evaluate to,

2
2 1 2/ I 1 v v
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jurs 2 E) = ygg/def(e i [ fle= )] g -0 (3
R e R (e

in terms of the Bose function np and the polygamma function ).

Appendix C. Occupation probabilities

Similar to figures 6 and 9 in the main text, here we discuss how the occupation probabilities of the
single-particle and the orbitally symmetric or the orbitally antisymmetric two-particle states change when
varying the gate voltage at fixed values of the bias voltage and the magnetic field. Figures C1 and C2
compare the occupation probabilities of the dot states for sequential tunnelling to the regime of sequential
-+ cotunnelling for the two different two-particle multiplets. We observe how the additional inter-multiplet
transitions induced by cotunnelling processes alter the states’ occupations and enable different tunnelling
sequences compared to purely sequential tunnelling.
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Figure C1. Probabilities for the single-particle and orbitally symmetric two-particle states to be occupied for fixed magnetic field
cuts along the gate voltage axis through the symmetrically coupled differential conductance maps with zero spin—orbit coupling
in figure 5 (leftmost differential conductance maps).
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along the gate voltage axis through the symmetrically coupled differential conductance maps in figure 8.
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